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Abstract
We introduce two flow approaches to the Loewner–Nirenberg problem on compact
Riemannian manifolds (Mn, g) with boundary and establish the convergence of the
corresponding Cauchy–Dirichlet problems to the solution of the Loewner–Nirenberg
problem. In particular,when the initial data u0 is a subsolution to (1.1), the convergence
holds for both the direct flow (1.3)–(1.5) and the Yamabe flow (1.6). Moreover, when
the background metric satisfies Rg ≥ 0, the convergence holds for any positive initial
data u0 ∈ C2,α(M) for the direct flow; while for the case the first eigenvalue λ1 < 0
for the Dirichlet problem of the conformal Laplacian Lg , the convergence holds for
u0 > v0 where v0 is the largest solution to the homogeneous Dirichlet boundary value
problem of (1.1) and v0 > 0 in M◦. We also give an equivalent description between
the existence of a metric of positive scalar curvature in the conformal class of (M, g)
and infu∈C1(M)−{0} Q(u) > −∞ when (M, g) is smooth, provided that the positive
mass theorem holds, where Q is the energy functional (see (3.2)) of the second type
Escobar–Yamabe problem.
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1 Introduction

In thewell-knownpaper [34], Loewner andNirenberg studied the blowingupboundary
value problem

�u = 1

4
n(n − 2)u

n+2
n−2 , in �,

u(x) → ∞, as x → ∂�,

with� a bounded domain of C2 inRn . They proved that there exists a unique positive
solution u to this problem, and there exists a constantC > 0 depending on the domain
� such that

|dist(x, ∂�)
n−2
2 u − 1| ≤ Cdist(x, ∂�)

near the boundary, where dist(x, ∂�) is the distance of x to ∂�. This is equivalent

to seeking the conformal metric g = u
4

n−2 δ with δ the Euclidean metric on � has
constant scalar curvature Rg = −n(n − 1).

In [3] and [4], Aviles andMcOwen generalized the Loewner–Nirenberg problem to
compact Riemannian manifolds (M, g) with boundary. Denote M◦ to be the interior
of M . In particular, they considered the blowing up Dirichlet boundary value problem

4(n − 1)

n − 2
�u − Rgu − n(n − 1)u

n+2
n−2 = 0, in M◦, (1.1)

u(p) → ∞, as p → ∂M . (1.2)

We call (1.1)–(1.2) the Loewner–Nirenberg problem on (M, g). Using classical vari-
ational method they obtained a sequence of solutions to (1.1) with enlarging Dirichlet
boundary data that go to infinity, and using maximum principle and an integral type
weak Harnack inequality, they obtained the existence of the unique solution u to (1.1)–
(1.2) and analyzed the asymptotic behavior of u near the boundary. For regularity of
the Loewner–Nirenberg metric in the conformal class of a smooth compact manifold
(Mn, g)with boundary, an nice expansion of the solution near the boundary is given in
[1,38]. Recently, Xumin Jiang and Qing Han developed a type of weighted Schauder
estimates near the boundary, see [25] (see also [30]), which fits in this expansion well,
and for expansion of the solution near the boundary for manifolds with corners on the
boundary see [27] and for more references on this topic one is referred to [26].

In this article, we derive two flow approaches to the Loewner–Nirenberg problem.
Indeed, we introduce the Cauchy–Dirichlet problems to a direct scalar curvature flow
(see (1.3)–(1.5)) and theYamabe flow (1.6) on a compact Riemannianmanifold (M, g)
with boundary.

Let (Mn, g) be a compact Riemannian manifold with boundary. Let M◦ be the
interior of M . Define the function spaces
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Ck+α,m+β
loc (∂M × [0,+∞)) = {u ∈ Ck+α,m+β(∂M × [0, T ] for any T > 0}, and

Ck+α,m+β
loc (M × [0,+∞)) = {u ∈ Ck+α,m+β(M × [0, T ]) for any T > 0}.

Consider the Cauchy–Dirichlet problem

ut = 4(n − 1)

n − 2
�u − Rgu − n(n − 1)u

n+2
n−2 , in M × [0,+∞), (1.3)

u(p, 0) = u0(p), p ∈ M, (1.4)

u(q, t) = φ(q, t), q ∈ ∂M, (1.5)

with φ → ∞ as t → ∞, which is called the direct flow in this paper. For the direct
flow, we first derive the long time existence of the flow for general initial data, see
Lemma 2.4. If the boundary data φ → ∞ uniformly of certain speed (2.4) as t → ∞,
we obtain an asymptotic blowing up lower bound estimates near the boundary, see
Lemma 2.3. Together with the interior upper bound estimates (see Lemma 2.2, in
comparison with the local upper bound estimates in [4]) and the Harnack inequality,
we obtain the uniform upper and lower bound of u on any given compact subset ofM◦.
The convergence of the flow is the main part of the discussion. We have the following
theorem for the case Rg ≥ 0.

Theorem 1.1 Let (M, g) be a smooth compact manifold with boundary such that
Rg ≥ 0. Assume two positive functions u0 ∈ C2,α(M) and φ ∈ C2,α

loc (∂M ×[0,+∞))

satisfy the compatible condition (2.1) on ∂M×{0}.Moreover, assumeφt ≥ 0 for t ≥ 0,
φ satisfies (2.4) as t → ∞ and lim inf t→∞ inf∂M φ = ∞. Then there exists a unique
solution u to the Cauchy–Dirichlet problem (1.3)–(1.5), converging in C2

loc(M
◦) to a

solution u∞ to the Loewner–Nirenberg problem (1.1)–(1.2) as t → +∞. Moreover,
there exists a constant C > 0 such that

1

C

(
x + ( inf

p∈∂M
φ(p, t) )

2
2−n

) 2−n
2 − C ≤ u ≤ Cx

2−n
2

near the boundary ∂M, where x is the distance function to the boundary.

To achieve that, when the initial data is a subsolution to (1.1) and φ is increasing
in a certain speed to infinity as t → ∞, we first show that the solution is increasing
and converges to the solution of the Loewner–Nirenberg problem, see Lemma 2.6
to Proposition 2.5. In particular, u(·, t) is a sub-solution to (1.1) for each t ≥ 0.
Then for general positive initial data, we can first solve a Cauchy–Dirichlet problem
with smaller initial data which is a subsolution to (1.1), and hence the solution u1 is
increasing and converges to the solution of the Loewner–Nirenberg problem; and then
we use u1 to give the lower bound of the flow with general initial data by maximum
principle, and we use Hamilton’s technique in [24] to derive the convergence of the
flow. We provide examples of the compact manifolds with boundary with positive
scalar curvature in Sect. 3, and based on the positive mass theorem, we obtain that
on a smooth compact manifold (M, g) with boundary, there exists a positive scalar
curvature metric in the conformal class if and only if infu∈C1(M)−{0} Q(u) > −∞,
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where Q (see (3.2)) is the energy functional of the second type Escobar–Yamabe
problem (3.1), see Theorem 3.2.

For a general conformal class (M, [g]), we have
Theorem 1.2 Let (M, g) be a compact Riemannian manifold with boundary of C4,α .
Let u0 ∈ C2,α(M) be any positive function such that u0 > v0 on M, where v0 is the
largest solution to he homogeneous Dirichlet boundary value problem of the Yamabe

equation (A.1)–(A.2). Then there exists a direct flow g(t) starting from g0 = u
4

n−2
0 g

and converges in C2
loc(M

◦) to g∞ = u
4

n−2
LN g, where uLN the solution to the Loewner–

Nirenberg problem (1.1)–(1.2).

Notice that v0 > 0 in M◦ when λ1(Lg) < 0 (see Appendix A), where λ1(Lg) is the
first eigenvalue of the Dirichlet boundary value problem of the conformal Laplacian
operator Lg = − 4(n−1)

n−2 �g + Rg; while v0 = 0 by maximum principle when Rh ≥ 0
for some conformal metric h ∈ [g]. When (M, g) is smooth and the positive mass
theorem holds, if λ1(Lg) > 0, there exists h ∈ [g] such that Rh > 0, see Sect. 3. To
prove Theorem 1.2, we first take a conformal metric g with Rg = −n(n − 1) as the
background metric and show that the flow is monotone and converges to the Loewner–
Nirenberg metric when we choose the initial data u0 = 1 and increasing boundary
data in a certain speed; while for u0 > v0, we construct a compatible boundary data
increasing in t ≥ 0 ina certain speed, and then use a solution to the Cauchy–Dirichlet
problem (1.3)–(1.5) with smaller boundary data and smaller initial data which is a
solution to (1.1) to give a lower bound, and we use Hamilton’s technique in [24] again
for the upper bound control to conclude the convergence of the flow.

Yamabe flow is studied as an alternative approach to the Yamabe problem on closed
manifolds, see [8,9,15,49,55], etc. It is also used in the study of general prescribed
scalar curvature equation, see [12,53], etc. For Yamabe flow onmanifolds with bound-
ary on the Neumann type boundary problems posed by Escobar, see [10,11], etc. On
complete non-compact Riemannian manifolds, there are also many works on the long
time existence and convergence of the Yamabe flow, see [14,37], etc. On compact
manifolds with incomplete edge singularities Yamabe flow is studied in [5], etc. see
also [48,50] and the references there for Yamabe flow on incomplete manifolds. In
[47], an instantaneously complete Yamabe flow was derived in the conformal class of
the hyperbolic space. In [48], the author studied the relationship between the dimen-
sion of the singular sub-manifold and instantaneous completeness and incompleteness
of the flow.

