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Abstract
The symmetrized bidisc

G
def= {(z + w, zw) : |z| < 1, |w| < 1},

under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in
which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler
manifold, G does not admit a natural notion of angle, but we nevertheless show that
there is a notion of orthogonality. The complex tangent bundle TG splits naturally
into the direct sum of two line bundles, which we call the sharp and flat bundles, and
which are geometrically defined and therefore covariant under automorphisms of G.
Through every point ofG, there is a unique complex geodesic ofG in the flat direction,
having the form

Fβ def= {(β + β̄z, z) : z ∈ D}

for some β ∈ D, and called a flat geodesic. We say that a complex geodesic D is
orthogonal to a flat geodesic F if D meets F at a point λ and the complex tangent
space TλD at λ is in the sharp direction at λ. We prove that a geodesic D has the closest
point property with respect to a flat geodesic F if and only if D is orthogonal to F in
the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to
a fixed flat geodesic F .
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1 Introduction

This paper concerns geodesics in the symmetrized bidisc G, the domain in C
2 defined

in the abstract. There are two different notions of geodesic, to wit, complex and real.
A complex geodesic in G is defined to be the range of a holomorphic map h : D → G
which is isometric with respect to the Poincaré metric on the unit disc D = {z ∈ C :
|z| < 1} and the hyperbolic metric on G. It is a fact that such an h is an isometry if and
only if h has a holomorphic left inverse (see, for example, [11]). Real geodesics are
paths which locally minimize lengths, in the usual sense of real differential geometry
or metric geometry (see [10, Definition 2.5.27]). When we speak of a ‘geodesic’ in
G, without qualification, we shall mean a complex geodesic.

We study the geometry ofG as a hyperbolic complex space in the sense ofKobayashi
[13]. It is well known that on G the Carathéodory pseudometric |δ|car and Kobayashi
pseudometric |δ|kob, where δ is a datum1 in G, are in fact metrics, and moreover, they
coincide [1,11]. Thus, there is a natural metric dG on G, given, for a datum δ = (λ, μ)

in G, by

dG(δ) = |δ|kob = |δ|car.

We call dG the hyperbolic metric on G.

1 That is, either a pair of points in G or an element of the complex tangent bundle of G
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8204 J. Agler et al.

A fundamental fact of the complex geometry ofG is that, for every point λ ∈ G and
every one-dimensional subspace M ⊆ C

2, there exists a unique complex geodesic
D in G such that λ ∈ D and TλD = M, where TλD denotes the complex tangent
space to D at the point λ. Thus, there is a natural one-to-one correspondence between
the geodesics in G passing through λ and the points of CP1, the complex projective
line. We regard CP1 as the set of one-dimensional subspaces of C

2 and refer to its
elements as directions. We shall exploit this correspondence to relate the local and
global hyperbolic geometries of G.

As there are qualitative differences among the complex geodesics of G, so are
there differences among the directions at a point. To illustrate this anisotropy, we first
note that there exists a unique complex geodesic R in G that is invariant under all
automorphisms of G.

Referred to as the royal variety, R is defined to be the set

R = {(2z, z2), z ∈ D} = {(s, p) ∈ G : s2 = 4p}.

Moreover, for every λ ∈ R, there exists a unique geodesic Fλ in G having a nontrivial
stabilizer in AutG, the group of biholomorphic self-maps of G, and such that

Fλ ∩ R = {λ}.

Thus, the set {Fλ : λ ∈ R} is a hyperbolically identifiable class of geodesics. We call
them flat geodesics. They have the form

Fβ def= {(β + β̄z, z) : z ∈ D} (1.1)

for some β ∈ D. Furthermore, through each point λ ∈ G, there passes a unique flat
geodesic. Consequently, at each point λ ∈ G, there exists a unique direction �λ ∈ CP1

with the property that

TλF = �λ,

where F is the flat geodesic passing through λ. We refer to �λ as the flat direction at
λ. The flat direction in G is covariant under automorphisms of G, in the sense that for
every λ ∈ G and γ ∈ AutG,

�γ (λ) = γ ′(λ)�λ.

