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Abstract
We consider the existence and regularity of weakly polyharmonic almost complex
structures on a compact almost Hermitian manifold M2m . Such objects satisfy the
elliptic system [Δm J , J ] = 0 weakly. We prove a general regularity theorem for
semilinear systems in critical dimensions (with critical growth nonlinearities), which
includes the system of polyharmonic almost complex structures in dimension four and
six.

Keywords Polyharmonic almost complex structures · Regularity of Semilinear
systems · Critical growth of nonlinearities
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1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n with a compatible
almost complex structure.Denote byJg the space of smooth almost complex structures
compatible with g, i.e., g(J ·, J ·) = g(·, ·). Consider the following functional, for all
m ∈ N

+, J ∈ Jg ,
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Em(J ) =
∫
M

∣∣Δm
2 J

∣∣2dV :=

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|∇Δk−1 J |2 dV , m = 2k − 1,
∫
M

|Δk J |2 dV , m = 2k,
(1)

where ∇ and Δ are Levi-Civita connection and Laplace-Beltrami operator on (M, g),
respectively, and dV denotes the volume element of (M, g). We call the critical points
of functional Em(J ) m-harmonic almost complex structures. These objects are tensor-
valued version of polyharmonic maps which have attracted quite some attention in
recent years. When m = 1, the critical points of functional Em(J ) are also called
harmonic almost complex structures introduced by Wood [17] in 1990s. We refer the
reader to the recent survey [3] for the background and results in this subject. The
first author have studied the existence and regularity of harmonic almost complex
structures [7] from the point of view of geometric analysis. In this paper, we focus on
the case of polyharmonic almost complex structures withm ≥ 2. Recall the definition
of the Sobolev spaces of almost complex structures.

Definition 1 Suppose (Mn, g) be an almost Hermitian manifold with compatible
almost complex structures in Jg . We define Wk,p(Jg) to be the closed subspace
of Wk,p(T ∗M ⊗ T M) consisting of those sections J ∈ Wk,p(T ∗M ⊗ T M), which
satisfy J 2 = −id, g(J ·, J ·) = g(·, ·) almost everywhere.

Now, we state our main results.

– Theorem 1 There always exists an energy-minimizer of Em(J ) in Wm,2(Jg).
– Theorem 2 Suppose J ∈ Wm,2(Jg) is a weakly m-harmonic almost complex
structure on (M2m, g) with m ∈ {2, 3}. Then J is Hölder-continuous.

For semilinear elliptic systems with critical growth nonlinearities, the most essen-
tial step towards the smoothness is to prove the Hölder continuity, such as the systems
for (poly)harmonic maps, see for example [2,5,10,15,16] and references therein. It is
well-known that a semilinear elliptic system with critical growth nonlinearities and at
critical dimension might be singular [4,9]. For weakly harmonic map, it can be even
singular everywhere [13] when the dimension is three and above. The smooth regular-
ity starts with Helein’s seminal result [10] for harmonic maps in dimension two where
the special (algebraic) structure of the system plays a substantial role. New proofs and
understanding of Helein’s seminal results can be found [1,14]. The methods can be
generalized to fourth order elliptic system in dimension four [2,11]. General smooth
regularity for biharmonic maps and polyharmonic maps have been obtained by [16]
and [5], respectively.

We shall briefly compare our results with the results in the theory of (poly)harmonic
maps. Theorem 1 is a standard practice in calculus of variations, while the main point
is that the absolute energy-minimizer is not trivial due to its tensor-valued nature.
The main result is to prove the Hölder regularity in Theorem 2 and our method is
motivated by the work in [2] and [5]. In [2], the authors explore a special divergence
structure of the biharmonic system into the spheres and our elliptic system shares some
similarities. On the other hand, the tensor-valued nature makes our arguments much
more complicated, mainly due to the fact that matrix multiplication is not commu-
tative. We certainly believe that this divergence structure should hold for all weakly
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11650 W. He, R. Jiang

polyharmonic almost complex structures but we do not find a systematic way to argue
that. Instead we only show that the elliptic system for polyharmonic almost complex
structures has a desired divergence structure when m = 2, 3 by brutal computations.
Given this divergence structure, our argument for Hölder regularity is quite different
from the method used in [2], but more like a generalization of [5]. We use extension
of maps (almost complex structures) instead of solving boundary value problem. Our
methods are very general and work for all dimensions. A main difficulty is that the
background metric is not necessarily Euclidean, while most results in the setting of
polyharmonic maps (see [2,5,16] etc) only consider the Euclidean case. Even though
the methods for semilinear system are expected to work similarly, the non-Euclidean
background metric really leads to complicated computations and presentations. Once
the Hölder regularity is assured, the proof of smoothness follows the strategy in [5].

The paper is organized as follows. In Sect. 2, we collect some facts for Lorentz
spaces and Green’s functions. In Sect. 3, we establish the existence of the energy-
minimizers and derive the Euler-Lagrange equations. Moreover we show that a weak
limit of a sequence of weakly m-harmonic almost complex structures in Wm,2 is
stillm-harmonic. In Sect. 4, we prove decay estimates for a class of semilinear elliptic
equations in critical dimension and obtain theHölder regularity of weaklym-harmonic
almost complex structures on (M2m, g) for m = 2, 3. In Sect. 5, we generalize the
higher regularity results of Gastel and Scheven [5] to prove smoothness of weakly
m-harmonic almost complex structures. Appendix derive the divergence structures in
detail for m-harmonic almost complex structures when m = 2, 3.

2 Preliminaries

In this section, we gather some facts that will be used later. First of all, let us denote
by G(x) = cm ln |x | the fundamental solution for Δm on R

2m , where cm is a suitable
constant only dependent of m. We have the following lemma,

Lemma 1 Suppose k ∈ [1, 2m] is a positive integer and p, q ∈ (1,∞) satisfy

1 + 1

p
= k

2m
+ 1

q
.

If f ∈ Lq(R2m), then we have

∥∥∥∥
∫
R2m

∇kG(x − y) f (y)dy

∥∥∥∥
L p(R2m)

≤ C‖ f ‖Lq(R2m) (2)

where C is a positive constant only dependent of m, k, q.

Proof Since ∇2mG is a Calderón-Zygmund kernel, (2) holds for k = 2m and all
p = q ∈ (1,∞). For k = 1, · · · , 2m − 1, we have

∇kG ∈ L
2m
k ,∞ (

R
2m

)
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where L
2m
k ,∞(R2m) is a Lorentz space. By the convolution inequality for Lorentz

spaces (cf. [12] Theorem 2.6), we deduce that, for s ≤ p

∥∥∥∥
∫
R2m

∇kG(x − y) f (y)dy

∥∥∥∥
L p,p(R2m)

≤ C‖∇kG‖
L

2m
k ,∞

(R2m)
‖ f ‖Lq,s(R2m)

The fact that k ∈ [1, 2m − 1] implies 1
p < 1

q . Thus, we can choose s = q. Moreover,

there holds that L p(R2m) = L p,p(R2m) for all p ∈ (1,∞) (cf. [18] Lemma 1.8.10),
which implies (2). 
�
For more details about Lorentz spaces, we refer the readers to [12,18]. We also need
the following standard fact about the elliptic operator Δm .

Lemma 2 Let B1 be the unit ball of Rn. Suppose v(x) ∈ Wm,2(B1) ∩ L∞ and f ∈
L∞(B1). If v(x) satisfies Δmv(x) = f (x) in distributional sense, then

‖v(x)‖
L∞

(
B 1
2

) ≤ C
(‖v(x)‖L1(B1) + ‖ f (x)‖L∞(B1)

)
, (3)

where C is a positive constant only dependent of n

3 Existence of Energy-Minimizer and the Euler-Lagrange Equation

In this section, we establish the existence of the energy-minimizers of Em(J ), derive
its Euler-Lagrange equation and define the weak solutions. Moreover we prove that
a weak limit of a sequence of weakly m-harmonic almost complex structures with
bounded Wm,2 norm is still m-harmonic.

Theorem 1 There always exists an energy-minimizer of Em(J ) in Wm,2(Jg).

Proof The proof is standard in calculus of variations. We include the details for com-
pleteness. Take a minimizing sequence Jk ∈ Wm,2(Jg) such that

inf
J∈Wm,2

Em(J ) = lim
k→∞ Em(Jk).

Note that by interpolation inequality and integration by parts,

‖J‖2Wm,2 ≤ C

⎛
⎝ ∑

|α|=m

‖∇α J‖2L2 + ‖J‖2L∞

⎞
⎠ ≤ C

(Em(J ) + 1
)
, ∀J ∈ Wm,2(Jg).

Hence, the sequence {Jk} is bounded in Wm,2. This implies that there exists a sub-
sequence, still denoted by Jk , and J0 ∈ Wm,2, such that Jk converges weakly to
J0 in Wm,2 and Em(J0) ≤ limk→∞ Em(Jk). Moreover, Jk converges strongly to J0 in
Wm−1,2 and hence J0 ∈ Jg . It follows that J0 is an energy-minimizer of the functional
Em(J ). 
�
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Denote by T p
q (M) the set of all (p, q) tensor fields on (M, g). There is a natural

inner product on T p
q (M) induced by g, denoted by 〈, 〉. In local coordinate {xi }ni=1,

A ∈ T p
q (M) can be expressed by

A = A
j1··· jp
i1···iq

∂

∂x j1
⊗ · · · ⊗ ∂

∂x jp
⊗ dxi1 ⊗ · · · ⊗ dxiq .

The inner product of A, B ∈ T p
q (M) is given by

〈A, B〉 = A
k1···kp
i1···iq B

l1···l p
j1··· jq g

i1 j1 · · · giq jq gk1l1 · · · gkplp ,

where g = gi j dxi ⊗ dx j and (gi j ) is the inverse of (gi j ). For A ∈ T 1
1 (M), define the

adjoint operator A∗ of A by

g(X , A∗Y ) := g(AX ,Y ), ∀X ,Y ∈ X(M).

where X(M) is the set of all smooth vector fields on (M, g). In local coordinates, if
A = A j

i ∂x j ⊗ dxi we have (A∗) ji = Al
kg

k j gli .

Proposition 1 We have the following standard facts,

1. For all A, B ∈ T p
q (M), there holds

∫
M

〈∇A,∇B〉 = −
∫
M

〈A,ΔB〉 .

