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Abstract
We consider the flat flow solutions of the mean curvature equation with a forcing term
in the plane. We prove that for every constant forcing term the stationary sets are given
by a finite union of disks with equal radii and disjoint closures. On the other hand for
every bounded forcing term tangent disks are never stationary. Finally in the case of
an asymptotically constant forcing termwe show that the only possible long time limit
sets are given by disjoint unions of disks with equal radii and possibly tangent.

Keywords Forced mean curvature flow · Large time behavior · Stationary sets ·
Critical sets

1 Introduction

Mean curvature flow is one of the simplest and yet most interesting geometric evo-
lution equation. In order to deal with formation of singularities or rough initial data
several notions of generalized solutions have been proposed. Among themwemention
Brakke’s solutions in the varifold sense [7], level-set solutions in the viscosity sense
[10,15], De Giorgi’s minimal barriers [12] and the flat flows solutions constructed by
the minimizing movements method [2,21]. Each method has its own advantages and
drawbacks. For instance Brakke’s theory fails to provide unique solutions, but yields
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a satisfactory partial regularity theory, see also [19]. On the contrary, the viscosity
level-set method provides uniqueness and global existence, but it is not so convenient
as far as regularity is concerned. Indeed in this framework one may construct singular
solutions where the evolving hypersurfaces become sets with nonempty interior, the
so called fattening phenomenon. This phenomenon can occur even if the initial set is
regular after a positive time, see [5]. De Giorgi’s minimal barriers provide essentially
the same solutions as the level-set method, see [4]; within this approach the fattening
phenomenon is related to the fact that minimal and maximal solutions may be differ-
ent, see [5]. Flat flow solutions are also defined globally in time. They are always given
by evolving boundaries of sets and may not be unique whenever the level-set solu-
tion experiences the fattening phenomenon. However, level-set solutions, De Giorgi’s
minimal barriers and flat flows all coincide with the classical solutions as long as the
latter exist.

In this paper we focus on the flat flow approach for the mean curvature equation
with a time dependent forcing term in the plane, i.e.,

Vt = −kEt + f (t) on ∂Et (1.1)

with an arbitrary initial datumunder the assumption that the forcing term f is uniformly
bounded, i.e.,

sup
t≥0

| f (t)| ≤ C0. (1.2)

Here kEt stands for the curvature of the boundary of Et with respect to the orientation
given by the outward normal. For the precise definition of flat flow see the beginning
of Sect. 2.

The existence of flat flow solutions for the equation (1.1) in any dimension and their
relations with the De Giorgi’s barriers and the level-set solutions has been investigated
in [9]. In this paper we further elaborate on the properties of flat flow solutions in two
dimensions focusing on the following issues: how the flat flow selects a solution when
the fattening phenomenon occurs, the characterization of sets that are stationary when
f is constant and the long time behavior of solutions.

1.1 Flat Flow as a Selection Principle

Here we consider a particular situation where the initial set is given by two tangent
disks of equal radii Dr (x1) and Dr (x2). It is well known that in this example the
level-set solution develops instantaneously a nonempty interior. When f (t) ≡ 1/r
the minimal barrier solution of (1.1) is stationary, while the maximal barrier solution
becomes a connected set containing a ball centered at the origin with a time dependent
radius, see [5]. It is an interesting problem to look for a selection principle among the
possible admissible behaviors. One such principle can be obtained by adding to the
forcing term a small stochastic perturbation. This has been investigated in [14] where
the perturbation considered is of the form ε dW , withW a standard Brownian motion.
The authors show that when ε goes to zero the corresponding motion converges with
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probability 1/2 to themaximal barrier solution andwith probability 1/2 to theminimal
one. In this paper we prove that any flat flow instantaneously connects the two tangent
disks with a thin neck and keeps enlarging the neck at least for a short time interval,
thus showing that the flat flow somehow picks the behavior of the maximal barrier
solution. The precise statement is as follows.

Theorem 1.1 Let E0 ⊂ R
2 be a union of two tangent disks E0 = Dr (x1) ∪ Dr (x2)

and let (Et )t be a flat flow of (1.1) starting from E0 and assume that (1.2) holds. There
exist δ > 0, η ∈ (0, r) and c > 0 such that for every t ∈ (0, δ) the set Et contains
a dumbbell shaped simply connected set which in turn contains the disks Dη(x1) and
Dη(x2) and a ball centered at the origin of radius t . In particular for every t ∈ (0, δ)

|Et \ E0| ≥ c t3.

This theorem is also relevant for the second issue we want to deal with, i.e., the
characterization of stationary sets, as it shows that the union of two equal tangent
disks is not stationary for the flat flow.

1.2 Characterization of Stationary Sets

When the forcing term f ≡ c0 equation (1.1) can be regarded as the gradient flow of
the following energy

E(E) = P(E) − c0|E |, (1.3)

where P(E) stands for the perimeter of E and |E | for its Lebesguemeasure. Therefore
onemight think that E0 is stationary for the flow if and only if it is critical for the energy
(1.3), i.e., it satisfies kE0 = c0 on ∂E0 in a weak sense. Indeed if E0 is stationary then
it also critical, while the converse is certainly true when E0 is smooth, i.e., is given
by a union of finitely many disks with equal radii and mutually disjoint closures (see
[13] for a characterization of critical sets in any dimension, even in the nonsmooth
case). However, Theorem 1.1 shows that the two notions do not coincide since the
union of two tangent disks of equal radii is critical as it has constant mean curvature
in the weak sense, but not stationary. Here we show that a set E is stationary for the
flow (1.1) when f ≡ c0 if and only if it is a union of disks with radius r = 1/c0 with
positive distance to each other. More precisely we have the following.

Theorem 1.2 Assume E0 ⊂ R
2 is a bounded set of finite perimeter. Then E0 is sta-

tionary (see Definition 3.1) for the flow (1.1) with f ≡ c0 > 0 if and only if there are
points x1, . . . , xN such that |xi − x j | > 2r for i �= j , with r = 1/c0, and

E0 =
N⋃

i=1

Dr (xi ).
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The fact that any stationary set is a union of disjoint disks follows from a sharp
quantitative version of the Alexandrov theorem in the plane, see Lemma 3.2, while the
fact that the disks must be at positive distance apart is a consequence of Theorem 1.1.

We remark that the same type of classification holds true in the framework of level-
set solutions, as recently shown in [16, Theorem 4.7]. The general n-dimensional case
remains open also for the viscosity solutions, see [17].

1.3 Long Time Behavior

We now address the long time behavior of the flat flow under the assumption that the
forcing term is asymptotically constant, namely that it satisfies

∫ ∞

0
| f (s) − c0|2 ds < ∞. (1.4)

In the next theorem our goal is to characterize the possible limit sets and we show
in particular that the asymptotically stationary sets are given once again by a union of
disjoint disks, which however can be tangent. Precisely we show that either, up to a
diverging sequence t j of times, the area of Et j blows up or the sets (Et )t converge up
to a translation in the Hausdorff sense to a disjoint union of disks with equal radii.

Theorem 1.3 Assume E0 ⊂ R
2 is a bounded set of finite perimeter. Let (Et )t be a flat

flow of (1.1) starting from E0 and assume (1.2) and (1.4) with c0 > 0, and

sup
t>0

|Et | < ∞.

Then there exist N ∈ N and xi (t) : (0,+∞) → R
2, with i = 1, . . . , N and |xi (t) −

x j (t)| ≥ 2/c0 for i �= j , such that, setting Ft = ∪N
i=i D1/c0(xi (t))

lim
t→∞ sup

x∈Et�Ft
d∂Ft (x) = 0.

We stress here the fact that the initial set E0 in the above theorem is an arbitrary
bounded set of finite perimeter without further regularity assumption. It is plausible
that in Theorem 1.3 the convergence holds not just up to translation.