Notice that the Yamabe flow is conformally covariant and it makes no difference
which metric in the conformal class is chosen as the background metric of the flow.
We take a conformal metric g with Rg = −n(n − 1) in the conformal class (M, [g])
as the background metric. Now we introduce the Cauchy–Dirichlet problem of the
Yamabe flow

(u
n+2
n−2 )t = (n − 1)(n + 2)

n − 2

(
�gu + n(n − 2)

4
(u − u

n+2
n−2 )

)
,

u(q, 0) = u0(q), q ∈ M,

u(q, t) = φ(q, t), (q, t) ∈ ∂M × [0,+∞),

(1.6)
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where φ → ∞ as t → ∞, to get a natural connection between a compact metric g
on M with the complete Loewner–Nirenberg metric in the conformal class. For the
convergence, we have that

Theorem 1.3 Let (Mn, g) be a compact Riemannian manifold with boundary of C4,α

and Rg = −n(n−1). Let u0 ∈ C4,α(M) with u0 ≥ 1 be a subsolution of the equation
(1.1) and satisfies

Lg(μ) ≥ 0 (1.7)

at the points q ∈ ∂M such that μ = 0, where μ and Lg(μ) are defined in (4.5) and

(4.4). Assume φ ∈ C
4+α,2+ α

2
loc (M × [0,∞)) satisfies the compatible condition (4.3)–

(4.4) and φt ≥ 0 on ∂M × [0,∞). Moreover, assume lim inf t→∞ inf∂M φ = ∞ and
φ satisfies (4.7)–(4.8) as t → ∞. Then there exists a unique positive solution u to

(1.6) on M × [0,+∞) with u ∈ C
4+α,2+ α

2
loc (M × [0,∞)), and u → uLN in C4

loc(M
◦)

as t → ∞, where uLN is the solution to the Loewner–Nirenberg problem (1.1)–(1.2).

Notice that the condition (1.7) is to guarantee theC4+α,2+ α
2 regularity of the solution

u at ∂M × {0} and the condition φt ≥ 0 for t ≥ 0, and it holds automatically if
u0 is a strict subsolution to (1.1) in a neighborhood of ∂M , or u0 is a solution to
(1.1) in a neighborhood of ∂M . It is clear that φ = log(t), t, t2, et and tet satisfy
(4.7). The strategy of the proof of this theorem is similar as that of Theorem 1.2, but
more is involved because of the nonlinear term on the left hand side of the Yamabe
flow equation. Notice that we do not show the convergence of the Yamabe flow for
general initial data, because when using Hamilton’s technique in [24] to get the upper
bound of u, we are not able to show that lim supt→∞ supM◦(u − uLN ) ≤ 0, although
supM◦(u(·, t)− uLN (·)) is decreasing in t , where uLN is the solution to the Loewner–
Nirenberg problem (1.1)–(1.2).

The Cauchy-Dirchlet problem of the Yamabe flow is generalized to the Cauchy-
Dirchlet problem of σk-Ricci flow in [31], i.e., a flow approach to the generalized
Loewner–Nirenberg problem of the fully nonlinear equations in [22] and [23], where
the fact the sub-solution property is preserving along the flow also plays an important
role for the convergence of the flow.

It would be interesting to know whether the direct flow converges to the solution
to Loewner–Nirenberg problem when u0 < v0 somewhere in M◦ when λ1(Lg) < 0.

2 A Direct Flow

Let (Mn, g) be a smooth compact Riemannian manifold with boundary ∂M , with
g ∈ C4,α . We consider the direct flow, i.e. the Cauchy–Dirichlet problem (1.3)–(1.5)
with lim

t→+∞ φ(q, t) = +∞, uniformly. Toguarantee the solutionu is inC2+α,1+ α
2 (M×

[0, T0]) for some T0 > 0 and 0 < α < 1, we need the compatible condition

u0(p) = φ(p, 0),

φt (p, 0) = 4(n−1)

n−2
�u0(p)−Rgu0(p)−n(n−1)u0(p)

n+2
n−2 for p ∈ ∂M, (2.1)
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with u0 ∈ C2,α(M) and φ ∈ C2,α(∂M × [0, T ]) for all T > 0. Moreover, in order
that u ∈ C4+α,2+ α

2 (M × [0, T0]), we need the additional condition

φt t (p, 0) = L(v)(p) for p ∈ ∂M, (2.2)

with u0 ∈ C4,α(M) and φ ∈ C4,α(∂M × [0, T ]) for all T > 0, where

v = 4(n − 1)

n − 2
�u0 − Rgu0 − n(n − 1)u

n+2
n−2
0

on M and L is a linear operator such that

L(ϕ) = 4(n − 1)

n − 2
�ϕ − Rgϕ − n(n − 1)(n + 2)

n − 2
u

4
n−2
0 ϕ

for any ϕ ∈ C2(M).
For later use, we now present a well-known weak Harnack inequality for parabolic

inequalities, see in [32] or Peter Li’s online lecture notes on geometric analysis for
instance.

Lemma 2.1 Assume B̄r (p) is a closed geodesic r-ball in a complete Riemannian man-
ifold (M, g) with r ≤ 1. Let u ∈ C2,1(M × [0, T1]) be a positive function such that

ut ≤ 4(n − 1)

(n − 2)
�u + C0u,

for some constant C0 > 0. Assume that there exists a constant CS > 0, such that we
have the Sobolev inequality

1

|Br (p)|
∫

Br (p)
|∇φ|2 ≥ CSr

−2( 1

|Br (p)|
∫

Br (p)
φ

2n
n−2

) n−2
n ,

for each φ ∈ C1
0(Br (p)). Then for θ ∈ (0, 1) and T ∈ (T0, T1), there exists a constant

C1 > 0 depending on C0, such that

sup
q∈Bθr (p),t∈[T ,T1]

|u(q)|

≤ C1C
− n−2

4
S

(
(1 − θ)−2r−2 + (T − T0)

−1
) n2−4

4n
r

n−2
2 (T1 − T0)

n−2
2n

× ( 1

|T1 − T0| × |Br (p)|
∫ T1

T0

∫

Br (p)
|u| 2n

n−2
) n−2

2n .

Remark. For a complete Riemannian manifold (Mn, g), if Ricg ≥ −k(n − 1)g
with some constant k > 0, and assume that there exists a constant Cv > 0 such that
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for a geodesic ball Br ⊆ M , the volume ratio satisfies

|Br |
|B0

r | ≥ Cv, (2.3)

where |B0
r | is the volume of a geodesic ball of radius r in the space form of sectional

curvature−k, then the Sobolev inequality holds on Br withCS depending on k andCv .
For a compact manifold (M, g)with boundary ofC2,α , such constants are uniform for
each geodesic ball in the interior. Denote M◦ the interior of M , for each p ∈ M◦, we
can also use classical parabolic theory in Eucliean domain to get the weak Harnack
inequality. Indeed, let r = 1

2 min{r0, dist(p, ∂M)} with r0 the injectivity radius at
p. In B2r (p), using the geodesic normal coordinates, we can write the equality as an
parabolic inequality in Euclidean domain Br (0), and apply the weak Harnack theorem
in [33] to get the same control.

We start with a parabolic analog to Aviles-McOwen’s local upper bound estimates
in [4] on the solutions to (1.3).

Lemma 2.2 Assume u > 0 is a solution to (1.3) on M × [0, T1) with T1 > ε0 for
some 2 > ε0 > 0. There exists a uniform constant C3 > 0 depending on ε0 > 0 but
independent of T1 and r, such that for each closed geodesic ball B̄2r (p) ⊆ M◦, we
have

u(q, t) ≤ C3r
− (n−2)

2 ,

for q ∈ B̄r (p) with r ≤ min{1,√ε0}, and T1 > t ≥ ε0
2 .

Proof Pick up a function ϕ(q, t) = ξ(q)η(t) ∈ C2(M × [0, T1)) to be determined
later. Let ξ ≥ 0 be a cut off function with compact support B2r (p), so that ξ(q) = 1
for q ∈ Br (p), 0 ≤ ξ(q) ≤ 1 for q ∈ B2r (p) and there exists a constant C > 0
independent of p ∈ M◦ and r such that |∇ξ | ≤ Cr−1 in B2r (p). Multiply uϕα on
both sides of (1.3) and do integration on M , we have

∫

M
uutϕ

αdVg =
∫

M

[
4(n − 1)

n − 2
u�uϕα − Rgu

2ϕα − n(n − 1)u
2n
n−2 ϕα

]
dVg

Integration by parts, we obtain

1

2

d

dt

( ∫

M
u2ϕαdVg

) − α

2

∫

M
u2ϕα−1ϕt dVg

=
∫

M

[
−4(n − 1)

n − 2
|∇u|2ϕα − 4(n − 1)

n − 2
αuϕα−1 ∇u · ∇ϕ

−Rgu
2ϕα − n(n − 1)u

2n
n−2 ϕα

]
dVg

≤
∫

M

[
u2

( (n − 1)

n − 2
α2ϕα−2 |∇ϕ|2 − Rgϕ

α
) − n(n − 1)u

2n
n−2 ϕα

]
dVg,
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where the last inequality is by Cauchy inequality. Therefore,

1

2

d

dt

( ∫

M
u2ϕαdVg

) ≤
∫

M

[(α

2
ϕα−1ϕt + (n − 1)

n − 2
α2ϕα−2 |∇ϕ|2 − Rgϕ

α
)
u2

−n(n − 1)u
2n
n−2 ϕα

]
dVg.

Now for any T such that T1 > T ≥ ε0
2 , we assume 1 ≥ η ≥ 0 with η(t) = 0 for

t ≤ T − r2
4 , η = 1 for t ≥ T − r2

8 and |η′(t)| ≤ 12
r2

for t > 0. Integrate the above

inequality on t ∈ [T − r2
4 , T ] to have

0 ≤ 1

2

( ∫

M
u2ϕαdVg

)∣∣
t=T

≤
∫ T

T− r2
4

∫

M

[
(α

2
ϕα−1ϕt + (n − 1)

n − 2
α2ϕα−2 |∇ϕ|2−Rgϕ

α
)
u2−n(n−1)u

2n
n−2 ϕα

]
dVgdt .