2. For all A ∈ T 1
1 (M) and X ∈ X(M), there holds (∇X A)∗ = ∇X (A∗).

3. For all A, B ∈ T 1
1 (M), there holds 〈A, B〉 = 〈A∗, B∗〉 .

4. For all A, B,C ∈ T 1
1 (M), there holds 〈A, BC〉 = 〈B∗A,C〉 = 〈AC∗, B〉 .

For A, B ∈ T 1
1 (M), AB is regarded as the composition of linear maps, i.e., AB ∈

T 1
1 (M). In local coordinate we have (AB)

j
i = A j

s Bs
i . With these notations, we have

Jg =
{
J ∈ T 1

1 (M) : J 2 = −id, J ∗ + J = 0
}

. (4)

Let {J (t)}t∈(−δ,δ) be a C1 curve in Jg with J (0) = J . Let S = d J
dt |t=0. Such S is

called an admissible variational direction of J in Jg . Denote SJ to be the set of all
admissible variational directions of J .

Proposition 2 We have

SJ =
{
S ∈ T 1

1 (M) : SJ + J S = 0, S + S∗ = 0
}

.

For any J ∈ Jg , define the operator ΦJ : T 1
1 (M) → SJ by

ΦJ (T ) = 1

4

(
(T + JT J ) − (T + JT J )∗

)
.
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On each fiber of T 1
1 (M), ΦJ is precisely the orthogonal projection onto (SJ )x , satis-

fying that for all T ∈ T 1
1 (M) and S ∈ SJ ,

〈T , S〉 = 〈ΦJ (T ), S〉 .

Proposition 3 The Euler-Lagrange equation of functional Em(J ) is

[
Δm J , J

] = 0. (5)

Proof Suppose J ∈ Jg is a critical point of Em(J ). For any S ∈ SJ , we have

0 = δEm(J ) = (−1)m2
∫
M

〈
Δm J , S

〉 = (−1)m2
∫
M

〈
ΦJ

(
Δm J

)
, S

〉

which implies ΦJ (Δ
m J ) = 0. Equivalently we have

[
Δm J , J

] := Δm J J − JΔm J = 0.


�
An almost complex structure J ∈ Wm,2(Jg) satisfying (5) in distributional sense

is called weakly m-harmonic.

Proposition 4 Aweaklym-harmonic almost complex structure J satisfies the following
in distributional sense,

Δm J =
m−1∑
s=0

(−1)m+1+s∇s · gs (6)

where gs = ∑
Ck1,k2,k3 ∇k1 J∇k2 J∇k3 J for nonnegative integers k1 + k2 + k3 =

2m − s, ki ∈ [0,m] and Ck1,k2,k3 ∈ Z. That is, for any T ∈ T 1
1 (M), there holds

1. when m = 2k, k ∈ N
+,

∫
M

〈
Δk J ,ΔkT

〉
+

m−1∑
s=0

∫
M

〈
gs,∇sT

〉 = 0 (7)

2. when m = 2k − 1, k ∈ N
+,

∫
M

〈
∇Δk−1 J ,∇Δk−1T

〉
+

m−1∑
s=0

∫
M

〈
gs,∇sT

〉 = 0 (8)

For simplicity, we will give the exact meaning of ∇s in the proof.
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Proof We focus on the case m = 2k since the case m = 2k − 1 is similar. Suppose J
is weakly m-harmonic. Then for any S ∈ SJ , we have

0 = 2
∫
M

〈
Δk J ,Δk S

〉
.

Taking S = ΦJ (T ) for any T ∈ T 1
1 (M),

0 = 2
∫
M

〈
Δk J ,ΔkΦJ (T )

〉

= 1

2

∫
M

〈
Δk J , Δk((T + JT J ) − (T + JT J )∗

)〉

= 1

2

∫
M

〈
Δk J ,Δk(T + JT J

)〉 −
〈
Δk J ∗,Δk(T + JT J

)〉

=
∫
M

〈
Δk J ,Δk(T + JT J

)〉
(9)

=
∫
M

〈
Δk J ,ΔkT

〉
+

〈
Δk J , JΔkT J

〉
+

〈
Δk J , R1

〉

=
∫
M

〈
Δk J ,ΔkT

〉
+

〈
JΔk J J ,ΔkT

〉
+

〈
Δk J , R1

〉

=
∫
M

〈
Δk J ,ΔkT

〉
−

〈(
Δk J J + R2

)
J ,ΔkT

〉
+

〈
Δk J , R1

〉

=
∫
M
2
〈
Δk J ,ΔkT

〉
−

〈
R2 J ,ΔkT

〉
+

〈
Δk J , R1

〉

=
∫
M
2
〈
Δk J ,ΔkT

〉
+

〈
∇(R2 J ),∇Δk−1T

〉
+

〈
Δk J , R1

〉
(10)

where

R1 = Δk(JT J ) − JΔkT J ,

R2 = Δk(J J ) − Δk J J − JΔk J = −Δk J J − JΔk J

We describe the terms of R1 and R2 by taking a local orthonormal fields {ei }ni=1 as
follows,

R1 = Δk(JT J ) − JΔkT J

= ∇2
i1 · · · ∇2

ik (JT J ) − JΔkT J

=
∑

α<,β<,γ<
k1+k2+k3=m

k2≤m−1

∇iα1
· · · ∇iαk1

J ∇iβ1
· · · ∇iβk2

T ∇iγ1
· · · ∇iγk3

J

R2 = Δk(J J ) − Δk J J − JΔk J
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=
∑

α<,β<,
k1+k2=m

1≤k1,k2≤m−1

∇iα1
· · · ∇iαk1

J ∇iβ1
· · · ∇iβk2

J

where the symbol α < means 1 ≤ α1 ≤ · · · ≤ αk1 ≤ k and we write

∇k1 =
∑
α<

∇iα1
· · · ∇iαk1

.

Then, we can rewrite R1 and R2 in the following,

R1 =
∑

k1+k2+k3=m
k2≤m−1

∇k1 J ∇k2T ∇k3 J ,

R2 =
∑

k1+k2=m
1≤k1,k2≤m−1

∇k1 J ∇k2 J .

Substituting the above into (10), we get (7) as follows,

0 =
∫
M
2
〈
Δk J ,ΔkT

〉
+

∫
M

∑
k1+k2=m

1≤k1,k2≤m−1

〈
∇
(
∇k1 J ∇k2 J J

)
,∇Δk−1T

〉

+
∫
M

∑
k1+k2+k3=m

k2≤m−1

〈
Δk J ,∇k1 J ∇k2T ∇k3 J

〉

=
∫
M
2
〈
Δk J ,ΔkT

〉
+

∫
M

∑
k1+k2=m

1≤k1,k2≤m−1

〈
∇
(
∇k1 J ∇k2 J J

)
,∇Δk−1T

〉

+
∫
M

∑
k1+k2+k3=m

k2≤m−1

〈
∇k1 JΔk J ∇k3 J ,∇k2T

〉
,


�
Proposition 5 A weak limit of a sequence of weakly m-harmonic almost complex
structures with uniformly bounded Wm,2 norm is still m-harmonic.

Proof Let J be weakly m-harmonic. Then for any T ∈ T 1
1 (M), there holds

1. when m = 2k, k ∈ N
+

∫
M

〈
Δk J ,

[
J ,ΔkT

]〉
+

∑
k1+k2=m

1≤k1,k2≤m−1

〈
Δk J ,

[
∇k1 J ,∇k2T

]〉
= 0, (11)
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2. when m = 2k − 1, k ∈ N
+

∫
M

〈
∇Δk−1 J ,

[
J ,∇Δk−1T

]〉
+

∑
k1+k2=m

1≤k1,k2≤m−1

〈
∇Δk−1 J ,

[
∇k1 J ,∇k2T

]〉
= 0.

We only prove the case m = 2k. Recall (9) holds for all T ∈ T 1
1 (M),

∫
M

〈
Δk J ,Δk(T + JT J

)〉 = 0

By replacing T by JT , we derive

∫
M

〈
Δk J ,Δk(JT − T J

)〉 =
∫
M

〈
Δk J ,Δk[J , T ]

〉
= 0.

This implies (11) since

Δk[J , T ] =
[
Δk J , T

]
+

[
J ,ΔkT

]
+

∑
k1+k2=m

1≤k1,k2≤m−1

[
∇k1 J ,∇k2T

]
,

〈
Δk J ,

[
Δk J , T

]〉
=

〈
Δk J ,Δk J T

〉
−

〈
Δk J , T Δk J

〉

=
〈(

Δk J
)∗

Δk J , T
〉
−

〈
Δk J

(
Δk J

)∗
, T

〉

=
〈
Δk J ∗ Δk J , T

〉
−

〈
Δk J Δk J ∗, T

〉
= 0.

Now, suppose {Jl} is a sequence of weakly m-harmonic almost complex structures in
Wm,2 such that Jl⇀J0 in Wm,2 and supl ‖Jl‖Wm,2 < ∞.ByRellich-Kondrachov
theorem, we know that Jl converges to J0 in Wm−1,2. Hence J0 ∈ Wm,2(Jg). Since
Jl⇀J0 in Wm,2, we have

lim
l→∞

∫
M

〈
Δk Jl ,

[
J0,Δ

kT
]〉

=
∫
M

〈
Δk J0,

[
J0,Δ

kT
]〉

. (12)

Since Jl converges to J0 in Wm−1,2, supl ‖Jl‖Wm,2 < ∞ and

∣∣∣∣
∫
M

〈
Δk Jl ,

[
Jl − J0,Δ

kT
]〉∣∣∣∣ ≤ ‖Δk Jl‖L2‖Jl − J0‖L2‖ΔkT ‖L∞ ,

we have liml→∞
∫
M

〈
Δk Jl , [Jl − J0,ΔkT ]〉 = 0. With (12) this implies

lim
l→∞

∫
M

〈
Δk Jl ,

[
Jl ,Δ

kT
]〉

=
∫
M

〈
Δk J0,

[
J0,Δ

kT
]〉

.

123



Polyharmonic Almost Complex Structures 11657

Similarly we conclude that, for all k1 + k2 = m and 1 ≤ k1, k2 ≤ m − 1,

lim
l→∞

∫
M

〈
Δk Jl ,

[
∇k1 Jl ,∇k2T

]〉
=

∫
M

〈
Δk J0,

[
∇k1 J0,∇k2T

]〉
.

Hence J0 is weakly m-harmonic and this completes the proof. 
�

4 Decay Estimates and Hölder Regularity

In this section, we establish decay estimates for a class of semilinear elliptic equations
in critical dimension and deduce the Hölder regularity of Wm,2 m-harmonic almost
complex structure on (M2m, g) for m = 2, 3. For simplicity, we use C to denote a
uniform positive constant.

