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Abstract
We show that the set of continuous quasinorms on a finite-dimensional linear space,
after quotienting by the dilations, has a natural structure of Banach space. Our main
result states that, given a finite-dimensional vector space E , the pseudometric defined
in the set of continuous quasinorms Q0 = {‖ · ‖ : E → R} as

d(‖ · ‖X , ‖ · ‖Y ) = min{μ : ‖ · ‖X ≤ λ‖ · ‖Y ≤ μ‖ · ‖X for some λ}

induces, in fact, a complete norm when we take the obvious quotientQ = Q0/∼ and
define the appropriate operations on Q. We finish the paper with a little explanation
of how this space and the Banach–Mazur compactum are related.

Keywords Quasinorms · Finite-dimensional spaces · Banach spaces · Banach–Mazur
compactum

Mathematics Subject Classification 46B20 · 47A30

1 Introduction

Our main goal in this short paper is to show that the set of continuous quasinorms
defined on R

n for some n ≥ 2 has a, somehow, canonical structure of Banach space
after quotienting by the proportional quasinorms.

For this to make sense, we first need to endow this set with a vector space structure,
this will be done bymeans of something that everyone can expect to represent themean
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of two quasinorms:
√‖ · ‖X‖ · ‖Y for each pair of quasinorms ‖ · ‖X , ‖ · ‖Y . Once the

mean is given, we just need to choose the element of the space which will play the rôle
of the origin in order to determine a vector space structure, in the present paper we have
chosen (Rn, ‖ · ‖2). Of course, this may seem anything but canonical. On the bright
side, the choice of an origin will not affect any property of the newly defined vector
(or Banach) space. For example, we may consider C[0, 1] endowed with the scalar
multiplication (λ� f )(x) = λ( f (x)−1) and the addition ( f ⊕g)(x) = f (x)+g(x)−1,
of course, the same can be done with any other function in C[0, 1] instead of 1. Now,
if we define a norm in (C[0, 1],⊕, �) as ‖ f ‖ = max{| f (x) − 1|} then we have a
Banach space structure (C[0, 1],⊕, �, ‖ · ‖) that is indistinguishable from the usual
(C[0, 1],+, ·, ‖ · ‖∞), in the sense that the map

(C[0, 1],+, ·, ‖ · ‖∞) → (C[0, 1],⊕, �, ‖ · ‖), f 
→ f + 1

is a linear isometry.What we have done is equivalent to considering the affine structure
ofC[0, 1] and taking two different choices for the origin. This is doable because every
norm gives a translation invariant metric.

Once the operations are given, we have to define the norm. This idea is not ours, but
taken from A. Khare’s preprint [9]. Given two continuous quasinorms ‖ · ‖X , ‖ · ‖Y ,
the distance between them is defined as

d(‖ · ‖X , ‖ · ‖Y ) = min{μ : ‖ · ‖X ≤ λ‖ · ‖Y ≤ μ‖ · ‖X for some λ > 0},

where the order relation is the pointwise order: ‖ ·‖X ≤ λ‖ ·‖Y means ‖x‖X ≤ λ‖x‖Y
for every x ∈ R

n . Of course, two quasinorms are proportional if and only if the distance
between them is 1, so we must take the reasonable quotient

♠ ‖ · ‖X ∼ ‖ · ‖Y if and only if ‖ · ‖X = λ‖ · ‖Y for some λ ∈ (0,∞)

to make d an actual (multiplicative) metric. So, defining

d([‖ · ‖X ], [‖ · ‖Y ]) = min{μ : ‖ · ‖X ≤ λ‖ · ‖Y ≤ μ‖ · ‖X for some λ > 0} (1)

we have a distance between the equivalence classes of quasinorms that turns out to
induce a norm when we endow {Continuous quasinorms on Rn}/ ∼ with the above-
explained operations.

This paper is far from being the first one in which the sets of (quasi) norms are
endowed with some structure. The best known structure given to the set of norms on
a finite-dimensional space is the Banach–Mazur pseudometric defined as

d(‖ · ‖X , ‖ · ‖Y ) = inf{‖T ‖‖T−1‖}, (2)

where T runs over the set of linear isomorphisms T : (Rn, ‖ · ‖X ) → (Rn, ‖ · ‖Y ). It
is well known that, after taking the appropriate quotient, this pseudometric turns out
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11340 J. Cabello Sánchez, D. Morales González

to be a metric that makes the space to be compact, there is still significant interest on
this topic, see, e.g. [1,18,19].

The present paper is neither the first one about, say, mixing pairs of norms to obtain
something new. In this setting, interpolation of (quasi) normed spaces—or even more
general spaces—has been the main topic for at least half a century, see [8,12,17]. For
the reader interested in interpolation, we suggest [3] and the very interesting [15]. A
nice paper on interpolation in quasinormed spaces is [16]. To the best of our knowledge,
this paper is the first where someone considers the kind of interpolation that we have
in Definition 3.3, that is

‖ · ‖(X ,Y )θ = ‖ · ‖θ
X‖ · ‖1−θ

Y .

There is a very good reason to avoid this kind of interpolation in the normed space
literature. Namely, in Remark 3.8 we provide an example to show that the mean of a
pair of norms on R

2 does not need to be a norm but a quasinorm.

2 Notations and Preliminary Results

We will consider some positive integer n fixed throughout the paper. Every vector
space will be over R; observe that any C

n can be seen as R2n . Moreover, we will
consider from now on the vector space Rn endowed with its only topological vector
space structure, i.e. the one given by ‖ · ‖2.
Definition 2.1 A map ‖ · ‖ : Rn → [0,∞) is a quasinorm if the following conditions
hold:

(1) ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|‖x‖ for every λ ∈ R, x ∈ R

n .

(3) There exists k > 0 such that ‖x + y‖ ≤ k(‖x‖ + ‖y‖) for every x, y ∈ R
n .

If the map ‖ · ‖ is continuous then we say that it is a continuous quasinorm. If k can
be chosen to be 1, then ‖ · ‖ is a norm and it is continuous.

2.2 As is customary, given a quasinormed space (Rn, ‖ · ‖X ), we will denote its unit
(closed) ball as BX , its unit sphere as SX .

Definition 2.3 Some subset B ⊂ R
n is bounded if, for every neighbourhood U of 0

there is M ∈ (0,∞) such that B ⊂ MU . B ⊂ R
n is balanced when λB ⊂ B for every

λ ∈ [−1, 1].
Definition 2.4 For B ⊂ R

n , the Minkowski functional of B is ρB(x) = inf{λ ∈
(0,∞) : x ∈ λB}.

