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Abstract

In this paper, we obtain the stability of isoperimetric inequalities with respect to
the concentrate topology. The concentration topology is weaker than the [J-topology
which is like the weak topology. As an application, we obtain isoperimetric inequal-
ities on the non-discrete n-dimensional /!-cube and /!'-torus by taking the limits of
isoperimetric inequalities of discrete /!-cubes and /'-torus. The method of this paper
builds on by introducing an e-relaxed (iso-)Lipschitz order.
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1 Introduction

Isoperimetric inequalities are simple and interesting geometric inequalities that have
been studied for a long time. Exact solutions are known in some basic spaces, such
as the n-dimensional Euclidean space and the n-dimensional sphere. A more detailed
list is seen in [8, Appendix H]. Isoperimetric inequalities on metric measure spaces
with lower Ricci curvature bounds is studied in [7].

Gromov [12] introduced the Lipschitz order relation on the space of all metric
measure spaces and developed a rich theory. In this paper, we focus on applications
of the Lipschitz order relation to isoperimetric inequalities. This is a relatively new
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approach to isoperimetric inequalities. Gromov claimed Corollary 3.21 in Sect. 3
which states that an isoperimetric inequality on a continuous metric measure space is
represented by using the Lipschitz order under some assumptions. The main results of
this paper are Theorems 1.7 and 1.8 that appear later. Theorem 1.7 is a generalization
of the Gromov’s claim. Theorem 1.8 express a stability of isoperimetric inequalities
with respect to the concentrate topology. The concentration topology is defined by the
observable distance dopc (Definition 2.21) and weaker than the [I-topology (Definition
2.15) which is like the weak topology of measures. These theorems make it possible
to treat discrete and continuous spaces in the same way. One of the most important
applications is to obtain an isoperimetric inequality on a continuous space by the limit
operation of discrete spaces. For example, we obtain the following sharp isoperimetric
inequality on the continuous n-dimensional hypercube [0, 11" with the /!-metric d;:
and the uniform measure L£".

Theorem 1.1 For any closed subset Q C [0, 11" with L (2) > 0, we take the metric
ball Bg C [0, 11" centered at the origin with L (Bg) = L"(2). Then we have

LM Ur () = L (Ur(Bg))

for any r > 0, where U.(A) := {x €[0,1]" |dn(x,A) <r} is the open r-
neighborhood of a subset A C [0, 1]".

Similarly, we obtain the following sharp isoperimetric inequality of the /'-torus
T" by using Corollary 6 in [4]. The ['-torus T" is the n-fold /'-product of the one-
dimensional unit sphere S! equipped with the uniform measure.

Theorem 1.2 For any closed subset Q@ C T" with mpn(2) > 0, we take a metric ball
Bg of T" with mpn (Bg) = mpn (). Then we have

mrn(Up(§2)) = mpn (U (Bg))

for any r > 0, where U,.(A) is the open r-neighborhood of a subset A C T" with
respect to the [ -metric.

There are only few spaces satisfying the inequalities in Theorems 1.1 and 1.2 because
these are required to hold for any » > 0. As a former result, Lévy’s isoperimet-
ric inequality (Theorem 2.11) also holds for any r > 0. It is a sharp isoperimetric
inequality on a unit sphere in an Euclidean space. The isoperimetric inequality on the
n-dimensional standard Gaussian space [6,23] is also of the same type.

A usual isoperimetric inequality is given in the case that r > 0 is small. There are
many variants of Theorem 1.1 and 1.2, if these are not required to hold for any » > 0.
In [22], the isoperimetric profiles on a /”-ball in the Euclidean space R” is calculated,
where 1 < p < 2. We note that Theorem 1.1 is the sharp isoperimetric inequality on
a [*°-ball in the Banach space R”" equipped with the /' -metric. In [15], a quantitative
isoperimetric inequality on the Banach space R? equipped with the /! -metric is given.
We remark that the boundary measure is given by the ' -length in [15] but it is given by
Minkowski content with respect to the [ L_metric in Theorem 1.1. In [3], the Cheeger
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constants on product spaces of metric measure spaces are calculated, where product
spaces is equipped with the />-product metric. In [13], the concentration function on
the unit sphere in a uniformly convex vector space is studied. In Sect. 4.3, we calculate
the concentration function on the hypercubes [0, 11" equipped with the /'-metric. In
[24], an isoperimetric inequality on the product space equipped with the Talagrand’s
convex distance is studied. That is a generalization of an isoperimetric inequality on
the n-dimensional Hamming cube. The Wulff shapes may be related with Theorem
1.1 but it is nontrivial that there exists an energy which gives Minkowski content with
respect to the /!-metric. The Wulff shape in R” is studied in [25].

In this paper, we deal with two key concepts, called “ICL condition” and “iso-
dominant”. Roughly speaking, “ICL condition” means that an isoperimetric inequality
holds for any r > 0. The concept “iso-dominant” also means isoperimetric inequality
but it is defined by using the (iso-)Lipschitz order. Theorem 1.5 below means that
the two concepts are equivalent to each other in some assumptions. However, these
assumptions are incompatible with non-continuous spaces. Therefore, we introduce
e-relaxed notions (Definitions 1.3 and 1.6) of those concepts. Theorem 1.7, which
appears later, expresses their equivalence. The iso-dominant is kept under taking a
limit, as is stated in Theorem 1.8 below.

First, we formulate the form of isoperimetric inequalities. On a general metric
measure space, we consider a Lévy type isoperimetric inequality. Namely, we consider
that the open r-neighborhood in isoperimetric inequalities for any » > 0. Let (X, dx)
be a complete separable metric space with a Borel probability measure my. We call
such a triple (X, dx, mx) an mm-space (which is an abbreviation of a metric measure
space). If we say that X is an mm-space, the metric and the measure are respectively
indicated by dy and my.

Definition 1.3 (Isoperimetric comparison condition of Lévy type; cf. [20]) We say
that an mm-space X satisfies the isoperimetric comparison condition of Lévy type
ICL, (v) for a Borel probability measure v on R and a real number ¢ > 0 if we have
V(D) < mx(Bp—yq+e(A)) for any a, b € supp v with a < b and for any Borel subset
A C X withmx(A) > 0and V(a) < mx(A), where V() := v((—o0, t]) is the
cumulative distribution function of v. We abbreviate ICLq(v) as ICL(v).

We remark that Definition 1.3 is only defined in the case ¢ = 0 in [20]. The 1-
measurement of an mm-space X is defined as

M(X; 1) :={psmx | ¢ : X - Ris 1 — Lipschitz },

where ¢,myx is the push-forward measure of mx by ¢ and a 1-Lipschitz function is a
Lipschitz continuous function with Lipschitz constant less than or equal to one. We
denote by P(R) the set of all Borel probability measures on R and we see M(X; 1) C
P(R). In the case that v € M(X; 1), the ICL(v) condition for X means a sharp
isoperimetric inequality on X. In fact, if X satisfies ICL(p,mx) for some 1-Lipschitz
function ¢ : X — R, then we have

mx (By(Q)) > mx (¢~ (B, ((—00, 1])))
> mx (B (¢~ ((—00, 11)))
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for any t € supp(psmyx) and any r > 0 with t + r € supp(g«myx), where a Borel
subset 2 C X with mx(2) > 0 satisfies mx (2) > mX(<p’1 ((—00, t])). This means
that the subset ¢ ~!((—o0, ]) C X is an extremal set for any ¢ € supp(@smy). Lévy’s
isoperimetric inequality is paraphrased as S"(1) satisfies ICL(§xmgn (1)), where & :
S$"(1) — R is the distance function from one point. The set of iso-mm-isomorphism
class of P(R) has an order relation called the iso(perimetrically)-Lipschitz order (see
Definitions 3.2, 3.3 and Proposition 3.4).

Gromov defined an iso-dominant using the iso-Lipschitz order and claimed that an
iso-dominant recollects the isoperimetric inequality [11].

Definition 1.4 (Iso-dominant [11]) We call a Borel probability measure on R an iso-
dominant of an mm-space X if it is an upper bound of M (X; 1) with respect to the
iso-Lipschitz order >='. That means v >’ u for all © € M(X; 1).

We have the following relation between an iso-dominant and ICL.

Theorem 1.5 ([20]) Let X be an mm-space and v a Borel probability measure on R
with connected support. Assume that the cumulative distribution function V of v is
continuous. Then, X satisfies ICL(v) if and only if v is an iso-dominant of X.

Gromov claim Corollary 3.21 in Sect. 3 without the proof in Section 9 in [11]. It is
a variant of Theorem 1.5. We focus on the continuity of V in Theorem 1.5. Without
the continuity of V, we find the following counterexample of Theorem 1.5. We put
[k] .= {0, . — 1} and consider the n-dimensional discrete cube [k]” equipped with
the ll-metrlc and the uniform measure, say mx)». Then, [k]" satisfies ICL((do)«m k"),
where d| is the distance function from the origin [5]. Since the cumulative distribution
function of (dp)sm [k is not continuous, we are not able to apply Theorem 1.5 with
[£]" as an mm-space X. In fact, (dy)«m k) is not an iso-dominant of [k]"”. However,
we regard (do).mg) as an iso-dominant of [k]" if we allow an error. This is one of
our motivations of introducing the iso-Lipschitz order with an error (see Definition
3.23).

The iso-Lipschitz order >( " with error (s, t) satisfies some beneficial properties
such as Theorems 3.26, 3.28, and 3.31 in Sect. 3.2. Now, we define the iso-dominant
with an error by using the iso-Lipschitz order with an error.

Definition 1.6 [e-iso-dominant] Lete > 0be areal number. We call a Borel probability
measure v on R an ¢-iso-dominant of an mm-space X if we have v >’( e0) M for all
we MX;1).

We have the following Theorem 1.7, which explains the relation between e-iso-
dominants and ICL,(v). Theorem 1.7 is a generalization of Theorem 1.5.

Theorem 1.7 Let X be an mm-space and v a Borel probability measure on R, and let
e > 0. We define

A(suppv) :=sup{8~ (suppv;a) | a € suppv \ {inf supp v} },

where §~ (suppv; a) :=inf{r > 0 | a — t € suppv }. Then we have the following (1)
and (2).
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(1) Ifinf suppv > —oo, we assume v({inf supp v}) < mx({x}) for any x € suppmy.
Then, v is an (¢ + A(supp v))-iso-dominant of X if X satisfies ICL.(v).

(2) Assume that supp v is connected or v({x}) > 0 for any x € suppv. Then, X
satisfies ICLy. (v) if v is an e-iso-dominant of X.