4.1 Decay Estimates forW2,2 Biharmonic Almost Complex Structure onR4

First, we consider decay estimates for biharmonic almost complex structure defined
on B1 in R4 as a special case. The presentation is much clearer and more streamlined
for this case and the main ideas are essentially the same. Consider the biharmonic
almost complex structure equation,

Δ2 J = J

(
∇ΔJ∇ J + ∇ J∇ΔJ + ΔJΔJ + Δ(∇ J )2

)

where J : B1 ⊂ R
4 → M4(R) (the set of all 4 × 4 real matrices) satisfies

J 2 = −id, J + J T = 0

Proposition 6 asserts that the biharmonic almost complex structure equation admit a
good divergence form. That is, for any given constant matrix λ0, biharmonic almost
complex structure J satisfies

Δ2 J = Tλ0 (13)

where Tλ0 is a linear combination of the following terms

∇α

(
(J − λ0) ∗ ∇β J ∗ ∇γ J

)
, λ0 ∗ ∇α

(
(J − λ0) ∗ ∇δ J

)
,

where α, β, γ, δ are multi-indices such that 1 ≤ |α| ≤ 3, 0 ≤ |β|, |γ |, |δ| ≤ 2,
|α| + |β| + |γ | = 4 and |α| + |δ| = 4. The notation A ∗ B means the composition of
terms A and B, such as AB and BA. Then we have the following,

Lemma 3 Suppose J ∈ W 2,2(B1, M4(R)) is a weakly biharmonic almost complex
structure on unit ball B1 ⊂ R

4. Then, given any τ ∈ (0, 1), there exists ε0 > 0 and
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11658 W. He, R. Jiang

θ0 ∈ (0, 1
2 ) such that if

E(J , 1) :=
(∫

B1
|∇ J |4

) 1
4 +

(∫
B1

|∇2 J |2
) 1

2 ≤ ε0,

then we have

Dp0(J , θ0) ≤ θτ
0 Dp0(J , 1), (14)

where p0 = 8
3 and Dp(J , r) :=

(
r p−4

∫
Br

|∇u|p
) 1

p

.

Proof We extend J to J̃ ∈ W 2,2(R4, M4(R)) ∩ L∞ such that

J̃ |B1 = J , J̃ |R4\B2 = λ0 := 1

|B1|
∫
B1

J

‖∇ J̃‖L p0 (R4) ≤ C ‖∇ J‖L p0 (B1) (15)

E( J̃ ,∞) ≤ C E(J , 1), (16)

By the standard extension to J − λ0 in B1, there exists a function J̃ − λ0 on R4 with
compact support contained in B2 and satisfying

‖ J̃ − λ0‖L∞(R4) ≤ C‖J − λ0‖L∞(B1), (17)

‖ J̃ − λ0‖W 1,p0(R4) ≤ C‖J − λ0‖W 1,p0 (B1) (18)

‖ J̃ − λ0‖W 2,2(R4) ≤ C‖J − λ0‖W 2,2(B1). (19)

Since J̃ −λ0 has a compact support, (17) implies J̃ −λ0 ∈ Lq(R4) for all q ∈ [1,∞].
By Poincáre inequality (15) follows from (18). We obtain (16) by Poincáre inequality,
Sobolev inequality and (19),

E( J̃ ,∞) = E( J̃ − λ0,∞)

≤ C‖∇2 J̃‖L2(R4) ≤ C‖J − λ0‖W 2,2(B1) ≤ C‖∇ J‖W 1,2(B1) ≤ CE(J , 1)

Note that J̃ may not be almost complex structure outside B1. Now let G(x) = c ln |x |
be the fundamental solution for Δ2 on R

4, where c is a constant. Then ∇4G is a
Calderón-Zygmund kernel. Define

ω(x) =
∫
R4

G(x − y) T̃λ0(y)dy =
∑
α,β,γ

ωα,β,γ +
∑
α,δ

ωα,δ,
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where

ωα,β,γ =
∫
R4

∇αG(x − y)

((
J̃ (y) − λ0

) ∗ ∇β J̃ (y) ∗ ∇γ J̃ (y)

)
dy,

ωα,δ =
∫
R4

∇αG(x − y)

(
λ0 ∗ (

J̃ (y) − λ0
) ∗ ∇δ J̃ (y)

)
dy,

and T̃λ0 is defined by replacing J by J̃ in Tλ0 (see (13)) , andα, β, γ, δ aremulti-indices
such that 1 ≤ |α| ≤ 3, 0 ≤ |β|, |γ |, |δ| ≤ 2, |α| + |β| + |γ | = 4 and |α| + |δ| = 4.
We claim that for E(J , 1) ≤ 1, there holds

‖∇ω‖L p0 (B1) ≤ CE(J , 1)‖∇ J‖L p0 (B1). (20)

We will prove the above inequality term by term. By Lemma 1, we have

‖∇ωα,β,γ ‖L p0(R4) ≤ C

∥∥∥∥| J̃ − λ0| |∇β J̃ | |∇γ J̃ |
∥∥∥∥
Lq0(R4)

≤ C‖ J̃ − λ0‖Lq1(R4)‖∇β J̃‖
L

4|β| (R4)
‖∇γ J̃‖

L
4|γ | (R4)

≤ C‖∇ J̃‖L p0(R4)E( J̃ ,∞)Nβ,γ

≤ C‖∇ J‖L p0 (B1)E(J , 1)Nβ,γ

where we let 4
s := ∞ for s = 0, Nβ,γ stands for the number of non-zero elements in

{β, γ } and q0, q1 ∈ (1,∞) satisfy

1

p0
+ 1 = |α| + 1

4
+ 1

q0
,

1

q0
= 1

q1
+ |β|

4
+ |γ |

4
.

Since |α| + |β| + |γ | = 4 and 1 ≤ |α| ≤ 3, we know that 1 ≤ Nβ,γ ≤ 2 and hence
such q0 and q1 exist. If E(J , 1) ≤ 1, there holds

‖∇ωα,β,γ ‖L p0 (B1) ≤ ‖∇ωα,β,γ ‖L p0(R4) ≤ C‖∇ J‖L p0 (B1)E(J , 1). (21)

By a similar argument, we also have

‖∇ωα,δ‖L p0 (B1) ≤ ‖∇ωα,δ‖L p0(R4) ≤ C‖∇ J‖L p0 (B1)E(J , 1). (22)

Combining (21) and (22), we deduce (20).
Finally, we turn to proving (14). Let v(x) := J (x) − ω(x), then we know v(x) is

biharmonic on unit ball B1, i.e., Δ2v(x) = 0. Since ∇v is also biharmonic, it follows
from Lemma 2 (or see Lemma 6.2 in [5]) that there holds

‖∇v‖
L∞

(
B 1
2

) ≤ C‖∇v‖L1(B1).
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Hence, for any θ ∈ (0, 1
2 ) and E(u, 1) ≤ 1, there holds

Dp0(J , θ) = θ
1− 4

p0 ‖∇ J‖L p0 (Bθ )

≤ θ
1− 4

p0
(‖∇ω(x)‖L p0 (Bθ ) + ‖∇v(x)‖L p0 (Bθ )

)

≤ Cθ
1− 4

p0

(
‖∇ω(x)‖L p0 (Bθ ) + θ

4
p0 ‖∇v(x)‖L∞(Bθ )

)

≤ Cθ
1− 4

p0

(
‖∇ω(x)‖L p0 (Bθ ) + θ

4
p0 ‖∇v(x)‖L p0 (B1)

)

≤ Cθ
1− 4

p0

(
‖∇ω(x)‖L p0 (Bθ ) + θ

4
p0 ‖∇ω(x)‖L p0 (B1)

+θ
4
p0 ‖∇ J (x)‖L p0 (B1)

)

≤ Cθ
1− 4

p0

(
‖∇ω(x)‖L p0 (Bθ ) + θ

4
p0 ‖∇ J (x)‖L p0 (B1)

)

≤ C

(
θ
1− 4

p0 E(J , 1)‖∇ J (x)‖L p0 (Bθ ) + θ‖∇ J (x)‖L p0 (B1)

)

≤ C

(
θ
1− 4

p0 E(J , 1) + θ

)
Dp0(J , 1).

Thus, for any given τ ∈ (0, 1), by choosing θ = θ0 and ε0 sufficiently small, we
obtain (14) for E(J , 1) ≤ ε0. 
�

4.2 Decay Estimates for a Class of Semilinear Elliptic Equations

Consider the following semilinear elliptic equation for u : B1 ⊂ R
n → R

K ,

Δmu = Ψ
(
x,∇u, · · · ,∇2m−1u

)
(23)

where Ψ : Rn × R
nK × · · · × R

n2m−1K → R
K is smooth and B1 is the unit ball in

R
n centered at origin. We can generalize the results in Sect,. 4.1 to (23) which admit

a good divergence structure specified in the following,

Definition 2 We say that the equation (23) admits a good divergence form if for any
fixed constant vector λ0 ∈ R

K ,Ψ can be decomposed intoΨH +ΨL , the highest order
term ΨH and the lower order term ΨL , which satisfy the following properties:

1. ΨH is a linear combination of the following terms

∇α((u − λ0) ∗ hα,β), with |hα,β | ≤ C
s∏

i=1

∣∣∇βi u
∣∣, (24)
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where α, βi are multi-indices and β = (β1, · · · , βs) such that

|α| +
s∑

i=1

|βi | = 2m, (25)

|βi | ≤ m, i = 1, · · · , s, s ∈ N
+, (26)

1 ≤
s∑

i=1

|βi | ≤ 2m − 1, (27)

2. ΨL is a linear combination of the following three types of terms

∇α(aα,γ (x) ∗ �α,γ ), with |�α,γ | ≤ C
s∏

i=1

∣∣∇γi u
∣∣,

bt (x) ∗ (
u(x) − λ0

) ∗ �0,t , with |�0,t | ≤ C |u|t , t ∈ N,

c(x),

(28)

where γ = (γ1, · · · , γs), aα,γ (x), bt (x), c(x) ∈ C2m(B1,R
K ) and

|α| +
s∑

i=1

|γi | ≤ 2m − 1, (29)

|γi | ≤ m, i = 1, · · · , s, s ∈ N
+, (30)

s∑
i=1

|γi | ≥ 1. (31)

Remark 1 1. The condition (26) and (30) are natural for us to define the weak solution
to (23) for u ∈ Wm,2.

2. The condition (27) plays an important role in proving the Hölder continuity of u
in critical dimension n = 2m under the structure (24) of ΨH .