It is quite well known that the quasinorms on a topological vector space are in
correspondence with the bounded, balanced neighbourhoods of the origin, see the
beginning of Section 2 in [7], and for a proof of such a key result the reader may check
[6, Theorem 4]. The version that we will use is the following, where we use that ‖ · ‖2
gives the only topological vector space structure to R

n and B2 denotes the Euclidean
unit ball of Rn :
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Theorem 2.5 The Minkowski functional ρB of a given subset B ⊂ R
n is a quasinorm

if and only if B fulfils the following:

• B contains εB2 for some ε > 0.
• For every λ ∈ [−1, 1] one has λB ⊂ B, i.e. B is balanced.
• B is contained in MB2 for some M > 0.

In this case, ρB is a continuous quasinorm if and only if B is closed. Moreover, ρB is
a norm if and only if the above hold and x+y

2 ∈ B for any pair x, y ∈ B.

We could even replace the first and third items in 2.5 by
“If B ′ is the unit ball of some quasinorm on R

n then there are ε, M > 0 such that
εB ⊂ B ′ ⊂ MB”. Observe that this implies that the constants λ, μ in (1) actually
exist.

We will deal in this note with Q0 = {Continuous quasinorms defined on R
n} and

Q = Q0/∼, where two quasinorms are equivalent if and only if they are proportional,
endowed with the multiplicative distance on Q defined in [9] by A. Khare and given
by

d([‖ · ‖X ], [‖ · ‖Y ]) = min{μ : ‖ · ‖X ≤ λ‖ · ‖Y ≤ μ‖ · ‖X for some λ > 0}. (3)

In the same paper, it is shown that d endows N = {Norms defined on Rn}/ ∼
with a complete metric space structure. To keep the notations consistent, we will
write N0 for {Norms defined on Rn}. The infimum in (3) exists because in R

n every
pair of continuous quasinorms are equivalent and, moreover, by the continuity of the
quasinorms, it is pretty clear that the minimum is attained. A nice feature of Khare’s
distance is that, in R2, it distinguishes the max-norm from ‖ · ‖1. In some sense, these
norms are as different as two norms can be, but the usual distances between norms,
such as the Banach–Mazur or the Gromov–Hausdorff, make them indistinguishable.

3 TheMain Result

Throughout this section, we will only consider continuous quasinorms.
Our first goal is to show that d is actually a multiplicative distance on Q. For this,

the following lemma will be useful.

Lemma 3.1 Take any pair of quasinorms ‖ · ‖X , ‖ · ‖Y , λ > 0 and μ ≥ 1 such that
‖ · ‖X ≤ λ‖ · ‖Y ≤ μ‖ · ‖X . Then, μ is minimal if and only if both SX ∩ λ−1SY and
λ−1SY ∩ μ−1SX are non-empty.

Moreover, the distance between [‖ · ‖X ] and [‖ · ‖Y ] is μ if and only if there are
representatives ‖ · ‖X and ‖ · ‖Y such that

(1) One has ‖ · ‖X ≤ ‖ · ‖Y ≤ μ‖ · ‖X .
(2) There are x ∈ SX ∩ SY and y ∈ SY ∩ μ−1SX .

In particular, the distance μ is always attained.
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Proof The chain of inequalities in the statement is equivalent to the chain of inclusions
μ−1BX ⊂ λ−1BY ⊂ BX , so suppose that SX ∩ λ−1SY = ∅. The distance between
the compact sets λ−1BY and SX is attained, so if they do not meet, then the distance
between them is strictly positive and we can multiply the sets λ−1BY and μ−1BX

by 1 + ε for some ε > 0 and the contentions are still fulfilled. So, if we define

μ′ = μ

1 + ε
we obtain μ′−1BX ⊂ (1 + ε)λ−1BY ⊂ BX . So, μ would not be minimal

because μ′ < μ. The case λ−1SY ∩ μ−1SX = ∅ is analogous.
The other implication is clear. ��

Proposition 3.2 The function d defined in (3) is a multiplicative distance.

Proof We need to show that d fulfils the following:

(1) d([‖ · ‖X ], [‖ · ‖Y ]) = 1 if and only if ‖ · ‖X and ‖ · ‖Y are proportional.
(2) d([‖ · ‖X ], [‖ · ‖Y ]) = d([‖ · ‖Y ], [‖ · ‖X ]).
(3) d([‖ · ‖X ], [‖ · ‖Y ]) ≤ d([‖ · ‖X ], [‖ · ‖Z ])d([‖ · ‖Z ], [‖ · ‖Y ]).

The first item is obvious since we have taken the quotient exactly for this.
It is clear that

d([‖ · ‖X ], [‖ · ‖Y ]) =min{μ : ‖ · ‖X ≤ ‖ · ‖Y ≤ μ‖ · ‖X }
=min{μ : ‖ · ‖X ≤ ‖ · ‖Y ≤ μ‖ · ‖X ≤ μ‖ · ‖Y }
=min{μ : ‖ · ‖Y ≤ μ‖ · ‖X ≤ μ‖ · ‖Y }
=d([‖ · ‖Y ], [‖ · ‖X ]),

(4)

so the second item also holds.
For the third item, let μ = d([‖ · ‖X ], [‖ · ‖Z ]), μ′ = d([‖ · ‖Z ], [‖ · ‖Y ]). There

exist λ, λ′ such that

‖ · ‖X ≤ λ‖ · ‖Z ≤ μ‖ · ‖X and ‖ · ‖Z ≤ λ′‖ · ‖Y ≤ μ′‖ · ‖Z .

Joining these inequalities, we obtain ‖ · ‖X ≤ λ‖ · ‖Z ≤ λλ′‖ · ‖Y ≤ λμ′‖ · ‖Z ≤
μμ′‖ · ‖X . This readily implies that d([‖ · ‖X ], [‖ · ‖Y ]) ≤ μμ′ = d([‖ · ‖X ], [‖ ·
‖Z ])d([‖ · ‖Z ], [‖ · ‖Y ]). ��

In order to define the operations in Q, we need the following:

Definition 3.3 Let us denote X = (Rn, ‖ · ‖X ) and Y = (Rn, ‖ · ‖Y ) and let θ ∈ [0, 1].
We will call the space Rn endowed with the quasinorm

‖ · ‖(X ,Y )θ = ‖ · ‖θ
X‖ · ‖1−θ

Y

the interpolated space between X and Y at θ and will denote it as (X ,Y )θ .

