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Abstract

As an extension of the classical John ellipsoid and the L ,-John ellipsoids due to
Lutwak—Yang—Zhang, this paper studies (p, g)-John ellipsoids. We consider an opti-
mization problem about the (p, ¢)-mixed volumes, whose solution is uniquely existed
forall0 < p < g.The solution allows us to introduce the concept of (p, ¢)-John ellip-
soids. As applications, we established an analog of the John’s inclusion theorem and
Ball’s volume-ratio inequality for (p, g)-John ellipsoids. Moreover, the connection
between the isotropy of measures and the characterization of (p, ¢)-John ellipsoids is
demonstrated.

Keywords L, Brunn—Minkowski theory - L, dual curvature measures - (p, ¢)-John
ellipsoid - Extremal problems

AMS Subject Classification 52A30 - 52A40

1 Introduction

The concept of John ellipsoid, introduced by Fritz John [20], is extremely useful in
convex geometry and Banach space geometry. For each convex body (compact convex
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set with nonempty interior) K in the n-dimensional Euclidean R", its John ellipsoid
J K is defined as the unique ellipsoid of maximal volume contained in K.

Two fundamental results concerning the John ellipsoid are John’s inclusion and
Ball’s volume-ratio inequality. Let K be an origin-symmetric convex body K in R”".
John’s inclusion shows that

K C V/nJK. (1.1)

As an application of John’s inclusion, the best upper bound of the Banach-Mazur
distance is /7, for an n-dimensional normed space to n-dimensional Euclidean space.
Ball’s volume-ratio inequality states that

K| _ 2
—_— < —, (1.2)
IJK| ™~ wn
with equality if and only if K is a parallelotope. Here |- | denotes n-dimensional volume
andw, = |B| = "%/ T (1 4 %) denotes the volume of the unit ball B in R". The fact
that there is equality in (1.2) only for parallelotopes was established by Barthe [3]. For
more information about the John ellipsoid, one can refer to [1,2,12,14,15,21,22,44]
and the references within.

In 2005, Lutwak, Yang and Zhang [30] extend the John ellipsoid to L, John
ellipsoids, which is an important concept in the L, Brunn—Minkowski theory ini-
tiated by Lutwak [27,28]. During the last two decades, the L, Brunn—Minkowski
theory has achieved great developments and expanded rapidly, see, e.g., [4-6,8,9,17—
19,24-26,29,31-34,37,38,47-51]. Moreover, the Orlicz Brunn—Minkowski theory, as
an extension of the L, Brunn—Minkowski theory, emerged in [16,35,36]. In these
papers, the fundamental notions of the L, projection body and the L, centroid body
were extended to an Orlicz setting, see also [7,53,55]. For more information, please
refer to the literature [11,23,39-41,54,56—60]. In particular, the classical John ellip-
soid is extended to the L, setting by Lutwak, Yang and Zhang [30] and to the Orlicz
setting by Zou and Xiong [58].

Suppose p € (0,00] and K is a convex body in R" with the origin in its inte-
rior. Among all origin-symmetric ellipsoids E, the unique ellipsoid that solves the
constrained maximization problem

1
EIN\ 7" _

max (u> , subjectto V,(K,E) <1, (1.3)
E \ o,

is called the L, John ellipsoid [30] of K and denoted by E, K. Clearly, E,B = B.
Here

V,(K,E) = ( ! (hE(u))th(u)dS(K,u)>}), 0<p < oo,
g n|K| Jgn1 \hg ()

is the normalized L, mixed volume of K and E; $"~1 is the unit sphere in R"; hg
and h g are the support functions (see Sect. 2) of K and E, respectively. In the case
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p = 00, we define

Voo K, E) =sup {Zi?bg

cu € suppS(K, -)} .
Therefore, when the John point of K, i.e., the center of J K, is at the origin, Eso K is
precisely the classical John ellipsoid J K . In the case p = 2, the L, John ellipsoid E> K
is the new ellipsoid I'_» K found by Lutwak, Yang and Zhang in [32], which is now
called the LYZ ellipsoid and is in some sense dual to the Legendre ellipsoid of inertia
in classical mechanics [42]. Inthe case p = 1, E{ K is the so-called Petty ellipsoid, see
[13,43]. The volume-normalized Petty ellipsoid is obtained by minimizing the surface
area of K under SL(n)-transformations.

In general, the L , John ellipsoid E, K is not contained in K (except when p = 00).
However, when 1 < p < oo, ithas |E, K| < |K|. Inteverse, for0 < p < oo, the L,
version of Ball’s volume-ratio inequality [30] states that

IK| 2"
S JR—
|EpK| Wp

with equality if and only if K is a parallelotope.

By L, dual curvature measures, Lutwak, Yang and Zhang [31] introduced the
notion of L, dual mixed volumes which unifies L, mixed volumes of convex bodies
in the L , Brunn—Minkowski theory and dual mixed volumes of star bodies in the dual
Brunn—-Minkowski theory. Therefore, L, dual mixed volumes become to be a core
concept in convex geometry with unifying some contents of the L , Brunn—-Minkowski
theory and the dual Brunn—Minkowski theory.

Let K7 denote the class of convex bodies in R" that contain the origin in their
interiors. And let S denote the set of star bodies (compact star-shaped set about the
origin) in R".

Suppose K is a convex body in R”. For each v € R"\{o}, the hyperplane

Hx(w) ={xeR":x-v="hgW)}

is called the supporting hyperplane to K with outer normal v.
The spherical image (Gauss image) of o C dK is defined by

vr(o)={ve S ' :x e Hg) forsomex € o} C §" .

Let ox C 0K be the set consisting of boundary points x € 9K, for which the set
vk ({x}) contains more than a single element. It is well known that the spherical
Lebesgue measure of ox is H"~!(og) = 0 (see, e.g., [46, p. 84]). On precisely the
functions

VK - aK\GK — Sn_l,
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is called the spherical image map (Gauss map) of K and is continuous (see, e.g., [46,
Lemma 2.2.12]). The set d K \ ok is usually abbreviated by 3'K . Since H" ! (ox) = 0,
the integrals over subsets of 3'K and 9K are equal with respect to H" .

For w C §"~!, the radial Gauss image of w is denoted by

ag(w) ={ve S pxwu € Hy (v) for some u € w}.
For a subset  C $"~!, the reverse radial Gauss image of 7 is denoted by
ax(n) ={uce "1 px(wu € Hg(v) for some v € n}.
For K € K7, the radial map of K, rg : sl 5 9K, is defined by
rg(u) = px (wu € 9K,
for u € §"~'. Here, px (1) = max{r > 0 : Au € K} is the radial function of K for
u € §"~1. Note that r;l : 9K — S§"~!is given by r;l(x) = x/|x| forx € K. Let
wg = 0g = rEl (ok). Observe that wg has spherical Lebesgue measure 0, and the
integrals over subsets of §"~'\wg and S"~! are equal with respect to the spherical
Lebesgue measure.
The radial Gauss map of K € K7, ag : S"N\wg — §"1, is given by
0K = VK OFrK.
Obviously, for any A > 0 and any u € §"~!,

o (u) = ak (u). (1.4)

For p,g e R, K € K}, and Q € S}, the L, dual curvature measures GP,Q(K, 0)
are Borel measures on "~ ! given by

- 1
/Sn_l g)dCp 4 (K, Q,v) = - /Sn_1 glag W)hg (ax W)™ px (u)! po )"~ Idu,
(1.5)

for each continuous function g : "1 5 R. For each Borel set n C 7~ we have

~ 1 n—
Cra® 0 = [ het@x) o wog iwan. (16)

o ()

It has shown that [31, Proposition 5.4] that the L, surface area measure, the dual
curvature measure and the integral measure are all special cases of the L, dual cur-
vature measure. In particular, for p, ¢ € R, and K € K7,

- 1
Cpg(K. K. = —5y(K.). (1.7)
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~ 1
Cpn(K,B,) = ;SP(K,-), (1.8)

where S, (K, -) is the L -surface area measure of K.

Using L, dual curvature measures, Lutwak, Yang and Zhang [31] introduced the
concept of (p, g)-mixed volume volumes. For p, ¢ € R, and convex bodies K, L €
K7, and a star body Q € S, the (p, g)-mixed volume prq(K, L, Q) is defined by

Vyu(K, L, Q)

/S | h? (v)dC, 4 (K, Q, )

1
o )P 0) 7 0 00 07 (19)

n
_ 1 hy (g ) \? ( px @) \? .