3. A trivial verification shows that the terms in the form

g(x) ∗ ∇α1u ∗ · · · ∗ ∇αt u for g(x) ∈ C4m(B1,R
K ),

∑
i

|αi | ≤ 2m − 1

can always be rewritten as a linear combination of terms (28).

For any ball Br of radius r centered at origin in R
n , any p > 1, and ql ∈ (1,∞)

given by 1
ql

= 1
2 − m−l

n for l = 1, · · · ,m and n ≥ 2m, denote

E(u, r) =
m∑
l=1

(
rlql−n

∫
Br

|∇lu|ql
) 1

ql
, (32)

Dp(u, r) =
(
r p−n

∫
Br

|∇u|p
) 1

p

. (33)
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Lemma 4 Suppose n = 2m and u ∈ Wm,2(B1,R
K ) ∩ L∞ satisfies (23) in distribu-

tional sense. If (23) admits a good divergence form and ‖u‖L∞(B1) ≤ B < ∞, then,
given any τ ∈ (0, 1), there exists ε0 > 0 and θ0 ∈ (0, 1

2 ), which are only dependent
of τ,B,m, such that if E(u, 1) ≤ ε0, then we have

Dp0(u, θ0) ≤ θτ
0

(
Dp0(u, 1) + Λ), (34)

where p0 = 4m
3 ∈ (1, 2m) and

Λ :=
∑
α,γ

‖aα,γ (x)‖L∞(B1) +
∑
t

‖bt (x)‖L∞(B1) + ‖∇c(x)‖L∞(B1)

where aα,γ (x), bt (x), c(x) are from (28) in lower order terms ΨL of (23).

Proof For simplicity, we denote by C a positive constant only dependent of τ,B,m.
Following the similar argument in the proof of Lemma 3, we can extend u to ũ ∈
Wm,2(R2m,RK ) ∩ L∞ such that

ũ|B1 = u, ũ|R2m\B2 = λ0 := 1

|B1|
∫
B1

u

‖ũ‖L∞(R2m ) ≤ C ‖u‖L∞(B1) (35)

‖∇ũ‖L p0 (R2m ) ≤ C ‖∇u‖L p0 (B1) (36)

E (̃u,∞) ≤ C E(u, 1), (37)

Of course, by a standard extension theorem to the functions aα,γ (x), bt (x) ∈
C2m(B1,R

K ) from the lower order term ΨL , there exist the corresponding functions
ãα,γ (x), b̃t (x) ∈ C2m

0 (R2m,RK ) such that

ãα,γ (x)|B1 = aα,γ (x), b̃t (x)|B1 = bt (x),

ãα,γ (x)|R2m\B2 = 0, b̃t (x)|R2m\B2 = 0,

‖̃aα,γ (x)‖L∞(R2m) ≤ C‖aα,γ (x)‖L∞(B1),

‖b̃t (x)‖L∞(R2m) ≤ C‖bt (x)‖L∞(B1).

Let G(x) = cm ln |x | be the fundamental solution for Δm on R
2m . Then ∇2mG is a

Calderón-Zygmund kernel. Let us define

ω(x) =
∑
α,β

ωα,β(x) +
∑
α,γ

ωα,γ (x) +
∑
t

ω0,t (x),
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where

ωα,β(x) =
∫
R2m

∇αG(x − y)

((̃
u(y) − λ0

) ∗ h̃α,β(y)

)
dy

ωα,γ (x) =
∫
R2m

∇αG(x − y)

(
ãα,γ (y) ∗ �̃α,γ (y)

)
dy

ω0,t (x) =
∫
R2m

G(x − y)

(
b̃t (y) ∗ (̃

u(y) − λ0
) ∗ �̃0,t (y)

)
dy.

We claim that, for p0 = 4m
3 and E(u, 1) ≤ 1, there holds

‖∇ω‖L p0 (B1) ≤ C

(
E(u, 1)‖∇u‖L p0 (B1) + E(u, 1) · Λ

)
. (38)

We will prove above inequality term by term. By Lemma 1, we have

‖∇ωα,β‖L p0 (B1) ≤ ‖∇ωα,β‖L p0 (R2m ) ≤ C

∥∥∥∥
∣∣̃u − λ0

∣∣ · ∣∣̃hα,β

∣∣
∥∥∥∥
Lqα,β (R2m)

≤ C‖ũ − λ0‖L4m(R2m)

s∏
i=1

‖∇βi ũ‖
L

2m|βi | (R2m)

≤ C‖∇ũ‖L p0(R2m)

s∏
i=1

‖∇βi ũ‖
L

2m|βi | (R2m)

≤ C‖∇u‖L p0 (B1)E(u, 1)nβ ‖u‖s−nβ

L∞(B1)

≤ CBs−nβ ‖∇u‖L p0 (B1)E(u, 1)nβ

where 2m
|βi | := ∞ for |βi | = 0, nβ = ∣∣{βi : βi �= 0}∣∣ ≥ 1, and

1

qα,β

= 1

2m

(
s∑

i=1

|βi | + 1

2

)
= 1 + 3

4m
− |α| + 1

2m
.

Note that (27) implies qα,β ∈ (1,∞). Hence, if E(u, 1) ≤ 1, there holds

‖∇ωα,β‖L p0 (B1) ≤ CE(u, 1)‖∇u‖L p0 (B1). (39)
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Similarly, by Lemma 1, we obtain that

‖∇ωα,γ ‖L p0 (B1) ≤ C‖∇ωα,γ ‖L4m(R2m) ≤ C

∥∥∥∥
∣∣̃aα,γ

∣∣ · ∣∣�̃α,γ

∣∣
∥∥∥∥
Lqα,γ (R2m)

≤ C
∥∥̃aα,γ

∥∥
Lq1 (R2m )

s∏
i=1

∥∥∇γi ũ
∥∥
L

2m|γi | (R2m)

≤ C · Λ · E(u, 1)nγ ‖u‖s−nγ

L∞(B1)

where 2m
|γi | := ∞ for |γi | = 0, nγ = ∣∣{γi : γi �= 0}∣∣ ≥ 1 due to (31), and

1

qα,γ

= 1

4m
+ 1 − |α| + 1

2m
,

1

q1
= 1

4m
+ 1 − 1

2m

(
|α| +

s∑
i=1

|γi | + 1

)
.

Note that (29) implies qα,γ , q1 ∈ (1,∞). Hence, if E(u, 1) ≤ 1, there holds

‖∇ωα,γ ‖L p0 (B1) ≤ C · Λ · E(u, 1) (40)

Similar argument applies to terms ω0,t and yields

‖∇ω0,t‖L p0 (B1) ≤ C · Λ · E(u, 1). (41)

Combining (39), (40) and (41) gives (38). In the last we prove (34). Denote v(x) :=
u(x) − ω(x), then v(x) satisfies Δmv(x) = c(x) on B1 in distributional sense. By
Lemma 2, we have

‖∇v(x)‖
L∞

(
B 1
2

) ≤ C
(‖∇v(x)‖L1(B1) + ‖∇c(x)‖L∞(B1)

)
.

Hence, for any θ ∈ (0, 1
2 ) and E(u, 1) ≤ 1, there holds

Dp0(u, θ) = θ
1− 2m

p0 ‖∇u‖L p0 (Bθ )

≤ θ
1− 2m

p0 ‖∇v‖L p0 (Bθ ) + θ
1− 2m

p0 ‖∇ω‖L p0 (Bθ )

≤ Cθ‖∇v‖L∞(Bθ ) + θ
1− 2m

p0 ‖∇ω‖L p0 (B1)

≤ Cθ
(‖∇v‖L p0 (B1) + ‖∇c(x)‖L∞(B1)

) + θ
1− 2m

p0 ‖∇ω‖L p0 (B1)

≤ Cθ
(‖∇u‖L p0 (B1) + ‖∇ω‖L p0 (B1) + Λ

) + θ
1− 2m

p0 ‖∇ω‖L p0 (B1)

≤ C

(
θ
(‖∇u‖L p0 (B1) + Λ

) + θ
1− 2m

p0 ‖∇ω‖L p0 (B1)

)

≤ C

(
θ
(‖∇u‖L p0 (B1) + Λ

) + θ
1− 2m

p0 E(u, 1)
(‖∇u‖L p0 (B1) + Λ

))
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≤ C

(
θ + θ

1− 2m
p0 E(u, 1)

)(
Dp0(u, 1) + Λ

)
.

Thus, for any given τ ∈ (0, 1), by choosing θ = θ0 and ε0 sufficiently small, we
obtain (34) for E(u, 1) ≤ ε0. 
�

4.3 Hölder Regularity form-Harmonic Almost Complex Structure

In this subsection, we prove the Hölder regularity using the decay estimates above,

Theorem 2 Suppose J ∈ Wm,2(Jg) is aweaklym-harmonic almost complex structure
on (M2m, g) with m ∈ {2, 3}. Then J is Hölder-continuous.

Since the Hölder regularity is a local property, we work on local coordinates on
(Mn, g). Let B1 be the unit ball of Rn and write g as a smooth metric on B1. First we
consider the Euclidean case with g = g0 = ∑

i dx
i ⊗ dxi on B1. The general case is

a small perturbation of the Euclidean case.

4.3.1 The Euclidean Case (B1, g0)

In this case, an almost complex structure J on B1 can be regarded as a function in
Wm,2(B1, Mn(R)) such that J 2 = −id and J T + J = 0, where Mn(R) is the set of all
real n × n matrices and J T is the transpose of matrix J . The inner product of A, B ∈
T 1
1 (B1) reads 〈A, B〉 = ∑n

i, j=1 A
j
i B

j
i for A = A j

i dx
i ⊗ ∂

∂x j and B = B j
i dx

i ⊗ ∂
∂x j .

Thus, the inner product of (1, 1) tensor fields on B1 can be viewed as the inner product
of two vectors in Euclidean space Rn2 .

First we need to write the Euler-Lagrange equation in a good divergence form in
the sense of Definition 2.

Lemma 5 Suppose J is a Wm,2 weakly m-harmonic almost structure on (B1, g0),
m = 2, 3. Then J satisfies the following in distributional sense,

Δm J = Ψ
(
J ,∇ J , · · · ,∇2m−1 J

)
(42)

whereΨ can be rewritten as a linear combination of the following terms, for any fixed
constant matrix λ0 ∈ Mn(R),

∇α ∗
(

(J − λ0) ∗ ∇β J ∗ ∇γ J

)
or λ0 ∗ ∇α ∗

(
(J − λ0) ∗ ∇δ J

)
,

where α, β, γ, δ are multi-indices such that 1 ≤ |α| ≤ 2m − 1, 0 ≤ |β|, |γ |, |δ| ≤ m,
|α| + |β| + |γ | = 2m and |α| + |δ| = 2m.