3.4 Observe that this kind of interpolation cannot be applied directly to infinite-
dimensional spaces unless we consider only equivalent quasinorms on a given space.
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3.5 When dealing with vector spaces, it is customary to have clear which vector is
the origin of the space, in function spaces it is the 0 function, in spaces of sequences it
is the sequence (0, 0, . . .). But we are giving a vector space structure to a set without
a clear 0, so we need to choose it. The idea behind this work is that we have been
given a kind of mean of two norms in a quite intuitive way, for our purposes, the most
suitable candidate to be the mean of ‖ · ‖X and ‖ · ‖Y is

‖ · ‖(X ,Y )1/2 = ‖ · ‖1/2X ‖ · ‖1/2Y .

Of course, this means that when we choose the origin of our space, we are given the
opposite ‖ · ‖X̃ for each ‖ · ‖X . The central rúle that the Euclidean norm plays in the
classical analysis could be enough for it to be our origin, but there is another reason for
choosing it. When we think of a non-strictly convex norm, it seems that it is, in some
faint sense, an extreme point of a segment. A visual way to explain this is the curve
{[‖ · ‖p] : p ∈ [1,∞]}. If you reach a non-strictly convex norm like [‖ · ‖1] or [‖ · ‖∞]
and you keep going in the same direction you will find that what you are dealing with
is not convex any more. In this sense, the Euclidean norm is the most convex norm
and it deserves to be the centre of our vector space. The space (Rn, ‖ · ‖2) is, up to
isometric isomorphism, the only homogeneous n-dimensional space and so, the one
with the greatest group of isometries. So, we have defined our vector space as follows:

Definition 3.6 Let n ∈ N and consider Q as the quotient of the set of quasinorms
on R

n by the equivalence relation of dilating quasinorms. We consider [‖ · ‖2] as the
origin of our space and the mean of two classes of quasinorms as

([‖ · ‖X ], [‖ · ‖Y ])1/2 =
[
‖ · ‖1/2X ‖ · ‖1/2Y

]
,

so the opposite of some [‖ · ‖X ] is [‖ · ‖X̃ ], where

‖ · ‖X̃ = ‖ · ‖22
‖ · ‖X

on Rn \ {0} and ‖0‖X̃ = 0; the scalar multiplication is given by

θ� [‖ · ‖X ] =
[
‖ · ‖θ

X‖ · ‖1−θ
2

]
, −θ� [‖ · ‖X ] =

[
‖ · ‖θ

X̃
‖ · ‖1−θ

2

]

for θ ∈ [0,∞); and the addition of two classes of quasinorms by

[‖ · ‖X ] ⊕ [‖ · ‖Y ] = 2�
[‖ · ‖(X ,Y )1/2

]
.

Theorem 3.7 With the above operations, Q is a linear space. If we, moreover, define

∣∣∣∣∣∣‖ · ‖X
∣∣∣∣∣∣ = log2(d(‖ · ‖X , ‖ · ‖2)),

then
(Q,

∣∣∣∣∣∣ · ∣∣∣∣∣∣) is a Banach space where the set of equivalence classes of norms inRn

is closed.
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Proof It is easy to see that, whenever ‖ · ‖X and ‖ · ‖Y are quasinorms over a finite-
dimensional space Rn and θ > 0, the subset

Bθ = {x ∈ R
n : ‖x‖θ

X‖x‖1−θ
Y ≤ 1}

is bounded, absorbing, and balanced, and its boundary is bounded away from 0, so
Theorem2.5 implies that ‖·‖θ

X‖·‖1−θ
Y is a quasinorm, and it is clear that it is continuous.

So, this kind of extrapolation of quasinorms is well defined. In order to show that Q
is a linear space we need to show that the scalar multiplication and the addition are
well defined. On the one hand, it is clear that the operations do not depend on the
representative of any class of quasinorms. On the other hand, all the expressions in
Definition 3.6 give rise to a continuous quasinorm.

In [9, Theorem 1.18] it is seen that the distance we are dealing with is complete
on N , and this implies that N is closed in any metric space where it is isometrically
embedded, in particular inQ. Anyway, it is not hard to see that its complementQ \N
is open.

Now, we need to show that d is absolutely homogeneous and additively invariant.
For the homogeneity, let θ ∈ (0,∞) and take any ‖ · ‖X such that ‖ · ‖X ≥ ‖ · ‖2

and SX ∩ S2 �= ∅. Then, (‖ · ‖X , ‖ · ‖2)θ fulfils the same, i.e. (‖ · ‖X , ‖ · ‖2)θ ≥ ‖ · ‖2
and S(‖·‖X ,‖·‖2)θ ∩ S2 �= ∅. Moreover, if we take y ∈ S2 such that

d([‖ · ‖X ], [‖ · ‖2]) = ‖y‖X ,

then it is quite clear that

d([(‖ · ‖X , ‖ · ‖2)θ ], [‖ · ‖2]) = ‖y‖θ
X .

For negative values of θ we only need to see what happens when θ = −1, but it is
easily seen that d([‖ · ‖X ], [‖ · ‖2]) = d([‖ · ‖X̃ ], [‖ · ‖2]).

To see that d is additively invariant, take ‖ · ‖X , ‖ · ‖Y , ‖ · ‖Z . We just need to show
that

d([(‖ · ‖X , ‖ · ‖Z )1/2], [(‖ · ‖Y , ‖ · ‖Z )1/2]) = d([‖ · ‖X ], [‖ · ‖Y ])1/2.

For any z ∈ R
n, z �= 0 one has

‖z‖(X ,Z)1/2

‖z‖(Y ,Z)1/2

= ‖z‖1/2X ‖z‖1/2Z

‖z‖1/2Y ‖z‖1/2Z

=
(‖z‖X

‖z‖Y
)1/2

. (5)

Let μ = d([‖ · ‖X ], [‖ · ‖Y ]). Applying Lemma 3.1 we may suppose that ‖ · ‖X ≤
‖ · ‖Y ≤ μ‖ · ‖X and choose x, y such that ‖x‖X = ‖x‖Y = 1, ‖y‖X = 1/μ and
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‖y‖Y = 1. Now (5) implies that

d([‖ · ‖X ], [‖ · ‖Y ])1/2 = μ1/2 =
(‖x‖X

‖x‖Y
‖y‖Y
‖y‖X

)1/2

= ‖x‖(X ,Z)1/2

‖x‖(Y ,Z)1/2

‖y‖(Y ,Z)1/2

‖y‖(X ,Z)1/2

≤ d([(‖ · ‖X , ‖ · ‖Z )1/2], [(‖ · ‖Y , ‖ · ‖Z )1/2])

Applying Lemma 3.1 to (‖ · ‖X , ‖ · ‖Z )1/2 and (‖ · ‖Y , ‖ · ‖Z )1/2 we see that the
symmetric inequality also holds.