Therefore, by Hölder inequality,

n(n − 1)
∫ T

T− r2
4

∫

M
u

2n
n−2 ϕαdVgdt

≤
∫ T

T− r2
4

∫

M

[(α

2
ϕα−1ϕt + (n − 1)

n − 2
α2ϕα−2 |∇ϕ|2 − Rgϕ

α
)
u2

]
dVgdt

≤
[∫ T

T− r2
4

∫

M
u

2n
n−2 ϕαdVgdt

] n−2
n

[∫ T

T− r2
4

∫

M
[(α

2
ϕϕt + (n − 1)

n − 2
α2 |∇ϕ|2 − Rgϕ

2)ϕα−2− n−2
n α] n2 dVgdt

] 2
n

=
[∫ T

T− r2
4

∫

M
u

2n
n−2 ϕαdVgdt

] n−2
n

[∫ T

T− r2
4

∫

M

[(α

2
ϕϕt + (n − 1)

n − 2
α2 |∇ϕ|2 − Rgϕ

2)ϕ−2+ 2
n α

] n
2

dVgdt

] 2
n

.

Taking α = n, we have

( ∫ T

T− r2
8

∫

Br (p)
u

2n
n−2 dVgdt

) 2
n

≤
(∫ T

T− r2
4

∫

M
u

2n
n−2 ϕndVgdt

) 2
n

≤ 1

n(n − 1)

[∫ T

T− r2
4

∫

M

(n
2
ϕϕt + (n − 1)

n − 2
n2 |∇ϕ|2 − Rgϕ

2) n
2 dVgdt

] 2
n

,
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where the right hand side is bounded from above independent of u, p, T and r . Recall
that

ut ≤ 4(n − 1)

(n − 2)
�gu − Rgu

on M × [0, T1). Hence on Br (p) × [T − r2
4 , T ], combining with the weak Harnack

type inequality on B2r (q) × [T − r2
4 , T ] with θ = 1

2 and by the choice of ϕ, we have

sup
q∈Br (p),T− r2

8 ≤t≤T

u(q, t) ≤ C3r
− n−2

2 ,

for T1 > T ≥ ε0
2 , with a constant C3 = C3(ε0) > 0 independent of p ∈ M◦, u, T1

and r . In particular, for any compact subset in M◦ and t ≥ ε0
2 , u has a uniform upper

bound independent of t . �
For the Cauchy–Dirichlet problem (1.3)–(1.5) with φ → ∞ uniformly on ∂M , we

now estimate the asymptotic behavior of the solution u near the boundary as t → ∞.

Lemma 2.3 Assume that the positive function u ∈ C2,1(M × [0,∞)) is a solution to
the Cauchy–Dirichlet problem (1.3)–(1.5) with lim inf t→∞ inf∂M φ = ∞. Moreover,
assume φ satisfies that

φ
n

2−n
dφ

dt
→ 0, φ

n−1
2−n |∇gφ| → 0,

φ
n

2−n |∇2
gφ| → 0, uniformly on ∂M, as t → +∞.

(2.4)

Then there exist constants C > 0, t1 > 0 large and x1 > 0 small such that

u ≥ 1

C

(
x + ( inf

p∈∂M
φ(p, t) )

2
2−n

) 2−n
2 − C,

for x ≤ x1 and t ≥ t1, where x = x(p) is the distance function to the boundary.

Proof Recall that there exists a conformal metric h with g = f
4

n−2 h so that Rh > 0 in
a neighborhood V of the boundary ∂M , where f ∈ C2,α(M) is a positive function, see
in Lemma 3.1 in [1]. Indeed, for that one can use the formula of the scalar curvature
under conformal change and do Taylor expansion of f in the direction of x in a small
neighborhood of the boundary and just take f to be a quadratic polynomial of x with
coefficients functions on ∂M . Let x be the distance function to the boundary ∂M under
h. Take x1 > 0 small so that the boundary neighborhood U = {0 ≤ x ≤ x1} lies in V
and hence Rh > 0, andU is diffeomorphic to ∂M×[0, x1] under the exponential map
F : ∂M × [0, x1] → U , where F(q, x) = Exphq(x) ∈ U is on the geodesic starting
from q ∈ ∂M in (V , h) in the inner normal direction of ∂M of distance x to q. We
define a function ϕ ∈ C2,α

loc (U × [0,+∞)) such that
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ϕ(Exphq(x), t) = c
[
(x + ( f (q)φ(q, t))

2
2−n )

2−n
2 − (x1 + ( f (q)φ(q, t))

2
2−n )

2−n
2

]

(2.5)

for (q, x, t) ∈ ∂M × [0, x1] × [0,+∞), where c > 0 is a small constant to be
determined. Let ũ = f u. Then we have

ũt = f − 4
n−2

[
4(n − 1)

n − 2
�hũ − Rhũ − n(n − 1)ũ

n+2
n−2

]
, in M × [0,+∞),

ũ(p, 0) = f (p)u0(p), p ∈ M,

ũ(q, t) = f (q)φ(q, t), q ∈ ∂M .

Note that h has the orthogonal decomposition h = dx2+hx onU with h0 = h
∣∣
∂M .

Then by direct calculation, one has

�hϕ = ∂2xϕ + 1

2
Hx∂xϕ + �hx ϕ,

ϕt = c f
2

n−2 [(x + ( f (q)φ(q, t))
2

2−n )
−n
2 − (x1 + ( f (q)φ(q, t))

2
2−n )

−n
2 ]φ n

2−n
dφ

dt

∂xϕ = 2 − n

2
c(x + ( f (q)φ(q, t))

2
2−n )

−n
2 , ∂2xϕ = n(n − 2)

4
c(x + ( f (q)φ(q, t))

2
2−n )

−n−2
2 ,

|∇hx ϕ| ≤ c(x + ( f (q)φ(q, t))
2

2−n )
−n
2 ( f φ)

n
2−n |∇hx ( f φ)|,

|∇2
hx ϕ| ≤ c(x + ( f (q)φ(q, t))

2
2−n )

−n
2

[
( f φ)

n
2−n |∇2

hx ( f φ)| + n

n − 2
( f φ)

2n−2
2−n |∇hx ( f φ)|2

+ n

n − 2
(x + ( f (q)φ(q, t))

2
2−n )−1( f φ)

2n
2−n |∇hx ( f φ)|2], (2.6)

where Hs is themean curvature of the hypersurface�s = {x = s}. Recall thatφ → ∞
uniformly on ∂M as t → ∞. By the assumption (2.4), we have that there exists t1 ≥ 0
such that for t ≥ t1,

ϕt ≤ f − 4
n−2

[
4(n − 1)

(n − 2)
�hϕ − Rhϕ − n(n − 1)ϕ

n+2
n−2

]

on U , since all other terms are lower order terms as t → ∞ in comparison with the
terms

4(n − 1)

(n − 2)
�hϕ − n(n − 1)ϕ

n+2
n−2

= n(n − 1)c(x + ( f (q)φ(q, t))
2

2−n )
−n−2

2 (1 + o(1))

− n(n − 1)c
n+2
n−2 [(x + ( f (q)φ(q, t))

2
2−n )

2−n
2 −(x1 + ( f (q)φ(q, t))

2
2−n )

2−n
2 ] n+2

n−2 ,

(2.7)

with c > 0 small and the term o(1) → 0 uniformly onU as t → +∞. Let v = ũ−ϕ.
Therefore,
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vt ≥ f
−4
n−2

[
4(n − 1)

(n − 2)
�hv − (

Rh + n(n − 1)ξ(p, t)
)
v

]

on U × [t1,+∞), where ξ(p, t) = u
n+2
n−2 −ϕ

n+2
n−2

u−ϕ
when u �= ϕ, and ξ = n+2

n−2u
4

n−2

otherwise, and hence, ξ(p, t) > 0 onU×[t1,+∞). Since ũ is continuous onU×{t =
t1}, we choose c > 0 small so that ũ > ϕ on U × {t = t1}. On the other hand,
ϕ = 0 < ũ on {x = x1} × [t1,∞) and by definition ϕ ≤ ũ on ∂M and hence, v ≥ 0
on ∂U × [t1,+∞)

⋃
U × {t1}. Recall that Rh > 0 on U , and hence by maximum

principle,

v ≥ 0

on U × [t1,+∞). Therefore,

u ≥ f −1ϕ

on U × [t1,+∞). Combining this lower bound estimate of u near the boundary with
the Harnack inequality (2.9) based on the uniform interior upper bound estimates in
Lemma 2.2, and also using finite cover of geodesic balls, on any compact sub-domain
of M◦ we obtain uniform positive lower bound of u for t ∈ [t1,+∞). �

Now we give the long time existence of the flow.