Theorem 1.7 implies that (do)«m[x)» is a 1-iso-dominant of the I'-discrete hypercube
[£]" since [k]" satisfies ICL((do)«mx}») (See Example 3.38). It is important to note
that we cannot eliminate the term A(supp v) from (1). This is because (do)«m ) 18
not an 0-iso-dominant of [k]", even though [k]" satisfies ICLo((do)«m (k7).

We will show that the condition that v is an g-iso-dominant of X is stable under
the convergence with respect to the Prokhorov metric dp and the observable distance
function dconc. This property enables us to obtain the isoperimetric inequality of a
continuous space by using a discretization. The following Theorem 1.8 is one of the
main theorems of this paper and represents the stability of e-iso-dominant.

Theorem 1.8 Let X and X,,,n = 1,2, ..., be mm-spaces, letvand v,,n = 1,2, ...,
be Borel probability measures on R, and let ¢,,n = 1,2, ... be non-negative real
numbers. We assume that {X,},, dconc-converges to X and {v,}, weakly converges to
v, and {&€,}, converges to a real number € asn — o0 and that v, is an &,-iso-dominant
of Xy, for any positive integer n. Then, v is an g-iso-dominant of X.

We remark that the distance dconc gives the concentration topology. It is weaker than
the [J-topology which is like the weak topology of measures.

Now, we obtain a sharp isoperimetric inequality of the n-dimensional continuous
I'-hypercube [0, 1]". The following Theorem 1.9 is one of the applications of Theorem
1.8. The proof of Theorem 1.8 is in Sect. 4.

Theorem 1.9 The measure (do).mpo 1y is the greatest element of M([0, 1]"; 1) with
respect to the iso-Lipschitz order =', where dy is the distance function from the origin.

By Theorems 1.5 and 1.9, the ll—hypercube [0, 17" satisfies ICL((do)« m[o,1}7)-
This implies Theorem 1.1.
Similarly, we obtain the following Theorem 1.10 by using Corollary 6 in [4].

Theorem 1.10 The measure &,mn is the greatest element of M(T"™; 1) with respect
to the iso-Lipschitz order =, where & is the distance function from one point.

By Theorems 1.5 and 1.10, the [ torus 7" satisfies ICL(&xm7n). This yields Theorem
1.2

Obtaining sharp isometric inequalities using a similar method requires constraints
on spaces. If the 1-measurement M (M; 1) of an compact Riemannian homogeneous
space M has the greatest element v, then M is only a round sphere [19]. Furthermore,
anecessary condition for the existence of the maximum of the 1-measurement is given
in Theorem 1.9 in [20].

If the 1-measurement M (X; 1) of an mm-space X has the greatest element v,
then we obtain the precise value of the observable diameter ObsDiam(X; —«) of X
(Definition 2.9) because we have

ObsDiam(X; —«k) = diam(v; 1| —«) forany « € (0, 1].
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Hence, we obtain the value of ObsDiam([0, 1]*; —«) and ObsDiam(7"; —«) for any
k € (0,1]. As former results, the n-dimensional unit sphere is known to be an
mm-space whose 1-measurement has the greatest element (see §9 in [11]). The n-
dimensional standard Gaussian space is also such an mm-space by an isoperimetric
inequality [6,23]. In Sect. 4.2, we calculate the observable diameters of some spaces
as one of the applications of the iso-Lipschitz order with an additive error.

2 Preliminaries

In this section, we present some basics of mm-spaces. We refer to [12,21] for more
details about the contents of this section.

2.1 Some Basics of mm-spaces

Definition 2.1 (mm-space) Let (X, dx) be a complete separable metric space and mx
a Borel probability measure on X. We call such a triple (X, dx, mx) an mm-space.
We sometimes say that X is an mm-space, for which the metric and measure of X are
respectively indicated by dy and my. We put t X := (X, tdx,my) for t > 0. Since
an mm-space is equipped with a probability measure, it is nonempty.

We denote the Borel o -algebra over X by By . For any point x € X, any two subsets
A, B C X and any real number r > 0, we define

dx(x,A) :=inf{dx(x,y) [y € A},

dx(A, B) :=inf{dx(x,y) |x € A, y € B},
Ur(A):={yeX|dx(y,A) <r},
B.(A):={yeX|dx(y,A) =r}

where inf ¥ := co. Weremark that U, (¥) = B, () = ¥ for any real numberr > 0. The
diameter of A is defined by diamA := sup, ;4 dx(x, y) for A # ¢} and diam¢ := 0.

Let Y be a topological space and let p : X — Y be a measurable map from a
measure space (X, my) to a Borel space (Y, By). The push-forward p,mx of mx by
the map p is defined as p.myx(A) := mx(p_l(A)) for any A € By.

Definition 2.2 (support) Let (X, dx) be a metric space and my a Borel measure on
X. We define the support suppmy of my by

suppmy = {x € X | mx(U,(x)) > O for any r > 0}.

Proposition 2.3 Ler (X, dx) be a metric space and mx a Borel measure on X. Let Y
be a separable metric space. Let f : X — Y be a continuous map. Then we have

supp fimyx = f(suppmy).
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Proof Since

femx (Y \ f(suppmx)) =mx(X \ f~'(f(suppmx)))
<mx(Y \ suppmy) =0,

we have supp f.myx C f(suppmy) because Y is separable.
Next, let us prove

f(suppmy) C supp fimx. 2.1

Take any y € f(suppmy). There exists x € suppmy such that y = f(x). Take any
positive real number ¢ > 0. Since f is continuous, there exists § > 0 such that

Us(x) C fH(U:(y)).

Then we have

Jemx (Ue(y)) = mx(Us(x)) > 0

and obtain (2.1). Because supp fimy is closed, we have

f(suppmy) C supp fimx.
This completes the proof. O

Definition 2.4 (mm-isomorphism) Two mm-spaces X and Y are said to be mm-
isomorphic if there exists an isometry f : suppmy — suppmy such that fumy =
my, where suppmy is the support of myx. Such an isometry f is called an mm-
isomorphism. The mm-isomorphism relation is an equivalence relation on the set of
mm-spaces. Denote by X the set of mm-isomorphism classes of mm-spaces.

Definition 2.5 (Lipschitz order) Let X and Y be two mm-spaces. We say that X dom-
inates Y and write Y < X if there exists a 1-Lipschitz map f : X — Y satisfying

femx =my.

We call the relation < on X the Lipschitz order.

Proposition 2.6 (Proposition 2.11 in [21]) The Lipschitz order < is a partial order
relation on X.

Definition 2.7 (Transport plan) Let « and v be two Borel probability measures on R.
We say that a Borel probability measure on R? is a transport plan between p and v
if we have (pr;)«7 = w and (pr,).mw = v, where pr; and pr, is the first and second
projection respectively. We denote by I1(u, v) the set of transport plans between w
and v.
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2.2 Observable Diameter and Partial Diameter

Observable diameter is one of the most important invariants among all invariants
for mm-spaces. We remark that the 1-measurement appears in the definition of the
observable diameter.

Definition 2.8 (Partial diameter) Let X be an mm-space and let « € [0, 1] be a real
number. We define the a-partial diameter diam(X; o) of X as

diam(X; «) := inf{diamA | mx(A) > «, A € Bx }.
For any Borel probability measure © on R, we set
diam(u; o) := diam((R, | - |, u); ).

Definition 2.9 (Observable diameter) Let X be an mm-space. For any real number
k € [0, 1], we define the k-observable diameter ObsDiam(X; —«) of X as

ObsDiam(X; —k) := sup diam(u; 1 —«).
neM(X;1)

Proposition 2.10 (Proposition 2.18 in [21]) Let X and Y be two mm-spaces and k €
[0, 1] a real number. If Y < X, then we obtain
diam(Y; 1 — k) < diam(X; 1 — k),
ObsDiam(Y; —«) < ObsDiam(X; —«).

2.3 Lévy’s Isoperimetric Inequality

Let S”(r) be the n-dimensional sphere of radius r > 0 centered at the origin in the
(n + 1)-dimensional Euclidean space R+ Let the distance dgn ) (x, y) between two
points x and y in $" (r) be the geodesic distance, and let the measure m gn () on S" (r)
be the Riemannian volume measure on S” () normalized as m gn () (S (r)) = 1. Then,
(8"(r), ds»¢y, msn(ry) is an mm-space.

Theorem 2.11 (Lévy’s isoperimetric inequality [10,16]) For any nonempty closed sub-
set Q C S"(1), we take a metric ball Bg of S (1) with mgn1)(Bg) = mgn1)(82).
Then we have

mgn(1y(Ur(82)) > mgn(1)(Ur(Bg))
foranyr > 0.
2.4 Box Distance and Observable Distance

In this section, we briefly describe the box distance function and the observable dis-
tance function.
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Definition 2.12 (Parameter) Let I := [0, 1) and let £ be the Lebesgue measure on /.
Let X be a topological space equipped with a Borel probability measure m y. A map
¢ : I — X is called a parameter of X if ¢ is a Borel measurable map such that

(p*ﬁl =my.
Lemma 2.13 (Lemma 4.2 in [21]) Any mm-space has a parameter.

Definition 2.14 (Pseudo-metric) A pseudo-metric p on a set S is defined to be a func-
tion p : S x § — [0, oo) satisfying

(D) p(x,x) =0,
2) p(y,x) =p(x,y),
3) p(x,2) <p(x,y)+p(,2)

forany x,y,z€ S

If p is a metric, p(x, y) = 0 implies x = y for any two points x, y € S. However,
a pseudo-metric does not necessarily satisfy this condition.

Definition 2.15 (Box distance) For two pseudo-metrics p; and po on I := [0, 1), we
define Cl(p1, p2) to be the infimum of & > 0 such that there exists a Borel subset
Ip C I satistying

(D) |p1(s,t) — pa(s,t)| < eforanys,t € Iy,
(2) L'Ip) =1 —e.

We define the box distance L1(X, Y') between two mm-spaces X and Y to be the infimum
of O(¢*dx, ¥*dy), where ¢ : I — X and ¢ : I — Y run over all parameters of X
and Y, respectively, and where ¢*dx (s, t) := dx(¢(s), ¢(t)) fors,t € I.

Theorem 2.16 (Theorem 4.10 in [21]) The function U1 is a metric on the set X of
mme-isomorphism classes of mm-spaces.

Definition 2.17 (Prokhorov metric) The Prokhorov metric dp is defined by

dp(u,v) :=inf{e > 0 | u(Us(A)) > v(A) — ¢ for any Borel set A C X }

for any two Borel probability measures p and v on a metric space X.

Proposition 2.18 (Proposition 4.12 in [21]) For any two Borel probability measures
W and v on a complete separable metric space X, we have

U((X, ), (X, v)) = 2dp(p, v).