Previous results dealt with special classes of sets in any dimension such as convex
or star-shaped initial sets, see for instance [3,20].We alsomention [23] where the long-
time behavior of the discrete Euler implicit scheme for the volume preserving mean
curvature flow is addressed for any arbitrary bounded initial set with finite perimeter.
The long time behavior of the forced mean curvature flow in the context of viscosity
level-set solutions was also investigated in [16,17] where it is shown that under certain
assumptions the solutions converge to a stationary solution of the level-set equation.
The problem of classifying the latter is open in general.

We now show that it is indeed possible to obtain as a limit of the flow (1.1) a union
of essentially disjoint disks such that at least two of them are tangent. To this end we
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Fig. 1 The union of two ellipses
converges to the union of two
tangent disks

(ρ, 0)(−ρ, 0) x1

x2

take G to be the ellipse

G = {(x1, x2) ∈ R
2 : a2x21 + x22 < 1} with a > 1

and we show the following theorem.

Theorem 1.4 Let e1 = (1, 0) and G as above. Denote by ρ = 1√
a
the radius such that

|Dρ | = |G|. The volume preserving mean curvature flow (Et )t , starting from

E0 = (G − ρe1) ∪ (G + ρe1),

is well defined in the classical sense for all t > 0 and converges exponentially fast to
the union of two tangent disks

Et → (Dρ − ρe1) ∪ (Dρ + ρe1).

Note that Theorem 1.4 shows that a flat flow of (1.1) may converge to tangent disks.
Indeed the classical solution of the flow in Theorem 1.4 is well defined and smooth for
all times and we may write it in the form (1.1) with f (t) = −∫

∂Et
kEt and the flat flow

agrees with it. Moreover, by the exponential convergence we have that f (t) satisfies
(1.4).

We note that in Theorem 1.4 the flow (Et )t remains smooth and diffeomorphic to
a union of two disks. Only the limit set is non-smooth (Fig. 1).

2 Notation and Preliminary Results

Since the results of this section hold in any dimension we state them in full generality
and we will go back to the planar case in the next sections.

Given a set A ⊂ R
n the distance function dA : Rn → [0,∞) is defined as usual

dA(x) := inf
y∈A

|x − y|
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and we denote the signed distance function by d̄A : Rn → R,

d̄A(x) :=
{

−dRn\A(x), for x ∈ A

dA(x), for x ∈ R
n \ A.

Then clearly it holds d∂A = |d̄A|.
For a set of finite perimeter E ⊂ R

n we denote its perimeter by P(E) and recall that
for regular enough set it holds P(E) = Hn−1(∂E) [1,22]. For a measurable set |E |
denotes its Lebesgue measure. We denote by HE the sum of the principal curvatures
of E , while in the planar case we write kE . We denote the disk with radius r centered
at x by Dr (x) and in the higher dimensional case we write Br (x) instead.

We consider solutions of (1.1) constructed via the minimizing movement scheme.
We fix a small time step h > 0 and a bounded set of finite perimeter E0 ⊂ R

n ,
which is our initial set Eh,0 = E0. We obtain a sequence of set (Eh,k)∞k=1 by iterative
minimizing procedure, where Eh,k+1 is a minimizer of the functional Fk(E; Eh,k)

defined as

Fk(E; Eh,k) = P(E) + 1

h

∫

E
d̄Eh,k dx − f̄ (kh)|E |, (2.1)

where d̄Eh,k is the signed distance defined above and f̄ (kh) = 1
h

∫ (k+1)h
kh f (s) ds. We

define the approximate flat flow (Eh
t )t>0 by

Eh
t = Eh,k, for (k − 1)h < t ≤ kh (2.2)

and we set f̄ (t) = f̄ (kh) for (k − 1)h < t ≤ kh. Any cluster point of Eh
t as h goes

to zero is called a flat flow for the equation (1.1).
We warn the reader that in the above definition it is understood that we identify

Eh,k with its set of its points of density 1 so that there is no ambiguity in the definition
of d̄Eh,k .

Recall that if E0 and f are smooth then any flat flow coincide with the classical
solution of (1.1) as long as the latter remains smooth, see [9].

In general, the problem (2.1) does not admit a unique minimizer and thus there is
no unique way to define the approximate flat flow (Eh

t )t>0. Also the flat flow may not
be unique when fattening occurs. However, as we mentioned in the introduction, in
the case when the initial set and the forcing term are smooth, the flat flow is unique
for a short time interval and agrees with the classical solution.

Even if there is no uniqueness, the approximate flat flow satisfies the following
weak comparison principle, see for instance the proof of Lemma 6.2 in [8].

Proposition 2.1 Assume f1, f2 : [0,∞) → R satisfy (1). Let E0, F0 be two bounded
sets of finite perimeter and let (Eh

t )t be an approximate flat flow with forcing term
f1 starting from E0 and (Fh

t )t an approximate flat flow with forcing term f2 starting
from F0.

(i) If F0 ⊂ E0 and f1 > f2, then for every t > 0 it holds Fh
t ⊂ Eh

t .
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(ii) If E0 ⊂ R
n \ F0 and − f2 > f1, then for every t > 0 it holds Eh

t ⊂ R
n \ Fh

t .

Weneed preliminary results on the structure of the approximate flat flowconstructed
via (2.1). We note that if Eh,k+1 is a minimizer ofFk(·, Eh,k) then it is a�-minimizer
of the perimeter, see for instance [24], with � ≤ C/h, see [22] for the definition of
�-minimizer. Then it follows that ∂Eh,k+1 is C1,α-regular for all α ∈ (0, 1) up to
a singular set 
 with Hausdorff dimension at most n − 8, see [22]. Then the Euler–
Lagrange equation

d̄Eh,k

h
= −HEh,k+1 + f̄ (kh) on ∂Eh,k+1 \ 
, (2.3)

which holds in the weak sense, implies that ∂Eh,k+1 \ 
 is C2,α-regular and satisfies
(2.3) in the classical sense.

Lemma 2.2 Assume that (Eh,k)k is a sequence obtained via minimizing movements
(2.1) starting from a bounded set of finite perimeter E0 and assume that the forcing
term satisfies (1.2). Then there is a constant C1 such that for every k = 0, 1, 2, . . .

sup
x∈Eh,k+1�Eh,k

d∂Eh,k (x) ≤ C1
√
h.

Moreover, there are constants C2 > 1 and c1 > 0 such that for every k = 1, 2, 3, . . .
it holds

|Eh,k+1�Eh,k | ≤ C2

(
l P(Eh,k) + 1

l

∫

Eh,k+1�Eh,k
|d̄Eh,k (x)| dx

)

for any 0 < l < c1
√
h.

Proof The first claim follows from the argument of the proof of [24, Proposition
3.2] and thus we omit it. The second claim follows from an argument similar to [24,
Proposition 3.4] and we only sketch it. We write

|Eh,k+1�Eh,k | = |{x ∈ Eh,k+1�Eh,k : |d̄Eh,k (x)| ≥ l}|
+|{x ∈ Eh,k+1�Eh,k : |d̄Eh,k (x)| < l}|.

We estimate the first term as

|{x ∈ Eh,k+1�Eh,k : |d̄Eh,k (x)| ≥ l}| ≤ 1

l

∫

Eh,k+1�Eh,k
|d̄Eh,k (x)| dx .

For the second term we use Vitali covering theorem to choose a finite family of
disjoint balls (Bl(xi ))Ni=1, with xi ∈ ∂Eh,k , such that

{x ∈ R
n : |d̄Eh,k (x)| < l} ⊂ ∪N

i=1B5l(xi ).
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Since Eh,k is a minimizer ofFk(E; Eh,k−1), we have the density estimates [24, Corol-
lary 3.3]. Thus by the relative isoperimetric inequality we have for every i = 1, . . . , N

|Bl(xi )| ≤ C(Hn−1(∂Eh,k ∩ Bl(xi ))
n

n−1 ≤ ClHn−1(∂Eh,k ∩ Bl(xi )).

