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Abstract

We introduce two flow approaches to the Loewner—Nirenberg problem on compact
Riemannian manifolds (M", g) with boundary and establish the convergence of the
corresponding Cauchy—Dirichlet problems to the solution of the Loewner—Nirenberg
problem. In particular, when the initial data u is a subsolution to (1.1), the convergence
holds for both the direct flow (1.3)—(1.5) and the Yamabe flow (1.6). Moreover, when
the background metric satisfies R, > 0, the convergence holds for any positive initial
data ug € C>%(M) for the direct flow; while for the case the first eigenvalue A1 < 0
for the Dirichlet problem of the conformal Laplacian L, the convergence holds for
ug > vo where vy is the largest solution to the homogeneous Dirichlet boundary value
problem of (1.1) and vgp > 0 in M°. We also give an equivalent description between
the existence of a metric of positive scalar curvature in the conformal class of (M, g)
and inf, cc1p 0y Q1) > —oo when (M, g) is smooth, provided that the positive
mass theorem holds, where Q is the energy functional (see (3.2)) of the second type
Escobar—Yamabe problem.
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1 Introduction

In the well-known paper [34], Loewner and Nirenberg studied the blowing up boundary
value problem

1 2
Au = Zn(n —2unr-2, in ,

u(x) - oo, as x — 992,

with 2 a bounded domain of C? in R”. They proved that there exists a unique positive
solution u to this problem, and there exists a constant C > 0 depending on the domain
€2 such that

\dist(x, 92)" T u — 1] < Cdist(x, 3R)

near the boundary, where dist(x, 9€2) is the distance of x to d<2. This is equivalent

to seeking the conformal metric g = u$8 with § the Euclidean metric on €2 has
constant scalar curvature R, = —n(n — 1).

In [3] and [4], Aviles and McOwen generalized the Loewner—Nirenberg problem to
compact Riemannian manifolds (M, g) with boundary. Denote M° to be the interior
of M. In particular, they considered the blowing up Dirichlet boundary value problem

4 —1) w2 o

—2Au—Rgu—n(n—1)un—2 =0, in M°, (1.1)
n—

u(p) — oo, as p — oM. (1.2)

We call (1.1)—(1.2) the Loewner—Nirenberg problem on (M, g). Using classical vari-
ational method they obtained a sequence of solutions to (1.1) with enlarging Dirichlet
boundary data that go to infinity, and using maximum principle and an integral type
weak Harnack inequality, they obtained the existence of the unique solution « to (1.1)—
(1.2) and analyzed the asymptotic behavior of u near the boundary. For regularity of
the Loewner—Nirenberg metric in the conformal class of a smooth compact manifold
(M", g) with boundary, an nice expansion of the solution near the boundary is given in
[1,38]. Recently, Xumin Jiang and Qing Han developed a type of weighted Schauder
estimates near the boundary, see [25] (see also [30]), which fits in this expansion well,
and for expansion of the solution near the boundary for manifolds with corners on the
boundary see [27] and for more references on this topic one is referred to [26].

In this article, we derive two flow approaches to the Loewner—Nirenberg problem.
Indeed, we introduce the Cauchy-Dirichlet problems to a direct scalar curvature flow
(see (1.3)—(1.5)) and the Yamabe flow (1.6) on a compact Riemannian manifold (M, g)
with boundary.

Let (M", g) be a compact Riemannian manifold with boundary. Let M° be the
interior of M. Define the function spaces
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Clk;a’m—‘_ﬂ(BM x [0, +00)) = {u € CK"*+B QM x [0, T] for any T > 0}, and
CREem™ P (M x 10, +00)) = {u € CKH"+P (M x [0, T]) for any T > 0}.

Consider the Cauchy-Dirichlet problem

4n—1) 2
U; = —ZAM — Rgu —n(n — Dun=2, in M x [0, +00), (1.3)
n—
u(p,0) =uo(p), peM, (1.4)
u(g,1) =¢(q.1), g € oM, (1.5)

with ¢ — oo ast — oo, which is called the direct flow in this paper. For the direct
flow, we first derive the long time existence of the flow for general initial data, see
Lemma 2.4. If the boundary data ¢ — oo uniformly of certain speed (2.4) as t — oo,
we obtain an asymptotic blowing up lower bound estimates near the boundary, see
Lemma 2.3. Together with the interior upper bound estimates (see Lemma 2.2, in
comparison with the local upper bound estimates in [4]) and the Harnack inequality,
we obtain the uniform upper and lower bound of # on any given compact subset of M°.
The convergence of the flow is the main part of the discussion. We have the following
theorem for the case Ry > 0.

Theorem 1.1 Let (M, g) be a smooth compact manifold with boundary such that
Ry > 0. Assume two positive functions ug € C>*(M)and ¢ € Cﬁ;g (OM x [0, +00))
satisfy the compatible condition (2.1) on d M x {0}. Moreover, assume ¢; > 0fort > 0,
¢ satisfies (2.4) as t — o0 and lim inf,_, » infys ¢ = 00. Then there exists a unique
solution u to the Cauchy-Dirichlet problem (1.3)—(1.5), converging in Clzoc (M°) toa
solution u~ to the Loewner—Nirenberg problem (1.1)—(1.2) as t — +00. Moreover,

there exists a constant C > 0 such that
L(x+ Cinf ¢(po0)77) T € <u = Cx™
—(x in , —n —C<u<Cx
C pedM P

near the boundary d M, where x is the distance function to the boundary.

To achieve that, when the initial data is a subsolution to (1.1) and ¢ is increasing
in a certain speed to infinity as t — oo, we first show that the solution is increasing
and converges to the solution of the Loewner—Nirenberg problem, see Lemma 2.6
to Proposition 2.5. In particular, u(-, t) is a sub-solution to (1.1) for each r > 0.
Then for general positive initial data, we can first solve a Cauchy—Dirichlet problem
with smaller initial data which is a subsolution to (1.1), and hence the solution u is
increasing and converges to the solution of the Loewner—Nirenberg problem; and then
we use u1 to give the lower bound of the flow with general initial data by maximum
principle, and we use Hamilton’s technique in [24] to derive the convergence of the
flow. We provide examples of the compact manifolds with boundary with positive
scalar curvature in Sect. 3, and based on the positive mass theorem, we obtain that
on a smooth compact manifold (M, g) with boundary, there exists a positive scalar
curvature metric in the conformal class if and only if inf, cc1(p)—(0) Q) > —o00,
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where Q (see (3.2)) is the energy functional of the second type Escobar—Yamabe
problem (3.1), see Theorem 3.2.
For a general conformal class (M, [g]), we have

Theorem 1.2 Let (M, g) be a compact Riemannian manifold with boundary of C*“.

Let ug € C*>*(M) be any positive function such that uy > vg on M, where v is the

largest solution to he homogeneous Dirichlet boundary value problem of the Yamabe
4

equation (A.1)—(A.2). Then there exists a direct flow g(t) starting from gy = u(’)l’2 g

4
n—=2

and converges in Clzo (M°®) 1o goo = Uy 5 8 where upy the solution to the Loewner—
Nirenberg problem (1.1)—(1.2).

Notice that vy > 0in M° when A1(L;) < 0 (see Appendix A), where A1(Ly) is the
first eigenvalue of the Dirichlet boundary value problem of the conformal Laplacian
operator L, = —4(::21) Ag + Ry; while vg = 0 by maximum principle when R, > 0
for some conformal metric &2 € [g]. When (M, g) is smooth and the positive mass
theorem holds, if A1(L,) > 0, there exists & € [g] such that R, > 0, see Sect. 3. To
prove Theorem 1.2, we first take a conformal metric g with R, = —n(n — 1) as the
background metric and show that the flow is monotone and converges to the Loewner—
Nirenberg metric when we choose the initial data up = 1 and increasing boundary
data in a certain speed; while for ug > v, we construct a compatible boundary data
increasing in ¢ > 0 ina certain speed, and then use a solution to the Cauchy—Dirichlet
problem (1.3)—(1.5) with smaller boundary data and smaller initial data which is a
solution to (1.1) to give a lower bound, and we use Hamilton’s technique in [24] again
for the upper bound control to conclude the convergence of the flow.

