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Abstract
In this paper, we obtain the stability of isoperimetric inequalities with respect to
the concentrate topology. The concentration topology is weaker than the �-topology
which is like the weak topology. As an application, we obtain isoperimetric inequal-
ities on the non-discrete n-dimensional l1-cube and l1-torus by taking the limits of
isoperimetric inequalities of discrete l1-cubes and l1-torus. The method of this paper
builds on by introducing an ε-relaxed (iso-)Lipschitz order.
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1 Introduction

Isoperimetric inequalities are simple and interesting geometric inequalities that have
been studied for a long time. Exact solutions are known in some basic spaces, such
as the n-dimensional Euclidean space and the n-dimensional sphere. A more detailed
list is seen in [8, Appendix H]. Isoperimetric inequalities on metric measure spaces
with lower Ricci curvature bounds is studied in [7].

Gromov [12] introduced the Lipschitz order relation on the space of all metric
measure spaces and developed a rich theory. In this paper, we focus on applications
of the Lipschitz order relation to isoperimetric inequalities. This is a relatively new
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approach to isoperimetric inequalities. Gromov claimed Corollary 3.21 in Sect. 3
which states that an isoperimetric inequality on a continuous metric measure space is
represented by using the Lipschitz order under some assumptions. The main results of
this paper are Theorems 1.7 and 1.8 that appear later. Theorem 1.7 is a generalization
of the Gromov’s claim. Theorem 1.8 express a stability of isoperimetric inequalities
with respect to the concentrate topology. The concentration topology is defined by the
observable distancedconc (Definition 2.21) andweaker than the�-topology (Definition
2.15) which is like the weak topology of measures. These theorems make it possible
to treat discrete and continuous spaces in the same way. One of the most important
applications is to obtain an isoperimetric inequality on a continuous space by the limit
operation of discrete spaces. For example, we obtain the following sharp isoperimetric
inequality on the continuous n-dimensional hypercube [0, 1]n with the l1-metric dl1

and the uniform measure Ln .

Theorem 1.1 For any closed subset � ⊂ [0, 1]n with Ln(�) > 0, we take the metric
ball B� ⊂ [0, 1]n centered at the origin with Ln(B�) = Ln(�). Then we have

Ln(Ur (�)) ≥ Ln(Ur (B�))

for any r > 0, where Ur (A) := { x ∈ [0, 1]n | dl1(x, A) < r } is the open r-
neighborhood of a subset A ⊂ [0, 1]n.

Similarly, we obtain the following sharp isoperimetric inequality of the l1-torus
T n by using Corollary 6 in [4]. The l1-torus T n is the n-fold l1-product of the one-
dimensional unit sphere S1 equipped with the uniform measure.

Theorem 1.2 For any closed subset � ⊂ T n with mT n (�) > 0, we take a metric ball
B� of T n with mT n (B�) = mT n (�). Then we have

mT n (Ur (�)) ≥ mT n (Ur (B�))

for any r > 0, where Ur (A) is the open r-neighborhood of a subset A ⊂ T n with
respect to the l1-metric.

There are only few spaces satisfying the inequalities in Theorems 1.1 and 1.2 because
these are required to hold for any r > 0. As a former result, Lévy’s isoperimet-
ric inequality (Theorem 2.11) also holds for any r > 0. It is a sharp isoperimetric
inequality on a unit sphere in an Euclidean space. The isoperimetric inequality on the
n-dimensional standard Gaussian space [6,23] is also of the same type.

A usual isoperimetric inequality is given in the case that r > 0 is small. There are
many variants of Theorem 1.1 and 1.2, if these are not required to hold for any r > 0.
In [22], the isoperimetric profiles on a l p-ball in the Euclidean space Rn is calculated,
where 1 ≤ p ≤ 2. We note that Theorem 1.1 is the sharp isoperimetric inequality on
a l∞-ball in the Banach space Rn equipped with the l1-metric. In [15], a quantitative
isoperimetric inequality on the Banach space R2 equipped with the l1-metric is given.
We remark that the boundary measure is given by the l1-length in [15] but it is given by
Minkowski content with respect to the l1-metric in Theorem 1.1. In [3], the Cheeger
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constants on product spaces of metric measure spaces are calculated, where product
spaces is equipped with the l2-product metric. In [13], the concentration function on
the unit sphere in a uniformly convex vector space is studied. In Sect. 4.3, we calculate
the concentration function on the hypercubes [0, 1]n equipped with the l1-metric. In
[24], an isoperimetric inequality on the product space equipped with the Talagrand’s
convex distance is studied. That is a generalization of an isoperimetric inequality on
the n-dimensional Hamming cube. The Wulff shapes may be related with Theorem
1.1 but it is nontrivial that there exists an energy which gives Minkowski content with
respect to the l1-metric. The Wulff shape in Rn is studied in [25].

In this paper, we deal with two key concepts, called “ICL condition” and “iso-
dominant”. Roughly speaking, “ICL condition”means that an isoperimetric inequality
holds for any r > 0. The concept “iso-dominant” also means isoperimetric inequality
but it is defined by using the (iso-)Lipschitz order. Theorem 1.5 below means that
the two concepts are equivalent to each other in some assumptions. However, these
assumptions are incompatible with non-continuous spaces. Therefore, we introduce
ε-relaxed notions (Definitions 1.3 and 1.6) of those concepts. Theorem 1.7, which
appears later, expresses their equivalence. The iso-dominant is kept under taking a
limit, as is stated in Theorem 1.8 below.

First, we formulate the form of isoperimetric inequalities. On a general metric
measure space, we consider a Lévy type isoperimetric inequality. Namely, we consider
that the open r -neighborhood in isoperimetric inequalities for any r > 0. Let (X , dX )

be a complete separable metric space with a Borel probability measure m X . We call
such a triple (X , dX , m X ) an mm-space (which is an abbreviation of a metric measure
space). If we say that X is an mm-space, the metric and the measure are respectively
indicated by dX and m X .

Definition 1.3 (Isoperimetric comparison condition of Lévy type; cf. [20]) We say
that an mm-space X satisfies the isoperimetric comparison condition of Lévy type
ICLε(ν) for a Borel probability measure ν on R and a real number ε ≥ 0 if we have
V (b) ≤ m X (Bb−a+ε(A)) for any a, b ∈ supp ν with a ≤ b and for any Borel subset
A ⊂ X with m X (A) > 0 and V (a) ≤ m X (A), where V (t) := ν((−∞, t]) is the
cumulative distribution function of ν. We abbreviate ICL0(ν) as ICL(ν).

We remark that Definition 1.3 is only defined in the case ε = 0 in [20]. The 1-
measurement of an mm-space X is defined as

M(X; 1) := { ϕ∗m X | ϕ : X → R is 1 − Lipschitz },

where ϕ∗m X is the push-forward measure of m X by ϕ and a 1-Lipschitz function is a
Lipschitz continuous function with Lipschitz constant less than or equal to one. We
denote byP(R) the set of all Borel probability measures onR and we seeM(X; 1) ⊂
P(R). In the case that ν ∈ M(X; 1), the ICL(ν) condition for X means a sharp
isoperimetric inequality on X . In fact, if X satisfies ICL(ϕ∗m X ) for some 1-Lipschitz
function ϕ : X → R, then we have

m X (Br (�)) ≥ m X (ϕ−1(Br ((−∞, t])))
≥ m X (Br (ϕ

−1((−∞, t])))
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for any t ∈ supp(ϕ∗m X ) and any r > 0 with t + r ∈ supp(ϕ∗m X ), where a Borel
subset � ⊂ X with m X (�) > 0 satisfies m X (�) ≥ m X (ϕ−1((−∞, t])). This means
that the subset ϕ−1((−∞, t]) ⊂ X is an extremal set for any t ∈ supp(ϕ∗m X ). Lévy’s
isoperimetric inequality is paraphrased as Sn(1) satisfies ICL(ξ∗mSn(1)), where ξ :
Sn(1) → R is the distance function from one point. The set of iso-mm-isomorphism
class of P(R) has an order relation called the iso(perimetrically)-Lipschitz order (see
Definitions 3.2, 3.3 and Proposition 3.4).

Gromov defined an iso-dominant using the iso-Lipschitz order and claimed that an
iso-dominant recollects the isoperimetric inequality [11].

Definition 1.4 (Iso-dominant [11]) We call a Borel probability measure on R an iso-
dominant of an mm-space X if it is an upper bound of M(X; 1) with respect to the
iso-Lipschitz order 	′. That means ν 	′ μ for all μ ∈ M(X; 1).
We have the following relation between an iso-dominant and ICL.

Theorem 1.5 ([20]) Let X be an mm-space and ν a Borel probability measure on R

with connected support. Assume that the cumulative distribution function V of ν is
continuous. Then, X satisfies ICL(ν) if and only if ν is an iso-dominant of X.

Gromov claim Corollary 3.21 in Sect. 3 without the proof in Section 9 in [11]. It is
a variant of Theorem 1.5. We focus on the continuity of V in Theorem 1.5. Without
the continuity of V , we find the following counterexample of Theorem 1.5. We put
[k] := {0, . . . , k −1} and consider the n-dimensional discrete cube [k]n equipped with
the l1-metric and the uniformmeasure, saym[k]n . Then, [k]n satisfies ICL((d0)∗m[k]n ),
where d0 is the distance function from the origin [5]. Since the cumulative distribution
function of (d0)∗m[k]n is not continuous, we are not able to apply Theorem 1.5 with
[k]n as an mm-space X . In fact, (d0)∗m[k]n is not an iso-dominant of [k]n . However,
we regard (d0)∗m[k]n as an iso-dominant of [k]n if we allow an error. This is one of
our motivations of introducing the iso-Lipschitz order with an error (see Definition
3.23).

The iso-Lipschitz order 	′
(s,t) with error (s, t) satisfies some beneficial properties

such as Theorems 3.26, 3.28, and 3.31 in Sect. 3.2. Now, we define the iso-dominant
with an error by using the iso-Lipschitz order with an error.

Definition 1.6 [ε-iso-dominant]Let ε ≥ 0 be a real number.Wecall aBorel probability
measure ν on R an ε-iso-dominant of an mm-space X if we have ν 	′

(ε,0) μ for all
μ ∈ M(X; 1).
We have the following Theorem 1.7, which explains the relation between ε-iso-
dominants and ICLε(ν). Theorem 1.7 is a generalization of Theorem 1.5.

Theorem 1.7 Let X be an mm-space and ν a Borel probability measure on R, and let
ε ≥ 0. We define

�(supp ν) := sup{ δ−(supp ν; a) | a ∈ supp ν \ {inf supp ν} },

where δ−(supp ν; a) := inf{ t > 0 | a − t ∈ supp ν }. Then we have the following (1)
and (2).
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(1) If inf supp ν > −∞, we assume ν({inf supp ν}) ≤ m X ({x}) for any x ∈ suppm X .
Then, ν is an (ε + �(supp ν))-iso-dominant of X if X satisfies ICLε(ν).

(2) Assume that supp ν is connected or ν({x}) > 0 for any x ∈ supp ν. Then, X
satisfies ICL2ε(ν) if ν is an ε-iso-dominant of X.

Theorem 1.7 implies that (d0)∗m[k]n is a 1-iso-dominant of the l1-discrete hypercube
[k]n since [k]n satisfies ICL((d0)∗m[k]n ) (See Example 3.38). It is important to note
that we cannot eliminate the term �(supp ν) from (1). This is because (d0)∗m[k]n is
not an 0-iso-dominant of [k]n , even though [k]n satisfies ICL0((d0)∗m[k]n ).

We will show that the condition that ν is an ε-iso-dominant of X is stable under
the convergence with respect to the Prokhorov metric dP and the observable distance
function dconc. This property enables us to obtain the isoperimetric inequality of a
continuous space by using a discretization. The following Theorem 1.8 is one of the
main theorems of this paper and represents the stability of ε-iso-dominant.

Theorem 1.8 Let X and Xn, n = 1, 2, . . . , be mm-spaces, let ν and νn, n = 1, 2, . . . ,
be Borel probability measures on R, and let εn, n = 1, 2, . . . be non-negative real
numbers. We assume that {Xn}n dconc-converges to X and {νn}n weakly converges to
ν, and {εn}n converges to a real number ε as n → ∞ and that νn is an εn-iso-dominant
of Xn for any positive integer n. Then, ν is an ε-iso-dominant of X.

We remark that the distance dconc gives the concentration topology. It is weaker than
the �-topology which is like the weak topology of measures.