Lemma 2.4 There exists a unique solution u ∈ C
2+α,1+ α

2
loc (M × [0,∞)) to the

Cauchy–Dirichlet boundary (1.3)–(1.5) with positive functions u0 ∈ C2,α(M) and

φ ∈ C
2+α,1+ α

2
loc (∂M×[0,∞)) satisfying (2.1). Moreover, if in addition, u0 ∈ C4,α(M)

and φ ∈ C
4+α,2+ α

2
loc (∂M × [0,∞)) satisfy (2.2), then u ∈ C

4+α,2+ α
2

loc (M × [0,∞)).
Moreover, if lim inf t→∞ inf∂M φ = ∞ and φ satisfies (2.4) as t → ∞, then there
exists constants C > 0, t2 > 0 large and x1 > 0 small such that

u ≥ 1

C

(
x + ( inf

p∈∂M
φ(p, t) )

2
2−n

) 2−n
2 − C, (2.8)

for x ≤ x1 and t ≥ t2, where x = x(p) is the distance function to the boundary, and
hence, for each compact subset F ⊆ M◦, there exists C = C(F) > 0 such that

u(q, t) ≥ C

for each (q, t) ∈ F × [0,∞). Moreover, for each compact subset F ⊆ M◦, there
exists m = m(F) > 0 independent of u0 and φ such that

lim inf
t→∞ inf

q∈F u(q, t) ≥ m,

provided that lim inf t→∞ inf∂M φ = ∞.
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Proof Since (1.3) is parabolic, by the compatible condition and regularity of the pos-
itive functions u0 and φ, standard implicit function theorem yields the existence of
a unique positive solution u to (1.3)–(1.5) on M × [0, T0) for some T0 > 0 with u
satisfying u ∈ C2+α,1+ α

2 (M × [0, T ]) for each 0 < T < T0 when u0 ∈ C2,α(M) and

φ ∈ C
2+α,1+ α

2
loc (M × [0,∞)) satisfying (2.1); moreover, u ∈ C4+α,2+ α

2 (M × [0, T ])
for each 0 < T < T0 when u0 ∈ C4,α(M) and φ ∈ C4+α,2+ α

2 satisfy (2.2) in addition.
We assume T0 is the maximum time for the existence of the positive solution u on
[0, T0). By maximum principle, we have the upper bound

sup
q∈M, t∈[0,T )

u ≤ max

{

sup
q∈∂M, t∈[0,T )

φ, sup
q∈M

u0(q),
( 1

n(n − 1)
max{− inf

q∈M Rg(q), 0}) n−2
4

}

,

for any 0 < T < T0, which is uniformly bounded on M × [0, T0). Then standard
Schauder theory derives that there exists C = C(T0) > 0 such that

‖u‖
C2+α,1+ α

2 (M×[0,T ]) ≤ C

in the C2+α,1+ α
2 setting Cauchy–Dirichlet problem, for each 0 < T < T0; while

‖u‖
C4+α,2+ α

2 (M×[0,T ]) ≤ C

in theC4+α,2+ α
2 setting Cauchy–Dirichlet problem, for each 0 < T < T0. To establish

the lower bound estimates, for any q ∈ M◦, assume 0 < r <
dist(q,∂M)

2 and r < 1.
Then by the Harnack inequality, there exists a constant C > 0 depending on B2r (q)

but independent of T such that

sup
Br (q)×[T− 3r2

4 ,T− r2
2 ]

u ≤ C inf
Br (q)×[T− r2

4 ,T ]
u (2.9)

for each r2 < T < T0. By Lemma 2.2, |Rg + n(n − 1)u
4

n−2 | is uniformly bounded in
B2r (q) (independent of T0) and hence, the constant C in (2.9) is independent of T0.
Recall that φ > 0 on ∂M×[0,∞). Therefore, u can be extended to a positive solution

of C
2+α,1+ α

2
loc (M × [0,∞)) (resp. of C

4+α,2+ α
2

loc (M × [0,∞))).
Assume that lim inf t→∞ inf∂M φ = ∞ and φ satisfies (2.4) as t → ∞. Then by

Lemma 2.3 we have that there exists x1 > 0,C > 0 and t2 > 0 such that (2.8) holds in
{0 ≤ x ≤ x1} for t ≥ t2. Using this uniform lower bound estimate near the boundary,
combining with the above Harnack inequality and a finite geodesic ball cover of the
path connecting to {0 ≤ x ≤ x1}, we have that for each compact subset F ⊆ M◦,
there exists C = C(F) > 0 such that

u(q, t) ≥ C

for (q, t) ∈ F×[0,∞), and hence by Lemma 2.2, u is uniformly bounded from above
and below by positive constants in F × [0,∞).
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On any compact subset F ⊆ M◦, since the upper bound of u obtained in Lemma 2.2

is independent of u0 and φ, and so is |Rg + n(n − 1)u
4

n−2 | and hence the constant C
in the Harnack inequality is independent of u0 and φ. Therefore, by Lemma 2.3 there
exists m > 0 depending on F but independent of u0 and φ such that

lim inf
t→∞ inf

q∈F u(q, t) ≥ m.

�
Now we consider the convergence of the flow. To warm up, we first consider the

case Rg ≥ 0.

Proposition 2.5 Let (Mn, g) be a compact manifold with g ∈ C4,α up to the boundary

such that Rg ≥ 0. Assume u0 ∈ C4,α(M) and φ ∈ C
4+α,2+ α

2
loc (M × [0,∞)) satisfy

(2.1) and (2.2), and also φt ≥ 0 on M × [0,∞), lim inf t→∞ inf∂M φ = ∞ and φ

satisfies (2.4) as t → ∞. Moreover, assume u0 is a positive subsolution to (1.1) and

L(v)(p) ≥ 0 (2.10)

for any p ∈ ∂M such that v(p) = 0, where L and v are defined in (2.2). Then we have
that the Cauchy–Dirichlet problem (1.3)–(1.5) has a unique global solution u, which
converges in C4

loc(M
◦) to the unique solution u∞ to the Loewner–Nirenberg problem.

Remark that for a sub-solution u0 of (1.1), which is a strict sub-solution in a neigh-
borhood of ∂M , the condition (2.10) disappears automatically. For instance, if ϕ > 0
is a subsolution of (1.1), then εϕ is a strict sub-solution for any constant 0 < ε < 1.
A solution ϕ > 0 to (1.1) automatically satisfies (2.10). Notice that the functions
log(t), t and et all satisfy (2.4). Also, if u0 is a solution to (1.1) in a neighborhood of
∂M , (2.10) holds automatically. To prove this proposition, we need two lemmas.

Lemma 2.6 Let (M, g) be a smooth compact manifold with boundary such that Rg ≥
0. Assumeφ ∈ C4(∂M×[0,+∞)) is a positive functionwithφt ≥ 0, and u0 ∈ C4(M)

is a positive function which is a subsolution to (1.1) on M. Assume that a positive
function u ∈ C4,2(M × [0,∞)) is a solution to the Cauchy–Dirichlet problem (1.3)–
(1.5). Then u satisfies that ut ≥ 0 in M◦ × (0,+∞). That’s to say, for any t > 0,
u(·, t) is a subsolution to the Yamabe equation (1.1).

Proof The proof is an application of the maximum principle to the equation satisfied
by ut . Indeed, denote v = ut . It is clear that v ∈ C2,1(M × [0,+∞)). We take
derivative of t on both sides of (1.3) and (1.5) to obtain the Cauchy–Dirichlet problem

vt = 4(n − 1)

n − 2
�v − Rgv − n(n − 1)(n + 2)

n − 2
u

4
n−2 v, in M × [0,+∞), (2.11)

v(p, 0) = ut (p, 0) = 4(n − 1)

n − 2
�u0(p)−Rgu0(p) − n(n−1)u0(p)

n+2
n−2 ≥ 0, p∈M,

v(q, t) = φt (q, t) ≥ 0, q ∈ ∂M .
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Therefore, by maximum principle, v = ut ≥ 0 on M × [0,+∞). Moreover, if there
exists a constant t1 > 0 such that φt > 0 for t > t1, then by strongmaximum principle,
we have v = ut > 0 in M◦ × (t1,+∞). �

Proposition 2.5 is a direct consequence of the following lemma.

Lemma 2.7 Let (M, g), u0 and φ be as in Proposition 2.5. Then the unique solution u
to the Cauchy–Dirichlet problem (1.3)–(1.5) converges in C4

loc(M
◦) to the solution u∞

of the Loewner–Nirenberg problem (1.1)–(1.2) as t → +∞. Moreover, there exists a

constant C > 0 such that 1
C x

2−n
2 ≤ u∞ ≤ Cx

2−n
2 near the boundary ∂M, where x is

the distance function to the boundary.

Proof ByLemma2.4, the exists a unique positive solution u ∈ C
4+α,2+ α

2
loc (M×[0,∞))

to (1.3)–(1.5). By Lemma 2.6, ut ≥ 0 on M × [0,∞). Since we have the upper and
lower bound estimates on u on any compact sub-domain of M◦ and u is increasing
pointwisely on M◦ as t increases, we have that u converges pointwisely in M◦ as
t → +∞. By the Harnack inequality for v = ut in the parabolic equation (2.11),
we have that ut → 0 locally uniformly and hence u converges locally uniformly
in M◦ to a positive function u∞. Using classical parabolic estimates, we have that
u(·, t) → u∞ in C4

loc(M) as t → +∞. Therefore, u∞ is a solution to (1.1) in M◦. By
the upper bound and lower bound estimates of u near the boundary ∂M in Lemma 2.2
and Lemma 2.3, we obtain the estimate of u∞ near the boundary as stated in the
lemma, and hence u∞ is the unique solution to the Loewner–Nirenberg problem. This
completes the proof of the lemma and Proposition 2.5. �
Proof of Theorem 1.1 By Lemma 2.4, there exists a unique positive solution u ∈
C
2+α,1+ α

2
loc (M × [0,∞)) to (1.3)–(1.5).
By LemmaA.1, for any ε > 0, there exists a unique positive solutionw ∈ C4,α(M)

to the Dirichlet boundary value problem

4(n − 1)

n − 2
�w − Rgw − n(n − 1)w

n+2
n−2 = 0,

w
∣∣
∂M = ε.

By maximum principle, w ≤ ε.
Let ε > 0 be a small constant so that ε < 1

10n infM u0. It is easy to choose a

boundary data φ̃(q, t) ∈ C
4+α,2+ α

2
loc (∂M×[0,+∞)) such that φ̃ = ε and φ̃t = φ̃t t = 0

on ∂M × {0}, moreover, φ̃t ≥ 0 and φ̃ ≤ φ on ∂M × [0,+∞). Also, we require that
φ̃ → ∞ and φ̃ satisfies (2.4) as t → ∞. Therefore, by Proposition 2.5 there exists a
unique solution ũ to the problem

ũt = 4(n − 1)

n − 2
�ũ − Rgũ − n(n − 1)ũ

n+2
n−2 , in M × [0,+∞),

ũ(p, 0) = w, p ∈ M,

ũ(q, t) = φ̃(q, t), q ∈ ∂M,
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such that ũ is increasing in t , and converges to the Loewner–Nirenberg solution u∞.
Let v = u − ũ. Then v satisfies

vt = 4(n − 1)

n − 2
�v − (Rg + n(n − 1)ζ )v, in M × [0,+∞),

v(p, 0) = u0(p) − w(p) > 0, p ∈ M,

v(q, t) = φ(q, t) − φ̃(q, t) ≥ 0, q ∈ ∂M,

where ζ = u
n+2
n−2 −ũ

n+2
n−2

u−ũ for u �= ũ, and ζ = n+2
n−2u

4
n−2 otherwise. In particular, ζ > 0.