Yamabe flow is studied as an alternative approach to the Yamabe problem on closed
manifolds, see [8,9,15,49,55], etc. It is also used in the study of general prescribed
scalar curvature equation, see [12,53], etc. For Yamabe flow on manifolds with bound-
ary on the Neumann type boundary problems posed by Escobar, see [10,11], etc. On
complete non-compact Riemannian manifolds, there are also many works on the long
time existence and convergence of the Yamabe flow, see [14,37], etc. On compact
manifolds with incomplete edge singularities Yamabe flow is studied in [5], etc. see
also [48,50] and the references there for Yamabe flow on incomplete manifolds. In
[47], an instantaneously complete Yamabe flow was derived in the conformal class of
the hyperbolic space. In [48], the author studied the relationship between the dimen-
sion of the singular sub-manifold and instantaneous completeness and incompleteness
of the flow.

Notice that the Yamabe flow is conformally covariant and it makes no difference
which metric in the conformal class is chosen as the background metric of the flow.
We take a conformal metric g with R; = —n(n — 1) in the conformal class (M, [g])
as the background metric. Now we introduce the Cauchy-Dirichlet problem of the
Yamabe flow

it - UDOED (10D ),
u(q,0) =uo(q), g € M,
u(g,t) = ¢(q,1), (g,t) € 9M x [0, +00),

(1.6)
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where ¢ — oo ast — 00, to get a natural connection between a compact metric g
on M with the complete Loewner—Nirenberg metric in the conformal class. For the
convergence, we have that

Theorem 1.3 Let (M", g) be a compact Riemannian manifold with boundary of C**
and Ry = —n(n—1). Letug € CH (M) withug > 1 be a subsolution of the equation
(1.1) and satisfies

Lg(u) = 0 (1.7)

at the points g € 0M such that o = 0, where p and Lg (1) are defined in (4.5) and

4.4). Assume ¢ € C;‘ata’2+7 (M x [0, 00)) satisfies the compatible condition (4.3)—
4.4) and ¢y = 0 on M x [0, 00). Moreover, assume lim inf,_, o infyy; ¢ = 0o and
¢ satisfies (4.7)—(4.8) as t — oo. Then there exists a unique positive solution u to

(1.6) on M x [0, +00) withu € Cp- >3 (M x [0, 00)), and u — upy in C}_(M°)
ast — 00, where uy y is the solution to the Loewner—Nirenberg problem (1.1)—(1.2).

Notice that the condition (1.7) is to guarantee the C 4t 2+5 regularity of the solution
u at aM x {0} and the condition ¢ > 0 for + > 0, and it holds automatically if
uo is a strict subsolution to (1.1) in a neighborhood of dM, or ug is a solution to
(1.1) in a neighborhood of dM. It is clear that ¢ = log(?), ¢, 12, ¢ and te' satisfy
(4.7). The strategy of the proof of this theorem is similar as that of Theorem 1.2, but
more is involved because of the nonlinear term on the left hand side of the Yamabe
flow equation. Notice that we do not show the convergence of the Yamabe flow for
general initial data, because when using Hamilton’s technique in [24] to get the upper
bound of u, we are not able to show that lim sup,_, o, supys(u — urn) < 0, although
supygo(u(-, t) —upn(-)) is decreasing in ¢, where u, v is the solution to the Loewner—
Nirenberg problem (1.1)—(1.2).

The Cauchy-Dirchlet problem of the Yamabe flow is generalized to the Cauchy-
Dirchlet problem of ox-Ricci flow in [31], i.e., a flow approach to the generalized
Loewner—Nirenberg problem of the fully nonlinear equations in [22] and [23], where
the fact the sub-solution property is preserving along the flow also plays an important
role for the convergence of the flow.

It would be interesting to know whether the direct flow converges to the solution
to Loewner—-Nirenberg problem when 1o < vo somewhere in M° when A1(Lg) < 0.

2 A Direct Flow

Let (M", g) be a smooth compact Riemannian manifold with boundary oM, with

g € C*%. We consider the direct flow, i.e. the Cauchy-Dirichlet problem (1.3)—(1.5)

witht 1iT ¢ (g, 1) = 400, uniformly. To guarantee the solution u is in C>+% 142 (M x
— 400

[0, Tp]) for some Ty > 0 and 0 < o < 1, we need the compatible condition

wo(p) = B (p. 0),
A(n—1
o:(p,0) = 20D

n—

n+2
Auo(p)—Rguo(p)—n(m—1ug(p)»=2 for p e IM, (2.1)
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with ug € Cz""(M) and ¢ € C2’°‘(8M x [0, T]) for all T > 0. Moreover, in order
that u € C**2+2 (M x [0, Tp]), we need the additional condition

¢1:(p,0) = L(v)(p) for pe IM, 2.2

with ug € C**(M) and ¢ € C**(dM x [0, T]) for all T > 0, where

4n —1) 2
v = —2Au0 — Rgug —n(n — Du
n—

on M and L is a linear operator such that

4n —1) nn—1)0n+2) 4
Loy == he - R = ——

for any ¢ € C2(M).

For later use, we now present a well-known weak Harnack inequality for parabolic
inequalities, see in [32] or Peter Li’s online lecture notes on geometric analysis for
instance.

Lemma 2.1 Assume B, (p) is a closed geodesic r-ball in a complete Riemannian man-
ifold (M, g) withr < 1. Letu € c%! (M x [0, T1]) be a positive function such that

<4(n—1)A ic
u —Au u,
r = ) 0

for some constant Co > 0. Assume that there exists a constant Cs > 0, such that we
have the Sobolev inequality

VP = Cr (o 977) "
IBr(p)| B, (p) - IBr(p)| B, (p) '

foreach ¢ € Cé (B(p)). Thenfor0 € (0, 1) and T € (T, T1), there exists a constant
C1 > 0depending on Cy, such that

sup lu(q)]
q€Bor (p).1€IT .11

n=2 7”274

=CiCs * ((1 —0) P+ (T - To)_l) - Ty

21

1 )
x( / |u|n 2 .
ITy — Tol X |Br(p)| L (p)

Remark. For a complete Riemannian manifold (M", g), if Ricg > —k(n — 1)g
with some constant k& > 0, and assume that there exists a constant C,, > 0 such that
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for a geodesic ball B, € M, the volume ratio satisfies

| By |
|BY|

> Cy, (2.3)

where |B?| is the volume of a geodesic ball of radius r in the space form of sectional
curvature —k, then the Sobolev inequality holds on B, with Cg depending on k and C,.
For a compact manifold (M, g) with boundary of C>®, such constants are uniform for
each geodesic ball in the interior. Denote M° the interior of M, for each p € M°, we
can also use classical parabolic theory in Eucliean domain to get the weak Harnack
inequality. Indeed, let r = %min{ro, dist(p, dM)} with rg the injectivity radius at
p- In B, (p), using the geodesic normal coordinates, we can write the equality as an
parabolic inequality in Euclidean domain B, (0), and apply the weak Harnack theorem
in [33] to get the same control.

We start with a parabolic analog to Aviles-McOwen’s local upper bound estimates
in [4] on the solutions to (1.3).

Lemma 2.2 Assume u > 0 is a solution to (1.3) on M x [0, T1) with T1 > €y for
some 2 > €y > 0. There exists a uniform constant C3 > 0 depending on €y > 0 but
independent of Ty and r, such that for each closed geodesic ball By-(p) € M°, we
have

_ (=2
u(g,1) < Car- 7,

forq € By(p) withr < min{l, \/éo}, and Ty > t > .