Now, we obtain a sharp isoperimetric inequality of the n-dimensional continuous
l1-hypercube [0, 1]n . The following Theorem 1.9 is one of the applications of Theorem
1.8. The proof of Theorem 1.8 is in Sect. 4.

Theorem 1.9 The measure (d0)∗m[0,1]n is the greatest element of M([0, 1]n; 1) with
respect to the iso-Lipschitz order 	′, where d0 is the distance function from the origin.

By Theorems 1.5 and 1.9, the l1-hypercube [0, 1]n satisfies ICL((d0)∗ m[0,1]n ).
This implies Theorem 1.1.

Similarly, we obtain the following Theorem 1.10 by using Corollary 6 in [4].

Theorem 1.10 The measure ξ∗mT n is the greatest element of M(T n; 1) with respect
to the iso-Lipschitz order 	′, where ξ is the distance function from one point.

By Theorems 1.5 and 1.10, the l1-torus T n satisfies ICL(ξ∗mT n ). This yields Theorem
1.2.

Obtaining sharp isometric inequalities using a similar method requires constraints
on spaces. If the 1-measurementM(M; 1) of an compact Riemannian homogeneous
space M has the greatest element ν, then M is only a round sphere [19]. Furthermore,
a necessary condition for the existence of the maximum of the 1-measurement is given
in Theorem 1.9 in [20].

If the 1-measurement M(X; 1) of an mm-space X has the greatest element ν,
then we obtain the precise value of the observable diameter ObsDiam(X;−κ) of X
(Definition 2.9) because we have

ObsDiam(X;−κ) = diam(ν; 1 − κ) for any κ ∈ (0, 1].
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Hence, we obtain the value of ObsDiam([0, 1]n;−κ) and ObsDiam(T n;−κ) for any
κ ∈ (0, 1]. As former results, the n-dimensional unit sphere is known to be an
mm-space whose 1-measurement has the greatest element (see §9 in [11]). The n-
dimensional standard Gaussian space is also such an mm-space by an isoperimetric
inequality [6,23]. In Sect. 4.2, we calculate the observable diameters of some spaces
as one of the applications of the iso-Lipschitz order with an additive error.

2 Preliminaries

In this section, we present some basics of mm-spaces. We refer to [12,21] for more
details about the contents of this section.

2.1 Some Basics of mm-spaces

Definition 2.1 (mm-space) Let (X , dX ) be a complete separable metric space and m X

a Borel probability measure on X . We call such a triple (X , dX , m X ) an mm-space.
We sometimes say that X is an mm-space, for which the metric and measure of X are
respectively indicated by dX and m X . We put t X := (X , tdX , m X ) for t > 0. Since
an mm-space is equipped with a probability measure, it is nonempty.

We denote the Borel σ -algebra over X byBX . For any point x ∈ X , any two subsets
A, B ⊂ X and any real number r ≥ 0, we define

dX (x, A) := inf{ dX (x, y) | y ∈ A },
dX (A, B) := inf{ dX (x, y) | x ∈ A, y ∈ B },

Ur (A) := { y ∈ X | dX (y, A) < r },
Br (A) := { y ∈ X | dX (y, A) ≤ r },

where inf ∅ := ∞.We remark thatUr (∅) = Br (∅) = ∅ for any real number r ≥ 0. The
diameter of A is defined by diamA := supx,y∈A dX (x, y) for A �= ∅ and diam∅ := 0.

Let Y be a topological space and let p : X → Y be a measurable map from a
measure space (X , m X ) to a Borel space (Y ,BY ). The push-forward p∗m X of m X by
the map p is defined as p∗m X (A) := m X (p−1(A)) for any A ∈ BY .

Definition 2.2 (support) Let (X , dX ) be a metric space and m X a Borel measure on
X . We define the support suppm X of m X by

suppm X := {x ∈ X | m X (Ur (x)) > 0 for any r > 0}.

Proposition 2.3 Let (X , dX ) be a metric space and m X a Borel measure on X. Let Y
be a separable metric space. Let f : X → Y be a continuous map. Then we have

supp f∗m X = f (suppm X ).

123



Isoperimetric Inequality on a Metric Measure Space Page 7 of 43 35

Proof Since

f∗m X (Y \ f (suppm X )) = m X (X \ f −1( f (suppm X )))

≤ m X (Y \ suppm X ) = 0,

we have supp f∗m X ⊂ f (suppm X ) because Y is separable.
Next, let us prove

f (suppm X ) ⊂ supp f∗m X . (2.1)

Take any y ∈ f (suppm X ). There exists x ∈ suppm X such that y = f (x). Take any
positive real number ε > 0. Since f is continuous, there exists δ > 0 such that

Uδ(x) ⊂ f −1(Uε(y)).

Then we have

f∗m X (Uε(y)) ≥ m X (Uδ(x)) > 0

and obtain (2.1). Because supp f∗m X is closed, we have

f (suppm X ) ⊂ supp f∗m X .

This completes the proof. �
Definition 2.4 (mm-isomorphism) Two mm-spaces X and Y are said to be mm-
isomorphic if there exists an isometry f : suppm X → suppmY such that f∗m X =
mY , where suppm X is the support of m X . Such an isometry f is called an mm-
isomorphism. The mm-isomorphism relation is an equivalence relation on the set of
mm-spaces. Denote by X the set of mm-isomorphism classes of mm-spaces.

Definition 2.5 (Lipschitz order) Let X and Y be two mm-spaces. We say that X dom-
inates Y and write Y ≺ X if there exists a 1-Lipschitz map f : X → Y satisfying

f∗m X = mY .

We call the relation ≺ on X the Lipschitz order.

Proposition 2.6 (Proposition 2.11 in [21]) The Lipschitz order ≺ is a partial order
relation on X .

Definition 2.7 (Transport plan) Let μ and ν be two Borel probability measures on R.
We say that a Borel probability measure on R

2 is a transport plan between μ and ν

if we have (pr1)∗π = μ and (pr2)∗π = ν, where pr1 and pr2 is the first and second
projection respectively. We denote by �(μ, ν) the set of transport plans between μ

and ν.
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2.2 Observable Diameter and Partial Diameter

Observable diameter is one of the most important invariants among all invariants
for mm-spaces. We remark that the 1-measurement appears in the definition of the
observable diameter.

Definition 2.8 (Partial diameter) Let X be an mm-space and let α ∈ [0, 1] be a real
number. We define the α-partial diameter diam(X;α) of X as

diam(X;α) := inf{ diamA | m X (A) ≥ α, A ∈ BX }.

For any Borel probability measure μ on R, we set

diam(μ;α) := diam((R, | · |, μ);α).

Definition 2.9 (Observable diameter) Let X be an mm-space. For any real number
κ ∈ [0, 1], we define the κ-observable diameter ObsDiam(X;−κ) of X as

ObsDiam(X;−κ) := sup
μ∈M(X;1)

diam(μ; 1 − κ).

Proposition 2.10 (Proposition 2.18 in [21]) Let X and Y be two mm-spaces and κ ∈
[0, 1] a real number. If Y ≺ X, then we obtain

diam(Y ; 1 − κ) ≤ diam(X; 1 − κ),

ObsDiam(Y ;−κ) ≤ ObsDiam(X;−κ).

2.3 Lévy’s Isoperimetric Inequality

Let Sn(r) be the n-dimensional sphere of radius r > 0 centered at the origin in the
(n +1)-dimensional Euclidean spaceRn+1. Let the distance dSn(r)(x, y) between two
points x and y in Sn(r) be the geodesic distance, and let the measure mSn(r) on Sn(r)

be the Riemannian volumemeasure on Sn(r) normalized as mSn(r)(Sn(r)) = 1. Then,
(Sn(r), dSn(r), mSn(r)) is an mm-space.

Theorem 2.11 (Lévy’s isoperimetric inequality [10,16]) For any nonempty closed sub-
set � ⊂ Sn(1), we take a metric ball B� of Sn(1) with mSn(1)(B�) = mSn(1)(�).
Then we have

mSn(1)(Ur (�)) ≥ mSn(1)(Ur (B�))

for any r > 0.

2.4 Box Distance and Observable Distance

In this section, we briefly describe the box distance function and the observable dis-
tance function.
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Definition 2.12 (Parameter) Let I := [0, 1) and let L1 be the Lebesgue measure on I .
Let X be a topological space equipped with a Borel probability measure m X . A map
ϕ : I → X is called a parameter of X if ϕ is a Borel measurable map such that

ϕ∗L1 = m X .

Lemma 2.13 (Lemma 4.2 in [21]) Any mm-space has a parameter.

Definition 2.14 (Pseudo-metric) A pseudo-metric ρ on a set S is defined to be a func-
tion ρ : S × S → [0,∞) satisfying

(1) ρ(x, x) = 0,
(2) ρ(y, x) = ρ(x, y),

(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

for any x, y, z ∈ S

If ρ is a metric, ρ(x, y) = 0 implies x = y for any two points x, y ∈ S. However,
a pseudo-metric does not necessarily satisfy this condition.

Definition 2.15 (Box distance) For two pseudo-metrics ρ1 and ρ2 on I := [0, 1), we
define �(ρ1, ρ2) to be the infimum of ε ≥ 0 such that there exists a Borel subset
I0 ⊂ I satisfying

(1) |ρ1(s, t) − ρ2(s, t)| ≤ ε for any s, t ∈ I0,
(2) L1(I0) ≥ 1 − ε.

Wedefine thebox distance�(X , Y )between two mm-spaces X and Y to be the infimum
of �(ϕ∗dX , ψ∗dY ), where ϕ : I → X and ψ : I → Y run over all parameters of X
and Y , respectively, and where ϕ∗dX (s, t) := dX (ϕ(s), ϕ(t)) for s, t ∈ I .

Theorem 2.16 (Theorem 4.10 in [21]) The function � is a metric on the set X of
mm-isomorphism classes of mm-spaces.

Definition 2.17 (Prokhorov metric) The Prokhorov metric dP is defined by

dP(μ, ν) := inf{ ε > 0 | μ(Uε(A)) ≥ ν(A) − ε for any Borel set A ⊂ X }

for any two Borel probability measures μ and ν on a metric space X .

Proposition 2.18 (Proposition 4.12 in [21]) For any two Borel probability measures
μ and ν on a complete separable metric space X, we have

�((X , μ), (X , ν)) ≤ 2dP(μ, ν).

Definition 2.19 (Ky Fanmetric) Let (X , μ) be ameasure space. For twoμ-measurable
maps f , g : X → R, we define the Ky Fan metric dKF = dμ

KF by

dμ
KF( f , g) := inf{ ε ≥ 0 | μ({ t ∈ I | | f (t) − g(t)| > ε }) ≤ ε }.
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Lemma 2.20 (Lemma 1.26 in [21]) Let (X , μ) be a measure space. For two μ-
measurable maps f , g : X → R, we have

dP( f∗μ, g∗μ) ≤ dμ
KF( f , g).

Definition 2.21 (Observable distance) For a parameterϕ of anmm-space X , we define

Lip1(X) := { f : X → R | 1-Lipschitz }

and

ϕ∗Lip1(X) := { f ◦ ϕ | f ∈ Lip1(X) }.

The Hausdorff distance function dKF
H is defined by

dKF
H (A, B) := inf{ε > 0 | A ⊂ Uε(B) and B ⊂ Uε(A)}

for two subsets A and B of Borel measurable functions from I , where the open ε-
neighborhood of A is defined by

Uε(A) := {g : I → R | dL1

KF(A, g) < ε}.

We define the observable distance dconc between two mm-spaces X and Y by

dconc(X , Y ) := inf
ϕ,ψ

dKF
H (ϕ∗Lip1(X), ψ∗Lip1(Y ))

where ϕ : I := [0, 1) → X and ψ : I → Y are two parameters of X and Y
respectively.

Theorem 2.22 (Theorem 5.13 in [21]) The function dconc is a metric on X .

Proposition 2.23 (Proposition 5.5 in [21]) For two mm-spaces X and Y , we have
dconc(X , Y ) ≤ �(X , Y ).

3 Isoperimetric Comparison Condition

3.1 Isoperimetric Comparison ConditionWithout an Error

In this subsection, we investigate the relation between iso-dominant and isoperimetric
comparison condition. We refer to [20] for more details about the contents of this
subsection. The main aim of this subsection is to introduce the following Theorems
3.5 and 3.7 which are extensions of Theorem 1.5. In a continuous space, isoperimetric
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problem is represented in terms of an isoperimetric profile. Let X be an mm-space.
The boundary measure of a Borel set A ⊂ X is defined to be

m+
X (A) := lim sup

ε→0+
m X (Uε(A)) − m X (A)

ε
.