By maximum principle, v ≥ 0 on M × [0,+∞).
Nowwe establish the upper bound of u. Let ξ(p, t) = u(p, t)−u∞(p), with u∞ the

Loewner–Nirenberg solution. Therefore, ξ(p, t) → −∞ as p → ∂M for each t > 0.
Hence, for any t > 0, there exists pt ∈ M◦ such that ξ(pt , t) = supp∈M◦ ξ(p, t), and
hence �gξ(pt , t) ≤ 0. Therefore, we have

ξt = 4(n − 1)

n − 2
�ξ − (Rg + n(n − 1)μ(x, t))ξ (2.12)

≤ −(Rg + n(n − 1)μ)ξ,

at the point (pt , t) for t > 0, where μ(x, t) = u
n+2
n−2 −u

n+2
n−2∞

u−u∞ for u �= u∞, and μ =
n+2
n−2u

4
n−2∞ otherwise. In particular, μ > 0. By maximum principle for the equation

(2.12) satisfied by ξ , if ξ(pt1, t1) ≤ 0 for some t1 > 0, then ξ(p, t) ≤ 0 for all t > t1.
Therefore, there are two possibilities: one is that there exists t2 > 0 so that for t > t2
we have ξ ≤ 0 on M◦; the second case is that ξ(pt , t) > 0 for t ∈ [0,+∞). For the
second case, let η(t) = supp∈M◦ ξ(p, t). By the inequality in (2.12), η(t) is decreasing
since η(t) > 0. Now we use the discussion as in [24] to show that lim sup

t→+∞
η(t) ≤ 0.

Denote (
dη
dt )+(t) = lim sup

τ↘0

η(t + τ) − η(t)

τ
and define the set

S(t) = {p ∈ M◦∣∣ p is a maximum point of ξ on M◦ × {t}}.

Then S(t) is compact for any t ≥ 0. By Lemma 3.5 in [24],

(
dη

dt

)

+
(t) ≤ sup{ξt (pt , t)

∣∣ pt ∈ S(t)},

since η(t) > 0. By the mean value theorem we have that u
n+2
n−2 −u

n+2
n−2∞

u−u∞ ≥
n+2
n−2 ( infq∈M u∞)

4
n−2 . Therefore, for the second case,

(
dη

dt

)

+
(t) ≤ −

(

Rg + n(n − 1)(n + 2)

n − 2

(
inf
q∈M u∞

) 4
n−2

)

η(t),

123



7 Page 16 of 30 G. Li

for t ≥ 0. By integration or a contradiction argument we can easily obtain that
lim sup
t→+∞

η(t)≤0. In summary, for both cases we obtain the upper bound control that

lim sup
t→+∞

sup
q∈M◦

(u(q, t) − u∞(q)) ≤ 0.

Based on the upper bound and lower bound control on u, we have that lim
t→+∞ u(q, t) →

u∞(q) locally uniformly on M◦ as t → +∞. By the standard interior parabolic
estimates, we obtain that the convergence is in C2

loc(M
◦) sense. �

Let (M, g) be a general compact Riemannian manifold of C4,α with boundary. By
the discussion in Appendix A, there exists a conformal metric h ∈ [g] of C4,α such
that Rh = −n(n − 1). We still denote it as g and choose it as the background metric
of our flow, and hence the Cauchy–Dirichlet problem (1.3)–(1.5) becomes

ut = 4(n − 1)

n − 2
�gu + n(n − 1)

(
u − u

n+2
n−2

)
, in M × [0,+∞),

u(p, 0) = u0(p), p ∈ M,

u(q, t) = φ(q, t), q ∈ ∂M,

(2.13)

with φ > 0 and u0 > 0 compatible, and φ → +∞ uniformly as t → +∞. Recall

that we have a unique positive solution u ∈ C
4+α,2+ α

2
loc (M ×[0,+∞)) to the Cauchy–

Dirichlet boundary value problem with uniform upper and lower bound estimates on
any compact sub-domain inM◦ for t ∈ [0,+∞), and the upper bound and lower bound
asymptotic behavior estimates near the boundary as t → +∞. We now consider the
convergence. To insure the asymptotic behavior near the boundary as t → +∞, we
always assume the boundary data φ satisfies (2.4) for t large.

We start with the special initial data u0 = 1.

Lemma 2.8 Assume (M, g) is a compact Riemannian manifold with boundary of C4,α

and Rg = −n(n − 1). Let u > 0 be the solution to the Cauchy–Dirichlet problem

ut = 4(n − 1)

n − 2
�gu + n(n − 1)

(
u − u

n+2
n−2

)
, in M × [0,+∞),

u(p, 0) = 1, p ∈ M,

u(q, t) = φ(q, t), q ∈ ∂M,

(2.14)

with a positive function φ ∈ C
4+α,2+ α

2
loc (∂M × [0,+∞)) such that φ(q, 0) = 1,

φt (q, 0) = φt t (q, 0) = 0 for q ∈ ∂M, φt ≥ 0 on ∂M × [0,+∞) and
lim inf t→∞ inf∂M φ = ∞. Assume φ satisfies (2.4). Then u → u∞ in C4

loc(M
◦) as

t → +∞, where u∞ is the solution to the Loewner–Nirenberg problem (1.1)–(1.2).

Proof By Lemma 2.4, we have that the exists a positive solution u ∈ C
4+α,2+ α

2
loc (M ×

[0,∞)) to the Cauchy–Dirichlet problem (2.14). By maximum principle, we have that
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u ≥ 1 in M × [0,+∞) and u > 1 for t large. As in Lemma 2.6, the solution u to
(2.14) is increasing. Indeed, let v = ut , and then v satisfies

vt = 4(n − 1)

n − 2
�gv + n(n − 1)

(
1 − n + 2

n − 2
u

4
n−2

)
v, in M × [0,+∞),

v = 0, p ∈ M,

v(q, t) = φt (q, t) ≥ 0, q ∈ ∂M .

By maximum principle, v ≥ 0 for t ≥ 0 and v > 0 for t large. Therefore, u is
increasing in t . By the uniform upper bound estimates on any compact sub-domain
of M◦, we have that u converges pointwisely to u∞ > 0 locally in M◦. Using the
Harnack inequality on v we have that u converges to u∞ locally uniformly in M◦ as
t → +∞. By the standard parabolic estimates, the convergence is in C4

loc(M
◦). By

Lemma 2.2 and Lemma 2.3, there exists C > 0 such that

1

C
x− n−2

2 ≤ u∞ ≤ Cx− n−2
2 ,

in a neighborhood of ∂M , where x is the distance function to ∂M . �
Lemma 2.9 Assume (M, g) is a compact Riemannian manifold with boundary of C4,α

and Rg = −n(n − 1). For any u0 ∈ C2,α(M) such that u0 > 1 and a positive

function φ ∈ C
2+α,1+ α

2
loc (M, [0,+∞)) satisfying the compatible condition (2.1) with

u0, φt ≥ 0 for t ≥ 0 and satisfying (2.4) as t → ∞, there exists a unique positive

solution u ∈ C
2+α,1+ α

2
loc (M ×[0,+∞)) to (2.13), and u converges to u∞ in C2

loc(M
◦)

as t → +∞, where u∞ is the solution to the Loewner–Nirenberg problem (1.1)–(1.2).

Proof Remark that for any u0 ∈ C2,α(M) such that u0 > 1, there always exists such
a function φ in the lemma. By Lemma 2.4, we have that the exists a positive solution

u ∈ C
2+α,1+ α

2
loc (M × [0,∞)) to the Cauchy–Dirichlet problem (2.14). By maximum

principle, we have that u ≥ 1 on M × [0,∞).

Now we pick up a function φ̃ ∈ C
4+α,2+ α

2
loc (∂M × [0,∞)) such that φ̃(q, 0) = 1,

φ̃t (q, 0) = φ̃t t (q, 0) = 0 on ∂M , moreover, φ̃t ≥ 0 and φ̃ ≤ φ on ∂M × [0,∞),
and φ̃ satisfies (2.4) as t → ∞. By Lemma 2.8, for the initial data ũ0 = 1 and the

boundary data φ̃, there exists a unique positive solution ũ ∈ C
4+α,2+ α

2
loc (M×[0,∞)) to

the Cauchy–Dirichlet problem (2.14), and ũ converges to u∞ in C4
loc(M

◦) as t → ∞,
where u∞ is the solution of theLoewner–Nirenberg problem (1.1)–(1.2). Bymaximum
principle, we have that ũ ≥ 1 in M × [0,+∞).