Proof Pick up a function ¢(q,t) = &E(gq)n(t) € C3(M x [0, T})) to be determined
later. Let £ > 0 be a cut off function with compact support By, (p), so that £(g) = 1
forg € B,(p),0 < &(q) < 1 for g € By-(p) and there exists a constant C > 0
independent of p € M° and r such that |[VE| < Cr~! in By, (p). Multiply u¢® on
both sides of (1.3) and do integration on M, we have

n—

4(n —1 n
/ uu;p*dVy = / [uuAu(pa - Rgu2<p“ —n(n — l)unzZ(p“] dV,
M M 2

Integration by parts, we obtain

ld 2 «a o 2 a—1
- (pdb - = (00[ (pdi/
2dt(,/Mu g) 2/,;,,14 =78

T 4 —1 4(n —1
:/ _M|Vu|2(pa_gau(pa_l VuV(p
ML n—2 n—2

—Rgu2<p“ —n(n — 1)unzTn2<p“] dVy

r — 1 n
< f u2((”z—2)a2¢“—2 IVoI® = Rgg®) — n(n — 1>ufzgo“} dvy,
M L e
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where the last inequality is by Cauchy inequality. Therefore,
1d 2« ¥ a1 m—1) 5 42 2 2
—— dVv,) < — g %% 2 |Vg|* — Ryg”
Zdt([Muw g)_/M[(2<p o+ — a9 T IVel” = Reg®)u
—n(n — 1)u%¢“] dVy.
Now for any T such that 71 > T > %", we assume 1 > n > 0 with n(z) = 0 for

t <T-— %, n=1fort >T — ﬁ and |7/ (1) < i—% for t > 0. Integrate the above

r

inequality on ¢ € [T — 7, T] to have
0< l(/ ul@®dVv )|
2\ y 8)lt=T

r o a1 (n—1) 2 a2 2 a\ 2 2y
< 2, (Ega or + P o [Vo|"—Rggp )u —n(n—1Dun=-2¢" | dVydt.
-7

Therefore, by Holder inequality,

n(n—l)/ / un 2g0 dVgdt
/ f (—w“’1¢,+—( ) 202 V|2 — Re®) u? | dV,dt
_% 2 n—2 & &

IA

n=2

M
/ un 2<p “qav, dt:|

IA

2

|: 7
n-2
T 2n "
= [ ) Ll”2q7a(i‘/g(it}
_VT M
)ZV _R 2+20l jd d
2 ¢¢r+ IVoI> — Reg?)p 2 T0% | dV,dt

Taking @ = n, we have

T 2n 2
(/ / WP dVdt)
—5 JB(p)
2
T . p
/ 2/ un=2¢"dVedt
—2Jum
2
) 1 "
Sn(n_l) |:/ 2 / ¢¢t+ n* Vol — )zdvgdt] ’

@ Springer
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where the right hand side is bounded from above independent of u, p, T and r. Recall
that

4n—1)
up < ————Agu — Rgu
(n—2)

on M x [0, T7). Hence on B, (p) x [T — é, T1], combining with the weak Harnack
type inequality on By (q) X [T — %, Tl with 6 = % and by the choice of ¢, we have

n—=2
2

sup u(g,t) <Cyr- 7,
q€B, (p). T~ <i<T

forTy > T > %0, with a constant C3 = C3(¢p) > 0 independent of p € M°, u, T}
and r. In particular, for any compact subset in M° and ¢ > %0, u has a uniform upper
bound independent of 7. O

For the Cauchy—Dirichlet problem (1.3)—(1.5) with ¢ — oo uniformly on 0 M, we
now estimate the asymptotic behavior of the solution u near the boundary as t — oo.

Lemma 2.3 Assume that the positive function u € CEY(M x [0, 00)) is a solution o
the Cauchy—Dirichlet problem (1.3)—(1.5) with liminf,_, o infyy ¢ = co. Moreover,
assume ¢ satisfies that

62590 0. 45V, - 0
=7 ¢ ’ (2.4)

¢ﬁ|V§¢| — 0, uniformly on oM, ast — +oo.

Then there exist constants C > 0, t; > 0 large and x1 > 0 small such that

2 2—n
> inf ,1))2n) 2 —C,
u>—(x+ (inf @(p.0)) )

al =

forx < xy andt > t|, where x = x(p) is the distance function to the boundary.

Proof Recall that there exists a conformal metric & with g = f = hsothat R, > Oin
aneighborhood V of the boundary d M, where f € C>%(M) is a positive function, see
in Lemma 3.1 in [1]. Indeed, for that one can use the formula of the scalar curvature
under conformal change and do Taylor expansion of f in the direction of x in a small
neighborhood of the boundary and just take f to be a quadratic polynomial of x with
coefficients functions on d M. Let x be the distance function to the boundary d M under
h. Take x; > 0 small so that the boundary neighborhood U = {0 < x < x;1}liesin V
and hence Ry, > 0, and U is diffeomorphic to d M x [0, x;] under the exponential map
F:0M x[0,x1] > U, where F(q,x) = Expz (x) € U is on the geodesic starting
from g € 9M in (V, k) in the inner normal direction of d M of distance x to g. We
define a function ¢ € Cfo’g(U x [0, +00)) such that
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EXP) (). 1) = [ + (f@(g. )7 = (11 + (f(@)blg, 0)71) |
(2.5)

for (¢, x,t) € M x [0, x1] x [0, 400), where ¢ > 0 is a small constant to be
determined. Let # = fu. Then we have

ﬁt:f_nTZ

s [4n—-1D ]
[TAW — Ryu —n(n — l)un—2:| , in M x [0, +00),
u(p,0) = f(puo(p), peM,

i(g,1) = f(@Q)¢(g.1), g € IM.

Note that & has the orthogonal decomposition 4 = dx? 4 h, on U with hg = h oM
Then by direct calculation, one has

1
Anp = 920 + ~ Hydep + Ap, o,

2
2 2 -n 2 . o de
o =cf 2 (x + (f (g, 1)) 2 — (x1+ (f(@e(g, 1)) 2 ]2 ar
—n 2 on o nn —2) 2 on2
Oxp = cx+ (f(@Qelg. 1) )2, dip= n cx+ (f(Qe(g, 1)) 7,

2
Vi ol < cx + (F@dlq. )1 7 (f$) 77 Vi, (f),
V7 ¢l < clx + (F@dlq. 0)TH) 7 [(f$)27 1V} (f)l + n"i(m?—’f Vi, (f)?

n

S+ (F@oa. )T (F9) TV (£ 2.6)

+

where H; is the mean curvature of the hypersurface X; = {x = s}. Recall that¢ — oo
uniformly on d M as t — oo. By the assumption (2.4), we have that there exists t; > 0
such that for r > #1,

4 [4(n -1

- n42
o= [ n_2) Apg — Rpp —n(n — l)wn—z}

on U, since all other terms are lower order terms as ¢t — oo in comparison with the
terms

4(n —1)
n—2)

= n(n — Delx + (F@p(g. 0)77) T (1 + o(1)
— (= DI (x4 (F@dlg. D)) T — (1 + (F(@d(g. ) T7) T

n+2
App —n(n — )gpn=2
n+2
]m
2.7)

with ¢ > 0 small and the term o(1) — 0 uniformly on U ast — +oc0. Letv = it — ¢.
Therefore,
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—4 [4(n—1
v > fi2 [%Ahv — (Ry+n(n—1DEp.1) U:|
on U x [t, +00), where &(p, 1) = “= when u # ¢, and & = ”+2um

u— </)
otherwise, and hence, £(p, t) > Oon U x [t1, +00). Since & is continuous on U x{t =

t1}, we choose ¢ > 0 small so that # > ¢ on U x {t = t;}. On the other hand,
¢ =0 < uon{x =x} X [t],00) and by definition ¢ < u on dM and hence, v > 0
on dU x [t1,400) | JU x {f1}. Recall that R, > 0 on U, and hence by maximum
principle,

v>0
on U X [t1, +00). Therefore,
-1
u>f"e

on U X [t1, +00). Combining this lower bound estimate of u near the boundary with
the Harnack inequality (2.9) based on the uniform interior upper bound estimates in
Lemma 2.2, and also using finite cover of geodesic balls, on any compact sub-domain
of M° we obtain uniform positive lower bound of u for ¢ € [#1, +00). O

Now we give the long time existence of the flow.