It remains to show the completeness of our norm. Take a Cauchy sequence

([‖ · ‖1], [‖ · ‖2], . . . , [‖ · ‖k], . . . ) ⊂ Q.

Wemay choose a representative of each class, so wemay suppose that ‖·‖k(e1) = 1
for every k ∈ N. Every Cauchy sequence is bounded, so we may take ε, M > 0 such
that

ε‖ · ‖2 ≤ ‖ · ‖k ≤ M‖ · ‖2 for every k. (6)

With this in mind, the very definition of
∣∣∣∣∣∣ · ∣∣∣∣∣∣ implies that for every x ∈ R

n the
sequence ‖x‖k is also Cauchy, so we may define ‖x‖X as the limit of ‖x‖k as k → ∞.
By (6) we have that BX is a bounded, balanced, neighbourhood of 0, so ‖ · ‖X is a
quasinorm and it is continuous because, locally, it is the uniform limit of continuous
quasinorms. It is easy see that it is the limit of the sequence, and this implies that

∣∣∣∣∣∣ · ∣∣∣∣∣∣
is complete on Q. ��
Remark 3.8 The set of norms is not convex in Q. In fact, if we define ‖(a, b)‖X =
2|a| + |b|/2, ‖(a, b)‖Y = 2|b| + |a|/2 then we have

‖(1, 0)‖X = 2 = ‖(0, 1)‖Y , ‖(0, 1)‖X = 1/2 = ‖(1, 0)‖Y ,

but ‖(1, 1)‖X = 5/2 = ‖(1, 1)‖Y , which implies that

‖(1, 1)‖(X ,Y )1/2 > ‖(1, 0)‖(X ,Y )1/2 + ‖(0, 1)‖(X ,Y )1/2 .

3.9 We can describe the space Q as some C(K ). Namely, let Pn−1 be the projective
space of dimension n − 1, i.e.

Pn−1 = (
R
n \ {0})/∼, with x ∼ y if and only if x = λy for some λ ∈ R \ {0},

endowedwith the quotient topology relative to the projectionRn\{0} → (
R
n\{0})/∼

, x 
→ [x]. In the sequel, we will think the projective space of dimension n − 1 as the
quotient Sn−1/∼, where x ∼ y if and only if x = ±y and Sn−1 denotes the sphere of
(Rn, ‖ · ‖2).

This is essentially the same idea as that reflected in Subsection 3.2 (Proof of the
main result) in [9].
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Fig. 1 The spheres of the three
quasinorms of Remark 3.8

SX

SY

As every quasinorm is absolutely homogeneous, i.e. ‖λx‖ = |λ|‖x‖ for any λ ∈
R, x ∈ X , ‖ · ‖ is always determined by its value at every point of, say, the Euclidean
sphere Sn−1. Take into account now the universal property of the quotient, that assures
that any continuous function f : SX → R such that f (x) = f (−x) gives rise
to a well-defined and continuous f̃ : Pn−1 → R, f̃ ([x]) = f (x). With this in
mind, it is clear that each continuous quasinorm ‖ · ‖X defines a continuous function
fX : Pn−1 → (0,∞).
Recall that Pn−1 is compact—it is the continuous image of a compact space—so

every continuous f : Pn−1 → (0,∞) is bounded from above and bounded away
from 0, and we can define a quasinorm on R

n as ‖λx‖ f = |λ| f ([x]) for every
λ ∈ R, x ∈ S2.

It is clear that this is a one-to-one correspondence between the space of continuous
quasinorms ‖ · ‖ : Rn → R and the space of positive continuous functions Pn−1 →
(0,∞). If we consider again the equivalence relation ‖ · ‖X ∼ ‖ · ‖Y ⇐⇒ ‖ · ‖X =
λ‖ · ‖Y , λ ∈ R \ {0}, then the correspondence still holds if we consider C(Pn−1)

endowed with the equivalence relation f ≡ g ⇐⇒ f = λg, λ ∈ R \ {0}. So,
we have a bijection Q ←→ C(Pn−1, (0,∞))/ ≡. To end the description of Q we
just need to consider log : C(Pn−1, (0,∞)) → C(Pn−1), endow this space with
the equivalence relation f ∼ g ⇐⇒ f = λ + g for some λ ∈ R—to preserve
the bijection with the former space—and, for any [ f ], [g] ∈ C(Pn−1)/ ∼ define the
metric

d([ f ], [g]) = max
x∈Pn−1

{ f (x) − g(x)} − min
x∈Pn−1

{ f (x) − g(x)}, where f , g

are any representatives of [ f ], [g].

Observe that this value is the range of f − g and that we can rewrite this as

d([ f ], [g]) = max
x∈Pn−1

{ f (x) − g(x)} + max
x∈Pn−1

{g(x) − f (x)}, where f , g

are any representatives of [ f ], [g].
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With this, we have [‖ ·‖2] ∈ Q 
→ [0] ∈ C(Pn−1)/∼ (see, again, [9], Subsection 3.2).
We also have that the map between (Q,

∣∣∣∣∣∣ · ∣∣∣∣∣∣) and C(Pn−1)/ ∼ is an onto isometry.
Moreover, if e1 is the first vector of the usual basis of Rn , then we can see the latter
space as

C0(Pn−1) = { f ∈ C(Pn−1) : f ([e1]) = 0},

whose bijection with some space of quasinorms arises from considering only the
quasinorms in Q0 that take value 1 at e1.

The reader interested in Projective Geometry can check out [4,13].

4 The Banach–Mazur Compactum

4.1 The space of n × n real matrices will be denoted as Mn .
Every time we write isometry we will mean linear isometry. This, by the Mazur–

Ulam Theorem, means just that we will consider only isometries sending 0 to 0.
As we will deal just with finite-dimensional spaces, we can fix the standard basis

of Rn , so that each operator T : (Rn, ‖ · ‖X ) → (Rn, ‖ · ‖Y ) can be seen as a matrix
A ∈ Mn . We will use ABX = {Ax : x ∈ BX } and T BX indistinctly.