Definition 2.19 (Ky Fan metric) Let (X, 1) be a measure space. For two p-measurable
maps f, g : X — R, we define the Ky Fan metric dgxgp = dﬁF by

dgp(f 8 ==inf{e =0 u{r el |1f(0)—g®)] >e}) <e}.
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Lemma 2.20 (Lemma 1.26 in [21]) Let (X, u) be a measure space. For two [i-
measurable maps f, g : X — R, we have

dp(fipt, g«it) < digp(f, 8).
Definition 2.21 (Observable distance) For a parameter ¢ of an mm-space X, we define
Lip;(X):={f:X — R | 1-Lipschitz }
and
¢ Lipy(X):={fog| f€Lipy(X)}.
The Hausdorff distance function dgF is defined by
diF(A, B) ;== inf{e > 0| A C Us(B) and B C U.(A)}

for two subsets A and B of Borel measurable functions from I, where the open e-
neighborhood of A is defined by

1
Us(A):={g: 1 —> R |d(A, g) <&}
We define the observable distance d.onc between two mm-spaces X and Y by

deonc (X, ¥) i= inf d&F (¢* Lip, (X), ¥* Lip (Y))

where ¢ : I := [0,1) - X and ¥ : I — Y are two parameters of X and Y
respectively.

Theorem 2.22 (Theorem 5.13 in [21]) The function deonc is a metric on X.
Proposition 2.23 (Proposition 5.5 in [21]) For two mm-spaces X and Y, we have
deonc(X, Y) < L(X, Y).

3 Isoperimetric Comparison Condition

3.1 Isoperimetric Comparison Condition Without an Error

In this subsection, we investigate the relation between iso-dominant and isoperimetric
comparison condition. We refer to [20] for more details about the contents of this

subsection. The main aim of this subsection is to introduce the following Theorems
3.5 and 3.7 which are extensions of Theorem 1.5. In a continuous space, isoperimetric
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problem is represented in terms of an isoperimetric profile. Let X be an mm-space.
The boundary measure of a Borel set A C X is defined to be

m-)"(_(A) := lim sup mx(Ug(A)) —mx (A) .
e—0+ e

Set
Immy :={mx(A) | A C X is Borel }.
The isoperimetric profile Ix : Immyx — [0, +00) of X is defined by
Ix(v) := inf{ mj('(A) | AC X :Borel, mx(A) =v}

for v € Imm x. The following isoperimetric comparison condition is a generalization
of an isoperimetric inequality. It is a derivative of the ICL condition.

Definition 3.1 (Isoperimetric comparison condition [20]) We say that X satisfies the
isoperimetric comparison condition IC(v) for a Borel probability measure v on R if

IxoV >V Llae onV !'(mmy),

where V means the cumulative distribution function of v and £! the one-dimensional
Lebesgue measure on R.

We define the following iso-Lipschitz order in order to define an iso-dominant (See
Definition 1.4).

Definition 3.2 (Iso-Lipschitz order [11, §9]) Let u, v € P(R). We say that u iso-
dominates v if there exists a monotonically non-decreasing 1-Lipschitz function f :
supp 4 — supp v such that f,uu = v, where supp u is the support of u. We write
u > v if u iso-dominates v.

Definition 3.3 (Iso-mm-isomorphism) Two Borel probability measures x and v on R
are said to be iso-mm-isomorphic if there exists areal number ¢ such that (idg +c¢)u =
v, where idp is the identity function on R. The iso-mm-isomorphism relation is an
equivalence relation on the set of Borel probability measures on R.

In the definition of iso-dominant (Definition 1.4), an upper bound of a 1-
measurement appears. An upper bound is defined on a partially ordered set. The
following Proposition 3.4 asserts that a 1-measurement is a partially ordered set.

Proposition 3.4 The iso-Lipschitz order is a partial order on the set of iso-mm-
isomorphism class of Borel probability measures on R.

The purpose of this subsection is to introduce the following Theorem 3.5 which is an
extension of Theorem 1.5 because one of the aims of this paper is to prove Theorem
1.7 which is a generalization of Theorem 1.5.
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Denote by V the set of Borel probability measures on R absolutely continuous with
respect to the one-dimensional Lebesgue measure £! and with connected support.

An mm-space X is said to be essentially connected if we have m;(r(A) > 0 for any
closedset A C X with0 < my(A) < 1.

Theorem 3.5 (/20]) Let X be an essentially connected mm-space and let v € V. Then
the following (1), (2), and (3) are all equivalent.

(1) The measure v is an iso-dominant of X.
(2) The space X satisfies ICL(v).
(3) The space X satisfies IC(v).

Gromov claim the following Corollary 3.21 without the proof in Sect. 9 in [11]. It
is a variant of Theorem 3.5. We prepare to state it and extend Theorem 3.5 to prove it.

Denote F(X) by the set of all closed subsets of X. Put mx(F(X)) :=
{mx(A) | A € F(X)}. The isoperimetric profile with respect to closed subsets I)C(1 :
myx(F (X)) — [0, +00) of X is defined by

I (v) ;== inf{ m}(A) | A C X : closed, mx(A) = v}

for v € mx (F(X)).
If we obtain a Borel set Ag C X suchthat Iy (mx(Ag)) = m} (Ap), anisoperimetric
inequality on X is represented by

my (Ag) < my(A)
forany A C X with mx(A) = mx(Ao). The following Definition 3.6 is a variant of
Definition 3.1.

Definition 3.6 (Isoperimetric comparison condition with respect to closed subsets)
We say that X satisfies the isoperimetric comparison condition with respect to closed
subsets IC(v) for a Borel probability measure v on R if

I§oV =V Llae onV '(mx(FX))),

where V denotes the cumulative distribution function of v.
The following Theorem 3.7 is an extension of Theorem 3.5.

Theorem 3.7 Let X be an essentially connected mm-space and let v € V. Then the
following (1), (2), (3), and (4) are all equivalent.

(1) The measure v is an iso-dominant of X.
(2) The space X satisfies ICL(v).

(3) The space X satisfies IC(v).

(4) The space X satisfies IC (v).

Let us prove Theorem 3.7. By Theorem 3.5, it is satisfied to prove that (3) implies
(4) and that (4) implies (2). The following Proposition 3.8 means that (3) implies (4).
The following Theorem 3.15 means that (4) implies (2).
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Proposition 3.8 Ler X be an mm-space and v a Borel probability measure on R. If X
satisfies IC(v), then X satisfies IC (v).

Proof This follows from Iy < I)C(1 on my (F(X)). O

To prove the following Theorem 3.15, we define the following Definition 3.9 and
we prepare some lemmas. These lemmas are also used in the proof of Theorem 1.7.

Definition 3.9 (Generalized inverse function) For a monotonically non-decreasing and
right-continuous function F : R — [0, 1] with

lim F(t)=0and lim F(t) =1,
——00 t—+00

we define a generalized inverse function F: [0, 1] = R by

~ inf{reR|s<F(@)} ifse(0,1),
F(s) = .
0 ifs=0ors =1

fors € [0, 1].

Lemma 3.10 For any F as in Definition 3.9, F takes finite values and I:“|(o,1) is non-
decreasing.

Proof Fix any real number s € (0, 1) and define A := {r € R | s < F(¢) }. The set
A is nonempty because lim;_, o, F(f) = 1. Since lim,_, o, F'(t) = 0, there exists
to € R such that F(#y) < s. For any element t € A, we have F(t)) < s < F(¢).
Since F is non-decreasing, the inequality 7o < ¢ follows. This implies that # is a
lower bound of A. Hence, F (s) takes finite values. The function Fisa non-decreasing
function on (0, 1) because we have {r e R|s' < F(t)} D {reR|s < F(t)} for
any 0 < s’ < s < 1. This completes the proof. O

Lemma 3.11 (cf. [19]) For any F as in Definition 3.9, we have the following (1), (2),
and (3).

(1) Fo P:(s) > s for any real number s with ) < s < 1.
(2) Fo F(t) <t forany real number t with 0 < F(t) < 1.
(3) F7'((—o00,t ]\ {0, 1} = (0, F()]\ {1} for any real number t.

Proof First we prove (1). If s = 0, we have (1) because ImF C [0, 1]. Fix a real
number s € (0, 1) and define A := {r e R|s < F(¢t)} # (. By the definition of
infimum, we have

F(t") > inf F(¢)
reA
for any t' € A. For any ¢ > inf A, we have ' € A because F is non-decreasing. By

this, we have

lim  F(t) > inf F(2).
t'—inf A+0 teA
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By the right continuity of F, we obtain

F(inf A) > inf F(z).
teA
Therefore, we have
F(F(s)) = F(inf A)
> inf F(t)
teA
=inf{ F@)|s < F@)}

> s.

Next we prove (2). We take any real number t € R with 0 < F(¢) < 1, then we
have

F(F(t)) =inf{t' e R| F(')> F(t)} <t.

Last we prove (3). Take any real number s € F1((—o0, 1)) \ {0, 1}. It follows
from F (s) < t and the non-decreasing property of F that F o F (s) < F(t). This
implies that s < F(¢) by (1) and we have s € (0, F(¢)] \ {1}. Conversely, take any
real number s € (0, F(¢)]\ {1}. Since s < F(t), we obtain F(s) <t by the definition
of F(s). Hence s € F~((—o0, t]) \ {0, 1}. This completes the proof. O

Remark 3.12 The generalized inverse function F of a function F is a Borel measurable
function. In fact, F|(o,1) is monotonically non-decreasing.

Lemma 3.13 Let u be a Borel probability measure on R with cumulative distribution
function F. Then we have

w= FL'01,

where L} l{0,1] is the one-dimensional Lebesgue measure on [0, 1].

Proof By Lemma 3.11(3), we have

FolL'jo.11((—00, t 1) = Lj0,11(F~' (=00, 1)\ {0, 1})
= L"10,11((0, F(t) 1\ {1})
=F(t) = u((—00,11])
for any # > 0. This completes the proof. O

Lemma3.14 (Lemma3.13in[20]) Let g : R — R be a monotonically non-decreasing
function, f : R — [0, 400) a Borel measurable function, and A C R a Borel set.
Then we have

/ (fog)-g dL! s/fdc‘.
g 1(A) A
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Theorem 3.15 Let X be an essentially connected mm-space and v € V. If X satisfies
ICL(v), then X satisfies ICL(v).