. . . 2+4a,1+5
Lemma 2.4 There exists a unique solution u € Cloca 2(M x [0, 00)) to the

Cauchy-Dirichlet boundary (1.3)~(1.5) with positive functions ug € C>%(M) and
¢ € Cor® " (9M x [0, 00)) satisfying (2.1). Moreover, if in addition, uy € C*+*(M)
and ¢ € CPTE(OM x [0, 00)) satisfy (2.2), then u € €23 (M x [0, 00)).
Moreover, if liminf;_  infyy ¢ = 00 and ¢ satisfies (2.4) ast — oo, then there
exists constants C > 0, to > 0 large and x1 > 0 small such that

u=>

(x+ Cinf 9(p, M=) —c, 2.8)

al =

forx < x1andt > tp, where x = x(p) is the distance function to the boundary, and
hence, for each compact subset F € M°, there exists C = C(F) > 0 such that

u(g,t) > C

for each (g,t) € F x [0, 00). Moreover, for each compact subset F C M°, there
exists m = m(F) > 0 independent of ug and ¢ such that

liminf inf u(q,t) > m,
—00 qe

provided that liminf;_, « infys ¢ = o0.
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Proof Since (1.3) is parabolic, by the compatible condition and regularity of the pos-
itive functions ug and ¢, standard implicit function theorem yields the existence of
a unique positive solution u to (1.3)—(1.5) on M x [0, Tp) for some Ty > O with u
satisfying u € C2+* 13 (M x [0, T]) foreach 0 < T < Tp when ug € C>%(M) and
¢ € Clzota’l+7(M x [0, 00)) satisfying (2.1); moreover, u € C*t*2+3 (M x [0, T1)
foreach0 < T < Ty whenug € C*%(M)and ¢ € C**2F3 gatisfy (2.2) in addition.
We assume 7j is the maximum time for the existence of the positive solution u on
[0, Tp). By maximum principle, we have the upper bound

n—2
7

sup  u < max sup ¢, sup uo(q). ( max{— in{/{ Rq(q).0}) ,
qe

geM, 1e[0,T) qedM, 1e[0.T)  qeM nn —1)

forany 0 < T < Ty, which is uniformly bounded on M x [0, Tp). Then standard
Schauder theory derives that there exists C = C(Tp) > 0 such that

<C

”u”CH‘X'H%(MX[O,T]) .

in the 2143 setting Cauchy-Dirichlet problem, for each 0 < T < Tp; while

<
[l ||C4+oc,2+% (MX[0,T]) — C

in the C*+t2+32 setting Cauchy-Dirichlet problem, foreach0 < T < Tjy. To establish
the lower bound estimates, for any g € M°, assume 0 < r < diSt(‘Izﬂ and r < 1.
Then by the Harnack inequality, there exists a constant C > 0 depending on B>, (q)
but independent of 7" such that

sup u<cC inf , 2.9)
B@)x(T—%.T—5] By (q)x[T—1 T

foreachr? < T < Tp. By Lemma 2.2, |[R, +n(n — l)u%| is uniformly bounded in
By, (g) (independent of Tj) and hence, the constant C in (2.9) is independent of Tj.
Recall that ¢ > 0 on M x [0, 0o). Therefore, u can be extended to a positive solution

of Ct 3 (M x [0, 00)) (resp. of €2 (M x [0, 50))).

Assume that lim inf,_, o infyps ¢ = 00 and ¢ satisfies (2.4) as t — oo. Then by
Lemma 2.3 we have that there exists x; > 0, C > 0 and r, > 0 such that (2.8) holds in
{0 < x < x1} fort > 1p. Using this uniform lower bound estimate near the boundary,
combining with the above Harnack inequality and a finite geodesic ball cover of the
path connecting to {0 < x < x;}, we have that for each compact subset F € M°,

there exists C = C(F) > 0 such that
u(g,1) = C

for (g, t) € F x [0, 00), and hence by Lemma 2.2, u is uniformly bounded from above
and below by positive constants in F x [0, 00).
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On any compact subset F € M °, since the upper bound of u# obtained in Lemma 2.2

is independent of u¢ and ¢, and so is |Rg +n(n — l)u% | and hence the constant C
in the Harnack inequality is independent of ug and ¢. Therefore, by Lemma 2.3 there
exists m > 0 depending on F but independent of uo and ¢ such that

liminf inf u(q,t) > m.
t—00 geF

]

Now we consider the convergence of the flow. To warm up, we first consider the
case R, > 0.

Proposition 2.5 Let (M", g) be a compact manifold with g € C** up to the boundary
such that Ry > 0. Assume ug € C**(M) and ¢ € C, "> "2 (M x [0, 00)) satisfy

loc

(2.1) and (2.2), and also ¢; > 0 on M x [0, 00), liminf,_, o infysr ¢ = 00 and ¢
satisfies (2.4) as t — 00. Moreover, assume u is a positive subsolution to (1.1) and

L(w)(p) =0 (2.10)

forany p € OM such that v(p) = 0, where L and v are defined in (2.2). Then we have
that the Cauchy—Dirichlet problem (1.3)—(1.5) has a unique global solution u, which
converges in C140 o (M?®) to the unique solution uo to the Loewner—Nirenberg problem.

Remark that for a sub-solution uq of (1.1), which is a strict sub-solution in a neigh-
borhood of d M, the condition (2.10) disappears automatically. For instance, if ¢ > 0
is a subsolution of (1.1), then €¢ is a strict sub-solution for any constant 0 < € < 1.
A solution ¢ > 0 to (1.1) automatically satisfies (2.10). Notice that the functions
log(t), t and e’ all satisfy (2.4). Also, if ug is a solution to (1.1) in a neighborhood of
dM, (2.10) holds automatically. To prove this proposition, we need two lemmas.

Lemma 2.6 Let (M, g) be a smooth compact manifold with boundary such that R, >
0. Assume ¢ € C*OM x[0, +00)) is apositive function with ¢; > 0, and ug € c*(M)
is a positive function which is a subsolution to (1.1) on M. Assume that a positive
function u € C*2(M x [0, 00)) is a solution to the Cauchy-Dirichlet problem (1.3)—
(1.5). Then u satisfies that u; > 0 in M° x (0, +00). That’s to say, for any t > 0,
u(-, t) is a subsolution to the Yamabe equation (1.1).

Proof The proof is an application of the maximum principle to the equation satisfied
by u;. Indeed, denote v = u;. It is clear that v € CEU(M x [0, +00)). We take
derivative of # on both sides of (1.3) and (1.5) to obtain the Cauchy-Dirichlet problem

_Am—1)
)

_ nn — 1)(n+2)u$

Av—R
v oV p—

v, in M x [0, +00), @2.11)

Uy

4(n —1)
v(p,0) =u/(p,0) = -

v(g,t) =¢:(q,1) >0, g € IM.

n+2
Aug(p)—Rguo(p) —n(n—Dug(p)n-2 >0, peM,
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Therefore, by maximum principle, v = u; > 0 on M x [0, +00). Moreover, if there
exists aconstant#; > Osuchthat¢, > 0for > t1, then by strong maximum principle,
we have v = u; > 0in M° x (1, +00). O

Proposition 2.5 is a direct consequence of the following lemma.

Lemma 2.7 Let (M, g), uo and ¢ be as in Proposition 2.5. Then the unique solution u
to the Cauchy—Dirichlet problem (1.3)—(1.5) converges in Cfoc(MO) to the solution u
of the Loewner—Nirenberg problem (1.1)—(1.2) as t — +00. Moreover, there exists a
constant C > 0 such that Cx22 <l < sz%n near the boundary o M, where x is
the distance function to the boundary.

Proof By Lemma 2.4, the exists a unique positive solutionu € C;,, Ca 2+ (M %[0, c0))
to (1.3)—(1.5). By Lemma 2.6, u; > 0 on M X [0, 00). Since we have the upper and
lower bound estimates on # on any compact sub-domain of M° and u is increasing
pointwisely on M° as t increases, we have that u converges pointwisely in M° as
t — 4o00. By the Harnack inequality for v = u; in the parabolic equation (2.11),
we have that u; — 0 locally uniformly and hence u converges locally uniformly
in M° to a positive function u,. Using classical parabolic estimates, we have that
u(-, 1) = Uego in Cloc(M) ast — +o00. Therefore, u, is a solution to (1.1) in M°. By
the upper bound and lower bound estimates of u near the boundary d M in Lemma 2.2
and Lemma 2.3, we obtain the estimate of uo, near the boundary as stated in the
lemma, and hence u; is the unique solution to the Loewner—Nirenberg problem. This
completes the proof of the lemma and Proposition 2.5. O

Proof of Theorem 1.1 By Lemma 2.4, there exists a unique positive solution u €
CMT (M % 10, 00)) to (1.3)=(1.5).

loc
By Lemma A.1, forany € > 0, there exists a unique positive solution w € C*%*(M)

to the Dirichlet boundary value problem

4(n —1) 1t
———Aw— Ryw —n(n — Hwr2 =0,
n—2

w}aMZE'

By maximum principle, w < €.