Therefore

|{x ∈ Eh,k+1�Eh,k : |d̄Eh,k (x)| < l}| ≤
N∑

i=1

|B5l(xi )| ≤ 5n
N∑

i=1

|Bl(xi )|

≤ Cl
N∑

i=1

Hn−1(∂Eh,k ∩ Bl(xi )) ≤ Cl P(Eh,k).

�

In the next proposition we list useful properties of the flow in the case when the
forcing term satisfies only (1.2).

Proposition 2.3 Let (Eh
t )t be an approximate flat flow starting from a bounded set of

finite perimeter E0 and assume that the forcing term satisfies (1.2). Then the following
hold:

(i) For every T > 0 there is RT > 0 such that Eh
t ⊂ BRT for every t ≤ T .

(ii) There is C3, depending only on E0 and f , such that for every T > 0 it holds

P(Eh
T ) ≤ C1+T

3

for h sufficiently small.
(iii) For every h < s < t < T with t − s > h and h sufficiently small, it holds

|Eh
t �Eh

s | ≤ CT
√
t − s, where the constant CT depends on T .

(iv) There exists a subsequence (hl)l converging to zero such that (Ehl
t )t converges

to a flat flow (Et )t in L1 in space and locally uniformly in time, i.e., for every T

sup
hl<t≤T

|Ehl
t �Et | → 0 as hl → 0.

Proof The claim (i) follows by applying Proposition 2.1 to Eh
t and Fh

t , where the
latter is approximate flat flow starting from BR , such that E0 ⊂ BR , and with constant
forcing term f2 ≡ supt f (t) + 1. Then Eh

t ⊂ Fh
t . It is easy to check that the sets

(Fh
t )t≤T are balls whose radii satisfy r(t) ≤ C(1 + T ) for t ≤ T .
Let us prove (ii). By the minimality of Eh,k+1 we have Fk(Eh,k+1; Eh,k) ≤

Fk(Eh,k; Eh,k) which implies

P(Eh,k+1) + 1

h

∫

Eh,k+1
d̄Eh,k dx − f̄ (kh)|Eh,k+1| ≤ P(Eh,k) + 1

h

∫

Eh,k
d̄Eh,k dx − f̄ (kh)|Eh,k |.
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We write this as

1

h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx + P(Eh,k+1) ≤ P(Eh,k) + f̄ (kh)(|Eh,k+1| − |Eh,k |). (2.4)

By (1.2) we simply estimate f̄ (kh)(|Eh,k+1|−|Eh,k |) ≤ C0|Eh,k+1�Eh,k |. Then we
use the second statement in Lemma 2.2 with l = Ĉh, where Ĉ is a large constant to
deduce

|Eh,k+1�Eh,k | ≤ Ch P(Eh,k) + 1

2C0h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx .

Therefore we deduce from these two inequalities and from (2.4) that

1

2h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx + P(Eh,k+1) ≤ (1 + C h)P(Eh,k). (2.5)

By iterating the inequality P(Eh,k+1) ≤ (1 + C h)P(Eh,k) we get

P(Eh,k) ≤ (1 + C h)k−1P(Eh,1) =
(
(1 + C h)1/h

)(k−1)h
P(Eh,1) ≤ C (k−1)h P(Eh,1).

Finally we use (2.4) for k = 0 and have

P(Eh,1) ≤ P(E0) + f̄ (0)(|Eh,1| − |E0|). (2.6)

By (i) we may estimate |Eh,1| ≤ |B2R | for h sufficiently small, where we recall that
BR is the ball containing E0. Therefore P(Eh,1) ≤ P(E0) + C and we obtain the
claim (ii)

The claim (iii) follows from argument similar to [24, Proposition 3.5] so we only
point out the main differences. Let k,m be such that s ∈ (kh, (k + 1)h] and t ∈
((k + m)h, (k + m + 1)h]. Note that mh ≤ 2(t − s). We may estimate the quantity
|Eh

t �Eh
s | by applying the second statement of Lemma 2.2 with l = c1

h
2
√
t−s

, (2.5)
and the part (ii) to get

|Eh
t �Eh

s | ≤
m∑

i=1

|Eh,k+i+1�Eh,k+i |

≤
m∑

i=1

C

(
h√
t − s

P(Eh,k+i ) +
√
t − s

h

∫

Eh,k+i+1�Eh,k+i
|d̄Eh,k+i (x)| dx

)

≤
m∑

i=1

C

(
h√
t − s

P(Eh,k+i ) + √
t − s

(
(1 + C h)P(Eh,k+i ) − P(Eh,k+i+1)

))

≤ C
√
t − s sup

t≤T
P(Eh

t ) + √
t − sP(Eh,k+1) ≤ CT

√
t − s.

Similarly (iv) follows from the proof of [24, Theorem 2.2]. �
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When in additionwe assume that the forcing term satisfies (1.4) we obtain estimates
which are more uniform with respect to time. To this aim we define the following
quantity which plays the role of the energy

E(E) := P(E) − c0|E |, (2.7)

where c0 is the constant appearing in (1.4).

Proposition 2.4 Let (Eh
t )t be an approximate flat flow starting from a bounded set of

finite perimeter E0 and assume that the forcing term satisfies (1.2) and (1.4). Then, if
h is sufficiently small, the following hold:

(i) For every ε > 0 there is Tε such that for every Tε < T1 < T2, with T2 ≥ T1 + h,
we have the following dissipation inequality

c
∫ T2

T1

∫

∂Eh
t

(HEh
t

− f̄ (t − h))2 dHn−1dt + E(Eh
T2 ) ≤ E(Eh

T1−h) + ε sup
T1−h≤t≤T2

P(Eh
t ).

(ii) If supt≥0 |Eh
t | < ∞, then supt≥0 P(Eh

t ) < ∞.
(iii) If supt≥0 |Eh

t | < ∞, there exists a constant C4 such that |Eh
t �Eh

s | ≤ C4
√
t − s

for every h < s < t with t − s > h.

Proof To prove (i) we begin with (2.4). This time we estimate the last term in (2.4) as

f̄ (kh)(|Eh,k+1| − |Eh,k |) ≤ c0(|Eh,k+1| − |Eh,k |) + | f̄ (kh) − c0| |Eh,k+1�Eh,k |.

We use the second estimate in Lemma 2.2 with l = Ĉ | f̄ (kh) − c0|h, where Ĉ is a
large constant and h is sufficiently small, to deduce

| f̄ (kh) − c0| |Eh,k+1�Eh,k | ≤ C | f̄ (kh) − c0|2h P(Eh,k) + 1

2h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx .

Therefore we have by (2.4) that

1

2h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx + E(Eh,k+1) ≤ E(Eh,k) + C | f̄ (kh) − c0|2h P(Eh,k),

where E is defined in (2.7).
Let us fix ε > 0. Since we assume (1.4), there exists Tε such that

∫ ∞

Tε

( f (t) − c0)
2 dt ≤ ε

C
, (2.8)

where C is a constant to be chosen later. Let T2 > T1 > Tε and let j,m be such that
T1 ∈ ( jh, ( j + 1)h] and T2 ∈ (( j + m)h, ( j + m + 1)h]. We iterate the previous
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inequality from k = j to k = j + m and obtain

j+m∑

k= j

1

2h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx + E(Eh

T2)

≤ E(Eh
T1−h) + C

(
sup

T1−h≤t≤T2
P(Eh

t )

) (∫ T2

T1−h
| f̄ (t) − c0|2 dt

)

≤ E(Eh
T1−h) + C

(
sup

T1−h≤t≤T2
P(Eh

t )

) (∫ ∞

Tε

| f (t) − c0|2 dt
)

≤ E(Eh
T1−h) + ε

(
sup

T1−h≤t≤T2
P(Eh

t )

)
,

(2.9)

where the last inequality follows from (2.8).
Arguing as in the proof of [24, Lemma 3.6], we deduce that there is a constant

c > 0, depending only on the dimension, such that

c h
∫

∂Eh,k+1

(
d̄Eh,k

h

)2

dHn−1 ≤
∫

Eh,k+1�Eh,k

|d̄Eh,k |
h

dx .

