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Abstract

We consider the flat flow solutions of the mean curvature equation with a forcing term
in the plane. We prove that for every constant forcing term the stationary sets are given
by a finite union of disks with equal radii and disjoint closures. On the other hand for
every bounded forcing term tangent disks are never stationary. Finally in the case of
an asymptotically constant forcing term we show that the only possible long time limit
sets are given by disjoint unions of disks with equal radii and possibly tangent.

Keywords Forced mean curvature flow - Large time behavior - Stationary sets -
Critical sets

1 Introduction

Mean curvature flow is one of the simplest and yet most interesting geometric evo-
lution equation. In order to deal with formation of singularities or rough initial data
several notions of generalized solutions have been proposed. Among them we mention
Brakke’s solutions in the varifold sense [7], level-set solutions in the viscosity sense
[10,15], De Giorgi’s minimal barriers [12] and the flat flows solutions constructed by
the minimizing movements method [2,21]. Each method has its own advantages and
drawbacks. For instance Brakke’s theory fails to provide unique solutions, but yields
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a satisfactory partial regularity theory, see also [19]. On the contrary, the viscosity
level-set method provides uniqueness and global existence, but it is not so convenient
as far as regularity is concerned. Indeed in this framework one may construct singular
solutions where the evolving hypersurfaces become sets with nonempty interior, the
so called fattening phenomenon. This phenomenon can occur even if the initial set is
regular after a positive time, see [5]. De Giorgi’s minimal barriers provide essentially
the same solutions as the level-set method, see [4]; within this approach the fattening
phenomenon is related to the fact that minimal and maximal solutions may be differ-
ent, see [5]. Flat flow solutions are also defined globally in time. They are always given
by evolving boundaries of sets and may not be unique whenever the level-set solu-
tion experiences the fattening phenomenon. However, level-set solutions, De Giorgi’s
minimal barriers and flat flows all coincide with the classical solutions as long as the
latter exist.

In this paper we focus on the flat flow approach for the mean curvature equation
with a time dependent forcing term in the plane, i.e.,

V, = —kg, + f(t) on OE, (1.1)

with an arbitrary initial datum under the assumption that the forcing term f is uniformly
bounded, i.e.,

sup | f(1)] < Co. (1.2)

t>0

Here kg, stands for the curvature of the boundary of E; with respect to the orientation
given by the outward normal. For the precise definition of flat flow see the beginning
of Sect. 2.

The existence of flat flow solutions for the equation (1.1) in any dimension and their
relations with the De Giorgi’s barriers and the level-set solutions has been investigated
in [9]. In this paper we further elaborate on the properties of flat flow solutions in two
dimensions focusing on the following issues: how the flat flow selects a solution when
the fattening phenomenon occurs, the characterization of sets that are stationary when
f is constant and the long time behavior of solutions.

1.1 Flat Flow as a Selection Principle

Here we consider a particular situation where the initial set is given by two tangent
disks of equal radii D,(x1) and D,(x7). It is well known that in this example the
level-set solution develops instantaneously a nonempty interior. When f(z) = 1/r
the minimal barrier solution of (1.1) is stationary, while the maximal barrier solution
becomes a connected set containing a ball centered at the origin with a time dependent
radius, see [5]. It is an interesting problem to look for a selection principle among the
possible admissible behaviors. One such principle can be obtained by adding to the
forcing term a small stochastic perturbation. This has been investigated in [14] where
the perturbation considered is of the form ¢ d W, with W a standard Brownian motion.
The authors show that when ¢ goes to zero the corresponding motion converges with
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probability 1/2 to the maximal barrier solution and with probability 1/2 to the minimal
one. In this paper we prove that any flat flow instantaneously connects the two tangent
disks with a thin neck and keeps enlarging the neck at least for a short time interval,
thus showing that the flat flow somehow picks the behavior of the maximal barrier
solution. The precise statement is as follows.

Theorem 1.1 Let Ey C R? be a union of two tangent disks Ey = D, (x1) U D, (x2)
and let (E;); be aflat flow of (1.1) starting from Eqy and assume that (1.2) holds. There
exist § > 0, n € (0,r) and ¢ > 0 such that for every t € (0, §) the set E; contains
a dumbbell shaped simply connected set which in turn contains the disks Dy(x1) and
D, (x2) and a ball centered at the origin of radius t. In particular for every t € (0, 5)

|E; \ Eo| > ct°.

This theorem is also relevant for the second issue we want to deal with, i.e., the
characterization of stationary sets, as it shows that the union of two equal tangent
disks is not stationary for the flat flow.

1.2 Characterization of Stationary Sets

When the forcing term f = ¢( equation (1.1) can be regarded as the gradient flow of
the following energy

E(E) = P(E) — ool E|, (1.3)

where P (E) stands for the perimeter of E and | E| for its Lebesgue measure. Therefore
one might think that E is stationary for the flow if and only if it is critical for the energy
(1.3), 1.e., it satisfies kg, = co on 0 Eq in a weak sense. Indeed if Ey is stationary then
it also critical, while the converse is certainly true when Ej is smooth, i.e., is given
by a union of finitely many disks with equal radii and mutually disjoint closures (see
[13] for a characterization of critical sets in any dimension, even in the nonsmooth
case). However, Theorem 1.1 shows that the two notions do not coincide since the
union of two tangent disks of equal radii is critical as it has constant mean curvature
in the weak sense, but not stationary. Here we show that a set E is stationary for the
flow (1.1) when f = ¢ if and only if it is a union of disks with radius r = 1/cg with
positive distance to each other. More precisely we have the following.

Theorem 1.2 Assume Eo C R? is a bounded set of finite perimeter. Then Ey is sta-

tionary (see Definition 3.1) for the flow (1.1) with f = co > 0 if and only if there are
points X1, ..., Xy such that |x; — xj| > 2r fori # j, withr = 1/co, and

N
Eo = | D).

i=1
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The fact that any stationary set is a union of disjoint disks follows from a sharp
quantitative version of the Alexandrov theorem in the plane, see Lemma 3.2, while the
fact that the disks must be at positive distance apart is a consequence of Theorem 1.1.

We remark that the same type of classification holds true in the framework of level-
set solutions, as recently shown in [16, Theorem 4.7]. The general n-dimensional case
remains open also for the viscosity solutions, see [17].

1.3 Long Time Behavior

We now address the long time behavior of the flat flow under the assumption that the
forcing term is asymptotically constant, namely that it satisfies

/OO | £ (s) = col*ds < oo. (1.4)
0

In the next theorem our goal is to characterize the possible limit sets and we show
in particular that the asymptotically stationary sets are given once again by a union of
disjoint disks, which however can be tangent. Precisely we show that either, up to a
diverging sequence 7; of times, the area of E;; blows up or the sets (E;), converge up
to a translation in the Hausdorff sense to a disjoint union of disks with equal radii.