Proof Setting E := (supp v)°, we easily see the bijectivity of V|g : E — (0, 1). We
define a function p : R — R by

V/(r) foranyt € V=l (mx (F(X))) where V is differentiable
p(t) = and such that Il o V() > V'(1),
0 otherwise,

for a real number 7. We see that p = V' L!-a.e. and that p is a density function
of v with respect to L', Since If(l oV > p everywhere on V-l mx (F(X))), we
have I)C(l > po (V|g)~!on mx(F(X)) \ {0, 1}. To prove ICL(v), we take two real
numbers a, b € suppv with a < b and a closed set A C X with mx(A) > 0 and
V(a) < mx(A). Note that replacing a Borel set A by a closed set A in the Definition
1.3 is equivalent to the original definition. We may assume mx (Bp—,(A)) < 1. Let s
be any real number with 0 < s < b—a. Remarking mx (B;(A)) € mx(F(X))\{0, 1},
we see

m (By(A)) = Ig (mx (By(A))) = p o (V|g) ™' (mx(Bs(A))).
Setting g(s) := mx(Bs(A)), we have
g'(s) =m%(Bs(A) = po (V[) ' (g(s) L'-ae.s>0
and hence

g'(s)

Ll 0,
S oWl (gl = Too Lraes el o).

where we remark that g’(s) > 0 by essential connectedness of X. Since g(0) =
myx(A), we have

(VIg) o g(0) = (VIg) '(mx(A))
> (Ve '(V@@) =a

if V(a) > 0.1f V(a) = 0, we have a = inf suppv < (V|g) "' 0 g(0) since (V|g) ' o
g(0) € E = (suppv)°. By Lemmas 3.14 and 3.13,

1 -1
b—a<f ¢@ - (o VInT @) ds
0,b—a]

=/ ) - (po(ViD M ewn)  ds
g~ (g(0,b=al)

A

IA

£1
[g(Ob anp poVlg)™ po(Vip)!
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1
/( —d((VIp);'Lh

VIg)~log([0,b—a]) P

J x
—dv
(VIg)"tog(10,b—a]) P

dac!

A

/(VIE)log(IO,b—a])
< LNV og(0), (VIg) ' ogb —a)))
=(VIg) togb—a)— (VIp) ' og(0)
<(Vlp) 'ogb—a)—a,

which implies
V(b) < g(b—a) =mx(Bp—q(A)).
This completes the proof. O

This completes the proof of Theorem 3.7. At the end of this subsection, let us prove
Corollary 3.21 by Theorem 3.7. We prepare some definitions and propositions to prove
Corollary 3.21.

Proposition 3.16 (/20]) Let X and Y be mm-spaces such that X dominates Y. Then
we have

my(F(Y)) Cmx(F(X)) and I < I on my(F(Y)).

In particular, if X satisfies IC°'(v) for a Borel probability measure v on R, then Y also
satisfies ICS(v).

Proof Since X dominates Y, there is a 1-Lipschitzmap f : X — Y suchthat fymy =
my . Forany closedset A C ¥, wesee f~'(B:(A)) D B.(f~'(A)) by the 1-Lipschitz
continuity of f, and hence

it () = limsup ™ Be(A) = my ()

e—+0 &
. mx(Be(f7'(A) —mx(f~'(A))
> lim sup

e—>—+0 &

=myx(f~1(A),
which implies that, for any v € my (F(Y)),

)= inf mf(A)=> inf omE A > 190,
y () .- y ( )_mx(f_](A))zv x (7 (A) = Ix(v)

The rest is easy. This completes the proof. O

@ Springer



Isoperimetric Inequality on a Metric Measure Space Page 17 of43 35

Definition 3.17 (Dominant [11, §9]) We call a Borel probability measure v on R a
dominant of an mm-space X if v is an upper bound of M (X; 1) with respect to the
Lipschitz order >. That means (R, | - |,v) > (R, |- |, u) forall u € M(X; 1). The
Lipschitz order > is defined in Definition 2.5.

Using Proposition 3.16, we prove the following Proposition 3.18.

Proposition 3.18 (Gromov [11, §9]) If v is a dominant of an mm-space X, then
mx(F(X)) Cv(FR)) and IS < I on mx(F(X)),

where IVCl is the isoperimetric profile with respect to closed subsets of (R, v).

Proof We take any real number v € mx (F (X)) and fix it. If v = 0, then it is obvious
that v € v(F(R)) and Ifl(v) =0= I)C(l(v). Assume v > 0. For any ¢ > O there is
a closed set A C X such that mx(A) = v and m;(A) < I)C(l(v) + ¢. Note that A is
nonempty because v > 0. Define a function f : X — R by f(x) := dx(x, A). Then
f is 1-Lipschitz continuous. Since fimyx((—o00,0]) = myx(A) = v, we have

IC]

Semx

) < (fimx) T (=00, 0]) = m¥(A) < I (V) +e.

Since v dominates f,my, Proposition 3.16 implies that v € v(F(R)) and Ifl(v) <

I}lmx (v). We therefore have Ifl(v) < I)C(l(v) + €. Since ¢ > 0 is arbitrary, we obtain
Iﬁl(v) < I)C(l(v). This completes the proof. O

Definition 3.19 [Iso-simpleness [11, §9]] A Borel probability measure v on R is said
to be iso-simple if v € V and if

LoV =V [lae.

Remark 3.20 For any Borel probability measure v on R, we always observe I, oV < V’
L!-a.e. In fact, we have

V() =vT((—o0,1]) = inf vF(A)=1,0V(1)
V(A)=V ()

Llae. 1.

Gromov [11]*§9 stated the following corollary without proof.

Corollary 3.21 (Gromov [11]*§9) Let X be an essentially connected mm-space and v
an iso-simple Borel probability measure on R. Then, we have Ifl < Iffl onmy(F (X))
if and only if v is an iso-dominant of X.

Proof We assume that v is an iso-dominant of X. By Proposition 3.18, we have IVCl <

I)C(1 on my (F(X)). Conversely, we assume Ifl < I)C(] on mx(F(X)). Then we have

I,oV < I‘fl oV < I)C(1 o Von V- (mx(F(X))). Since v is iso-simple, we have
Vi=LoV<IgoV L'ae onV (mx(F(X)).
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This means that X satisfies IC(v). By Theorem 3.7, v is an iso-dominant of X. This
completes the proof. O

3.2 Iso-Lipschitz Order with an Error

In this section, we define the iso-Lipschitz order with an additive error and present
some properties. To define the iso-Lipschitz order with an error, we use transport plans
(Definition 2.7) and the following iso-deviation.

Definition 3.22 (Iso-deviation) We define the iso-deviation dev.. of a subset S C R2
by
dev, S :=sup{y —y —max{x —x",0} | (x,y), (", y) € S}

if S is nonempty. We set dev,. ¢ := 0.

The iso-deviation evaluates the deviation from the monotonically non-decreasing and
1-Lipschitz property. The following iso-Lipschitz order with an error is a generaliza-
tion of the iso-Lipschitz order (Definition 3.2).

Definition 3.23 (Iso-Lipschitz order >/(s n with error (s, 1)) Let u and v be two Borel
probability measures on R and s, t > 0 two real numbers. We say that i iso-dominates
v with error (s, t) and denote u >/(S nv if there exists a transport plan 7 € IT(u, v)

and a Borel subset S C R2 such that dev.. S < sand | — 7 (S) < 1¢.

The following Propositions 3.24 and 3.25 are useful properties of the iso-deviation.
By Proposition 3.24, we obtaindev . S < gifwecheckdev. S < ¢for any real number
e > 0. Proposition 3.25 implies that a subset S C R? determines a 1-Lipschitz function
if we have dev, S = 0.

Proposition 3.24 For a subset S C R2, we have
dev, S = devy. S.
Proposition 3.25 Ler S C R2. For any two points (x, y), (x', y') € S, we have

ly = ¥'1—|x — x'| <dev, S.

Proof Take any (x, y), (x/, y') € S. By symmetry, we may assume that y > y’. Then
we have

ly=y—lx —x'| <y—y —max{x —x",0} < dev, S.
This completes proof. O

Theorem 3.26 Let 1u and v be two Borel probability measures on R. Then p > v if
and only if >20 0 V-
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Proof Assume that 1 >’ v. Then, there exists a monotonically non-decreasing 1-
Lipschitz function f : suppu — suppv such that fuu = v. We put 7 =
(idr, f)«p € TI(u, v). Let us prove dev, suppr = 0. By Proposition 2.3, we have

supp 7 = (idg, f)(supp ),

which implies that

dev, suppm = dev, ((idg, f)(supp 1))

by Proposition 3.24. Hence, it suffices to prove dev, ((idr, f)(supp n)) = 0. Take
any two points (x1, y1), (x2, y2) € (idgr, f)(supp n). Then, we have x1, x, € supp u
and y; = f(x1), y2 = f(x2). In the case that x| > x;, we have

y1 —y2 —max{x; —x2,0} = f(x1) — f(x2) — |x1 — x2|
< |fG) = fx)l = lx1 —x2/ <0

because f is 1-Lipschitz. In the case that x; < x», we have f(x1) < f(x2) since f is
monotonically non-decreasing. Then we have

yi—y2—max{x; —x2,0} =y —y2 = f(x1) — f(x2) <0.

Therefore we obtain dev. supp & = 0. It follows that >20,0) V.

Conversely, assume that >20,0) v. Then there exists w € II(u, v) such that
dev, supp w = 0. Take any point x € supp . We now claim that there exists a unique
point y € supp v such that (x, y) € supp . Let us prove the existence of y. Take any
x € supp w. By Proposition 2.3, we have

supp p = supp(pry)«7 = pry(supp ).

Hence, there exists {(x;, y»)}neN C supp 7 such that x,, converges to x. By Proposition
3.25, we have

|ym — Yl = |Xm — xu| < dev, suppm =0
for any positive integers m and n. This means that {y, } is a Cauchy sequence. Therefore,

{yn} converges to some y € R. Since supp 7 is closed, we have (x, y) € suppx. In
addition, we have

y € pro(supp ) C Supp(pry).7T = supp v.
The uniqueness of y € supp v follows from dev,. suppr = 0 and Proposition 3.25.
Now, we define a function f : suppu — suppv by f(x) := y for x € supp i,
where y € supp v satisfies (x, y) € supp w.Bydev. supp w = 0 and Proposition 3.25,
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f is a 1-Lipschitz function. Let us prove that f is monotonically non-decreasing. Take
any x, x’ € supp u with x < x’. Then we have

f) = f(x") = f(x) = f(x') —max{x —x',0} < dev, suppr = 0.
It remains to show f,u = v. Let us prove

supp = { (x, f(x)) | x € supp i }. (3.1

By the definition of f, we have suppm D {(x, f(x)) | x € supp i }. We now check
suppm = {(x, f(x)) | x € supp u }. Take any point (x, y) € supp 7. By Proposition
(2.3), we have

x € pry(suppm) C supp(pry)7T = supp i.