Set

Imm X := { m X (A) | A ⊂ X is Borel }.

The isoperimetric profile IX : Imm X → [0,+∞) of X is defined by

IX (v) := inf{ m+
X (A) | A ⊂ X : Borel, m X (A) = v }

for v ∈ Imm X . The following isoperimetric comparison condition is a generalization
of an isoperimetric inequality. It is a derivative of the ICL condition.

Definition 3.1 (Isoperimetric comparison condition [20]) We say that X satisfies the
isoperimetric comparison condition IC(ν) for a Borel probability measure ν on R if

IX ◦ V ≥ V ′ L1-a.e. on V −1(Imm X ),

where V means the cumulative distribution function of ν and L1 the one-dimensional
Lebesgue measure on R.

We define the following iso-Lipschitz order in order to define an iso-dominant (See
Definition 1.4).

Definition 3.2 (Iso-Lipschitz order [11, §9]) Let μ, ν ∈ P(R). We say that μ iso-
dominates ν if there exists a monotonically non-decreasing 1-Lipschitz function f :
suppμ → supp ν such that f∗μ = ν, where suppμ is the support of μ. We write
μ 	′ ν if μ iso-dominates ν.

Definition 3.3 (Iso-mm-isomorphism) Two Borel probability measures μ and ν on R
are said to be iso-mm-isomorphic if there exists a real number c such that (idR +c)∗μ =
ν, where idR is the identity function on R. The iso-mm-isomorphism relation is an
equivalence relation on the set of Borel probability measures on R.

In the definition of iso-dominant (Definition 1.4), an upper bound of a 1-
measurement appears. An upper bound is defined on a partially ordered set. The
following Proposition 3.4 asserts that a 1-measurement is a partially ordered set.

Proposition 3.4 The iso-Lipschitz order is a partial order on the set of iso-mm-
isomorphism class of Borel probability measures on R.

The purpose of this subsection is to introduce the following Theorem 3.5 which is an
extension of Theorem 1.5 because one of the aims of this paper is to prove Theorem
1.7 which is a generalization of Theorem 1.5.
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Denote by V the set of Borel probability measures onR absolutely continuous with
respect to the one-dimensional Lebesgue measure L1 and with connected support.

An mm-space X is said to be essentially connected if we have m+
X (A) > 0 for any

closed set A ⊂ X with 0 < m X (A) < 1.

Theorem 3.5 ([20]) Let X be an essentially connected mm-space and let ν ∈ V . Then
the following (1), (2), and (3) are all equivalent.

(1) The measure ν is an iso-dominant of X.
(2) The space X satisfies ICL(ν).
(3) The space X satisfies IC(ν).

Gromov claim the following Corollary 3.21 without the proof in Sect. 9 in [11]. It
is a variant of Theorem 3.5. We prepare to state it and extend Theorem 3.5 to prove it.

Denote F(X) by the set of all closed subsets of X . Put m X (F(X)) :=
{ m X (A) | A ∈ F(X) }. The isoperimetric profile with respect to closed subsets I clX :
m X (F(X)) → [0,+∞) of X is defined by

I clX (v) := inf{ m+
X (A) | A ⊂ X : closed, m X (A) = v }

for v ∈ m X (F(X)).
Ifwe obtain aBorel set A0 ⊂ X such that IX (m X (A0)) = m+

X (A0), an isoperimetric
inequality on X is represented by

m+
X (A0) ≤ m+

X (A)

for any A ⊂ X with m X (A) = m X (A0). The following Definition 3.6 is a variant of
Definition 3.1.

Definition 3.6 (Isoperimetric comparison condition with respect to closed subsets)
We say that X satisfies the isoperimetric comparison condition with respect to closed
subsets ICcl(ν) for a Borel probability measure ν on R if

I clX ◦ V ≥ V ′ L1-a.e. on V −1(m X (F(X))),

where V denotes the cumulative distribution function of ν.

The following Theorem 3.7 is an extension of Theorem 3.5.

Theorem 3.7 Let X be an essentially connected mm-space and let ν ∈ V . Then the
following (1), (2), (3), and (4) are all equivalent.

(1) The measure ν is an iso-dominant of X.
(2) The space X satisfies ICL(ν).
(3) The space X satisfies IC(ν).
(4) The space X satisfies ICcl(ν).

Let us prove Theorem 3.7. By Theorem 3.5, it is satisfied to prove that (3) implies
(4) and that (4) implies (2). The following Proposition 3.8 means that (3) implies (4).
The following Theorem 3.15 means that (4) implies (2).
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Proposition 3.8 Let X be an mm-space and ν a Borel probability measure on R. If X
satisfies IC(ν), then X satisfies ICcl(ν).

Proof This follows from IX ≤ I clX on m X (F(X)). �
To prove the following Theorem 3.15, we define the following Definition 3.9 and

we prepare some lemmas. These lemmas are also used in the proof of Theorem 1.7.

Definition 3.9 (Generalized inverse function) For amonotonically non-decreasing and
right-continuous function F : R → [0, 1] with

lim
t→−∞ F(t) = 0 and lim

t→+∞ F(t) = 1,

we define a generalized inverse function F̃ : [0, 1] → R by

F̃(s) :=
{
inf{ t ∈ R | s ≤ F(t) } if s ∈ (0, 1),

0 if s = 0 or s = 1

for s ∈ [0, 1].
Lemma 3.10 For any F as in Definition 3.9, F̃ takes finite values and F̃ |(0,1) is non-
decreasing.

Proof Fix any real number s ∈ (0, 1) and define A := { t ∈ R | s ≤ F(t) }. The set
A is nonempty because limt→∞ F(t) = 1. Since limt→−∞ F(t) = 0, there exists
t0 ∈ R such that F(t0) < s. For any element t ∈ A, we have F(t0) < s ≤ F(t).
Since F is non-decreasing, the inequality t0 < t follows. This implies that t0 is a
lower bound of A. Hence, F̃(s) takes finite values. The function F̃ is a non-decreasing
function on (0, 1) because we have { t ∈ R | s′ ≤ F(t) } ⊃ { t ∈ R | s ≤ F(t) } for
any 0 < s′ ≤ s < 1. This completes the proof. �
Lemma 3.11 (cf. [19]) For any F as in Definition 3.9, we have the following (1), (2),
and (3).

(1) F ◦ F̃(s) ≥ s for any real number s with 0 ≤ s < 1.
(2) F̃ ◦ F(t) ≤ t for any real number t with 0 < F(t) < 1.
(3) F̃−1((−∞, t ]) \ {0, 1} = (0, F(t)] \ {1} for any real number t.

Proof First we prove (1). If s = 0, we have (1) because ImF ⊂ [0, 1]. Fix a real
number s ∈ (0, 1) and define A := { t ∈ R | s ≤ F(t) } �= ∅. By the definition of
infimum, we have

F(t ′) ≥ inf
t∈A

F(t)

for any t ′ ∈ A. For any t ′ > inf A, we have t ′ ∈ A because F is non-decreasing. By
this, we have

lim
t ′→inf A+0

F(t ′) ≥ inf
t∈A

F(t).
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By the right continuity of F , we obtain

F(inf A) ≥ inf
t∈A

F(t).

Therefore, we have

F(F̃(s)) = F(inf A)

≥ inf
t∈A

F(t)

= inf{ F(t) | s ≤ F(t) }
≥ s.

Next we prove (2). We take any real number t ∈ R with 0 < F(t) < 1, then we
have

F̃(F(t)) = inf{ t ′ ∈ R | F(t ′) ≥ F(t) } ≤ t .

Last we prove (3). Take any real number s ∈ F̃−1((−∞, t]) \ {0, 1}. It follows
from F̃(s) ≤ t and the non-decreasing property of F that F ◦ F̃(s) ≤ F(t). This
implies that s ≤ F(t) by (1) and we have s ∈ (0, F(t)] \ {1}. Conversely, take any
real number s ∈ (0, F(t)] \ {1}. Since s ≤ F(t), we obtain F̃(s) ≤ t by the definition
of F̃(s). Hence s ∈ F̃−1((−∞, t]) \ {0, 1}. This completes the proof. �
Remark 3.12 The generalized inverse function F̃ of a function F is a Borel measurable
function. In fact, F̃ |(0,1) is monotonically non-decreasing.

Lemma 3.13 Let μ be a Borel probability measure on R with cumulative distribution
function F. Then we have

μ = F̃∗L1|[ 0,1 ],

where L1|[ 0,1 ] is the one-dimensional Lebesgue measure on [ 0, 1 ].
Proof By Lemma 3.11(3), we have

F̃∗L1|[ 0,1 ]((−∞, t ]) = L1|[ 0,1 ](F̃−1((−∞, t ]) \ {0, 1})
= L1|[ 0,1 ](( 0, F(t) ] \ {1})
= F(t) = μ((−∞, t ])

for any t > 0. This completes the proof. �
Lemma 3.14 (Lemma 3.13 in [20]) Let g : R → R be a monotonically non-decreasing
function, f : R → [ 0,+∞ ) a Borel measurable function, and A ⊂ R a Borel set.
Then we have ∫

g−1(A)

( f ◦ g) · g′ dL1 ≤
∫

A
f dL1.
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Theorem 3.15 Let X be an essentially connected mm-space and ν ∈ V . If X satisfies
ICcl(ν), then X satisfies ICL(ν).

Proof Setting E := (supp ν)◦, we easily see the bijectivity of V |E : E → ( 0, 1 ). We
define a function ρ : R → R by

ρ(t) :=

⎧⎪⎨
⎪⎩

V ′(t) for any t ∈ V −1(m X (F(X))) where V is differentiable

and such that I clX ◦ V (t) ≥ V ′(t),
0 otherwise,

for a real number t . We see that ρ = V ′ L1-a.e. and that ρ is a density function
of ν with respect to L1. Since I clX ◦ V ≥ ρ everywhere on V −1(m X (F(X))), we
have I clX ≥ ρ ◦ (V |E )−1 on m X (F(X)) \ {0, 1}. To prove ICL(ν), we take two real
numbers a, b ∈ supp ν with a ≤ b and a closed set A ⊂ X with m X (A) > 0 and
V (a) ≤ m X (A). Note that replacing a Borel set A by a closed set A in the Definition
1.3 is equivalent to the original definition. We may assume m X (Bb−a(A)) < 1. Let s
be any real number with 0 ≤ s ≤ b−a. Remarkingm X (Bs(A)) ∈ m X (F(X))\{0, 1},
we see

m+
X (Bs(A)) ≥ I clX (m X (Bs(A))) ≥ ρ ◦ (V |E )−1(m X (Bs(A))).

Setting g(s) := m X (Bs(A)), we have

g′(s) = m+
X (Bs(A)) ≥ ρ ◦ (V |E )−1(g(s)) L1-a.e. s ≥ 0

and hence

1 ≤ g′(s)
ρ ◦ (V |E )−1(g(s))

≤ +∞ L1-a.e s ∈ [ 0,+∞ ),

where we remark that g′(s) > 0 by essential connectedness of X . Since g(0) =
m X (A), we have

(V |E )−1 ◦ g(0) = (V |E )−1(m X (A))

≥ (V |E )−1(V (a)) = a

if V (a) > 0. If V (a) = 0, we have a = inf supp ν ≤ (V |E )−1 ◦ g(0) since (V |E )−1 ◦
g(0) ∈ E = (supp ν)◦. By Lemmas 3.14 and 3.13,

b − a ≤
∫

[ 0,b−a ]
g′(s) ·

(
ρ ◦ (V |E )−1(g(s))

)−1
ds

≤
∫

g−1(g([ 0,b−a ]))
g′(s) ·

(
ρ ◦ (V |E )−1(g(s))

)−1
ds

≤
∫

g([ 0,b−a ])
dL1

ρ ◦ (V |E )−1
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=
∫

(V |E )−1◦g([ 0,b−a ])
1

ρ
d((V |E )−1∗ L1)

=
∫

(V |E )−1◦g([ 0,b−a ])
1

ρ
dν

≤
∫

(V |E )−1◦g([ 0,b−a ])
dL1

≤ L1([(V |E )−1 ◦ g(0), (V |E )−1 ◦ g(b − a)])
= (V |E )−1 ◦ g(b − a) − (V |E )−1 ◦ g(0)

≤ (V |E )−1 ◦ g(b − a) − a,

which implies

V (b) ≤ g(b − a) = m X (Bb−a(A)).