Another covariant direction is the sharp direction [5, Sect. 1.4]. For a point λ ∈ G,
let Orb(λ) denote the orbit of λ under the action of AutG. In [5, Theorem 1.6], the
authors showed that if λ ∈ R, then Orb(λ) = R, and if λ ∈ G \ R, then Orb(λ) is
a smooth properly embedded 3-dimensional real manifold in G. Noting that, in both
cases, Tλ Orb(λ) contains a unique one-dimensional complex subspace M, we may

define an intrinsic direction �λ, the sharp direction at λ, by �λ
def= M. Observe that,
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for λ ∈ R, since Orb(λ) = R,

�λ = Tλ Orb(λ) = TλR. (1.2)

In this paper, besides the sharp and flat directions, we shall encounter other special
directions at a point. We now describe the results of the paper.

If F is a flat geodesic in G and D is a general geodesic in G, we say that D is
orthogonal to F if D meets F at a point λ and D points in the sharp direction at
λ, that is, TλD = �λ. The motivation for this terminology is the following result
(Corollary 7.11).

Theorem 1.1 If F is a flat geodesic in G and D is an arbitrary geodesic in G, then
D is orthogonal to F if and only if D meets F at a point λ0 and, for some point
μ ∈ D \ {λ0} (equivalently, for every point μ ∈ D \ {λ0}),

dG(λ0, μ) = inf
λ∈F dG(λ, μ).

The royal geodesic meets any flat geodesic in a unique point. Therefore, by the
above definition and Eq. (1.2), R is orthogonal to every flat geodesic. If D �= R,
then for D to be orthogonal to a flat geodesic, it must be the case that D is of a very
special type which we now describe (see Corollary 5.5 and [6, Lemma 9.8]). We say
that a geodesic D is purely balanced if D− ∩ R− consists of exactly two points ξ1
and ξ2 both of which lie in ∂R = {(2z, z2) : z ∈ T}2. Here T denote the unit circle
{z ∈ C : |z| = 1}. The points ξ1 and ξ2 are referred to as the royal points of D. In
Sect. 4 of this paper, we describe the purely balanced geodesics using properties of
hyperbolic automorphisms of the disc.3 This description is used to show that the purely
balanced directions at a point in G \R form a simple smooth curve in CP1 connecting
two ‘exceptional’ directions and containing the sharp direction as its midpoint (cf.
Corollary 4.18).

We further exploit the description of the purely balanced geodesics to prove the
following result in Sect. 5 of the paper (Theorem 5.10).

Theorem 1.2 If F is a flat geodesic in G, then G is foliated by the geodesics in G that
are orthogonal to F.

As a corollary of Theorems 1.1 and 1.2 we obtain in Corollary 7.10 the following
result.

Corollary 1.3 If F is a flat geodesic in G and μ ∈ G, then there exists a unique point
λ0 ∈ F such that

dG(λ0, μ) = inf
λ∈F dG(λ, μ).

2 The closure and boundary symbols relate to D andR as subsets of C
2.

3 m ∈ AutD is said to be hyperbolic if m has two distinct fixed points on T.
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8206 J. Agler et al.

[6, Lemma 9.8] contains the statement that the shortest distance fromμ to F is always
attained; we now see that it is attained at a unique point of F .

In Sect. 6, we turn the tables—we fix a purely balanced geodesic D and study the
flat geodesics F such that D is orthogonal to F . If D is a geodesic, we let �(D) denote
the set of λ in D such that D is orthogonal to the flat geodesic passing through λ (that
is, TλD = �λ.) We say that a curve 
 is a simple real geodesic in G if 
 = h(C),
where h : D → G is an isometry when D and G are equipped with their respective
hyperbolic metrics, and C is a real hyperbolic geodesic4 in D. Each purely balanced
geodesic D contains a unique real geodesic 
D such that the endpoints of 
D are the
royal points of D (cf. Proposition 6.3).

Theorem 1.4 If D is a purely balanced geodesic in G, then �(D) = 
D, that is, the
set of λ ∈ D such that TλD = �λ is the simple real geodesic in G whose endpoints
are the two royal points of D.

As a corollary of Theorem 1.4, we obtain in Sect. 6 the following result.

Theorem 1.5 (cf. Theorem 6.8) G \ R is foliated by the simple real geodesics in G
whose endpoints lie in ∂R.