Let € > 0 be a small constant so that € < ﬁ inf s ug. It is easy to choose a
boundary dataqS(q, t) € C?;a’H?(BM x [0, +00)) such that ¢ = € and ¢; = ¢, = 0
on 9M x {0}, moreover, ¢, > 0 and ¢ < ¢ on IM x [0, +00). Also, we require that

¢ — oo and ¢ satisfies (2.4) as t — oo. Therefore, by Proposition 2.5 there exists a
unique solution # to the problem

. 4n—1) . - 2
U = ﬁAu — Rgu —n(n — Dun=2, in M x [0, +00),

u(p,0)=w, peM,
ii(q,1) = d(q. 1), g € IM,
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such that # is increasing in ¢, and converges to the Loewner—Nirenberg solution # .
Let v = u — u. Then v satisfies

4dn —1) .
vy = nTAv —(Rg +n(n—1)¢)v, in M x [0, +00),
v(p,0) =uo(p) —w(p) >0, peM,

v(g, 1) = (g, 1) — (g, 1) >0, g € IM,

n+2 n+2
where ¢ = ’”i{# foru # u,and ¢ = zun = otherwise. In particular, { > 0.
By maximum principle, v > 0 on M x [0, +oo)
Now we establish the upperbound of u. Let & (p, 1) = u(p, t) —uso(p), with us, the
Loewner—Nirenberg solution. Therefore, £(p, t) — —oc as p — dM foreacht > 0.
Hence, for any t > 0, there exists p; € M° such that £(p;, 1) = SUP ¢ pgo &(p,t),and

hence Ag&(p;, t) < 0. Therefore, we have

A(n— 1)
& = ﬁAS — (Rg +n(n — Du(x, 1)) (2.12)
< —(Rg +nn— 1),
n+2 LZ
at the point (p:, 1) fort > 0, where u(x,1) = %= MZ_L for u # Ueo, and p =

Z+§u302 otherwise. In particular, £ > 0. By maximum principle for the equation

(2.12) satisfied by &, if £(p;;, t1) < 0 for some #; > O, then &(p,t) < Oforall 7 > 1;.
Therefore, there are two possibilities: one is that there exists , > 0 so that fort > t,
we have £ < 0 on M°; the second case is that £(p;, t) > O for t € [0, 400). For the
second case, let n(t) = SUp pe o &(p, t). By the inequality in (2.12), n(¢) is decreasing
since n(¢t) > 0. Now we use the discussion as in [24] to show that lim sup n(¢) < 0.

t—>400
t —n(t
Denote (dt )+(¢) = lim sup 17(+1’—)7}()
\,0 T

and define the set

S(t) = {p € M°| p is a maximum point of & on M° x {r}}.

Then S(¢) is compact for any ¢+ > 0. By Lemma 3.5 in [24],

d
(—") (t) < sup{&(pr, )| pr € SO},
+

dt
nyy 042
since n(t) > 0. By the mean value theorem we have that ut Mz_u = >

4
”*2 ( 1nf Uso) 2. Therefore, for the second case,

4
dn nin—DHn+2) (. 2
(@), 0= (Rg # M2 () ) "
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for t+ > 0. By integration or a contradiction argument we can easily obtain that

lim sup 1(z) <0. In summary, for both cases we obtain the upper bound control that
t—+00

limsup sup (u(q,1) — uso(q)) <O.
t—>+400 geM°

Based on the upper bound and lower bound control on u, we have that 1iI_|‘£1 u(g,t) —
t——+00

Uso(g) locally uniformly on M° as t — +oo. By the standard interior parabolic
estimates, we obtain that the convergence is in C120 - (M°) sense. O

Let (M, g) be a general compact Riemannian manifold of C** with boundary. By
the discussion in Appendix A, there exists a conformal metric /& € [g] of C*% such
that R, = —n(n — 1). We still denote it as g and choose it as the background metric
of our flow, and hence the Cauchy—Dirichlet problem (1.3)—(1.5) becomes

4(n —1)
- n—2
u(p,0) =uo(p), peM,
u(g,t) =¢(g,t), g € oM,

s Agtt+n(n — D)(u —u3), in M x [0, +00),

(2.13)

with ¢ > 0 and ug > 0 compatible, and ¢ — +oo uniformly as t — +o00. Recall

that we have a unique positive solution u € C;:a’pr7 (M x [0, +00)) to the Cauchy—
Dirichlet boundary value problem with uniform upper and lower bound estimates on
any compact sub-domainin M° fort € [0, +00), and the upper bound and lower bound
asymptotic behavior estimates near the boundary as t — +00. We now consider the
convergence. To insure the asymptotic behavior near the boundary as t — 400, we
always assume the boundary data ¢ satisfies (2.4) for ¢ large.

We start with the special initial data ug = 1.

Lemma 2.8 Assume (M, g) is a compact Riemannian manifold with boundary of C**
and Ry = —n(n — 1). Let u > 0 be the solution to the Cauchy—-Dirichlet problem

_4n—-1)
 on=2
u(p,0)=1, pe M,

u(g,t) =¢(q,t), g € oM,

n+2
Agu+n(n — 1)(u — um), in M x [0, +00),

Uz

(2.14)

with a positive function ¢ € C?:C_a'Hf(BM x [0, 400)) such that ¢(q,0) = 1,
¢:(q,0) = ¢u(q,0) = 0 for g € IM, ¢ > 0 on aM x [0,+00) and
lim inf;_, o infyp ¢ = 00. Assume ¢ satisfies (2.4). Then u — uso in CfUC(MO) as
t — 400, where uq is the solution to the Loewner—Nirenberg problem (1.1)—(1.2).

Proof By Lemma 2.4, we have that the exists a positive solution u € C;‘;;Dl’pr7 (M x
[0, 00)) to the Cauchy—Dirichlet problem (2.14). By maximum principle, we have that
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u>1in M x [0,+00) and u > 1 for ¢ large. As in Lemma 2.6, the solution u to
(2.14) is increasing. Indeed, let v = u,, and then v satisfies

= —( I)A +n(n — l)(l — 42) in M x [0, +00)
n— X

Vs gV +n u v, in , ,

v=0, peM,

v(g,t) = ¢i(q,t) >0, g€ IM.

By maximum principle, v > 0 for + > 0 and v > O for ¢ large. Therefore, u is
increasing in ¢. By the uniform upper bound estimates on any compact sub-domain
of M°, we have that u converges pointwisely to uo, > 0 locally in M°. Using the
Harnack inequality on v we have that u converges to uso locally uniformly in M° as
t — +4o0. By the standard parabolic estimates, the convergence is in C[‘oc(M °). By
Lemma 2.2 and Lemma 2.3, there exists C > 0 such that

I _na2 _n=2
ok T SUeo SCx™ 7,
in a neighborhood of d M, where x is the distance function to d M. O

Lemma 2.9 Assume (M, g) is a compact Riemannian manifold with boundary of C**
and Rg = —n(n — 1). For any ug € C%%(M) such that up > 1 and a positive

function ¢ € Clzota'l+7 (M, [0, +00)) satisfying the compatible condition (2.1) with

uog, ¢ > 0 for t > 0 and satisfying (2.4) as t — 00, there exists a unique positive
24,1+ % .

solutionu € Clota t2 (M x [0, 400)) to (2.13), and u converges to uso in CZZOC(M")

ast — 400, where u is the solution to the Loewner—Nirenberg problem (1.1)—(1.2).

Proof Remark that for any ug € C 2.«(M) such that ug > 1, there always exists such

a function ¢ in the lemma. By Lemma 2.4, we have that the exists a positive solution
2 B .. .

u e Cl;:a’Hz (M x [0, 00)) to the Cauchy—Dirichlet problem (2.14). By maximum

principle, we have thatu > 1 on M x [0, 00).

Now we pick up a function ¢ € Cf;;w’2Jr7 (M x [0, 00)) such that (g, 0) = 1,
(]St(qLO) = &t,(q,O) = 0 on dM, moreover, qBI > (0 and q} < ¢ on aM x [0, 00),
and ¢ satisfies (2.4) as t — oo. By Lemma 2.8, for the initial data it9 = 1 and the
boundary data q,7> there exists a unique positive solution iz € C;tjga’yrj (M x [0, 00)) to
the Cauchy—Dirichlet problem (2.14), and & converges to u in C140c(M °)ast — 00,
where u is the solution of the Loewner—Nirenberg problem (1.1)—(1.2). By maximum
principle, we have that # > 1in M x [0, +00).