Because f is well-defined, we have y = f(x). Thus we have (x,y) €
{(x, f(x)) | x € supp u }. Therefore we obtain (3.1).
By (3.1), we have

(A x B)Nsuppm = {(AN f~(B)) x R} Nsupp 7
for any Borel sets A and B of R. Since

T(Ax B)=7(AN f~Y(B)) x R)
= (AN f71(B)
= (idr, f)«u(A x B),

we have m = (idr, f)«u, which implies v = (pry).«m = fip. This completes the
proof. O

Proposition 3.27 Let d;1 be the I'-distance dj ((x, y), (x', y)) := |x —x'| + |y — /|
on R? and dy the Hausdorff distance function with respect to dpi. For any two closed
subsets S, S C R2, we have

|devy S — devs §'| < 2dy(S, S).

Proof Take any real number ¢ > 0 with ¢ > dg (S, S'). We have S’ C U.(S). Let us
prove dev, U.(S) < dev, S + 2¢. Take a point (x;, y;) € Ug(S) fori = 1,2. Then
there exists (x/, y/) € S such that dji ((x;, yi), (x/, y;)) < &. Now, we have

y1 —y2 —max{x; —x2,0}
=y =+ 01 —yD)+ 00— )
—max{x] — x5 + (x; — x}) + (x5 — x2),0}
<y =y Iy =yl + s =l
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—max{x] —xj — |x; — x]| — [x; — x2[,0}
<y =y v =i+ 1y — vl

— (max{x; —x5,0} — |x; — x]| — [x5 — x2])
<y} — ¥, —max{x; —x5,0}+2¢
< devy S + 2e.

Therefore we obtain
dev, S’ < dev. U.(S) < devy S+ 2e.

This implies dev,. S’ —dev, § < 2dy (S, S’). By exchanging S for S/, we also obtain
dev, S —dev, S’ <2dy(S, S). O

Theorem 3.28 Let  and v be two Borel probability measures on R and s, t > 0. If
7 >2S+£J+£) v for every ¢ > 0, then we have | >’(“) V.

/
G+l
n, there exist, € IT(u, v) andaclosed subset S,, C RZ such thatdev,. S, < s—}—% and

Proof Suppose that o > v for any positive integer n. For any positive integer

7, (Sp) > 1—1— % Due to the weak compactness of IT(u, v), we may assume that 7,
converges weakly to some Borel probability measure 7 by taking a subsequence. By
Prokhorov’s theorem, for any positive number m, there exists a compact subset K,,, C
R? such that sup,, .y 7, (KE) < % and 7 (Kf) < % ‘We may assume that the sequence
of {K,,} is monotonically non-decreasing with respect to the inclusion relation. Let dy
be the Hausdorff distance function of (R2, d1) and d7; the Hausdorff distance function
of (K, dp). Since Ky, is compact, (F(Ky,), dyy) is also compact, where F(K,;) is
the set of all closed subsets of K,,. By taking a subsequence {nfl)}ieN C N, we have
d},(Sng) NnKip, Séo) — 0 asi — oo for some Séo € F(K1), where N is the set of

positive integers. Furthermore, we take some subsequence {nfz)}ieN - {nfl)}ieN and
we have d%{ (S,NK>, Sgo) — 0 for some Sgo € F(Ky). By repeating this procedure,

we take a subsequence {n?m)},-eN C {nfmil) Jien and we have d; (S o N Ky, ST) —

0 for some S, € F(Ky). Putn; := nl@. Since the convergence on (F(Ky), d};)
implies the convergence on (F(R), dy), we obtain

A (Sp; N Ky, ST) = 0 (3.2)

for any positive integer m. Since {K,,} is monotonically non-decreasing with respect
to the inclusion relation, {SZ} is also monotonically non-decreasing. By Proposition
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3.27 and (3.2), we have

dev, S <liminfdev, (Sy, N Kp)
1—> 00
= lim inf dev.-(Sy,) 3.3)

1
< liminf <s + —) =y
i—o00 n;

Since {7, } converges weakly to 7 and (3.2), we also have

7 (Sh) = lim sup 7wy, (Sp; N Kip)

i—00
= hm SUP(T[n; (Sn,) — TTp; (Sn, N K;/L;;))
11— 00
> lim sup(, (Sy,) — 7, (K)) S
1—> 00
. 1 1 1
>limsup(l—t————)=1—¢t——
i—o00 nj m m

for any positive number m. Now, we put S := |-, S™. By (3.3), we have

dev, S = sup dev, S <s
meN

By (3.4), we have
. . 1
7(8) = lim 7(S%) > lim <l -1 — —) =1-1,
m—00 m— 00 m

where we remark that the limit exists because {S72.} is monotonically non-decreasing.

Therefore we obtain p >2S n v This completes the proof. O
The following Theorem 3.31 is a variation of the transitive property. To prove

Theorem 3.31, we prepare the following Definition 3.29 and Proposition 3.30.

Definition 3.29 (Subtransport plan) Let o and v be two Borel probability measures
on R. We say that a Borel measure on R? is a subtransport plan between w and v if
we have (pry)«m < p and (pry).m < v.

Proposition 3.30 Let i and v be two Borel probability measures on R. Then we have
" >2 s Y if and only if there exists a subtransport plan 7w between w and v such that

dev. suppmr <sand 1 — JT(R2) <t
The proof of the above proposition is easy and omitted.

Theorem 3.31 Let wy, w2, and 3 be three Borel probability measures on R and
let si,t; > 0 fori = 1,2 If puy >,y w2 and if po >, 13, then we have

/
KU > (51 450,11 412) H3-
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Proof Suppose that (| >/(Sl;tl) wo and (o >zsz’[2) 3. There exists a subtransport
plan r; between w; and ;41 such that dev. suppm; < s; and 1 — m;(supp ;) < t;
fori = 1,2. Put u' := (pry),m1 and u” := (pr;).m2. By the disintegration theorem
(see ITI-70 in [18] or Theorem 5.3.1 in [1]), there exist two families {(71)y}rer and
{(2)x }xer of Borel probability measures on R such that

71(A x B) = /B Gt (A (2),
73(A x B) = /A (e2)x (BYdW (x)

for any Borel subsets A and B of R. Now, we put

m123(A X B x C) := /B(ﬂl)x(A) () (O)d (1 A ) (x),
713 = (Pri3)+7T123

for any three Borel subsets A, B, and C of R, where u’ A u” := u' — (W' — ")+ and
ameasure (' — )4 is defined by

(' — " (B) :=sup{u/(B") — 1" (B") | B’ C BisaBorel set}
for any Borel set B C R. Then we have
(Prin)s«mi23 < i,  (Pros)«miz3 < 7. (3.5)

In particular, 13 is a subtransport plan between 1 and w3. Moreover, we obtain
1 — m3(supp m13) < t1 + t» because we have

m13(R%) = /R () (R) - () (R)) d (1" A ") (x)

=W AuHR)

= ®R) — (' — ") (R)

> W (R) — (2 — ")+ (R)

= ' R) — (L2(R) — " (R))

= @®R) +u"(R) -1
>A-m+d-n)—-1=1-11—1n.

It remains to show dev,. supp 713 < s1 + s2. By Proposition 3.24 and since
supp 713 = pry3(supp 7123),
it suffices to prove
dev,. (pri3(suppm123)) < s1 + s2. (3.6)
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Take any (x;, z;) € pry3(suppmi23) fori =1, 2. There exists a point y; € R such that
(xi, i, zi) € suppi23. By (3.5), we have

supp 123 C pry, (Prip(suppri23)) C pry (supp )
and

supp 123 C Pra3 (praz(suppr123)) C pray (supp m2).
This implies that (x;, y;) € suppm; and (y;, z;) € supp 2. Now, let us prove

max{y; — y2,0} —max{x; —x3,0} < s;. 3.7
In the case that y; < y», we have
max{y; — y2,0} —max{x; —x2,0} = —max{x; —x2,0} <O.

In the case that y; > y», we have

max{y; — y2,0} —max{x; —x2,0} = y; — y» —max{x; — x>}

< dev. suppm <sj.
Combining (3.7) with dev. supp 7 < s, we obtain

z1 —zo —max{x; —x2,0} <z; —zp —max{y; — y2,0} + s
< s+ 52,

which implies (3.6). This completes the proof. O

3.3 Isoperimetric Comparison Condition with an Error

In this section, we prove Theorem 1.7 to explain the relation between e-iso-dominant
and ICL,. We also explain the relation between IC; (Definition 3.35) and ICL,. The
condition ICj is a discretization of IC (Definition 3.1). At the end of this section, we
give some examples of these conditions.

Proposition 3.32 Let ¢ be a non-negative real number. If a Borel probability measure
v on R is an g-iso-dominant of an mm-space X, then (t - idR)4V is a te-iso-dominant
of tX.

Remark 3.33 By Theorem 3.26, a Borel measure on R is a 0-iso-dominant if and only
if it is an iso-dominant.

Let A be a subset of R. We put

8 (Aj;a):=inf{t >0|a—te A}
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for a point a € A, where we define
§ (A;a) .=
if{t >0]a—teA}=. Wedefine A(A) by
A(A) :=sup{d (A;a) |a € A\ {inf A}}.

If A is a closed set, we have a — §(A; a) € A.

Proof of Theorem 1.7 (1) Let V be the cumulative distribution function of v. Take any
1-Lipschitz function f : X — Randlet F : R — [0, 1] be the cumulative distribution
function of fumyx.Weputm := (‘7, F)*ﬁl ljo,17andsee € IT(v, fumy).Itsufficesto
provedev,. suppm < €43, whered := A(supp v). Take any points (x1, y1), (x2, y2) €
supp 7. Let us prove

y2 —y1 —max{xy —x1,0} <& +34. (3.8)
Since {0, 1} is a null set with respect to £ we have

supp7 = supp(V, )L [[0.1]
C (V, F)(supp £'j0,1 \ {0, 1})
= (V, F)((0, 1)).

Then, there exists {#'}7°, C (0,1) such that x; = lim, f/(tl.”) and y; =

limy— o0 F(21) fori = 1n=21
If x; > xp, we have y; > y», which implies (3.8). In fact, we have
y2—yi—max{x; —x1,0} =y, —y; <0 =<s+34.

We assume x; < x,. Let us prove

VoV < F(FA)+ V(@) — V() +8+e) (3.9)
for any positive integer n. In the case that V(tf) = inf supp v, we have

0 <t <FoF@)=mx(f ((—oo, F(])]),
which implies

F 7N (=00, Fa)D) # 0. (3.10)

Since we have

v({inf supp v}) < mx({x}) for any x € suppmy (3.11)
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and (3.10), we have
Vo V() = v({inf suppv}) < mx(f~"' (o0, FG)),
where (3.11) is the assumption of this theorem. By using ICL, (v), we obtain

Vo V(t) < mx(By gy (/" (=00, FGD]))
< mx(f 7 By apye (—00, FED))
= F(F(]) + V() = V) +e).