This completes the proof. �
This completes the proof of Theorem 3.7. At the end of this subsection, let us prove

Corollary 3.21 by Theorem 3.7.We prepare some definitions and propositions to prove
Corollary 3.21.

Proposition 3.16 ([20]) Let X and Y be mm-spaces such that X dominates Y . Then
we have

mY (F(Y )) ⊂ m X (F(X)) and I clX ≤ I clY on mY (F(Y )).

In particular, if X satisfies ICcl(ν) for a Borel probability measure ν on R, then Y also
satisfies ICcl(ν).

Proof Since X dominates Y , there is a 1-Lipschitz map f : X → Y such that f∗m X =
mY . For any closed set A ⊂ Y , we see f −1(Bε(A)) ⊃ Bε( f −1(A)) by the 1-Lipschitz
continuity of f , and hence

m+
Y (A) = lim sup

ε→+0

mY (Bε(A)) − mY (A)

ε

≥ lim sup
ε→+0

m X (Bε( f −1(A))) − m X ( f −1(A))

ε

= m+
X ( f −1(A)),

which implies that, for any v ∈ mY (F(Y )),

I clY (v) = inf
mY (A)=v

m+
Y (A) ≥ inf

m X ( f −1(A))=v
m+

X ( f −1(A)) ≥ I clX (v).

The rest is easy. This completes the proof. �
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Definition 3.17 (Dominant [11, §9]) We call a Borel probability measure ν on R a
dominant of an mm-space X if ν is an upper bound of M(X; 1) with respect to the
Lipschitz order 	. That means (R, | · |, ν) 	 (R, | · |, μ) for all μ ∈ M(X; 1). The
Lipschitz order 	 is defined in Definition 2.5.

Using Proposition 3.16, we prove the following Proposition 3.18.

Proposition 3.18 (Gromov [11, §9]) If ν is a dominant of an mm-space X, then

m X (F(X)) ⊂ ν(F(R)) and I clν ≤ I clX on m X (F(X)),

where I clν is the isoperimetric profile with respect to closed subsets of (R, ν).

Proof We take any real number v ∈ m X (F(X)) and fix it. If v = 0, then it is obvious
that v ∈ ν(F(R)) and I clν (v) = 0 = I clX (v). Assume v > 0. For any ε > 0 there is
a closed set A ⊂ X such that m X (A) = v and m+

X (A) < I clX (v) + ε. Note that A is
nonempty because v > 0. Define a function f : X → R by f (x) := dX (x, A). Then
f is 1-Lipschitz continuous. Since f∗m X ((−∞, 0 ]) = m X (A) = v, we have

I clf∗m X
(v) ≤ ( f∗m X )+((−∞, 0]) = m+

X (A) < I clX (v) + ε.

Since ν dominates f∗m X , Proposition 3.16 implies that v ∈ ν(F(R)) and I clν (v) ≤
I clf∗m X

(v). We therefore have I clν (v) < I clX (v) + ε. Since ε > 0 is arbitrary, we obtain

I clν (v) ≤ I clX (v). This completes the proof. �
Definition 3.19 [Iso-simpleness [11, §9]] A Borel probability measure ν on R is said
to be iso-simple if ν ∈ V and if

Iν ◦ V = V ′ L1-a.e.

Remark 3.20 For anyBorel probabilitymeasure ν onR, we always observe Iν◦V ≤ V ′
L1-a.e. In fact, we have

V ′(t) = ν+((−∞, t]) ≥ inf
ν(A)=V (t)

ν+(A) = Iν ◦ V (t)

L1-a.e. t .

Gromov [11]*§9 stated the following corollary without proof.

Corollary 3.21 (Gromov [11]*§9) Let X be an essentially connected mm-space and ν

an iso-simple Borel probability measure on R. Then, we have I clν ≤ I clX on m X (F(X))

if and only if ν is an iso-dominant of X.

Proof We assume that ν is an iso-dominant of X . By Proposition 3.18, we have I clν ≤
I clX on m X (F(X)). Conversely, we assume I clν ≤ I clX on m X (F(X)). Then we have
Iν ◦ V ≤ I clν ◦ V ≤ I clX ◦ V on V −1(m X (F(X))). Since ν is iso-simple, we have

V ′ = Iν ◦ V ≤ I clX ◦ V L1-a.e. on V −1(m X (F(X))).
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This means that X satisfies ICcl(ν). By Theorem 3.7, ν is an iso-dominant of X . This
completes the proof. �

3.2 Iso-Lipschitz Order with an Error

In this section, we define the iso-Lipschitz order with an additive error and present
some properties. To define the iso-Lipschitz order with an error, we use transport plans
(Definition 2.7) and the following iso-deviation.

Definition 3.22 (Iso-deviation) We define the iso-deviation dev	 of a subset S ⊂ R
2

by

dev	 S := sup{ y − y′ − max{ x − x ′, 0 } | (x, y), (x ′, y′) ∈ S }

if S is nonempty. We set dev	 ∅ := 0.

The iso-deviation evaluates the deviation from the monotonically non-decreasing and
1-Lipschitz property. The following iso-Lipschitz order with an error is a generaliza-
tion of the iso-Lipschitz order (Definition 3.2).

Definition 3.23 (Iso-Lipschitz order 	′
(s,t) with error (s, t)) Let μ and ν be two Borel

probability measures onR and s, t ≥ 0 two real numbers.We say thatμ iso-dominates
ν with error (s, t) and denote μ 	′

(s,t) ν if there exists a transport plan π ∈ �(μ, ν)

and a Borel subset S ⊂ R
2 such that dev	 S ≤ s and 1 − π(S) ≤ t .

The following Propositions 3.24 and 3.25 are useful properties of the iso-deviation.
ByProposition 3.24,we obtain dev	 S ≤ ε ifwe check dev	 S ≤ ε for any real number
ε ≥ 0. Proposition 3.25 implies that a subset S ⊂ R

2 determines a 1-Lipschitz function
if we have dev	 S = 0.

Proposition 3.24 For a subset S ⊂ R
2, we have

dev	 S = dev	 S.

Proposition 3.25 Let S ⊂ R
2. For any two points (x, y), (x ′, y′) ∈ S, we have

|y − y′| − |x − x ′| ≤ dev	 S.

Proof Take any (x, y), (x ′, y′) ∈ S. By symmetry, we may assume that y ≥ y′. Then
we have

|y − y′| − |x − x ′| ≤ y − y′ − max{ x − x ′, 0 } ≤ dev	 S.

This completes proof. �
Theorem 3.26 Let μ and ν be two Borel probability measures on R. Then μ 	′ ν if
and only if μ 	′

(0,0) ν.
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Proof Assume that μ 	′ ν. Then, there exists a monotonically non-decreasing 1-
Lipschitz function f : suppμ → supp ν such that f∗μ = ν. We put π :=
(idR, f )∗μ ∈ �(μ, ν). Let us prove dev	 suppπ = 0. By Proposition 2.3, we have

suppπ = (idR, f )(suppμ),

which implies that

dev	 suppπ = dev	((idR, f )(suppμ))

by Proposition 3.24. Hence, it suffices to prove dev	((idR, f )(suppμ)) = 0. Take
any two points (x1, y1), (x2, y2) ∈ (idR, f )(suppμ). Then, we have x1, x2 ∈ suppμ

and y1 = f (x1), y2 = f (x2). In the case that x1 ≥ x2, we have

y1 − y2 − max{ x1 − x2, 0 } = f (x1) − f (x2) − |x1 − x2|
≤ | f (x1) − f (x2)| − |x1 − x2| ≤ 0

because f is 1-Lipschitz. In the case that x1 ≤ x2, we have f (x1) ≤ f (x2) since f is
monotonically non-decreasing. Then we have

y1 − y2 − max{ x1 − x2, 0 } = y1 − y2 = f (x1) − f (x2) ≤ 0.

Therefore we obtain dev	 suppπ = 0. It follows that μ 	′
(0,0) ν.

Conversely, assume that μ 	′
(0,0) ν. Then there exists π ∈ �(μ, ν) such that

dev	 suppπ = 0. Take any point x ∈ suppμ. We now claim that there exists a unique
point y ∈ supp ν such that (x, y) ∈ suppπ . Let us prove the existence of y. Take any
x ∈ suppμ. By Proposition 2.3, we have

suppμ = supp(pr1)∗π = pr1(suppπ).

Hence, there exists {(xn, yn)}n∈N ⊂ suppπ such that xn converges to x . ByProposition
3.25, we have

|ym − yn| − |xm − xn| ≤ dev	 suppπ = 0

for anypositive integersm andn. Thismeans that {yn} is aCauchy sequence.Therefore,
{yn} converges to some y ∈ R. Since suppπ is closed, we have (x, y) ∈ suppπ . In
addition, we have

y ∈ pr2(suppπ) ⊂ supp(pr2)∗π = supp ν.

The uniqueness of y ∈ supp ν follows from dev	 suppπ = 0 and Proposition 3.25.
Now, we define a function f : suppμ → supp ν by f (x) := y for x ∈ suppμ,

where y ∈ supp ν satisfies (x, y) ∈ suppπ . By dev	 suppπ = 0 and Proposition 3.25,
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f is a 1-Lipschitz function. Let us prove that f is monotonically non-decreasing. Take
any x, x ′ ∈ suppμ with x ≤ x ′. Then we have

f (x) − f (x ′) = f (x) − f (x ′) − max{ x − x ′, 0 } ≤ dev	 suppπ = 0.

It remains to show f∗μ = ν. Let us prove

suppπ = { (x, f (x)) | x ∈ suppμ }. (3.1)

By the definition of f , we have suppπ ⊃ { (x, f (x)) | x ∈ suppμ }. We now check
suppπ = { (x, f (x)) | x ∈ suppμ }. Take any point (x, y) ∈ suppπ . By Proposition
(2.3), we have

x ∈ pr1(suppπ) ⊂ supp(pr1)∗π = suppμ.

Because f is well-defined, we have y = f (x). Thus we have (x, y) ∈
{ (x, f (x)) | x ∈ suppμ }. Therefore we obtain (3.1).

By (3.1), we have

(A × B) ∩ suppπ = {(A ∩ f −1(B)) × R} ∩ suppπ

for any Borel sets A and B of R. Since

π(A × B) = π((A ∩ f −1(B)) × R)

= μ(A ∩ f −1(B))

= (idR, f )∗μ(A × B),

we have π = (idR, f )∗μ, which implies ν = (pr2)∗π = f∗μ. This completes the
proof. �
Proposition 3.27 Let dl1 be the l1-distance dl1((x, y), (x ′, y′)) := |x − x ′| + |y − y′|
on R

2 and dH the Hausdorff distance function with respect to dl1 . For any two closed
subsets S, S′ ⊂ R

2, we have

| dev	 S − dev	 S′| ≤ 2dH (S, S′).

Proof Take any real number ε > 0 with ε > dH (S, S′). We have S′ ⊂ Uε(S). Let us
prove dev	 Uε(S) ≤ dev	 S + 2ε. Take a point (xi , yi ) ∈ Uε(S) for i = 1, 2. Then
there exists (x ′

i , y′
i ) ∈ S such that dl1((xi , yi ), (x ′

i , y′
i )) < ε. Now, we have

y1 − y2 − max{ x1 − x2, 0 }
= y′

1 − y′
2 + (y1 − y′

1) + (y′
2 − y2)

− max{ x ′
1 − x ′

2 + (x1 − x ′
1) + (x ′

2 − x2), 0 }
≤ y′

1 − y′
2 + |y1 − y′

1| + |y′
2 − y2|
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− max{ x ′
1 − x ′

2 − |x1 − x ′
1| − |x ′

2 − x2|, 0 }
≤ y′

1 − y′
2 + |y1 − y′

1| + |y′
2 − y2|

− (max{ x ′
1 − x ′

2, 0 } − |x1 − x ′
1| − |x ′

2 − x2|)
≤ y′

1 − y′
2 − max{ x ′

1 − x ′
2, 0 } + 2ε

≤ dev	 S + 2ε.

Therefore we obtain

dev	 S′ ≤ dev	 Uε(S) ≤ dev	 S + 2ε.

This implies dev	 S′ − dev	 S ≤ 2dH (S, S′). By exchanging S for S′, we also obtain
dev	 S − dev	 S′ ≤ 2dH (S, S′). �

Theorem 3.28 Let μ and ν be two Borel probability measures on R and s, t ≥ 0. If
μ 	′

(s+ε,t+ε) ν for every ε > 0, then we have μ 	′
(s,t) ν.