Now let & = u — u. Then £ satisfies

4(n —1

E(p,0) =up(p)—1>0, peM,
£(q. 1) =p(q. 1) —(q. 1) >0, g € IM,

Agé +n(n—1)¢&, in M x [0, +00),
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n+2 n+2
Gi—ii =2 )— (u—u =2
where ¢ = (( ;—i )) wheniut Zu,and{ =1 — ”+2un 2 otherwise, and

hence ¢ < 0. By maximum principle, u >  in M x [0, +oo)

The upper bound estimates is the same as the case R, > 0. Notice that u, > 1 by
maximum principle of the equation (A.4). Let n = u — u. Then (g, t) — —o0 as
q — OM for any r > 0. Notice that n satisfies the equation

4(n—-1)

N = njAgn +n(n—1)Bn, in M x [0, +00),
i%
where g = 4= )l ) when u # us and B = 1 — +§un =2 otherwise,

and hence, § < 0. ”If‘herefore by the same argument as the case R, > 0, we have
that lim sup sup 7(g, t) < 0. Therefore, u(-,1) = ux(-) locally unlformly on M°

t—>+00 geM°
as t+ — o0o. By standard interior estimates for the parabolic equation, we have that
U —> Ugo IN CZZOC(MO) ast — +oo. O

Proof of Theorem 1.2 By the argument in Appendix A, there exists a positive solution

u € Cz""(M) to (1.1) such that v9 < u < ug on M. Let g = ﬁﬁg and hence
Rz =—n(n— l) Letn = =0 Then by Lemma 2.9, we have that there exists a positive

function ¢ € c* YOM x [O +00)) such that to the flow

loc

4(n — 1) ni2y
utzﬁAgu—i—n(n—l)(u—un—Z), in M x [0, +OO),
u(p,0)=n(p), peM,

u(g,t) =¢.,1), g € oM,

there exists a unique positive solution #, which converges to the Loewner—Nirenberg

solution u, in the conformal class in C loc(M °). That is to say, there exists a direct
4

flow starting from gg = ué”z g and converging to the Loewner—Nirenberg metric.
Notice that if the first Dirichlet eigenvalue satisfies A1(Lg) < 0, by Lemma 3.1, it is

equivalent to say that ir}f Q(u) = —oo when g is smooth, where the energy QO (u)
ueCl(M)
is defined in (3.2). O

3 Positive Scalar Curvature Metrics on Compact Manifolds with
Boundary

In this section, we present examples for conformal classes on compact manifold with
boundary that admit positive scalar curvature metrics. Let M be a compact smooth
manifold with boundary d M. It is well-known that there is not topological obstruction
for the existence of positive scalar curvature metrics on M. For any given smooth
Riemannian metric g on M, we can extend (M, g) to a smooth closed manifold (N, ).
Then by the well known theorems by Kazdan and Warner, Theorem 3.3 in [28] and
Theorem 6.2 in [29], we have that there exists a diffeomorphism F : N — N and a
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smooth positive function u € N, such that the scalar curvature of u = F*h is positive
on M where F*h is the pull back metric of /& by the map F. Notice that F*h is not
necessarily in the conformal class [g] on M. Another interesting result obtained by
Shi-Wang-Wei (Theorem 1.1 in [51]) recently, answering a question by Gromov, states
that, any smooth Riemannian metric 2 on d M can be extended to a smooth Riemannian
metric g with positive scalar curvature on M.

Now we consider the existence of positive scalar curvature metrics in a conformal
class on a compact manifold with boundary.

Let (M", h) be a smooth compact Riemannian manifold with boundary oM of
dimension n > 4. Let g be a complete metric equipped on the interior M° such
that x2g extends in C*¥¢ up to the boundary, where x is the distance function to the
boundary under the metric %, then we call (M°, g) conformally compact of cke 1t
moreover, g is Einstein, we call (M°, g) conformally compact Einstein (CCE). In the
well-known paper [42], Qing shows that for a conformally compact Einstein manifold
which has conformal infinity of positive Yamabe constant, there exists a conformal
compactification g with positive scalar curvature. Definitely, the CCE metric g is
the Loewner—Nirenberg metric in the conformal class of g, and hence the flow here
connects these two metrics with the starting metric g and end at g as t — +oo.

To continue, we now introduce a well-known Neumann type boundary value prob-
lem on (M- g) introduced by Escobar ([17], see also [16]), which is sometimes called
the second type Escobar—Yamabe problem:

4n—1) .
—mAgu-FRgM:O, mn M,
4n—-1) 0 n_ G-
—————u+2mn—1)Hgu =2 — Dur-2, on M,
n—2 dng

where 7, is the unit out-normal vector field on dM and H, is the mean curvature on
the boundary. The solution of problem (3.1) is a critical point of the energy functional:

fM(|V”|2 + 4(nn_—21) Rguz)dvg + % faM ngzdS
2(n—1)

(Syp lul 2 dS)

Qu) =

, (3.2)

n—=2
n—1

foranyu € C 1 (M), where H, is the mean curvature of the boundary dM on (M, g),
dV, is the volume element of (M, g) and dS is the volume element of (3 M, g‘aM).
Notice that the functional does not always have a finite lower bound in a general

conformal class, as pointed by Zhiren Jin, see [19]. For instance, 1inf O(u) =
ueC(M)—{0}
—oo when (M, g) is obtained by deleting a small geodesic ball on a closed Riemannian

manifold with negative scalar curvature. Under the assumption ir}f Q) > —o0
ueCl(M)

and the positive mass theorem, the problem has been solved: it was studied in [13,

19,20,39,40] assuming the positive mass theorem or the Weyl tensor W, = 0 on M,

and the remaining cases (n > 6, 9 M is umbilic, inf Q(u) > 0 and the subset
ueCl(M)—{0}
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on d M where the vanishing of the Weyl tensor of g is of certain order is the whole
boundary d M) were recently solved in [41] without the positive mass theorem.
Recall that by an easy computation, Escobar observed in [19] the following lemma.

Lemma 3.1 (Escobar, [19]) Assume (M", g) is a smooth compact Riemannian mani-
fold with boundary. Let A1(Lyg) be the first eigenvalue of the Dirichlet boundary value

problem of the conformal Laplacian L, = — 451”__21) Ag+Rg. Then inf Ou) >
ueCl(M)—{0}
—oo if and only if L1 (Lg) > 0.

When R, > 0, we know that A1(Lg) > 0, and hence inf O(u) > —oo.
ueCl(M)—{0}
Based on the final solution of the second type of Escobar—Yamabe problem (3.1) in
[41], we will use a perturbation argument to show that the other direction holds.

Theorem 3.2 Let (M, g) be a smooth compact Riemannian manifold with boundary.
Assuming either the condition in Theorem 1.1 in [41] holds on (M, g) or the positive
mass theorem holds, there exists a positive scalar curvature metric in the conformal
class of (M, g) if and only if inf Ou) > —oo.
ueCl(M)—{0}

Proof Necessity is a trivial consequence of Lemma 3.1. Now we show the other direc-
tion. Claim. If there is a metric 2 € [g] such that R, = 0 on M, then there exists
a metric b € [g] such that R, > 0 on M. This is an application of the implicit
function theorem as proof of Theorem 6.11 in [2]. Consider the Dirichlet boundary
value problem

[N

n+
—

4(n —1) w2
— = Apu= fur2, inM,

n—2
u=1, onoM,

for any given function f € C*(M). We want to obtain a positive solution to the
problem. Let Cy = {u € C>*(M) : = 0}. Define the map F : Cy x C*(M) —
C%(M) such that

”|3M

MA,,U Yu)— fA+u)is,

This is a C! map. We take derivative

dn—1)  n+2 N
DMF(U, f) = —ﬁAhU — Py Zf(l —|—u):172v_

Recall that F (0, 0) = 0 since R, = 0. At (0, 0),

4n—1)
DuF(U, 0) = —ﬁAhv

is invertible. By implicit function theorem, there exists a constant € > 0 small such
that for any f € C%(M) with || fllce(uy < €, we have that the Dirichlet problem
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has a unique solution # = 1 4 u in the neighborhood of 1 in C%%(M). Take f to
be a small positive constant. We have that # > 0 on M. This completes the proof of
Claim. The solution of Escobar—Yamabe problem (3.1), where positive mass theorem

is used for certain cases, tells that when ir}f Q(u) > —o0, there exists a metric
ueCH(M)

in the conformal class with zero scalar curvature, and hence by Claim, we have that

there exists a positive scalar curvature metric in the conformal class. This completes

the proof of the Theorem. O

In particular, for manifolds of dimension 3 < n < 7 (see [43—45]), or spin manifolds
[54], positive mass theorem holds. Recently, Schoen-Yau [46] presented a proof that
positive mass theorem holds true in general dimension.