Theorem 1.3 Assume Eg C R? is a bounded set of finite perimeter. Let (E;); be a flat
flow of (1.1) starting from Eo and assume (1.2) and (1.4) with ¢y > 0, and

sup | E;| < o0.
t>0

Then there exist N € N and x; (1) : (0, +00) = R2, withi =1, ..., N and [x; () —
x;j(t)| = 2/co fori # j, such that, setting Fy = UzNziDl/CO (x; (1))

lim sup dyfr(x) =0.

I=00 yeE,AF,;

We stress here the fact that the initial set Eg in the above theorem is an arbitrary
bounded set of finite perimeter without further regularity assumption. It is plausible
that in Theorem 1.3 the convergence holds not just up to translation.

Previous results dealt with special classes of sets in any dimension such as convex
or star-shaped initial sets, see for instance [3,20]. We also mention [23] where the long-
time behavior of the discrete Euler implicit scheme for the volume preserving mean
curvature flow is addressed for any arbitrary bounded initial set with finite perimeter.
The long time behavior of the forced mean curvature flow in the context of viscosity
level-set solutions was also investigated in [16,17] where it is shown that under certain
assumptions the solutions converge to a stationary solution of the level-set equation.
The problem of classifying the latter is open in general.

We now show that it is indeed possible to obtain as a limit of the flow (1.1) a union
of essentially disjoint disks such that at least two of them are tangent. To this end we
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Fig.1 The union of two ellipses Zo
converges to the union of two
tangent disks

(_p7 0) (pv 0) 1

take G to be the ellipse
G:{(xl,xz)eRz:azx%+x%<l} with a > 1

and we show the following theorem.

Theorem 1.4 Let ey = (1, 0) and G as above. Denote by p = \/LE the radius such that
|Dy| = |G|. The volume preserving mean curvature flow (E;),, starting from

Ey = (G — pe) U(G + pey),

is well defined in the classical sense for all t > 0 and converges exponentially fast to
the union of two tangent disks

Ei — (Dp — per) U (Dy + pey).

Note that Theorem 1.4 shows that a flat flow of (1.1) may converge to tangent disks.
Indeed the classical solution of the flow in Theorem 1.4 is well defined and smooth for
all times and we may write it in the form (1.1) with f(¢) = J% E, kg, and the flat flow
agrees with it. Moreover, by the exponential convergence we have that f(¢) satisfies
(1.4).

We note that in Theorem 1.4 the flow (E;); remains smooth and diffeomorphic to
a union of two disks. Only the limit set is non-smooth (Fig. 1).

2 Notation and Preliminary Results
Since the results of this section hold in any dimension we state them in full generality
and we will go back to the planar case in the next sections.

Given a set A C R” the distance function d4 : R" — [0, o0) is defined as usual

da(x) ;= inf |x — y|
yeA
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and we denote the signed distance function by d4 : R” — R,

- —drma(x), for x € A
da(x) :=

dy(x), for x e R\ A.
Then clearly it holds dys = |d|.

For a set of finite perimeter £ C R” we denote its perimeter by P (E) and recall that
for regular enough set it holds P(E) = H"~!(3E) [1,22]. For a measurable set | E|
denotes its Lebesgue measure. We denote by Hg the sum of the principal curvatures
of E, while in the planar case we write kg. We denote the disk with radius r centered
at x by D, (x) and in the higher dimensional case we write B, (x) instead.

We consider solutions of (1.1) constructed via the minimizing movement scheme.
We fix a small time step # > 0 and a bounded set of finite perimeter Eg C R”,
which is our initial set E”-0 = E(. We obtain a sequence of set (E/* )i by iterative
minimizing procedure, where E h.k+1 is a minimizer of the functional Fr(E; Eh*k)
defined as

Fi(E; EM*y = P(E) + %/ dgnidx — f(kh)|E]|, 2.1)
E

where d_Eh,k is the signed distance defined above and f(kh) = % k(;zﬁ)h f(s)ds. We

define the approximate flat flow (Eth),>o by
Eh — ghk f _
;= , or (k—1)h <t <kh 2.2)

and we set f(t) = f(kh) for (k — 1)h < t < kh. Any cluster point of Elh as h goes
to zero is called a flat flow for the equation (1.1).

We warn the reader that in the above definition it is understood that we identify
E™* with its set of its points of density 1 so that there is no ambiguity in the definition
of d Ehk.

Recall that if Eg and f are smooth then any flat flow coincide with the classical
solution of (1.1) as long as the latter remains smooth, see [9].

In general, the problem (2.1) does not admit a unique minimizer and thus there is
no unique way to define the approximate flat flow (E ,h) ~0- Also the flat flow may not
be unique when fattening occurs. However, as we mentioned in the introduction, in
the case when the initial set and the forcing term are smooth, the flat flow is unique
for a short time interval and agrees with the classical solution.

Even if there is no uniqueness, the approximate flat flow satisfies the following
weak comparison principle, see for instance the proof of Lemma 6.2 in [8].

Proposition 2.1 Assume f1, f> : [0, 0c0) — R satisfy (1). Let Eq, Fo be two bounded
sets of finite perimeter and let (E,h)t be an approximate flat flow with forcing term
f1 starting from Eo and (Fth), an approximate flat flow with forcing term f> starting
from Fy.

(1) If Fy C Eg and f1 > f>, then for every t > 0 it holds Fth C Eth
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(i) If Eg C R\ Fy and — f> > fi, then for every t > 0 it holds E,h CR"\ F,h.

We need preliminary results on the structure of the approximate flat flow constructed
via (2.1). We note that if E"¥*1 is a minimizer of Fy (-, E¥) then it is a A-minimizer
of the perimeter, see for instance [24], with A < C/h, see [22] for the definition of
A-minimizer. Then it follows that 9 E"-**1 is C!-*-regular for all @ € (0, 1) up to
a singular set ¥ with Hausdorff dimension at most n — 8, see [22]. Then the Euler—
Lagrange equation

dphk

= —Hpgiis1 + f(kh)  on JEMFH1\ 3, (2.3)

which holds in the weak sense, implies that  E"-**1\ ¥ is C*>-regular and satisfies
(2.3) in the classical sense.

Lemma 2.2 Assume that (Eh’k)k is a sequence obtained via minimizing movements
(2.1) starting from a bounded set of finite perimeter Ey and assume that the forcing
term satisfies (1.2). Then there is a constant Cy such that for everyk =0,1,2, ...

sup dypni(x) < CiVh.