Proof Suppose thatμ 	′
(s+ 1

n ,t+ 1
n )

ν for any positive integer n. For any positive integer

n, there existπn ∈ �(μ, ν) and a closed subset Sn ⊂ R
2 such that dev	 Sn ≤ s+ 1

n and
πn(Sn) ≥ 1− t − 1

n . Due to the weak compactness of�(μ, ν), we may assume that πn

converges weakly to some Borel probability measure π by taking a subsequence. By
Prokhorov’s theorem, for any positive number m, there exists a compact subset Km ⊂
R
2 such that supn∈N πn(K c

m) ≤ 1
m andπ(K c

m) ≤ 1
m .Wemay assume that the sequence

of {Km} is monotonically non-decreasing with respect to the inclusion relation. Let dH

be the Hausdorff distance function of (R2, dl1) and dm
H the Hausdorff distance function

of (Km, dl1). Since Km is compact, (F(Km), dm
H ) is also compact, where F(Km) is

the set of all closed subsets of Km . By taking a subsequence {n(1)
i }i∈N ⊂ N, we have

d1
H (S

n(1)
i

∩ K1, S1∞) → 0 as i → ∞ for some S1∞ ∈ F(K1), where N is the set of

positive integers. Furthermore, we take some subsequence {n(2)
i }i∈N ⊂ {n(1)

i }i∈N and
we have d2

H (S
n(2)

i
∩K2, S2∞) → 0 for some S2∞ ∈ F(K2). By repeating this procedure,

we take a subsequence {n(m)
i }i∈N ⊂ {n(m−1)

i }i∈N and we have dm
H (S

n(m)
i

∩ Km, Sm∞) →
0 for some Sm∞ ∈ F(Km). Put ni := n(i)

i . Since the convergence on (F(Km), dm
H )

implies the convergence on (F(R), dH ), we obtain

dH (Sni ∩ Km, Sm∞) → 0 (3.2)

for any positive integer m. Since {Km} is monotonically non-decreasing with respect
to the inclusion relation, {Sm∞} is also monotonically non-decreasing. By Proposition
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3.27 and (3.2), we have

dev	 Sm∞ ≤ lim inf
i→∞ dev	(Sni ∩ Km)

≤ lim inf
i→∞ dev	(Sni )

≤ lim inf
i→∞

(
s + 1

ni

)
= s

(3.3)

Since {πni } converges weakly to π and (3.2), we also have

π(Sm∞) ≥ lim sup
i→∞

πni (Sni ∩ Km)

= lim sup
i→∞

(πni (Sni ) − πni (Sni ∩ K c
m))

≥ lim sup
i→∞

(πni (Sni ) − πni (K c
m))

≥ lim sup
i→∞

(
1 − t − 1

ni
− 1

m

)
= 1 − t − 1

m

(3.4)

for any positive number m. Now, we put S := ⋃∞
m=1 Sm∞. By (3.3), we have

dev	 S = sup
m∈N

dev	 Sm∞ ≤ s

By (3.4), we have

π(S) = lim
m→∞ π(Sm∞) ≥ lim

m→∞

(
1 − t − 1

m

)
= 1 − t,

where we remark that the limit exists because {Sm∞} is monotonically non-decreasing.
Therefore we obtain μ 	′

(s,t) ν. This completes the proof. �
The following Theorem 3.31 is a variation of the transitive property. To prove

Theorem 3.31, we prepare the following Definition 3.29 and Proposition 3.30.

Definition 3.29 (Subtransport plan) Let μ and ν be two Borel probability measures
on R. We say that a Borel measure on R

2 is a subtransport plan between μ and ν if
we have (pr1)∗π ≤ μ and (pr2)∗π ≤ ν.

Proposition 3.30 Let μ and ν be two Borel probability measures on R. Then we have
μ 	′

(s,t) ν if and only if there exists a subtransport plan π between μ and ν such that

dev	 suppπ ≤ s and 1 − π(R2) ≤ t .

The proof of the above proposition is easy and omitted.

Theorem 3.31 Let μ1, μ2, and μ3 be three Borel probability measures on R and
let si , ti ≥ 0 for i = 1, 2. If μ1 	′

(s1,t1)
μ2 and if μ2 	′

(s2,t2)
μ3, then we have

μ1 	′
(s1+s2,t1+t2)

μ3.

123



Isoperimetric Inequality on a Metric Measure Space Page 23 of 43 35

Proof Suppose that μ1 	′
(s1,t1)

μ2 and μ2 	′
(s2,t2)

μ3. There exists a subtransport
plan πi between μi and μi+1 such that dev	 suppπi ≤ si and 1 − πi (suppπi ) ≤ ti
for i = 1, 2. Put μ′ := (pr2)∗π1 and μ′′ := (pr1)∗π2. By the disintegration theorem
(see III-70 in [18] or Theorem 5.3.1 in [1]), there exist two families {(π1)x }x∈R and
{(π2)x }x∈R of Borel probability measures on R such that

π1(A × B) =
∫

B
(π1)x (A)dμ′(x),

π2(A × B) =
∫

A
(π2)x (B)dμ′′(x)

for any Borel subsets A and B of R. Now, we put

π123(A × B × C) :=
∫

B
(π1)x (A) · (π2)x (C)d(μ′ ∧ μ′′)(x),

π13 := (pr13)∗π123

for any three Borel subsets A, B, and C of R, where μ′ ∧ μ′′ := μ′ − (μ′ − μ′′)+ and
a measure (μ′ − μ′′)+ is defined by

(μ′ − μ′′)+(B) := sup{ μ′(B ′) − μ′′(B ′) | B ′ ⊂ B is a Borel set }

for any Borel set B ⊂ R. Then we have

(pr12)∗π123 ≤ π1, (pr23)∗π123 ≤ π2. (3.5)

In particular, π13 is a subtransport plan between μ1 and μ3. Moreover, we obtain
1 − π13(suppπ13) ≤ t1 + t2 because we have

π13(R
2) =

∫
R

((π1)x (R) · (π2)x (R)) d(μ′ ∧ μ′′)(x)

= (μ′ ∧ μ′′)(R)

= μ′(R) − (μ′ − μ′′)+(R)

≥ μ′(R) − (μ2 − μ′′)+(R)

= μ′(R) − (μ2(R) − μ′′(R))

= μ′(R) + μ′′(R) − 1

≥ (1 − t1) + (1 − t2) − 1 = 1 − t1 − t2.

It remains to show dev	 suppπ13 ≤ s1 + s2. By Proposition 3.24 and since

suppπ13 = pr13(suppπ123),

it suffices to prove

dev	(pr13(suppπ123)) ≤ s1 + s2. (3.6)
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Take any (xi , zi ) ∈ pr13(suppπ123) for i = 1, 2. There exists a point yi ∈ R such that
(xi , yi , zi ) ∈ suppπ123. By (3.5), we have

suppπ123 ⊂ pr−1
12 (pr12(suppπ123)) ⊂ pr−1

12 (suppπ1)

and

suppπ123 ⊂ pr−1
23 (pr23(suppπ123)) ⊂ pr−1

23 (suppπ2).

This implies that (xi , yi ) ∈ suppπ1 and (yi , zi ) ∈ suppπ2. Now, let us prove

max{ y1 − y2, 0 } − max{ x1 − x2, 0 } ≤ s1. (3.7)

In the case that y1 < y2, we have

max{ y1 − y2, 0 } − max{ x1 − x2, 0 } = −max{ x1 − x2, 0 } ≤ 0.

In the case that y1 ≥ y2, we have

max{ y1 − y2, 0 } − max{ x1 − x2, 0 } = y1 − y2 − max{ x1 − x2 }
≤ dev	 suppπ1 ≤ s1.

Combining (3.7) with dev	 suppπ2 ≤ s2, we obtain

z1 − z2 − max{ x1 − x2, 0 } ≤ z1 − z2 − max{ y1 − y2, 0 } + s1
≤ s1 + s2,

which implies (3.6). This completes the proof. �

3.3 Isoperimetric Comparison Condition with an Error

In this section, we prove Theorem 1.7 to explain the relation between ε-iso-dominant
and ICLε. We also explain the relation between IC+

ε (Definition 3.35) and ICLε. The
condition IC+

ε is a discretization of IC (Definition 3.1). At the end of this section, we
give some examples of these conditions.

Proposition 3.32 Let ε be a non-negative real number. If a Borel probability measure
ν on R is an ε-iso-dominant of an mm-space X, then (t · idR)∗ν is a tε-iso-dominant
of t X.

Remark 3.33 By Theorem 3.26, a Borel measure on R is a 0-iso-dominant if and only
if it is an iso-dominant.

Let A be a subset of R. We put

δ−(A; a) := inf{ t > 0 | a − t ∈ A }
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for a point a ∈ A, where we define

δ−(A; a) := ∞

if { t > 0 | a − t ∈ A } = ∅. We define �(A) by

�(A) := sup{ δ−(A; a) | a ∈ A \ {inf A} }.

If A is a closed set, we have a − δ−(A; a) ∈ A.

Proof of Theorem 1.7 (1) Let V be the cumulative distribution function of ν. Take any
1-Lipschitz function f : X → R and let F : R → [0, 1] be the cumulative distribution
function of f∗m X .Weputπ := (Ṽ , F̃)∗L1|[0,1] and seeπ ∈ �(ν, f∗m X ). It suffices to
prove dev	 suppπ ≤ ε+δ,where δ := �(supp ν). Take anypoints (x1, y1), (x2, y2) ∈
suppπ . Let us prove

y2 − y1 − max{ x2 − x1, 0 } ≤ ε + δ. (3.8)

Since {0, 1} is a null set with respect to L1, we have

suppπ = supp(Ṽ , F̃)∗L1|[0,1]
⊂ (Ṽ , F̃)(suppL1|[0,1] \ {0, 1})
= (Ṽ , F̃)((0, 1)).

Then, there exists {tn
i }∞n=1 ⊂ (0, 1) such that xi = limn→∞ Ṽ (tn

i ) and yi =
limn→∞ F̃(tn

i ) for i = 1, 2.
If x1 > x2, we have y1 ≥ y2, which implies (3.8). In fact, we have

y2 − y1 − max{ x2 − x1, 0 } = y2 − y1 ≤ 0 ≤ ε + δ.

We assume x1 ≤ x2. Let us prove

V ◦ Ṽ (tn
2 ) ≤ F(F̃(tn

1 ) + Ṽ (tn
2 ) − Ṽ (tn

1 ) + δ + ε) (3.9)

for any positive integer n. In the case that Ṽ (tn
1 ) = inf supp ν, we have

0 < tn
1 ≤ F ◦ F̃(tn

1 ) = m X ( f −1((−∞, F̃(tn
1 )])),

which implies

f −1((−∞, F̃(tn
1 )]) �= ∅. (3.10)

Since we have

ν({inf supp ν}) ≤ m X ({x}) for any x ∈ suppm X (3.11)
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and (3.10), we have

V ◦ Ṽ (tn
1 ) = ν({inf supp ν}) ≤ m X ( f −1((−∞, F̃(tn

1 )])),

where (3.11) is the assumption of this theorem. By using ICLε(ν), we obtain

V ◦ Ṽ (tn
2 ) ≤ m X (BṼ (tn

2 )−Ṽ (tn
1 )+ε

( f −1((−∞, F̃(tn
1 )])))

≤ m X ( f −1(BṼ (tn
2 )−Ṽ (tn

1 )+ε
((−∞, F̃(tn

1 )])))
= F(F̃(tn

1 ) + Ṽ (tn
2 ) − Ṽ (tn

1 ) + ε).

In the case that Ṽ (tn
1 ) > inf supp ν, we have δ−(supp ν; Ṽ (tn

1 )) < ∞. By the definition
of δ−(supp ν; Ṽ (tn

1 )), there exists a sequence {sn
k }∞k=1 of positive real numbers such

that limk→∞ sn
k = δ−(supp ν; Ṽ (tn

1 )) and Ṽ (tn
1 )−sn

k ∈ supp ν for any positive integer
k. By the definition of Ṽ , we have V (Ṽ (tn

1 ) − s) < tn
1 for any real number s > 0,

which implies

V (Ṽ (tn
1 ) − sn

k ) < tn
1 ≤ F ◦ F̃(tn

1 ) = m X ( f −1((−∞, F̃(tn
1 )])).