Lemma 5 will be proved in Appendix. Now we prove Theorem 2 for the Euclidean
case (B1, g0). First, we use the normalized energy E(J ; x, r) defined by replacing
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u,Br by J , Br (x) respectively in (32). That is, due to n = 2m,

E(J ; x, r) =
m∑
l=1

(∫
Br (x)

|∇l J | 2ml
) l

2m

.

For any fixed R0 ∈ (0, 1), we have that for every ε0 > 0, there exists r0 ∈ (0, 1− R0)

such that

sup
x∈BR0

E(J ; x, r0) < ε0. (43)

For x0 ∈ BR0 , Jx0,r0(x) := J (x0 + r0x) is also a Wm,2 m-harmonic almost structure
on (B1, g0) with

E(Jx0,r0; 0, 1) = E(J ; x0, r0) < ε0.

By Lemma 5, Jx0,r0 admits a good divergence form (see Definition 2) with ΨL = 0.
Then it follows from Lemma 4 that by choosing suitable ε0 > 0 in (43), there exists
θ0 ∈ (0, 1

2 ) and p0 = 4m
3 such that

Dp0(J ; x0, θ0r0) = Dp0(Jx0,r0; 0, θ0)
≤ √

θ0Dp0(Jx0,r0; 0, 1) = √
θ0Dp0(J ; x0, r0).

A standard iteration argument shows that there exists α ∈ (0, 1) such that

Dp0(J ; x0, r) ≤ Crα, ∀r ∈ (0, r0).

This, combined with the Morrey’s lemma, yields that J ∈ C0,α(BR0), hence that
J ∈ C0,α(B1).

4.3.2 The General Case (B1, g)

In this subsection, we prove the Hölder regularity of the general case on (B1, g) by
a perturbation method. We start by recalling the scaling invariance of the functional
Em(J ) in critical dimension n = 2m. If gλ := λ2g for some positive real number

λ, then Em(J , g) = Em(J , gλ), where Em(J , g) = ∫
M

∣∣Δm
2
g J

∣∣2dVg. It follows that if
J is a weakly m-harmonic on (M, g), then J is also m-harmonic on (M, gλ). If we
take the geodesic normal coordinates on the unit geodesic ball centered at fixed point
in (M, gλ), then the metric gλ in such local coordinates converges to the Euclidean
metric in C∞(B1) as λ goes to infinity. Hence, we can assume that, by a scaling if
necessary, the metric g on B1 is sufficiently close to the Euclidean metric in the sense

|gi j (x) − δi j | +
2m∑
k=1

|Dkgi j (x)| ≤ δ0, ∀x ∈ B1 (44)
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where δ0 is sufficiently small and will be determined later. Now we prove Theorem 2
in the general case (B1, g).

Firstly, we introduce an operator m which maps a (1, 1) tensor field A on (B1, g)
to a n × n real matrix valued function,

Am := m(A) = (A j
i )

where A = A j
i dx

i ⊗ ∂
∂x j . In other words, A denotes tensor field and Am denotes its

coefficient matrix. Let us denote by ∇ the covariant derivative on (B1, g) and D the
ordinary derivatives (i.e., Dk = ∂k). Here it is necessary to emphasize the difference
between the derivatives on tensor fields and matrix valued functions. For example, for
A = A j

i dx
i ⊗ ∂ j , we have

(∇∂k A)
j
i = Dk A

j
i + As

i Γ
j
ks − A j

sΓ
s
ki

whereΓ k
i j denote theChristoffel symbolswith respect tometric g. To simplify notation,

we rewrite above equation as

(∇∂k A
)
m

= Dk Am + Dg ∗ Am

where Dk Am = Dk(A
j
i ) = (Dk A

j
i ). Similarly, there holds

(
ΔA

)
m

= ΔAm + Dg ∗ DAm + (
D2g + Dg ∗ Dg) ∗ Am. (45)

Recall the m-harmonic almost complex structure equation (61), i.e.,

Δm J = T (J ,∇ J , · · · ,∇2m−1 J ).

We will reduce above equation to a perturbation form of the Euclidean case step by
step. As a example, we show how to handle the term Δm J . Repeated application of
(45) yields

(Δm J )m = Δm Jm + L1(D
ig, D j Jm)

where L1 stands for the lower order terms in the following form

L1 =
∑

Di1g ∗ · · · ∗ Dis g ∗ D j Jm

with iμ ≥ 1, μ = 1, · · · , s, j ≥ 0 and j + ∑s
μ=1 iμ = 2m. Let Δ0 = ∑2m

i=1 ∂2i be

the standard Laplace operator on Euclidean space R
2m . Recall that for any smooth

function f ,

Δ f = gi j
∂2 f

∂xi∂x j
− gi jΓ s

i j
∂ f

∂xs
=: gi j ∂2 f

∂xi∂x j
+ Dg ∗ Df ,
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where we omit the terms gi j in the expression Dg ∗ Df due to boundedness of g.
Then we have

(
Δm − Δm

0

)
Jm = P1 + L2(D

i g, D j Jm),

where P1 stands for the perturbation term in the following form

P1 = (
gi1 j1 · · · gim jm − δi1 j1 · · · δim jm

)
D2m
i1 j1···im jm Jm

=:
∑

|β|=2m

aβ(x) ∗ Dβ Jm, (46)

and L2 also stands for the lower order terms and has the similar expression as L1.
Hence, we obtain

(
Δm J

)
m

= Δm
0 Jm + P1 + L̃1

(
Di g, D j Jm

)
,

where L̃1 = L1 + L2 has the following form

L̃1 =
∑

Di1g ∗ · · · ∗ Dis g ∗ D j Jm

with iμ ≥ 1, μ = 1, · · · , s, j ≥ 0 and (
∑s

μ=1 iμ) + j = 2m. Similar arguments
apply to the nonlinear terms and yield

T
(
J ,∇ J , · · · ,∇2m−1 J

)
= Ts

(
Jm, DJm, · · · , D2m−1 Jm

)
+ P2 + L̃2

where Ts admits a good divergence form as Ψ in Lemma 5, P2 stands for the pertur-
bation terms

P2 =
∑

bi jk ∗ Di ((Jm − λ0) ∗ D j Jm ∗ Dk Jm
)

(47)

where bi jk consists of |gst − δst |, 0 ≤ j, k ≤ m and i + j + k = 2m, and L̃2 stands
for the lower order terms in the following form

L̃2 =
∑

Di1g ∗ · · · ∗ Dis g ∗ D j Jm ∗ Dk Jm ∗ Dl Jm

with iμ ≥ 1μ = 1, · · · , s, 0 ≤ j +k+ l ≤ 2m−1 and
(∑s

μ=1 iμ
)+ j +k+ l = 2m.

By the arguments above, we get the final reduced equation about Jm

Δm
0 Jm = Ts + P + L (48)

whereP = P2−P1 andL = L̃2−L̃1. In otherwords, the nonlinear part of (48) consists
of three types of terms: terms that admit a good divergence form, the perturbation terms
and the lower order terms. Now recall the definition of E(u, r) and Dp(u, r) in (32)
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and (33) respectively. Then, we claim that for any given τ ∈ (0, 1), there exists δ0 > 0,
ε0 > 0 and θ0 ∈ (0, 1

2 ) such that if the metric g satisfies (44) and E(Jm, 1) < ε0, then
we have

Dp0(Jm, θ0) ≤ θτ
0

(
Dp0(Jm, 1) + ‖Dg‖C2m−1(B1)

)
. (49)

where p0 = 4m
3 . The above claim is a direct consequence of Lemma 4 providedP ≡ 0.

Hence the key point is to prove that the inequality (38) in Lemma 4 still holds with
additional nonlinear terms P . We claim that, there holds

‖DωP‖L p0 (B1) ≤ C
(
δ0‖DJm‖L p0 (B1) + E(Jm, 1)‖Dg‖C2m−1(B1)

)
, (50)

where ωP (x) := ∫
R2m G(x − y)P( J̃m)(y)dy. We now turn to proving (50). Since

a(x)D2m Jm = D2m−1(a(x)DJm
) + Lower order terms,

and

∥∥∥∥D
∫
R2m

D2m−1G(x − y)̃a(y)DJ̃m(y)dy

∥∥∥∥
L p0(R2m)

=
∥∥∥∥
∫
R2m

D2mG(x − y)̃a(y)DJ̃m(y)dy

∥∥∥∥
L p0(R2m)

≤ C ‖̃a(x)DJ̃m(x)‖L p0(R2m)

≤ C‖a(x)‖L∞(B1)‖DJm(x)‖L p0 (B1)

≤ C δ0 ‖DJm(x)‖L p0 (B1),

it follows from estimates for lower order terms in Lemma 4 that (50) holds for the terms
a(x)D2m Jm in (46). In the same manner, (50) also holds for the terms in (47). Hence
the decay estimate (49) holds and it implies Jm ∈ C0,α(B1) for some α ∈ (0, 1).

5 Higher Regularity form-Harmonic Almost Complex Structures

We state the higher regularity results for a class of semilinear elliptic equations as a
generalization in [5]. The proof follows essentially Proposition 7.1 in [5].

Theorem 3 Suppose n ≥ 2m and u ∈ C0,μ ∩ Wm,2(B1,R
K ) satisfies

Δmu = Ψ
(
x,∇u, · · · ,∇2m−1u

)
(51)
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in distributional sense, whereΨ can be divided into two parts: the highest order terms
H and lower order terms L, i.e., Ψ = H + L, which admit the following structures:

H =
m−1∑
k=0

∇k · gk, where |gk | ≤ C
m∑
l=1

|∇lu| 2m−k
l ,

L =
m−1∑
k=0

∇k · g̃k, where |̃gk | ≤ C
∑
γ

(∏
i

|∇γi u|
)

for
∑
i

|γi | ≤ 2m − 1 − k.

Then, u ∈ C∞(B1,R
K ).