XeEh.k-H AEhK

Moreover, there are constants Co > 1 and c1 > 0 such that for everyk = 1,2,3, ...
it holds

1 _
|EMHIAERK) < ¢y (1P (EM) + —/ |dghi(x)| dx
I JEhk+1 A gk

forany 0 <1 < ci/h.
Proof The first claim follows from the argument of the proof of [24, Proposition

3.2] and thus we omit it. The second claim follows from an argument similar to [24,
Proposition 3.4] and we only sketch it. We write

|EMHYAERK) = [(x € EMFYAERY 1 dpni ()] = 1]
+{x € EMMHYAERK S \dc(0)] < 1)),

We estimate the first term as

_ 1 _
l{x € EM*IAEM  dpni ()] = 1) < 7/ |dgni(x)| dx.

Eh,k+1 AEh,k

For the second term we use Vitali covering theorem to choose a finite family of
disjoint balls (B;(x;))"_,, with x; € 9E"*, such that

{x e R": |dgns(x)| <1} C U Bsi(x;).
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Since E"* is a minimizer of Fr(E; E hk— 1), we have the density estimates [24, Corol-
lary 3.3]. Thus by the relative isoperimetric inequality we have foreveryi = 1,..., N

n

1B (xi)| < CCH" Y E"* 1 By(x;) 71 < CLH" Y DE"* 0 Bj(x))).

Therefore

N N
lfx € EMTIAEM s |dpni ()] < 1} < ) 1Bl < 5" ) 1Bixi)|
i=1 i=1
N
< CLY H'"'OE" N Bi(x)) < CL P(EMF).
i=1

]

In the next proposition we list useful properties of the flow in the case when the
forcing term satisfies only (1.2).

Proposition 2.3 Let (E,h)t be an approximate flat flow starting from a bounded set of
finite perimeter Ey and assume that the forcing term satisfies (1.2). Then the following
hold:

(1) Forevery T > QO thereis Rt > 0 such that Elh C Bg; foreveryt < T.
(ii) There is C3, depending only on Eo and f, such that for every T > 0 it holds

P(EM) < C3tT

for h sufficiently small.

(i) Foreveryh < s <t < T witht —s > h and h sufficiently small, it holds
|Eth AE‘ﬁ’| < C7+/t — s, where the constant Ct depends on T.

(iv) There exists a subsequence (h;); converging to zero such that (E,h’), converges
to a flat flow (E;); in L' in space and locally uniformly in time, i.e., for every T

sup |Eth’AEt| —0 as hy— 0.
hyj<t<T

Proof The claim (i) follows by applying Proposition 2.1 to E,h and Flh, where the
latter is approximate flat flow starting from Bp, such that Eg C Bpg, and with constant
forcing term f, = sup; f(¢) + 1. Then Eth C Fth. It is easy to check that the sets
(Fth)ng are balls whose radii satisfy r(t) < C(1+T) fort <T.

Let us prove (ii). By the minimality of E"**! we have Fj(EM*+!; EMF) <
Fi(EmK; E"K)y which implies

1 - - 1 - -
Pty g [ Gy = e E < PE 4 [ Gy - Famler
h Jghie h Jghk
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We write this as

%/EWAEM ldgni| dx + P(E" Yy < P(EMY) 4 Fkh)((E"HH — | ERF). (2.4)

By (1.2) we simply estimate f (kh)(|E"*+!|—|E"K]) < Co| EM*+1 AE"¥|. Then we

use the second statement in Lemma 2.2 with [ = Ch, where C is a large constant to
deduce

|Ehk+]AEhk| <ChP(Ehk)+ |d-Eh,k|dx.

2Coh /I;h,kHAEh.k

Therefore we deduce from these two inequalities and from (2.4) that

1

T AR \dgni|dx + P(E" 1 < (1 + Ch)P(E™"). (2.5)

By iterating the inequality P(E™ 1y < (1 4+ C h)P(E"F) we get

h.k k—1 h,1 1/h (k=1 h1 (k—1)h h,1
P(EM) < (14 Ch) P(E’):((1+Ch) ) P(EMY < C P(EMY).
Finally we use (2.4) for k = 0 and have

P(E™!) < P(Eo) + f(O(E™!| | Eol). 2.6)

By (i) we may estimate |E"'| < |Byg| for h sufficiently small, where we recall that
By, is the ball containing Eq. Therefore P(E™') < P(Ey) + C and we obtain the
claim (ii)

The claim (iii) follows from argument similar to [24, Proposition 3.5] so we only
point out the main differences. Let k, m be such that s € (kh, (k + 1)h] and ¢ €
((k +m)h, (k + m + 1)h]. Note that mh < 2(t — s). We may estimate the quantity
|E; hAE h| by applying the second statement of Lemma 2.2 with [ = Cly= (2 5)
and the part (ii) to get

m
|EIhAEh| < Z |Eh,k+i+] AEh,k+i|

P(Eh k+1) + Vi

ldgnrsi ()] dx)

Ehk+i+l A phk+i

P(Ehk+l)+«/;((]+ch)P(Eh k-H) P(Eh’k+i+1))>

C«/ T —s sup P(EM) + 1 —sP(EM Y < Cp i —.

t<T

Similarly (iv) follows from the proof of [24, Theorem 2.2]. O
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When in addition we assume that the forcing term satisfies (1.4) we obtain estimates
which are more uniform with respect to time. To this aim we define the following
quantity which plays the role of the energy

E(E) := P(E) — co|E|, 2.7)

where ¢ is the constant appearing in (1.4).

Proposition 2.4 Let (Elh)l be an approximate flat flow starting from a bounded set of
finite perimeter Ey and assume that the forcing term satisfies (1.2) and (1.4). Then, if
h is sufficiently small, the following hold:

(1) Foreverye > Othere is T, such that for every T, < Ty < T, with T, > T1 + h,
we have the following dissipation inequality

T _
c/ / (Hgh — f(t =) dH"dr + E(E}) < S(E} ) +e  sup  P(E]).
11 JAE! ! Ti—h<t<T,

(i) Ifsup,~q |E!'| < oo, then sup,~o P(E}') < co.
(iii) Ifsup;sg |Elh| < 09, there exists a constant C4 such that |E,hAESh| < Cyg/t —§
foreveryh <s <twitht —s > h.

Proof To prove (i) we begin with (2.4). This time we estimate the last term in (2.4) as
Flhy(EM T — |EPK)) < co(EM T — |EMK) + | Fkh) — col |[EMFTTAEMH].

We use the second estimate in Lemma 2.2 with [ = C | f(kh) — co|h, where Cisa
large constant and 4 is sufficiently small, to deduce

_ _ 1 _
| f(kh) — col |[EM*TYAE"K| < C| f(kh) — co|*h P(E") + — / |dgn|dx.
2h J gkt Aph.