The concept of the (p, g)-mixed volume unifies the L, mixed volume and the dual
mixed volume in the sense that

Vyg(K,L,K)=V,(K,L), V,,(K,K,Q)=V,(K, Q). (1.11)

In this paper we will consider the problem of minimizing total L , dual curvature
measures under SL(n)-transformations. Let K be a smooth convex body in R” with
the origin in its interior, and let O be a smooth star body in R”. For real number p, ¢,
find

min / dgp,q(¢K,¢Q,M)-
sn—1

$eSL(n)
From (1.9) and [31, Proposition 7.3] (see also Lemma 2.3 of our paper), it

follows that the original problem of minimizing total L, dual curvature under SL(n)-
transformations can be rewritten as

min fsn_. dC, (9K, $Q,u) = min V, ,(¢K, B, $0)

¢eSL(n) ¢eSL(n)
= min V K, B
piin pq(K, ¢ B, Q)
= min V,,,q(K, E, 0),
|E‘:wn

where the last minimum is taken over all origin-symmetric ellipsoids with volume w,,.
A ¢p , € SL(n) at which this minimum is attained defines an ellipsoid E p.q(K, Q)
which ¢, , maps into the unit ball B, i.e., Ep (K, Q) = ¢> B. This ellipsoid is
unique and will be called the volume- normahzed (p, g¢)-John elhpsmd of K and Q.
For p = o0, define

Exq(K, Q)= pli_{ICl)o Epq(K, Q).
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For r € [0, +00), the normalized r-th dual area measure of K, Q € S,
V.(K, Q; ), is defined by

dV (K, Q;u) = mpk( ),0 "(u)du, foru e s"71, (1.12)

where Vr (K, Q) is the r-th dual mixed volume of K, Q € S} Clearly, dV (K 0;)

is a probability measure on "', In the case Q = K, dV (K,K;u) = dVK(u) =

AIK K‘ pxdu, foru € §"~ I is the normalized dual area measure of K € S). And for

the cases r = 0, n, we have dVo(K, Q) = dVQ(-) and an(K, ;)= dVK(-).

In order to rewrite the formulation of our problem for the case p = oo, we next
introduce a normalized version of (p, ¢)-dual mixed volumes. If K, L € K7, Q € S)
andg > p > Owithr = g — p > 0, then we define the normalized (p, ¢)-dual mixed
volume by

V. (K, Q)

1

hL<aK<u>)pK<u))” - )
= _— dV,(K, O; . (1.13
(/S (th(u))pQ(u) (K.Qw) - (113

In the case p = oo (then ¢ = 00), define

7 1
Vpa(K.L.O) = (M)

hi(ag W) pg (u)

Veooo(K.L, Q) = Ak () pk ()
ool L 0) ma"{hK(am))pQ(u)

:u € suppV, (K, Q; -)} . (1.14)

hi (o (w)pk (u)
" i (ak () po (u)
Jensen’s inequality that

Unless is constant on suppV,(K, Q; -, it follows from (1.13) and

Vora (K, L, Q) <V (K, L, Q), (1.15)

for0 < p1 < p2<00,0<q1=p1+r=<pr+r=qg <00, and
Jim V4 (K, L, Q) = Voooo(K, L, O).
We shall require the fact that, for pg € (0, oo], go = po+r € (0, 00]and r € [0, 00),

lim V(K. L, Q) =V y4(K.L, Q). (1.16)

pP—>Po

In fact, we have already proved a more general conclusion, see Theorem 3.1 in sub-
sequent. By (1.14), we have

VOOOO(K L,0Q)<1 ifandonlyif L C ('OQ> K. 1.17)
PK

@ Springer



(p, q)-John ellipsoids 9603

In the sequel, we use £" to denote the class of origin-symmetric ellipsoids in R”.
Inspired by the constrained maximization problem (1.3) posed by Lutwak, Yang
and Zhang [30], this paper will consider a (p, g)-version of the problem:

Optimization Problems 1.1 Let 0 < p < g withq = p+r,r > 0. For K € K" and
Q € &), find an ellipsoid, among all origin-symmetric ellipsoids, which solves the
following constrained maximization problem:

1
E n =
max (u> subjectto 'V, (K, E, Q) <1. (Sp.q)

Ee&n \ wy

An ellipsoid that solves the constrained maximization problem will be called a S 4
solution for K and Q. The dual problem is

1
= . [E|\" -
\% K, E, bject t — > 1. S
min Vp.q( Q) subject to <w (Sp.q)

An ellipsoid that solves the dual problem will be called a S'p_q solution for K and Q.

We will prove in Sect. 4 there is a unique solution to the constrained maximization
problem, which will be called the (p, g)-John ellipsoid E, 4, (K, Q) in Definition 4.6.
The dual problem is equivalent to the problem of minimizing total L, dual curvature
measures under SL(7n)-transformations. The dual problem has a unique solution with
volume w,, which differs by only a scale factor to the S, ; solution. Therefore, it is
called the normalized (p, ¢)-John ellipsoid f[,,q (K, Q).

In the case of O = K, E, 4(K, Q) = E,(K) is the L, John ellipsoid studied
by Lutwak, Yang and Zhang [30]. In the case that 0 = B and p = n, one also has
Ep,q(K’ Q) = Ep(K)

This paper is organized as follows. In Sect. 2 we recall some basic results in convex
geometry. Section 3 proves the continuity of \7[,’,] and V p.q- We prove in Sect. 4
the existence, uniqueness and geometric characterization of the (p, ¢)-John ellipsoid
which solves Problem 1.1. Using the continuity of 171,, g and 1% p.q» We study continuity
of (p, g)-John ellipsoids in Sect. 5 In Sect. 6, we discuss generalizations of John’s
inclusion for (p, g)-John ellipsoids. In the last section, the inequality for the volume
ratio is established.

2 Preliminaries

For quick reference we recall some basic results of convex geometry. We refer the
reader to [10,46] for details.

The setting will be the n-dimensional Euclidean space R”. As usual x - y denotes
the standard inner product of x and y in R". For x € R", let |x| = 4/x - x be the
Euclidean norm of x. For x € R"\{o}, we use both x and (x) to denote x/|x|.
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9604 T.Maetal.

In addition to its denoting absolute value, without confusion we will use | - | to
denote the standard Euclidean norm on R”, often to denote n-dimensional volume,
and on occasion to denote the absolute value of the determinant of an n X n matrix.

For K e K}, its support function, hg : R" — Ris defined by hg (x) = max{x-y :
y € K}, for x € R". Obviously, for real A > 0,

hyg (x) = Ahg(x), forx € R". 2.1
More generally, for ¢ € GL(n) the image ¢ K = {¢x : x € K} have that
hyk (x) = hg (¢'x), (2.2)

where ¢ denotes the transpose of ¢.
The Hausdorff distance between convex bodies K and L is given by

(K, L) :=lhg —hileo = max, lhg (u) —hr(u)l.
ueS"

If K, L € K}, then for real p > 0, the L ,-mixed volume of K and L is defined by

1
V,(K, L) = ;/

Sl’l

. hY )dS, (K, u). (2.3)

If K contains the origin in its interior, then its polar body K* is given by K* =
{xeR":x.y <1 forall y € K}. Obviously, for ¢ € GL(n),

(@K)" =¢~ 'K, (2.4)
where ¢! denotes the inverse of the transpose of ¢.

A star body K C R” is a compact star-shaped set about the origin whose radial
function pg : R"\{o} — R, defined for x € R"\{o} by pgo(x) = max{A > 0:ix €
01}, is continuous. We call two star bodies K and L in S are dilates (of one another)
if px (u)/pr (u) is independent of u € §"~ 1. If A > 0, we have

0.k (X) = Apg (x), forall x € R"\{o}. (2.5)

More generally, for ¢ € GL(n), the image ¢ K = {¢px : x € K} of K have the
property

Ppk (X) = pr (¢~ '), (2.6)

for all x € R"\{o}.
The radial distance between K, L € S} is

Bu(K. L) = lpk = prloc = max |ox () = pL(w)]
ueS"-
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The dual Brunn—Minkowski theory is a theory of dual mixed volumes of star bodies.
For g € R, the g-th dual mixed volume of K, Q € S}, is defined by (see [31])

~ 1
Vy(K, Q) = ;f

sn

, pi Wpg * (w)du, 2.7

where the integral is with respect to spherical Lebesgue measure. It is well know that
for ¢ € GL(n),

Vy (0K, 90) = |9V, (K, Q), g € R\{0}. (2.8)

Dual Minkowski inequality can be expressed as follows: If 0 < ¢ <rnand K, Q €
Sh, then

Vo (K, Q)" < KI“IQI"*, (2.9)
with equality if and only if K and Q are dilates when 0 < g < n.