By ICLε(ν), we have

V ◦ Ṽ (tn
2 ) ≤ m X (BṼ (tn

2 )−Ṽ (tn
1 )+sn

k +ε
( f −1((−∞, F̃(tn

1 )])))
≤ m X ( f −1(BṼ (tn

2 )−Ṽ (tn
1 )+sn

k +ε
((−∞, F̃(tn

1 )])))
= F(F̃(tn

1 ) + Ṽ (tn
2 ) − Ṽ (tn

1 ) + sn
k + ε).

By taking the limit as k → ∞, we have

V ◦ Ṽ (tn
2 ) ≤ F(F̃(tn

1 ) + Ṽ (tn
2 ) − Ṽ (tn

1 ) + δ−(supp ν; Ṽ (tn
1 )) + ε)

≤ F(F̃(tn
1 ) + Ṽ (tn

2 ) − Ṽ (tn
1 ) + δ + ε).

Hence we obtain (3.9).
By using (3.9), we have

tn
2 ≤ V ◦ Ṽ (tn

2 ) = F(F̃(tn
1 ) + Ṽ (tn

2 ) − Ṽ (tn
1 ) + δ + ε).

By the definition of F̃(tn
2 ), we have

F̃(tn
2 ) ≤ F̃(tn

1 ) + Ṽ (tn
2 ) − Ṽ (tn

1 ) + δ + ε.

By taking the limit as n → ∞, we obtain y2 − y1 ≤ x2 − x1 + δ + ε. This completes
of proof. �
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Proof of Theorem 1.7 (2) Take any two real numbers a, b ∈ supp ν with a ≤ b and
any Borel set A ⊂ X with m X (A) > 0 and m X (A) ≥ V (a). We define a 1-Lipschitz
function f : X → R by f (x) := dX (x, A) for x ∈ X . Since ν is an ε-iso-dominant
of X , there exists a transport plan π between ν and f∗m X such that dev	 suppπ ≤ ε.
We put

a′ := sup{ x | (x, y) ∈ suppπ ∩ (R × (−∞, 0]) for some y },
b′ := sup{ x | (x, y) ∈ suppπ ∩ (R × (−∞, b − a + ε]) for some y }.

We remark that we have a′ ≤ b′ by the definition of a′ and b′. We claim that we can
assume that b′ < ∞ because we have

m X (Bb−a+2ε(A)) = 1 if b′ = ∞. (3.12)

We now check (3.12). First, let us prove

suppπ ⊂ R × (−∞, b − a + 2ε]. (3.13)

We take any point (x, y) ∈ suppπ . By b′ = ∞, there exists (x ′, y′) ∈ suppπ such
that x ≤ x ′ and y′ ≤ b − a + ε. Then we have

y ≤ y′ + dev	 suppπ ≤ b − a + 2ε

because dev	 suppπ ≤ ε. This implies (3.13). Then (3.13) implies

m X (Bb−a+2ε(A)) = f∗m X ((−∞, b − a + 2ε])
= π(R × (−∞, b − a + 2ε]) ≥ 1.

This completes the proof of (3.12).
Now, we have

V (a) ≤ m X (A) ≤ f∗m X ((−∞, 0]) = π(R × (−∞, 0])
= π((−∞, a′] × (−∞, 0]) ≤ V (a′).

In particular, we have

a′ ≥ inf supp ν (3.14)

because V (a′) ≥ m X (A) > 0. Let us prove a ≤ a′. By (3.14), we may assume
a > inf supp ν. If a > a′, then we have V (a) > V (a′) because we have ν({a}) > 0
or supp ν is connected, which implies a contradiction.

Next, let us prove b ≤ b′. We may assume b ≥ a′ because b ≤ a′ ≤ b′ if b ≤ a′.
Let us prove that

there exists y′
0 ≤ 0 such that (a′, y′

0) ∈ suppπ. (3.15)
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Take any positive integer n. There exists (sn, tn) ∈ suppπ such that a′−1/n < sn ≤ a′
and tn ≤ 0. By Proposition 3.25, we have

|tn − t1| ≤ |sn − s1| + dev	 suppπ ≤ 1 + ε.

Since the sequence {tn} is bounded, there exists a subsequence {n(i)} and y′
0 ∈ R

such that tn(i) → y′
0 as i → ∞. We have y′

0 ≤ 0 because tn ≤ 0 for any n. Since
(sn(i), tn(i)) → (a′, y′

0) as i → ∞ and suppπ is closed, we obtain (a′, y′
0) ∈ suppπ .

Hence (3.15) is proved.
Similarly, let us prove that

there exists y′
0 ≤ 0 such that (a′, y′

0) ∈ suppπ. (3.16)

By Proposition 2.3,

b ∈ supp ν = supp(pr1)∗π = pr1(suppπ). (3.17)

By (3.17), there exists a sequence {(sn, tn)} ⊂ suppπ such that sn → b asn → ∞. The
sequence {tn} is bounded because dev	 suppπ ≤ ε. Hence there exists a subsequence
{n(i)} and y0 ∈ R such that tn(i) → y0 as i → ∞. Since (sn(i), tn(i)) → (b, y0) as
i → ∞ and suppπ is closed, we obtain (b, y0) ∈ suppπ . Hence (3.16) is proved.

Now, we have

y0 ≤ y0 − y′
0 ≤ b − a′ + ε ≤ b − a + ε

since dev	 suppπ ≤ ε. Therefore, we have (b, y0) ∈ suppπ ∩(R×(−∞, b−a+ε]),
which implies b ≤ b′ by the definition of b′.

If we have

suppπ ∩ ((−∞, b′] × R) ⊂ (−∞, b′] × (−∞, b − a + 2ε], (3.18)

then we obtain

V (b) ≤ V (b′) = π((−∞, b′] × R)

≤ π((−∞, b′] × (−∞, b − a + 2ε])
≤ π(R × (−∞, b − a + 2ε])
= f∗m X ((−∞, b − a + 2ε])
= m X (Bb−a+2ε(A)).

It remains to prove (3.18). Take any point (x, y) ∈ suppπ ∩ ((−∞, b′] × R). In the
case that x < b′, there exists (x ′, y′) ∈ suppπ ∩ (R × (−∞, b − a + ε]) such that
x ′ > x by the definition of b′. Now, we have y − y′ = y − y′ − max{ x − x ′, 0 } ≤
dev	 suppπ ≤ ε. Hence, we obtain y ≤ y′ + ε ≤ b − a + 2ε.
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In the case that x = b′, then for any positive integer n, there exists a point (xn, yn) ∈
suppπ ∩ (R× (−∞, b − a + ε]) such that x − 1/n < xn ≤ x . By dev	 suppπ ≤ ε,
we obtain

y ≤ yn + x − xn + ε

≤ x − xn + b − a + 2ε

≤ 1

n
+ b − a + 2ε → b − a + 2ε as n → ∞.

Hence we have (x, y) ∈ (−∞, b′] × (−∞, b − a + 2ε]. This completes the proof. �
Isoperimetric profiles are for non-discrete spaces. The following Definition 3.34

define isoperimetric profiles for discrete spaces.

Definition 3.34 (ε-discrete isoperimetric profile) Let X be an mm-space, and ε ≥ 0 a
real number. We define the ε-discrete isoperimetric profile I ε

X of X by

I ε
X (v) := inf{ m X (Bε(A)) | m X (A) = v } for v ∈ Imm X ,

where Imm X := { m X (A) | A ⊂ X is a Borel set. }.
The following Definition 3.35 is a discrete version of IC(ν) condition.

Definition 3.35 (Isoperimetric comparison condition with an error) We say that an
mm-space X satisfies the condition IC+

ε (ν) for a Borel probability measure ν on R

and a real number ε ≥ 0 if we have

I δ+(t)+ε
X ◦ V (t) ≥ V (t + δ+(t))

for any t ∈ (supp ν \ {sup supp ν}) ∩ V −1(Imm X \ {0}), where V (t) := ν((−∞, t])
is the cumulative distribution function of ν, and where

δ+(t) := inf{ s > 0 | t + s ∈ supp ν }.

The following Propositions 3.36 and 3.37 explain the relation between IC+
ε condi-

tion and ICL condition.

Proposition 3.36 Let X be a finite mm-space equipped with the uniform measure, and
ν a Borel probability measure on R with N := # supp ν < ∞. Let ε be a non-negative
real number. We assume that

Imν ⊂ (1/#X)Z :=
{

1

#X
· n | n ∈ Z

}
.

If X satisfies IC+
ε (ν), then it satisfies ICL(N−1)ε(ν).
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Proof Suppose that X satisfies IC+
ε (ν). Take any two real numbers a, b ∈ supp ν with

a ≤ b and a Borel subset A ⊂ X with m X (A) ≥ V (a). We remark that V (a) > 0
because # supp ν < ∞. We may assume a < sup supp ν. We inductively define
δ+

n : R → [0,∞] by

δ+
1 (t) := δ+(t) + t, δ+

n+1(t) := δ+ ◦ δ+
n (t) + δ+

n (t)

for any positive integer n. Now, there exists a positive integer n0 such that δ+
n0(a) = b

and n0 ≤ N − 1. Let us prove by induction

m X (Bδ+
n (a)−a+nε(A)) ≥ V ◦ δ+

n (a) (3.19)

for any positive integer n ≤ n0.
First, we consider the case n = 1. Since m X is the uniform measure and Imν ⊂

(1/#X)Z, there exists a Borel set Ã1 ⊂ A such that m X ( Ã1) = V (a) because we have

m X (A) ≥ V (a). By the definition of I δ+(a)+ε
X , we have

m X (Bδ+
1 (a)−a+ε(A)) = m X (Bδ+(a)+ε(A))

≥ m X (Bδ+(a)+ε( Ã1))

≥ I δ+(a)+ε
X ◦ V (a)

≥ V ◦ δ+
1 (a),

where we remark that X satisfies IC+
ε (ν).

Next, we assume (3.19) for n = k. Hence, we have

m X (Bδ+
k (a)−a+kε(A)) ≥ V ◦ δ+

k (a),

which implies that there exists a Borel subset

Ãk ⊂ Bδ+
k (a)−a+kε(A)

such that m X ( Ãk) = V ◦ δ+
k (a). Therefore we have

m X (Bδ+
k+1(a)−a+(k+1)ε(A)) ≥ m X (Bδ+

k+1(a)−δ+
k (a)+ε(Bδ+

k (a)−a+kε(A)))

≥ m X (Bδ+◦δ+
k (a)+ε( Ãk))

≥ I
δ+◦δ+

k (a)+ε

X ◦ V ◦ δ+
k (a)

≥ V ◦ δ+
k (a)

if k + 1 ≤ n0. Hence we obtain (3.19). In particular, we have

m X (Bδ+
n0 (a)−a+n0ε

(A)) ≥ V ◦ δ+
n0(a).
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Therefore we obtain

m X (Bb−a+(N−1)ε(A)) ≥ m X (Bδ+
n0 (a)−a+n0ε

(A))

≥ V ◦ δ+
n0(a) = V (b).

This completes the proof. �
Proposition 3.37 Let X be an mm-space and ν a Borel probability measure on R, and
ε ≥ 0 a real number. If X satisfies ICLε(ν), then it satisfies IC+

ε (ν).

Proof Take any t ∈ (supp ν \ {sup supp ν}) ∩ V −1(Imm X \ {0}). Since t ∈ supp ν \
{sup supp ν}, we have δ+(t) < ∞. Since t ∈ V −1(Imm X \{0}), we haveV (t) ∈ Imm X

and V (t) > 0. Take any Borel set A ⊂ X with m X (A) = V (t). By ICLε(ν), we have

m X (Bδ+(t)+ε(A)) ≥ V (t + δ+(t))

because we have t, t + δ+(t) ∈ supp ν. This implies that

I δ+(t)+ε
X ◦ V (t) ≥ V (t + δ+(t))

by Definition 3.34. This completes the proof. �
Example 3.38 Let G1, G2, . . . , Gn be connected graphs with same order k ≥ 2. Let
�n

i=1Gi be the Cartesian product graph equipped with the path metric and the uniform
measure. Let d0 : [k]n → R be the l1-distance function from the origin. Then�n

i=1Gi

satisfies ICL((d0)∗m[k]n ) by Corollary 14 in [5] because

m[k]n (Ba(0)) = (d0)∗m[k]n ((−∞, a]) =: V (a)

for any a ∈ supp(d0)∗m[k]n , where

Ba(0) :=
{

x ∈ [k]n |
n∑

i=1

xi ≤ a

}
.

Hence the measure (d0)∗m[k]n is a 1-iso-dominant of �n
i=1Gi by Theorem 1.7 (1). In

particular, the measure (d0)∗m[k]n is a 1-iso-dominant of the discrete l1-cube [k]n .