Another special direction at a point P ofG, this time in the real tangent bundle ofG,
we call the distinguished direction. It is tangent to a special real geodesic γ through P
with the property that, for every pair of points on γ , there are at least two inequivalent
solutions of the corresponding Carathéodory extremal problem. These distinguished
geodesics foliate G \ R, where R is the ‘royal variety’ {(2z, z2) : |z| < 1}.

The theory of the symmetrized bidisc, and cognate domains like the tetra-
block, has been extensively developed over the last 20 years by numerous authors.
We shall require some results from this theory, many of which can be found in [12]
and [6, Appendix A]. These domains have a rich complex geometry and function
theory, as well as applications to operator theory: see, besides many other papers,
[4,7–9,12,14–16].

2 The Hyperbolic Metric on a Lempert Domain

In this section, we describe our terminology for the Carathéodory and Kobayashi
extremal problems on an open set U in C

n and introduce the hyperbolic metric on a
Lempert domain.

For open sets U ⊆ C
n1 and V ⊆ C

n2 we denote by V (U ) the set of holomorphic
mappings from U into V .

If U is an open set in C
n , then by a datum in U we mean an ordered pair δ where

either δ is discrete, that is, has the form

δ = (s1, s2)

where s1, s2 ∈ U , or δ is infinitesimal, that is, has the form

δ = (s, v)

4 That is, C is either a line segment or a circular arc in D that intersects T orthogonally.
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Intrinsic Directions in the Symmetrized Bidisc 8207

where s ∈ U and v ∈ C
n .

If δ is a datum, we say that δ is degenerate if either δ is discrete and s1 = s2 or δ is
infinitesimal and v = 0. Otherwise, we say that δ is nondegenerate.

An infinitesimal datum in U is the same thing as a point of the complex tangent
bundle TU of U .

For F ∈ �(U ), s ∈ U , and v ∈ C
n1 , the directional derivative DvF(s) ∈ C

n2 is
defined by

DvF(s) = lim
z→0

F(s + zv) − F(s)

z
.

If U and � are domains, F ∈ �(U ), and δ is a datum in U , we define a datum
F(δ) in � by

F(δ) = (F(s1), F(s2))

when δ = (s1, s2) is discrete and by

F(δ) = (F(s), DvF(s))

when δ = (s, v) is infinitesimal.
For any datum δ in D, we define |δ| to be the Poincaré distance or metric at δ in the

discrete or infinitesimal case respectably, that is

|δ| = tanh−1
∣
∣
∣
∣

z1 − z2
1 − z̄2z1

∣
∣
∣
∣

when δ = (z1, z2) is discrete5, and by

|δ| = |v|
1 − |z|2

when δ = (z, v) is infinitesimal. See [17] for terminology and theory in several
complex variables.

The Carathéodory extremal problem. For a domain U in C
n and a nondegenerate

datum δ in U , compute the quantity |δ|car defined by

|δ|car = sup
F∈D(U )

|F(δ)|. (2.1)

We shall refer to this problem as Car δ and will say that C solves Car δ if C ∈ D(U )

and

|δ|car = |C(δ)|.
5 In [6, Chap. 3], we used a different notation in thatwe omitted tanh−1; thismakes no essential difference in
the present context, but ensures that theCarathéodory pseudodistance is the inner pseudodistance determined
by the Carathéodory pseudometric [12], and similarly for the Kobayashi pseudodistance.
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8208 J. Agler et al.

| · |car is a pseudometric onU , called the Carathéodory pseudometric in the case of
infinitesimal δ and the Carathéodory pseudodistance in the case of discrete datums
δ. It is easy to see with the aid of Montel’s theorem that, for every nondegenerate
datum δ in U , there does exist C ∈ D(U ) which solves Car δ. Such a C is called a
Carathéodory extremal function for δ.

Definition 2.1 We say that a domain U in C
n is weakly hyperbolic if |δ|car > 0

for every nondegenerate datum δ in U . Equivalently, for every nondegenerate datum
δ in U , there exists a bounded holomorphic function F on U such that F(δ) is a
nondegenerate datum in C.

