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Abstract
As an extension of the classical John ellipsoid and the L p-John ellipsoids due to
Lutwak–Yang–Zhang, this paper studies (p, q)-John ellipsoids. We consider an opti-
mization problem about the (p, q)-mixed volumes, whose solution is uniquely existed
for all 0 < p ≤ q. The solution allows us to introduce the concept of (p, q)-John ellip-
soids. As applications, we established an analog of the John’s inclusion theorem and
Ball’s volume-ratio inequality for (p, q)-John ellipsoids. Moreover, the connection
between the isotropy of measures and the characterization of (p, q)-John ellipsoids is
demonstrated.

Keywords L p Brunn–Minkowski theory · L p dual curvature measures · (p, q)-John
ellipsoid · Extremal problems

AMS Subject Classification 52A30 · 52A40

1 Introduction

The concept of John ellipsoid, introduced by Fritz John [20], is extremely useful in
convex geometry and Banach space geometry. For each convex body (compact convex
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set with nonempty interior) K in the n-dimensional Euclidean R
n , its John ellipsoid

J K is defined as the unique ellipsoid of maximal volume contained in K .
Two fundamental results concerning the John ellipsoid are John’s inclusion and

Ball’s volume-ratio inequality. Let K be an origin-symmetric convex body K in R
n .

John’s inclusion shows that

K ⊆ √
nJ K . (1.1)

As an application of John’s inclusion, the best upper bound of the Banach–Mazur
distance is

√
n, for an n-dimensional normed space to n-dimensional Euclidean space.

Ball’s volume-ratio inequality states that

|K |
|J K | ≤ 2n

ωn
, (1.2)

with equality if and only if K is a parallelotope. Here |·| denotes n-dimensional volume
andωn = |B| = πn/2/�

(
1 + n

2

)
denotes the volume of the unit ball B inRn . The fact

that there is equality in (1.2) only for parallelotopes was established by Barthe [3]. For
more information about the John ellipsoid, one can refer to [1,2,12,14,15,21,22,44]
and the references within.

In 2005, Lutwak, Yang and Zhang [30] extend the John ellipsoid to L p John
ellipsoids, which is an important concept in the L p Brunn–Minkowski theory ini-
tiated by Lutwak [27,28]. During the last two decades, the L p Brunn–Minkowski
theory has achieved great developments and expanded rapidly, see, e.g., [4–6,8,9,17–
19,24–26,29,31–34,37,38,47–51]. Moreover, the Orlicz Brunn–Minkowski theory, as
an extension of the L p Brunn–Minkowski theory, emerged in [16,35,36]. In these
papers, the fundamental notions of the L p projection body and the L p centroid body
were extended to an Orlicz setting, see also [7,53,55]. For more information, please
refer to the literature [11,23,39–41,54,56–60]. In particular, the classical John ellip-
soid is extended to the L p setting by Lutwak, Yang and Zhang [30] and to the Orlicz
setting by Zou and Xiong [58].

Suppose p ∈ (0,∞] and K is a convex body in R
n with the origin in its inte-

rior. Among all origin-symmetric ellipsoids E , the unique ellipsoid that solves the
constrained maximization problem

max
E

( |E |
ωn

) 1
n

, subject to V p(K , E) ≤ 1, (1.3)

is called the L p John ellipsoid [30] of K and denoted by EpK . Clearly, EpB = B.
Here

V p(K , E) =
(

1

n|K |
∫

Sn−1

(
hE (u)

hK (u)

)p

hK (u)dS(K , u)

) 1
p

, 0 < p < ∞,

is the normalized L p mixed volume of K and E ; Sn−1 is the unit sphere in R
n ; hK

and hE are the support functions (see Sect. 2) of K and E , respectively. In the case
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p = ∞, we define

V∞(K , E) = sup

{
hE (u)

hK (u)
: u ∈ suppS(K , ·)

}
.

Therefore, when the John point of K , i.e., the center of J K , is at the origin, E∞K is
precisely the classical John ellipsoid J K . In the case p = 2, the L2 John ellipsoid E2K
is the new ellipsoid �−2K found by Lutwak, Yang and Zhang in [32], which is now
called the LYZ ellipsoid and is in some sense dual to the Legendre ellipsoid of inertia
in classical mechanics [42]. In the case p = 1, E1K is the so-called Petty ellipsoid, see
[13,43]. The volume-normalized Petty ellipsoid is obtained by minimizing the surface
area of K under SL(n)-transformations.

In general, the L p John ellipsoid EpK is not contained in K (except when p = ∞).
However, when 1 ≤ p ≤ ∞, it has |EpK | ≤ |K |. In reverse, for 0 < p ≤ ∞, the L p

version of Ball’s volume-ratio inequality [30] states that

|K |
|EpK | ≤ 2n

ωn

with equality if and only if K is a parallelotope.
By L p dual curvature measures, Lutwak, Yang and Zhang [31] introduced the

notion of L p dual mixed volumes which unifies L p mixed volumes of convex bodies
in the L p Brunn–Minkowski theory and dual mixed volumes of star bodies in the dual
Brunn–Minkowski theory. Therefore, L p dual mixed volumes become to be a core
concept in convex geometry with unifying some contents of the L p Brunn–Minkowski
theory and the dual Brunn–Minkowski theory.

Let Kn
o denote the class of convex bodies in R

n that contain the origin in their
interiors. And let Sn

o denote the set of star bodies (compact star-shaped set about the
origin) in Rn .

Suppose K is a convex body in Rn . For each v ∈ R
n\{o}, the hyperplane

HK (v) = {x ∈ R
n : x · v = hK (v)}

is called the supporting hyperplane to K with outer normal v.
The spherical image (Gauss image) of σ ⊂ ∂K is defined by

νK (σ ) = {v ∈ Sn−1 : x ∈ HK (v) for some x ∈ σ } ⊂ Sn−1.

Let σK ⊂ ∂K be the set consisting of boundary points x ∈ ∂K , for which the set
νK ({x}) contains more than a single element. It is well known that the spherical
Lebesgue measure of σK is Hn−1(σK ) = 0 (see, e.g., [46, p. 84]). On precisely the
functions

νK : ∂K\σK → Sn−1,
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is called the spherical image map (Gauss map) of K and is continuous (see, e.g., [46,
Lemma 2.2.12]). The set ∂K\σK is usually abbreviated by ∂ ′K . SinceHn−1(σK ) = 0,
the integrals over subsets of ∂ ′K and ∂K are equal with respect toHn−1.

For ω ⊂ Sn−1, the radial Gauss image of ω is denoted by

αK (ω) = {v ∈ Sn−1 : ρK (u)u ∈ HK (v) for some u ∈ ω}.

For a subset η ⊂ Sn−1, the reverse radial Gauss image of η is denoted by

α∗
K (η) = {u ∈ Sn−1 : ρK (u)u ∈ HK (v) for some v ∈ η}.

For K ∈ Kn
o , the radial map of K , rK : Sn−1 → ∂K , is defined by

rK (u) = ρK (u)u ∈ ∂K ,

for u ∈ Sn−1. Here, ρK (u) = max{λ > 0 : λu ∈ K } is the radial function of K for
u ∈ Sn−1. Note that r−1

K : ∂K → Sn−1 is given by r−1
K (x) = x/|x | for x ∈ ∂K . Let

ωK = σK = r−1
K (σK ). Observe that ωK has spherical Lebesgue measure 0, and the

integrals over subsets of Sn−1\ωK and Sn−1 are equal with respect to the spherical
Lebesgue measure.

The radial Gauss map of K ∈ Kn
o , αK : Sn−1\ωK → Sn−1, is given by

αK = νK ◦ rK .

Obviously, for any λ > 0 and any u ∈ Sn−1,

αλK (u) = αK (u). (1.4)

For p, q ∈ R, K ∈ Kn
o , and Q ∈ Sn

o , the L p dual curvature measures C̃ p,q(K , Q)

are Borel measures on Sn−1 given by

∫

Sn−1
g(v)dC̃ p,q(K , Q, v) = 1

n

∫

Sn−1
g(αK (u))hK (αK (u))−pρK (u)qρQ(u)n−qdu,

(1.5)

for each continuous function g : Sn−1 → R. For each Borel set η ⊆ Sn−1, we have

C̃ p,q(K , Q, η) = 1

n

∫

α∗
K (η)

hK (αK (u))−pρ
q
K (u)ρ

n−q
Q (u)du. (1.6)

It has shown that [31, Proposition 5.4] that the L p surface area measure, the dual
curvature measure and the integral measure are all special cases of the L p dual cur-
vature measure. In particular, for p, q ∈ R, and K ∈ Kn

o ,

C̃ p,q(K , K , ·) = 1

n
Sp(K , ·), (1.7)
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C̃ p,n(K , B, ·) = 1

n
Sp(K , ·), (1.8)

where Sp(K , ·) is the L p-surface area measure of K .
Using L p dual curvature measures, Lutwak, Yang and Zhang [31] introduced the

concept of (p, q)-mixed volume volumes. For p, q ∈ R, and convex bodies K , L ∈
Kn

o , and a star body Q ∈ Sn
o , the (p, q)-mixed volume Ṽp,q(K , L, Q) is defined by

Ṽp,q(K , L, Q) =
∫

Sn−1
h p
L(v)dC̃ p,q(K , Q, v)

= 1

n

∫

Sn−1
hL(αK (u))phK (αK (u))−pρK (u)qρQ(u)n−qdu (1.9)

= 1

n

∫

Sn−1

(
hL(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q

ρQ(u)ndu. (1.10)

The concept of the (p, q)-mixed volume unifies the L p mixed volume and the dual
mixed volume in the sense that

Ṽp,q(K , L, K ) = Vp(K , L), Ṽp,q(K , K , Q) = Ṽq(K , Q). (1.11)

In this paper we will consider the problem ofminimizing total L p dual curvature
measures under SL(n)-transformations. Let K be a smooth convex body inRn with
the origin in its interior, and let Q be a smooth star body in Rn . For real number p, q,
find

min
φ∈SL(n)

∫

Sn−1
dC̃ p,q(φK , φQ, u).