If K € K, then it is easy to see that the radial function and the support function of
K are related by

hg(v) = maxl(u -v)pg (u), forv e S”_l, (2.10)
ueSn—
1 v n—1
= max , forueS" . (2.11)
Pk W) vesn=t hg (v)

From definitions of Vp,q and the radial Gauss map, the support function and the
radial function imply that

Lemma 2.1 Let A > 0, then

V,yK, L, Q) =2""V, (K,L,Q), (2.12)
Vp,q(K, AL, Q) = )\pV,,,q(K, L, Q), (2.13)
V,,,q(K, L,20)=)"1 Vp,q(K, L, Q). (2.14)

ForA > 0and p € (0,00],g = p+r,r € [0, 00), based on the (1.13), (2.1) and
(2.5), we can immediately obtain the results,

Lemma 2.2 Let A > 0, then

VygOK. L,Q) =V, K. L. Q). 2.15)
Vp,q(K,kL, 0) = kVp,q(K, L,Q), (2.16)
V(K. L.20) =27V, (K. L. Q). 2.17)

We shall need the following fact.
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Lemma 2.3 (cf. [31]) The (p, g)-mixed volume is SL(n)-invariant, in that for p, q €
R, and K, L € K}, with Q € S,

Vpg @K, $L.¢Q) =V, (K, L, Q). (2.18)
for each ¢ € SL(n).
Lemma 2.1, together with Lemma 2.3, shows that for ¢ € GL(n),
Vog @K, L. Q) = ||V, (K, L, Q). (2.19)

We will also need the fact that for ¢ € GL(n) and p € (0,00],g = p+7r,r €
[0, 00),

Vpg@K, L, ¢0) =V, (K, L, Q). (2.20)

This follows immediately from (2.8) and (2.19) for all p € (0,00], g = p + r and
r € [0, 00).

The following inequality for (p, ¢)-mixed volume is a generalization of the L,

Minkowski inequality for mixed volume (see [31]).

Lemma 2.4 Suppose p, q are such that 1 < % <p IfK,LeK!and Q €S}, then
Vpq(K. L, Q)" = |K|“"P|LIP|Q|"™4, (2.21)

with equality if and only if K, L, Q are dilates when 1 < % < p, while only K and L

need be dilates when ¢ = n and p > 1, and K and L are homothets when g = n and
p=1

We shall require the following definition.

Definition 2.5 (cf. [31]) Suppose p € R. If u is a Borel measure on s"land ¢ €
SL(n) then, ¢, < u, the L, image of x under ¢, is a Borel measure such that

[ s, S = [ 167 s wpant

for each Borel f : §"~! — R.

Lemma 2.6 (cf.[31]) Suppose p # Oandq # 0. Thenforall Q € S} and K, L € K7,
and ¢ € SL(n),

5p,q(¢K,¢Q,-) :¢;, —ié,,,q(K,L,-). (2.22)
We also need the following lemma:
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Lemma 2.7 (cf. [19]) Suppose K; € K with lim K; = Ko. Let v = U2 w;, be the

11— 00
set (of H"'-measure 0) off of which all of the ak,; are defined. Then if u; € s" N\w
are such that lim u; = ug € S"_l\w, then lim ok, (u;) = ag,(uo).
1—> 00 1—> 00

Let K € K. The classical projection body ITK of K is given by (see [10])

1
hng (u) = vol,_ (K |ut) = 5/ lu-v|dS(K,v), Yue S" L
Sn—l

We will use the concept of a L ,-projection body (see [28,29,45,52]). For p > 1,
the L ,-projection body IT, K is given by

1
1 1
h]‘[pK(u) = (Z/S B lu - v|pdSp(K, U))p , uUe€ Snil,

where S, (K, -) is the L ,-surface area measure. Clearly, IT; K = %HK.

We shall use the concepts of (p, ¢)-mixed projection body and (p, g)-mixed polar
projection body. For each K € K] with a star body Q € 7, and p > 0,q > 0,
the (p, g)-mixed projection body, I, , (K, Q), of K and Q is the origin-symmetric
convex body whose support function is defined by

1
| N 1
hn, k.0 W) = (5/ lu-v|[PdC, 4 (K, O, v)) ! , forallu e S"~'. (2.23)
’ sn—1

In particular, we have I, ,(K,B) = I, ,(K,K) = II,K for p > 1, and
M. (K, B) =T 4(K,K) = IT;(K) = 11K.

If K € K7 and real p > 0, the star body I'_, K (called by L ,-polar projection
body, see [30]) is defined as, for u € sn—1

1
1 »
—1
pr_,xu) " = <_|K| /SH lu - v|PdS,(K, v)) .

IfK e K)and Q € S§),andreal p > 0,9 >0andg = p +r,r € [0, +00), the
star body I'_, _, (K, Q) is defined by, for x € R",

n

Pr_lp‘_qm@(x):(m e ulPaCog (K. Q. v))". (2.24)

The star body I'_, _; (K, Q) is called the (p, g)-mixed polar projection body of K
and Q. Itis easy to know thatI'_, _, (K, K) =T"_,K.
Note that for ¢ > p > 1, the body I'_, _,(K, Q) is a convex body. Define

I“*OO,‘*CO (IZ, (2) l)y

P, —oo(K. Q) = lim T (K. Q). (2.25)
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Forreal p > 0,q = p +r,r € [0, 400), and using(1.5), we can rewrite (2.25) as
1
_1 _ lu - v|pg (v) P »
n ?Ppr_, (k.0 W) lz(/ (—) dV,.(K, Q;v) | (2.26)
Fp-a(K.0) st \hg(ax )po() ) "
foru € $"~!. Thus, from (2.25) and (2.26),

lu - v|pg (v)
hg (ak (v)po(v)
ue s (2.27)

P ik, o)) = maX{ :v € suppV, (K, Q; -)} ,

3 The Continuity of Vp,q and Vp,q

In this section, we consider the continuity of \7,,4 and 7,,,4.
Theorem 3.1 Suppose K, K;,L,L; € K7, Q, OQr € 8} and p;, p, qm,q € (0, o],

where i, j,k,I,m e N. Letr € [0,400). IfK; = K,L; - L, Qx = Q,p — p,
and qm — q asi, j, k,1,m — oo, then

o lim Vg, (Ki Ly, Qu) = Vyg(K. L, Q), 3.0)
i,j.k,l,m—o0
and
Jim Vi (Ki Ly, Q0 = Vi pir (K, L, Q). (3.2)
Proof Let
¢m = min{cy, c2}, ¢y = max{c3, c4},
where
inf <{mirlth} U {mlnhLl jeN )
¢ = N NG
sup <{maxh1< U maxhK 1l e N})
Sn—l sn—
inf({mit}pK U mm,oK ;i eN )
¢y = N N
sup( max pg U max pg, : N})
Sn Sll
sup( math} U {math. 1 j € N})
gn—1 gn—1 J
c3 =
inf( miI}hK} U {mmhK i€ N})
Sn— Sl‘l
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(p, q)-John ellipsoids 9609

sup ({max,oK} U {max PK; 1 € N})
Sn—l Sn—l
inf ({IST_?"Q} U {g}l_r}ka ke N})

We first claim 0 < ¢, < ¢y < 00.Since K; — K, L; — Land Or — O, p; —
pasi,j,k — oo, wehave hg, — hg, th — hp and hy, — hg uniformly on
st respectively. From K, K;, L, L; € K}, O, Oy € S/, it follows that there exists
an Ng € N, such that forall i, j,k > Npandu € sn—1

and

C4 =

minh) . < hg,(u) < maxhyx and minh;; < hp (u) < maxhyp,
2 gn—1 sn—1 2 J sn—1

Sn—l
min < pg. (1) < max and min < 1) < max .
min P = pK; () < max p2x minpg = P () < max p20

For brevity, we write

a, =min{a :a € Aj U Ay}, ay = max{a :a € A3 U Ay},

where
av=U {rx@.ny @, 0500, 0w},
uesn—1
Ay= ) U k). he, @), px, ). po, )}
1<i<No uesn-1!
Ay=J {hak@), har ), pax (w), pro()},
uesn—1
and

Ag = U U {hKi(u),th(u), IOK,'(M)» ,OQk(U)}

1<i<Np uesn-!
Then we have 0 < a,,, < ay < 0o, and

anwB C K CayB, au,BCK; CayB fori e N,
anB C L CayB, awBCLjCayB forjeN,
anBC Q0 CayB, au,B < Qr CayB fork e N.