We will intertwine operators and norms and will need some notation for the norm
whose value at each x is ‖Ax‖X (respectively, ‖T x‖X ), where A ∈ GL(n) (respec-
tively, T is a linear isomorphism). This will be written as A∗‖ · ‖X (respectively,
T ∗‖ · ‖X ).

Now that we have determined the structure ofQ, wemay relate it to the well-known
Banach–Mazur compactum. This compactum is obtained by endowing the set N0 of
norms defined on R

n with the pseudometric

dBM (‖ · ‖X , ‖ · ‖Y ) = min
{∥∥T∥∥∥∥T−1

∥∥}
,

where the minimum is taken in

{T : (Rn, ‖ · ‖X ) → (Rn, ‖ · ‖Y ) is a linear isomorphism}.

This pseudometric does not distinguish between isometric norms, so the quotient
needed to turn it into a metric is by the equivalence relation

‖ · ‖X ≡ ‖ · ‖Y when there is a linear isometry T : (Rn, ‖ · ‖X ) → (Rn, ‖ · ‖Y ).

As we are dealing with finite-dimensional spaces, the isomorphism T can be seen as
an invertible matrix of order n, i.e. T is associated to some A ∈ GL(n). Conversely,
every invertible matrix gives an isomorphism, so the Banach–Mazur distance can be
seen as

dBM (‖ · ‖X , ‖ · ‖Y ) = min{μ : BX ⊂ ABY ⊂ μBX for some A ∈ GL(n)}
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and the quotient as

‖ · ‖X ≡ ‖ · ‖Y if and only if there is A ∈ GL(n) such that ABX = BY .

As the equivalence relation ∼ that defines Q can obviously be seen as

‖ · ‖X ∼ ‖ · ‖Y if and only if there is λ �= 0 such that λBX = BY ,

if we denote R∗ = R \ {0}, then the relation between both spaces seems to be given
by PGL(n,R) = GL(n)/R∗. It is, however, a little more complex.

Let us study the fibres in N = {Norms defined on Rn}/ ∼ of each element of
BM = (N0/ ≡) = (N / ≡). Suppose we are given a norm ‖ · ‖X whose group of
autoisometries is trivial, i.e. the only (linear) isometries (Rn, ‖·‖X ) → (Rn, ‖·‖X ) are
the identity and its opposite. Then, ABX = CBX implies A = ±C and this means that
the fibre of [‖·‖X ] ∈ BM inN is indeed {A∗‖·‖X : A ∈ GL(n)}/R∗. However, if ‖·‖X
has non-trivial group of autoisometries then ABX = AGBX whenever G : (Rn, ‖ ·
‖X ) → (Rn, ‖ · ‖X ) is an isometry. Denoting as IsoX this group of autoisometries for
each ‖ · ‖X we obtain a one-to-one relation

N ←→ {({[‖ · ‖X ]} × PGL(n,R))/ IsoX : [‖ · ‖X ] ∈ BM}.

Before we proceed with the main result in this section we need a couple of results
about the group IsoX . As is customary, the distance between two linear operators
F,G : (Rn, ‖ · ‖X ) → (Rn, ‖ · ‖Y ) is defined as the operator norm of its difference:

d(F,G) = ‖F − G‖Y = max{‖F(x) − G(x)‖Y : x ∈ BX }.

The first result we need is as follows:

Lemma 4.2 Let F : (Rn, ‖·‖X ) → (Rn, ‖·‖X ) be an isometry. Then there are linearly
independent u, v ∈ R

n such that the plane 〈u, v〉 is invariant for F and such that the
matrix of the restriction of F to 〈u, v〉 with respect to the basis {u, v} is one of the
following:

(
cos(α) − sin(α)

sin(α) cos(α)

)
,

(
1 0
0 −1

)
, (7)

where α ∈ (−π, π ].
Proof If F = ± Id then the results holds with α = 0, π , so we assume henceforth that
this is not the case. It is well known that every linear endomorphism F : (Rn, ‖·‖X ) →
(Rn, ‖ · ‖X ) has at least one complex eigenvalue λ (see, e.g. [2, 9.8]) and non-real
eigenvalues occur in conjugate pairs. If λ = a + bi /∈ R, then there are u, v ∈ X \ {0}
such that F(u) = au − bv and F(v) = av + bu. Let |λ| = √

a2 + b2 and H be the
plane generated by u and v endowed by the basis {u, v}, observe that F(H) = H .
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Then, there is α ∈ (−π, π) such that the matrix of the restriction of F to H is

|λ|
(
cos(α) − sin(α)

sin(α) cos(α)

)
.

As F is an isometry, one has ‖Fk(u)‖X = 1 for every k ∈ N, so the sequence (Fk(u))k
is bounded (with respect to every norm) and it is clear that this implies that |λ| = 1.

Suppose, now, that every eigenvalue is real, and let λ ∈ R and u ∈ SX be such
that F(u) = λu. It is obvious that, again, |λ| = 1. If F has at least two different
eigenvalues then we may suppose λ = 1 and the other eigenvalue must be −1, so let v
be such that F(v) = −v. With respect to the basis {u, v} the matrix of the restriction
of F to 〈u, v〉 is

(
1 0
0 −1

)
.

This leaves the case where all the eigenvalues of F are real and are the same. We
may suppose that all of them equal 1. As we are assuming that F �= Id, it is clear that
the dimension of ker(F − Id) is at most n − 1 and the Cayley–Hamilton Theorem
implies that dim(ker(F − Id)2) > dim(ker(F − Id)). This means that we may find
v ∈ SX , u ∈ X \ {0}, such that u = F(v) − v �= 0, and F(u) − u = (F − Id)(u) =
(F − Id)2(v) = 0. Thus, we have F(v) = u + v and F(u) = u and this implies that
in the plane 〈u, v〉 endowed with the basis {u, v}, the matrix of the restriction of F is

(
1 1
0 1

)
, (8)

which leads to the matrix of Fk :

(
1 k
0 1

)
. (9)

So, the sequence (Fk(v))k = (ku + v)k is unbounded and we are done. ��
Remark 4.3 It is easy to see that the same computation as the one at the end of the
proof of Lemma 4.2 rules out the option that F has some Jordan block of the form:

⎛
⎜⎜⎝
cos(α) − sin(α) 1 0
sin(α) cos(α) 0 1

0 0 cos(α) − sin(α)

0 0 sin(α) cos(α)

⎞
⎟⎟⎠ , (10)

so every isometry is diagonalizable over C.