From (1.9) and [31, Proposition 7.3] (see also Lemma 2.3 of our paper), it
follows that the original problem of minimizing total L p dual curvature under SL(n)-
transformations can be rewritten as

min
φ∈SL(n)

∫

Sn−1
dC̃ p,q(φK , φQ, u) = min

φ∈SL(n)
Ṽp,q(φK , B, φQ)

= min
φ∈SL(n)

Ṽp,q(K , φ−1B, Q)

= min|E |=ωn
Ṽp,q(K , E, Q),

where the last minimum is taken over all origin-symmetric ellipsoids with volume ωn .
A φp,q ∈ SL(n) at which this minimum is attained defines an ellipsoid Ē p,q(K , Q)

which φp,q maps into the unit ball B, i.e., Ē p,q(K , Q) = φ−1
p,q B. This ellipsoid is

unique and will be called the volume-normalized (p, q)-John ellipsoid of K and Q.
For p = ∞, define

Ē∞,q(K , Q) = lim
p→∞ Ē p,q(K , Q).
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For r ∈ [0,+∞), the normalized r -th dual area measure of K , Q ∈ Sn
o ,

Ṽ r (K , Q; ·), is defined by

dṼ r (K , Q; u) = 1

nṼr (K , Q)
ρr
K (u)ρn−r

Q (u)du, for u ∈ Sn−1, (1.12)

where Ṽr (K , Q) is the r -th dual mixed volume of K , Q ∈ Sn
o . Clearly, dṼ r (K , Q; ·)

is a probability measure on Sn−1. In the case Q = K , dṼ r (K , K ; u) = dṼ K (u) =
1

n|K |ρ
n
K du, for u ∈ Sn−1, is the normalized dual area measure of K ∈ Sn

o . And for

the cases r = 0, n, we have dṼ 0(K , Q; ·) = dṼ Q(·) and dṼ n(K , Q; ·) = dṼ K (·).
In order to rewrite the formulation of our problem for the case p = ∞, we next

introduce a normalized version of (p, q)-dual mixed volumes. If K , L ∈ Kn
o , Q ∈ Sn

o
and q ≥ p > 0 with r = q − p ≥ 0, then we define the normalized (p, q)-dual mixed
volume by

Ṽ p,q(K , L, Q) =
(
Ṽp,q(K , L, Q)

Ṽr (K , Q)

) 1
p

=
(∫

Sn−1

(
hL(αK (u))ρK (u)

hK (αK (u))ρQ(u)

)p

dṼ r (K , Q; u)

) 1
p

. (1.13)

In the case p = ∞ (then q = ∞), define

Ṽ∞,∞(K , L, Q) = max

{
hL(αK (u))ρK (u)

hK (αK (u))ρQ(u)
: u ∈ suppṼr (K , Q; ·)

}
. (1.14)

Unless hL (αK (u))ρK (u)
hK (αK (u))ρQ(u)

is constant on suppṼr (K , Q; ·), it follows from (1.13) and
Jensen’s inequality that

Ṽ p1,q1(K , L, Q) < Ṽ p2,q2(K , L, Q), (1.15)

for 0 < p1 < p2 ≤ ∞, 0 < q1 = p1 + r ≤ p2 + r = q2 ≤ ∞, and

lim
p→∞ Ṽ p,q(K , L, Q) = Ṽ∞,∞(K , L, Q).

We shall require the fact that, for p0 ∈ (0,∞], q0 = p0+r ∈ (0,∞] and r ∈ [0,∞),

lim
p→p0

Ṽ p,q(K , L, Q) = Ṽ p0,q0(K , L, Q). (1.16)

In fact, we have already proved a more general conclusion, see Theorem 3.1 in sub-
sequent. By (1.14), we have

Ṽ∞,∞(K , L, Q) ≤ 1 if and only if L ⊆
(

ρQ

ρK

)
K . (1.17)
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In the sequel, we use En to denote the class of origin-symmetric ellipsoids in R
n .

Inspired by the constrained maximization problem (1.3) posed by Lutwak, Yang
and Zhang [30], this paper will consider a (p, q)-version of the problem:

Optimization Problems 1.1 Let 0 < p ≤ q with q = p + r , r ≥ 0. For K ∈ Kn
o and

Q ∈ Sn
o , find an ellipsoid, among all origin-symmetric ellipsoids, which solves the

following constrained maximization problem:

max
E∈En

( |E |
ωn

) 1
n

subject to Ṽ p,q(K , E, Q) ≤ 1. (Sp,q )

An ellipsoid that solves the constrained maximization problem will be called a Sp,q
solution for K and Q. The dual problem is

min
E∈En

Ṽ p,q(K , E, Q) subject to

( |E |
ωn

) 1
n ≥ 1. (S̄p,q )

An ellipsoid that solves the dual problem will be called a S̄p.q solution for K and Q.

We will prove in Sect. 4 there is a unique solution to the constrained maximization
problem, which will be called the (p, q)-John ellipsoid Ep,q(K , Q) in Definition 4.6.
The dual problem is equivalent to the problem of minimizing total L p dual curvature
measures under SL(n)-transformations. The dual problem has a unique solution with
volume ωn , which differs by only a scale factor to the Sp,q solution. Therefore, it is
called the normalized (p, q)-John ellipsoid E p,q(K , Q).

In the case of Q = K , Ep,q(K , Q) = Ep(K ) is the L p John ellipsoid studied
by Lutwak, Yang and Zhang [30]. In the case that Q = B and p = n, one also has
Ep,q(K , Q) = Ep(K ).

This paper is organized as follows. In Sect. 2 we recall some basic results in convex

geometry. Section 3 proves the continuity of Ṽp,q and Ṽ p,q . We prove in Sect. 4
the existence, uniqueness and geometric characterization of the (p, q)-John ellipsoid

which solves Problem 1.1. Using the continuity of Ṽp,q and Ṽ p,q , we study continuity
of (p, q)-John ellipsoids in Sect. 5 In Sect. 6, we discuss generalizations of John’s
inclusion for (p, q)-John ellipsoids. In the last section, the inequality for the volume
ratio is established.

2 Preliminaries

For quick reference we recall some basic results of convex geometry. We refer the
reader to [10,46] for details.

The setting will be the n-dimensional Euclidean space Rn . As usual x · y denotes
the standard inner product of x and y in R

n . For x ∈ R
n , let |x | = √

x · x be the
Euclidean norm of x . For x ∈ R

n\{o}, we use both x̄ and 〈x〉 to denote x/|x |.

123



9604 T. Ma et al.

In addition to its denoting absolute value, without confusion we will use | · | to
denote the standard Euclidean norm on R

n , often to denote n-dimensional volume,
and on occasion to denote the absolute value of the determinant of an n × n matrix.

For K ∈ Kn
o , its support function, hK : Rn → R is defined by hK (x) = max{x · y :

y ∈ K }, for x ∈ R
n . Obviously, for real λ > 0,

hλK (x) = λhK (x), for x ∈ R
n . (2.1)

More generally, for φ ∈ GL(n) the image φK = {φx : x ∈ K } have that

hφK (x) = hK (φt x), (2.2)

where φt denotes the transpose of φ.
The Hausdorff distance between convex bodies K and L is given by

δH (K , L) := |hK − hL |∞ = max
u∈Sn−1

|hK (u) − hL(u)|.

If K , L ∈ Kn
o , then for real p > 0, the L p-mixed volume of K and L is defined by

Vp(K , L) = 1

n

∫

Sn−1
h p
L(u)dSp(K , u). (2.3)

If K contains the origin in its interior, then its polar body K ∗ is given by K ∗ =
{x ∈ R

n : x · y ≤ 1 for all y ∈ K }. Obviously, for φ ∈ GL(n),

(φK )∗ = φ−t K ∗, (2.4)

where φ−t denotes the inverse of the transpose of φ.
A star body K ⊂ R

n is a compact star-shaped set about the origin whose radial
function ρK : Rn\{o} → R, defined for x ∈ R

n\{o} by ρQ(x) = max{λ > 0 : λx ∈
Q}, is continuous. We call two star bodies K and L in Sn

o are dilates (of one another)
if ρK (u)/ρL(u) is independent of u ∈ Sn−1. If λ > 0, we have

ρλK (x) = λρK (x), for all x ∈ R
n\{o}. (2.5)

More generally, for φ ∈ GL(n), the image φK = {φx : x ∈ K } of K have the
property

ρφK (x) = ρK (φ−1x), (2.6)

for all x ∈ R
n\{o}.

The radial distance between K , L ∈ Sn
o is

δ̃H (K , L) := |ρK − ρL |∞ = max
u∈Sn−1

|ρK (u) − ρL(u)|.
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The dual Brunn–Minkowski theory is a theory of dualmixed volumes of star bodies.
For q ∈ R, the q-th dual mixed volume of K , Q ∈ Sn

o , is defined by (see [31])

Ṽq(K , Q) = 1

n

∫

Sn−1
ρ
q
K (u)ρ

n−q
Q (u)du, (2.7)

where the integral is with respect to spherical Lebesgue measure. It is well know that
for φ ∈ GL(n),

Ṽq(φK , φQ) = |φ|Ṽq(K , Q), q ∈ R\{0}. (2.8)

Dual Minkowski inequality can be expressed as follows: If 0 ≤ q ≤ n and K , Q ∈
Sn
o , then

Ṽq(K , Q)n ≤ |K |q |Q|n−q , (2.9)

with equality if and only if K and Q are dilates when 0 < q < n.
If K ∈ Kn

o , then it is easy to see that the radial function and the support function of
K are related by

hK (v) = max
u∈Sn−1

(u · v)ρK (u), for v ∈ Sn−1, (2.10)

1

ρK (u)
= max

v∈Sn−1

u · v

hK (v)
, for u ∈ Sn−1. (2.11)

From definitions of Ṽp,q and the radial Gauss map, the support function and the
radial function imply that

Lemma 2.1 Let λ > 0, then

Ṽp,q(λK , L, Q) = λq−pṼp,q(K , L, Q), (2.12)

Ṽp,q(K , λL, Q) = λpṼp,q(K , L, Q), (2.13)

Ṽp,q(K , L, λQ) = λn−q Ṽp,q(K , L, Q). (2.14)

For λ > 0 and p ∈ (0,∞], q = p + r , r ∈ [0,∞), based on the (1.13), (2.1) and
(2.5), we can immediately obtain the results,

Lemma 2.2 Let λ > 0, then

Ṽ p,q(λK , L, Q) = Ṽ p,q(K , L, Q), (2.15)

Ṽ p,q(K , λL, Q) = λṼ p,q(K , L, Q), (2.16)

Ṽ p,q(K , L, λQ) = λ−1Ṽ p,q(K , L, Q). (2.17)

We shall need the following fact.
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Lemma 2.3 (cf. [31]) The (p, q)-mixed volume is SL(n)-invariant, in that for p, q ∈
R, and K , L ∈ Kn

o , with Q ∈ Sn
o ,

Ṽp,q(φK , φL, φQ) = Ṽp,q(K , L, Q), (2.18)

for each φ ∈ SL(n).