Thus, by the definitions of ¢;,, and cyy, it yields

am am
O<—<cp<cy<— <o0.

apm am

@ Springer



9610 T.Maetal.

Next, we prove

lim V4 (Ki, L, Or) =V, (K, L, Q).

i,j.k,l,m—o0
For any ¢ > 0, three observations are in order. Firstly, let f(¢) = 7, fi(t) =
tPll =1,2,---, defined on [¢,, cpr], then the sequence of { f;} converges uniformly

to fon[cy,cyl. Andletg(t) =17, g, (t) =tPn,m = 1,2, --- ,definedon [c;,, cpr],
then the sequence of {g,,} converges uniformly to g on [c,,, cps]. Forall u € §"~!

_ he, (e, () _ Pk

= ik ag G0y S M= W S

M

there exists an Ny € N, such that for all [, m > Ny,
‘ (th (O[K,' (u)))/’l <pKl- (M) )qm _ (th (O[K,' (u))>l? < PK; (l/l) >l]
hi, (ak, (1)) po (1) hi, (ak, (1)) P (1)
independently of i and j and uniformly on u € §"~!.

Secondly, since K; — K,L; — Land Oy — O, p; — pasi, j,k — 00, and
Lemma 2.7, there exists an N> € N such thatforalli, j, k > Ny andforallu € sn—1,

‘(th(“K;(“))>p <,0K,~(M))q B (hL(aK(M))>p <,0K(M)>q
hk, (ak; (1)) po, (1) hi (g () po(u)
Indeed, since functions f and g are all Lipschitzian on [c,,, cjs], there exist constants
C1,Cy > 0, such that forall u € S"~1,

‘(th(O‘Ki(”))Y(pK,-(u)) <hL(0tK(u)))p <,0K(u)>q
hk, (ak; (u)) POy (1) hi (og (1)) po(u)

- <,0K,- (u))q (hL (ak; (”))> (hL(OéK(u)))
~ \po;(u) hk, (ak; (u)) hk (ak (u))

N <hL(0tK)(u))p </>K,- (M)) B <,0K(M)>
hk(ak)(u) POy (1) po(u)

< (p;g.(bl))q hij(ak, ) hy (g W)

- po,m) /) |hk (ak; W)  hk(akw))

3 63

€
< 3 (34

(hL(OtK(M)) >p pk; () pk(u)

+C2 -

hi (g (1)) po () pou)

< wacl . S (Lj, L)ymaxg-1 hg +8u(K;, K)maxgn—1 hp

ming.—1 hg, mingn—1 hg

31 (Ki, K)maxgi—1 pg + 31 (Q. Q) maxgi1 p

+chc, - : .
M=z Mmingn-1 PQ, MiNgn—1 PO
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Thirdly, since the measure sequence {7Q .} weakly converges to 7Q, there exists
an N3 € N, such that for all k > N3,

hp (k@) \? (pxk@\? =
f ( dVo, ()
sn-1 \ hg (g (1)) po(u)
h p 4
_/ ( L(OlK(M))> (/OK(M)> a7 o)
sn—1 \ g (ag (u)) po(u)
From (3.3), (3.4) and (3.5), it follows that for all i, j, k, [, m > max{Ny, N2, N3},
hr . (ak, P gm_ P a -
/‘ LJ(OtK,(M)) pK; () dVQk(u)—/ (hL(otK(u))) (pK(u)> )
sn=1 \ hg, (ag; W) PO, () sn=1 \hg (ag u)) po ()
</ th(OlKl-(M)) P PK,-(M) m th(“K,-(u)) 4 PK,-(M) 9
= Jan=1 |\ hi, (ak; () POy (1) h; (g, () POy (1)
+ / he @k )\ ( o, (o) qﬁ(hu%(u»)f’(wm))q
sn=1 |\ hg; (g, () P, ) h (g (w) po(u)

hL(“K(“)))’)(PK(u))qdﬁ <hL(¢¥K(u))>p (PK(M))q =

\%4 - dv
+Vsm <hK<aK(u» po () 2= kaxan) Gogw 0
< €.

&

4V g, )

Vg, )

Namely,

i VplsQIn(Kh L]’ Qk) _ Vp}q(K, L, Q)
i,j.k,l,m—o0 | Okl 10| :

The first conclusion follows from the fact | Qx| — | Q| by sending k to infinity.
Finally, we proceed to prove

lim Vo pr(Kis Lj, Q) =V p pir (K, L, Q).

i,j,k,l—00
Fix § > 0. For 0 < r < oo, we note that

VplyPIJF"(Ki’ L]? Ok) Vp,p+r(K, L, Q)
Vi(Ki,Qr) V(K. Q)

€ [c1,c3], foreachi, j, k,I € N.

1
The continuity of £ 7 on [c1, ¢3] implies there exists an Ny > 0 such that forall/ > Ny,

1 ~ 1
Vp[,szrr(Kiy Lja Qk) " . Vp[,p1+r(Ki7 Lj, Qk) r < § (3 6)
Vi (Ki, Qk) Vi (Ki, Ok) 2

holds independently of i, j and k.
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From (1.11) and (3.1), it follows _ lim V,.(Ki, Qr) = V.(K, Q). Combining this
i,k— 00

1
with (3.1), the continuity of 77 on [c, ¢3] shows there exists an N5 > 0, such that for
alli, j,k,I > Ns,

1 - 1
sz,pz—&-r(Kiv Lj, Ok) ! _ Vp,p+r(K1 L, Q) ! - é (3.7)
Vi (Ki, Qk) Vi(K, Q) 2
In terms of (3.6) and (3.7), it follows that for i, j, k, [ > max{N4, N5},
~ L ~ 1
Vp[,ql(Kh Lja Qk) " . Vp,q(K, L, Q) ? <5
Vi (Ki, Qk) Vi(K, Q)
That is,
Cdlim Ve (Ki Ly Q1) =V pr (KL L, Q).
i,j,k,l—o00
O

4 (p, q)-John Ellipsoids

In this section, we focus on the main Problem 1.1 proposed in Sect. 1.

Optimization Problems. Let 0 < p < g withg = p+r,r > 0. For K € K} and
Q € 8], find an ellipsoid, among all origin-symmetric ellipsoids, which solves the
following constrained maximization problem:

1
E n =
max <u> subjectto V, 4(K, E, Q) < 1. (Sp.q)

Ee&" \ wy

An ellipsoid that solves the constrained maximization problem will be called a S, 4
solution for K and Q. The dual problem is

1
.= . |[E|\ " _
min V K, E, subject to —_— > 1. S
. p,q( 0) ] (wn ( p,q)

An ellipsoid that solves the dual problem will be called a S p.q solution for K and Q.
The following theorem gives the existence of Problem S, , when 0 < p < ¢, and

proves its uniqueness when 1 < p <gq.

Theorem 4.1 Forany 0 < p < g, there exists an ellipsoid which solves Problem S, ;.
The solution is unique for 1 < p <gq.
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Proof For an ellipsoid E € £" (the class of origin-symmetric ellipsoids in R"), we
use dp to denote its maximal principal radius. There exists a vy € $"~! such that
dplvg-u| < hg(u), forallu € §"~!. From definitions of the (p, ¢)-mixed projection
body and the L ,-dual mixed volume, it yields

1
2 » )
(Faa) %m0

2 \7
< (m) dghn,,.0)(VE)

= (V X O S)H(dElu -vp)PdCp 4 (K, Q, u))
: g (K Q) / Ié(u)dap’q(K’ Q’ I/l)>
=V,.(K.E. Q). 4.1

Let&, 4 = {E eé&” :71,,,](1(, E, Q) < 1}.Then, the above inequality yields that

i - <V,(K, Q))" VoK. E. Q)

2 min iy, (k,0)
~ 1
Vo(K, Q)7 1
< < r( Q)> , , forallE€&,,. (4.2)
2 min i, , (k.0

Thus, the set £, 4 is bounded in the metric space (£", 8x). Using Theorem 3.1, the

functional V p.q(K, -, Q) is continuous, then 5,,,[1 is also closed. According to the
Blaschke selection theorem, each maximizing sequence of ellipsoids for Problem
Sp.q has a convergent subsequence whose limit is still in £, ;. Therefore, a solution
to Problem S, , exists.