Remark 4.4 We have not used the fact that F is an isometry, we merely needed that
the sequence (‖Fk‖X )k is bounded and bounded away from 0.
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Proposition 4.5 Whenever ‖ · ‖X has non-trivial group of isometries, there is some
autoisometry F : (Rn, ‖·‖X ) → (Rn, ‖·‖X ) such thatmin{‖F+Id ‖X , ‖F−Id ‖X } ≥
1.

Proof Let F ∈ IsoX , F �= ± Id. Thenmax{‖F(x)+x‖X , ‖F(x)−x‖X } ≤ 2 for every
x ∈ SX , so max{‖F+Id ‖X , ‖F−Id ‖X } ≤ 2. If all the eigenvalues of F are real, then
the proof of Lemma 4.2 implies that there are u, v ∈ SX such that ‖F(u) + u‖X =
2, ‖F(v) − v‖X = 2, so we actually have ‖F + Id ‖X = ‖F − Id ‖X = 2.

If some eigenvalue is not real, say λ = a+bi, b �= 0, then we know by Lemma 4.2
that |λ| = 1. Let u ∈ SX , v ∈ X \ {0} be such that the matrix of the restriction of F
to H = 〈u, v〉 is, with respect to the basis {u, v}, the rotation of angle α

(
cos(α) − sin(α)

sin(α) cos(α)

)

for some α ∈ (−π, π ], the existence of such a basis is outlined in the proof of
Lemma 4.2. If α > π/2 (respectively, α ≤ −π/2) then we may compose with − Id
and get the rotation of angle −π + α (respectively, π + α), so we may suppose
α ∈ (−π/2, π/2]. If α < 0 then the inverse of F|H is the rotation of angle −α, so
we only need to deal with α ∈ [0, π/2]. As α = 0 gives the identity, what we have is
α ∈ (0, π/2]. Now we have to break down the different options.

If α = π/m for some m ∈ N, then Fm
|H = − Id|H . Consider the half-orbit of u,

{x0 = u, x1 = F(u), . . . , xm = Fm(u) = −u}.
Ifm ∈ 2Z, then xm/2 = v is at the same distance from u and−u because Fm/2(u) =

v and Fm/2(v) = −u. Indeed,

‖v − u‖X = ‖Fm/2(u) − u‖X = ‖Fm/2(Fm/2(u) − u)‖X = ‖ − u − v‖X .

This readily implies that

min{‖Fm/2 − Id ‖X , ‖Fm/2 + Id ‖X } ≥ ‖v − u‖X = ‖v + u‖X ≥ 1, (11)

where the last inequality holds because of the triangular inequality:

2 = ‖v + v‖X ≤ ‖v − u‖X + ‖v + u‖X = 2‖v − u‖X .

Form /∈ 2Nwe are going to restrict every coordinate-wise computation to the plane
H , the difference would be a certain amount of zeroes after the two first coordinates.
Taking coordinates with respect to {u, v}, we have

x(m−1)/2 =
(
cos

(
(m − 1)π

2m

)
, sin

(
(m − 1)π

2m

))
,

x(m+1)/2 =
(
cos

(
(m + 1)π

2m

)
, sin

(
(m + 1)π

2m

))
.

We are going to show that ‖x(m−1)/2 − u‖X ≥ 1. For this, we first need to check
that the segment whose endpoints are x(m±1)/2 equals the intersection of the line
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that contains both of them with the unit ball BX . Observe that the first coordinate
of x(m+1)/2 is the opposite of the first coordinate of x(m−1)/2 and that the second
coordinates of both points agree. So, if we denote by r the horizontal line whose
height is sin((m+1)π/2m), we have x(m±1)/2 ∈ r ∩ SX . The convexity of BX implies
that if there are three collinear points in SX , then the segment determined by them is
included in SX , too. In particular, if there is some y ∈ (SX ∩ r) \ {x(m±1)/2}, then the
segment whose endpoints are x(m±1)/2 is included in SX . On the one hand, this means
that the Euclidean regular 2m-gon with vertices in every xk is included in SX because
each segment of the 2m-gon is the image of this segment by some Fk . On the other
hand, under these circumstances it is clear that this 2m-gon is SX ∩ H , so in any case,
(t, sin((m − 1)π/2m)) ∈ BX if and only if

t ∈ [− cos((m − 1)π/2m)), cos((m − 1)π/2m))]. (12)

If m = 3, then x1 = (1/2,
√
3/2) and x2 = (−1/2,

√
3/2), so x1 − u = x2. This

implies that ‖x1 − u‖X = ‖x2 + u‖X = 1, and also ‖x1 + u‖X = ‖x2 − u‖X > 1.
So, min{‖F + Id ‖X , ‖F − Id ‖X } ≥ 1.

If m ≥ 5, then 0 < cos((m − 1)π/2m)) < cos(π/3) = 1/2 and this, along with
(12), implies that

x(m−1)/2 − u = (cos((m − 1)π/2m)) − 1, sin((m − 1)π/2m)))

lies outside the unit ball, so ‖F (m−1)/2 ± Id ‖X > 1.
If α = p

q π for some coprime p, q ∈ N, then the Chinese Remainder Theorem
implies that the rotation of angle π/q is also an isometry and we are in the previous
case.

If α �= p
q π for any p, q ∈ N, then the orbit of u is dense in SH and, actually, in the

sphere of ‖ · ‖2, i.e. in {λu + μv ∈ H : λ2 + μ2 = 1}. The continuity of ‖ · ‖X with
respect to any norm defined over H implies that ‖ · ‖X restricted to H is ‖ · ‖2 and so,
any map Fk that sends u close enough to v has distance to ± Id close to

√
2 > 1. ��

Definition 4.6 Let ‖ · ‖X be a norm defined overRn . We say that ‖ · ‖X is a polyhedral
norm or, equivalently, that (Rn, ‖ · ‖X ) is a polyhedral space, if its closed unit ball is
a polytope.

Definition 4.7 Given a normed space (X , ‖ · ‖X ), we say that x ∈ SX is an exposed
point if there is f ∈ X∗ such that f (x) = 1 and f (y) < 1 for every y ∈ SX , y �= x .
We say that x ∈ SX is an extreme point if it does not lie in the interior of a segment
included in SX .