Lemma 2.1, together with Lemma 2.3, shows that for φ ∈ GL(n),

Ṽp,q(φK , φL, φQ) = |φ|Ṽp,q(K , L, Q). (2.19)

We will also need the fact that for φ ∈ GL(n) and p ∈ (0,∞], q = p + r , r ∈
[0,∞),

Ṽ p,q(φK , φL, φQ) = Ṽ p,q(K , L, Q). (2.20)

This follows immediately from (2.8) and (2.19) for all p ∈ (0,∞], q = p + r and
r ∈ [0,∞).

The following inequality for (p, q)-mixed volume is a generalization of the L p

Minkowski inequality for mixed volume (see [31]).

Lemma 2.4 Suppose p, q are such that 1 ≤ q
n ≤ p. If K , L ∈ Kn

o and Q ∈ Sn
o , then

Ṽp,q(K , L, Q)n ≥ |K |q−p|L|p|Q|n−q , (2.21)

with equality if and only if K , L, Q are dilates when 1 <
q
n < p, while only K and L

need be dilates when q = n and p > 1, and K and L are homothets when q = n and
p = 1.

We shall require the following definition.

Definition 2.5 (cf. [31]) Suppose p ∈ R. If μ is a Borel measure on Sn−1 and φ ∈
SL(n) then, φp � μ, the L p image of μ under φ, is a Borel measure such that

∫

Sn−1
f (u)dφp � μ(u) =

∫

Sn−1
|φ−1u|p f (〈φ−1u〉)dμ(u)

for each Borel f : Sn−1 → R.

Lemma 2.6 (cf. [31]) Suppose p �= 0 and q �= 0. Then for all Q ∈ Sn
o and K , L ∈ Kn

o ,
and φ ∈ SL(n),

C̃ p,q(φK , φQ, ·) = φt
p � C̃ p,q(K , L, ·). (2.22)

We also need the following lemma:
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Lemma 2.7 (cf. [19]) Suppose Ki ∈ Kn
o with lim

i→∞ Ki = K0. Let ω = ∪∞
i=0ωKi , be the

set (of Hn−1-measure 0) off of which all of the αKi are defined. Then if ui ∈ Sn−1\ω
are such that lim

i→∞ ui = u0 ∈ Sn−1\ω, then lim
i→∞ αKi (ui ) = αK0(u0).

Let K ∈ Kn
o . The classical projection body �K of K is given by (see [10])

h�K (u) = voln−1(K |u⊥) = 1

2

∫

Sn−1
|u · v|dS(K , v), ∀u ∈ Sn−1.

We will use the concept of a L p-projection body (see [28,29,45,52]). For p ≥ 1,
the L p-projection body �pK is given by

h�pK (u) =
(

1

2n

∫

Sn−1
|u · v|pdSp(K , v)

) 1
p

, u ∈ Sn−1,

where Sp(K , ·) is the L p-surface area measure. Clearly, �1K = 1
n�K .

We shall use the concepts of (p, q)-mixed projection body and (p, q)-mixed polar
projection body. For each K ∈ Kn

o with a star body Q ∈ Sn
o , and p > 0, q > 0,

the (p, q)-mixed projection body, �p,q(K , Q), of K and Q is the origin-symmetric
convex body whose support function is defined by

h�p,q (K ,Q)(u) =
(
1

2

∫

Sn−1
|u · v|pdC̃ p,q(K , Q, v)

) 1
p

, for all u ∈ Sn−1. (2.23)

In particular, we have �p,n(K , B) = �p,q(K , K ) = �pK for p > 1, and
�1,n(K , B) = �1,q(K , K ) = �1(K ) = 1

n�K .
If K ∈ Kn

o and real p > 0, the star body �−pK (called by L p-polar projection
body, see [30]) is defined as, for u ∈ Sn−1 :

ρ�−pK (u)−1 =
(

1

|K |
∫

Sn−1
|u · v|pdSp(K , v)

) 1
p

.

If K ∈ Kn
o and Q ∈ Sn

o , and real p > 0, q > 0 and q = p + r , r ∈ [0,+∞), the
star body �−p,−q(K , Q) is defined by, for x ∈ R

n ,

ρ−1
�−p,−q (K ,Q)(x) =

(
n

Ṽr (K , Q)

∫

Sn−1
|x · v|pdC̃ p,q(K , Q, v)

) 1
p

. (2.24)

The star body �−p,−q(K , Q) is called the (p, q)-mixed polar projection body of K
and Q. It is easy to know that �−p,−q(K , K ) = �−pK .

Note that for q ≥ p ≥ 1, the body �−p,−q(K , Q) is a convex body. Define
�−∞,−∞(K , Q) by

�−∞,−∞(K , Q) = lim
p→∞ �−p,−q(K , Q). (2.25)
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For real p > 0, q = p + r , r ∈ [0,+∞), and using(1.5), we can rewrite (2.25) as

n− 1
p ρ�−p,−q (K ,Q)(u)−1 =

(∫

Sn−1

( |u · v|ρK (v)

hK (αK (v))ρQ(v)

)p

dṼr (K , Q; v)

) 1
p

,(2.26)

for u ∈ Sn−1. Thus, from (2.25) and (2.26),

ρ�−∞,−∞(K ,Q)(u)−1 = max

{ |u · v|ρK (v)

hK (αK (v))ρQ(v)
: v ∈ suppṼr (K , Q; ·)

}
,

u ∈ Sn−1. (2.27)

3 The Continuity of ˜Vp,q and ˜Vp,q

In this section, we consider the continuity of Ṽp,q and Ṽ p,q .

Theorem 3.1 Suppose K , Ki , L, L j ∈ Kn
o, Q, Qk ∈ Sn

o and pl , p, qm, q ∈ (0,∞],
where i, j, k, l,m ∈ N. Let r ∈ [0,+∞). If Ki → K , L j → L, Qk → Q, pl → p,
and qm → q as i, j, k, l,m → ∞, then

lim
i, j,k,l,m→∞ Ṽpl ,qm (Ki , L j , Qk) = Ṽp,q(K , L, Q), (3.1)

and

lim
i, j,k,l→∞ Ṽ pl ,pl+r (Ki , L j , Qk) = Ṽ p,p+r (K , L, Q). (3.2)

Proof Let

cm = min{c1, c2}, cM = max{c3, c4},
where

c1 =
inf

({
min
Sn−1

hL

}
∪

{
min
Sn−1

hL j : j ∈ N

})

sup

({
max
Sn−1

hK

}
∪

{
max
Sn−1

hKi : i ∈ N

}) ,

c2 =
inf

({
min
Sn−1

ρK

}
∪

{
min
Sn−1

ρKi : i ∈ N

})

sup

({
max
Sn−1

ρQ

}
∪

{
max
Sn−1

ρQk : k ∈ N

}) ,

c3 =
sup

({
max
Sn−1

hL

}
∪

{
max
Sn−1

hL j : j ∈ N

})

inf

({
min
Sn−1

hK

}
∪

{
min
Sn−1

hKi : i ∈ N

}) ,
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and

c4 =
sup

({
max
Sn−1

ρK

}
∪

{
max
Sn−1

ρKi : i ∈ N

})

inf

({
min
Sn−1

ρQ

}
∪

{
min
Sn−1

ρQk : k ∈ N

}) .

We first claim 0 < cm ≤ cM < ∞. Since Ki → K , L j → L and Qk → Q, pl →
p as i, j, k → ∞, we have hKi → hK , hL j → hL and hLk → hL uniformly on
Sn−1, respectively. From K , Ki , L, L j ∈ Kn

o, Q, Qk ∈ Sn
o , it follows that there exists

an N0 ∈ N , such that for all i, j, k > N0 and u ∈ Sn−1,

min
Sn−1

h 1
2 K

≤ hKi (u) ≤ max
Sn−1

h2K and min
Sn−1

h 1
2 L

≤ hL j (u) ≤ max
Sn−1

h2L ,

min
Sn−1

ρ 1
2 K

≤ ρKi (u) ≤ max
Sn−1

ρ2K and min
Sn−1

ρ 1
2 Q

≤ ρQk (u) ≤ max
Sn−1

ρ2Q .

For brevity, we write

am = min{a : a ∈ A1 ∪ A2}, aM = max{a : a ∈ A3 ∪ A4},

where

A1 =
⋃

u∈Sn−1

{
h 1

2 K
(u), h 1

2 L
(u), ρ 1

2 K
(u), ρ 1

2 Q
(u)

}
,

A2 =
⋃

1≤i≤N0

⋃

u∈Sn−1

{
hKi (u), hL j (u), ρKi (u), ρQk (u)

}
,

A3 =
⋃

u∈Sn−1

{
h2K (u), h2L(u), ρ2K (u), ρ2Q(u)

}
,

and

A4 =
⋃

1≤i≤N0

⋃

u∈Sn−1

{
hKi (u), hL j (u), ρKi (u), ρQk (u)

}
.

Then we have 0 < am ≤ aM < ∞, and

am B ⊆ K ⊆ aM B, am B ⊆ Ki ⊆ aM B for i ∈ N,

am B ⊆ L ⊆ aM B, am B ⊆ L j ⊆ aM B for j ∈ N,

am B ⊆ Q ⊆ aM B, am B ⊆ Qk ⊆ aM B for k ∈ N.

Thus, by the definitions of cm and cM , it yields

0 <
am
aM

≤ cm ≤ cM ≤ aM
am

< ∞.
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Next, we prove

lim
i, j,k,l,m→∞ Ṽpl ,qm (Ki , L j , Qk) = Ṽp,q(K , L, Q).