Now let ξ = u − ũ. Then ξ satisfies

ξt = 4(n − 1)

n − 2
�gξ + n(n − 1)ζ ξ, in M × [0,+∞),

ξ(p, 0) = u0(p) − 1 > 0, p ∈ M,

ξ(q, t) = φ(q, t) − φ̃(q, t) ≥ 0, q ∈ ∂M,
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where ζ =
(
(ũ−ũ

n+2
n−2 )−(u−u

n+2
n−2 )

)

ũ−u when ũ �= u, and ζ = 1 − n+2
n−2u

4
n−2 otherwise, and

hence ζ < 0. By maximum principle, u ≥ ũ in M × [0,+∞).
The upper bound estimates is the same as the case Rg ≥ 0. Notice that u∞ > 1 by

maximum principle of the equation (A.4). Let η = u − u∞. Then η(q, t) → −∞ as
q → ∂M for any t > 0. Notice that η satisfies the equation

ηt = 4(n − 1)

n − 2
�gη + n(n − 1)βη, in M × [0,+∞),

where β = (u−u
n+2
n−2 )−(u∞−u

n+2
n−2∞ )

u−u∞ when u �= u∞ and β = 1 − n+2
n−2u

4
n−2 otherwise,

and hence, β < 0. Therefore, by the same argument as the case Rg ≥ 0, we have
that lim sup

t→+∞
sup
q∈M◦

η(q, t) ≤ 0. Therefore, u(·, t) → u∞(·) locally uniformly on M◦

as t → ∞. By standard interior estimates for the parabolic equation, we have that
ũ → u∞ in C2

loc(M
◦) as t → +∞. �

Proof of Theorem 1.2 By the argument in Appendix A, there exists a positive solution

ū ∈ C2,α(M) to (1.1) such that v0 < ū < u0 on M . Let ḡ = ū
4

n−2 g and hence
Rḡ = −n(n−1). Let η = u0

ū . Then by Lemma 2.9, we have that there exists a positive

function φ ∈ C2,α
loc (∂M × [0,+∞)) such that to the flow

ut = 4(n − 1)

n − 2
�ḡu + n(n − 1)

(
u − u

n+2
n−2

)
, in M × [0,+∞),

u(p, 0) = η(p), p ∈ M,

u(q, t) = φ(q, t), q ∈ ∂M,

there exists a unique positive solution u, which converges to the Loewner–Nirenberg
solution u∞ in the conformal class in C2

loc(M
◦). That is to say, there exists a direct

flow starting from g0 = u
4

n−2
0 g and converging to the Loewner–Nirenberg metric.

Notice that if the first Dirichlet eigenvalue satisfies λ1(Lg) ≤ 0, by Lemma 3.1, it is
equivalent to say that inf

u∈C1(M)
Q(u) = −∞when g is smooth, where the energy Q(u)

is defined in (3.2). �

3 Positive Scalar Curvature Metrics on Compact Manifolds with
Boundary

In this section, we present examples for conformal classes on compact manifold with
boundary that admit positive scalar curvature metrics. Let M be a compact smooth
manifold with boundary ∂M . It is well-known that there is not topological obstruction
for the existence of positive scalar curvature metrics on M . For any given smooth
Riemannianmetric g onM , we can extend (M, g) to a smooth closedmanifold (N , h).
Then by the well known theorems by Kazdan and Warner, Theorem 3.3 in [28] and
Theorem 6.2 in [29], we have that there exists a diffeomorphism F : N → N and a
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smooth positive function u ∈ N , such that the scalar curvature of u
4

n−2 F∗h is positive
on M where F∗h is the pull back metric of h by the map F . Notice that F∗h is not
necessarily in the conformal class [g] on M . Another interesting result obtained by
Shi-Wang-Wei (Theorem 1.1 in [51]) recently, answering a question byGromov, states
that, any smoothRiemannianmetric h on ∂M can be extended to a smoothRiemannian
metric g with positive scalar curvature on M .

Now we consider the existence of positive scalar curvature metrics in a conformal
class on a compact manifold with boundary.

Let (Mn, h) be a smooth compact Riemannian manifold with boundary ∂M of
dimension n ≥ 4. Let g be a complete metric equipped on the interior M◦ such
that x2g extends in Ck,α up to the boundary, where x is the distance function to the
boundary under the metric h, then we call (M◦, g) conformally compact of Ck,α . If
moreover, g is Einstein, we call (M◦, g) conformally compact Einstein (CCE). In the
well-known paper [42], Qing shows that for a conformally compact Einstein manifold
which has conformal infinity of positive Yamabe constant, there exists a conformal
compactification ḡ with positive scalar curvature. Definitely, the CCE metric g is
the Loewner–Nirenberg metric in the conformal class of ḡ, and hence the flow here
connects these two metrics with the starting metric ḡ and end at g as t → +∞.

To continue, we now introduce a well-known Neumann type boundary value prob-
lem on (M ,g) introduced by Escobar ([17], see also [16]), which is sometimes called
the second type Escobar–Yamabe problem:

− 4(n − 1)

(n − 2)
�gu + Rgu = 0, in M,

4(n − 1)

n − 2

∂

∂ng
u + 2(n − 1)Hgu = 2(n − 1)u

n
n−2 , on ∂M,

(3.1)

where ng is the unit out-normal vector field on ∂M and Hg is the mean curvature on
the boundary. The solution of problem (3.1) is a critical point of the energy functional:

Q(u) =
∫
M (|∇u|2 + n−2

4(n−1) Rgu2)dVg + n−2
2

∫
∂M Hgu2dS

( ∫
∂M |u| 2(n−1)

n−2 dS
) n−2
n−1

, (3.2)

for any u ∈ C1(M), where Hg is the mean curvature of the boundary ∂M on (M, g),
dVg is the volume element of (M, g) and dS is the volume element of (∂M, g

∣∣
∂M ).

Notice that the functional does not always have a finite lower bound in a general
conformal class, as pointed by Zhiren Jin, see [19]. For instance, inf

u∈C1(M)−{0}
Q(u) =

−∞when (M, g) is obtained by deleting a small geodesic ball on a closedRiemannian
manifold with negative scalar curvature. Under the assumption inf

u∈C1(M)
Q(u) > −∞

and the positive mass theorem, the problem has been solved: it was studied in [13,
19,20,39,40] assuming the positive mass theorem or the Weyl tensor Wg = 0 on M ,
and the remaining cases (n ≥ 6, ∂M is umbilic, inf

u∈C1(M)−{0}
Q(u) > 0 and the subset
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on ∂M where the vanishing of the Weyl tensor of g is of certain order is the whole
boundary ∂M) were recently solved in [41] without the positive mass theorem.

Recall that by an easy computation, Escobar observed in [19] the following lemma.

Lemma 3.1 (Escobar, [19]) Assume (Mn, g) is a smooth compact Riemannian mani-
fold with boundary. Let λ1(Lg) be the first eigenvalue of the Dirichlet boundary value

problemof the conformalLaplacian Lg = − 4(n−1)
n−2 �g+Rg. Then inf

u∈C1(M)−{0}
Q(u) >

−∞ if and only if λ1(Lg) > 0.

When Rg ≥ 0, we know that λ1(Lg) > 0, and hence inf
u∈C1(M)−{0}

Q(u) > −∞.

Based on the final solution of the second type of Escobar–Yamabe problem (3.1) in
[41], we will use a perturbation argument to show that the other direction holds.

Theorem 3.2 Let (M, g) be a smooth compact Riemannian manifold with boundary.
Assuming either the condition in Theorem 1.1 in [41] holds on (M, g) or the positive
mass theorem holds, there exists a positive scalar curvature metric in the conformal
class of (M, g) if and only if inf

u∈C1(M)−{0}
Q(u) > −∞.

Proof Necessity is a trivial consequence of Lemma 3.1. Now we show the other direc-
tion. Claim. If there is a metric h ∈ [g] such that Rh = 0 on M , then there exists
a metric h1 ∈ [g] such that Rh1 > 0 on M . This is an application of the implicit
function theorem as proof of Theorem 6.11 in [2]. Consider the Dirichlet boundary
value problem

− 4(n − 1)

n − 2
�hu = f u

n+2
n−2 , inM,

u = 1, on ∂M,

for any given function f ∈ Cα(M). We want to obtain a positive solution to the
problem. Let C0 = {u ∈ C2,α(M) : u

∣∣
∂M = 0}. Define the map F : C0 ×Cα(M) →

Cα(M) such that

F(u, f ) = −4(n − 1)

n − 2
�h(1 + u) − f (1 + u)

n+2
n−2 .

This is a C1 map. We take derivative

DuF(v, f ) = −4(n − 1)

n − 2
�hv − n + 2

n − 2
f (1 + u)

4
n−2 v.

Recall that F(0, 0) = 0 since Rh = 0. At (0, 0),

DuF(v, 0) = −4(n − 1)

n − 2
�hv

is invertible. By implicit function theorem, there exists a constant ε > 0 small such
that for any f ∈ Cα(M) with ‖ f ‖Cα(M) ≤ ε, we have that the Dirichlet problem
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has a unique solution ũ = 1 + u in the neighborhood of 1 in C2,α(M). Take f to
be a small positive constant. We have that ũ > 0 on M . This completes the proof of
Claim. The solution of Escobar–Yamabe problem (3.1), where positive mass theorem
is used for certain cases, tells that when inf

u∈C1(M)
Q(u) > −∞, there exists a metric

in the conformal class with zero scalar curvature, and hence by Claim, we have that
there exists a positive scalar curvature metric in the conformal class. This completes
the proof of the Theorem. �

In particular, formanifolds of dimension 3 ≤ n ≤ 7 (see [43–45]), or spinmanifolds
[54], positive mass theorem holds. Recently, Schoen-Yau [46] presented a proof that
positive mass theorem holds true in general dimension.

Remark. For positive mass theorem and the existence theory of solutions to the
Escobar–Yamabe problem, for the regularity of the metric, it is enough that the metric
is ofCk for some sufficiently large k > 0. The above argument shows that for a smooth
compact Riemannian manifold (M, g), if inf

u∈C1(M)−{0}
Q(u) = −∞, then there exists

no conformal metric g1 = u
4

n−2 g with u ∈ C2,α(M) such that Rg1 = 0.