Therefore by the Euler–Lagrange equation (2.3) we have

j+m∑

k= j

1

h

∫

Eh,k+1�Eh,k
|d̄Eh,k | dx ≥ c

j+m∑

k= j

h
∫

∂Eh,k+1

(
d̄Eh,k

h

)2

dHn−1

= c
j+m∑

k= j

h
∫

∂Eh,k+1

(
HEh,k+1 − f̄ (kh)

)2
dHn−1

≥ c
∫ T2

T1

∫

∂Eh
t

(
HEh

t
− f̄ (t − h)

)2
dHn−1dt .

Thus we have the claim (i) by (2.9).
To show (ii) we fix 0 < ε < 1/2, T > Tε and apply the part (i) with T1 = Tε + h

and T1 + h < T2 = t ≤ T to deduce

E(Eh
t ) ≤ E(Eh

Tε
) + ε sup

Tε≤s≤T
P(Eh

s ).

We recall that E(E) = P(E) − c0|E | and that we assume supt>0 |Eh
t | < ∞. There-

fore from the above inequality, recalling that P(Eh
t ) ≤ Cε for all t < Tε + 1 by

Proposition 2.3 (ii), we get

P(Eh
t ) ≤ Cε + c0 sup

t>0
|Eh

t | + ε sup
Tε≤s≤T

P(Eh
s )
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for every Tε < t ≤ T . Thus, since ε < 1/2 we deduce that

sup
Tε≤t≤T

P(Eh
t ) ≤ 2

(
Cε + c0 sup

t>0
|Eh

t |).

The claim (ii) follows from the fact that T was arbitrary.
Finally the proof of (iii) follows from the proof of Proposition 2.3 (iii), noticing that

now the constantCT is in fact independent on T thanks to the bound on the perimeters
provided by (ii). �
Remark 2.5 If (Eh

t )t , E0 and f are as in Proposition 2.4, and if we assume

sup
t≥0

|Eh
t | ≤ C,

then Proposition (i) and (ii) imply that the energy E(Eh
t ) is asymptotically almost

decreasing. More precisely, for every ε > 0 there is Tε such that for t > s > Tε it
holds

E(Eh
t ) ≤ E(Eh

s ) + Cε, (2.10)

with Tε and C independent of h. This inequality implies in particular that there exists

lim
t→+∞ E(Eh

t ).

Moreover, from the proof of Proposition 2.4 we have also that if h is sufficiently small
and sup0<t<T |Eh

t | ≤ C for some T > 0, then there exists a constant C̃ , independent
of h, such that sup0<t<T P(Eh

t ) ≤ C̃ .

3 Stationary Sets and Proof of Theorem 1.1

In this section we go back to the two dimensional setting. We study critical sets of the
isoperimetric problem and stationary sets for the flow (1.1). A set of finite perimeter E
is critical for the isoperimetric problem if its distributional mean curvature is constant.

We define stationary sets for the equation (1.1) as follows.

Definition 3.1 Assume that the forcing term f in (1.1) is constant, i.e., f ≡ c0 > 0.
A set of finite perimeter E0 is stationary if for any flat flow (Et )t starting from E0 it
holds

sup
0≤t≤T

|Et�E0| = 0

for every T > 0.

We begin by proving the sharp quantitative version of the Alexandrov’s theorem in
the plane.
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Lemma 3.2 Let M > 0 and let E ⊂ R
2 be C2-regular with P(E) ≤ M. There

exist a constant CM and points x1, x2, . . . , xN , with |xi − x j | > 2, such that for
F = ∪N

i=1D1(xi ) it holds

sup
x∈E�F

d∂F (x) ≤ CM‖kE − 1‖L1(∂E) (3.1)

and

|P(E) − 2πN | ≤ CM‖kE − 1‖L1(∂E). (3.2)

Moreover, there exists ε0 > 0 such that if ‖kE − 1‖L2(∂E) ≤ ε0 then E is C1-
diffeomorphic to the disjoint union of N disks.

Proof Assume that ‖kE − 1‖L1(∂E) ≥ ε0 for a small ε0 to be chosen later. Since
‖kE‖L1(∂E) < ∞, E has finitely many connected components Ei , i = 1, . . . , N . If
P(E) ≥ 2πN , then |P(E)−2πN | ≤ M , hence (3.2) follows with a sufficiently large
constant. Otherwise, using Gauss-Bonnet theorem,

2πN − P(E) ≤
N∑

i=1

∫

∂Ei

(|kE | − 1) dH1 ≤ ‖kE − 1‖L1(∂E),

hence (3.2) follows with CM = 1. Since P(Ei ) ≤ M for every i , there exist points
xi such that Ei ⊂ DM (xi ). Therefore supx∈Ei�D1(xi ) d∂D1(xi )(x) is smaller than M .
Hence supx∈E�F d∂F (x) ≤ M and (3.1) holds with a sufficiently large constant.

Assume now that ‖kE − 1‖L1(∂E) ≤ ε0 for a small ε0. Let us fix a component Ei

of E and denote l = P(Ei ). Let us first prove that there is xi such that

sup
x∈Ei�D1(xi )

d∂D1(xi )(x) ≤ C‖kE − 1‖L1(∂E) and |l − 2π | ≤ ‖kE − 1‖L1(∂Ei )
.

(3.3)

It is not difficult to see that the claim follows from (3.3).
We claim first that Ei is simply connected. Indeed, let�0 be the outer component of

∂Ei for which it holds
∫
�0

kE dH1 = 2π . Then it follows from ‖kE − 1‖L1(∂E) ≤ ε0
that

2π − H1(�0) =
∫

�0

(kE − 1) dH1 ≤
∫

∂E
|kE − 1| dH1 ≤ ε0.

This yields P(Ei ) ≥ H1(�0) ≥ 2π − ε0. Then
∫

∂Ei

kE dH1 =
∫

∂Ei

(kE − 1) dH1 + P(Ei ) ≥ P(Ei ) −
∫

∂E
|kE − 1| dH1 ≥ 2π − 2ε0.

Therefore when ε0 < π we conclude that
∫
∂Ei

kE dH1 is positive. Since Ei is con-
nected, this implies that it is simply connected.
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Since the boundary ∂Ei is connected we may parametrize it by unit speed curve
γ : [0, l] → R

2, γ (s) = (x(s), y(s)) with counterclockwise orientation. Define
θ(s) := ∫ s

0 kE (γ (τ )) dτ so that θ(0) = 0 and θ(l) = 2π . Then

|θ(s) − s| ≤ ‖kE − 1‖L1(∂Ei )
for all s ∈ [0, l]. (3.4)

In particular, for s = l (3.4) implies

|θ(l) − l| = |2π − l| ≤ ‖kE − 1‖L1(∂Ei )

which is the second inequality in (3.3).
By possibly rotating the set E we have

x ′(s) = − sin θ(s) and y′(s) = cos θ(s).

In particular, (3.4) implies

|x ′(s) + sin s| ≤ ‖kE − 1‖L1(∂Ei )
and |y′(s) − cos s| ≤ ‖kE − 1‖L1(∂Ei )

for all s ∈ [0, l]. Therefore there are numbers a and b such that

|x(s) − a − cos s| ≤ C‖kE − 1‖L1(∂Ei )
and |y(s) − b − sin s| ≤ C‖kE − 1‖L1(∂Ei )

(3.5)

for all s ∈ [0, l]. Therefore we obtain from |l − 2π | ≤ ‖kE − 1‖L1(∂E) that

|x(s) − a − cos(2πs/l)| ≤ C‖kE − 1‖L1(∂Ei )
and

|y(s) − b − sin(2πs/l)| ≤ C‖kE − 1‖L1(∂Ei )
,

which gives the first inequality in (3.3) for xi = (a, b).
Note that from (3.5) it follows that if ‖kE − 1‖L2(∂E) is small, then γ (s) is close in

C1,α(0, l) to the parametrization (a+cos(2πs/l), b+sin(2πs/l)) of ∂D1(xi ). Hence
Ei is C1,α-close to D1(xi ).