4.8 It is clear that if BX is a polytope, then x ∈ BX is extreme if and only if it is
exposed.

We will need the following weak version of the Krein–Milman Theorem, see [10]:

Theorem 4.9 (Krein–Milman) The unit ball of every finite-dimensional normed space
is the convex hull of its subset of extreme points.
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In the proof of Theorem 4.11 we will also use the Brouwer fixed-point Theorem,
see [11, Theorem 6] or directly, [14]:

Theorem 4.10 If C is a closed convex subset of a Banach space, then every compact
continuous map f : C → C has a fixed point. In particular, if C is convex and
compact, then every continuous map f : C → C has a fixed point.

Now we can proceed with the main result in this section.

Theorem 4.11 Let U = {[‖ · ‖X ] ∈ N : IsoX = {Id,− Id}}. Then, U is a dense open
subset of N .

Proof To see that U is dense we need the following fact:
The subset of equivalence classes of polyhedral norms is dense in N . This is clear
from [5, Theorem 1.1].

With this fact in mind, and given some polyhedral norm ‖ · ‖X , we are going to
sketch how to construct a norm with trivial group of isometries and whose distance
to ‖ · ‖X is as small as we want. The Krein–Milman Theorem implies that there is a
basis B = {x1, . . . , xn} such that every xi is an exposed point of BX . Given δ > 0 we
may consider

xn+1 = 1 + δ

‖(1, . . . , 1)‖X (1, . . . , 1)

and the norm ‖ · ‖X ′ whose unit ball is the convex hull of BX ∪ {±xn+1}. On the
one hand, this norm is as close as we want to ‖ · ‖X , so we just need to approximate
‖ · ‖X ′ . On the other hand, every xi with i = 1, . . . , n + 1 is exposed in BX ′ . Indeed,
for each i ∈ {1, . . . , n}, consider some linear fi : Rn → R such that fi (xi ) = 1 and
fi (y) < 1 for every y ∈ SX , y �= xi . It is clear that there exist α1, . . . , αn ∈ (0,∞)

such that fi (xn+1) < (1 − αi ). As there are finitely many αi we can choose δ > 0 so
that fi (xn+1) < (1 − αi )(1 + δ) < 1 for every i = 1, . . . , n. This means that, when
δ > 0 is small enough, fi (xn+1) < 1. The only points in BX ′ that do not belong to
BX are xn+1 and convex combinations λxn+1 + (1− λ)z with z ∈ BX and λ ∈ (0, 1).
This clearly implies that fi (y) < 1 for every y ∈ BX ′ , y �= xi , with i = 1, . . . , n.

Now, consider some linear fn+1 : R
n → R such that fn+1(xn+1) = 1 and

fn+1(y) < 1 for every y ∈ SX , y �= xn+1. Choose a basis Bi = {ui1, . . . , uin} ⊂ SX
with ui1 = xi and uij ∈ ker( fi ) when j �= i . Given some Mi > 0 and 1 > εi > 0 we
may define ‖ · ‖i as

‖λ1ui1 + · · · + λnu
i
n‖i = (|(1 + εi )λ1|2i+2

+(|λ2|/Mi )
2i+2 + · · · + (|λn|/Mi )

2i+2)1/(2i+2)
.

If we take εi small enough and Mi big enough, then the norm ‖ · ‖Y = max{‖ · ‖X ′ , ‖ ·
‖1, . . . , ‖ · ‖n} equals ‖ · ‖X ′ in every point of SX ′ except for small neighbourhoods
of (1− ε)x1, . . . , (1 − ε)xn+1, say V1, . . . , Vn+1, where the sphere takes the form of
a variant of the p-norm with p = 2i + 2. Observe that we may take each ei+1 small
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enough and Mi+1 big enough to make the diameter of Vi+1 strictly smaller than that
of Vi and, moreover, we may suppose that the diameter of every Vi is strictly smaller
than the distance between any pair of Vj , Vk , with i, j, k ∈ 1, . . . , n + 1.

Claim Reducing ε and increasing M if necessary, wemay suppose that every collection
y1 ∈ V1, . . . , yn+1 ∈ Vn+1 are in general position, i.e. no hyperplane contains n of
them.

Proof This is clear from the following facts:

(1) x1, . . . , xn+1 are in general position.
(2) An n-tuple {u1, . . . , un} lies in the same hyperplane if and only if every skew-

symmetric linear n-form vanishes when applied to it, i.e. ω(u1, . . . , un) = 0 for
every (some) ω : (Rn)n :→ R, ω �= 0.

(3) Any skew-symmetric linear n-form is continuous.

��
This new norm ‖·‖Y has trivial autoisometry group. Indeed, the points in V1, . . . , Vn+1
are the only exposed points where SY is smooth, besides −V1, . . . ,−Vn+1. So,
as being exposed and being smooth are properties preserved by linear isometries,
(
⋃

Vi )
⋃

(
⋃ −Vi ) is invariant for any autoisometry F : (Rn, ‖ · ‖Y ) → (Rn, ‖ · ‖Y ).

It is clear that every Vi is connected, so its image by F (or any other continuous
function) is also connected. This implies that for each i there is some j such that
F(Vi ) ⊂ Vj . This is also true for F−1, so F−1(Vj ) ⊂ Vi and we have the equality
F(Vi ) = Vj . There is no way that (Vi , ‖ · ‖Y ) is isometric to (Vj , ‖ · ‖Y ), j �= i,
because their diameters are different, so every Vi

⋃
(−Vi ) is invariant for F .

Let us denote by ch(Vi ) the convex hull of Vi , analogously ch(−Vi ). As F is
linear, ch(Vi )

⋃
ch(−Vi ) is invariant for F , too. Now, either F or −F sends Vi onto

itself. Thus, the Brouwer fixed-point Theorem implies that either F or −F has some
fixed point yi ∈ ch(Vi ). In any case, {F(yi ), F(−yi )} = {yi ,−yi } for every i =
1, . . . , n + 1.

So, in the basis {y1, . . . , yn}, the matrix of F is diagonal, and all the diagonal
entries are {±1}, say the k-th is δk . In this basis, we have yn+1 = (λ1, . . . , λn), with
λ1 · · · λn �= 0—recall that {y1, . . . , yn+1} are in general position—and {±yn+1} is
also invariant, say F(yn+1) = δn+1yn+1. As F is linear we have

δn+1(λ1, . . . , λn) = δn+1yn+1 = F(λ1, . . . , λn) = (δ1λ1, . . . , δnλn).