For any ε > 0, three observations are in order. Firstly, let f (t) = t p, fl(t) =
t pl , l = 1, 2, · · · , defined on [cm, cM ], then the sequence of { fl} converges uniformly
to f on [cm, cM ]. And let g(t) = t p, gm(t) = t pm ,m = 1, 2, · · · ,defined on [cm, cM ],
then the sequence of {gm} converges uniformly to g on [cm, cM ]. For all u ∈ Sn−1,

cm ≤ hL j (αKi (u))

hKi (αKi (u))
≤ cM , cm ≤ ρKi (u)

ρQk (u)
≤ cM ,

there exists an N1 ∈ N, such that for all l,m ≥ N1,

∣∣
∣∣

(
hL j (αKi (u))

hKi (αKi (u))

)pl ( ρKi (u)

ρQk (u)

)qm
−

(
hL j (αKi (u))

hKi (αKi (u))

)p (
ρKi (u)

ρQk (u)

)q ∣∣
∣∣ <

ε

3
, (3.3)

independently of i and j and uniformly on u ∈ Sn−1.
Secondly, since Ki → K , L j → L and Qk → Q, pl → p as i, j, k → ∞, and

Lemma 2.7, there exists an N2 ∈ N such that for all i, j, k > N2 and for all u ∈ Sn−1,

∣∣∣∣

(
hL j (αKi (u))

hKi (αKi (u))

)p (
ρKi (u)

ρQk (u)

)q

−
(
hL(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q ∣∣∣∣ <
ε

3
. (3.4)

Indeed, since functions f and g are all Lipschitzian on [cm, cM ], there exist constants
C1,C2 > 0, such that for all u ∈ Sn−1,

∣
∣∣∣

(
hL j (αKi (u))

hKi (αKi (u))

)p (
ρKi (u)

ρQk (u)

)q

−
(
hL(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q ∣∣∣∣

≤
(

ρKi (u)

ρQk (u)

)q ∣∣∣∣

(
hL j (αKi (u))

hKi (αKi (u))

)p

−
(
hL(αK (u))

hK (αK (u))

)p∣∣∣∣

+
(
hL(αK )(u)

hK (αK )(u)

)p ∣∣∣
∣

(
ρKi (u)

ρQk (u)

)q

−
(

ρK (u)

ρQ(u)

)q ∣∣∣
∣

≤ C1

(
ρKi (u)

ρQk (u)

)q ∣∣
∣∣
hL j (αKi (u))

hKi (αKi (u))
− hL(αK (u))

hK (αK (u))

∣∣
∣∣

+C2

(
hL(αK (u))

hK (αK (u))

)p ∣∣∣∣
ρKi (u)

ρQk (u)
− ρK (u)

ρQ(u)

∣∣∣∣

≤ Cq
MC1 · δH (L j , L)maxSn−1 hK + δH (Ki , K )maxSn−1 hL

minSn−1 hKi minSn−1 hK

+CP
MC2 · δ̃H (Ki , K )maxSn−1 ρQ + δ̃H (Qk, Q)maxSn−1 ρK

minSn−1 ρQk minSn−1 ρQ
.
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Thirdly, since the measure sequence {Ṽ Qk } weakly converges to Ṽ Q , there exists
an N3 ∈ N, such that for all k ≥ N3,

∣∣
∣∣

∫

Sn−1

(
hL(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q

dṼ Qk (u)

−
∫

Sn−1

(
hL(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q

dṼ Q(u)

∣∣∣∣ <
ε

3
. (3.5)

From (3.3), (3.4) and (3.5), it follows that for all i, j, k, l,m ≥ max{N1, N2, N3},
∣
∣∣∣
∣

∫

Sn−1

(
hL j (αKi (u))

hKi (αKi (u))

)pl
(

ρKi (u)

ρQk (u)

)qm

dṼ Qk (u) −
∫

Sn−1

(
hL (αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q
dṼ Q(u)

∣
∣∣∣
∣

≤
∫

Sn−1

∣∣∣
∣∣

(
hL j (αKi (u))

hKi (αKi (u))

)pl
(

ρKi (u)

ρQk (u)

)qm

−
(
hL j (αKi (u))

hKi (αKi (u))

)p (
ρKi (u)

ρQk (u)

)q ∣∣∣
∣∣
dṼ Qk (u)

+
∫

Sn−1

∣
∣∣∣
∣

(
hL j (αKi (u))

hKi (αKi (u))

)p (
ρKi (u)

ρQk (u)

)q

−
(
hL (αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q
∣
∣∣∣
∣
dṼ Qk (u)

+
∣∣∣
∣

∫

Sn−1

(
hL (αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q
dṼ Qk (u) −

(
hL (αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)q
dṼ Q(u)

∣∣∣
∣

< ε.

Namely,

lim
i, j,k,l,m→∞

Ṽpl ,qm (Ki , L j , Qk)

|Qk | = Ṽp,q(K , L, Q)

|Q| .

The first conclusion follows from the fact |Qk | → |Q| by sending k to infinity.
Finally, we proceed to prove

lim
i, j,k,l→∞ Ṽ pl ,pl+r (Ki , L j , Qk) = Ṽ p,p+r (K , L, Q).

Fix δ > 0. For 0 ≤ r < ∞, we note that

Ṽpl ,pl+r (Ki , L j , Qk)

Ṽr (Ki , Qk)
,
Ṽp,p+r (K , L, Q)

Ṽr (K , Q)
∈ [c1, c3], for each i, j, k, l ∈ N.

The continuity of t
1
p on [c1, c3] implies there exists an N4 > 0 such that for all l ≥ N4,

∣∣∣
∣∣∣

(
Ṽpl ,pl+r (Ki , L j , Qk)

Ṽr (Ki , Qk)

) 1
pl

−
(
Ṽpl ,pl+r (Ki , L j , Qk)

Ṽr (Ki , Qk)

) 1
p

∣∣∣
∣∣∣
<

δ

2
(3.6)

holds independently of i, j and k.
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From (1.11) and (3.1), it follows lim
i,k→∞ Ṽr (Ki , Qk) = Ṽr (K , Q). Combining this

with (3.1), the continuity of t
1
p on [c1, c3] shows there exists an N5 > 0, such that for

all i, j, k, l > N5,

∣∣∣∣∣∣

(
Ṽpl ,pl+r (Ki , L j , Qk)

Ṽr (Ki , Qk)

) 1
p

−
(
Ṽp,p+r (K , L, Q)

Ṽr (K , Q)

) 1
p

∣∣∣∣∣∣
<

δ

2
. (3.7)

In terms of (3.6) and (3.7), it follows that for i, j, k, l ≥ max{N4, N5},
∣
∣∣∣∣∣

(
Ṽpl ,ql (Ki , L j , Qk)

Ṽr (Ki , Qk)

) 1
pl

−
(
Ṽp,q(K , L, Q)

Ṽr (K , Q)

) 1
p

∣
∣∣∣∣∣
< δ.

That is,

lim
i, j,k,l→∞ Ṽ pl ,pl+r (Ki , L j , Qk) = Ṽ p,p+r (K , L, Q).

��

4 (p,q)-John Ellipsoids

In this section, we focus on the main Problem 1.1 proposed in Sect. 1.
Optimization Problems. Let 0 < p ≤ q with q = p + r , r ≥ 0. For K ∈ Kn

o and
Q ∈ Sn

o , find an ellipsoid, among all origin-symmetric ellipsoids, which solves the
following constrained maximization problem:

max
E∈En

( |E |
ωn

) 1
n

subject to Ṽ p,q(K , E, Q) ≤ 1. (Sp,q )

An ellipsoid that solves the constrained maximization problem will be called a Sp,q
solution for K and Q. The dual problem is

min
E∈En

Ṽ p,q(K , E, Q) subject to

( |E |
ωn

) 1
n ≥ 1. (S̄p,q )

An ellipsoid that solves the dual problem will be called a S̄p.q solution for K and Q.
The following theorem gives the existence of Problem Sp,q when 0 < p ≤ q, and

proves its uniqueness when 1 ≤ p ≤ q.

Theorem 4.1 For any 0 < p ≤ q, there exists an ellipsoid which solves Problem Sp,q .
The solution is unique for 1 ≤ p ≤ q.
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Proof For an ellipsoid E ∈ En (the class of origin-symmetric ellipsoids in R
n), we

use dE to denote its maximal principal radius. There exists a vE ∈ Sn−1 such that
dE |vE ·u| ≤ hE (u), for all u ∈ Sn−1. From definitions of the (p, q)-mixed projection
body and the L p-dual mixed volume, it yields

(
2

Ṽr (K , Q)

) 1
p

dE min
Sn−1

h�p,q (K ,Q)(vE )

≤
(

2

Ṽr (K , Q)

) 1
p

dEh�p,q (K ,Q)(vE )

=
(

1

Ṽr (K , Q)

∫

Sn−1
(dE |u · vE |)pdC̃ p,q(K , Q, u)

) 1
p

≤
(

1

Ṽr (K , Q)

∫

Sn−1
h p
E (u)dC̃ p,q(K , Q, u)

) 1
p

= Ṽ p,q(K , E, Q). (4.1)

LetEp,q =
{
E ∈ En : Ṽ p,q(K , E, Q) ≤ 1

}
. Then, the above inequality yields that

dE ≤
(
Ṽr (K , Q)

2

) 1
p Ṽ p,q(K , E, Q)

min
Sn−1

h�p,q (K ,Q)

≤
(
Ṽr (K , Q)

2

) 1
p 1

min
Sn−1

h�p,q (K ,Q)

, for all E ∈ Ep,q . (4.2)

Thus, the set Ep,q is bounded in the metric space (En, δH ). Using Theorem 3.1, the

functional Ṽ p,q(K , ·, Q) is continuous, then Ep,q is also closed. According to the
Blaschke selection theorem, each maximizing sequence of ellipsoids for Problem
Sp,q has a convergent subsequence whose limit is still in Ep,q . Therefore, a solution
to Problem Sp,q exists.