We next prove the uniqueness by contradiction. We assume that the ellipsoids £ and
E are two different solutions to Problem S, ;. Let Ey = T1 B and E; = T, B, where
Ty, T, € GL(n). Then det(7}) = det(73) and Vp,q(K, E;,Q) <l,fori=1,2.

Since each symmetric matrices 7 € GL(n) could be represented in the form 7" =
P Q, where P is symmetric, positive definite and Q is orthogonal. Then we may
assume that 77 and 7> are symmetric and positive definite. Then 77 # AT, for all
A > 0. The Minkowski inequality for positive definite matrices implies

1
1 1 n 1 1 1 1
det( =T+ =T —det(Ty) 7 + = det(T) 7.
e<21+22> >ze(1)+26(2)
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Let E5 = %(Tl + T>)B. Then we have
|E3| > |Ei| = |E2|. 4.3)

From (2.2) and the triangle inequality, one has for all u € §"~1,

T! + T} T! T!
.+ zu’<| 1“|+| 2u|=hE1(u)+hE2(u). (4.4)

hs () = | == = 2 2

Now, from Definition (1.13), the monotonicity of f(t) = t”, p > 1, (4.4), and the
convexity of f(t) = ¢, it follows that

Vpg(K, E3, Q)P

B hE3(aK(u)))p(,0K(’4)>pd‘7 K. O

_fs (hK(aK(u» po(u) (K 0

hEl(aK(u))+hEz(OlK(u)))p (,OK(M)>pd‘7 K. O

‘/s( g ok (1)) o) VK20

/ [1 (hEl(OfK(u)))p <p1<(u)>"+l<h52(a1<(u)))” (PK(“))p:|
T Jen-1 L2 \ hg(ak (w)) po(u) 2 \ hg(ak(u)) po(u)
dv, (K, Q; u)

1= =

- 5V,,,q(K, Ei, Q)P + 5‘7”*"(1{’ E», Q)P < 1.

A

A

Then E3 € &, 4. That is, E3 satisfies the constraint 71,,5,(1(, E3, Q) < 1. Then, it
will result in |E3| < |E| = | E2|, which contradicts (4.3). O

Our main problems S), , and Ep,q are two equivalent description. The solutions to
Sp.q and S, , differ by only a scale factor. To prove this conclusion, we need the next
lemma.

Lemma4.2 Let p,g > 0,K € K and Q € S). Then

__max |E| = __max |E; 4.5)
(E€En:V 4 (K E,Q)<1} (EeErV 4 (K E,Q)=1}
and
min =~ V,,(K.E,Q)= min V,. (K. E, Q). (4.6)

{E€E™:|E|>w,} {E€Em:|E|=wy}

Proof We first prove that the ellipsoid E; with 7[,4 (K, Eq, Q) < 1cannotbe the max-

- . g -1
(EeEnT, o (K.E.0)<1) |E|. Infact, for the ellipsoid V , 4 (K, E1, Q)™ " Eq,
its volume is greater than the volume of Ey, i.e.,

imizer of max

V,ya(K, E1, Q)" E;| > |El.
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And one has from (2.16),

Vpa (K. Vpg (K. E1, 7B 0) =1,

as required.

n

We next prove (4.6). For any ellipsoid E; with | E;| > w,, the ellipsoid (%) E;

1

wp \ "
(@) Ez

= on \7 oy \ 7 = -
Vp,q Kv EZ» Q = Vp,q(K’ E21 Q) < Vp,q(Ka E27 Q)
|Ea| |Ea|

satisfies = w,. And from (2.16), it follows that

O

Theorem 4.3 Suppose p, g > 0and K is an origin-symmetric convex body in R", and
Q is a star body in R" about the origin.

(1) If E is an origin-symmetric ellipsoid that is a S, 4 solution for K and Q, then

1

wp \"
Eu 4.7
( |Epm| )
is a solution to Problem S‘p,q.

(2) If E,y, is an origin-symmetric ellipsoid that is a S'p,q solution for K and Q, then

Vpg(K. En, O)7'E,, 438)

is a solution to Problem S, ,.

Proof (1) Let E € {E € £" : |E| > wy}. It follows from (2.16) that

‘717»4 <K7 Vp,q(K, E,O)'E, Q) =1.

Then, from the assumption that £y, is a S, 4 solution, it follows
Eul = |Vpq (K E. Q) E| = V) (K. E, )" |E].

Therefore,

% (KEQ)>(|E|>'II>(G)")']’ v K(wn),llE 0
s 5 5 el I— = = s 5 M, 5
P |Euml |Euml P |Euml
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where the last equality uses the fact ¥V, ,(K, Ey, Q) = 1 by (4.5). Added that

1 1
(\E)LI) Ey € {E € £" : |E| > w,}, it implies that the ellipsoid (IE ‘) Eyisa
solution to Problem § P

2) Let E € {E e&m: ‘7,,,,1(1(, E, Q) < 1}. Since E,, is an Ep,q solution, and
1

(\%) E € {E €& |E| = wp), it follows from (2.16) that
1

1
(%) Vpg(K.E.Q)=V,, <1<, (%) E, Q) = Vpg(K. En. Q).

Using (4.6), wehave | Ey,| = w,. Then V .y (K, Eyp, Q)" | Ep|i = V po(K . E, Q)7

1 . .
|E|%. Thus, it results in

_~ i = %
V(K. En, )7 Ey| Vpatk. E.0) '] <|E|>i
>

Wy wp wp

Then the proof is completed by observing 7,,,(1 (K, 71”1([(, Em, O)"'E,, Q) =
O

In Theorem 4.1, we proved the existence for all cases of 0 < p < ¢, and the
uniqueness for the cases of 1 < p < g. In order to show the uniqueness of for all
casesof 0 < p < g, we need the next lemma that shows that, without loss of generality,
we may assume that the ellipsoid E is the unit ball B in R".

Lemma 4.4 Suppose real p,q # 0, K € K} and Q € S} If ¢ € GL(n), then
Vpg(¢ 'K B¢~  Q)lx]?
= n/ Ix - v|?dCp (07 'K, ¢7' 0, v), forallx € R, (4.9)
sn—1
if and only if
V. q(K ¢B, Q)h((;)B)*(x)
= n/ |x - v|2hp 2(v)deq(K Q,v), forallx € R". (4.10)
sn—1

Proof In light of Lemma 2.1, it suffices to prove the statement for SL(n). In terms of
(2.2), (2.4) and Lemma 2.3, we have, for all x € R",

Vg (K, B, Qhiypy.(x) = V4 (K, $B, Q)5 5. (x)

v,
=V, 47K, B, ¢" Q)h3. (97 x).
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Then, using Definition 2.5, (4.10) is equivalent to, for all x € R",

Voy@ 'K, B, ¢ Q)% (x) = n / px - v*hE 2 (¢ v)dC, 4 (K, Q, v)

Snfl
= n/ @'l ol 72dC, 4 (K, Q. v)
Nas
= n/ 1 x - (@'v) 21" v]PdC ) 4 (K, O, )
N
:n/ | |x'v|2d¢;t _|5P,q(K7 vi)v
Sn—=
which by Lemma 2.6 is in turn equivalent to
v -1 -1 2
Voq@ 'K, B¢ Q)|
=n/ Ix - v’dC, 4 (¢ 'K, 971 Q,v), forallx € R".
sn—1

]

Now we show the existence and uniqueness of solution S, ;, and S p.q Tor all cases
0<p=gq

Theorem 4.5 Suppose that0 < p < g = p+r,r € [0,00), K € K and Q € S.
Then Sp, 4 as well as Sy, 4 has a unique solution. Moreover, an ellipsoid E € E" solves
Sp.q if and only if it satisfies

V, (K, E, Q)h%.(x) = n/ x - uPh? 2 w)dC,p 4 (K, Q,u), forall x € R",
-1

S}‘l

4.11)

and an ellipsoid E € E" solves S, 4 if and only if it satisfies
Vo(K, Q)h2.(x) = n/ b - ulPh? 2 w)dCp 4 (K, Q,u), forall x € R14.12)
sn—1

Proof We first show that an ellipsoid E € £" solves S p,q if and only if it satisfies
(4.11). Without loss of generality, we may assume £ = B by using Lemma 4.4.
Namely, we will show that B is a S, 4 solution for K and Q if and only if

