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Abstract
Let f = P[F] denote the Poisson integral of F in the unit disk D with F being
absolutely continuous in the unit circle T and Ḟ ∈ L p(T), where Ḟ(eit ) = d

dt F(eit )
and p ≥ 1. Recently, the author in Zhu (J Geom Anal, 2020) proved that (1) if f is a
harmonic mapping and 1 ≤ p < 2, then fz and fz ∈ B p(D), the classical Bergman
spaces of D [12, Theorem 1.2]; (2) if f is a harmonic quasiregular mapping and
1 ≤ p ≤ ∞, then fz, fz ∈ Hp(D), the classical Hardy spaces of D [12, Theorem
1.3]. These are the main results in Zhu (J GeomAnal, 2020). The purpose of this paper
is to generalize these two results. First, we prove that, under the same assumptions,
[12, Theorem 1.2] is true when 1 ≤ p < ∞. Also, we show that [12, Theorem 1.2]
is not true when p = ∞. Second, we demonstrate that [12, Theorem 1.3] still holds
true when the assumption f being a harmonic quasiregular mapping is replaced by
the weaker one f being a harmonic elliptic mapping.
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1 Preliminaries and the Statement of Main Results

For a ∈ C and r > 0, let D(a, r) = {z : |z − a| < r}. In particular, we use Dr to
denote the disk D(0, r) and D to denote the unit disk D1. Moreover, let T := ∂D be
the unit circle. For z = x + iy ∈ C, the two complex differential operators are defined
by

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂ y

)
and

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂ y

)
.

For α ∈ [0, 2π ], the directional derivative of a harmonic mapping (i.e., a complex-
valued harmonic function) f at z ∈ D is defined by

∂α f (z) = lim
ρ→0+

f (z + ρeiα) − f (z)

ρ
= fz(z)e

iα + fz(z)e
−iα,

where z + ρeiα ∈ D, fz := ∂ f /∂z and fz := ∂ f /∂z. Then

‖D f (z)‖ := max{|∂α f (z)| : α ∈ [0, 2π ]} = | fz(z)| + | fz(z)|

and

l(D f (z)) := min{|∂α f (z)| : α ∈ [0, 2π ]} = ∣∣| fz(z)| − | fz(z)|
∣∣.

For a sense-preserving harmonic mapping f defined in D, the Jacobian of f is
given by

J f = ‖D f ‖l(D f ) = | fz |2 − | fz |2,

and the second complex dilatation of f is given by ω = fz/ fz . It is well known
that every harmonic mapping f defined in a simply connected domain � admits
a decomposition f = h + g, where h and g are analytic. Recall that f is sense-
preserving in � if J f > 0 in �. Thus f is locally univalent and sense-preserving in
� if and only if J f > 0 in �, which means that h′ 	= 0 in � and the analytic function
ω = g′/h′ has the property that |ω(z)| < 1 on � (cf. [4,10]).

Hardy-Type Spaces

For p ∈ (0,∞], the generalized Hardy space Hp
G(D) consists of all measurable

functions from D to C such that Mp(r , f ) exists for all r ∈ (0, 1), and ‖ f ‖p < ∞,
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where

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reiθ )|p dθ

) 1
p

and

‖ f ‖p =
{
sup{Mp(r , f ) : 0 < r < 1} if p ∈ (0,∞),

sup{| f (z)| : z ∈ D} if p = ∞.

The classicalHardy spaceHp(D), that is, all the elements are analytic, is a subspace
of Hp

G(D) (cf. [3,5]).

Bergman-Type Spaces

For p ∈ (0,∞], the generalized Bergman space B p
G(D) consists of all measurable

functions f : D → C such that

‖ f ‖bp =

⎧⎪⎨
⎪⎩

(∫
D

| f (z)|pdσ(z)

) 1
p

if p ∈ (0,∞),

ess sup{| f (z)| : z ∈ D} if p = ∞,

where dσ(z) = 1
π
dxdy denotes the normalized Lebesgue area measure on D. The

classical Bergman space B p(D), that is, all the elements are analytic, is a subspace of
B p
G(D) (cf. [7]). Obviously, Hp(D) ⊂ B p(D) for each p ∈ (0,∞].