Therefore we have by (2.4) that

1

T3 . \dgni|dx + EEMHYY < £(EMKY 4 €| f(kh) — co*h P(E™F),

where £ is defined in (2.7).
Let us fix & > 0. Since we assume (1.4), there exists T, such that

/T S0 — o)t < 2.38)

&
C ’

where C is a constant to be chosen later. Let 7, > T1 > T and let j, m be such that
T1 € (jh,(j + Dh] and T» € ((j + m)h, (j + m + 1)h]. We iterate the previous
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inequality from k = j to k = j 4+ m and obtain

Jjtm 1

_ ] El
kX:' 2h /;;11.k+1AEh,k il dx + E(Er,)
=j

T
55<E¥1-h)+0< sup P(E,h)) (f 2 |f(r)—co|2dt>
Ti—h<i<T Ti—h

(/.

2.9)
<EEL_p+C ( sup P(Ef)) |f () — cO|2dt)

Ti—h<t<T»

< E(E%_h) + & sup P(Eth)
T1—h<t<T,

where the last inequality follows from (2.8).

Arguing as in the proof of [24, Lemma 3.6], we deduce that there is a constant
¢ > 0, depending only on the dimension, such that

- 2 —
ch / dpnt ) gyt < / Mgl
§Ehk+1 h Ehk+lAphk D

Therefore by the Euler—Lagrange equation (2.3) we have

Jjtm 1 B jt+m donk 2
> dpatarzeyon [ (L) gt
Py h JEni+ri o ghik i Jophi h

= 2 —
=c Z h /B i (Hgnior — f(kh))™ dH"!

k=j
T _ 2
> c/ / (HEh — f( —h)) dH" Vdr.
7 JoE! !

Thus we have the claim (i) by (2.9).
To show (ii) we fix 0 < ¢ < 1/2, T > T, and apply the part (i) with 71 = T, + h
and 71 +h < T, =t < T to deduce

E(E!) < E(EL)+¢ sup P(ED).

T<s<T
We recall that £(E) = P(E) — co| E| and that we assume sup,- |E,h| < 00. There-
fore from the above inequality, recalling that P(Eth) < Cgforallt < T + 1 by

Proposition 2.3 (ii), we get

P(El < C.4cosup |E! +¢ sup P(EM

t>0 Te<s<T
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forevery Ty <t < T. Thus, since ¢ < 1/2 we deduce that

sup P(E,h) < 2(C8 + co sup |Eth|).

T.<t<T >0

The claim (ii) follows from the fact that 7 was arbitrary.

Finally the proof of (iii) follows from the proof of Proposition 2.3 (iii), noticing that
now the constant Cr is in fact independent on 7" thanks to the bound on the perimeters
provided by (ii). O

Remark 2.5 If (E,h )t» Eg and f are as in Proposition 2.4, and if we assume

sup |[E!'| < C,
tz()

then Proposition (i) and (ii) imply that the energy & (Eth) is asymptotically almost
decreasing. More precisely, for every ¢ > O there is T, such that for r > s > T; it
holds

E(EM < E(EM + Ce, 2.10)
with T, and C independent of /. This inequality implies in particular that there exists

lim E(EM.
t——+00
Moreover, from the proof of Proposition 2.4 we have also that if 4 is sufficiently small
and supy_, 7 |E"| < C for some T > 0, then there exists a constant C, independent
of h, such that sup,_, _y P(El) < C.

3 Stationary Sets and Proof of Theorem 1.1

In this section we go back to the two dimensional setting. We study critical sets of the

isoperimetric problem and stationary sets for the flow (1.1). A set of finite perimeter E

is critical for the isoperimetric problem if its distributional mean curvature is constant.
We define stationary sets for the equation (1.1) as follows.

Definition 3.1 Assume that the forcing term f in (1.1) is constant, i.e., f = ¢o > O.
A set of finite perimeter Ey is stationary if for any flat flow (E;), starting from Ej it
holds

sup |E;AEp| =0
0<t<T

forevery T > 0.

We begin by proving the sharp quantitative version of the Alexandrov’s theorem in
the plane.
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Lemma3.2 Let M > 0 and let E C R? be C2-regular with P(E) < M. There
exist a constant Cy and points x1, X2, ..., XN, With |x; — x;| > 2, such that for
F = UfV:1D1(x,-) it holds

sup dyp(x) < Cumllke — U or (3.1
xeEAF
and
|P(E) =2 N| = Culke — L1 oE)- (3.2)

Moreover, there exists g > 0 such that if |kg — 1||L2(3E) < &g then E is C'-
diffeomorphic to the disjoint union of N disks.

Proof Assume that ||kg — 1| L'og) = €o for a small &y to be chosen later. Since
kel 9e) < oo, E has finitely many connected components E;, i = 1,..., N. If
P(E) > 2a N, then |P(E)—2n N| < M, hence (3.2) follows with a sufficiently large

constant. Otherwise, using Gauss-Bonnet theorem,

N
27N — P(E) < Z/a (Ikel = DdH' < kg = g
i=1 JOEi

hence (3.2) follows with Cyy = 1. Since P(E;) < M for every i, there exist points
x; such that E; C D (x;). Therefore sup,cp ap, (x;) 49Dy (x;) (x) is smaller than M.
Hence sup,cpap dar(x) < M and (3.1) holds with a sufficiently large constant.

Assume now that kg — 1l[135) < €o for a small &9. Let us fix a component E;
of E and denote [ = P(E;). Let us first prove that there is x; such that

sup  dap,)(¥) < Cllkg — Uip1gry and |1 =2x| < |lkg — U1 (aE;)-
xeE;ADy(x;)

(3.3)

It is not difficult to see that the claim follows from (3.3).

We claim first that E; is simply connected. Indeed, let 'y be the outer component of
d E; for which it holds fFo kg dH' = 2. Then it follows from | kg — Hzior <o
that

2 — H'(Ty) = /

(kg — 1) dH' s[ ke — 1|dH' < &.
Iy E

d
This yields P(E;) > H!(Tg) > 27 — &g. Then

/ kedH' = (kg — DdH' + P(E;) > P(E;) _f lkg — 1| dH" > 27 — 2¢.
AE; AE; JE

Therefore when gy < 7 we conclude that fa g kE dH! is positive. Since E; is con-
nected, this implies that it is simply connected.
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Since the boundary dE; is connected we may parametrize it by unit speed curve
y : [0,]] — R2, y(s) = (x(s), y(s)) with counterclockwise orientation. Define
O(s) := fg kg(y(tr))dt sothat 6(0) = 0 and 6(/) = 2. Then
0(s) —s| < llke — Ulp19g,) forall s €l0,/]. 34
In particular, for s = [ (3.4) implies

) =1 =127 =1 < ke — Ul 1ok,

which is the second inequality in (3.3).
By possibly rotating the set £ we have

x'(s) = —sinf(s) and  y'(s) = cosO(s).
In particular, (3.4) implies
() +sins| < kg = 1pige, and  1y'(s) —coss| < llke — Ui,
for all s € [0, []. Therefore there are numbers a and b such that

[x(s) —a —coss| < Cllkeg — UlpigE,) and  |y(s) —b —sins| < Cllkg — Uiz 15E,)

(3.5)
forall s € [0, /]. Therefore we obtain from |/ — 27| < |lkg — 1{| 115 that

x(s) —a — cos(2rs/D)| < Cllkg — 1,15, and
ly(s) —b —sinQrs/D)| < Clike — U158,

which gives the first inequality in (3.3) for x; = (a, b).