�

The following lemma is based on a comparison argument.

Lemma 3.3 Assume E0 ⊂ R
2 is C2-regular set with P(E0) ≤ M and let (Eh

t )t be the
approximate flat flow starting from E0. If E0 is close to a disjoint union of N disks
with radius one, i.e., there exists F = ∪N

i=1D1(xi ), with |xi − x j | ≥ 2 for i �= j , such
that

sup
x∈E0�F

d∂F (x) ≤ δ,
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then for δ > 0 small enough it holds

sup
x∈Eh

t �F

d∂F (x) ≤ 5δ1/4 for all t ∈ (0,
√

δ)

for all h > 0 small.

Proof Let F be the union of disks as in the assumption and define

F− := {x ∈ F : dR2\F (x) > δ1/4} and F+ := {x ∈ R
2 : dF (x) <

√
δ}.

Then clearly F− ⊂ F ⊂ F+ and by the assumption supx∈E0�F d∂F (x) ≤ δ it holds
F− ⊂ E0 ⊂ F+.

Let (Fh
t )t be the approximate flat flow with the constant forcing term f = −�,

where � := C0 + 1, with C0 as in (1.2), starting from F−. Then by Proposition 2.1 it
holds Fh

t ⊂ Eh
t for all t > 0. Note that F− is a union of disks with radius R = 1−δ1/4

and with positive distance to each other. It is easy to see that (Fh
t )t is decreasing, i.e.,

Fh
t ⊂ Fh

s for t > s and therefore it is enough to study the evolution of a one single
disk DR , because the flow (Fh

t )t is the union of them. If now (F̃h
t ) is the approximate

flat flow starting from DR with the forcing term f = −� then it is not difficult to see
that for t ∈ (kh, (k + 1)h] the set F̃h

t is a concentric disk with radius rk+1 and by the
Euler–Lagrange equation (2.3) it holds

rk+1 − rk
h

= − 1

rk+1
− �.

Therefore, it holds

rk+1 − rk ≥ −(� + 2)h.

for all k = 0, 1, 2, . . . for which rk+1 ≥ 1/2. By adding this over k = 0, 1, . . . , K
with

√
δ/h ≤ K ≤ 2

√
δ/h and recalling that r0 = R = 1 − δ1/4 we obtain

rK ≥ r0 − 2
√

δ(� + 2) ≥ 1 − 2δ1/4,

when δ is small. This implies supx∈DR\F̃h
t
d∂DR (x) ≤ 2δ1/4 for t ∈ (0,

√
δ) and thus

by the previous discussion

sup
x∈F\Fh

t

d∂F (x) ≤ 2δ1/4 for t ∈ (0,
√

δ).

Since Fh
t ⊂ Eh

t we have

sup
x∈F\Eh

t

d∂F (x) ≤ 2δ1/4 for t ∈ (0,
√

δ). (3.6)
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We need yet to show that

sup
x∈Eh

t \F
d∂F (x) ≤ 5δ1/4 for t ∈ (0,

√
δ). (3.7)

Denote� = {x ∈ R
2\F : d∂F (x) = 5 δ1/4}. Fix x ∈ � and denote the disk Dr (x)with

r = 4 δ1/4. Then by E0 ⊂ F+ and Dr (x) ⊂ R
2 \ F+ we have E0 ⊂ R

2 \ Dr (x) if δ is
sufficiently small. Let (Gh

t )t be the approximate flat flow starting from Dr (x)with the
constant forcing term f = −�. Arguing as abovewe deduce that for t ∈ (kh, (k+1)h]
the set Gh

t is disk with radius rk+1, i.e., Gh
t = Drk+1(x) and

rk+1 − rk
h

= − 1

rk+1
− � ≥ −δ−1/4 − �

for k = 0, 1, . . . for which rk+1 ≥ δ1/4. By adding this over k = 0, 1, . . . , K with√
δ/h ≤ K ≤ 2

√
δ/h and recalling that r0 = r = 4 δ1/4 we obtain

rK ≥ r0 − 2
√

δ(δ−1/4 + �) ≥ 4 δ1/4 − 3 δ1/4 = δ1/4,

when δ is small. In other words Dδ1/4(x) ⊂ Gh
t for all t ∈ (0,

√
δ). Since E0 ⊂

R
2 \ Dr (x) Proposition 2.1 yields

Eh
t ⊂ R

2 \ Gh
t ⊂ R

2 \ Dδ1/4(x)

for all 0 < t ≤ √
δ. By repeating the same argument for all x ∈ � we conclude that

the flow Eh
t does not intersect � for any t ∈ (0,

√
δ). This implies (3.7). �

In the next lemma we show that if E0 is stationary then necessarily it is a disjoint
union of disks, i.e., a critical set of the isoperimetric problem.

Lemma 3.4 Assume E0 ⊂ R
2 is a bounded set of finite perimeter. If E0 is stationary

according to Definition 3.1 then it is a disjoint union of disks with equal radii.

Proof Let us fix T > 1 and ε > 0 and let (Eh
t )t be an approximate flat flow starting

from E0. Then for any δ > 0 it holds by Definition 3.1 and by Proposition 2.3 that

sup
h<t≤T

|Eh
t �E0| ≤ δ (3.8)

for small h. Now the forcing term satisfies trivially the assumption (1.4) and therefore
the left hand side of (2.8) is always zero. Then from the proof of Proposition 2.4 (i)
we get that for every h sufficiently small

c
∫ T

2h

∫

∂Eh
t

(kEh
t

− c0)
2 dH1dt + E(Eh

T ) ≤ E(Eh
h ).
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Recall that E(E) = P(E) − c0|E |. By (3.8) it holds |Eh
T�Eh

h | ≤ 2δ < ε
c0
. Therefore

we have

c
∫ T

2h

∫

∂Eh
t

(kEh
t

− c0)
2 dH1dt + P(Eh

T ) ≤ P(Eh
h ) + ε.

Finally by (2.6) and (3.8) we obtain

P(Eh
h ) ≤ P(E0) + c0(|Eh

h | − |E0|) ≤ P(E0) + c0δ ≤ P(E0) + ε.

Hence,

c
∫ T

2h

∫

∂Eh
t

(kEh
t

− c0)
2 dH1dt + P(Eh

T ) ≤ P(E0) + 2ε.

By (3.8) it holds |Eh
T�E0| ≤ δ. Therefore by the lower semicontinuity of the perimeter

it holds P(E0) ≤ P(Eh
T ) + ε when δ and h are small. Therefore we have

c
∫ T

2h

∫

∂Eh
t

(kEh
t

− c0)
2 dH1dt ≤ 3ε.

By the mean value theorem there is t < T such that

‖kEh
t

− c0‖L2 ≤ C
√

ε.

Since by Proposition 2.4 supt≥0 P(Eh
t ) ≤ M for some M independent of h, from the

previous inequality and from Lemma 3.2 it follows that there are points x1, . . . , xN ,
with |xi − x j | ≥ 2r , where r = 1

c0
, such that for the set F = ∪N

i=1Dr (xi ) it holds

sup
x∈Eh

t �F

d∂F (x) ≤ C
√

ε.

Thus by (3.8) it holds

|E0�F | ≤ C
√

ε.

Note that the points xi might depend on t and on h but the radius r and the number of
disks N does not. Therefore we conclude that the set E0 is arbitrarily close to a union
of essentially disjoint disks. This implies that the set E0 itself is a union of essentially
disjoint disks with radii r = 1

c0
. �

For a set E ⊂ R
2 we denote its Steiner symmetrization with respect to x1-axis by

Es , see [1,22]. Steiner symmetrization decreases the perimeter and preserves the area.
Moreover, in the case of equality P(Es) = P(E) it is well known that for smooth
set E every vertical section of E is an interval [22, Theorem 14.4]. We also notice
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that if the set E0 is Steiner symmetric with respect to x1-axis, i.e. E0 = (E0)
s , then

Steiner symmetrization also decreases the dissipation term in (2.1). This follows rather
directly from Fubini’s theorem and we leave the details for the reader. Hence, we have
the following observation.