Wenext prove the uniqueness by contradiction.Weassume that the ellipsoids E1 and
E2 are two different solutions to Problem Sp,q . Let E1 = T1B and E2 = T2B, where

T1, T2 ∈ GL(n). Then det(T1) = det(T2) and Ṽ p,q(K , Ei , Q) ≤ 1, for i = 1, 2.
Since each symmetric matrices T ∈ GL(n) could be represented in the form T =

PQ, where P is symmetric, positive definite and Q is orthogonal. Then we may
assume that T1 and T2 are symmetric and positive definite. Then T1 �= λT2, for all
λ > 0. The Minkowski inequality for positive definite matrices implies

det

(
1

2
T1 + 1

2
T2

) 1
n

>
1

2
det(T1)

1
n + 1

2
det(T2)

1
n .
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Let E3 = 1
2 (T1 + T2)B. Then we have

|E3| > |E1| = |E2|. (4.3)

From (2.2) and the triangle inequality, one has for all u ∈ Sn−1,

hE3(u) =
∣∣
∣∣
T t
1 + T t

2

2
u

∣∣
∣∣ ≤ |T t

1u| + |T t
2u|

2
= hE1(u) + hE2(u)

2
. (4.4)

Now, from Definition (1.13), the monotonicity of f (t) = t p, p ≥ 1, (4.4), and the
convexity of f (t) = t p, it follows that

Ṽ p,q(K , E3, Q)p

=
∫

Sn−1

(
hE3(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)p

dṼr (K , Q; u)

≤
∫

Sn−1

(
hE1(αK (u)) + hE2(αK (u))

2hK (αK (u))

)p (
ρK (u)

ρQ(u)

)p

dṼr (K , Q; u)

≤
∫

Sn−1

[
1

2

(
hE1(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)p

+ 1

2

(
hE2(αK (u))

hK (αK (u))

)p (
ρK (u)

ρQ(u)

)p]

dṼr (K , Q; u)

= 1

2
Ṽ p,q(K , E1, Q)p + 1

2
Ṽ p,q(K , E2, Q)p ≤ 1.

Then E3 ∈ Ep,q . That is, E3 satisfies the constraint Ṽ p,q(K , E3, Q) ≤ 1. Then, it
will result in |E3| ≤ |E1| = |E2|, which contradicts (4.3). ��

Our main problems Sp,q and S p,q are two equivalent description. The solutions to
Sp,q and S̄p,q differ by only a scale factor. To prove this conclusion, we need the next
lemma.

Lemma 4.2 Let p, q > 0, K ∈ Kn
o and Q ∈ Sn

o . Then

max
{E∈En :Ṽ p,q (K ,E,Q)≤1}

|E | = max
{E∈En :Ṽ p,q (K ,E,Q)=1}

|E |; (4.5)

and

min
{E∈En :|E |≥ωn}

Ṽ p,q(K , E, Q) = min
{E∈En :|E |=ωn}

Ṽ p,q(K , E, Q). (4.6)

Proof Wefirst prove that the ellipsoid E1 with Ṽ p,q(K , E1, Q) < 1cannot be themax-

imizer ofmax{E∈En :Ṽ p,q (K ,E,Q)≤1} |E |. In fact, for the ellipsoid Ṽ p,q(K , E1, Q)−1E1,

its volume is greater than the volume of E1, i.e.,

∣∣∣Ṽ p,q(K , E1, Q)−1E1

∣∣∣ > |E1|.

123



(p, q)-John ellipsoids 9615

And one has from (2.16),

Ṽ p,q

(
K , Ṽ p,q(K , E1, Q)−1E1, Q

)
= 1,

as required.

We next prove (4.6). For any ellipsoid E2 with |E2| > ωn , the ellipsoid
(

ωn|E2|
) 1

n
E2

satisfies

∣∣∣∣
(

ωn|E2|
) 1

n
E2

∣∣∣∣ = ωn . And from (2.16), it follows that

Ṽ p,q

(

K ,

(
ωn

|E2|
) 1

n

E2, Q

)

=
(

ωn

|E2|
) 1

n

Ṽ p,q(K , E2, Q) < Ṽ p,q(K , E2, Q).

��
Theorem 4.3 Suppose p, q > 0 and K is an origin-symmetric convex body inRn, and
Q is a star body in Rn about the origin.

(1) If EM is an origin-symmetric ellipsoid that is a Sp,q solution for K and Q, then

(
ωn

|EM |
) 1

n

EM (4.7)

is a solution to Problem S̄p,q .
(2) If Em is an origin-symmetric ellipsoid that is a S̄p,q solution for K and Q, then

Ṽ p,q(K , Em, Q)−1Em (4.8)

is a solution to Problem Sp,q .

Proof (1) Let E ∈ {E ∈ En : |E | ≥ ωn}. It follows from (2.16) that

Ṽ p,q

(
K , Ṽ p,q(K , E, Q)−1E, Q

)
= 1.

Then, from the assumption that EM is a Sp,q solution, it follows

|EM | ≥
∣∣
∣Ṽ p,q(K , E, Q)−1E

∣∣
∣ = Ṽ p,q(K , E, Q)−n |E | .

Therefore,

Ṽ p,q(K , E, Q) ≥
( |E |

|EM |
) 1

n ≥
(

ωn

|EM |
) 1

n = Ṽ p,q

(

K ,

(
ωn

|EM |
) 1

n

EM , Q

)

,
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where the last equality uses the fact Ṽ p,q(K , EM , Q) = 1 by (4.5). Added that
(

ωn|EM |
) 1

n
EM ∈ {E ∈ En : |E | ≥ ωn}, it implies that the ellipsoid

(
ωn|EM |

) 1
n
EM is a

solution to Problem S̄p,q .

(2) Let E ∈
{
E ∈ En : Ṽ p,q(K , E, Q) ≤ 1

}
. Since Em is an S p,q solution, and

(
ωn|E |

) 1
n
E ∈ {E ∈ En : |E | = ωn}, it follows from (2.16) that

(
ωn

|E |
) 1

n

Ṽ p,q(K , E, Q) = Ṽ p,q

(

K ,

(
ωn

|E |
) 1

n

E, Q

)

≥ Ṽ p,q(K , Em, Q).

Using (4.6),wehave |Em | = ωn . Then Ṽ p,q(K , Em, Q)−1|Em | 1n ≥ Ṽ p,q(K , E, Q)−1

|E | 1n . Thus, it results in

⎛

⎝

∣∣∣Ṽ p,q(K , Em, Q)−1Em

∣∣∣

ωn

⎞

⎠

1
n

≥
⎛

⎝

∣∣∣Ṽ p,q(K , E, Q)−1E
∣∣∣

ωn

⎞

⎠

1
n

≥
( |E |

ωn

) 1
n

.

Then the proof is completed by observing Ṽ p,q

(
K , Ṽ p,q(K , Em, Q)−1Em, Q

)
= 1.

��
In Theorem 4.1, we proved the existence for all cases of 0 < p ≤ q, and the

uniqueness for the cases of 1 < p ≤ q. In order to show the uniqueness of for all
cases of 0 < p ≤ q, we need the next lemma that shows that, without loss of generality,
we may assume that the ellipsoid E is the unit ball B in Rn .

Lemma 4.4 Suppose real p, q �= 0, K ∈ Kn
o and Q ∈ Sn

o . If φ ∈ GL(n), then

Ṽp,q(φ
−1K , B, φ−1Q)|x |2

= n
∫

Sn−1
|x · v|2dC̃ p,q(φ

−1K , φ−1Q, v), for all x ∈ R
n, (4.9)

if and only if

Ṽp,q(K , φB, Q)h2(φB)∗(x)

= n
∫

Sn−1
|x · v|2h p−2

φB (v)dC̃ p,q(K , Q, v), for all x ∈ R
n . (4.10)

Proof In light of Lemma 2.1, it suffices to prove the statement for SL(n). In terms of
(2.2), (2.4) and Lemma 2.3, we have, for all x ∈ R

n ,

Ṽp,q(K , φB, Q)h2(φB)∗(x) = Ṽp,q(K , φB, Q)h2
φ−t B∗(x)

= Ṽp,q(φ
−1K , B, φ−1Q)h2B∗(φ−1x).
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Then, using Definition 2.5, (4.10) is equivalent to, for all x ∈ R
n ,

Ṽp,q(φ
−1K , B, φ−1Q)h2B∗(x) = n

∫

Sn−1
|φx · v|2h p−2

B (φtv)dC̃ p,q(K , Q, v)

= n
∫

Sn−1
|x · φtv|2|φtv|p−2dC̃ p,q(K , Q, v)

= n
∫

Sn−1
|x · 〈φtv〉|2|φtv|pdC̃ p,q(K , Q, v)

= n
∫

Sn−1
|x · v|2dφ−t

p � C̃ p,q(K , Q, v),

which by Lemma 2.6 is in turn equivalent to

Ṽp,q(φ
−1K , B, φ−1Q)|x |2

= n
∫

Sn−1
|x · v|2dC̃ p,q(φ

−1K , φ−1Q, v), for all x ∈ R
n .

��
Now we show the existence and uniqueness of solution Sp,q and S̄p,q for all cases

0 < p ≤ q.

Theorem 4.5 Suppose that 0 < p ≤ q = p + r , r ∈ [0,∞), K ∈ Kn
o and Q ∈ Sn

o .
Then Sp,q as well as S̄p,q has a unique solution. Moreover, an ellipsoid E ∈ En solves
S̄p,q if and only if it satisfies

Ṽp,q(K , E, Q)h2E∗(x) = n
∫

Sn−1
|x · u|2h p−2

E (u)dC̃ p,q(K , Q, u), for all x ∈ R
n,

(4.11)

and an ellipsoid E ∈ En solves Sp,q if and only if it satisfies

Ṽr (K , Q)h2E∗(x) = n
∫

Sn−1
|x · u|2h p−2

E (u)dC̃ p,q(K , Q, u), for all x ∈ R
n .(4.12)

Proof We first show that an ellipsoid E ∈ En solves S̄p,q if and only if it satisfies
(4.11). Without loss of generality, we may assume E = B by using Lemma 4.4.
Namely, we will show that B is a S̄p,q solution for K and Q if and only if

Ṽp,q(K , B, Q)|x |2 = n
∫

Sn−1
|x · u|2dC̃ p,q(K , Q, u), for all x ∈ R

n . (4.13)

Firstly, we show if B ∈ En solves S̄p,q , then (4.13) holds. Indeed, suppose that
T ∈ SL(n). Choose ε0 > 0 sufficiently small so that for all ε ∈ (−ε0, ε0), In + εT is
invertible, where In is identity matrix. For ε ∈ (−ε0, ε0), define Tε ∈ SL(n) by

Tε = |In + εT |− 1
n (In + εT ).
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Since |Tε| = 1, the ellipsoid Eε = T t
ε B clearly has volume ωn . The support function

of Eε is given by

hEε (u) = hT t
ε B(u) = |Tεu|.