Note that from (3.5) it follows that if [|kg — 1{| .25 ) is small, then y (s) is close in
(0, ) to the parametrization (a 4 cos(27s /1), b+sin(27s /1)) of d Dy (x;). Hence
E; is Cl-%-close to Dy (x;).

O

The following lemma is based on a comparison argument.

Lemma 3.3 Assume Eq C R? is C%-regular set with P(Eo) < M and let (E,h), be the
approximate flat flow starting from Ey. If Eq is close to a disjoint union of N disks
with radius one, i.e., there exists F = UlNlel (x;), with |x; — x| = 2 fori # j, such
that

sup dyr(x) <6,
x€EgAF
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then for § > 0 small enough it holds

sup dyr(x) < 55174 forall t € (0, \/S)
x€ElAF

forall h > 0 small.

Proof Let F be the union of disks as in the assumption and define
F_:={xeF dpp()>8"" and Fi:={xeR?:dp(x) <8

Then clearly F_ C F C Fy and by the assumption sup,.c g ar dar(x) < § it holds
F_ C E() C F_;,_.

Let (F,h), be the approximate flat flow with the constant forcing term f = —A,
where A := Cp + 1, with Cy as in (1.2), starting from F_. Then by Proposition 2.1 it
holds F/* C E forallt > 0. Note that F_ is a union of disks with radius R = 1 —§'/4
and with positive distance to each other. It is easy to see that ( Fth)t is decreasing, i.e.,
F,h C Fsh for t > s and therefore it is enough to study the evolution of a one single
disk Dg, because the flow (F,h) ¢ 18 the union of them. If now (I:“,h) is the approximate
flat flow starting from Dp with the forcing term f = — A then it is not difficult to see
that for t € (kh, (k + 1)h] the set I:"th is a concentric disk with radius ¢4 and by the
Euler-Lagrange equation (2.3) it holds

Tkl — Tk 1

— — A.
h Tk+1

Therefore, it holds
Tl — 1 = —(A +2)h.

forallk = 0,1, 2,... for which ry; > 1/2. By adding this over k = 0,1,..., K
with v/8/h < K < 2+/8/h and recalling that ro = R = 1 — §'/% we obtain

rk > 10— 2V8(A +2) > 1 — 284,

when ¢ is small. This implies SUP, e p\ 7t dypr(x) < 284 for t € (0, +/38) and thus
by the previous discussion

sup dyp(x) <284 for 1 € (0, V9).
xeF\F}!

Since F" C EI' we have

sup dyp(x) <284 for 1 € (0, V9). (3.6)
xeF\E!
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We need yet to show that

sup dyp(x) <58*  for t € (0, V9). (3.7)
xeEMF

DenoteI' = {x € R?\F : dyr(x) = 58'/#}. Fix x € I' and denote the disk D, (x) with
r =484 Thenby Eg C F; and D,(x) C R?\ F, we have Eg C R?\ D, (x) if § is
sufficiently small. Let (Gﬁ’ ) be the approximate flat flow starting from D, (x) with the
constant forcing term f = — A. Arguing as above we deduce thatfort € (kh, (k+1)h]
the set G is disk with radius 1, i.e., G} = Dy, (x) and

Tkl =Tk

—A>—84 A

h Fk+1

fork = 0,1, ... for which riy; > si/4, By adding this over k = 0, 1, ..., K with
\/S/h <K< 2«/3/h and recalling that ro = r = 484 we obtain

rk > 10— 23/8( VA £ A) > 484 — 3514 = 514,

when § is small. In other words Dygi/4(x) C Gﬁ’ for all # € (0,+/3). Since Ey C
R\ D, (x) Proposition 2.1 yields

EM c R*\ G c R?\ Dyija(x)

for all 0 < t < /3. By repeating the same argument for all x € I we conclude that
the flow E,h does not intersect I" for any ¢ € (0, V/8). This implies (3.7). m]

In the next lemma we show that if E is stationary then necessarily it is a disjoint
union of disks, i.e., a critical set of the isoperimetric problem.

Lemma 3.4 Assume Eq C R? is a bounded set of finite perimeter. If Eq is stationary
according to Definition 3.1 then it is a disjoint union of disks with equal radii.

Proof Letus fix T > 1 and ¢ > 0 and let (Eth), be an approximate flat flow starting
from Ep. Then for any § > 0 it holds by Definition 3.1 and by Proposition 2.3 that

sup |EMAEy| <6 (3.8)
h<t<T

for small 4. Now the forcing term satisfies trivially the assumption (1.4) and therefore
the left hand side of (2.8) is always zero. Then from the proof of Proposition 2.4 (i)
we get that for every /h sufficiently small

T
c/ / (ki — co)* dH'dt + E(EY) < E(ED).
2n Jog! !
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Recall that E(E) = P(E) — co|E|. By (3.8) it holds |[EL AE]| < 28 < £ Therefore
we have

T
c/ (kgn — co)? dH'dt + P(E%) < P(EM) + .
2hn JOE! !

Finally by (2.6) and (3.8) we obtain
P(E}) < P(E) + co(|E}'| — | Egl) < P(Eo) + co8 < P(Eq) +e.

Hence,

T
¢ f (kgn — co)>dM'de + P(EL) < P(E) + 2.
2n JoE! !

By (3.8)itholds |E # AEy| < 4. Therefore by the lower semicontinuity of the perimeter
it holds P(Ep) < P(E?) + & when § and & are small. Therefore we have

T
c f (kgn — co)? dH dr < 3e.
2n JAEM !

By the mean value theorem there is # < T such that
lkgr —coll2 < Ce.

Since by Proposition 2.4 sup,.o P(E ,h) < M for some M independent of 4, from the
previous inequality and from Lemma 3.2 it follows that there are points xi, ..., Xy,
with |x; — x;| > 2r, where r = %, such that for the set F = U,Nler (x;) it holds

sup dyr(x) < C/e.
x€El AF

Thus by (3.8) it holds
|EoAF| < Ci/e.