4 The Yamabe Flow: A Conformally Invariant Flow

We consider the Yamabe flow

ut = (n − 1)u− 4
n−2

(
�gu − n − 2

4(n − 1)
(Rgu + n(n − 1)u

n+2
n−2 )

)
, (4.1)

which can also be written as

(u
n+2
n−2 )t = (n − 1)(n + 2)

n − 2

(
�gu − n − 2

4(n − 1)
(Rgu + n(n − 1)u

n+2
n−2 )

)
. (4.2)

The flow is conformally covariant in the sense that, under the conformal change g =
ϕ

4
n−2 h, the above equation (4.1) becomes

vt = (n − 1)v− 4
n−2

(
�hv − n − 2

4(n − 1)
(Rhv + n(n − 1)v

n+2
n−2 )

)
,

where v = uϕ. So without loss of generality, let g be the metric on M in the conformal
class such that Rg = −n(n − 1). We consider the Cauchy–Dirichlet problem (1.6)

where u0 ∈ C2k+2,α(M) and φ(q, t) ∈ C
2k+2+α,k+1+ α

2
loc (∂M × [0,+∞)) with k =

0, 1 satisfying the C2+α,1+ α
2 compatible condition

u0(p) = φ(p, 0),

φ(p, 0)
4

n−2 φt (p, 0) = (n − 1)

[
�gu0(p) + n(n − 2)

4
(u0(p) − u0(p)

n+2
n−2 )

]
, (4.3)
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for p ∈ ∂M , and in addition the C4+α,2+ α
2 compatible condition

φ(p, 0)
4

n−2 φt t (p, 0) + 4

n − 2
φ(p, 0)

6−n
n−2 (φt (p, 0))

2 = (n − 1)Lg(μ), (4.4)

where the linear operator Lg is defined as

Lg(μ) = �gμ + n(n − 2)

4

(
1 − n + 2

n − 2
u0(p)

4
n−2

)
μ,

and the function μ is defined as

μ(p) = (n − 1)u0(p)
− 4

n−2

[
�gu0(p) + n(n − 2)

4
(u0(p) − u0(p)

n+2
n−2

]
. (4.5)

Lemma 4.1 Assume (Mn, g) is a compact Riemannian manifold with boundary of
C4,α such that Rg = −n(n − 1). Let u0 ∈ C2k+2,α(M) be a positive function, and

φ ∈ C
2k+2+α,k+1+ α

2
loc (M × [0,∞)) be a positive function satisfying the compatible

condition (4.3) for k = 0 and (4.4) in addition for k = 1. Then there exists a unique

positive solution u ∈ C
2k+2+α,k+1+ α

2
loc (M × [0,∞)) to the Cauchy–Dirichlet problem

(1.6). Moreover, if u0 ≥ 1 and φ ≥ 1, then u ≥ 1.

Proof Since u0 ∈ C2k+2,α(M) is positive, the equation (4.1) is uniform parabolic,
and by the compatible condition on u0 and φ, there exists T > 0 such that a positive
solution u on M ×[0, T ) such that u ∈ C2k+2+α,k+1+ α

2 (M ×[0, T1]) for any T1 < T
and k = 0, 1 respectively. Now for any 0 < T1 < T , by maximum principle,

u ≥ min{1, inf
M

u0, inf
M×[0,T1])

φ}

on M × [0, T1]. In fact, if there exists (q, t) ∈ M◦ × (0, T1], such that 0 <

u(q, t) = infM×[0,T1] u < 1, then we have (u
n+2
n−2 )t (q, t) ≤ 0, �gu(q, t) ≥

0, (u − u
n+2
n−2 )(q, t) > 0, contradicting with the equation. Also, by similar argument,

we have that

u ≤ max{1, sup
M

u0, sup
M×[0,T1]

φ},

on M × [0, T1]. Therefore, by the standard a prior C2k+2+α,1+k+ α
2 estimates of

parabolic equations, the solution u > 0 can be extended on M × [0,+∞) with
u ∈ C2k+2+α,k+1+ α

2 (M × [0, T ]) for any T > 0. �

Lemma 4.2 Let (M, g), u0 ∈ C4,α(M) and φ ∈ C
4+α,2+ α

2
loc (M × [0,∞)) be as in

Lemma 4.1 with the compatible condition (4.3)–(4.4). In particular, Rg = −n(n−1).
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Moreover, let u0 ≥ 1 be a subsolution to the equation (1.1). And moreover, we assume
u0 ∈ C4,α(M) and

Lg(μ) ≥ 0

at the points q ∈ ∂M such that μ(q) = 0 where Lg and μ are as in (4.4). Let a

positive function φ ∈ C
4+α,2+ α

2
loc (M × [0,∞)) satisfy the compatible condition (4.3)

and (4.4). Also we assume φt ≥ 0 on ∂M × (0,+∞). Then the solution u to (1.6)
satisfies ut ≥ 0 on M × [0,+∞). In particular, u(·, t) is a sub-solution to (1.1) for
each t ≥ 0.

Proof Let v = ut , condition on u0 implies v(q, 0) ≥ 0. By assumption, we have
φ ≥ 1 on ∂M × [0,+∞) and hence, by Lemma 4.1, u ≥ 1 in M × [0,∞). Take
derivative of t on both sides of the equation in (1.6), and we have

n + 2

n − 2
u

4
n−2 vt + 4(n + 2)

(n − 2)2
u

6−n
n−2 v2

= (n − 1)(n + 2)

n − 2

(
�gv + n(n − 2)

4
(1 − n + 2

n − 2
u

4
n−2 )v

)
. (4.6)

By maximum principle, v can not obtain a negative minimum on M × [0, T ] at a
point (q, t) ∈ M◦ × (0, T ], for any T > 0. Indeed, if otherwise, since v ≥ 0 on
M ×{0} ⋃

∂M ×[0,∞) and recall that u ≥ 1, by continuity of v, there exists t1 > 0
and p ∈ M◦ such that

v(p, t1) = inf
M×[0,t1]

v < 0,

and |v(p, t1)| is so small that at the point (p, t1),

−4(n + 2)

(n − 2)2
u

6−n
n−2 v2 + n(n − 1)(n + 2)

4

(
1 − n + 2

n − 2
u

4
n−2

)
v > 0,

contradicting with the equation (4.6) and the fact vt (p, t1) ≤ 0 and �gv(p, t1) ≥ 0.
Therefore, v ≥ 0 in M × [0,+∞). �
Lemma 4.3 Let (M, g), u0 and φ be as in Lemma 4.2. Moreover, assume φ satisfies
that there exists a constant β > 0 such that

φ−1φt ≤ β (4.7)

on ∂M × [0,∞), and

φ
n−1
2−n |∇gφ| → 0,

φ
n

2−n |∇2
gφ| → 0, uniformly on ∂M, as t → +∞.

(4.8)
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Let x be the distance function to the boundary on (M, g). Let U = {0 ≤ x ≤ x1}.
Then there exist constants C > 0, x1 > 0 small and t1 > 0 large such that the solution
u > 0 to (1.6) satisfies

u(q, t) ≥ C(x + φ
2

2−n )
2−n
2 − C

on U × [t1,+∞).

For instance, take φ(t) = et , t2et , t, or any other monotone function of polynomial
growth for t large.

Proof The proof is similar to Lemma 2.3. Let f ≡ 1 and x1 > 0 small be as in
Lemma 2.3 such that the exponential map F = Exp : ∂M × [0, x1] → U is a
diffeomorphism, and let the barrier function ϕ ∈ C2,α

loc (U × [0,∞)) be defined in
(2.5). For ϕ we have the estimates (2.6). In particular,

ϕ
4

n−2 ϕt = ϕ
4

n−2 c f
2

n−2 [(x + ( f (q)φ(q, t))
2

2−n )
−n
2

− (x1 + ( f (q)φ(q, t))
2

2−n )
−n
2 ]φ n

2−n
∂φ

∂t

≤ c
n+2
n−2 (x + φ(q, t)

2
2−n )−

n+4
2 φ

n
2−n

∂φ

∂t

≤ c
n+2
n−2 (x + φ(q, t)

2
2−n )−

n+2
2 φ−1 ∂φ

∂t
,

and hence by (2.7) and our condition on φ, for the constants c > 0 and x1 small enough
and t1 > 0 large enough, we have

(ϕ
n+2
n−2 )t ≤ (n − 1)(n + 2)

n − 2

(
�gϕ + n(n − 2)

4
(ϕ − ϕ

n+2
n−2 )

)

on U × [t1,∞). Now we take c > 0 small enough so that u > ϕ on U × {t1}. By the
definition of ϕ, we also know that u > ϕ on ∂U × [0,+∞). Let v = u − ϕ. Take
difference of this inequality and the equation satisfied by u in (1.6), we have

u
4

n−2 vt + (u
4

n−2 − ϕ
4

n−2 )ϕt

≥ (n − 1)(�gv + n(n − 2)

4
(u − u

n+2
n−2 − ϕ + ϕ

n+2
n−2 ))

onU × [t1,∞). Assume that there exists (q, t) ∈ U ◦ × (t1,+∞) such that v(q, t) =
inf

M×[t1,t]
v < 0, and then since u ≥ 1, we have ϕ(q, t) > 1 and hence at the point

(q, t), we have

u
4

n−2 vt ≤ 0, (u
4

n−2 − ϕ
4

n−2 )ϕt ≤ 0,

�gv ≥ 0, u − u
n+2
n−2 − ϕ + ϕ

n+2
n−2 > 0,
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where ϕt ≥ 0 by the assumption φt ≥ 0, contradicting with the above inequality.
Therefore, v ≥ 0 on U × [t1,+∞). This completes the proof of the lemma. �

Proof of Theorem 1.3 By Lemma 4.1 and Lemma 4.2, we have that there exists a pos-
itive solution u on M × [0,+∞) with u ∈ C4+α,2+ α