In the case that \7(1]") > inf supp v, wehave § ~ (supp v; \7(1‘1”)) < 00. By the definition
of §~ (supp v; V(tf‘)), there exists a sequence {s;'}72, of positive real numbers such
that limy _, oo 5 = 6~ (Supp v; V(II”)) and V(t{’) —s; € supp v for any positive integer
k. By the definition of \7, we have V(V(tl") — ) < t{ for any real number s > 0,
which implies
VV() = sp) < 1] < Fo F(f) =mx(f~ (oo, FG])]).
By ICL, (v), we have
Ve V(3) = mx(Byu e (f (=00, FAPD))
< mx(f ™ By apysspre (—00, FGD))
=F(F()+ V(@) = V) +si +e).

By taking the limit as k — oo, we have

Vo V() < F(F({t])+ V() — V(') + 8 (suppv; V() + &)
< F(Fu) 4+ V(@) = V(D) +5+e¢).

Hence we obtain (3.9).
By using (3.9), we have

B <VoV(E)=FFEH+ V) - Vi) +8+e).
By the definition of F (t3), we have
F) < Fa) + V() = Vi) +8+e.

By taking the limit as n — o0, we obtain y — y; < xp — x1 + 6 + . This completes
of proof. O
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Proof of Theorem 1.7 (2) Take any two real numbers a, b € suppv with a < b and
any Borel set A C X withmyx(A) > 0 and myx(A) > V(a). We define a 1-Lipschitz
function f : X — Rby f(x) :=dx(x, A) for x € X. Since v is an g-iso-dominant
of X, there exists a transport plan 7 between v and f,mx such thatdev. suppm < ¢.
We put

a :=sup{x | (x,y) €suppm N (R x (—o0, 0]) for some y},
b :=sup{x | (x,y) € suppm N (R x (=00, b — a + ¢]) for some y }.

We remark that we have @’ < b’ by the definition of a’ and b’. We claim that we can
assume that ' < oo because we have

mx(Bp_q42:(A)) = 1if b = oo. (3.12)
We now check (3.12). First, let us prove
suppwr C R x (—o0, b —a + 2¢]. (3.13)

We take any point (x, y) € suppn. By ' = oo, there exists (x, y') € supp 7w such
that x < x’ and y’ < b — a + &. Then we have

y <y +dev, suppmr < b —a+2e
because dev. suppw < ¢. This implies (3.13). Then (3.13) implies

mx (Bp—a42:(A)) = fumx ((—00,b — a + 2¢])
=a(R x (—o0,b —a +2¢]) > 1.

This completes the proof of (3.12).
Now, we have

Via) < mx(A) < fumx((—00,0]) =7 (R x (=00, 0])
= m((—00,a'] x (—00,0]) < V(d).
In particular, we have
a' > inf supp v (3.14)
because V(a’) > mx(A) > 0. Let us prove a < a’. By (3.14), we may assume
a > inf suppv. If a > a’, then we have V(a) > V (a’) because we have v({a}) > 0
or supp v is connected, which implies a contradiction.
Next, let us prove b < b’. We may assume b > a’ because b < a’ < b if b < a'.

Let us prove that

there exists y, < 0 such that (a’, y;) € supp 7. (3.15)
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Take any positive integer n. There exists (s, ;) € supp 7w suchthata’—1/n < s, < d’
and 7, < 0. By Proposition 3.25, we have

[ta — t1] < |sy — s1] +dev, suppmw < 1+e.

Since the sequence {z,} is bounded, there exists a subsequence {n(i)} and y, € R
such that 7,;y — y; as i — oo. We have y;, < 0 because £, < 0 for any n. Since
(Sn(iy» tn(i)) — (a’, yp) as i — oo and supp 7 is closed, we obtain (a’, y;) € supp .
Hence (3.15) is proved.

Similarly, let us prove that

there exists y, < 0 such that (a’, y{)) € supp 7. (3.16)

By Proposition 2.3,

b € supp v = supp(pry) 7 = pry(supp 7). (3.17)

By (3.17), there exists a sequence {(sy, )} C supp & suchthats, — basn — 0o.The

sequence {f,} is bounded because dev, supp < e. Hence there exists a subsequence

{n(i)} and yp € R such that t,,;) — yo as i — o0. Since (su(;), tai)) — (b, yo) as

i — oo and supp r is closed, we obtain (b, yg) € supp 7. Hence (3.16) is proved.
Now, we have

YW<y-—y<b—d+e<b—a+e

since dev,. suppm < &. Therefore, we have (b, yg) € suppr N(R x (—o0, b—a+¢]),
which implies » < b’ by the definition of &'.
If we have

suppm N ((—o0, b'] x R) C (=00, b'] x (=00, b — a + 2¢], (3.18)
then we obtain

V(b) < V(') =m((—00,b'] x R)
< 7((—=00,b'] x (=00, b —a + 2¢])
<R x (—00,b —a + 2¢])
= fimx((—00,b —a + 2¢))
= mx (Bp—a+2:(A)).

It remains to prove (3.18). Take any point (x, y) € suppw N ((—o0, b’] x R). In the
case that x < b/, there exists (x’, y') € suppw N (R x (—00, b — a + €]) such that
x" > x by the definition of »’. Now, we have y — y' = y — y/ —max{x —x/,0} <
dev, suppm < ¢. Hence, weobtainy <y +& <b —a + 2s.
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In the case that x = b/, then for any positive integer n, there exists a point (x,, y,) €
suppr N (R x (—oo, b —a +¢]) suchthatx — 1/n < x,, < x. By dev. suppm <,
we obtain

YEInt+x—x,+¢
<x—Xx,+b—a+2¢

1
<—+4+b—-—a+2¢—>b—a+2casn— oo.
n

Hence we have (x, y) € (=00, b'] x (—00, b — a + 2¢]. This completes the proof. O

Isoperimetric profiles are for non-discrete spaces. The following Definition 3.34
define isoperimetric profiles for discrete spaces.

Definition 3.34 (e-discrete isoperimetric profile) Let X be an mm-space, and ¢ > 0 a
real number. We define the e-discrete isoperimetric profile I of X by

I3 (v) == inf{mx(Be(A)) | mx(A) = v} forv € Immy,

where Immy := {myx(A) | A C X is a Borel set. }.
The following Definition 3.35 is a discrete version of IC(v) condition.

Definition 3.35 (Isoperimetric comparison condition with an error) We say that an
mm-space X satisfies the condition IC] (v) for a Borel probability measure v on R
and a real number ¢ > 0 if we have

15O vy = Vi + 8t @)

for any ¢t € (suppv \ {supsuppv}) N V=1 (Immy \ {0}), where V(¢) := v((—o0, 1])
is the cumulative distribution function of v, and where

8T(t):=inf{s >0 |t+s e€suppv}.

The following Propositions 3.36 and 3.37 explain the relation between IC;" condi-
tion and ICL condition.

Proposition 3.36 Let X be a finite mm-space equipped with the uniform measure, and
v a Borel probability measure on R with N := #supp v < oo. Let ¢ be a non-negative
real number. We assume that

1
Imv C (1/#X)Z = {ﬁ-nmeZ}.

If X satisfies ICY (v), then it satisfies ICL(y—_1)e ().
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Proof Suppose that X satisfies IC;" (v). Take any two real numbers a, b € supp v with
a < b and a Borel subset A C X with mx(A) > V(a). We remark that V(a) > 0
because #suppv < oo. We may assume a < supsuppv. We inductively define
8 R — [0, 00] by

SFy =8t +1, §5,(1)=8Y 085 1)+87 1)

for any positive integer n. Now, there exists a positive integer n¢ such that 5;[0 (a)="0>
and ngp < N — 1. Let us prove by induction

mx Byt () —aine(A) = V 0 85 (a) (3.19)

for any positive integer n < ny.
First, we consider the case n = 1. Since mx is the uniform measure and Imv C
(1/#X)Z, there exists a Borel set A| C A suchthatmy (A1) = V(a) because we have

myx (A) > V(a). By the definition of If;r(a)ﬂ, we have
MX (Bt () —q1e(A)) = mx (Bs+(a)1¢(A))
> mx (Bs+ () +e (A1)
> 127 @% 5y (a)

> Vod(a),

where we remark that X satisfies IC; (v).
Next, we assume (3.19) for n = k. Hence, we have

mx Byt (@) —q ke (A) 2 V 0 8 (a),
which implies that there exists a Borel subset
A C Byt @y —atke(A)
such that mx (Ax) = V o 8; (a). Therefore we have

myx (Bg+

k+l(a)—a+(k+1)s(A)) == mX(BS;{"H(a)—SZ(a)+£(BSZ'(a)—a+ks(A)))

= mX(B3+03;r(a)+5(Ak))

stos
> 1y k(@ oVo 82‘(41)

> Vod(a)
if k + 1 < no. Hence we obtain (3.19). In particular, we have
mx(B%(a)_Hnos(A)) > Vol (a).
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Therefore we obtain

mx (Bp—a+(N-1)e(A)) > mx(Bg%(a)_ﬁ,,og(A))
> Vol (a)=Vb).

This completes the proof. O

Proposition 3.37 Let X be an mm-space and v a Borel probability measure on R, and
¢ > 0 a real number. If X satisfies ICLg(v), then it satisfies ICJ (v).

Proof Take any ¢ € (suppv \ {supsuppv}) N V~'Immy \ {0}). Since ¢ € suppv \
{sup supp v}, wehave § 7 (¢) < oo.Sincer € V_l(Immx\{O}),Wehave V(t) € Immy
and V(t) > 0. Take any Borel set A C X withmy(A) = V(¢). By ICL,(v), we have

mx (Bs+y4e(A) = V(t + 87 (1))

because we have ¢, 1 + 81 (¢) € supp v. This implies that
5O v = V45T @)

by Definition 3.34. This completes the proof. O

Example 3.38 Let G, Ga, ..., G, be connected graphs with same order k > 2. Let
IT_, G; be the Cartesian product graph equipped with the path metric and the uniform
measure. Let dp : [k]" — R be the /!-distance function from the origin. Then H?:] G;
satisfies ICL((do)+«mx») by Corollary 14 in [5] because

min (B4 (0)) = (do)smgpr ((—00, a]) =: V(a)
for any a € supp(dp)s«mxr, where
B,(0) := {x elkl" | ) x < a}.
i=1

Hence the measure (dp)sm} is a 1-iso-dominant of HLlGi by Theorem 1.7 (1). In
particular, the measure (do)«m k) is a 1-iso-dominant of the discrete '-cube [k]".

Example 3.39 We assume that k is a positive even integer. Let X := (Z/(kZ))" be
the discrete torus equipped with the /'-metric and the uniform measure my, and
do : X — R the I!'-distance function from the origin. Then it satisfies ICL((dp)+«mx)
by Corollary 6 in [4] because

mx (B, (0)) = (do)xmx ((—00, al) =: V(a)
for any a € supp(do)+«mx, where

B,(0) :={x € X | dp(x,0) < a}.
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Hence the measure (dp)«mx is a 1-iso-dominant of X.