The Kobayashi extremal problem. For a domain U in C
n and a nondegenerate

datum δ in U , compute the quantity |δ|kob defined by

|δ|kob = inf
f ∈U (D)
f (ζ )=δ

|ζ |. (2.2)

We shall refer to this problem as Kob δ and will say that k solves Kob δ if k ∈ U (D)

and there exists a datum ζ in D such that k(ζ ) = δ and

|δ|kob = |ζ |.

On infinitesimal datums | · |kob is a pseudometric, called the Kobayashi pseudo-
metric or the Kobayashi–Royden pseudometric [12, Chap. 3]. The quantity | · |kob
is not necessarily a pseudodistance on discrete datums (it can fail to satisfy the tri-
angle inequality). The Kobayashi pseudodistance on U is defined to be the largest
pseudodistance on U majorized by | · |kob.

Note that the infimum in the definition (2.2) of |δ|kob is attained if U is a taut
domain, where U is said to be taut if U (D) is a normal family. In particular, |δ|kob is
attained when U = G [12, Sect. 3.2]. Any function which solves Kob δ is called a
Kobayashi extremal function for δ.

The Kobayashi and Carathéodory pseudometrics are invariant, that is, they are
invariant under automorphisms of G; see [12] for an up-to-date account of such pseu-
dometrics.

LetU be a domain in C
n and δ a nondegenerate datum inU . The solutions to Car δ

and Kob δ are never unique, for if m is a Möbius transformation of D, then m ◦ C
solves Car δ whenever C solves Car δ and f ◦ m solves Kob δ whenever f solves
Kob δ. This suggests the following definition.

Definition 2.2 Let U be a domain in C
n and let δ be a nondegenerate datum in U .

We say that the solution to Car δ is essentially unique, if whenever F1 and F2 solve
Car δ there exists a Möbius transformationm of D such that F2 = m ◦ F1. We say that
the solution to Kob δ is essentially unique if the infimum in Eq. (2.2) is attained and,
whenever f1 and f2 solve Car δ there exists a Möbius transformationm of D such that
f2 = f1 ◦ m.

In honor of Lempert’s seminal theorem [18], we adopt the following definition.
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Definition 2.3 A domain U in C
n is a Lempert domain if

(1) U is weakly hyperbolic,
(2) U is taut, and
(3) |δ|car = |δ|kob for every nondegenerate datum δ in U .

Thus, for a Lempert domain U in C
n , there is a natural metric dU on U , given, for a

nondegenerate infinitesimal datum δ in U , by

dU (δ) = |δ|kob = |δ|car.

The metric dU is called the hyperbolic metric on U .
The Hyperbolic Metric on the Symmetrized Bidisc The symmetrization map

π : C
2 → C

2

is defined by

π
(

(z1, z2)
) = (z1 + z2, z1z2) for all z1, z2 ∈ C.

Thus, the symmetrized bidisc G is π(D2).
We adopt the coordinates s = z1 + z2 and p = z1z2. For s, p ∈ C,

(s, p) ∈ G if and only if |s − s̄ p| < 1 − |p|2 (2.3)

(for example [12, Lemma 7.1.3]).
The symmetrized bidisc G is a Lempert domain in C

2 with the hyperbolic metric
dG [1].

3 Automorphisms, Complex Geodesics and Directions inG

3.1 The Automorphism Group of G

For a domain � in C
d , an automorphism of � is defined to be a biholomorphic self-

map of �. The group of all automorphisms of � under composition will be denoted
by Aut�. Here is a description of AutG in terms of AutD.

Proposition 3.1 For every b ∈ AutD, there is a unique automorphism γb of G satis-
fying

γb(π(z1, z2)) = π(b(z1), b(z2)) for all z1, z2 ∈ D. (3.1)

Furthermore, the map f : AutD → AutG given by

f (b) = γb for all b ∈ AutD
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8210 J. Agler et al.

is a continuous isomorphism with respect to the compact-open topologies on AutD
and AutG.

A proof can be found in [12, Sect. 7.1] or [3, Theorem 4.1].
The following corollary of Proposition 3.1 is an immediate consequence of the fact

that every automorphism of D extends to be analytic in a neighborhood of D
−.

Corollary 3.2 (1) Every automorphism γ of G extends in a unique way to a self-
homeomorphism γ̃ of the closure of G in C

2;
(2) γ̃ (R−) = R−;
(3) the classes of flat and purely balanced geodesics in G are invariant under the

automorphisms of G.