2 (M × [0, T ]) for any T > 0,
and ut ≥ 0, i.e., u(·, t) is a sub-solution to (1.1) for any t ≥ 0 and also, u ≥ 1. By
maximum principle, u(q, t) ≤ uLN (q) for any (q, t) ∈ M◦ × [0,+∞), where uLN
is the solution to the Loewner–Nirenberg problem (1.1)–(1.2). Alternatively, one can
use the local super-solution constructed in Lemma 5.2 in [23] to give the local upper
bound estimates of u in M◦. Indeed, let x = x(q) be the distance function of q ∈ M◦
to ∂M . There exists x1 > 0 small such that for q ∈ {0 < x(q) ≤ x1}, the injectivity
radius i(q) at q is larger than x(q)

2 . We then define a function ū on BR(q) by

ū(p) =
(

2R

R2 − r(p)2

) n−2
2

e
n−2
2 (

√
R2−r(p)2+ε2−ε)

for p ∈ BR(q) where R = x(q)
2 , ε > 0 is some small constant and r(p) is the distance

function from p to q, and hence ū ∈ C2(BR(q)) and ū = ∞ on ∂BR(q). In fact x1 and
ε are chosen small enough as in [23] so that ū is a super-solution to (1.1) on BR(q).
By maximum principle, u ≤ ū on BR(q), and hence there exists a uniform constant
C > 0, such that

u(q, t) ≤ Cx(q)
2−n
2

on {0 < x(q) ≤ x1} for t ≥ 0. For any q ∈ M − {0 ≤ x ≤ x1}, taking R <

min{ i(q)
2 , x1} and ε > 0 small so that ū is a super-solution to (1.1) on BR(q), and

hence we have that there exists a uniform constant C > 0 depending on BR(q) such
that u(p, t) ≤ C for p ∈ B R

2
(q) and t ≥ 0. Now by standard interior Schauder

estimates of parabolic equations, we have that for any compact subset F ⊆ M◦, there
exists a uniform constant C = C(F) > 0 such that

‖u‖
C4+α,2+ α

2 (F×[T ,T+1]) ≤ C

for any T ≥ 0. Since u is locally uniformly bounded from above in M◦ and ut ≥ 0 on
M × [0,∞), by Harnack inequality with respect to the equation (4.6) satisfied by ut ,
we have that u converges locally uniformly in M◦ to a positive function u∞ on M◦ as
t → +∞. By interior Schauder estimates of the uniform parabolic equation in (1.6),
we have that u → u∞ in C4

loc(M
◦), and hence u∞ is a solution to (1.1) in M◦. By the

lower bound estimates near the boundary in Lemma 4.3 and the above upper bound
estimates, there exists a constant C > 0 such that

Cx
2−n
2 ≥ u∞ ≥ 1

C
x

2−n
2
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in {0 < x ≤ x1} for some constant x1 > 0, where x is the distance function to the
boundary on (M, g). Therefore, by uniqueness of the solution to (1.1)–(1.2), u∞ =
uLN . This completes the proof of the theorem. �
Acknowledgements The author would like to thank Wei Yuan, Xiaoyang Chen, Jian Ge and Professor
Yuguang Shi for helpful discussion.

Appendix A

In this section, we show that the homogeneous Dirichlet boundary value problem

4(n − 1)

n − 2
�u − Rgu − n(n − 1)u

n+2
n−2 = 0, in M, (A.1)

u(p) = 0, for p ∈ ∂M . (A.2)

admits a nontrivial solution u ≥ 0 in M when the conformal Laplacian L =
− 4(n−1)

n−2 �g + Rg has a negative eigenvalue λ1(Lg) < 0 for the Dirichlet boundary
value problem.

Let (M, g) be a compact Riemannian manifold of Ck+2,α with boundary with
k ≥ 0. For any given positive function ϕ0 ∈ Ck+2,α(∂M), by the classical variational
method (see Lemma A.1), there exists a unique positive solution u0 ∈ Ck+2,α(M) to
the Dirichlet boundary value problem

4(n − 1)

n − 2
�gw − Rgw − n(n − 1)w

n+2
n−2 = 0,

w
∣∣
∂M = ϕ0.

(A.3)

Claim 1 If u1 and u2 are the corresponding solutions to (A.3) with respect to ϕ0 = ϕ1
and ϕ0 = ϕ2 for two positive functions ϕ1 ≤ ϕ2 on ∂M , then u1 ≤ u2. We now use

maximum principle to prove the claim. Let g2 = u
4

n−2
2 g, φ = ϕ1

ϕ2
and v = u1

u2
. Then v

satisfies

4(n − 1)

n − 2
�g2v + n(n − 1)(v − v

n+2
n−2 ) = 0, (A.4)

v
∣
∣
∂M = φ ≤ 1.

Then by maximum principle, v could not obtain its maximum point with sup
M

v > 1 in

M◦, and hence Claim 1 is proved.

We present a well-known existence result for the Dirichlet boundary value problem
of the Yamabe equation (A.3), see [3,34,35,52]. The proof of which is by a direct
variational method, in seek of a minimizer of the corresponding energy functional.

Lemma A.1 Let (M, g) be a compact Riemannian manifold of Ck+2,α with boundary.
For any positive function ϕ0 ∈ Ck+2,α(∂M) with k ≥ 0, there exists a unique positive
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solutionw ∈ Ck+2,α(M) to the Dirichlet boundary value problem (A.3). In particular,
R

w
4

n−2 g
= −n(n − 1).

By Lemma A.1, we take the metric g such that Rg = −n(n − 1) in the conformal
class as the background metric. Let v j > 0 be the solution to the Dirichlet boundary
value problem (A.4) with g2 = g and with the boundary data φ = 1

j . Then by Claim
1, {v j }∞j=1 is decreasing as j increases. By standard elliptic estimates we have {v j } j
converges in C2(M) to a non-negative function v0, i.e., v0 = lim

j→∞ v j . Then v0 is a

non-negative solution to the problem

4(n − 1)

n − 2
�gv0 + n(n − 1)v0 − n(n − 1)|v0| n+2

n−2 = 0,

v0
∣∣
∂M = 0.

(A.5)

We want to show that the limit v0 of {v j } j is not zero when the first eigenvalue
λ1(Lg) < 0 for theDirichlet problemof the conformal Laplacian Lg = −(

4(n−1)
n−2 �g+

n(n − 1)). For the case λ1(Lg) < 0, let φ1 be the first eigenfunction with 1 > φ1 > 0
in M◦. Recall that the minimizer of the energy

E(u) = 2(n − 1)

n − 2

∫

M
|∇u|2g +

∫

M

n(n − 1)

2

(
−u2 + n − 2

n
|u| 2n

n−2

)
, (A.6)

in the function space

S = {u ∈ W 1,2(M)
∣∣ u − ϕ0 ∈ W 1,2

0 (M)} (A.7)

is the unique solution to (A.3) when ϕ0 > 0. Here for the homogeneous Dirichlet
problem (A.5), just take ϕ0 = 0. Then let ε > 0 be small enough, we have that

E(εφ1) = 2(n − 1)

n − 2
ε2

∫

M
|∇φ1|2g − n(n − 2)

4
φ2
1dVg

+ (n − 2)(n − 1)

2
ε

2n
n−2

∫

M
φ

2n
n−2
1 dVg

= ε2
[
2(n − 1)

n − 2

∫

M
|∇φ1|2g − n(n − 2)

4
φ2
1dVg

+ (n − 2)(n − 1)

2
ε

4
n−2

∫

M
φ

2n
n−2
1 dVg

]
.

Since
∫
M |∇φ1|2g − n(n−2)

4 φ2
1dVg < 0, there exists ε > 0, such that E(εφ1) < 0.

Therefore,

−m ≡ inf
v∈W 1,2

0 (M)

E(v) < 0.
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Let {u j }∞j=0 be a minimizing sequence of E on the function space S defined in (A.7).
Then for j large,

−m

2
≥ E(u j ) = 2(n − 1)

n − 2

∫

M
|∇u j |2g +

∫

M

n(n − 1)

2

(
−u2j + n − 2

n
|u j | 2n

n−2

)
,

and hence,
∫

M

n(n − 1)

2
u2j ≥ m

2
+ 2(n−1)

n − 2

∫

M
|∇u j |2g+

∫

M

(n − 2)(n − 1)

2
|u j | 2n

n−2 ≥ m

2
> 0.

Since u j⇀v̄ weakly in W 1,2(M) sense, by the Sobolev embedding theorem, we have

that u j → v̄ in L2(M) up to a subsequence. Therefore, ‖v̄‖L2(M) ≥
√

m
2 > 0,

and it is a weak solution to the problem. It is clear that |v̄| is also a minimizer of
E . By the regularity argument in Appendix B in [52], |v̄| ∈ C2(M). By Harnack
inequality, we have that |v̄| > 0 in M◦ since v̄ is not zero, and hence v̄ > 0 in
M◦. Therefore, the homogeneous Dirichlet boundary value problem has a non-zero
solution v̄ ∈ C2(M)

⋂
W 1,2

0 (M) with v̄ > 0 in M◦. By maximum principle, v̄ ≤ 1
in M .

On the other hand, by Claim 1, we have v0 = lim j→∞ v j ≥ v̄ on M , and hence
v0 > 0 in M◦. In particular, v0 is the largest solution to (A.5).

In summary, for a general compact Riemannian manifold (M, g) of Ck+2,α with
boundary such that λ1(Lg) < 0, where λ1(Lg) is the first eigenvalue of the conformal
Laplacian Lg of the Dirichlet boundary value problem, there exists a largest solution
v0 to (A.1)–(A.2) such that v0 > 0 in M◦.

By the convergence of v j to v0, for any continuous function u0 > v0 on M , there
exists j > 0 such that u0 > v j on M .

On a smooth compact manifold (M, g) with boundary, if λ1(Lg) > 0, then by
Lemma 3.1 and Theorem 3.2, there exists a conformal metric h ∈ [g] such that
Rh ≥ 0. By maximum principle, v0 = 0 in this case. We do not know if v0 vanishes
when λ1(Lg) = 0.
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