Proof Gastel and Scheven in [5] proved the theorem in the case Ψ = H . According
to the proof of Proposition 7.1 in [5], it suffices to prove the following two claims in
the case Ψ = L:

(1) sup
Bρ(x)⊂BR

ρ2m−n−2μ
∫
Bρ(x)

|∇mu|2 < ∞, ∀ 0 < R < 1, (52)

(2) For every non-integer ν := [ν] + σ ∈ (0,m), if u ∈ C [ν],σ (B1,R
K ) and

sup
Bρ(x)⊂BR

ρ2m−n−2ν
∫
Bρ(x)

|∇mu|2 < ∞, ∀ 0 < R < 1, (53)

then we have that, for 0 ≤ k ≤ m − 1 and Bρ(x) ⊂ BR , there holds

(
ρ2m−n

∫
Bρ(x)

|̃gk | 2m
2m−k

) 2m−k
2m ≤ Cρ

m+1
m ν (54)

Before proceeding to prove claims, we make some conventions: fix R ∈ (0, 1),
always assume Bρ(x) ⊂ BR , and C stand for the positive constants only dependent
of m, n, ‖u‖C0,μ(BR).

We first prove the Claim (1) by standard integral estimates. Since u ∈ C0,μ(B1),
we have

‖u − u‖L∞(Bρ(x)) ≤ C[u]μ;BRρμ ≤ Cρμ,

where u = 1
|Bρ(x)|

∫
Bρ(x) u(y). To simplify the proof in the following estimate, we

assume ‖u − u‖L∞(Bρ(x)) ≤ 1.
By Gagliardo-Nirenberg interpolation inequality, we have that, for 1 ≤ l ≤ m − 1,

there holds
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(
ρ2m−n

∫
Bρ(x)

|∇lu| 2ml
) l

2m ≤ C‖u − u‖1−
l
m

L∞

(
ρ2m−n

∫
Bρ(x)

|∇mu|2
) l

2m

+ C‖u − u‖L∞ . (55)

It follows that

∫
Bρ(x)

|∇lu| 2ml ≤ C‖u − u‖
(
1− l

m

)
2m
l

L∞

∫
Bρ(x)

|∇mu|2 + Cρn−2m‖u − u‖
2m
l
L∞

≤ C‖u − u‖
2
m
L∞

∫
Bρ(x)

|∇mu|2 + Cρn−2m‖u − u‖2L∞ . (56)

On the other hand, by Hölder’s inequality, it follows from (55) that, for 1 ≤ l ≤ m−1
and q ∈ [1, 2m

l ]

(
ρlq−n

∫
Bρ(x)

|∇lu|q
) 1

q ≤ C‖u − u‖1−
l
m

L∞

(
ρ2m−n

∫
Bρ(x)

|∇mu|2
) l

2m

+ C‖u − u‖L∞ .

(57)

We choose a cut-off function η ∈ C∞
0 (Bρ(x), [0, 1]) such that

η|B ρ
2
(x) ≡ 1 and ‖∇lη‖L∞ ≤ Cρ−l , ∀ l ∈ N.

Testing (51) with η2m(u − u), we compute

∫
η2m |∇mu|2dy ≤ C

m−1∑
k=0

∫
|∇mu| · |∇k(u − u)| · |∇m−kη2m |

+ C
m−1∑
k=0

k∑
j=0

∫
|∇ j (u − u)| · |∇k− jη2m | · |̃gk |

=:
m−1∑
k=0

Ik +
m−1∑
k=0

k∑
j=0

I Ik j .
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Let ε1, ε2 ∈ (0, 1) be constants to be chosen later. For I0, we obtain

I0 ≤ C
∫

|∇mu| · |u − u| · |∇mη2m |

≤ Cρ
n
2−m‖u − u‖L∞

(∫
η2m |∇mu|2

) 1
2

≤ ε1

∫
η2m |∇mu|2 + Cε1ρ

n−2m‖u − u‖2L∞

≤ ε1

∫
η2m |∇mu|2 + Cε1ρ

n−2m+2μ.

For 1 ≤ k ≤ m − 1, we obtain

Ik ≤ Cρk−m
∫

|∇mu| · |∇ku| · ηm+k

≤ Cρk−m
(∫

η2m |∇mu|2
) 1

2
(∫

η2k |∇ku|2
) 1

2

≤ ε1

∫
η2m |∇mu|2 + Cε1ρ

2k−2m
∫

η2k |∇ku|2

≤ ε1

∫
η2m |∇mu|2

+ Cε1ρ
2k−2m

(
ε2ρ

2m−2k
∫
Bρ(x)

|∇mu|2 + Cε2ρ
n−2k‖u − u‖2L∞

)

≤ ε1

∫
η2m |∇mu|2 + ε2Cε1

∫
Bρ(x)

|∇mu|2 + Cε1Cε2ρ
n−2m‖u − u‖2L∞

≤ Cε1

∫
η2m |∇mu|2 + ε2Cε1

∫
Bρ(x)

|∇mu|2 + Cε1Cε2ρ
n−2m+2μ

where we use (57) with q = 2 and Young’s inequality in the fourth inequality. Next,
we estimate I I00 as follows

I I00 ≤ C
∑
γ

∫
|u − u| · η2m ·

∏
i

|∇γi u|

≤ C
∑
γ

ρ
n
p0 · ‖u − u‖L∞

∏
i

‖η|γi |∇γi u‖
L

2m|γi |

≤ C‖u − u‖L∞
(

ρn +
∑
γi �=0

∫
η2m |∇|γi |u| 2m

|γi |
)

≤ C‖u − u‖L∞
(

ρn +
m∑
l=1

∫
Bρ(x)

|∇lu| 2ml
)
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≤ C‖u − u‖L∞
∫
Bρ(x)

|∇mu|2 + Cρn‖u − u‖L∞

+ C

(
‖u − u‖1+

2
m

L∞

∫
Bρ(x)

|∇mu|2 + ρn−2m‖u − u‖3L∞

)

≤ Cρμ

∫
Bρ(x)

|∇mu|2 + Cρn−2m+2μ

where we use (56) in the fifth inequality, and 1 = 1
p0

+ 1
2m

∑
i |γi |. Note that, due to∑

i |γi | ≤ 2m − 1, it follows that p0 ∈ [1, 2m]. Similar arguments apply to I Ik,0 and
we obtain, for 1 ≤ k ≤ m − 1,

I Ik0 ≤ Cρμ

∫
Bρ(x)

|∇mu|2 + Cρn−2m+2μ.

By Hölder’s inequality and Young’s inequality, we have that, for 1 ≤ k ≤ m − 1,

∫
η2m |̃gk | 2m

2m−k ≤ ε2

∫
Bρ(x)

|∇mu|2 + Cε2

(
ρn +

m−1∑
l=1

∫
Bρ(x)

|∇lu| 2ml
)

≤
(
ε2 + Cε2ρ

2μ
m

) ∫
Bρ(x)

|∇mu|2 + Cε2ρ
n−2m+2μ, (58)

where we apply (56) in second inequality. Now for 1 ≤ j < k ≤ m − 1, we have

I Ik j ≤ Cρ j−k
∫

|̃gk | · |∇ j u| · η2m+ j−k

≤ Cρ j−k‖η j∇ j u‖
L

2m
k

‖η2m−k g̃k‖
L

2m
2m−k

≤ Cρ( j−k) 2mk

∫
Bρ(x)

|∇ j u| 2mk + C
∫

η2m |̃gk | 2m
2m−k

≤ C
(
ε2 + Cε2ρ

2μ
m

) ∫
Bρ(x)

|∇mu|2 + Cε2ρ
n−2m+2μ

where we use (57) with q = 2m
k and (58) in the last inequality. Similarly, we obtain,

for 1 ≤ k ≤ m − 1

I Ikk ≤ (ε2 + Cε2ρ
2μ
m )

∫
Bρ(x)

|∇mu|2 + Cε2ρ
n−2m+2μ.

Combining above all estimates, we deduce that

∫
η2m |∇mu|2dy ≤ Cε1

∫
η2m |∇mu|2 + C

(
ε2 + Cε2ρ

2μ
m

) ∫
Bρ(x)

|∇mu|2

+ Cε1,ε2ρ
n−2m+2μ.
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Thus, by choosing ε1, ε2, ρ0 small enough, we have that, for all ρ ≤ ρ0, there holds

∫
B ρ

2

|∇mu|2 ≤ ε

∫
Bρ

|∇mu|2 + Cρn−2m+2μ

where ε < 22m−n−2μ is a fixed positive number. A standard iteration argument implies
(52).

The task is now to prove Claim (2). Since u ∈ C [ν],σ (B1) with ν = [ν] + σ , we
know that, there exists a Taylor polynomials Px at the points x such that

‖u‖C [ν],σ (BR) ≤ C < ∞, ‖u − Px‖L∞(Bρ(x)) ≤ Cρν.

By Gagliardo-Nirenberg interpolation inequality and (53), we have that, for ν < l ≤
m, there holds

(
ρ2m−n

∫
Bρ(x)

|∇lu| 2ml
) l

2m

≤ C‖u − Px‖1−
l
m

L∞(Bρ(x))

(
ρ2m−n

∫
Bρ(x)

|∇mu|2
) l

2m + C‖u − Px‖L∞(Bρ(x))

≤ Cρν.

Let us compute

(
ρ2m−n

∫
Bρ(x)

|̃gk | 2m
2m−k

) 2m−k
2m ≤ Cρ(2m−n) 2m−k

2m · ρ
n
q0

∏
|γi |>ν

∥∥∇|γi |u
∥∥
L

2m|γi | (Bρ(x))

≤ Cρτ

where

1

q0
+ 1

2m

∑
|γi |>ν

|γi | = 2m − k

2m
,

τ = (2m − n) · 2m − k

2m
+ n

q0
+

∑
|γi |>ν

(
ν + n − 2m

2m
|γi |

)
. (59)

Combining above two identities yields

τ = (2m − n) · 2m − k

2m
+ n

q0
+ nνν + (n − 2m)

(
2m − k

2m
− 1

q0

)

= 2m

q0
+ nνν.

where nν = ∣∣{γi : |γi | > ν}∣∣.
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We claim that

τ ≥ m + 1

m
ν. (60)

which implies (54). Obviously, (60) holds for nν ≥ 2. For nν = 0, (59) implies
1
q0

= 2m−k
2m . Hence, for ν ∈ (0,m)

τ = 2m

q0
= 2m − k ≥ m + 1 ≥ m + 1

m
ν.

For nν = 1, (59) and the fact k + ∑
i |γi | ≤ 2m − 1 imply 1

q0
≥ 1

2m . Hence, for
ν ∈ (0,m),

τ = 2m

q0
+ ν ≥ 1 + ν ≥ m + 1

m
ν.

Thus, the claim (60) is proved. 
�
As a direct consequence, Theorem 3 implies the smoothness of weaklym-harmonic

almost complex structures.