Note that the points x; might depend on # and on / but the radius r and the number of
disks N does not. Therefore we conclude that the set Ey is arbitrarily close to a union
of essentially disjoint disks. This implies that the set Ey itself is a union of essentially
disjoint disks with radii r = .. O

For a set E C R? we denote its Steiner symmetrization with respect to x-axis by
E*, see [1,22]. Steiner symmetrization decreases the perimeter and preserves the area.
Moreover, in the case of equality P(E®) = P(E) it is well known that for smooth
set E every vertical section of E is an interval [22, Theorem 14.4]. We also notice
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that if the set Ey is Steiner symmetric with respect to xj-axis, i.e. Eg = (Ep)*, then
Steiner symmetrization also decreases the dissipation term in (2.1). This follows rather
directly from Fubini’s theorem and we leave the details for the reader. Hence, we have
the following observation.

Remark 3.5 If Ej is Steiner symmetric with respect to xj-axis, then every minimizer
E of Fo(-; Eo) has the property that every vertical section is an interval. In particular,
every component is simply connected.

Proof of Theorem 1.1 Without loss of generality we may assume that
Eo = Di(—e1) U Di(e1)

where ¢; = (1,0). Let us now fix a small # > 0 and consider the minimization
problem (2.1) which gives a sequence of sets (E/ )i, and thus an approximate flat
flow (EI),.

Let us fix ¢g > 0. Then for § small enough we have by Lemma 3.3 that for k < %
it holds

(D1—gy(—€1) UD1_gy(e1)) C EMF € (Digey(—e1) UDipg(e)).  (3.9)
when £ is small. Moreover, by Lemma 2.2 it holds

(D1_c,vi(—eDUD, ¢, silen) < B, (3.10)

Let us improve the above estimate and show that the set E! contains a
large simply connected set. To be more precise, we denote the rectangle Rg =

(—2C1«/ﬁ, 2C1«/ﬁ) X (—nh1/4, nh1/4) and prove that for n > 0 small, independent
of h, it holds

(Pi_c,vi(—eDUD, ¢, jilen) URY < EM. 3.11)
We argue by contradiction assuming that ) E 1N (=2C VR, 2C1Vh) x (—nh'/4, nh'/%)

isnon-empty. We denote the rectangle Réln = (=2Cv/h, 2C1vh)x (=3nh'/*, 3nh1/%)
and define

Fhol _ phl h

E" =E" URj,.
Recall that by Remark 3.5 every vertical section of E”-! is an interval and that (3.10)
holds. By using these two properties a simple geometric argument shows that any

component containing one of the two disks in (3.10), say G', has the property that
HYOBG' N Ré’n) is greater than 2nh'/%. We have then the following estimate

P(EM") < P(EMY) — ', (3.12)

when 4 is small. We also have
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() [IE"1| — [EM|| < |RY, | = 24C nhi
(i) |dE,(x)| < 10n>/h forall x € Rgn \ Eo.

It follows from (i), (ii) and sup, | f(¢)| < Cp that

1 - _ ~
— | dgydx — f(n)|E"!
b [, e dr = faiEn

1 Jrde— 7 ni, L 7 Fhly_ phil
< Eodx — f(W|E™| + dgydx + Co||E™'| — |[E™ |
h Jgna h JR: \E

3n 0
1 - _
=< —/ dgydx — f(WE"' |+ Cnh'/?

l’l Eh,l

when £ is small. Therefore using (3.12) and the above inequality we may estimate
F(E™': Eo) < F(EMY: Eo) — '+ Co®n'* < F(EM Eo)
when 1 > 0 is small enough. This contradicts the minimality of E! and we obtain
(3.11).
We continue by constructing a barrier set G, (see Fig. 2) and prove that G, ¢ E"k

for every k < §/h. The barrier G, can be seen as a discrete version of a minimal

barrier to the flow. See e.g. [14] for a similar construction in a continuous setting. For
h > 0 we define ¢, : (—3¢p, 369) > R as

on(s) =3e0 — /965 —s2 +h

and define the set
Gy, = {(x1,x2) € R?: x; € (=3¢, 360), |2l < @n(x1)},
which is ’the neck’. We define the barrier set as
Gj = (Di—269(—€1) U Di_25(e1)) U Gg,.

The barrier set Gy, is open and connected and we have the estimate on the curvature
at the neck

_ _ 1
forevery x € Gy \ (D1_2¢,(—e1) U D1_2g,(e1)) it holds kg, (x) = —E.

(3.13)
Moreover, we notice that when /4 is small then by (3.11) it holds
Gy c EM
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Fig.2 The boundary of dENK oo
lies outside of the barrier set G,
aEh,k
Gh T
In fact, (3.11) implies that
inf dg,(x) > ch'/* (3.14)
R2\Eh,l
for small ¢ > 0.
Let us define
Pk = Rzl\ngh_k dg, (x)
fork =1,2,... and pg := 0. We claim that for every k < % it holds
€0
Pkl — Pk =20 or  ppg1 > > (3.15)

when 4 is small.

We prove (3.15) by induction and notice that for k = 0 the inequality (3.15) is
already proven since (3.14) implies p; > ¢ h'/#. Let us assume that (3.15) holds for
k — 1 and prove it for k. Let us assume that py1| < %" The induction assumption
and p; > ch'/* yields px > ch'/*. On the other hand by Lemma 2.2 it holds
SUPphk+1 p phik dypnk < C1~/h and therefore py1 > 0.

Let xxy1 € JEM T and Yk+1 € 0Gjp be such that |xg+1 — ye+1l =
min, s pnk+1 dg, (X) = pry1. By (3.9) it holds xxy1 & Di—gy(—e1) U Di_g (eq)
and therefore by pr41 < 870 we have

Vit1 € 3Gy \ (D1-2g,(—e1) U Dijag(e1)).

Then (3.13) yields

1
k =——.
Gn (Vk+1) 30
Since xj1 is a point of minimal distance k pnx+1 (Xk+1) < kg, (Vk+1) = —ﬁ. By

taking o smaller, if needed, we have by the Euler-Lagrange equation (2.3) and by
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sup;.o | f(#)] < Cop that

d - 1
B i)+ fRI) = 5~ Co 22 (I6)
0

The inequality (3.16) and G, C Ehk imply that x;41 ¢ E"k and Vik+1 € EMk,
Thus there is a point zx1 on the segment [xz41, yk+1] such that zx 41 € JEM*. Since
Yk+1 € 9Gy it holds |zx4+1 — yk+1] = pr and by (3.16) we have [xg+1 — zk+1| >
dphi(Xg41) > 2h. Therefore because zx1 is on the segment [xg41, yr+1] we have

Pk+1 = [Xk41 — Ye1] = X1 — Ze1] + |2k+1 — Y1l = 20 + px.