V,4(K, B, Q)x? =n/ Ix - u?dCp 4 (K, Q,u), forallx € R". (4.13)
Snfl

Firstly, we show if B € £" solves S’p,q, then (4.13) holds. Indeed, suppose that
T € SL(n). Choose ¢y > 0 sufficiently small so that for all ¢ € (—e&g, €9), I, + €T is
invertible, where I, is identity matrix. For ¢ € (—e¢g, €0), define T; € SL(n) by

1
T. = |I, + eT| " (I, +&T).
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Since |T;| = 1, the ellipsoid E, = T! B clearly has volume w,. The support function
of E; is given by

he,(u) = hrigu) = |Teul.
Since Eg = Bisa S p.q solution, we have
V(K. Eo, Q) <V, o(K, E¢, Q), foralle,

and hence using (1.9), it is equivalent to

d
de

f | Teu|PdCp 4 (K, Q,u) = 0. (4.14)
=0 Snfl
Note that
1 & 2
I, +eT|n =1+ —tuT + O(e7)
n
and
l+eTu| = [1+2€¢-Tu+e(Tu-Tu)? =1+ G- Tu)+ 02,

then (4.14) implies

d
de

l+e(-Tu)+ 0>
=0 [gn—l (

P
dcC, (K, O,
1+ £uT + 0(2) ) ra(K, Q.u)

1 ~
:p/ <u~Tu——trT> dC, 4(K, O, u)
sn—1 n
—0. (4.15)
Let T = x ® x for nonzero x € R", where the notation x ® x represents the rank 1

linear operator on R” that takes y to (x - y)x. It immediately gives that tr(x @ x) = |x|?.
Using the facts tr(x @ x) = [x[?and u - (x @ x)u = (u - x)%, (4.15) is

V,q(K, B, Q)
n

Ix|?, forall x € R".

/ lu - x|?dCpq(K, Q,u) =
Sn—l
Secondly, we show if
V,4(K,B, Qx| =n/ Ix - u|>dCp 4 (K, Q,u), forallx € R", (4.16)
Snfl

then B is a solution to Problem § p.q- Moreover, B is a unique S p.q solution.
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To prove that Bisa § p.q solution for K, Q, we show that for any ellipsoid £ with
|E| = wy, one has

V,q(K,E, Q) >V, ,(K,B,Q), (4.17)

with equality if and only if £ = B. It is equivalent to show that for any ellipsoid E
with E = P'B, P € SL(n), one has

1

l ~ P
Vpq(K. B, Q) PulPdCp 4 (K, Q. u > 1, 418
<Vp,q(K, B, Q) sn—1 | | p,q( Q )) ( )

with equality if and only if Pu = 1 for all u € §"~!. From Jensen’s inequality,

1
1 _ 1
TN PuPd®, (K. O.u
(v,,,q(K,B, 0 Jo i | PHI"ACq (K, © ))

1 ~
>exp|e— log |PuldCp 4 (K, Q. u) |,
(vp,q(K,B, 0) Jsi "

with equality if and only if there exists ¢ > 0 such that |Pu| = ¢ for all
u € suppC, 4 (K, Q, -). Hence, we need show

f log |Pu|d5p,q(K, Q,u) >0, (4.19)
sn—1

We write P as P = O'DO, where D = diag(Aq, A2, -- - , A,,) is a diagonal matrix
with eigenvalues A1, A2, - - - , A,, and O is orthogonal.
From Definition 2.5 and Lemma 2.6, it follows that

fsn_l log|PuldCp (K, Q.u) = f

sn

y |Ou|? log |0'DOuldCp 4 (K, O, u)
- /SH log|0' Dv|dO), 4 Cp (K, Q. )

= /SH log | Dv|dC, 4 (0K, 0Q, v).

Then by the concavity of the log function and (4.16),

~ 1 " ~
/ log [PuldCp 4 (K, Q,u) = 5/ log (Z)leulz> dCp4(0K,00,v)
sn—1 sn—1 N
i=1

v

n

Z/ 12 1og(3,)dC, o (0K, 0 Q. v)
. Snfl

i=1
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—Zlog(A)/ lu-e;’dCp ,(OK,0Q,v)

i=1

1~ n
= —Vpg(K, B, Q) ) loglhi),

i=1

n
where u; denotes u - ¢; fori = 1,---,n. Since |[D| = 1, we have Y_ log(h;) =
i=1
n
log(J] »;) = 0 Thus (4.19) holds. And then we have (4.16), namely B is a solution
i=1
to Problem § P B
For the uniqueness of Problem S, ,, we only need consider the equality condition.
Note that the strict concavity of log function implies that equality in (4.16) holds
only if u;,, --+ ,ujy # 0implies A;, = --- = A;,, foru € suppCpq(OK 0090,).
Thus |Du| = A; when u; # 0 for u € suppCpq(OK 090, ) Equality in (4.18)
forces |Pu| = c forallu € suppC,, ¢(0OK,0Q,"). Since suppCp ¢(OK,00,)is
not contained in an (n — 1)-dimensional subspace of R", we have A; = ¢ for all i.
Combining with |D| = A;---A, = 1, we have A; = 1 for all i. Thus D = I, and
P =1,
Note that Theorems 4.1 and 4.3 get the existence of the solution to Problems S, ,
and S, 4. And their uniqueness is proved from the above proof and Theorem 4.3.
Finally, we let the ellipsoid E € £" solve Problem S, ;. Using Theorem 4.3, it is

equivalent to that coE is a solution to Problem S p.q» Where ¢g = (“%—”I)%. It holds if
and only if (4.11) holds, i.e.,

Vyy(K, E, Q)h%i(x) = n/ x - uPh? 2 w)dC,p 4 (K, Q,u), forall x € R”.

sn—

~ 1
This completes the result by noticing that % pq (K, E, Q) = (%) "=

from Lemma 4.2. O
Let0 < p < g < oo. Theorem 4.5 shows that problem (S, ;) has a unique solution.
In the case Q = K, the S, 4, problem had been considered by Lutwak, Yang and Zhang
in [30].
In the case p = oo, with the aid of (1.16), we may rephrase (S 4) as: Among all
origin-symmetric ellipsoids, find an ellipsoid which solves the following constrained
maximization problem:

1

EIN\ i

max (H) subjectto E C ('OQ) K. (S00,00)
wy PK

When Q = K, the problem is the classical John-ellipsoid problem (see, e.g.,
Giannopoulos and Milman [12]).

In light of Theorem 4.1, Theorem 4.3 and Theorem 4.5, we introduce a family of
ellipsoids, which is an extension of LYZ’s L, John ellipsoids.
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Definition4.6 Let0 < p < g = p+r < oo, r € [0, 00). Suppose K is a convex
body in R” that contains the origin in its interior and Q is a star body (about the
origin) in R”. Among all origin-symmetric ellipsoids, the unique ellipsoid that solves
the constrained maximization problem

max |E| subject to 71,,4(1(, E, Q) <1
Ee&r

will be called the (p, g)-Johnellipsoid of K and Q, and will be denoted by E, , (K, Q).
Among all origin-symmetric ellipsoids, the unique ellipsoid that solves the con-
strained minimization problem

min 71,,4(1(, E, Q) subjectto |E| = w,
Ee&r

will be called the normalized (p, g)-John ellipsoid of K and Q, and will be denoted
by E, 4(K, L).

Note that in the case O = K, E, (K, K) = E,(K) is the L ,-John ellipsoid. In
the case thatg =n and Q = B, E, ,(K, B) = E,(K) is also the L -John ellipsoid.
In the case that p = co and Q = K, Ex (K, K) = J(K) is also the classic John
ellipsoid.

From Definition 4.6 and (2.20), we immediately obtain

Lemma 4.7 Suppose K € KI! and Q € S}, and 0 < p < q < oc. Then for ¢ €
GL(n),

Epq (9K, 00) =dE, (K, Q).
From E, ;(B, B) = E,B = B and Lemma 4.7, we see that if £ € £”", then
E, (E,E)=E. (4.20)

Note that if the John point of K is at the origin (e.g., if K is origin-symmetric),
then

Evono(K. Q) C ("—Q) K.

PK
From (2.24), (4.12) of Theorem 4.5, we immediately obtain
Lemma 4.8 Suppose K € K}, Q € S) and 2 < q < oc. Then

Eyq(K, Q) =T (K, Q).