Poisson Integrals

Denote by L p(T) (p ∈ [1,∞]) the space of all measurable functions F of T into C

with

‖F‖L p =

⎧⎪⎨
⎪⎩

(
1

2π

∫ 2π

0
|F(eiθ )|pdθ

) 1
p

if p ∈ [1,∞),

ess sup{|F(eiθ )| : θ ∈ [0, 2π)} if p = ∞.

For θ ∈ [0, 2π ] and z ∈ D, let

P(z, eiθ ) = 1

2π

1 − |z|2
|1 − ze−iθ |2
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be the Poisson kernel. For a mapping F ∈ L1(T), the Poisson integral of F is defined
by

f (z) = P[F](z) =
∫ 2π

0
P(z, eiθ )F(eiθ )dθ.

It is well known that if F is absolutely continuous, then it is of bounded variation.
This implies that for almost all eiθ ∈ T, the derivative Ḟ(eiθ ) exists, where

Ḟ(eiθ ) := dF(eiθ )

dθ
.

In [12], the author posed the following problem.

Problem 1.1 What conditions on the boundary function F ensure that the partial
derivatives of its harmonic extension f = P[F], i.e., fz and fz , are in the space
B p(D) (or Hp(D)), where p ≥ 1?

In [12], the author discussed Problem 1.1 under the condition that F is absolutely
continuous. First, he proved the following, which is one of the two main results in
[12]. On the related discussion, we refer to the recent paper [9].

Theorem A ( [12, Theorem 1.2]) Suppose that p ∈ [1, 2) and f = P[F] is a harmonic
mapping in D with Ḟ ∈ L p(T), where F is an absolutely continuous function. Then
both fz and fz are in B p(D).

Furthermore, by requiring the mappings P[F] to be harmonic quasiregular, the
interval of p is widened from [1, 2) into [1,∞), as shown in the following result,
which is the other main result in [12].

Theorem B ( [12, Theorem 1.3]) Suppose that p ∈ [1,∞] and f = P[F] is a har-
monic K -quasiregular mapping in D with Ḟ ∈ L p(T), where F is an absolutely
continuous function and K ≥ 1. Then both fz and fz are inHp(D).

The purpose of this paper is to discuss these two results further. Regarding Theorem
A, our result is as follows, which shows that Theorem A is true for p ∈ [1,∞), and
also indicates that Theorem A is not true when p = ∞.

Theorem 1.1 Suppose that f = P[F] is a harmonic mapping in D and Ḟ ∈ L p(T),
where F is an absolutely continuous function.

(1) If p ∈ [1,∞), then both fz and fz are in B p(D).

(2) If p = ∞, then there exists a harmonic mapping f = P[F], where F is an
absolutely continuous function with Ḟ ∈ L∞(T), such that neither fz nor fz is in
B∞(D).

About Theorem B, we show that this result also holds true for harmonic elliptic
mappings, which are more general than harmonic quasiregular mappings. In order to
state our result, we need to introduce the definition of elliptic mappings.
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Amapping f : � → C is said to be absolutely continuous on lines, ACL in brief,
in the domain � if for every closed rectangle R ⊂ � with sides parallel to the axes
x and y, f is absolutely continuous on almost every horizontal line and almost every
vertical line in R. Such a mapping has, of course, partial derivatives fx and fy a.e. in
�. Moreover, we say f ∈ ACL2 if f ∈ ACL and its partial derivatives are locally
L2 integrable in �.

A sense-preserving and continuous mapping f of D into C is said to be a (K , K ′)-
elliptic mapping if

(1) f is ACL2 in D and J f 	= 0 a.e. in D;
(2) there are constants K ≥ 1 and K ′ ≥ 0 such that

‖D f ‖2 ≤ K J f + K ′ a.e. in D.