Thus we have (3.15).
Let us conclude the proof. By adding (3.15) together for k = 0, 1, 2, ..., K with
K < §/h we deduce that for § small it holds

inf dg,(x) >t forall t € (h,3]. (3.17)
R2\E!

1

In particular G;, C E". Let h; — 0 be any sequence such that SUPp, < <s |Eth’ AE| —
0, see Proposition 2.3. By (3.17) we get

inf dg,(x) >t forall t € (0,4].
R2\E,

This inequality implies, in particular, that E; contains a ball centered at the origin with
radius ¢ for all # € (0, §) and that

|E/ \ Eol > 1.
This is the second statement of Theorem 1.1. The inequality (3.17) implies that
(x eR?:dg,(x) <t} C E" forall 1 € (h,$].
Passing to the limit as above, along the subsequence /;, we deduce
(x eR?:dg,(x) <t} C E, forallz € (0,8].

The first claim follows from the fact that {x € R? : dg,(x) < t}is open and simply
connected. o

We conclude this section by explaining how Theorem 1.2 follows from Theorem 1.1.

Proof of Theorem 1.2 First, it is easy to see that if E( is a union of disks with equal
radius and with positive distance to each other, then E is stationary according to the
Definition 3.1. If Ey is stationary then by Lemma 3.4 it is critical, i.e., finite union
of essentially disjoint disks D, (x;), withr = 1/cpandi = 1,..., N. We need to
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show if i # j then |x; — x| > 2/co. If by contradiction there are two tangential
disks, say D,(x1) and D, (x2), then we define Fy = D, (x1) U D, (x2). Let (E;); be

a flat flow starting from E( and let #; — 0 be a sequence such that |E,h’AE,| — 0
and |F,h’ AFy| — 0, where (F;); is a flat flow starting from F{ with forcing term
g = co — ¢. Then by Proposition 2.1 F,hl C Eth’ for all + > 0 and hy, hence F; C E;.
By Theorem 1.1 we have that there exist §, ¢ > 0 such that for all ¢ € (0, §)

|F; \ Fol > ct’.
This implies
|E,\ Eo| > c1®

and therefore E( is not stationary. O

4 Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3 First, by scaling we may assume that co = 1 in the assumption
(1.4).

Let (Eth) be an approximate flat flow which converges, up to a subsequence, to
(E):. We simplify the notation and denote the converging subsequence again by /.
From the assumption sup,_ (| E;| = M and from Proposition 2.3 (iv) it follows that
for every T > 0 there is h7 such that up to subsequence of 4 it holds

sup |E,h| <2M forall 0 <h < hy.
0<t<T

Then Remark 2.5 yields that there exists a constant C independent of 4 and T such
that forO < h < hr

sup P(E! <C.
O<t<T

The dissipation inequality in Proposition 2.4 and the above volume and perimeter
bounds imply

T
/ / (kpn — f(t —h)*dH'dr < C
Ty JoE! '

for some Ty > O for every T > Tp. Then the assumption (1.4) (recall that ¢p = 1)
yields

T
/ (kpn — D*dH'dr < C.
Ty JOE!
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for some Ty large and for every T > Ty and O < h < h7. In particular, if we denote
I; =[(j — 1? j*for j =1,2,...,k < +/T then it holds

/ / (kgn — D> dH'dt < C
1; Jogh !
J 1

for j large. Let us fix a small ¢ > 0. From the previous inequality we obtain that there
exists je such that, if j, < j < VT and0 < h < hr there exists Tj, ; such that

G=D'=Thy =% and kg

- 1‘ <
£ L2 (Ef, )

We deduce by Lemma 3.2 that the set Eh T is close to a disjoint union of Ny, ; disks

of radius one. Since the measures of Er. h _are uniformly bounded, we conclude that
there is No such that Nj, ; < Np. Moreover we have by Lemma 3.2 that

|P(E¥h_j_) — 2Ny j| + ||E¥h_j_| — Ny j| < Ce. 4.1)
This implies the following estimate for the energy £ (ETM_) = P(ETh_j) |ET1 r [,

|€n,.,(ET, ) = nNwj| < Ce. 4.2)

In other words, at 7} ; the energy has almost the value w N, ;. Since the energy
&, (E %{ j) is asymptotically almost decreasing by Remark 2.5, we deduce that the

sequence of numbers N}, ; is decreasing for j large, i.e.,

Npj = Ny jw1 forevery je < j <+/T.

By letting 7 — 0 we conclude by Proposition 2.3 (iv) and by standard diagonal
argument that, by extracting another subsequence if needed, there is sequence of times
T;, with j > je, such that (j — 1)? < T, < 7% and the set E7; is close to N; many
disjoint disks of radius one and that N; > N; for every j > j.. This implies that,
there is jo > j. and N such that

N; =N forall j > jo.
This means that every E7;, for j > jo, is close in L'-sense to disjoint union of exactly

N many disks of radius one. By the locally uniform L'-convergence (E th) : — (Ep)
forevery T > jg we have

Npj=N for jo<j<+T, 4.3)
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when £ is small. Therefore we conclude from (4.1) and from the dissipation inequality
in Proposition 2.4 that for any § > 0 there is Ts such that for all 7 > Tj it holds

T
// (kg — D? dH'dt < 8 (4.4)
T3 JoE! !

when £ is small.
Let us fix T >> Tj and denote by J;, C (75, T') the set of times ¢t € (Ts, T') for
which

”kEgl - 1”L2(3E,h) > 4.

Then by (4.4) it holds | J| < §. If § is small enough, by Lemma 3.2, from (4.2), (4.3)
and (2.10) we deduce that the sets E,h satisfy

sup  dypn(x) <C5  forall t € (T, T) \ Jp, “4.5)
xeEIAEr

where Fth = UlNlel(x,-) with |x; — xj| > 2 fori # j. Note that the points x; may
depend on ¢ and h.
We will show that for all ¢ € (T5 + 28, T') it holds

sup  dypi(x) < €8V (4.6)
xeElAFh

where Fth is a union of N disjoint disks as above. Let us fix ty € (75, T) \ Jp. By (4.5)
we have

sup  dypn (x) < C6.

xeEl AF)
We use Lemma 3.3 with £y = E,}(’) to conclude

sup  dypn (x) < C8Y* forall 1 € [tg, tg + V).
N

This means that if we define

I = Uers,rp\g 2, 1 + V5)
then (4.6) holds for every ¢ € I. But since |J,| < § < \/3/2, it easy to see that
(Ts +25,T) C 1. Thus (4.6) holds for every t € (Ts + 25, T).

We have thus proved (4.6). The claim follows by letting 7 — 0 and from Proposi-
tion 2.3. o
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Fig.3 The point o () is closer

to the arc I', than o (t1)
€2

We conclude the paper by proving Theorem 1.4. To this end we recall the Bonnesen
symmetrization of a planar set.