A finite positive Borel measure 12 on §"~! is said to be isotropic if (see [12])
[ vPaua =,
sn—1 n
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for all v € "', where |u| denotes the total mass of . For nonzero x € R”, the
notation x ® x represents the rank 1 linear operator on R” that takes y to (x - y)x. It
immediately gives that trx ® x = |x|2. Equivalently, u is isotropic if

/ u@udu(u) = MIn.
sn—1 n

From definition (1.6) and (1.9), we see that

Vpg(K,B, Q) = /sm dCpq(K. Q. u)

1

= - / hic (g ()7 pl ) pgy ! wydu = Cp 4 (K, Q, 5",
n “}k((sn—l)

Therefore, the condition (4.11) is equivalent to

Cpq(K,Q, 8"

/5—1 lx - ul?dCp 4 (K, Q, u) = Ix|?, forall x € R".

Then an immediate consequence of Theorem 4.5 is

Corollary 4.9 Suppose K € K with Q € S}, and 0 < p < q € (0, oc]. Then there
exists a unique solution to the following constrained minimization problem:

min{V, ,(K,TB, Q) : T € SL(n)}.

Moreover, the identity operator 1, is the solution if and only if L) dual curvature
measures Cp 4(K, Q, -) are isotropic on sn—l,
Corollary 4.10 Suppose K € K} with Q € SJ}, and 0 < p < g € (0, o0].

(1) There exists an SL(n) transformation T, such that 5p,q(TK, T Q, ) is isotropic
on S"71.

() If T1, T € SL(n) such that C,,(T\K, TiQ,-), Cp,(TaK,T2Q,-) are both
isotropic on S"~, then there exists an orthogonal O € O(n) such that T» = OT.

5 Continuity of (p, q)-John Ellipsoids

In this section, we show that the family of (p, g)-John ellipsoids associated with a
convex body and a star body in R” is continuous in p € (0, co].
We assume that K € K} and Q € S are two fixed bodies in this section.

Lemma 5.1 Suppose 0 < p < g < oo.IfaB € K C bBandaB C Q C bB for
a,b > 0, then

p+2q+n

_ b P _1
Epa(K.Q)C (;) (cn-2.p) 7 B
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where

[T

c _ (n+ plonyy o, — T
e nNwywywp—1 ’ " r (1 + )

ST

Proof From (4.1) and the definition of E p.q(K, Q), we have

dg < (VV(K’ Q)>p e 5.

2 hn,, (K. 0Q)

Now, we estimate the value ofvl,,q (K, B, Q). By the definition ofV,,,,, (K, L, Q),
we have

1

V,q(K.B. Q) =( T3 Q)/ dC,4 (K. Q. v))
1
= < <pK—(v))pdVr(K, Q;v)>p
V(K. Q) Jsi-1 \hg (ax (v)po(v)
b 1 ~ » b
< ; (m et dVr(K, Q, v)) = a—2 (5.2)
Note that
/ lu - v|Pdu = M (5.3)
n—1 wza)p 1

By the definition of (p, ¢)-mixed projection body and (5.3), we have

1

lu - vE|pdC (K, 0, u))

1
q ¥
e vl ek ()~ P(’; ’;EZi) p’é(u)du)

hn, k.0 WE) =
S)l*

P
p
u-v du
2 pq Sn1| EI )

(5.4)

e
Gl
= (s
-

1
(n+ p)a)n+paq+n
2nwrw,—1bPT4

Together with (5.1), (5.2) and (5.4), and note that V,(K 0) < ""’a , we have

p+H2g+n
b P 1
dE_p,q(K,Q) =< ; (Cn—2,p) P
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Therefore,
. b p+2;1+n .
Ep,q(Kv 0) < ; (Cn—2,p) P B.
1 —
Note that lim (c,—2,p)?7 =1, then Eos 0o(K, L) C %B. O
p—>00

From Deﬁn_ition 4.6, we recall that foreach p € (0, 00]andg = p+r,r € (0, 00),
the ellipsoid E, 4 (K, Q) is the unique ellipsoid that satisfies

Vi (K Epg(K, 0),0) = min V,4(K, E. Q). (5.5)

|E|=wn

Lemma5.2 If p, po € (0,00],qg = p+r,r € (0,00),p — po,qg — po+r =
qo0, K € K%, and Q € S}, then

Jim Vg (K, Epg(K, 0), Q) =V .o (K, Epogo (K, Q) Q).

Progf Using the Definition E p.q(K, Q), Theorem 3.1, (5.5), and again the definition
of £, ,(K, Q), we have

lim 7 K.E K, Q), = lim min 7 K, E,
Jim Vg (K, Epg(K, 0),0) = lim min V,,(K,E,0)

= ‘Er?i?u Vp(),qo(K7 Ea Q)

= Vpoao (K, Epp.g0(K, Q) Q).

O

Lemma 5.3 Suppose that p, po € (0,00],q = p+r,r € (0,00), p = po,.q —
po+r=qoand K € K}, Qe S). IfaB < Q< K CbBoraBC K C Q CbB,
fora,b > 0, then

lim E, (K,Q)=E K, Q).
Jim pq(K, Q) 0.0 (K, Q)

Proof We argue by contradiction and assume the conclusion to be false. Lemma 5.1,
the Blaschke selection theorem, and our assumption, give a sequence p; — po, as
. . = _ ! o . .

i — o0, such that ll_l)ﬂ;o Ep.qi(K,Q) = E'" # Ep, 4,(K, Q). Since the solution to

Problem (S p.q) isunique, and by the uniform convergence established in Theorem 3.1,
we get
Vﬂo,qo (K’ Epo,qo(K’ 0), Q) < Vpo,qo(K9 E'. Q)
= lim Vpo,qo (K. Ep.q(K. Q). 0)

i—00
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= lim V4 (K, Epq (K, 0), Q).

i—00
This contradicts to Lemma 5.2. O

Since, by Theorem 4.3, Ep 4 (K, 0) = V p.q (K. Epg(K, 0). 0) ' E, (K, Q),
the above gives

Theorem 5.4 If p, po € (0,00l,g = p+r,r € (0,00),p = po,q = po+r =
q0, K € K and Q € S}, then

lim E,,(K, =F K, 0).
P Do p,q( Q) po,qo( Q)

6 Generalizations of John’s Inclusion
John’s inclusion states that if K is an origin-symmetric convex body in R”, then
ExK € K C W/nExK. 6.1)

L, version of John’s inclusion is (see [30]): If K is a convex body in R" that
contains the origin in its interior, then

1_1
E,KDOT_,K2>n2 7 when 0<p<2,
1 1
E,KCT_,K Cn? 7 when 2<p<oo.
In this section, we shall prove a (p, g)-version of John’s inclusion.

From (1.4), (2.1), (2.5) and Definition (2.26), we see immediately that if A > 0,
then

T, 0K, 20)=AT_, ,(K,Q). (6.2)

Lemmaé6.1 If p € (0,00],g =p+r,r €[0,00) and K € K}, as well as Q € S},
then for ¢ € GL(n)

[ p @K, 0Q)=¢I' ) (K, Q).

Proof From (6.2) it is sufficient to prove the formula when ¢ € SL(n). Forreal p > 0,
it follows from Definition (2.24), Lemma 2.6, Definition 2.5, Definition (2.24) again,
and (2.6) that for u € §"~!,

n

Ul = —r--— u-v|PdC K, )
Pr_, _,(¢K.¢0) (W) (K. 0) SHI [PdCp 4 (@K, 90, v)
n ~
= lu-v|Pd¢! 4 Cp (K, Q,v)
Vi (K, Q) Jsn-i pooa
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— n . —t —t ~
- VV(K’ Q) sn—1 |Ll <¢ v)|1’|¢ U|pdcp’q([{, Q» v)
=" | ju-¢PdC, (K. Q. V)
V(K. Q) Jy ra(K, Q,
= = n |¢—1M_v|pd5 (K Q U)
Vr(K, Q) sn—1 p.q s X

=por_,_ k0@ W)
The p = oo case is now a direct consequence of the real case and Definition (2.25). O

Lemmaé6.2 If K € K, 0 € S/, pe(0,00]landg = p+r,r €0, 00), then

Ep (K, Q)2T_, (K, Q) when 0<p <2,
Ep (K, Q) CT_, _,(K,Q) when 2<p <ooc.

Proof Lemmas 4.7 and 6.1 show that it suffices to prove the inclusions when
E, (K,Q) = B.For0 < p < 2, Definition (2.24) and Theorem 4.5 show that
foreachu € $"1,

_ n ~
PF_,,,_q(K,Q)(M) P = m o lu - vl”de,q(K, Q,v)

L_n
Vi(K, Q) Jsn-t
= 1.

lu - v*dCp 4 (K, Q, v)

This givesI'_, (K, Q) S B=E, ,(K,Q)when0 < p < 2.