3.4 Stability of £-Iso-Dominant

The aim of this subsection is to prove Theorem 1.8. We prepare some definitions and
lemmas to prove it. The following Definition 3.40 is a generalization of e-iso-dominant
(Definition 1.4).

Definition 3.40 ((s, t)-iso-dominant) Let s and ¢ be two non-negative real numbers.
We call a Borel probability measure v on R an (s, t)-iso-dominant of an mm-space X
if we have v >’(S y W forall u e M(X; D).

Definition 3.41 (Distortion from the diagonal) Let (X, dy) be a metric space. We
define the distortion from the diagonal of a subset S C X x X by

disa § :=sup{dx(x,y) | (x,y) € S}
if S is nonempty. We define disp ¥ := 0. Let i and v be two Borel probability measures

on X. We define the distortion from the diagonal of a transport plan 7 € I1(u, v)
between 1 and v by

disp m 1= iréfmax{ disp S, 1 —7(S)}

where S C X x X is a closed subset.

Theorem 3.42 (Strassen’s theorem; cf. [26, Corollary 1.28]) Let v and v be two Borel
probability measures on a metric space X. Then we have
dp(,v) = inf disa 7.
mell(u,v)

Lemma 3.43 For a subset S C R2, we have

dev. § < 2disa S.
Proof Take any two points (x, y), (x’, y') € S§.If x — x’ > 0, then we have

y—y —max{x —x",0} =y -y —[x — x|
<ly=YI—1lx—x|
<|x —y|+|x' = | <2disa S.

If x — x’ < 0, then we have

y—y —max{x —x,0}=y—y
<y—y/+x/—x
<|y—x|+|x' —y| <2disa S.

Hence we obtain dev, § < 2disa S. This completes the proof. O
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Lemma 3.44 Let i and v be two Borel probability measures on R. If dp (i, v) < &,
then we have 1 >’(2€ o V-

Proof This follows from Theorem 3.42 and Lemma 3.43. O

Lemma3.45 Let u and v be two Borel probability measures on R, and X an mm-
space. If u is an (s, t)-iso-dominant of X and we have dp(u,v) < ¢, then v is an
(s + 2¢, t + ¢)-iso-dominant of X.

Proof This follows from Lemma 3.44 and Theorem 3.31. O

Lemma3.46 Let X and Y be two mm-spaces, and v a Borel probability measure on
R. If v is an (s, t)-iso-dominant of X and we have deonc(X,Y) < &, then v is an
(s + 2¢, t + &)-iso-dominant of Y.

Proof Take any g € Lip;(Y). By deonc(X, Y) < &, there exists two parameters ¢ :
I — X and ¢ : I — Y such that

dfi" (¢* Lip, (X), ¥*Lip (V) < e.

Hence there exists f € Lip;(X) such that dkr(¢* f, ¥*g) < . By Lemma 2.20, we
have

dp(famyx, gamy) = dp(fu(@: L), g lLh)
<dkr(¢™f.¥"g) <e.

Therefore we have fimy >/(28 ¢ &My by Lemma 3.44. Since v is an (s, t)-iso-
dominant of X, we have v >’(S 9 f«myx, which implies v >23+28 ey &MY by
Theorem 3.31. O

Proof of Theorem 1.8 Without loss of generality, we assume
deonc(Xy, X) < &, and dp(v,, v) < &, for any positive integer n.

Take any positive integer n. Since the measure v, is an (s + &, t + &,)-iso-dominant
of X,,, the measure v is an (s + 3¢,, t + 2¢,)-iso-dominant of X,, by Lemma 3.45.
By Lemma 3.46, the measure v is an (s + S¢,, t + 3¢,)-iso-dominant of X. Hence,
we have v >’(S+5€n,t+3€n) f«myx forany f € Lip;(X). By Theorem 3.28, we obtain
v >/(s 0 Jf«myx. This completes the proof. O

We apply Theorem 1.8 for the space of pyramids I1. The space IT is a natural
compactificaion of the set X of mm-spaces. We refer to [12,21] for the theory of

pyramids.
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Definition 3.47 (Pyramid, cf. Definition 6.3 in [21]) A subset P C X is called a
pyramid if it satisfies the following (1), (2), and (3).

() f X e Pandif Y < X,thenY € P.

(2) For any two mm-spaces X, X' € P, there exists an mm-space ¥ € P such that
X~<Yand X' <Y.

(3) P is nonempty and [J-closed.

We denote the set of pyramids by IT. The set IT is equipped with the weak Hausdorff
convergence (Definition 6.4 in [21]). About the weak Hausdorff convergence, we
introduce the following useful proposition (cf. Proposition 6.9 in [21]).

Proposition 3.48 (Down-to-earth criterion for weak convergence) For given [-closed
subset V,, Y C X, n = 1,2, ..., the following (1) and (2) are equivalent to each
other.

(1) Yu converges weakly to ). .
(2) Let Y be the set of the limits of convergent subsequences Y, € Y, and Yo the
set of the limits of convergent subsequences of Y, € V,. Then we have

yzzoo:yoo

To apply Theorem 1.8 for pyramids, we consider the following Propositions 3.49 and
3.51, and Definition 3.50.

Proposition 3.49 Let X and Y be two mm-spaces. If a Borel probability measure v on R
is an (s, t)-iso-dominant of X fors,t > Qand X > Y, then v is an (s, t)-iso-dominant
of Y.

Definition 3.50 Let )V C X. We say that a Borel probability measure v on R is an
(s, t)-iso-dominant of Y if v is an (s, t)-iso-dominant of X for any mm-space X € ).

Proposition 3.51 Let X be an mm-space, and v a Borel probability measure on R.
Then, v is an (s, t)-iso-dominant of X if and only if v is an (s, t)-iso-dominant of

Py ={YeX|Y <X}

The following Theorem 3.52 is the stability of isoperimetric inequalities for weak
Hausdorff convergence. This is generalization of Theorem 1.8.

Theorem 3.52 Let ), C X be a -closed subset, and ?oo the set of the limits of
convergent subsequences of Y, € ),. We assume that a sequence {v,},° | of Borel
probability measures on R converges weakly to a Borel probability measure v, and a
sequence {&,}.° | of non-negative real numbers converges 10 0. If vy is an (s + &y, t +
&n)-iso-dominant of Y, for any positive integer n, then v is an (s, t)-iso-dominant of

Voo
Proof This theorem follows from Theorem 1.8 and Proposition 2.23. O

We obtain the following corollary by Proposition 3.48.
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Corollary 3.53 Let {P,}22 | be a sequence of pyramids, and {v,}.> | a sequence of
Borel probability measures on R. We assume that {P,}>> | converges weakly to a
pyramid P and {v,};° | converges weakly to a Borel probability measure v on R,
and a sequence {g,}°, of non-negative real numbers converges to 0. If v, is an

(s + &4, t + &p)-iso-dominant of Py, then v is an (s, t)-iso-dominant of P.

4 Applications of Iso-Lipschitz Order
4.1 Isoperimetric Inequality of Non-discrete I'-Cubes

In this subsection, we assume that [0, 1]" is equipped with the [ L_metric dp and

the uniform measure mo 117 := L"|jo,1}», where L£" is the n-dimensional Lebesgue
measure. Put [k] := {0, 1,2, ...,k — 1}. We have

l[k]—O12 1 ! c[0,1]

k - b k b k 9t k 9 .

We assume that %[k]" is equipped with the /!'-metric d;i and the uniform measure
1
Mg = g Lxebigp Ox-

Lemma 4.1 The sequence {m%[k],l Jio | converges weakly to myo 1 as k — oo.

Proof Define a function f : [0, 1]" — %[k]" by f((x)}_)) = (% Lkx; D7_;s
where |-] is the floor function. We set = := (id[o,1}7, f)«m[0,11»- Then we have
€ I(mp,17r, m%[k]n). Take any point (x, f(x)) € supprw = (idjo, 112, ) ([0, 11")
and put x := (x;)!_,. Since

n

dp(x, fx) =)

i=1

n
=<,
k

1
Xi — E Lkx; ]

we have disa suppr < 7. By Theorem 3.42, we obtain

n
dP(m[O,l]"v m%[k]n) < E —- 0

as k — oo. This completes the proof. O
Proof of Theorem 1.9 We define a function dy : R" — Rby do((x;)7_,) == >/, |xil.
By Example 3.38, the measure (do).mx)» is a 1-iso-dominant of [k]". Hence, the
measure (%do)*m[k]n isa %-iso—dominant of %[k]" by Proposition 3.32. Since dj is
1-Lipschitz, we have
1
dp((z-do)mixy . (do)smio, 1) = dp((do)+m 1y (do)wmpo. 1)
< dp(m%[k]n, mpo,112) — 0

as n — oo by Lemma 4.1. By Theorem 1.8, the measure (dp)s«mo,1j» i an iso-
dominant of [0, 1]”. This completes the proof. O
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We obtain Theorem 1.10 in the same way as in the proof of Theorem 1.9 by using
Example 3.39.

As another application of Theorem 1.8, we obtain the following, which is a variant
of normal law a la Lévy (see Theorem 2.2 in [21]) by using Theorem 13 in [5].

Theorem 4.2 (Normal law a la Lévy on product graphs) Let G, Gy, ..., Gy, ... be
connected graphs with same order k > 2. Put

12
k2 —Dn’

Let X, := ([, Gi.dx,.mx,) be the Cartesian product graph equipped with the
path metric dx, and the uniform measure my,. Put Y, := (]_[;-;] Gi, e, -dx,, mx,).
Let { fn,} be a subsequence of a sequence of 1-Lipschitz functions f, : Y, — R, n =
L2, .. If (fy)sm Y, converges weakly to a Borel probability measure o, then we

have y' >' o, where y! is the 1-dimensional standard Gaussian measure.

In the case that k = 2, we see that X,, is the n-dimensional Hamming cube. If we
replace X, by n-dimensional (non-discrete) I'-cube or n-dimensional (non-discrete)
I'-torus, we obtain the normal law 2 la Lévy respectively.

Proof of Theorem 4.2 We define a function dj : R” — R by

n

do((x)f—y) = Y Ixil.

i=1

By Example 3.38, the measure (do)«mx}» is a 1-iso-dominant of X,,, which implies
that (&, - do)«m [k 1is an &,-iso-dominant of Y,, by Proposition 3.32. By Proposition
3.51, the measure (&, - do)«m [k is an g,-iso-dominantof Py, :={Y e X | Y < Y, }.
By the central limit theorem, (&, - do)sxmk» converges weakly to yl asn — oQ.
Putting V), := Py, , yl is an iso-dominant of ?oo by Theorem 3.52.