Remark 3.5 If E0 is Steiner symmetric with respect to x1-axis, then every minimizer
E of F0(·; E0) has the property that every vertical section is an interval. In particular,
every component is simply connected.

Proof of Theorem 1.1 Without loss of generality we may assume that

E0 = D1(−e1) ∪ D1(e1)

where e1 = (1, 0). Let us now fix a small h > 0 and consider the minimization
problem (2.1) which gives a sequence of sets (Eh,k)∞k=1 and thus an approximate flat
flow (Eh

t )t .
Let us fix ε0 > 0. Then for δ small enough we have by Lemma 3.3 that for k ≤ δ

h
it holds

(
D1−ε0(−e1) ∪ D1−ε0(e1)

) ⊂ Eh,k ⊂ (
D1+ε0(−e1) ∪ D1+ε0(e1)

)
, (3.9)

when h is small. Moreover, by Lemma 2.2 it holds

(
D1−C1

√
h(−e1) ∪ D1−C1

√
h(e1)

)
⊂ Eh,1. (3.10)

Let us improve the above estimate and show that the set Eh,1 contains a
large simply connected set. To be more precise, we denote the rectangle Rh

η =
(−2C1

√
h, 2C1

√
h) × (−ηh1/4, ηh1/4) and prove that for η > 0 small, independent

of h, it holds

(
D1−C1

√
h(−e1) ∪ D1−C1

√
h(e1)

)
∪ Rh

η ⊂ Eh,1. (3.11)

Wearguebycontradiction assuming that ∂Eh,1∩(−2C1
√
h, 2C1

√
h)×(−ηh1/4, ηh1/4)

is non-empty.Wedenote the rectangle Rh
3η = (−2C1

√
h, 2C1

√
h)×(−3ηh1/4, 3ηh1/4)

and define

Ẽh,1 = Eh,1 ∪ Rh
3η.

Recall that by Remark 3.5 every vertical section of Eh,1 is an interval and that (3.10)
holds. By using these two properties a simple geometric argument shows that any
component containing one of the two disks in (3.10), say G1, has the property that
H1(∂G1 ∩ Rh

3η) is greater than 2ηh1/4. We have then the following estimate

P(Ẽh,1) ≤ P(Eh,1) − ηh1/4, (3.12)

when h is small. We also have
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(i)
∣∣|Ẽh,1| − |Eh,1|∣∣ ≤ |Rh

3η| = 24C1ηh
3
4

(ii) |d̄E0(x)| ≤ 10η2
√
h for all x ∈ Rh

3η \ E0.

It follows from (i), (ii) and supt | f (t)| ≤ C0 that

1

h

∫

Ẽh,1
d̄E0 dx − f̄ (h)|Ẽh,1|

≤ 1

h

∫

Eh,1
d̄E0 dx − f̄ (h)|Eh,1| + 1

h

∫

Rh
3η\E0

d̄E0 dx + C0
∣∣|Ẽh,1| − |Eh,1|∣∣

≤ 1

h

∫

Eh,1
d̄E0 dx − f̄ (h)|Eh,1| + Cη3h1/4

when h is small. Therefore using (3.12) and the above inequality we may estimate

F(Ẽh,1; E0) ≤ F(Eh,1; E0) − ηh1/4 + Cη3h1/4 < F(Eh,1; E0)

when η > 0 is small enough. This contradicts the minimality of Eh,1 and we obtain
(3.11).

We continue by constructing a barrier set Gh (see Fig. 2) and prove that Gh ⊂ Eh,k

for every k ≤ δ/h. The barrier Gh can be seen as a discrete version of a minimal
barrier to the flow. See e.g. [14] for a similar construction in a continuous setting. For
h ≥ 0 we define ϕh : (−3ε0, 3ε0) → R as

ϕh(s) = 3ε0 −
√
9ε20 − s2 + h

and define the set

Gϕh := {(x1, x2) ∈ R
2 : x1 ∈ (−3ε0, 3ε0), |x2| < ϕh(x1)},

which is ’the neck’. We define the barrier set as

Gh = (
D1−2ε0(−e1) ∪ D1−2ε0(e1)

) ∪ Gϕh .

The barrier set Gh is open and connected and we have the estimate on the curvature
at the neck

for every x ∈ ∂Gh \ (D̄1−2ε0(−e1) ∪ D̄1−2ε0(e1)) it holds kG0(x) = − 1

3ε0
.

(3.13)

Moreover, we notice that when h is small then by (3.11) it holds

Gh ⊂ Eh,1
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Fig. 2 The boundary of ∂Eh,k

lies outside of the barrier set Gh

x1

x2

Gh

∂Eh,k

In fact, (3.11) implies that

inf
R2\Eh,1

dGh (x) ≥ c h1/4 (3.14)

for small c > 0.
Let us define

ρk := inf
R2\Eh,k

dGh (x)

for k = 1, 2, . . . and ρ0 := 0. We claim that for every k ≤ δ
h it holds

ρk+1 − ρk ≥ 2h or ρk+1 ≥ ε0

2
(3.15)

when h is small.
We prove (3.15) by induction and notice that for k = 0 the inequality (3.15) is

already proven since (3.14) implies ρ1 ≥ c h1/4. Let us assume that (3.15) holds for
k − 1 and prove it for k. Let us assume that ρk+1 < ε0

2 . The induction assumption
and ρ1 ≥ c h1/4 yields ρk ≥ c h1/4. On the other hand by Lemma 2.2 it holds
supEh,k+1�Eh,k d∂Eh,k ≤ C1

√
h and therefore ρk+1 > 0.

Let xk+1 ∈ ∂Eh,k+1 and yk+1 ∈ ∂Gh be such that |xk+1 − yk+1| =
minx∈∂Eh,k+1 dGh (x) = ρk+1. By (3.9) it holds xk+1 /∈ D1−ε0(−e1) ∪ D1−ε0(e1)
and therefore by ρk+1 < ε0

2 we have

yk+1 ∈ ∂Gh \ (D̄1−2ε0(−e1) ∪ D̄1+2ε0(e1)).

Then (3.13) yields

kGh (yk+1) = − 1

3ε0
.

Since xk+1 is a point of minimal distance kEh,k+1(xk+1) ≤ kGh (yk+1) = − 1
3ε0

. By
taking ε0 smaller, if needed, we have by the Euler–Lagrange equation (2.3) and by
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supt>0 | f (t)| ≤ C0 that

d̄Eh,k (xk+1)

h
= −kEh,k+1(xk+1) + f̄ (kh) ≥ 1

3ε0
− C0 ≥ 2. (3.16)

The inequality (3.16) and Gh ⊂ Eh,k imply that xk+1 /∈ Eh,k and yk+1 ∈ Eh,k .
Thus there is a point zk+1 on the segment [xk+1, yk+1] such that zk+1 ∈ ∂Eh,k . Since
yk+1 ∈ ∂Gh it holds |zk+1 − yk+1| ≥ ρk and by (3.16) we have |xk+1 − zk+1| ≥
d̄Eh,k (xk+1) ≥ 2h. Therefore because zk+1 is on the segment [xk+1, yk+1] we have

ρk+1 = |xk+1 − yk+1| = |xk+1 − zk+1| + |zk+1 − yk+1| ≥ 2h + ρk .

Thus we have (3.15).
Let us conclude the proof. By adding (3.15) together for k = 0, 1, 2, . . . , K with

K ≤ δ/h we deduce that for δ small it holds

inf
R2\Eh

t

dGh (x) ≥ t for all t ∈ (h, δ]. (3.17)

In particular Gh ⊂ Eh
t . Let hl → 0 be any sequence such that suphl<t≤δ |Ehl

t �Et | →
0, see Proposition 2.3. By (3.17) we get

inf
R2\Et

dG0(x) ≥ t for all t ∈ (0, δ].