Since E0 = B is a S̄p,q solution, we have

Ṽp,q(K , E0, Q) ≤ Ṽp,q(K , Eε, Q), for all ε,

and hence using (1.9), it is equivalent to

d

dε

∣∣∣
ε=0

∫

Sn−1
|Tεu|pdC̃ p,q(K , Q, u) = 0. (4.14)

Note that

|In + εT | 1n = 1 + ε

n
trT + O(ε2)

and

|u + εTu| = [1 + 2ε · Tu + ε2(Tu · Tu)] 12 = 1 + ε(u · Tu) + O(ε2),

then (4.14) implies

d

dε

∣∣∣
ε=0

∫

Sn−1

(
1 + ε(u · Tu) + O(ε2)

1 + ε
n trT + O(ε2)

)p

dC̃ p,q(K , Q, u)

= p
∫

Sn−1

(
u · Tu − 1

n
trT

)
dC̃ p,q(K , Q, u)

= 0. (4.15)

Let T = x ⊗ x for nonzero x ∈ R
n , where the notation x ⊗ x represents the rank 1

linear operator onRn that takes y to (x · y)x . It immediately gives that tr(x⊗x) = |x |2.
Using the facts tr(x ⊗ x) = |x |2 and u · (x ⊗ x)u = (u · x)2, (4.15) is

∫

Sn−1
|u · x |2dC̃ p,q(K , Q, u) = Ṽp,q(K , B, Q)

n
|x |2, for all x ∈ R

n .

Secondly, we show if

Ṽp,q(K , B, Q)|x |2 = n
∫

Sn−1
|x · u|2dC̃ p,q(K , Q, u), for all x ∈ R

n, (4.16)

then B is a solution to Problem S̄p,q . Moreover, B is a unique S̄p,q solution.
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To prove that B is a S̄p,q solution for K , Q, we show that for any ellipsoid E with
|E | = ωn , one has

Ṽp,q(K , E, Q) ≥ Ṽp,q(K , B, Q), (4.17)

with equality if and only if E = B. It is equivalent to show that for any ellipsoid E
with E = Pt B, P ∈ SL(n), one has

(
1

Ṽp,q(K , B, Q)

∫

Sn−1
|Pu|pdC̃ p,q(K , Q, u)

) 1
p

≥ 1, (4.18)

with equality if and only if Pu = 1 for all u ∈ Sn−1. From Jensen’s inequality,

(
1

Ṽp,q(K , B, Q)

∫

Sn−1
|Pu|pdC̃ p,q(K , Q, u)

) 1
p

≥ exp

(
1

Ṽp,q(K , B, Q)

∫

Sn−1
log |Pu|dC̃ p,q(K , Q, u)

)

,

with equality if and only if there exists c > 0 such that |Pu| = c for all
u ∈ suppC̃ p,q(K , Q, ·). Hence, we need show

∫

Sn−1
log |Pu|dC̃ p,q(K , Q, u) ≥ 0, (4.19)

We write P as P = Ot DO , where D = diag(λ1, λ2, · · · , λn) is a diagonal matrix
with eigenvalues λ1, λ2, · · · , λn , and O is orthogonal.

From Definition 2.5 and Lemma 2.6, it follows that

∫

Sn−1
log |Pu|dC̃ p,q(K , Q, u) =

∫

Sn−1
|Ou|p log |Ot DOu|dC̃ p,q(K , Q, u)

=
∫

Sn−1
log |Ot Dv|dOt

p � C̃ p,q(K , Q, v)

=
∫

Sn−1
log |Dv|dC̃ p,q(OK , OQ, v).

Then by the concavity of the log function and (4.16),

∫

Sn−1
log |Pu|dC̃ p,q(K , Q, u) = 1

2

∫

Sn−1
log

(
n∑

i=1

λ2i u
2
i

)

dC̃ p,q(OK , OQ, v)

≥
n∑

i=1

∫

Sn−1
u2i log(λi )dC̃ p,q(OK , OQ, v)
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=
n∑

i=1

log(λi )
∫

Sn−1
|u · ei |2dC̃ p,q(OK , OQ, v)

= 1

n
Ṽp,q(K , B, Q)

n∑

i=1

log(λi ),

where ui denotes u · ei for i = 1, · · · , n. Since |D| = 1, we have
n∑

i=1
log(λi ) =

log(
n∏

i=1
λi ) = 0 Thus (4.19) holds. And then we have (4.16), namely B is a solution

to Problem S̄p,q .
For the uniqueness of Problem S̄p,q , we only need consider the equality condition.

Note that the strict concavity of log function implies that equality in (4.16) holds
only if ui1 , · · · , uiN �= 0 implies λi1 = · · · = λiN , for u ∈ suppC̃ p,q(OK , OQ, ·).
Thus |Du| = λi when ui �= 0 for u ∈ suppC̃ p,q(OK , OQ, ·). Equality in (4.18)
forces |Pu| = c for all u ∈ suppC̃ p,q(OK , OQ, ·). Since suppC̃ p,q(OK , OQ, ·) is
not contained in an (n − 1)-dimensional subspace of Rn , we have λi = c for all i .
Combining with |D| = λ1 · · · λn = 1, we have λi = 1 for all i . Thus D = In , and
P = In .

Note that Theorems 4.1 and 4.3 get the existence of the solution to Problems Sp,q
and S̄p,q . And their uniqueness is proved from the above proof and Theorem 4.3.

Finally, we let the ellipsoid E ∈ En solve Problem Sp,q . Using Theorem 4.3, it is

equivalent to that c0E is a solution to Problem S̄p,q , where c0 = ( ωn|E | )
1
n . It holds if

and only if (4.11) holds, i.e.,

Ṽp,q(K , E, Q)h2E∗(x) = n
∫

Sn−1
|x · u|2h p−2

E (u)dC̃ p,q(K , Q, u), for all x ∈ R
n .

This completes the result by noticing that Ṽ p,q(K , E, Q) =
(
Ṽp,q (K ,E,Q)

Ṽr (K ,Q)

) 1
p = 1

from Lemma 4.2. ��
Let 0 < p ≤ q ≤ ∞. Theorem 4.5 shows that problem (Sp,q ) has a unique solution.

In the case Q = K , the Sp,q problem had been considered by Lutwak, Yang and Zhang
in [30].

In the case p = ∞, with the aid of (1.16), we may rephrase (S∞,q) as: Among all
origin-symmetric ellipsoids, find an ellipsoid which solves the following constrained
maximization problem:

max

( |E |
ωn

) 1
n

subject to E ⊆
(

ρQ

ρK

)
K . (S∞,∞)

When Q = K , the problem is the classical John-ellipsoid problem (see, e.g.,
Giannopoulos and Milman [12]).

In light of Theorem 4.1, Theorem 4.3 and Theorem 4.5, we introduce a family of
ellipsoids, which is an extension of LYZ’s L p John ellipsoids.
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Definition 4.6 Let 0 < p ≤ q = p + r ≤ ∞, r ∈ [0,∞). Suppose K is a convex
body in R

n that contains the origin in its interior and Q is a star body (about the
origin) in Rn . Among all origin-symmetric ellipsoids, the unique ellipsoid that solves
the constrained maximization problem

max
E∈En

|E | subject to Ṽ p,q(K , E, Q) ≤ 1

will be called the (p, q)-John ellipsoid of K andQ, andwill be denotedby Ep,q (K , Q).
Among all origin-symmetric ellipsoids, the unique ellipsoid that solves the con-

strained minimization problem

min
E∈En

Ṽ p,q(K , E, Q) subject to |E | = ωn

will be called the normalized (p, q)-John ellipsoid of K and Q, and will be denoted
by Ē p,q(K , L).

Note that in the case Q = K , Ep,q(K , K ) = Ep(K ) is the L p-John ellipsoid. In
the case that q = n and Q = B, Ep,n(K , B) = Ep(K ) is also the L p-John ellipsoid.
In the case that p = ∞ and Q = K , E∞,∞(K , K ) = J (K ) is also the classic John
ellipsoid.

From Definition 4.6 and (2.20), we immediately obtain

Lemma 4.7 Suppose K ∈ Kn
o and Q ∈ Sn

o , and 0 < p ≤ q ≤ ∞. Then for φ ∈
GL(n),

E p,q(φK , φQ) = φEp,q(K , Q).

From Ep,q(B, B) = EpB = B and Lemma 4.7, we see that if E ∈ En , then

Ep,q(E, E) = E . (4.20)

Note that if the John point of K is at the origin (e.g., if K is origin-symmetric),
then

E∞,∞(K , Q) ⊆
(

ρQ

ρK

)
K .

From (2.24), (4.12) of Theorem 4.5, we immediately obtain

Lemma 4.8 Suppose K ∈ Kn
o , Q ∈ Sn

o and 2 ≤ q ≤ ∞. Then

E2,q(K , Q) = �−2,−q(K , Q).

A finite positive Borel measure μ on Sn−1 is said to be isotropic if (see [12])

∫

Sn−1
|u · v|2dμ(u) = |μ|

n
,
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for all v ∈ Sn−1, where |μ| denotes the total mass of μ. For nonzero x ∈ R
n , the

notation x ⊗ x represents the rank 1 linear operator on R
n that takes y to (x · y)x . It

immediately gives that trx ⊗ x = |x |2. Equivalently, μ is isotropic if

∫

Sn−1
u ⊗ udμ(u) = |μ|

n
In .

From definition (1.6) and (1.9), we see that

Ṽp,q(K , B, Q) =
∫

Sn−1
dC̃ p,q(K , Q, u)

= 1

n

∫

α∗
K (Sn−1)

hK (αK (u))−pρ
q
K (u)ρ

n−q
Q (u)du = C̃ p,q(K , Q, Sn−1).