Corollary 1 Suppose n ≥ 2m and J ∈ C0,α ∩ Wm,2 is a weakly m-harmonic almost
complex structure on (Mn, g). Then J is smooth.

6 Appendix

In this section, we will rewrite m-harmonic almost complex structure equation in a
good divergence form in the spirit of [2] to proveLemma5. First we have the following,

Lemma 6 The Euler-Lagrange equation [Δm J , J ] = 0 is equivalent to

Δm J = 1

4
Tm

(
J ,∇ J , · · · ,∇2m−1 J

)
(61)

where Tm = J Qm + Qm J and

Qm = Δm
(
J 2

)
− Δm J J − J Δm J .

Proof This is a direct computation using the fact Δ(J 2) = 0. 
�
Lemma 5 can be stated as follows,

Proposition 6 For m = 2, 3, Tm in Lemma 6 can be rewritten as

Tm = Tλ0 − [
J − λ0,

[
Δm J , J

]]
(62)
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where Tλ0 is a linear combination of the following terms

∇α

(
(J − λ0) ∗ ∇β J ∗ ∇γ J

)
or λ0 ∗ ∇α

(
(J − λ0) ∗ ∇δ J

)
,

where α, β, γ, δ are multi-indices such that 1 ≤ |α| ≤ 2m − 1, 0 ≤ |β|, |γ |, |δ| ≤ m,
|α| + |β| + |γ | = 2m and |α| + |δ| = 2m.

In what follows, we always assume J is a square matrix valued function and satisfies
J 2 = −id. In this situation, we know ∇λ0 = 0 for every constant matrix λ0. The
reason for emphasizing this point is that if we consider the constant matrix λ0 as a
(1,1) tensor field on (B1, g), then (1, 2) tensor field ∇λ0 might not be zero.

6.1 The casem=2: biharmonic almost complex structure

By the definition of Tm in Theorem 6, we have

T2 = J Q2 + Q2 J ,

where Q2 = 2∇ΔJ∇ J + 2∇ J∇ΔJ + 2ΔJΔJ + 2Δ(∇ J )2. Set

I = J
(∇ΔJ∇ J + ∇ J∇ΔJ

) + (∇ΔJ∇ J + ∇ J∇ΔJ
)
J

II = J (ΔJ )2 + (ΔJ )2 J

III = JΔ(∇ J )2 + Δ(∇ J )2 J .

Thus, we obtain T2 = 2I + 2II + 2III. Firstly, we compute the term I:

I = J∇ΔJ∇ J + J∇ J∇ΔJ + ∇ΔJ∇ J J + ∇ J∇ΔJ J

= J∇ΔJ∇ J − ∇ J J∇ΔJ − ∇ΔJ J∇ J + ∇ J∇ΔJ J

= [J ,∇ΔJ ]∇ J + ∇ J [∇ΔJ , J ]
= [∇ J , [∇ΔJ , J ]].

Since ∇
(

[∇ΔJ , J ] − [ΔJ ,∇ J ]
)

= [Δ2 J , J ], we have

∇[J − λ0, [∇ΔJ , J ] − [ΔJ ,∇ J ]]
= [∇ J , [∇ΔJ , J ] − [ΔJ ,∇ J ]] + [J − λ0, [Δ2 J , J ]]. (63)
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Now we compute the left-hand side of above equality:

∇[J − λ0, [∇ΔJ , J ] − [ΔJ ,∇ J ]]
= ∇[J − λ0,∇[ΔJ , J ]] − 2∇[J − λ0, [ΔJ ,∇ J ]]
= ∇[J − λ0,∇[ΔJ , J ]] + Tλ0

= Δ[J − λ0, [ΔJ , J ]] − ∇[∇ J , [ΔJ , J ]] + Tλ0

= −∇[∇ J , [ΔJ , J ]] + Tλ0

= −[ΔJ , [ΔJ , J ]] − [∇ J , [∇ΔJ , J ]] − [∇ J , [ΔJ ,∇ J ]] + Tλ0

Substituting above equality into (63) yields

2I = 2[∇ J , [∇ΔJ , J ]] = −[ΔJ , [ΔJ , J ]] − [J − λ0, [Δ2 J , J ]] + Tλ0 (64)

We now turn to compute the term III. Since

JΔ(∇ J )2 = (J − λ0)Δ(∇ J )2 + λ0Δ(∇ J )2

= (J − λ0)Δ(∇ J )2 + λ0Δ∇(
(J − λ0)∇ J

) − λ0Δ
(
(J − λ0)ΔJ

)
= (J − λ0)Δ(∇ J )2 + Tλ0

= ∇p
(
(J − λ0)∇p(∇ J )2

) − ∇p J∇p(∇ J )2 + Tλ0

= −∇p J∇p(∇ J )2 + Tλ0

= −∇p
(∇p J (∇ J )2

) + ΔJ (∇ J )2 + Tλ0

= ΔJ (∇ J )2 + Tλ0

and similarly Δ(∇ J )2 J = (∇ J )2ΔJ + Tλ0 , we have

III = ΔJ (∇ J )2 + (∇ J )2ΔJ + Tλ0 (65)

Now let us proceed to compute II:

II = J (ΔJ )2 + (ΔJ )2 J = −(
ΔJ J + 2(∇ J )2

)
ΔJ + ΔJΔJ J

= ΔJ [ΔJ , J ] − 2(∇ J )2ΔJ

where we used the fact Δ(J 2) = 0 which implies

ΔJ J = −JΔJ − 2∇ J∇ J . (66)

On the other hand, we also have

II = J (ΔJ )2 + (ΔJ )2 J = JΔJΔJ − ΔJ
(
JΔJ + 2(∇ J )2

)
= [J ,ΔJ ]ΔJ − 2ΔJ (∇ J )2
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Hence, we obtain

2II = ΔJ [ΔJ , J ] + [J ,ΔJ ]ΔJ − 2
(
(∇ J )2ΔJ + ΔJ (∇ J )2

)
= [ΔJ , [ΔJ , J ]] − 2(∇ J )2ΔJ − 2ΔJ (∇ J )2

= [ΔJ , [ΔJ , J ]] − 2III (67)

where in the last equality we used (65). Substituting (67) into (64), we get

T2 = 2I + 2II + 2III = Tλ0 −
[
J − λ0,

[
Δ2 J , J

]]

which is the desired conclusion.

6.2 The Casem=3: 3-Harmonic Almost Complex Structure

By the definition of Tm in Theorem 6, we have

T3 = J Q3 + Q3 J ,

where

Q3 = 2∇Δ2 J∇ J + 2∇ J∇Δ2 J + Δ2 JΔJ + ΔJΔ2 J

+ 2Δ
(∇ΔJ∇ J + ∇ J∇ΔJ

) + 2Δ(ΔJ )2 + 2Δ2 (∇ J )2 .

For simplicity, we collect some terms which are Tλ0 type and appear frequently in
the following proof.

Lemma 7 The following terms are Tλ0 type terms for any given constant matrix λ0:

∇
(
∇ J ∗ ∇2 J ∗ ∇2 J

)
,∇2

(
∇ J ∗ ∇ J ∗ ∇2 J

)
,∇

(
∇ J ∗ ∇ J ∗ ∇3 J

)
,∇4 (∇ J )2 .

Proof For simplicity, we only show how to rewrite the first term and the third term.
Other terms can be handled in much the same way. The first term:

∇(∇ J ∗ ∇2 J ∗ ∇2 J
) = ∇

(
∇ (J − λ0) ∗ ∇2 J ∗ ∇2 J

)

= ∇2
(
(J − λ0) ∗ ∇2 J ∗ ∇2 J

)
− ∇

(
(J − λ0) ∗ ∇3 J ∗ ∇2 J

)

− ∇
(
(J − λ0) ∗ ∇2 J ∗ ∇3 J

)

= Tλ0 .
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The third term:

∇(∇ J ∗ ∇ J ∗ ∇3 J
)

= ∇2(∇ J ∗ ∇ J ∗ ∇2 J
) − ∇(∇2 J ∗ ∇ J ∗ ∇2 J

) − ∇(∇ J ∗ ∇2 J ∗ ∇2 J
)

= Tλ0 .


�
Note that we will emphasize the terms of Tλ0 type by underlining it in the following

proof. Set

I = J∇Δ2 J∇ J + J∇ J∇Δ2 J + ∇Δ2 J∇ J J + ∇ J∇Δ2 J J ,

II = J
(
Δ2 JΔJ + ΔJΔ2 J

) + (
Δ2 JΔJ + ΔJΔ2 J

)
J ,

III = JΔ
(∇ΔJ∇ J + ∇ J∇ΔJ

) + Δ
(∇ΔJ∇ J + ∇ J∇ΔJ

)
J ,

IV = JΔ (ΔJ )2 + Δ(ΔJ )2 J ,

V = JΔ2 (∇ J )2 + Δ2 (∇ J )2 J .

Then, we obtain T3 = 2I + II + 2III + 2IV + 2V.

Step One: dealing with I. Now Let us compute the first term I:

I = J∇Δ2 J∇ J + J∇ J∇Δ2 J + ∇Δ2 J∇ J J + ∇ J∇Δ2 J J

= J∇Δ2 J∇ J − ∇ J J∇Δ2 J − ∇Δ2 J J∇ J + ∇ J∇Δ2 J J

=
[
J ,∇Δ2 J

]
∇ J + ∇ J

[
∇Δ2 J , J

]

=
[
∇ J ,

[
∇Δ2 J , J

]]
,

Since ∇
(

[∇Δ2 J , J ] − [Δ2 J ,∇ J ] + [∇ΔJ ,ΔJ ]
)

= [Δ3 J , J ], we have

∇
[
J − λ0,

[
∇Δ2 J , J

]
−

[
Δ2 J ,∇ J

]
+ [∇ΔJ ,ΔJ ]

]

= [∇ J ,
[
∇Δ2 J , J

]
−

[
Δ2 J ,∇ J

]
+ [∇ΔJ ,ΔJ ]] +

[
J − λ0,

[
Δ3 J , J

]]
.

(68)

Now we compute the left-hand side of above equality.