We remark that the unit disk D in the definition of (K , K ′)-elliptic mapping can be
replaced by a general domain in C. In particular, if K ′ ≡ 0, then a (K , K ′)-elliptic
mapping is said to be K -quasiregular. It iswell known that every quasiregularmapping
is an elliptic mapping. But the inverse of this statement is not true. This can be seen
from the example: Let f (z) = z + z2/2 in D which is indeed a univalent harmonic
mapping of D. Then elementary computations show that (a) sup

z∈D
{|ω(z)|} = 1, which

implies that f is not K -quasiregular for any K ≥ 1, and (b) f is a (1, 4)-elliptic
mapping. We refer to [1,2,6,8,11] for more details of elliptic mappings.

Now, we are ready to state our next result.

Theorem 1.2 Suppose that p ∈ [1,∞] and f = P[F] is a (K , K ′)-elliptic mapping
in D with Ḟ ∈ L p(T), where F is an absolutely continuous function, K ≥ 1 and
K ′ ≥ 0. Then both fz and fz are inHp(D).

The proofs of Theorems 1.1 and 1.2 will be presented in Sect. 2.

2 Proofs of theMain Results

We start this section by recalling the following two lemmas from [12].

Lemma C ( [12, Theorem 1.1]) Suppose p ∈ [1,∞) and f = P[F] is a harmonic
mapping in D with Ḟ ∈ L p(T), where F is an absolutely continuous function. Then
for z = reit ∈ D,

‖ fr‖L p ≤ (
2C(p)

) 1
p ‖Ḟ‖L p ,

and thus, fr ∈ B p
G(D), where

C(p) =
∫ 1

0

(
4 tanh−1 r

πr

)p

rdr ≤ 4p−1

π p

(
2p + (2 − 2−p)
(1 + p)

)

and 
 denotes the usual Gamma function.
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Lemma D ( [12, Lemma 2.3]) Assume the hypotheses of Lemma C. Then for z =
reit ∈ D,

‖ ft‖p ≤ ‖Ḟ‖L p ,

and thus, ft ∈ Hp
G(D).

2.1 Proof of Theorem 1.1

For the proof of the first statement of the theorem, let z = reit ∈ D. Then we have

⎧⎪⎨
⎪⎩

ft (z) := ∂ f (z)

∂t
= i

(
z fz(z) − z fz(z)

)
fr (z) := ∂ f (z)

∂r
= fz(z)e

it + fz(z)e
−i t ,

(2.1)

which implies that

fz(z) = e−i t

2

(
fr (z) − i

r
ft (z)

)
and fz(z) = e−i t

2

(
fr (z) − i

r
ft (z)

)
.

It follows that for p ∈ [1,∞),

| fz(z)|p ≤ 1

2p

(
| fr (z)| +

∣∣∣∣ ft (z)r

∣∣∣∣
)p

≤ 1

2

(
| fr (z)|p +

∣∣∣∣ ft (z)r

∣∣∣∣
p)

and similarly,

| fz(z)|p ≤ 1

2

(
| fr (z)|p +

∣∣∣∣ ft (z)r

∣∣∣∣
p)

.

Obviously, to prove that fz and fz are in B p(D), it suffices to show the following:

∫
D

| fr (z)|pdσ(z) < ∞ and
∫
D

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) < ∞.

We only need to check the boundedness of the integral

∫
D

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z)

because the boundedness of the integral
∫
D

| fr (z)|pdσ(z) easily follows from Lemma
C.

By Lemma D, we have

1

2π

∫ 2π

0
| ft (reit )|pdt ≤ ‖Ḟ‖p

L p ,
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which yields that

∫
D\D 1

2

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) ≤ 2p−1

π

∫ 1

1
2

(∫ 2π

0

∣∣∣ ft (reit )
∣∣∣p dt

)
dr ≤ 2p−1‖Ḟ‖p

L p .

(2.2)

To demonstrate the boundedness of the integral

∫
D 1

2

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z),

assume that f = h+g where both h and g are analytic inD. Then ‖D f ‖ = |h′|+|g′|.
This implies that ‖D f ‖ is continuous inD 1

2
, and thus, ‖D f ‖ is bounded inD 1

2
. Hence,

by (2.1), we have

∫
D 1

2

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) = 1

π

∫ 1
2

0

∫ 2π

0
r
∣∣eit fz(reit ) − e−i t fz(re

it )
∣∣pdtdr (2.3)

≤ 1

π

∫ 1
2

0

∫ 2π

0
r‖D f (re

it )‖pdtdr

=
∫
D 1

2

‖D f (z)‖pdσ(z) < ∞.