Therefore, the condition (4.11) is equivalent to

∫

Sn−1
|x · u|2dC̃ p,q(K , Q, u) = C̃ p,q(K , Q, Sn−1)

n
|x |2, for all x ∈ R

n .

Then an immediate consequence of Theorem 4.5 is

Corollary 4.9 Suppose K ∈ Kn
o with Q ∈ Sn

o , and 0 < p ≤ q ∈ (0,∞]. Then there
exists a unique solution to the following constrained minimization problem:

min{Ṽp,q(K , T B, Q) : T ∈ SL(n)}.

Moreover, the identity operator In is the solution if and only if L p dual curvature
measures C̃ p,q(K , Q, ·) are isotropic on Sn−1.

Corollary 4.10 Suppose K ∈ Kn
o with Q ∈ Sn

o , and 0 < p ≤ q ∈ (0,∞].
(1) There exists an SL(n) transformation T , such that C̃ p,q(T K , T Q, ·) is isotropic

on Sn−1.
(2) If T1, T2 ∈ SL(n) such that C̃ p,q(T1K , T1Q, ·), C̃ p,q(T2K , T2Q, ·) are both

isotropic on Sn−1, then there exists an orthogonal O ∈ O(n) such that T2 = OT1.

5 Continuity of (p,q)-John Ellipsoids

In this section, we show that the family of (p, q)-John ellipsoids associated with a
convex body and a star body in Rn is continuous in p ∈ (0,∞].

We assume that K ∈ Kn
o and Q ∈ Sn

o are two fixed bodies in this section.

Lemma 5.1 Suppose 0 < p ≤ q ≤ ∞. If aB ⊆ K ⊆ bB and aB ⊆ Q ⊆ bB for
a, b > 0, then

Ē p,q(K , Q) ⊆
(
b

a

) p+2q+n
p

(cn−2,p)
− 1

p B,
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where

cn−2,p = (n + p)ωn+p

nω2ωnωp−1
, ωn = π

n
2

�
(
1 + n

2

) .

Proof From (4.1) and the definition of Ē p,q(K , Q), we have

dE ≤
(
Ṽr (K , Q)

2

) 1
p Ṽ p,q(K , B, Q)

h�p,q (K , Q)
, (5.1)

Now, we estimate the value of Ṽ p,q(K , B, Q). By the definition of Ṽ p,q(K , L, Q),
we have

Ṽ p,q(K , B, Q) =
(

1

Ṽr (K , Q)

∫

Sn−1
dC̃ p,q(K , Q, v)

) 1
p

=
(

1

Ṽr (K , Q)

∫

Sn−1

(
ρK (v)

hK (αK (v))ρQ(v)

)p

dṼr (K , Q; v)

) 1
p

≤ b

a2

(
1

Ṽr (K , Q)

∫

Sn−1
dṼr (K , Q; v)

) 1
p = b

a2
. (5.2)

Note that
∫

Sn−1
|u · v|pdu = (n + p)ωn+p

ω2ωp−1
. (5.3)

By the definition of (p, q)-mixed projection body and (5.3), we have

h�p,q (K ,Q)(vE ) =
(
1

2

∫

Sn−1
|u · vE |pdC̃ p,q(K , Q, u)

) 1
p

=
(

1

2n

∫

Sn−1
|u · vE |phK (αK (u))−p

(
ρK (u)

ρQ(u)

)q

ρn
Q(u)du

) 1
p

≥
(

aq+n

2nbp+q

∫

Sn−1
|u · vE |pdu

) 1
p

=
(

(n + p)ωn+paq+n

2nω2ωp−1bp+q

) 1
p

. (5.4)

Together with (5.1), (5.2) and (5.4), and note that Ṽr (K , Q) ≤ ωnbn+r

ar , we have

dĒp,q (K ,Q) ≤
(
b

a

) p+2q+n
p

(cn−2,p)
− 1

p .
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Therefore,

Ē p,q(K , Q) ⊆
(
b

a

) p+2q+n
p

(cn−2,p)
− 1

p B.

Note that lim
p→∞(cn−2,p)

1
p = 1, then Ē∞,∞(K , L) ⊆ b

a B. ��

FromDefinition 4.6, we recall that for each p ∈ (0,∞] and q = p+r , r ∈ (0,∞),
the ellipsoid Ē p,q(K , Q) is the unique ellipsoid that satisfies

Ṽ p,q
(
K , Ē p,q(K , Q), Q

) = min|E |=ωn
Ṽ p,q(K , E, Q). (5.5)

Lemma 5.2 If p, p0 ∈ (0,∞], q = p + r , r ∈ (0,∞), p → p0, q → p0 + r =
q0, K ∈ Kn

o , and Q ∈ Sn
o , then

lim
p→p0

Ṽ p,q(K , Ē p,q(K , Q), Q) = Ṽ p0,q0(K , Ē p0,q0(K , Q), Q).

Proof Using the Definition Ē p,q(K , Q), Theorem 3.1, (5.5), and again the definition
of Ē p,q(K , Q), we have

lim
p→p0

Ṽ p,q(K , Ē p,q(K , Q), Q) = lim
p→p0

min|E |=ωn
Ṽ p,q(K , E, Q)

= min|E |=ωn
Ṽ p0,q0(K , E, Q)

= Ṽ p0,q0(K , Ē p0,q0(K , Q), Q).

��
Lemma 5.3 Suppose that p, p0 ∈ (0,∞], q = p + r , r ∈ (0,∞), p → p0, q →
p0 + r = q0, and K ∈ Kn

o , Q ∈ Sn
o . If aB ⊆ Q ⊆ K ⊆ bB or aB ⊆ K ⊆ Q ⊆ bB,

for a, b > 0, then

lim
p→p0

Ē p,q(K , Q) = Ē p0,q0(K , Q).

Proof We argue by contradiction and assume the conclusion to be false. Lemma 5.1,
the Blaschke selection theorem, and our assumption, give a sequence pi → p0, as
i → ∞, such that lim

i→∞ Ē pi ,qi (K , Q) = E ′ �= Ē p0,q0(K , Q). Since the solution to

Problem (S̄p,q) is unique, and by the uniform convergence established in Theorem 3.1,
we get

Ṽ p0,q0

(
K , Ē p0,q0(K , Q), Q

)
< Ṽ p0,q0(K , E ′, Q)

= lim
i→∞ Ṽ p0,q0

(
K , Ē pi ,qi (K , Q), Q

)
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= lim
i→∞ Ṽ pi ,qi

(
K , Ē pi ,qi (K , Q), Q

)
.

This contradicts to Lemma 5.2. ��
Since, by Theorem 4.3, Ep,q(K , Q) = Ṽ p,q

(
K , Ē p,q(K , Q), Q

)−1
Ē p,q(K , Q),

the above gives

Theorem 5.4 If p, p0 ∈ (0,∞], q = p + r , r ∈ (0,∞), p → p0, q → p0 + r =
q0, K ∈ Kn

o and Q ∈ Sn
o , then

lim
p→p0

Ep,q(K , Q) = Ep0,q0(K , Q).

6 Generalizations of John’s Inclusion

John’s inclusion states that if K is an origin-symmetric convex body in Rn , then

E∞K ⊆ K ⊆ √
nE∞K . (6.1)

L p version of John’s inclusion is (see [30]): If K is a convex body in R
n that

contains the origin in its interior, then

EpK ⊇ �−pK ⊇ n
1
2− 1

p when 0 < p ≤ 2,

EpK ⊆ �−pK ⊆ n
1
2− 1

p when 2 ≤ p ≤ ∞.

In this section, we shall prove a (p, q)-version of John’s inclusion.
From (1.4), (2.1), (2.5) and Definition (2.26), we see immediately that if λ > 0,

then

�−p,−q(λK , λQ) = λ�−p,−q(K , Q). (6.2)

Lemma 6.1 If p ∈ (0,∞], q = p + r , r ∈ [0,∞) and K ∈ Kn
o , as well as Q ∈ Sn

o ,
then for φ ∈ GL(n)

�−p,−q(φK , φQ) = φ�−p,−q(K , Q).

Proof From (6.2) it is sufficient to prove the formula when φ ∈ SL(n). For real p > 0,
it follows from Definition (2.24), Lemma 2.6, Definition 2.5, Definition (2.24) again,
and (2.6) that for u ∈ Sn−1,

ρ�−p,−q (φK ,φQ)(u)−p = n

Ṽr (K , Q)

∫

Sn−1
|u · v|pdC̃ p,q(φK , φQ, v)

= n

Ṽr (K , Q)

∫

Sn−1
|u · v|pdφt

p � C̃ p,q(K , Q, v)
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= n

Ṽr (K , Q)

∫

Sn−1
|u · 〈φ−tv〉|p|φ−tv|pdC̃ p,q(K , Q, v)

= n

Ṽr (K , Q)

∫

Sn−1
|u · φ−tv|pdC̃ p,q(K , Q, v)

= n

Ṽr (K , Q)

∫

Sn−1
|φ−1u · v|pdC̃ p,q(K , Q, v)

= ρ�−p,−q (K ,Q)(φ
−1u)−p.

The p = ∞ case is now a direct consequence of the real case and Definition (2.25). ��
Lemma 6.2 If K ∈ Kn

o , Q ∈ Sn
o , p ∈ (0,∞] and q = p + r , r ∈ [0,∞), then

Ep,q(K , Q) ⊇ �−p,−q(K , Q) when 0 < p < 2,

Ep,q(K , Q) ⊆ �−p,−q(K , Q) when 2 ≤ p ≤ ∞.

Proof Lemmas 4.7 and 6.1 show that it suffices to prove the inclusions when
Ep,q(K , Q) = B. For 0 < p < 2, Definition (2.24) and Theorem 4.5 show that
for each u ∈ Sn−1,

ρ�−p,−q (K ,Q)(u)−p = n

Ṽr (K , Q)

∫

Sn−1
|u · v|pdC̃ p,q(K , Q, v)

≥ n

Ṽr (K , Q)

∫

Sn−1
|u · v|2dC̃ p,q(K , Q, v)

= 1.