When2 < p < oo, the inequality is reversed. Thus £, ,(K, Q) CT'_, _,(K, Q)
for2 < p < oo.Thecase p = oo follows from the real case together with Theorem 5.4
and Definition (2.25). O

Of course the case p = 2 of Lemma 6.2 is known from Lemma 4.8: E> , (K, Q) =

2 (K, Q).
Our general L, version of John’s inclusion will be a corollary of

Theorem6.3 If K € K, Q € S}, pi € (0,00],q; = pi +7,r € [0,00),1 = 1,2,
then

1_1
Cp—q(K,Q)2n* PEp (K, Q) when 0 < p; < py <2,
1_ 1
Cp—q(K, Q) Sn? MEy, (K, Q) when 2 < py < p <oo.
Proof Note that g; = p; +r,i = 1,2 and 0 < r < oco. Lemmas 4.7 and 6.1 show
that it suffices to prove the inclusions when E, 4, (K, Q) is the unit ball B. Since
Ep, 4, (K, Q) = B, Definition 4.6 gives
Voo (K. B, Q) = V(K. Q). (6.3)
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Suppose 0 < p» < 2. Now Definition (2.26), Definition (1.6), Jensen’s inequal-
ity, Definition (1.6) again, (6.3), Jensen’s inequality again, (6.3) again, and finally

Theorem 4.5 show that for each u € §" 1,

- Pt ar
pr—mv—ql(K’Q)(u)_l =nn _/Sn—l (hKTOlKI)(l:))I)(/iZ)(U)) dvr(K’ o v)i| pl
1
< nhi / (M)m av, (K, 0; v)}p2
st g (@x ) po @)
_ L
= n% ~——|u- U|p2d5P2sqz(K’ o, v):| ;
V(K. 0) 1
=nnr N; | - U|p2d6172,q2(K’ o, U):| .
| Vr.qo (K, B, Q) Jsnt
~ 1
<nr ; |u - U|2d6p2 » (K, Q, U):| 2
| Trea (K. B, Q) S |
1
:nﬁ N; |u-v|2d5p2,q(K, vi):|2
LVr(K, Q) Jsn-1
e

1_1
Thus, n? 7 Epz,qz(Ky Q) S T_p 4K, Q).

When 2 < p; < p» < 00, the inequality above is reversed. Thus,

11
I prai(K, Q) Sn* MEp (K, Q).

The case p = oo follows from the real case together with Theorem 5.4 and Defi-

nition (2.25).

O

By taking p; = p» = p in Theorem 6.3 and combining the inclusions with those

of Lemma 6.2 we get the general L, version of John’s inclusion:

Corollary 6.4 If K € K, Q € S}, p,q € (0, 00] with p < g, then

1 1
Ep,q(Ka 0)> F—p—q(K7 Q)2 nf_T’Ep,q(Kv Q) when 0<p =<2,

1

1
Epqe(K,0)CT'_), 4(K,Q)Cn?> ?E,, (K, Q) when 2 < p < oo.
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7 Volume-Ratio Inequalities

We first established the following inequality.

Theorem7.1 If K € K, Q € S, r € [0,00) and p1, p2, p1, p2 € (0, +00] with
satisfying that py < p2, q1 = p1 +r and g2 = p> +r, then

|Epiqi (K, Q) < |Ep, ¢, (K, Q).

Proof From Definitions (1.10), together with Jensen’s inequality, it follows that for
0 < p1 < p2 <00,

~ €L
Vg (K. L O\ ™ _ (/ (hL(aKw))pK(u))”' a7, (K Q.M)>“
V,(K, Q) si-1 \ g (ak () po (u) e
- (/ (hL(OlK(M))pK(M)>p2 AV, (K. O: u))plz
= st \ g (ke ) po (u) e

~ 1
_ (Ve K L O\
V,(K, Q) '

This together with Definition 4.6 immediately gives the desired result for real p»
and ¢;. For the case p» = 00, q» = 00, the result follows from the real case and
Theorem 5.4. O

In general, the (p, g)-John ellipsoid E, , (K, Q) is not contained in K or Q. How-
ever when 1 < % <p =g =<n+p =< oo, the volume of E, ,(K, Q) can be
dominated by volume of Q.

Theorem7.2 [fK e K, Qe S"and1 <1 <p <qg <n+ p < oo, then

|Ep.q(K, Q)| =10QI, (1.1)

with equality if and only if K, Q are origin-symmetric ellipsoids with dilates of each
other when 1 < % < p, while K, Q are an ellipsoid with dilates of each other when

p=1,q=n.

Proof First suppose p < oo. From Definition (1.9), Definition 4.6 and the L,-
Minkowski inequality (see Lemma 2.4), we have

VoK, Q) =V,,K,E, (K, Q), Q)
K| |Ep (K, Q)"0 ,r=q—p=>0, (1.2)

v

with equality if and only if K, Q and E, ,(K, Q) are dilates when 1 < % < p, while
K and Ej, ,(K, Q) are dilates when g =n and p > 1, and K and E, ,(K, Q) are
homothetic when g =n, p = 1.
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From the dual L ,-Minkowski inequality (2.9), we have
V.(K, Q)" < K|7]Q|T, (7.3)

with equality if and only if K and Q are dilates for0 <r =g — p < n.
Together with (7.2) and (7.3), we immediately get

|Epq(K, Q)| =10

The condition of equality follows from ones in (7.2) and (7.3).
For p = oo the results follows from the argument for the real case and Theorem 7.1.

O
When Q = K, an immediate consequence of Theorem 7.2 is
Corollary7.3 If K € K and 1 < p < oo, then
|Ep(K)| = |KT, (1.4)

with equality for p > 1, ifand only if K is an origin-symmetric ellipsoid, and equality
for p = 1 ifand only if K is an ellipsoid.

Note that this inequality is about L, John ellipsoid proved by Lutwak, Yang and
Zhang [30].

If p,g € (0,00], K is an origin-symmetric convex body in R", and Q is a star
body (about the origin) in R”, then K is said to be (p, g)-isotropic with respect to Q,
if there exists a ¢ > 0, such that

clx)? = n/ Ix - v|?dC)p (K, Q,v), forallx € R".
Sn—l

For Q = K, then K is said to be L isotropic (see [30]).
Theorem 4.5 shows that K is (p, g)-isotropic with respect to Q if and only if there
exists a A > 0, such that

Ep,(K,Q) =)B.

Theorem 7.4 If0 < r < n, K and Q are origin-symmetric convex body in R", and K
is (1, 1 + r)-isotropic with respect to Q, then foru € §"~1,

h W) < — |K|’|Q|’”< = )Jz 7
0 (K. u) < —— n n T . A . '
1,14r (K, Q) zﬁ |E1,1+r(Kv Q)|

Proof 1If inequality (7.5) holds for bodies K and Q, then it obviously holds for all AK
and A Q with A > 0. Thus for K thatis (1, 1 + r)-isotropic with respect to Q we may
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assume that £ 11,(K, Q) = B. It is necessary to show that

n—r

1 r
hl—ll,1+r(K,Q)(”) = m|K|"|Q| no.

Definition 4.6 combined with Definition (1.13) gives
Viitr (K, B, Q) = V,(K, Q). (7.6)

From Definition (2.23), (7.6), Jensen’s inequality, (7.6) again, and finally Theorem 4.5,
it follows

2
~——hn, ., x.0) ()
V.(K,0) Lr+1(K,Q)
1 ~
= u-v|dC K,O,v 7.7
T K o Jo 0G0 ) (7.7)

1 ~
== |u‘U|dC]‘]+r(K, Q,U)
Vi (K, B, Q) Jyi

1

1 S~ 2

< ~ lu-v]*dCy 14+ (K, Q, V)

[fsnl dC114+(K, Q,v) Jont '

[ : - o214 (KL Q )]5 1
=|=—=— u-v L1+ (K, Q,v)| = —.

Vo (K, Q) Jsi ' NG

Then we have,
1~ _
hn,, k0@ < —=V.(K, Q), forueS"". (7.8)

NG
Note that 0 < r < n, by using dual Minkowski inequality (2.9), we have
hry k0 @) < L|K|£|Q|%-
: N
O

In particular, by taking Q@ = K in (7.5), and hy, ., (x,0) (1) = %hn(K)(u) =
%voln,l (K |ut), we have (see [30])

1
L./ o, \n?
vol,—1(Klu™) < 7|K| (m) . (7.9)
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