This inequality implies, in particular, that Et contains a ball centered at the origin with
radius t for all t ∈ (0, δ) and that

|Et \ E0| ≥ c t3.

This is the second statement of Theorem 1.1. The inequality (3.17) implies that

{x ∈ R
2 : dGh (x) < t} ⊂ Eh

t for all t ∈ (h, δ].

Passing to the limit as above, along the subsequence hl , we deduce

{x ∈ R
2 : dG0(x) < t} ⊂ Et for all t ∈ (0, δ].

The first claim follows from the fact that {x ∈ R
2 : dG0(x) < t} is open and simply

connected. �
Weconclude this section by explaininghowTheorem1.2 follows fromTheorem1.1.

Proof of Theorem 1.2 First, it is easy to see that if E0 is a union of disks with equal
radius and with positive distance to each other, then E0 is stationary according to the
Definition 3.1. If E0 is stationary then by Lemma 3.4 it is critical, i.e., finite union
of essentially disjoint disks Dr (xi ), with r = 1/c0 and i = 1, . . . , N . We need to
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show if i �= j then |xi − x j | > 2/c0. If by contradiction there are two tangential
disks, say Dr (x1) and Dr (x2), then we define F0 = Dr (x1) ∪ Dr (x2). Let (Et )t be
a flat flow starting from E0 and let hl → 0 be a sequence such that |Ehl

t �Et | → 0
and |Fhl

t �Ft | → 0, where (Ft )t is a flat flow starting from F0 with forcing term
g = c0 − ε. Then by Proposition 2.1 Fhl

t ⊂ Ehl
t for all t > 0 and hl , hence Ft ⊂ Et .

By Theorem 1.1 we have that there exist δ, c > 0 such that for all t ∈ (0, δ)

|Ft \ F0| ≥ c t3.

This implies

|Et \ E0| ≥ c t3

and therefore E0 is not stationary. �

4 Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3 First, by scaling we may assume that c0 = 1 in the assumption
(1.4).

Let (Eh
t ) be an approximate flat flow which converges, up to a subsequence, to

(Et )t . We simplify the notation and denote the converging subsequence again by h.
From the assumption supt>0 |Et | = M and from Proposition 2.3 (iv) it follows that
for every T > 0 there is hT such that up to subsequence of h it holds

sup
0<t<T

|Eh
t | ≤ 2M for all 0 < h < hT .

Then Remark 2.5 yields that there exists a constant C̃ independent of h and T such
that for 0 < h < hT

sup
0<t<T

P(Eh
t ) ≤ C̃ .

The dissipation inequality in Proposition 2.4 and the above volume and perimeter
bounds imply

∫ T

T0

∫

∂Eh
t

(kEh
t

− f̄ (t − h))2 dH1dt ≤ C

for some T0 > 0 for every T > T0. Then the assumption (1.4) (recall that c0 = 1)
yields

∫ T

T0

∫

∂Eh
t

(kEh
t

− 1)2 dH1dt ≤ C .
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for some T0 large and for every T > T0 and 0 < h < hT . In particular, if we denote
I j = [( j − 1)2, j2] for j = 1, 2, . . . , k <

√
T then it holds

∫

I j

∫

∂Eh
t

(kEh
t

− 1)2 dH1dt ≤ C

for j large. Let us fix a small ε > 0. From the previous inequality we obtain that there
exists jε such that, if jε ≤ j ≤ √

T and 0 < h < hT there exists Th, j such that

( j − 1)2 ≤ Th, j ≤ j2, and
∥∥∥kEh

Th, j
− 1

∥∥∥
L2(Eh

Th, j
)
≤ ε.

We deduce by Lemma 3.2 that the set Eh
Th, j

is close to a disjoint union of Nh, j disks

of radius one. Since the measures of Eh
Th, j

are uniformly bounded, we conclude that
there is N0 such that Nh, j ≤ N0. Moreover, we have by Lemma 3.2 that

∣∣P(Eh
Th, j

) − 2πNh, j
∣∣ + ∣∣|Eh

Th, j
| − πNh, j

∣∣ ≤ Cε. (4.1)

This implies the following estimate for the energy E(Eh
Th, j

) = P(Eh
Th, j

) − |Eh
Th, j

|,
∣∣ETh, j (E

h
Th, j

) − πNh, j
∣∣ ≤ Cε. (4.2)

In other words, at Th, j the energy has almost the value πNh, j . Since the energy
ETh, j (E

h
Th, j

) is asymptotically almost decreasing by Remark 2.5, we deduce that the
sequence of numbers Nh, j is decreasing for j large, i.e.,

Nh, j ≥ Nh, j+1 for every jε ≤ j ≤ √
T .

By letting h → 0 we conclude by Proposition 2.3 (iv) and by standard diagonal
argument that, by extracting another subsequence if needed, there is sequence of times
Tj , with j ≥ jε, such that ( j − 1)2 ≤ Tj ≤ j2 and the set ETj is close to N j many
disjoint disks of radius one and that N j ≥ N j+1 for every j ≥ jε. This implies that,
there is j0 ≥ jε and N such that

N j = N for all j ≥ j0.

This means that every ETj , for j ≥ j0, is close in L1-sense to disjoint union of exactly
N many disks of radius one. By the locally uniform L1-convergence (Eh

t )t → (Et )

for every T > j20 we have

Nh, j = N for j0 ≤ j ≤ √
T , (4.3)

123



53 Page 24 of 29 N. Fusco et al.

when h is small. Therefore we conclude from (4.1) and from the dissipation inequality
in Proposition 2.4 that for any δ > 0 there is Tδ such that for all T > Tδ it holds

∫ T

Tδ

∫

∂Eh
t

(kEh
t

− 1)2 dH1dt ≤ δ3 (4.4)

when h is small.
Let us fix T >> Tδ and denote by Jh ⊂ (Tδ, T ) the set of times t ∈ (Tδ, T ) for

which

‖kEh
t

− 1‖L2(∂Eh
t ) ≥ δ.

Then by (4.4) it holds |Jh | ≤ δ. If δ is small enough, by Lemma 3.2, from (4.2), (4.3)
and (2.10) we deduce that the sets Eh

t satisfy

sup
x∈Eh

t �Fh
t

d∂Fh
t
(x) ≤ Cδ for all t ∈ (Tδ, T ) \ Jh, (4.5)

where Fh
t = ∪N

i=1D1(xi ) with |xi − x j | ≥ 2 for i �= j . Note that the points xi may
depend on t and h.

We will show that for all t ∈ (Tδ + 2δ, T ) it holds

sup
x∈Eh

t �Fh
t

d∂Fh
t
(x) ≤ Cδ1/4 (4.6)

where Fh
t is a union of N disjoint disks as above. Let us fix t0 ∈ (Tδ, T ) \ Jh . By (4.5)

we have

sup
x∈Eh

t0
�Fh

t0

d∂Fh
t0
(x) ≤ Cδ.

We use Lemma 3.3 with E0 = Eh
t0 to conclude

sup
x∈Eh

t �Fh
t0

d∂Fh
t0
(x) ≤ Cδ1/4 for all t ∈ [t0, t0 + √

δ).

This means that if we define

I = ∪t∈(Tδ,T )\Jh [t, t + √
δ)

then (4.6) holds for every t ∈ I . But since |Jh | ≤ δ ≤ √
δ/2, it easy to see that

(Tδ + 2δ, T ) ⊂ I . Thus (4.6) holds for every t ∈ (Tδ + 2δ, T ).
We have thus proved (4.6). The claim follows by letting h → 0 and from Proposi-

tion 2.3. �
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Fig. 3 The point σ(t2) is closer
to the arc �ρ than σ(t1)

Γρ

σ(t1)

σ(t2)

•

•

• z1

e2

We conclude the paper by proving Theorem 1.4. To this end we recall the Bonnesen
symmetrization of a planar set.