Let E C R? be a measurable set. The Bonnesen symmetrization of E with respect
to xp-axis is the set E*, with the property that for every r > 0

H' @D, N E*) =H' (D, NE)

and d D, N E* is the union of two circular arcs y, and y,~ with equal length, symmetric
with respect to the x-axis and such that y,~ is obtained by reflecting y,+ with respect
to the x-axis.

Clearly this symmetrization leaves the area unchanged. Moreover, if E is a convex
set, symmetric with respect to both coordinate axes, then P(E*) < P(E), see [6, Page
67] (see also [11]).

Let us prove that the Bonnesen symmetrization decreases the dissipation.

Lemma 4.1 Let G C R? be invariant under Bonnesen symmetrization. Then for any
measurable set E C R? it holds

/ dexf/c?de.
E* E

Proof 1t is enough to prove that for every r > 0 it holds

f dgdH' < f dg dH'. 4.7
dD,NE* dD,.NE

Let us fix r > 0 and without loss of generality we may assume that r = 1. Let
o:[-n, ] = RZ

| cos(®)
o) = [sin(t)} :
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Since G is symmetric with respect to both coordinate axes, the function 7 > dg (o (1))
is even and for every ¢ € (0, 7/2) itholds dg (o (mr —t)) = dg (o (t)). We observe that
(4.7) follows once we show that

t>dg(o(@)) s decreasing on ¢ € (0, w/2).
To thisaimwe fix0 < #; <, < /2. Letus assume thato (1) € R% \ G, the case
o(f1) € G being similar. If o (f2) € G then trivially dg (0 (12)) <0 < dg(o(t1)). Let
us thus assume that o' (1) € R\ G.Letz; € 9G besuch thatdg (o (1)) = |o (t1) —2z1]|

and let p > 0 and 6; € (0, /2) be such that z; = po (61). We denote by I', C 9D,
the arc with endpoints pe; and z1, i.e.,

T, ={po(t): 1€ .7/}

Since G is invariant under Bonnesen symmetrization we have I', C G. But now since
11 < tp < /2 it clearly holds (see Fig. 3)

dist(o (12), T)p) < dist(a (1), T) = o (t1) — z1] = dg (o (11)).
Since l"p C G we have
dg (o (1)) < dist(o(t2), T'))

and the claim follows.

Proof of Theorem 1.4 Let G be the ellipse
G:{(xl,xz)eRZ:azx%+x§<l} with a > 1

as in the assumption and let (G;),; be the classical solution of the volume preserving
mean curvature flow

V; = —kg, + kg, 4.8)

starting from G. By [18], (G;); is well defined for all times, remains smooth and
uniformly convex and converges exponentially fast to the disk D,, where p = \/%;
Moreover G; # D, for all t+ > 0. Let us define f(¢) := IEGI which is therefore a
smooth function and converges exponentially fast to 1/p. Note that then f satisfies
(1.4) forco = 1/p.

By the regularity of E the flat flow (E;), with the forcing term f starting from Ej
coincides with the unique classical solution provided by [18], see [9, Proposition 4.9].
Therefore, by the symmetry of Eg we may conclude that

E; = (G; — pe1) U (G; + peq) 4.9
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as long as the components (G; — pep) and (G; + pe;) do not intersect each other. By
the convexity of G;, the components G; — pe; and G; + pe; do not intersect each
other if the first one stays in the half-space {x; < 0} and the latter in {x; > 0}. This
is the same as to say that the flow G; does not exit the strip {—p < x1 < p}. Let us
show this.

Assume that for 27 > 0 the family of sets (Gﬁ‘), is an approximate flow obtained
via (2.1) with the forcing term f and starting from G. We now show that each G? is
symmetric with respect to the coordinate axes and convex. Recall that the set G! is
chosen as a minimizer of the functional

1 _ _
F(E; G) = P<E>+,;/ dg dx — f(W)|E].
E

It is well known that in any dimension the functional above admits a minimal and a
maximal minimizer which are convex and, by uniqueness, symmetric with respect to
both coordinate axes, see [3, Theorem 2]. However, in our two dimensional setting we
can provide a simple self contained proof of this fact.

Given E,weset Ey = {x € E :x; > 0}and E_ = {x € E : x1 < 0}. By
reflecting £ and E_ with respect to the x;-axis we obtain sets £1 and E3, which are
symmetric with respect to the x;-axis and satisfy

F(Ey; G) + F(Ep; G) < 2F(E; G).

Then there exists i = 1,2 such that 7(E;; G) < F(E; G). By repeating the same
argument with respect to the x;-direction we conclude that we may choose G”!
symmetric with respect to both axes.

Let us show that G! is convex. By the Euler-Lagrange equation (2.3) it holds

d _
TG = —kgni 4+ f(h)  on aG™!

We claim that %G(x) < f(h) for all x € G"™!. Indeed, suppose xo € aG"! is the

maximum of dg on dG"!. If dg (xo) < 0, then trivially 9¢ (xo) < f(h) as f > 0. If
dg(xp) > 0 then xp ¢ G and since it is the furthest point from G and G is convex, it
is easy to check that ki1 (xo) > 0. Then by the Euler-Lagrange equation

dg (x0)
h

= —kgni(x0) + f(h) < f(h).

Therefore dg /h < f(h) on 3G™ ! and by the Euler-Lagrange equation

d _
kghi = —TG + f(h) =0 on aG"!.

Hence, G is convex.
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We now apply to G”! the Bonnesen circular symmetrization with respect to the
xp-axis which, we recall, decreases the perimeter, preserves the area and decreases
the dissipation term |, Gh dg dx, by Lemma 4.1. Therefore we may assume that G’
is invariant under the Bonnesen annular symmetrization with respect to the xp-axis.
By iterating the argument we deduce that the same holds for Gﬁ’ forall # > 0. Letting
h — 0 we deduce that the same holds for the flat flow, and by the uniqueness for
the classical solution (G;);. Therefore for every + > 0 and r > 0 the intersection
G N 3D, is a union of two circular arcs with equal length which are both symmetric
with respect to the x;-axis.

Now if G, exits the strip {—p < x; < p}, say at time 7y, then the intersection
G, N 3D, contains the points (—p, 0) and (p, 0). Since G; N 9D, is a union of two
circular arcs, which both are symmetric with respect to the x,-axis, we have

Gy NdD,=0D,.

By the convexity of Gy, this implies D, C G,,. But since the flow (4.8) preserves the
area we have |G| = |D,|. Then it holds G,, = D,, which is impossible. Therefore
the flow G, does not exit the strip {—p < x; < p}, (4.9) holds for all times and the
conclusion of the theorem follows.

O
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