Remark. For positive mass theorem and the existence theory of solutions to the
Escobar—Yamabe problem, for the regularity of the metric, it is enough that the metric
is of C* for some sufficiently large k > 0. The above argument shows that for a smooth

compact Riemannian manifold (M, g), if inf Q(u) = —o0, then there exists
ueCl(M)—{0}
4
no conformal metric gy = un-2 g with u € C>%(M) such that Ry =0.

4 The Yamabe Flow: A Conformally Invariant Flow

We consider the Yamabe flow

ur = (n— l)u_'f%2 (Agu — %(Rgu +n(n — l)uzﬁ)) , “.1)

which can also be written as

n+2 (=D +2) (A _n
- 8
4

nt2 -2 2
(14 n— )t n_2 m(RgM + n(n — 1)14”‘2 )) . (42)

The flow is conformally covariant in the sense that, under the conformal change g =

(pﬁh, the above equation (4.1) becomes

v = (n— Dy iz (Ahv— (th—i-n(n—l)v%)),

n—2
4(n—1)
where v = ug. So without loss of generality, let g be the metric on M in the conformal
class such that R, = —n(n — 1). We consider the Cauchy—Dirichlet problem (1.6)

where ugp € C2*+24(M) and ¢(g.1) € Cro - T2 @M x [0, +00)) with k =
0, 1 satisfying the C 2o lts compatible condition

uo(p) = é(p,0),
(n—2)

S(p.0) 2 (p.0) = (n — 1) [Aguo(l?)-i-n . (Mo(p)—uo(P)%)] 43)
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for p € 9M, and in addition the C*t*2*3 compatible condition

4 —n
$(p. 0)72 3y (p.0) + 5% 0)7=% (1 (p. 0)* = (n — DLg(n), (44

where the linear operator L, is defined as

nn —2) n—+2 _4_
Lg(u)zAgu+T 1—n_2uo(p)H M,

and the function p is defined as

(n—2)

M(P)=(n—1)uo(p)_”42[Aguo(l?)-i-n . (uo(p)—uo(p)%] 4.5)

Lemma 4.1 Assume (M", g) is a compact Riemannian manifold with boundary of

C*? such that Ry = —n(n —1). Let ug € C2k+2.2 (M) be a positive function, and
2k+2+a k4144 .. . o .
¢ € Oc+ Fekrls (M x [0, 00)) be a positive function satisfying the compatible

condition (4.3) for k = 0 and (4.4) in addition for k = 1. Then there exists a unique

2k+2+a,k+1+% ..
positive solutionu € C,, C+ ekt (M x [0, 00)) to the Cauchy—Dirichlet problem

(1.6). Moreover, ifug > 1 and ¢ > 1, thenu > 1.

Proof Since ugy € C*+2%(M) is positive, the equation (4.1) is uniform parabolic,
and by the compatible condition on u( and ¢, there exists 7 > 0 such that a positive
solution u on M x [0, T) such that u € CH+2Hek+145 (A1 5 [0, Ty]) forany Ty < T
and k = 0, 1 respectively. Now for any 0 < 77 < T, by maximum principle,

> min{1, inf ug, inf
"= { M 1o M><[0,T|])¢}
on M x [0, T;]. In fact, if there exists (¢q,7r) € M° x (0, T;], such that 0 <
n+2
u(g,t) = infyxjo,yu < 1, then we have (uﬁ),(q,t) < 0, Agu(g,t) >

0, (u —un=2)(g,t) > 0, contradicting with the equation. Also, by similar argument,
we have that

u < max{l, supug, sup ¢},
M Mx[0,T]

on M x [0, T1]. Therefore, by the standard a prior C*+2t@1+k+5 ogtimates of
parabolic equations, the solution # > 0 can be extended on M x [0, +00) with
u € CHhH2Fakt1+53 (M % [0, TY) for any T > 0. O

4 2
Lemma4.2 Let (M, g), ug € C+¢(M) and ¢ € C,"**"2(M x [0, 00)) be as in
Lemma 4.1 with the compatible condition (4.3)—(4.4). In particular, R, = —n(n —1).
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Moreover, let ug > 1 be a subsolution to the equation (1.1). And moreover, we assume
ug € C**(M) and

Lg(u) =0

at the points g € OM such that u(q) = 0 where Ly and u are as in (4.4). Let a

4,244
positive function ¢ € C, ;a’ 2 (M x [0, 00)) satisfy the compatible condition (4.3)

and (4.4). Also we assume ¢; > 0 on dM x (0, +00). Then the solution u to (1.6)
satisfies u; > 0 on M x [0, 400). In particular, u(-, t) is a sub-solution to (1.1) for
eacht > 0.

Proof Let v = u;, condition on ug implies v(g, 0) > 0. By assumption, we have
¢ > 1on oM x [0,+4o00) and hence, by Lemma 4.1, u > 1 in M x [0, c0). Take
derivative of ¢ on both sides of the equation in (1.6), and we have

n+2 4 +4(n+2) =1 o
_u}’l,fv —_—Un—
n—2 " (n-2)7
—1 2 2 2
=M(Agv+nm )(1_n+ uriZ)‘U)_
n—2 n—2

(4.6)

By maximum principle, v can not obtain a negative minimum on M x [0, T] at a
point (g,1) € M° x (0, T], for any T > 0. Indeed, if otherwise, since v > 0 on
M x {0} | M x [0, o) and recall that u > 1, by continuity of v, there exists ; > 0
and p € M° such that

vip,y1) = inf v <O,
(p, 1) UL

and |v(p, t1)] is so small that at the point (p, #1),

4n+2) 62 5, nmn—1)n4+2) n+2 _4_
—_——  ~un—12vypy |1 — ——un—=2 U>O,
(n—2)2 4 n—2

contradicting with the equation (4.6) and the fact v;(p, t1) < 0 and Agv(p, 1) > 0.
Therefore, v > 0in M x [0, +00). O

Lemma4.3 Let (M, g), ug and ¢ be as in Lemma 4.2. Moreover, assume ¢ satisfies
that there exists a constant B > 0 such that

o' < B (4.7)
on oM x [0, 00), and

n—1
¢ |Vep| = 0,

. 4.8)
¢H|V§¢| — 0, uniformly on M, ast — +o00.

@ Springer



7 Page240f30 G.Li

Let x be the distance function to the boundary on (M, g). Let U = {0 < x < x1}.
Then there exist constants C > 0, x1 > 0small and t; > 0 large such that the solution
u > 0 to (1.6) satisfies

w(g.n) > Clx+¢=n) T —C

on U x [t, +00).

For instance, take ¢ (1) = ', t2e!, t, or any other monotone function of polynomial
growth for ¢ large.

Proof The proof is similar to Lemma 2.3. Let f = 1 and x; > 0 small be as in
Lemma 2.3 such that the exponential map F = Ex%) : OM x [0,x;] > Uisa
diffeomorphism, and let the barrier function ¢ € C; (}g(U x [0, 00)) be defined in
(2.5). For ¢ we have the estimates (2.6). In particular,

4 4 2 2 =n
e =@r2cf 2 [(x + (f(@)9(g. 1))

—n n 0
— 1+ (F@dq. ) F et 22

at
n n n a
< HtgqnT) T e

n n a
< B +¢(q,t)ﬁ>—%2¢—la—‘f,

and hence by (2.7) and our condition on ¢, for the constants ¢ > 0 and x; small enough
and #; > 0 large enough, we have
n42 n—1Dmn+2) nn—2) n42
() < —E T2 (Mg + (g — i)
n—2 4
on U x [t1, 00). Now we take ¢ > 0 small enough so that u > ¢ on U x {#1}. By the

definition of ¢, we also know that u > ¢ on dU x [0, +00). Let v = u — ¢. Take
difference of this inequality and the equation satisfied by u in (1.6), we have

_4_ 4 4
un2v; + (un—2 — pn-2 )(pt

nn—2) n+2 n+2
2 (n = D(Agv + = —ui= — g+ i)

on U x [t1, 00). Assume that there exists (¢, ) € U° x (t1, +00) such that v(gq, t) =

Mirgf ]v < 0, and then since u > 1, we have ¢(q,t) > 1 and hence at the point
X\|t,t

(g, 1), we have
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where ¢; > 0 by the assumption ¢, > 0, contradicting with the above inequality.
Therefore, v > 0 on U x [t1, 400). This completes the proof of the lemma. O