Example 3.39 We assume that k is a positive even integer. Let X := (Z/(kZ))n be
the discrete torus equipped with the l1-metric and the uniform measure m X , and
d0 : X → R the l1-distance function from the origin. Then it satisfies ICL((d0)∗m X )

by Corollary 6 in [4] because

m X (Ba(0)) = (d0)∗m X ((−∞, a]) =: V (a)

for any a ∈ supp(d0)∗m X , where

Ba(0) := {x ∈ X | d0(x, 0) ≤ a}.
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Hence the measure (d0)∗m X is a 1-iso-dominant of X .

3.4 Stability of "-Iso-Dominant

The aim of this subsection is to prove Theorem 1.8. We prepare some definitions and
lemmas to prove it. The followingDefinition 3.40 is a generalization of ε-iso-dominant
(Definition 1.4).

Definition 3.40 ((s, t)-iso-dominant) Let s and t be two non-negative real numbers.
We call a Borel probability measure ν on R an (s, t)-iso-dominant of an mm-space X
if we have ν 	′

(s,t) μ for all μ ∈ M(X; 1).
Definition 3.41 (Distortion from the diagonal) Let (X , dX ) be a metric space. We
define the distortion from the diagonal of a subset S ⊂ X × X by

dis� S := sup{ dX (x, y) | (x, y) ∈ S }

if S is nonempty.We define dis� ∅ := 0. Letμ and ν be twoBorel probabilitymeasures
on X . We define the distortion from the diagonal of a transport plan π ∈ �(μ, ν)

between μ and ν by

dis� π := inf
S
max{ dis� S, 1 − π(S) }

where S ⊂ X × X is a closed subset.

Theorem 3.42 (Strassen’s theorem; cf. [26, Corollary 1.28]) Let μ and ν be two Borel
probability measures on a metric space X. Then we have

dP(μ, ν) = inf
π∈�(μ,ν)

dis� π.

Lemma 3.43 For a subset S ⊂ R
2, we have

dev	 S ≤ 2 dis� S.

Proof Take any two points (x, y), (x ′, y′) ∈ S. If x − x ′ ≥ 0, then we have

y − y′ − max{ x − x ′, 0 } = y − y′ − |x − x ′|
≤ |y − y′| − |x − x ′|
≤ |x − y| + |x ′ − y′| ≤ 2 dis� S.

If x − x ′ < 0, then we have

y − y′ − max{ x − x ′, 0 } = y − y′

< y − y′ + x ′ − x

≤ |y − x | + |x ′ − y′| ≤ 2 dis� S.

Hence we obtain dev	 S ≤ 2 dis� S. This completes the proof. �
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Lemma 3.44 Let μ and ν be two Borel probability measures on R. If dP (μ, ν) < ε,
then we have μ 	′

(2ε,ε) ν.

Proof This follows from Theorem 3.42 and Lemma 3.43. �

Lemma 3.45 Let μ and ν be two Borel probability measures on R, and X an mm-
space. If μ is an (s, t)-iso-dominant of X and we have dP (μ, ν) < ε, then ν is an
(s + 2ε, t + ε)-iso-dominant of X.

Proof This follows from Lemma 3.44 and Theorem 3.31. �

Lemma 3.46 Let X and Y be two mm-spaces, and ν a Borel probability measure on
R. If ν is an (s, t)-iso-dominant of X and we have dconc(X , Y ) < ε, then ν is an
(s + 2ε, t + ε)-iso-dominant of Y .

Proof Take any g ∈ Lip1(Y ). By dconc(X , Y ) < ε, there exists two parameters ϕ :
I → X and ψ : I → Y such that

dKF
H (ϕ∗Lip1(X), ψ∗Lip1(Y )) < ε.

Hence there exists f ∈ Lip1(X) such that dKF(ϕ∗ f , ψ∗g) < ε. By Lemma 2.20, we
have

dP( f∗m X , g∗mY ) = dP( f∗(ϕ∗L1), g∗(ψ∗L1))

≤ dKF(ϕ
∗ f , ψ∗g) < ε.

Therefore we have f∗m X 	′
(2ε,ε) g∗mY by Lemma 3.44. Since ν is an (s, t)-iso-

dominant of X , we have ν 	′
(s,t) f∗m X , which implies ν 	′

(s+2ε,t+ε) g∗mY by
Theorem 3.31. �

Proof of Theorem 1.8 Without loss of generality, we assume

dconc(Xn, X) < εn and dP(νn, ν) < εn for any positive integer n.

Take any positive integer n. Since the measure νn is an (s + εn, t + εn)-iso-dominant
of Xn , the measure ν is an (s + 3εn, t + 2εn)-iso-dominant of Xn by Lemma 3.45.
By Lemma 3.46, the measure ν is an (s + 5εn, t + 3εn)-iso-dominant of X . Hence,
we have ν 	′

(s+5εn ,t+3εn) f∗m X for any f ∈ Lip1(X). By Theorem 3.28, we obtain
ν 	′

(s,t) f∗m X . This completes the proof. �

We apply Theorem 1.8 for the space of pyramids �. The space � is a natural
compactificaion of the set X of mm-spaces. We refer to [12,21] for the theory of
pyramids.
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Definition 3.47 (Pyramid, cf. Definition 6.3 in [21]) A subset P ⊂ X is called a
pyramid if it satisfies the following (1), (2), and (3).

(1) If X ∈ P and if Y ≺ X , then Y ∈ P .
(2) For any two mm-spaces X , X ′ ∈ P , there exists an mm-space Y ∈ P such that

X ≺ Y and X ′ ≺ Y .
(3) P is nonempty and �-closed.

We denote the set of pyramids by �. The set � is equipped with the weak Hausdorff
convergence (Definition 6.4 in [21]). About the weak Hausdorff convergence, we
introduce the following useful proposition (cf. Proposition 6.9 in [21]).

Proposition 3.48 (Down-to-earth criterion for weak convergence) For given �-closed
subset Yn,Y ⊂ X , n = 1, 2, . . . , the following (1) and (2) are equivalent to each
other.

(1) Yn converges weakly to Y .
(2) Let Y∞ be the set of the limits of convergent subsequences Yn ∈ Yn, and Y∞ the

set of the limits of convergent subsequences of Yn ∈ Yn. Then we have

Y = Y∞ = Y∞

To apply Theorem 1.8 for pyramids, we consider the following Propositions 3.49 and
3.51, and Definition 3.50.

Proposition 3.49 Let X and Y be two mm-spaces. If a Borel probability measure ν onR
is an (s, t)-iso-dominant of X for s, t ≥ 0 and X 	 Y , then ν is an (s, t)-iso-dominant
of Y .

Definition 3.50 Let Y ⊂ X . We say that a Borel probability measure ν on R is an
(s, t)-iso-dominant of Y if ν is an (s, t)-iso-dominant of X for any mm-space X ∈ Y .

Proposition 3.51 Let X be an mm-space, and ν a Borel probability measure on R.
Then, ν is an (s, t)-iso-dominant of X if and only if ν is an (s, t)-iso-dominant of
PX := { Y ∈ X | Y ≺ X }.

The following Theorem 3.52 is the stability of isoperimetric inequalities for weak
Hausdorff convergence. This is generalization of Theorem 1.8.

Theorem 3.52 Let Yn ⊂ X be a �-closed subset, and Y∞ the set of the limits of
convergent subsequences of Yn ∈ Yn. We assume that a sequence {νn}∞n=1 of Borel
probability measures on R converges weakly to a Borel probability measure ν, and a
sequence {εn}∞n=1 of non-negative real numbers converges to 0. If νn is an (s + εn, t +
εn)-iso-dominant of Yn for any positive integer n, then ν is an (s, t)-iso-dominant of
Y∞.

Proof This theorem follows from Theorem 1.8 and Proposition 2.23. �
We obtain the following corollary by Proposition 3.48.
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Corollary 3.53 Let {Pn}∞n=1 be a sequence of pyramids, and {νn}∞n=1 a sequence of
Borel probability measures on R. We assume that {Pn}∞n=1 converges weakly to a
pyramid P and {νn}∞n=1 converges weakly to a Borel probability measure ν on R,
and a sequence {εn}∞n=1 of non-negative real numbers converges to 0. If νn is an
(s + εn, t + εn)-iso-dominant of Pn, then ν is an (s, t)-iso-dominant of P .

4 Applications of Iso-Lipschitz Order

4.1 Isoperimetric Inequality of Non-discrete l1-Cubes

In this subsection, we assume that [0, 1]n is equipped with the l1-metric dl1 and
the uniform measure m[0,1]n := Ln|[0,1]n , where Ln is the n-dimensional Lebesgue
measure. Put [k] := {0, 1, 2, . . . , k − 1}. We have

1

k
[k] =

{
0,

1

k
,
2

k
, . . . , 1 − 1

k

}
⊂ [0, 1].

We assume that 1
k [k]n is equipped with the l1-metric dl1 and the uniform measure

m 1
k [k]n := 1

kn

∑
x∈ 1

k [k]n δx .

Lemma 4.1 The sequence {m 1
k [k]n }∞k=1 converges weakly to m[0,1]n as k → ∞.

Proof Define a function f : [0, 1]n → 1
k [k]n by f ((xi )

n
i=1) := ( 1k �kxi�)n

i=1,
where �·� is the floor function. We set π := (id[0,1]n , f )∗m[0,1]n . Then we have
π ∈ �(m[0,1]n , m 1

k [k]n ). Take any point (x, f (x)) ∈ suppπ = (id[0,1]n , f )([0, 1]n)

and put x := (xi )
n
i=1. Since

dl1(x, f (x)) =
n∑

i=1

∣∣∣∣xi − 1

k
�kxi�

∣∣∣∣ ≤ n

k
,

we have dis� suppπ ≤ n
k . By Theorem 3.42, we obtain

dP(m[0,1]n , m 1
k [k]n ) ≤ n

k
→ 0

as k → ∞. This completes the proof. �
Proof of Theorem 1.9 We define a function d0 : Rn → R by d0((xi )

n
i=1) := ∑n

i=1 |xi |.
By Example 3.38, the measure (d0)∗m[k]n is a 1-iso-dominant of [k]n . Hence, the
measure ( 1k d0)∗m[k]n is a 1

k -iso-dominant of 1
k [k]n by Proposition 3.32. Since d0 is

1-Lipschitz, we have

dP((
1

k
d0)∗m[k]n , (d0)∗m[0,1]n ) = dP((d0)∗m 1

k [k]n , (d0)∗m[0,1]n )

≤ dP(m 1
k [k]n , m[0,1]n ) → 0

as n → ∞ by Lemma 4.1. By Theorem 1.8, the measure (d0)∗m[0,1]n is an iso-
dominant of [0, 1]n . This completes the proof. �

123



35 Page 36 of 43 H. Nakajima

We obtain Theorem 1.10 in the same way as in the proof of Theorem 1.9 by using
Example 3.39.

As another application of Theorem 1.8, we obtain the following, which is a variant
of normal law à la Lévy (see Theorem 2.2 in [21]) by using Theorem 13 in [5].

Theorem 4.2 (Normal law à la Lévy on product graphs) Let G1, G2, . . . , Gn, . . . be
connected graphs with same order k ≥ 2. Put

εn :=
√

12

(k2 − 1)n
.

Let Xn := (
∏n

i=1 Gi , dXn , m Xn ) be the Cartesian product graph equipped with the
path metric dXn and the uniform measure m Xn . Put Yn := (

∏n
i=1 Gi , εn · dXn , m Xn ).

Let { fni } be a subsequence of a sequence of 1-Lipschitz functions fn : Yn → R, n =
1, 2, . . . . If ( fni )∗mYni

converges weakly to a Borel probability measure σ , then we

have γ 1 	′ σ , where γ 1 is the 1-dimensional standard Gaussian measure.

In the case that k = 2, we see that Xn is the n-dimensional Hamming cube. If we
replace Xn by n-dimensional (non-discrete) l1-cube or n-dimensional (non-discrete)
l1-torus, we obtain the normal law à la Lévy respectively.

Proof of Theorem 4.2 We define a function d0 : Rn → R by

d0((xi )
n
i=1) :=

n∑
i=1

|xi |.