So, δ1 = · · · = δn = δn+1 and this implies that F is either the identity or − Id.
With ε close enough to 0 and M great enough, ‖ · ‖′

X is as close to ‖ · ‖X as we
want, so U is dense.

To show that U is open, let ([‖ · ‖k])k ⊂ Uc be a convergent sequence. We need
to show that [‖ · ‖] = lim([‖ · ‖k]) has non-trivial group of isometries, i.e. that Uc is
closed. As the sequence of norms converges, in particular it is bounded, so there exists
R ∈ (1,∞) such that d([‖ · ‖]k, [‖ · ‖]2) ≤ R for every k ∈ N. So, for each k, we may
take representatives ‖ · ‖k such that

‖ · ‖2 ≤ ‖ · ‖k ≤ R‖ · ‖2, (13)
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and also ‖ · ‖2 ≤ ‖ · ‖ ≤ R‖ · ‖2. Suppose that for every ‖ · ‖k there exists Tk ∈
IsoXk \{Id,− Id}. By (13), 1 ≤ ‖Tkx‖2 ≤ R for every k ∈ N and x ∈ SXk , so (Tk)
is uniformly bounded in Mn endowed with the Euclidean matrix norm. This implies
that (Tk)k must have some accumulation point T ; we will suppose that T is the limit
of the sequence. We need to see that T is an autoisometry for ‖ · ‖ and that it can be
chosen to be neither Id nor − Id.

For the first part, applying the triangle inequality to
∣∣∣∣∣∣ · ∣∣∣∣∣∣ gives

∣∣∣∣∣∣T ∗‖ · ‖ − ‖ · ‖∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣T ∗‖ · ‖ − T ∗
k ‖ · ‖∣∣∣∣∣∣ + ∣∣∣∣∣∣T ∗

k ‖ · ‖ − T ∗
k ‖ · ‖k∣∣∣∣∣∣

+ ∣∣∣∣∣∣T ∗
k ‖ · ‖k − ‖ · ‖k∣∣∣∣∣∣ + ∣∣∣∣∣∣‖ · ‖k − ‖ · ‖∣∣∣∣∣∣. (14)

The third term in the sum is 0 for every k and the fourth term tends to 0 when k → ∞,
so we need to show that it is also the case for the first two terms, or, equivalently, that
the map

(T , ‖ · ‖) 
→ T ∗‖ · ‖

—that assigns to each linear operator T : Rn → R
n and each norm ‖ · ‖ : Rn → R

the norm T ∗‖ · ‖ defined as T ∗‖x‖ = ‖T x‖—is continuous. For the sake of clarity,
we will denote S = SXk for the remainder of the proof. We need to show that

lim
k

max
y∈S

{
T ∗
k ‖y‖

T ∗‖y‖
}
max
y∈S

{
T ∗‖y‖
T ∗
k ‖y‖

}
= 1.

Given k ∈ N, Lemma 3.1, implies that we may take yk, zk such that

max
y∈S

{
T ∗
k ‖y‖

T ∗‖y‖
}
max
y∈S

{
T ∗‖y‖
T ∗
k ‖y‖

}
= T ∗

k ‖yk‖
T ∗‖yk‖

T ∗‖zk‖
T ∗
k ‖zk‖

and one has

lim
k

max
y∈S

{
T ∗
k ‖y‖

T ∗‖y‖
}
max
y∈S

{
T ∗‖y‖
T ∗
k ‖y‖

}
= lim

k

T ∗
k ‖yk‖

T ∗‖yk‖
T ∗‖zk‖
T ∗
k ‖zk‖ = lim

k

‖Tk yk‖
‖T yk‖

‖T zk‖
‖Tkzk‖ = 1

since ‖ · ‖ is continuous. Analogously we see that

lim
k

max
y∈S

{
T ∗
k ‖y‖k
T ∗
k ‖y‖

}
max
y∈S

{
T ∗
k ‖y‖

T ∗
k ‖y‖k

}
= 1.

So, taking logarithms, the right-hand side of the inequality (14) converges to 0 and
this implies that

∣∣∣∣∣∣T ∗‖ · ‖ − ‖ · ‖∣∣∣∣∣∣ = 0, so T ∗‖ · ‖ = ‖ · ‖ and T is an isometry.
Proposition 4.5 implies that we can choose every Tk at distance at least 1 from± Id,

so T �= ± Id and we are done. ��
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Remark 4.12 In the previous proof we have seen that (T , ‖·‖) 
→ T ∗‖·‖ is continuous
when ‖ · ‖ is a norm. This is not always true when ‖ · ‖ is a quasinorm. Indeed, we
just need to consider R2 endowed with the quasinorm

‖(x, y)‖ =
{ ‖(x, y)‖2 if (x, y) /∈ {(λ, 0) : λ ∈ R

∗}
1
2‖(x, y)‖2 if (x, y) ∈ {(λ, 0) : λ ∈ R} ,

define the operators

Tk(x, y) =
(
cos(π/k) − sin(π/k)
sin(π/k) cos(π/k)

) (
x
y

)

and observe that
∣∣∣∣∣∣T ∗

k ‖ · ‖ − T ∗
l ‖ · ‖∣∣∣∣∣∣ does not depend on k, l ∈ N as long as they are

different. Indeed, the operator Tk is the rotation of angle π/k and the only points in
the sphere of ‖ · ‖ outside the Euclidean sphere are ±(2, 0). So, T ∗

k ‖x‖ = ‖x‖2 for
every k ∈ N unless Tk(x) = (λ, 0), in which case T ∗

k ‖x‖ = ‖x‖2/2. So, if k and l are
different then one has

∣∣∣∣∣∣T ∗
k ‖ · ‖ − T ∗

l ‖ · ‖∣∣∣∣∣∣

= log2(d(T
∗
k ‖ · ‖, T ∗

l ‖ · ‖)) = log2

(
max
x∈S

‖T k(x)‖
‖T l(x)‖ max

x∈S
‖T l(x)‖
‖T k(x)‖

)

= log2(4) = 2,

where S denotes the unit sphere of the norm ‖ · ‖.
In spite of this, it is quite clear that the proof of the continuity of (T , ‖·‖) 
→ T ∗‖·‖

still works when we deal with continuous quasinorms.
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