Take any sequence of 1-Lipschitz functions f, : ¥, — R,n = 1,2,.... We
assume that a subsequence {n(i)};=1,2,... satisfies that (f,,(;)) . m Y, converges weakly

to a measure o as i — o0. Since (f,),my, € Py,, wehaveo € ?w. Then we obtain
y! >’ o because y! is an iso-dominant of ) «,. This completes the proof. O

4.2 Comparison Theorem for Observable Diameter
In this subsection, we evaluate the observable diameter by using the iso-dominant.

Proposition 4.3 Let v and v be two Borel probability measures on R. If u >’(SJ) v,
then we have

diam(u; 1 — k) +s > diam(v; 1 —k —t) foranyk > 0.
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Proof By u >’(S fn Vs there exist 7 € IT(u, v) and a Borel set S C R? such that
dev. S <sand 1 — n(S) < r. Take any Borel set A C R with u(A) > 1 — «. Put

B :=pr,(S N (pry)~'(A)). Since

v(B) = (SN (pry)~'(A))

= 7 ((pry) "' (A)) — (S N (pry)~'(A))
> uw(A) —n(S)=>1—-«k—1t,

we have diam(v; 1 — k — t) < diamB. By Proposition 3.25, we have diamB <
diamA + dev. S, which implies diam(v; | — k —¢) < diamA + s. Then we obtain
diam(v; 1 — k —t) < diam(u; 1 — k) + 5. This completes the proof. O

Proposition 4.4 Let {j1,}7° | be a sequence of Borel probability measures on R and k a
positive real number. We assume that {i1,},> | converges weakly to a Borel probability
measure (1 on R and that the function t +— diam(u; 1 — t) is continuous at k. Then
we have

lim diam(w,; 1 — k) = diam(u; 1 — k).

n—oo

Proof Put ¢, := dp(u,, 1) + % By Lemma 3.44, we have u >/(28m8n) W, and
Un >/(2 en.ey) M- Since Kk — &, >0 for sufficiently large n, we have

diam(u; 1 — (k — &,)) + 2&, > diam(uy; 1 — (K — &) — &5)
> diam(u; 1 — k — &,) — 2,

by Proposition4.3. Since ¢ + diam(u; 1—1¢) is continuous, we obtain lim,,_, o diam(u,,; 1—
K) = diam
(u; 1 — k). This completes the proof. O

Lemma 4.5 Let ju be a probability measure on R with djw = @ dC', where L is the
1-dimensional Lebesgue measure and ¢ : R — (0, 00) is a continuous function. We
assume that ¢ is even on R and strictly decreasing on [0, 00). Then we have

~ Ay = Pl g1k
diam(u; 1 — k) = F'(1 2) F (2)

forany k € (0, 1], where F(t) := u((—o0, t]) is the cumulative distribution function
of . In particular, the function k +— diam(u; 1 — k) is continuous on (0, 00).

Proof We may assume that « € (0, 1) because the case x = 1 is clear. Since pu is a
measure on R and has no atom, diam(u; 1 — «) is equals to the infimum of diam/
where I C Ris aclosed interval with (/) = 1 —k. We have —oo < inf I < F~ 1)
because we may assume that diam/ < oo. If inf I = ¢, we have
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supl = F~'(1 —k + F(1))
because (/) = 1 — «. This implies
diam(u; 1 — k) = inf{D(r) | t < F~(x)},

where we put D(¢) := F'd—k+F@)—1.
Since F'(t) = ¢(t), we have

D . _ v(1) _
E(I) T @o F 11—k + F(@t)) @1
We have D’(t) = 0 if and only if
o) =¢po F (1 -k + F()). 4.2)

Since ¢ is even on R and strictly decreasing on [0, c0), the Eq. (4.2) implies that
t=—F ' —k+F@) 4.3)
because t < F~L1(1 — k + F(r)). We have
F(-t)=1—-F(@) (4.4)

for any real number ¢ because ¢ is even. By (4.3) and (4.4), we have F (1) = k /2. We
put to := F~'(k/2). By (4.1), we have D'(t) < 0ift < 9, and D'(¢t) > 0if 1 > to.
This implies that D(#g) is the minimum of D. Then we have

diam(u; 1 — ) = D(to) = F~'(1 — g) _ F_l(§)~

Since F~!is continuous on (0, 1), the function x diam(u; 1 —«) is also continuous
on (0, 1). Since diam(u; 1 — k) = O for any x > 1, the function x — diam(u; 1 —«)
is continuous on [1, co0). This completes the proof. O

Theorem 4.6 Let s and t be two non-negative real numbers. If a Borel probabil-
ity measure v on R is an (s, t)-iso-dominant of an mm-space X, then we have
ObsDiam(X; —k —t) < diam(v; 1 — k) + s for any k > 0.

Proof Take any 1-Lipschitz function f : X — R. Since v is an (s, t)-iso-dominant of
X, we have v >/(S’[) f«mx. By Proposition 4.3, we have diam(fumyx; 1 —x — 1) <
diam(v; 1 — k) +s. Hence, we obtain ObsDiam(X; 1 —«x —¢) < diam(v; 1 —k) + .
This completes the proof. O

Let G1, G2, ..., Gy, ... be connected graphs with same order k > 2. Put g, =
ﬁ. We define a function do, : R" — R by do,((x;))!_)) := > i, |xi|. Put
Vien = (8k,n - do,n) <Mk
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Theorem 4.7 We have

n

ObsDiam ey [ [ Gi: —x) < diam(vg ;1 — ) + &g 4.5)
i=1

< ObsDiam (g, [k]"; —K) + &k.n (4.6)

< diam(vg n; 1 — k) + 28k 5. “@.7

Proof By Theorem 4.6 and Example 3.38, and Proposition 3.32, we have (4.5) and
(4.7). Since vi ,, € Mgk nlk]"; 1), we have (4.6). This completes the proof. O

Lemma 4.8 We have
lim diam(v;,; 1 — k) = diam(y'; 1 —«) (4.8)
n—oo

forany k > 0.

Proof By Lemma 4.5, the function k +— diam(yl; 1 — «) is continuous on (0, 00).
Applying Proposition 4.4, we obtain (4.8) since the sequence {1y} converges to y
weakly as n — oo. This completes the proof. O

Corollary 4.9 We have

n
lim sup ObsDiam | & ,, Gi;—«k| < diam(yl; 1 —«) fork > 0.
p .

n—o00 .
i=1

Proof Since &, — 0 as n — oo, we have

n
lim sup ObsDiam | & , l_[ Gi; —«k | < lim diam(vg ;1 —«)
n—00 il n—00

= diam(yl; 1—x)
by (4.5) in Theorem 4.7 and Lemma 4.8. O

Corollary 4.10 We have

lim ObsDiam(ex ,[k]"; —k) = diam(yl; 1 —«k) fork > 0.

n—0o0

In particular, we obtain

2
lim ObsDiam(—=Q"; —k) = diam(yl; 1 —«k)fork >0

n—00 ﬁ

in the case k = 2.
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Proof Take any « > 0. By (4.6) in Theorem 4.7 and Lemma 4.8, we have
lim inf ObsDiam (&g ,[k]"; —K) > diam(ylg 1—x).
n—o0

By (4.7) in Theorem 4.7 and Lemma 4.8, we also have

lim sup ObsDiam (&g ,[k]"; —k) < diam(yl; 1 —«).

n—00
These imply

lim ObsDiam(ex ,[k]"; —k) = diam(yl; 1 —«x).

n—00
This completes the proof. O

4.3 Concentration on the I'-Hyper Cube

The concentration function is an important function in geometry and probability. In
this section, we evaluate the concentration function of the n-dimensional /!-hyper
cube [0, D]" as an application of Theorem 1.1. Evaluations of concentration functions
has been researched in [12,17]. We obtain a better upper bound of the concentration
function of /'-hyper cube than the former result.

Definition 4.11 (Concentration function [2]) Let X be an mm-space. We define the
concentration function of X

1
ax(r) := sup {1 —mx(Uy(A)) | A C X is Borel with myx(A) > 5}

for any real number » > 0.
We set x4 := max{x, 0} for the positive part of the real number x.

Theorem 4.12 (Theorem 1 (9.5)in Chapterlin [9]) Let S,, be the sum of n independent
random variables distributed uniformly over [0, D] for any real number D > 0. Then
we have

1 n
P(Sy <x) = oo > o=k (Z) (x — kD),

k=0
for any positive integer n and any real number x > (.

Theorem 4.13 (Hoeffding’s inequality [14]) Let X1, ..., X, be independent random
variables with a; < X; < b;, where a; and b; are two real numbers with a; < b; for
alli =1,...,n. Weset S, .= '_, X;. Then we have

212
P(S, —E[S)] = 1) <exp (—m)
i=1\7
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We have the following Theorem 4.14 as an application of Theorem 1.1.

Theorem 4.14 Let D be positive real number, and let ([0, DI",d;) be the n-
dimensional hyper cube equipped with the 1'-metric and the normalized uniform

measure. Then we have
(G @

a((0,p1.d,) (1) =

and

2r?
a(10,01",d;) (1) = exp (—m) (4.10)

for any real number r > 0.

Proof Let dy : [0, D]" — R be the distance function from the origin. By Theorem
1.1, we have

nD
([0, D1 d,) (1) = (do)«m ([7 +r, oo)) (4.11)

forr > 0. By (4.11) and Theorem 4.12, we obtain (4.9). By (4.11) and Theorem 4.13,
we obtain (4.10). O

We compare Theorem 4.14 with the following Theorems 4.15 and 4.16.

Theorem 4.15 (cf. Corollary 1.17 in [17]) Let mx = ®}_,;mx, be the product prob-
ability measure on the Cartesian product X = I17_, X; of mm-spaces (X;, dx;, mx;)
with finite diameters D;, i = 1, ..., n, equipped with the M metric dxy = Z?:l dy;.

Then we have
(r) -’
ax() <exp| ———
R VY

for any real number r > 0.

In the case where X; is the interval [0, D] equipped with the Lebesgue measure,
Theorem 4.15 evaluates the concentration function of /!-hyper cube [0, D]". Theorem
4.14 is a better evaluation than it.

The following Theorem 4.16 is an evaluation of the concentration function of the
n-dimensional Hamming cube. In the Hamming cube case, Theorem 4.16 is a better
evaluation than Theorem 4.15.

Theorem 4.16 (cf. Theorem 2.11 in [17]) Let myy py: be the uniform measure on
{0, DY* equipped with the I'-metric dji. Then we have

2r2
0.0y dp) (1) = exp | =55
for any real number r > 0.
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The proof of Theorem 4.16 uses the isoperimetric inequality of the n-dimensional
Hamming cube. Theorem 4.14 also uses the isoperimetric inequality.
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