3.2 The Complex Geodesics in G

By a complex geodesic in G we mean a subset D ⊂ G such that there exists a
hyperbolic isometry h : D → G such that D = h(D). It is known that through any
two points of G there passes a unique geodesic (see [2, Theorem 0.3]). We note that
h : D → G is a hyperbolic isometry if and only if h is holomorphic and there exists a
holomorphic map � : G → D such that6 � ◦ h = idD. Moreover, when D = h(D) is
a geodesic, h is rational and extends to be holomorphic on a neighborhood of D

−, so
that, in particular, D− = h(D−).

There are qualitative differences between the geodesics of G. Indeed, in [6, Chap.
7] five distinct types of geodesic are identified, namely royal, flat, purely unbalanced,
purely balanced, and exceptional. Each of the types can be characterized in terms
of qualitative properties of the Carathéodory extremal problem associated with the
geodesic and in a variety of purely geometric ways as well.

Here, we adopt a description of the five types of geodesics in terms of the geometry
of the distinguished boundary7 of G, which can be shown to be the set in C

2 defined
by

M = π(T2).

Topologically, M is a Möbius band. The edge E of the Möbius band is the set in C
2

E = π({(z, z) : z ∈ T}).

Note that E = ∂R.

6 Here idD denotes the automorphism defined by idD(z) = z, z ∈ D.
7 That is, the smallest closed subset M of G− with the property that every holomorphic function defined
on a neighborhood of G− attains its maximum over G− at a point in M.
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3.3 The Five Types of Geodesic

We summarize the definitions of the types of geodesic introduced in [6] and state a
few of their properties. In that paper [6], the types were defined in Sect. 3.3, but here
we shall rather use a geometric characterization of them given in [6, Chap. 7].

(1) The royal geodesic is the set

R = π({(z, z) : z ∈ D}).

It is the only geodesic left invariant by every automorphism in AutG. Further-
more8,

R− ∩ M = E.

Note also that R− is the disjoint union ofR and E.
If D is a geodesic we define the royal points of D to be the elements of the set
D− ∩ R−. Since R− = R ∪ E, each royal point must either be inR or in E.

(2) A geodesic D is said to be flat if D− ∩ R− consists of a single point and that
point lies9 in R. Thus, a geodesic D is flat if it has a unique royal point and
that point lies inR (rather than E). The nomenclature “flat geodesic” reflects the
fact that a geodesic D is flat if and only if D lies in a set of the form λ + M
where λ ∈ G andM is a one-dimensional complex subspace of C

2. There exists
a unique flat geodesic passing through each point of G, or in other words, the flat
geodesics foliate G. The royal geodesic is the only geodesic inG that meets every
flat geodesic.

(3) A geodesic D is said to be purely balanced if D− ∩ R− consists of exactly two
points both of which lie in E, that is, D has exactly two royal points, and they lie
in E. We shall give a concrete formula for the general purely balanced geodesic
using hyperbolic automorphisms of D in Sect. 4.

(4) A geodesic D is said to be purely unbalanced if D− ∩R− consists of exactly two
points, one of which lies in R and one of which lies in E, that is, D has exactly
two royal points, one of which lies in R and one of which lies in E. Generically,
the geodesic that passes through two distinct points in G is purely unbalanced.

(5) A geodesic D is said to be exceptional if D− ∩ R− consists of exactly one point
and that point lies in E, that is, D has exactly one royal point, and that point lies
in E.

3.4 Directions

We shall denote a direction at a point in G (that is, an element of CP1) by

vC = {zv : z ∈ C} where v ∈ C
2 \ {0}.

8 Indeed, R− is the polynomially convex hull of E.
9 Equivalently, a geodesic D is flat if and only if D− ∩ E = ∅.
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The following pleasing state of affairs is central to this paper (see [6, Theorem 4.6]).

Theorem 3.3 For every point λ in G and every nonzero vector v in C
2, there exists a

unique geodesic Dv in G such that

λ ∈ Dv and v ∈ TλD
v.

Furthermore, if v and w are any two nonzero vectors in C
2, Dv = Dw if and only if

vC = wC. In particular,

vC �→ Dv (3.2)

is a well-defined bijection between directions in CP1 and geodesics in G that pass
through λ.