∇
[
J − λ0,

[
∇Δ2 J , J

]
−

[
Δ2 J ,∇ J

]
+ [∇ΔJ ,ΔJ ]

]

= ∇
[
J − λ0,

[
∇Δ2 J , J

]
−

[
Δ2 J ,∇ J

]]
+ Tλ0

= ∇[J − λ0,∇
[
Δ2 J , J

]
− 2

[
Δ2 J ,∇ J

]
] + Tλ0

= Δ
[
J − λ0, [Δ2 J , J ]

]
− ∇[∇ J , [Δ2 J , J ]] − 2∇[J − λ0,

[
Δ2 J ,∇ J

]
] + Tλ0
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= Δ
[
J − λ0,∇[∇ΔJ , J ] − [∇ΔJ ,∇ J ]]

− 2∇p
[
J − λ0,∇q [∇qΔJ ,∇p J ] −

[
∇qΔJ ,∇2

qp J
]]

−∇
[
∇ J ,

[
Δ2 J , J

]]
+ Tλ0

= Δ∇ [J − λ0, [∇ΔJ , J ]] − Δ[∇ J , [∇ΔJ , J ]]
− 2∇2

pq

[
J − λ0, [∇qΔJ ,∇ J ]] + 2∇p[∇q J , [∇qΔJ ,∇p J ]]

−∇[∇ J , [Δ2 J , J ]] + Tλ0

= −Δ[∇ J , [∇ΔJ , J ]] − ∇[∇ J , [Δ2 J , J ]] + Tλ0 ,

where in the second equality from bottom we employ lemma 7. By substituting above
equality into (68), we obtain

I = [∇ J , [∇Δ2 J , J ]]
= [∇ J , [Δ2 J , ∇ J ]] − [∇ J , [∇ΔJ , ΔJ ]] − Δ[∇ J , [∇ΔJ , J ]] − ∇

[
∇ J ,

[
Δ2 J , J

]]

+ Tλ0 −
[
J − λ0,

[
Δ3 J , J

]]
.

Since ∇[∇ J , [Δ2 J , J ]] = [ΔJ , [Δ2 J , J ]]+ [∇ J , [∇Δ2 J , J ]]+ [∇ J , [Δ2 J ,∇ J ]],
we deduce

2I = −[∇ J , [∇ΔJ ,ΔJ ]] − Δ[∇ J , [∇ΔJ , J ]] −
[
ΔJ ,

[
Δ2 J , J

]]

+ Tλ0 −
[
J − λ0,

[
Δ3 J , J

]]
. (69)

By lemma 7, we can derive

[∇ J , [∇ΔJ ,ΔJ ]]
= ∇ J (∇ΔJΔJ − ΔJ∇ΔJ ) − (∇ΔJΔJ − ΔJ∇ΔJ ) ∇ J

= ∇ J∇ΔJΔJ + ΔJ∇ΔJ∇ J − ∇ JΔJ∇ΔJ − ∇ΔJΔJ∇ J

= ∇ (∇ JΔJΔJ ) + ∇ (ΔJΔJ∇ J ) − 2 (ΔJ )3 − 2∇ JΔJ∇ΔJ − 2∇ΔJΔJ∇ J

= −2 (ΔJ )3 − 2∇ JΔJ∇ΔJ − 2∇ΔJΔJ∇ J + Tλ0 (70)

and

Δ[∇ J , [∇ΔJ , J ]]
= Δ

[∇ J ,∇[ΔJ , J ] − [ΔJ ,∇ J ]]
= Δ[∇ J ,∇[ΔJ , J ]] − Δ[∇ J , [ΔJ ,∇ J ]]
= Δ∇[∇ J , [ΔJ , J ]] − Δ[ΔJ , [ΔJ , J ]] + Tλ0

= −Δ
(
(ΔJ )2 J + J (ΔJ )2 − 2ΔJ JΔJ

)
+ Tλ0
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= −Δ
(
2 (ΔJ )2 J + 2J (ΔJ )2 + 2(∇ J )2 ΔJ + 2ΔJ (∇ J )2

)
+ Tλ0

= −2Δ
(
(ΔJ )2 J + J (ΔJ )2

)
+ Tλ0 . (71)

where in the second equality from bottom we used (66). Substituting equalities (70)
and (71) into equality (69) yields

2I = 2 (ΔJ )3 + 2∇ JΔJ∇ΔJ + 2∇ΔJΔJ∇ J + 2Δ
(
(ΔJ )2 J + J (ΔJ )2

)

−
[
ΔJ ,

[
Δ2 J , J

]]
+ Tλ0 −

[
J − λ0,

[
Δ3 J , J

]]
. (72)

Step Two: dealing with V and II. Firstly, we deal with fifth term V. It follows from
Lemma 7 that

V = JΔ2 (∇ J )2 + Δ2 (∇ J )2 J

= (J − λ0)Δ2 (∇ J )2 + Δ2 (∇ J )2 (J − λ0) + λ0Δ
2 (∇ J )2 + Δ2 (∇ J )2 λ0

= ∇
(
(J − λ0) ∇Δ(∇ J )2

)
− ∇ J∇Δ(∇ J )2

+ ∇
(
∇Δ(∇ J )2 (J − λ0)

)
− ∇Δ(∇ J )2 ∇ J + Tλ0

= Δ

(
(J − λ0)Δ(∇ J )2

)
− ∇

(
∇ JΔ(∇ J )2

)
− ∇ J∇Δ(∇ J )2

+ Δ

(
Δ(∇ J )2(J − λ0)

)
− ∇

(
Δ(∇ J )2 ∇ J

)
− ∇Δ(∇ J )2 ∇ J + Tλ0

= −∇
(
∇ JΔ(∇ J )2

)
− ∇ J∇Δ(∇ J )2 − ∇

(
Δ(∇ J )2 ∇ J

)

− ∇Δ(∇ J )2 ∇ J + Tλ0 .

Since

∇p

(
∇p JΔ(∇ J )2

)
= ∇2

pq

(
∇p J∇q (∇ J )2

)
− ∇p

(
∇2
qp J∇q (∇ J )2

)
= Tλ0

and

∇p J∇pΔ(∇ J )2 = ∇p

(
∇p JΔ(∇ J )2

)
− ΔJΔ(∇ J )2

= −∇p

(
ΔJ∇p (∇ J )2

)
+ ∇pΔJ∇p (∇ J )2 + Tλ0

= ∇p

(
∇pΔJ (∇ J )2

)
− Δ2 J (∇ J )2 + Tλ0

= −Δ2 J (∇ J )2 + Tλ0 ,
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we have

V = Δ2 J (∇ J )2 + (∇ J )2 Δ2 J + Tλ0 . (73)

Next, we deal with the second term

II = J
(
Δ2 JΔJ + ΔJΔ2 J

)
+

(
Δ2 JΔJ + ΔJΔ2 J

)
J

=
[
ΔJ ,

[
Δ2 J , J

]]
− 2 (∇ J )2 Δ2 J − 2Δ2 J (∇ J )2

=
[
ΔJ ,

[
Δ2 J , J

]]
− 2V + Tλ0 , (74)

where we have used (66) and (73).
Step Three: dealing with III Here we begin to deal with the third term:

III = JΔ

(
∇ΔJ∇ J + ∇ J∇ΔJ

)
+ Δ

(
∇ΔJ∇ J + ∇ J∇ΔJ

)
J

= JΔ
(
∇(

ΔJ∇ J + ∇ JΔJ
) − 2 (ΔJ )2

)

+ Δ
(
∇(

ΔJ∇ J + ∇ JΔJ
) − 2 (ΔJ )2

)
J

= JΔ∇
(

ΔJ∇ J + ∇ JΔJ

)
+ Δ∇

(
ΔJ∇ J + ∇ JΔJ

)
J

− 2
(
JΔ(ΔJ )2 + Δ(ΔJ )2 J

)

= JΔ∇
(

ΔJ∇ J + ∇ JΔJ

)
+ Δ∇

(
ΔJ∇ J + ∇ JΔJ

)
J − 2IV.

Since

JΔ∇(
ΔJ∇ J

)
= (

J − λ0
)
Δ∇ (ΔJ∇ J ) + λ0Δ∇ (ΔJ∇ J )

= (J − λ0)Δ∇ (ΔJ∇ J ) + λ0Δ∇
(

∇ (
ΔJ

(
J − λ0

)) − ∇ΔJ
(
J − λ0

))

= (J − λ0)Δ∇(
ΔJ∇ J

) + Tλ0

= ∇p

(
(J − λ0)∇2

pq

(
ΔJ∇q J

)) − ∇p J∇2
pq

(
ΔJ∇q J

) + Tλ0

= Δ

(
(J − λ0)∇q

(
ΔJ∇q J

)) − ∇p

(
∇p J∇q

(
ΔJ∇q J

))

− ∇p J∇2
pq

(
ΔJ∇q J

) + Tλ0

= −∇p

(
∇p J∇q

(
ΔJ∇q J

)) + ΔJ∇q
(
ΔJ∇q J

) + Tλ0
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= ∇q

(
ΔJΔJ∇q J

)
− ∇ΔJΔJ∇ J + Tλ0

= −∇ΔJΔJ∇ J + Tλ0 ,

we have

III = −∇ΔJ

(
ΔJ∇ J + ∇ JΔJ

)
−

(
ΔJ∇ J + ∇ JΔJ

)
∇ΔJ − 2IV + Tλ0

= −∇ΔJΔJ∇ J − ∇ JΔJ∇ΔJ −
(

∇ΔJ∇ JΔJ + ΔJ∇ J∇ΔJ

)

− 2IV + Tλ0

= −∇ΔJΔJ∇ J − ∇ JΔJ∇ΔJ − ∇(
ΔJ∇ JΔJ

) + (ΔJ )3 − 2IV + Tλ0

= −∇ΔJΔJ∇ J − ∇ JΔJ∇ΔJ + (ΔJ )3 − 2IV + Tλ0 . (75)

Step Four: dealing with IV Since

JΔ(ΔJ )2 = ∇p

(
J∇p (ΔJ )2

)
− ∇p J∇p (ΔJ )2

= Δ
(
J (ΔJ )2

)
− ∇p

(
∇p J (ΔJ )2

)
− ∇p J∇p (ΔJ )2

= Δ
(
J (ΔJ )2

)
− ∇p

(
∇p J (ΔJ )2

)
+ (ΔJ )3 + Tλ0

= Δ
(
J (ΔJ )2

)
+ (ΔJ )3 + Tλ0 ,

we have

IV = JΔ(ΔJ )2 + Δ(ΔJ )2 J

= Δ

(
J (ΔJ )2 + (ΔJ )2 J

)
+ 2 (ΔJ )3 + Tλ0 . (76)

Step Five: divergence forms of nonlinearity Combining the equalities (72), (74),
(75) and (76), we derive that

2I + II + 2III + 2IV + 2V = Tλ0 ,

which completes the proof.
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