Combining (2.2) and (2.3) gives the final estimate

∫
D

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) =
∫
D 1

2

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) +
∫
D\D 1

2

∣∣∣∣ ft (z)r

∣∣∣∣
p

dσ(z) < ∞,

which is what we need, and so, the statement (1) of the theorem is true.
To prove the second statement of the theorem, let F(eiθ ) = | sin θ |, where

θ ∈ [0, 2π ]. Then F is absolutely continuous and Ḟ ∈ L∞(T). Also, elementary
computations guarantee that for z = reit ∈ D,

f (z) = P[F](z) =
∫ 2π

0
P(z, eiθ )| sin θ |dθ

= 1

2πr(r2 − 1)

[
(1 − r2) cos t log

1 + r2 − 2r cos t

1 + r2 + 2r cos t

+2(1 + r2) sin t
(
arctan

(1 + r

r − 1
cot

t

2

)
+ arctan

(1 + r

r − 1
tan

t

2

))]
.
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Then

| fz(z)| = 1

2

∣∣∣∣ fr (z) − i
ft (z)

r

∣∣∣∣ = 1

2

√
| fr (z)|2 + | ft (z)|2

r2
,

which implies that

| fz(r)| = 1

2

√
| fr (r)|2 + | ft (r)|2

r2
. (2.4)

Since

fr (r) = 1

πr2
log

(
1 − r

1 + r

)
+ 2

π

1

r(1 − r2)
,

we see that

lim
r→1− fr (r) = ∞. (2.5)

Combining (2.4) and (2.5) gives

lim
r→1− | fz(r)| = ∞,

which implies that fz is not in B∞(D).

By the similar reasoning, we know that fz is not in B∞(D) either, and hence, the
theorem is proved. �

2.2 Proof of Theorem 1.2

Assume that f = P[F] is a (K , K ′)-elliptic mapping in D, which means that for
z ∈ D,

‖D f (z)‖2 ≤ K‖D f (z)‖l(D f (z)) + K ′. (2.6)

We divide the proof of this theorem into two cases.
Case 2.1 Suppose that p ∈ [1,∞).

It follows from (2.6) that

‖D f (z)‖p ≤
(Kl(D f (z)) +

√(
Kl(D f (z))

)2 + 4K ′

2

)p

≤
(
Kl(D f (z)) + √

K ′
)p ≤ 2p−1

(
K pl p(D f (z)) + K ′ p2

)
,
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and thus, we have

l p(D f (z)) ≥ 1

2p−1K p
‖D f (z)‖p − K ′ p2

K p
. (2.7)

By (2.1), (2.7) and Lemma D, we know that for z = reit ∈ D,

2π‖Ḟ‖p
L p ≥

∫ 2π

0
| ft (reit )|pdt ≥ r p

∫ 2π

0
l p(D f (re

it ))dt

≥ r p

2p−1K p

∫ 2π

0
‖D f (re

it )‖pdt − 2πK ′ p2
K p

,

which implies that

sup
r∈(0,1)

(
1

2π

∫ 2π

0
‖D f (re

it )‖pdt

) 1
p

≤ 2
p−1
p

(
K p‖Ḟ‖p

L p + K ′ p2
) 1

p
.

Hence fz, fz ∈ Hp(D).

Case 2.2 Suppose that p = ∞.

By (2.6), we have

‖D f (z)‖ ≤ Kl(D f (z)) +
√(

Kl(D f (z))
)2 + 4K ′

2
≤ Kl(D f (z)) + √

K ′,

which, together with (2.1) and Lemma D, gives

‖Ḟ‖∞ ≥ ‖ ft‖∞ ≥ | ft (reit )| ≥ rl(D f (re
it )) ≥ r

K

(
‖D f (re

it )‖ − √
K ′

)
.

Consequently,

sup
z∈D

(|z|‖D f (z)‖
) ≤ √

K ′ + K‖Ḟ‖∞,

from which we conclude that fz, fz ∈ H∞(D), and hence the theorem is proved. �
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