Proof of Theorem 1.3 By Lemma 4.1 and Lemma 4.2, we have that there exists a pos-
itive solution u on M x [0, +00) with u € C**2+5 (M x [0, T]) forany T > 0,
and u; > 0, i.e., u(-, t) is a sub-solution to (1.1) for any + > 0 and also, u > 1. By
maximum principle, u(q, t) < urn(q) for any (g, t) € M° x [0, 400), where uyy
is the solution to the Loewner—Nirenberg problem (1.1)—(1.2). Alternatively, one can
use the local super-solution constructed in Lemma 5.2 in [23] to give the local upper
bound estimates of u in M°. Indeed, let x = x(g) be the distance function of ¢ € M°
to dM. There exists x; > 0 small such that for ¢ € {0 < x(gq) < x1}, the injectivity

X

radius i (g) at g is larger than T"). We then define a function # on Bg(gq) by

n—2

2R =

g(p)=<—2 2) "7 WR—r(p)* =€)
RZ—r(p)

for p € Br(g) where R = qu), € > 0is some small constant and r (p) is the distance

function from p to ¢, and hence u € C%(Bg (¢)) andu = ocoon dBgr(g).Infact x| and
€ are chosen small enough as in [23] so that u is a super-solution to (1.1) on Bg(q).
By maximum principle, u < i on Bg(g), and hence there exists a uniform constant
C > 0, such that

u(g. 1) < Cx(q) ™"

on {0 < x(q) < xj}fort > 0.Foranygq ¢ M — {0 < x < x1}, taking R <
min{@, x1} and € > 0 small so that & is a super-solution to (1.1) on Br(g), and
hence we have that there exists a uniform constant C > 0 depending on Bg(g) such
that u(p,t) < C for p € B R (¢g) and t > 0. Now by standard interior Schauder

estimates of parabolic equations, we have that for any compact subset F € M°, there
exists a uniform constant C = C(F) > 0 such that

<
”u||C4+a’2+%(F><[T,T+l]) <C

forany 7 > 0. Since u is locally uniformly bounded from above in M° and u; > 0 on
M x [0, co), by Harnack inequality with respect to the equation (4.6) satisfied by u,,
we have that u converges locally uniformly in M° to a positive function us, on M° as
t — +o00. By interior Schauder estimates of the uniform parabolic equation in (1.6),
we have that u — 1o In C;‘OC(MO), and hence u, is a solution to (1.1) in M°. By the
lower bound estimates near the boundary in Lemma 4.3 and the above upper bound

estimates, there exists a constant C > 0 such that

2—n
2

2-n
Cx 2 >Ugp > —Xx

al =
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in {0 < x < x1} for some constant x; > 0, where x is the distance function to the
boundary on (M, g). Therefore, by uniqueness of the solution to (1.1)—(1.2), uso =
ur n. This completes the proof of the theorem. O

Acknowledgements The author would like to thank Wei Yuan, Xiaoyang Chen, Jian Ge and Professor
Yuguang Shi for helpful discussion.

Appendix A

In this section, we show that the homogeneous Dirichlet boundary value problem

4(n—1) n+2 .

—2Au—Rgu—n(n— Dur—2 =0, in M, (A.1)
n—

u(p) =0, for pec oM. (A.2)

admits a nontrivial solution # > 0 in M when the conformal Laplacian L =
4(" 1) Ag + Ry has a negative eigenvalue A1(L,) < O for the Dirichlet boundary
value problem
Let (M, g) be a compact Riemannian manifold of C¥*%¢ with boundary with
k > 0. For any given positive function gy € C¥*2*(9 M), by the classical variational
method (see Lemma A.1), there exists a unique positive solution u#y € C k+2.e (M) to
the Dirichlet boundary value problem

4n —1) nt2
——Agw — Ryw —n(n — Dw»2 =0,

n—2 (A.3)
[y, = ¢o-

Claim 1 If u; and u; are the corresponding solutions to (A.3) with respect to @9 = ¢
and ¢ = ¢ for two positive functions ¢; < ¢, on BM then u1 < up. We now use

maximum principle to prove the claim. Let g = u’ g, 0= “” andv = ; Then v
satisfies

4(n —1)
-2
”|aM =¢=1L

Agzv—i—n(n—l)(v—vn 2)—0 (A4)

Then by maximum principle, v could not obtain its maximum point with supv > 1 in
M
M°, and hence Claim 1 is proved.

We present a well-known existence result for the Dirichlet boundary value problem
of the Yamabe equation (A.3), see [3,34,35,52]. The proof of which is by a direct
variational method, in seek of a minimizer of the corresponding energy functional.

LemmaA.1 Let (M, g) be a compact Riemannian manifold of C**>% with boundary.
For any positive function go € C*>*(dM) with k > 0, there exists a unique positive
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solutionw € CKt2%(M) to the Dirichlet boundary value problem (A.3). In particular,
R 4 =-nn-1).

wn—2g

By Lemma A.1, we take the metric g such that R, = —n(n — 1) in the conformal
class as the background metric. Let v; > 0 be the solution to the Dirichlet boundary
value problem (A.4) with g = g and with the boundary data ¢ = . Then by Claim
1, {v ]} - | is decreasing as j increases. By standard elliptic estlmates we have {v;};
converges in CX(M) toa non-negative function vy, i.e., vp = ll)ngo vj. Then vy is a

J

non-negative solution to the problem

A= 1) § vo 4 nn = Dvo = nn — Divols3 =0,

—_— V nn — vo —nin — Vo =

n_2 ~¥% 0 ‘ (A5)
UO’BMZO'

We want to show that the limit vy of {v;}; is not zero when the first eigenvalue

A1(Lg) < Ofor the Dirichlet problem of the conformal Laplacian L, = (4(’1 D] Ag+
n(n — 1)). For the case A1(Lg) < 0, let ¢ be the first eigenfunction with 1 > gbl >0
in M°. Recall that the minimizer of the energy

2(n —1) nn—1) n—2 o
E(u)zﬁ/MWu@JrfMT(—uM p |u|nz), (A.6)

in the function space

S={ue Wi M)|u—gyc Wy, (M)} (A7)

is the unique solution to (A.3) when ¢y > 0. Here for the homogeneous Dirichlet
problem (A.5), just take @9 = 0. Then let € > 0 be small enough, we have that

( -2

Elep) =202 [ vl - plav,

+—(”_2)("_1)eff"z/ ¢1"%dvg
2 M
= ¢2 |:2(n—_—1)/ |V¢1|§ — u¢12dvg

(n—2)(n—1) 7/ o 2dvg]

Since fM |V¢1|§, — #d)%dvg < 0, there exists € > 0, such that E(e¢;) < 0.
Therefore,

—-m= inf E()<0O.
veW, 2 (M)
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Let {u j}?ozo be a minimizing sequence of E on the function space S defined in (A.7).
Then for j large,

—m ) 2 n(n 1) , hn—2 2
TzE(up— /|V,| / — (uj+ —juj >
and hence,

-1 2 1 2
/n(n ) >@ (n )/ Va2 +/ (n— )(n )| ,|n2 LY
M 2 2 2

Since u j—v weakly in W12(M) sense, by the Sobolev embedding theorem, we have

that u; — v in L?(M) up to a subsequence. Therefore, ol 2y = \/% > 0,
and it is a weak solution to the problem. It is clear that |v| is also a minimizer of
E. By the regularity argument in Appendix B in [52], |#| € C*(M). By Harnack
inequality, we have that [v| > 0 in M° since v is not zero, and hence v > 0 in
M°. Therefore, the homogeneous Dirichlet boundary value problem has a non-zero
solution o € C2(M) (N W, (M) with v > 0 in M°. By maximum principle, v < 1
in M.

On the other hand, by Claim 1, we have vy = lim j—o0oVj > v on M, and hence
vg > 01in M°. In particular, v is the largest solution to (A.5).

In summary, for a general compact Riemannian manifold (M, g) of Ck+>¢ with
boundary such that A1 (Lg) < 0, where A1 (L) is the first eigenvalue of the conformal
Laplacian L of the Dirichlet boundary value problem, there exists a largest solution
vg to (A.1)—(A.2) such that vy > 0 in M°.

By the convergence of v; to vg, for any continuous function ug > vo on M, there
exists j > O such thatup > v; on M.

On a smooth compact manifold (M, g) with boundary, if A;(Lg) > 0, then by
Lemma 3.1 and Theorem 3.2, there exists a conformal metric 2 € [g] such that
R;, > 0. By maximum principle, vy = 0 in this case. We do not know if vy vanishes
when A1(Lg) = 0.
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