Let E ⊂ R
2 be a measurable set. The Bonnesen symmetrization of E with respect

to x2-axis is the set E∗, with the property that for every r > 0

H1(∂Dr ∩ E∗) = H1(∂Dr ∩ E)

and ∂Dr ∩E∗ is the union of two circular arcs γ +
r and γ −

r with equal length, symmetric
with respect to the x2-axis and such that γ −

r is obtained by reflecting γ +
r with respect

to the x1-axis.
Clearly this symmetrization leaves the area unchanged. Moreover, if E is a convex

set, symmetric with respect to both coordinate axes, then P(E∗) ≤ P(E), see [6, Page
67] (see also [11]).

Let us prove that the Bonnesen symmetrization decreases the dissipation.

Lemma 4.1 Let G ⊂ R
2 be invariant under Bonnesen symmetrization. Then for any

measurable set E ⊂ R
2 it holds

∫

E∗
d̄G dx ≤

∫

E
d̄G dx .

Proof It is enough to prove that for every r > 0 it holds

∫

∂Dr∩E∗
d̄G dH1 ≤

∫

∂Dr∩E
d̄G dH1. (4.7)

Let us fix r > 0 and without loss of generality we may assume that r = 1. Let
σ : [−π, π ] → R

2,

σ(t) =
[
cos(t)
sin(t)

]
.
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SinceG is symmetric with respect to both coordinate axes, the function t �→ d̄G(σ (t))
is even and for every t ∈ (0, π/2) it holds d̄G(σ (π − t)) = d̄G(σ (t)). We observe that
(4.7) follows once we show that

t �→ d̄G(σ (t)) is decreasing on t ∈ (0, π/2).

To this aim we fix 0 < t1 < t2 < π/2. Let us assume that σ(t1) ∈ R
2 \G, the case

σ(t1) ∈ G being similar. If σ(t2) ∈ G then trivially d̄G(σ (t2)) ≤ 0 ≤ d̄G(σ (t1)). Let
us thus assume that σ(t2) ∈ R

2\G. Let z1 ∈ ∂G be such that d̄G(σ (t1)) = |σ(t1)−z1|
and let ρ > 0 and θ1 ∈ (0, π/2) be such that z1 = ρσ(θ1). We denote by �ρ ⊂ ∂Dρ

the arc with endpoints ρe2 and z1, i.e.,

�ρ = {ρσ(t) : t ∈ (θ1, π/2)}.

Since G is invariant under Bonnesen symmetrization we have �ρ ⊂ G. But now since
t1 < t2 < π/2 it clearly holds (see Fig. 3)

dist(σ (t2), �ρ) ≤ dist(σ (t1), �ρ) = |σ(t1) − z1| = d̄G(σ (t1)).

Since �ρ ⊂ G we have

d̄G(σ (t2)) ≤ dist(σ (t2), �ρ)

and the claim follows.
�

Proof of Theorem 1.4 Let G be the ellipse

G = {(x1, x2) ∈ R
2 : a2x21 + x22 < 1} with a > 1

as in the assumption and let (Gt )t be the classical solution of the volume preserving
mean curvature flow

Vt = −kGt + k̄Gt (4.8)

starting from G. By [18], (Gt )t is well defined for all times, remains smooth and
uniformly convex and converges exponentially fast to the disk Dρ , where ρ = 1√

a
.

Moreover Gt �= Dρ for all t > 0. Let us define f (t) := k̄Gt which is therefore a
smooth function and converges exponentially fast to 1/ρ. Note that then f satisfies
(1.4) for c0 = 1/ρ.

By the regularity of E0 the flat flow (Et )t with the forcing term f starting from E0
coincides with the unique classical solution provided by [18], see [9, Proposition 4.9].
Therefore, by the symmetry of E0 we may conclude that

Et = (Gt − ρe1) ∪ (Gt + ρe1) (4.9)
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as long as the components (Gt − ρe1) and (Gt + ρe1) do not intersect each other. By
the convexity of Gt , the components Gt − ρe1 and Gt + ρe1 do not intersect each
other if the first one stays in the half-space {x1 < 0} and the latter in {x1 > 0}. This
is the same as to say that the flow Gt does not exit the strip {−ρ < x1 < ρ}. Let us
show this.

Assume that for h > 0 the family of sets (Gh
t )t is an approximate flow obtained

via (2.1) with the forcing term f and starting from G. We now show that each Gh
t is

symmetric with respect to the coordinate axes and convex. Recall that the set Gh,1 is
chosen as a minimizer of the functional

F(E;G) = P(E) + 1

h

∫

E
d̄G dx − f̄ (h)|E |.

It is well known that in any dimension the functional above admits a minimal and a
maximal minimizer which are convex and, by uniqueness, symmetric with respect to
both coordinate axes, see [3, Theorem 2]. However, in our two dimensional setting we
can provide a simple self contained proof of this fact.

Given E , we set E+ = {x ∈ E : x1 > 0} and E− = {x ∈ E : x1 < 0}. By
reflecting E+ and E− with respect to the x2-axis we obtain sets E1 and E2, which are
symmetric with respect to the x2-axis and satisfy

F(E1;G) + F(E2;G) ≤ 2F(E;G).

Then there exists i = 1, 2 such that F(Ei ;G) ≤ F(E;G). By repeating the same
argument with respect to the x1-direction we conclude that we may choose Gh,1

symmetric with respect to both axes.
Let us show that Gh,1 is convex. By the Euler–Lagrange equation (2.3) it holds

d̄G
h

= −kGh,1 + f̄ (h) on ∂Gh,1

We claim that d̄G
h (x) ≤ f̄ (h) for all x ∈ ∂Gh,1. Indeed, suppose x0 ∈ ∂Gh,1 is the

maximum of d̄G on ∂Gh,1. If d̄G(x0) ≤ 0, then trivially d̄G
h (x0) ≤ f̄ (h) as f ≥ 0. If

d̄G(x0) > 0 then x0 /∈ G and since it is the furthest point from G and G is convex, it
is easy to check that kGh,1(x0) ≥ 0. Then by the Euler–Lagrange equation

d̄G(x0)

h
= −kGh,1(x0) + f̄ (h) ≤ f̄ (h).

Therefore d̄G/h ≤ f̄ (h) on ∂Gh,1 and by the Euler–Lagrange equation

kGh,1 = − d̄G
h

+ f̄ (h) ≥ 0 on ∂Gh,1.

Hence, Gh,1 is convex.
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We now apply to Gh,1 the Bonnesen circular symmetrization with respect to the
x2-axis which, we recall, decreases the perimeter, preserves the area and decreases
the dissipation term

∫
Gh,1 d̄G dx , by Lemma 4.1. Therefore we may assume that Gh,1

is invariant under the Bonnesen annular symmetrization with respect to the x2-axis.
By iterating the argument we deduce that the same holds for Gh

t for all t > 0. Letting
h → 0 we deduce that the same holds for the flat flow, and by the uniqueness for
the classical solution (Gt )t . Therefore for every t > 0 and r > 0 the intersection
Gt ∩ ∂Dr is a union of two circular arcs with equal length which are both symmetric
with respect to the x2-axis.

Now if Gt exits the strip {−ρ < x1 < ρ}, say at time t0, then the intersection
Gt0 ∩ ∂Dρ contains the points (−ρ, 0) and (ρ, 0). Since Gt ∩ ∂Dρ is a union of two
circular arcs, which both are symmetric with respect to the x2-axis, we have

Gt0 ∩ ∂Dρ = ∂Dρ.

By the convexity of Gt0 this implies Dρ ⊂ Gt0 . But since the flow (4.8) preserves the
area we have |Gt0 | = |Dρ |. Then it holds Gt0 = Dρ , which is impossible. Therefore
the flow Gt does not exit the strip {−ρ < x1 < ρ}, (4.9) holds for all times and the
conclusion of the theorem follows.
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