By Example 3.38, the measure (d0)∗m[k]n is a 1-iso-dominant of Xn , which implies
that (εn · d0)∗m[k]n is an εn-iso-dominant of Yn by Proposition 3.32. By Proposition
3.51, the measure (εn ·d0)∗m[k]n is an εn-iso-dominant ofPYn := { Y ∈ X | Y ≺ Yn }.
By the central limit theorem, (εn · d0)∗m[k]n converges weakly to γ 1 as n → ∞.
Putting Yn := PYn , γ

1 is an iso-dominant of Y∞ by Theorem 3.52.
Take any sequence of 1-Lipschitz functions fn : Yn → R, n = 1, 2, . . . . We

assume that a subsequence {n(i)}i=1,2,... satisfies that ( fn(i))∗mYn(i) converges weakly

to a measure σ as i → ∞. Since ( fn)∗mYn ∈ PYn , we have σ ∈ Y∞. Then we obtain
γ 1 	′ σ because γ 1 is an iso-dominant of Y∞. This completes the proof. �

4.2 Comparison Theorem for Observable Diameter

In this subsection, we evaluate the observable diameter by using the iso-dominant.

Proposition 4.3 Let μ and ν be two Borel probability measures on R. If μ 	′
(s,t) ν,

then we have

diam(μ; 1 − κ) + s ≥ diam(ν; 1 − κ − t) for any κ > 0.
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Proof By μ 	′
(s,t) ν, there exist π ∈ �(μ, ν) and a Borel set S ⊂ R

2 such that
dev	 S ≤ s and 1 − π(S) ≤ t . Take any Borel set A ⊂ R with μ(A) ≥ 1 − κ . Put
B := pr2(S ∩ (pr1)

−1(A)). Since

ν(B) ≥ π(S ∩ (pr1)
−1(A))

= π((pr1)
−1(A)) − π(Sc ∩ (pr1)

−1(A))

≥ μ(A) − π(Sc) ≥ 1 − κ − t,

we have diam(ν; 1 − κ − t) ≤ diamB. By Proposition 3.25, we have diamB ≤
diamA + dev	 S, which implies diam(ν; 1 − κ − t) ≤ diamA + s. Then we obtain
diam(ν; 1 − κ − t) ≤ diam(μ; 1 − κ) + s. This completes the proof. �

Proposition 4.4 Let {μn}∞n=1 be a sequence of Borel probability measures onR and κ a
positive real number. We assume that {μn}∞n=1 converges weakly to a Borel probability
measure μ on R and that the function t �→ diam(μ; 1 − t) is continuous at κ . Then
we have

lim
n→∞ diam(μn; 1 − κ) = diam(μ; 1 − κ).

Proof Put εn := dP(μn, μ) + 1
n . By Lemma 3.44, we have μ 	′

(2εn ,εn) μn and
μn 	′

(2εn ,εn) μ. Since κ − εn > 0 for sufficiently large n, we have

diam(μ; 1 − (κ − εn)) + 2εn ≥ diam(μn; 1 − (κ − εn) − εn)

≥ diam(μ; 1 − κ − εn) − 2εn

byProposition4.3. Since t �→ diam(μ; 1−t) is continuous,weobtain limn→∞ diam(μn; 1−
κ) = diam
(μ; 1 − κ). This completes the proof. �

Lemma 4.5 Let μ be a probability measure on R with dμ = ϕ dL1, where L1 is the
1-dimensional Lebesgue measure and ϕ : R → (0,∞) is a continuous function. We
assume that ϕ is even on R and strictly decreasing on [0,∞). Then we have

diam(μ; 1 − κ) = F−1(1 − κ

2
) − F−1(

κ

2
)

for any κ ∈ (0, 1], where F(t) := μ((−∞, t]) is the cumulative distribution function
of μ. In particular, the function κ �→ diam(μ; 1 − κ) is continuous on (0,∞).

Proof We may assume that κ ∈ (0, 1) because the case κ = 1 is clear. Since μ is a
measure on R and has no atom, diam(μ; 1 − κ) is equals to the infimum of diamI
where I ⊂ R is a closed interval withμ(I ) = 1−κ . We have−∞ < inf I < F−1(κ)

because we may assume that diamI < ∞. If inf I = t , we have
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sup I = F−1(1 − κ + F(t))

because μ(I ) = 1 − κ . This implies

diam(μ; 1 − κ) = inf{D(t) | t ≤ F−1(κ)},

where we put D(t) := F−1(1 − κ + F(t)) − t .
Since F ′(t) = ϕ(t), we have

d D

dt
(t) = ϕ(t)

ϕ ◦ F−1(1 − κ + F(t))
− 1. (4.1)

We have D′(t) = 0 if and only if

ϕ(t) = ϕ ◦ F−1(1 − κ + F(t)). (4.2)

Since ϕ is even on R and strictly decreasing on [0,∞), the Eq. (4.2) implies that

t = −F−1(1 − κ + F(t)) (4.3)

because t < F−1(1 − κ + F(t)). We have

F(−t) = 1 − F(t) (4.4)

for any real number t because ϕ is even. By (4.3) and (4.4), we have F(t) = κ/2. We
put t0 := F−1(κ/2). By (4.1), we have D′(t) < 0 if t < t0, and D′(t) > 0 if t > t0.
This implies that D(t0) is the minimum of D. Then we have

diam(μ; 1 − κ) = D(t0) = F−1(1 − κ

2
) − F−1(

κ

2
).

Since F−1 is continuous on (0, 1), the function κ �→ diam(μ; 1−κ) is also continuous
on (0, 1). Since diam(μ; 1− κ) = 0 for any κ ≥ 1, the function κ �→ diam(μ; 1− κ)

is continuous on [1,∞). This completes the proof. �
Theorem 4.6 Let s and t be two non-negative real numbers. If a Borel probabil-
ity measure ν on R is an (s, t)-iso-dominant of an mm-space X, then we have
ObsDiam(X;−κ − t) ≤ diam(ν; 1 − κ) + s for any κ ≥ 0.

Proof Take any 1-Lipschitz function f : X → R. Since ν is an (s, t)-iso-dominant of
X , we have ν 	′

(s,t) f∗m X . By Proposition 4.3, we have diam( f∗m X ; 1 − κ − t) ≤
diam(ν; 1− κ)+ s. Hence, we obtain ObsDiam(X; 1− κ − t) ≤ diam(ν; 1− κ)+ s.
This completes the proof. �
Let G1, G2, . . . , Gn, . . . be connected graphs with same order k ≥ 2. Put εk,n :=√

12
(k2−1)n

. We define a function d0,n : Rn → R by d0,n((xi )
n
i=1) := ∑n

i=1 |xi |. Put
νk,n := (εk,n · d0,n)∗m[k]n .
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Theorem 4.7 We have

ObsDiam(εk,n

n∏
i=1

Gi ;−κ) ≤ diam(νk,n; 1 − κ) + εk,n (4.5)

≤ ObsDiam(εk,n[k]n;−κ) + εk,n (4.6)

≤ diam(νk,n; 1 − κ) + 2εk,n . (4.7)

Proof By Theorem 4.6 and Example 3.38, and Proposition 3.32, we have (4.5) and
(4.7). Since νk,n ∈ M(εk,n[k]n; 1), we have (4.6). This completes the proof. �
Lemma 4.8 We have

lim
n→∞ diam(νk,n; 1 − κ) = diam(γ 1; 1 − κ) (4.8)

for any κ > 0.

Proof By Lemma 4.5, the function κ �→ diam(γ 1; 1 − κ) is continuous on (0,∞).
Applying Proposition 4.4, we obtain (4.8) since the sequence {νk,n} converges to γ 1

weakly as n → ∞. This completes the proof. �
Corollary 4.9 We have

lim sup
n→∞

ObsDiam

(
εk,n

n∏
i=1

Gi ;−κ

)
≤ diam(γ 1; 1 − κ) for κ > 0.

Proof Since εk,n → 0 as n → ∞, we have

lim sup
n→∞

ObsDiam

(
εk,n

n∏
i=1

Gi ;−κ

)
≤ lim

n→∞ diam(νk,n; 1 − κ)

= diam(γ 1; 1 − κ)

by (4.5) in Theorem 4.7 and Lemma 4.8. �
Corollary 4.10 We have

lim
n→∞ObsDiam(εk,n[k]n;−κ) = diam(γ 1; 1 − κ) for κ > 0.

In particular, we obtain

lim
n→∞ObsDiam(

2√
n

Qn;−κ) = diam(γ 1; 1 − κ) for κ > 0

in the case k = 2.
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Proof Take any κ > 0. By (4.6) in Theorem 4.7 and Lemma 4.8, we have

lim inf
n→∞ ObsDiam(εk,n[k]n;−κ) ≥ diam(γ 1; 1 − κ).

By (4.7) in Theorem 4.7 and Lemma 4.8, we also have

lim sup
n→∞

ObsDiam(εk,n[k]n;−κ) ≤ diam(γ 1; 1 − κ).

These imply

lim
n→∞ObsDiam(εk,n[k]n;−κ) = diam(γ 1; 1 − κ).

This completes the proof. �

4.3 Concentration on the l1-Hyper Cube

The concentration function is an important function in geometry and probability. In
this section, we evaluate the concentration function of the n-dimensional l1-hyper
cube [0, D]n as an application of Theorem 1.1. Evaluations of concentration functions
has been researched in [12,17]. We obtain a better upper bound of the concentration
function of l1-hyper cube than the former result.

Definition 4.11 (Concentration function [2]) Let X be an mm-space. We define the
concentration function of X

αX (r) := sup

{
1 − m X (Ur (A)) | A ⊂ X is Borel with m X (A) ≥ 1

2

}

for any real number r > 0.

We set x+ := max{x, 0} for the positive part of the real number x .

Theorem 4.12 (Theorem 1 (9.5) in Chapter I in [9]) Let Sn be the sum of n independent
random variables distributed uniformly over [0, D] for any real number D > 0. Then
we have

P(Sn ≤ x) = 1

Dnn!
n∑

k=0

(−1)k
(

n

k

)
(x − k D)n+

for any positive integer n and any real number x ≥ 0.

Theorem 4.13 (Hoeffding’s inequality [14]) Let X1, . . . , Xn be independent random
variables with ai ≤ Xi ≤ bi , where ai and bi are two real numbers with ai ≤ bi for
all i = 1, . . . , n. We set Sn := ∑n

i=1 Xi . Then we have

P(Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
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We have the following Theorem 4.14 as an application of Theorem 1.1.

Theorem 4.14 Let D be positive real number, and let ([0, D]n, dl1) be the n-
dimensional hyper cube equipped with the l1-metric and the normalized uniform
measure. Then we have

α([0,D]n ,dl1 )(r) = 1 − 1

Dnn!
n∑

k=0

(−1)k
(

n

k

) ((n

2
− k

)
D + r

)n

+
(4.9)

and

α([0,D]n ,dl1 )(r) ≤ exp

(
− 2r2

nD2

)
(4.10)

for any real number r > 0.

Proof Let d0 : [0, D]n → R be the distance function from the origin. By Theorem
1.1, we have

α([0,D]n ,dl1 )(r) = (d0)∗m

([
nD

2
+ r ,∞

))
(4.11)

for r > 0. By (4.11) and Theorem 4.12, we obtain (4.9). By (4.11) and Theorem 4.13,
we obtain (4.10). �

We compare Theorem 4.14 with the following Theorems 4.15 and 4.16.

Theorem 4.15 (cf. Corollary 1.17 in [17]) Let m X = ⊗n
i=1m Xi be the product prob-

ability measure on the Cartesian product X = �n
i=1Xi of mm-spaces (Xi , dXi , m Xi )

with finite diameters Di , i = 1, . . . , n, equipped with the l1-metric dX = ∑n
i=1 dXi .

Then we have

αX (r) ≤ exp

(
− r2

8
∑n

i=1 D2
i

)

for any real number r > 0.

In the case where Xi is the interval [0, D] equipped with the Lebesgue measure,
Theorem 4.15 evaluates the concentration function of l1-hyper cube [0, D]n . Theorem
4.14 is a better evaluation than it.

The following Theorem 4.16 is an evaluation of the concentration function of the
n-dimensional Hamming cube. In the Hamming cube case, Theorem 4.16 is a better
evaluation than Theorem 4.15.

Theorem 4.16 (cf. Theorem 2.11 in [17]) Let m{0,D}n be the uniform measure on
{0, D}n equipped with the l1-metric dl1 . Then we have

α({0,D}n ,dl1 )(r) ≤ exp

(
− 2r2

nD2

)

for any real number r > 0.
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The proof of Theorem 4.16 uses the isoperimetric inequality of the n-dimensional
Hamming cube. Theorem 4.14 also uses the isoperimetric inequality.
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