This gives �−p,−q(K , Q) ⊆ B = Ep,q(K , Q) when 0 < p < 2.
When 2 ≤ p < ∞, the inequality is reversed. Thus Ep,q(K , Q) ⊆ �−p,−q(K , Q)

for 2 ≤ p < ∞. The case p = ∞ follows from the real case togetherwith Theorem5.4
and Definition (2.25). ��

Of course the case p = 2 of Lemma 6.2 is known from Lemma 4.8: E2,q(K , Q) =
�−2,−q(K , Q).

Our general L p version of John’s inclusion will be a corollary of

Theorem 6.3 If K ∈ Kn
o, Q ∈ Sn

o , pi ∈ (0,∞], qi = pi + r , r ∈ [0,∞), i = 1, 2,
then

�−p1,−q1(K , Q) ⊇ n
1
2− 1

p1 Ep2,q2(K , Q) when 0 < p1 ≤ p2 ≤ 2,

�−p1,−q1(K , Q) ⊆ n
1
2− 1

p1 Ep2,q2(K , Q) when 2 ≤ p2 ≤ p1 ≤ ∞.

Proof Note that qi = pi + r , i = 1, 2 and 0 ≤ r < ∞. Lemmas 4.7 and 6.1 show
that it suffices to prove the inclusions when Ep2,q2(K , Q) is the unit ball B. Since
Ep2,q2(K , Q) = B, Definition 4.6 gives

Ṽp2,q2(K , B, Q) = Ṽr (K , Q). (6.3)

123



(p, q)-John ellipsoids 9627

Suppose 0 < p2 ≤ 2. Now Definition (2.26), Definition (1.6), Jensen’s inequal-
ity, Definition (1.6) again, (6.3), Jensen’s inequality again, (6.3) again, and finally
Theorem 4.5 show that for each u ∈ Sn−1,

ρ�−p1,−q1 (K ,Q)(u)−1 = n
1
p1

[∫

Sn−1

( |u · v|ρK (v)

hK (αK (v))ρQ(v)

)p1
dṼ r (K , Q; v)

] 1
p1

≤ n
1
p1

[∫

Sn−1

( |u · v|ρK (v)

hK (αK (v))ρQ(v)

)p2
dṼ r (K , Q; v)

] 1
p2

= n
1
p1

[
1

Ṽr (K , Q)
|u · v|p2dC̃ p2,q2(K , Q, v)

] 1
p2

= n
1
p1

[
1

Ṽp2,q2(K , B, Q)

∫

Sn−1
|u · v|p2dC̃ p2,q2(K , Q, v)

] 1
p2

≤ n
1
p1

[
1

Ṽp2,q2(K , B, Q)

∫

Sn−1
|u · v|2dC̃ p2,q2(K , Q, v)

] 1
2

= n
1
p1

[
1

Ṽr (K , Q)

∫

Sn−1
|u · v|2dC̃ p2,q(K , Q, v)

] 1
2

= n
1
p1

− 1
2 .

Thus, n
1
2− 1

p1 Ep2,q2(K , Q) ⊆ �−p1,q1(K , Q).
When 2 ≤ p1 ≤ p2 < ∞, the inequality above is reversed. Thus,

�−p1,q1(K , Q) ⊆ n
1
2− 1

p1 Ep2,q2(K , Q).

The case p = ∞ follows from the real case together with Theorem 5.4 and Defi-
nition (2.25). ��

By taking p1 = p2 = p in Theorem 6.3 and combining the inclusions with those
of Lemma 6.2 we get the general L p version of John’s inclusion:

Corollary 6.4 If K ∈ Kn
o, Q ∈ Sn

o , p, q ∈ (0,∞] with p ≤ q, then

Ep,q(K , Q) ⊇ �−p−q(K , Q) ⊇ n
1
2− 1

p E p,q(K , Q) when 0 < p ≤ 2,

Ep,q(K , Q) ⊆ �−p,−q(K , Q) ⊆ n
1
2− 1

p E p,q(K , Q) when 2 ≤ p ≤ ∞.
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7 Volume-Ratio Inequalities

We first established the following inequality.

Theorem 7.1 If K ∈ Kn
o, Q ∈ Sn

o , r ∈ [0,∞) and p1, p2, p1, p2 ∈ (0,+∞] with
satisfying that p1 < p2, q1 = p1 + r and q2 = p2 + r , then

|Ep1,q1(K , Q)| ≤ |Ep2,q2(K , Q)|.

Proof From Definitions (1.10), together with Jensen’s inequality, it follows that for
0 < p1 ≤ p2 ≤ ∞,

(
Ṽp1,q1(K , L, Q)

Ṽr (K , Q)

) 1
p1

=
(∫

Sn−1

(
hL(αK (u))ρK (u)

hK (αK (u))ρQ(u)

)p1
dṼ r (K , Q; u)

) 1
p1

≤
(∫

Sn−1

(
hL(αK (u))ρK (u)

hK (αK (u))ρQ(u)

)p2
dṼ r (K , Q; u)

) 1
p2

=
(
Ṽp2,q2(K , L, Q)

Ṽr (K , Q)

) 1
p2

.

This together with Definition 4.6 immediately gives the desired result for real p2
and q2. For the case p2 = ∞, q2 = ∞, the result follows from the real case and
Theorem 5.4. ��

In general, the (p, q)-John ellipsoid Ep,q(K , Q) is not contained in K or Q. How-
ever when 1 ≤ q

n ≤ p ≤ q ≤ n + p ≤ ∞, the volume of Ep,q(K , Q) can be
dominated by volume of Q.

Theorem 7.2 If K ∈ Kn
o, Q ∈ Sn

o and 1 ≤ q
n ≤ p ≤ q ≤ n + p ≤ ∞, then

|Ep,q(K , Q)| ≤ |Q|, (7.1)

with equality if and only if K , Q are origin-symmetric ellipsoids with dilates of each
other when 1 ≤ q

n < p, while K , Q are an ellipsoid with dilates of each other when
p = 1, q = n.

Proof First suppose p < ∞. From Definition (1.9), Definition 4.6 and the L p-
Minkowski inequality (see Lemma 2.4), we have

Ṽr (K , Q) = Ṽp,q(K , Ep,q(K , Q), Q)

≥ |K | q−p
n |Ep,q(K , Q)| p

n |Q| n−q
n , r = q − p > 0, (7.2)

with equality if and only if K , Q and Ep,q(K , Q) are dilates when 1 <
q
n < p, while

K and Ep,q(K , Q) are dilates when q = n and p > 1, and K and Ep,q(K , Q) are
homothetic when q = n, p = 1.
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From the dual L p-Minkowski inequality (2.9), we have

Ṽr (K , Q)n ≤ |K | rn |Q| n−r
n , (7.3)

with equality if and only if K and Q are dilates for 0 < r = q − p < n.
Together with (7.2) and (7.3), we immediately get

|Ep,q(K , Q)| ≤ |Q|.

The condition of equality follows from ones in (7.2) and (7.3).
For p = ∞ the results follows from the argument for the real case and Theorem 7.1.

��
When Q = K , an immediate consequence of Theorem 7.2 is

Corollary 7.3 If K ∈ Kn
o and 1 ≤ p ≤ ∞, then

|Ep(K )| ≤ |K |, (7.4)

with equality for p > 1, if and only if K is an origin-symmetric ellipsoid, and equality
for p = 1 if and only if K is an ellipsoid.

Note that this inequality is about L p John ellipsoid proved by Lutwak, Yang and
Zhang [30].

If p, q ∈ (0,∞], K is an origin-symmetric convex body in R
n , and Q is a star

body (about the origin) in Rn , then K is said to be (p, q)-isotropic with respect to Q,
if there exists a c > 0, such that

c|x |2 = n
∫

Sn−1
|x · v|2dC̃ p,q(K , Q, v), for all x ∈ R

n .

For Q = K , then K is said to be L p isotropic (see [30]).
Theorem 4.5 shows that K is (p, q)-isotropic with respect to Q if and only if there

exists a λ > 0, such that

Ep,q(K , Q) = λB.

Theorem 7.4 If 0 ≤ r ≤ n, K and Q are origin-symmetric convex body in Rn, and K
is (1, 1 + r)-isotropic with respect to Q, then for u ∈ Sn−1,

h�1,1+r (K ,Q)(u) ≤ 1

2
√
n
|K | rn |Q| n−r

n

(
ωn

|E1,1+r (K , Q)|
) 1

n2

. (7.5)

Proof If inequality (7.5) holds for bodies K and Q, then it obviously holds for all λK
and λQ with λ > 0. Thus for K that is (1, 1+ r)-isotropic with respect to Q we may
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assume that E1,1+r (K , Q) = B. It is necessary to show that

h�1,1+r (K ,Q)(u) ≤ 1

2
√
n
|K | rn |Q| n−r

n .

Definition 4.6 combined with Definition (1.13) gives

Ṽ1,1+r (K , B, Q) = Ṽr (K , Q). (7.6)

FromDefinition (2.23), (7.6), Jensen’s inequality, (7.6) again, and finally Theorem 4.5,
it follows

2

Ṽr (K , Q)
h�1,r+1(K ,Q)(u)

= 1

Ṽr (K , Q)

∫

Sn−1
|u · v|dC̃1,r+1(K , Q, v) (7.7)

= 1

Ṽ1,1+r (K , B, Q)

∫

Sn−1
|u · v|dC̃1,1+r (K , Q, v)

≤
[

1
∫
Sn−1 dC̃1,1+r (K , Q, v)

∫

Sn−1
|u · v|2dC̃1,1+r (K , Q, v)

] 1
2

=
[

1

Ṽr (K , Q)

∫

Sn−1
|u · v|2dC̃1,1+r (K , Q, v)

] 1
2 = 1√

n
.

Then we have,

h�1,r+1(K ,Q)(u) ≤ 1

2
√
n
Ṽr (K , Q), for u ∈ Sn−1. (7.8)

Note that 0 ≤ r ≤ n, by using dual Minkowski inequality (2.9), we have

h�1,1+r (K ,Q)(u) ≤ 1

2
√
n
|K | rn |Q| n−r

n .

��

In particular, by taking Q = K in (7.5), and h�1,1+r (K ,Q)(u) = 1
n h�(K )(u) =

1
n voln−1(K |u⊥), we have (see [30])

voln−1(K |u⊥) ≤
√
n

2
|K |

(
ωn

|J (K )|
) 1

n2

. (7.9)
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