Evidently, Theorem 3.3 implies that just as there are five qualitatively distinct types
of geodesic, so are there five qualitatively distinct types of direction at a point. Let us
say that a direction vC is of a particular type if the geodesic Dv that corresponds to
vC via the map (3.2) is of that same type.

3.4.1 The Flat Direction

As noted above, through each point of G there passes a unique flat geodesic in G.
Hence, for each λ ∈ G there is a unique direction �λ ∈ CP1 defined by the following
procedure.

(1) Let D be the unique flat geodesic in G passing through λ.
(2) Choose any nonzero vector v in TλD.
(3) Let �λ = vC.

We refer to �λ as the flat direction at λ and say that a nonzero vector v ∈ C
2 points in

the flat direction at λ if v ∈ �λ.

3.4.2 The Sharp Direction

In [5, Theorem 1.6], the authors showed that if λ ∈ G and Orb(λ) denotes the orbit of
λ under AutG, then

(1) Orb(λ) = R if λ ∈ R, and
(2) Orb(λ) is a smooth properly embedded 3-dimensional realmanifold inG ifλ /∈ R.

As a consequence of this result, for each λ ∈ G, we may define �λ ∈ CP1, by the
following procedure.

(1) If λ ∈ R, then �λ = vC, where v is any nonzero vector in TλR.
(2) Otherwise, if λ /∈ R, let �λ = vC, where v is any vector such that both v and iv

are in the real tangent space to Orb(λ) at λ.

We refer to �λ as the sharp direction at λ and we say that a nonzero vector v ∈ C
2

points in the sharp direction at λ if v ∈ �λ. Evidently, with this language, if λ ∈ G
and v is a nonzero vector in C

2, then v points in the sharp direction at λ if and only if
v is in the unique nonzero complex subspace of the real tangent space to Orb(λ) at λ.
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3.4.3 Other Directions

For each point λ of G, the previous two subsections constructed a unique pair of
directions �λ and �λ. These directions, being defined geometrically, are covariant in
the sense that if γ is an automorphism of G, then

�γ (λ) = γ ′(λ) �λ and �γ (λ) = γ ′(λ) �λ for all λ ∈ G.

The consideration of covariant directions other than the flat and sharp directions is
complicated by issues of both existence and uniqueness. At a point λ ∈ G, there may
not be any directions of a given type. Alternatively, there may be multiple directions
of a given type. We briefly savor the low-hanging fruit regarding these issues.

(1) As the royal geodesic R is unique, if λ ∈ G, then there exists a royal geodesic
passing through λ if and only if λ ∈ R. Therefore, there exists a ‘royal direction’
at λ onlywhen λ ∈ R. However, in that case, TRλ = �λ, that is, a ‘royal direction’
exists only if it is the sharp direction. For this reason, we shall not henceforth use
the term royal direction.

(2) According to our definition, a direction vC is purely balanced at λ ∈ G if the
unique geodesic D passing through λ satisfying TλD = vC is purely balanced.
Notice from item (4) above in the discussion of the five types of geodesic that
no purely balanced geodesic can meet R. Therefore, if λ ∈ R, then there are no
purely balanced directions at λ.

(3) On the other hand, if λ ∈ G \ R, it turns out that there is a one-parameter family
of purely balanced directions at λ, see (7).

(4) A direction vC is exceptional at λ ∈ G if the unique geodesic D passing through λ

satisfying TλD = vC is exceptional. Notice from item (5) above in the discussion
of the five types of geodesics that no exceptional geodesic can meetR. Therefore,
if λ ∈ R, then there are no exceptional directions at λ.

(5) On the other hand, if λ ∈ G\R, it turns out that there are exactly two exceptional10

directions �1λ and �2λ at λ. We let �λ denote the set of these two directions, that is,
�λ = {�1λ, �2λ}, see (7).

(6) Strictly speaking, the exceptional directions are not covariant. However, the pair
of exceptional direction is covariant: if λ ∈ G \ R and γ ∈ AutG, then

�γ (λ) = γ ′(λ)(�λ).

(7) If λ ∈ G \R, then the purely balanced directions at λ form a simple smooth curve
connecting �1λ and �2λ in CP1 (cf. Corollary 4.18).

(8) If λ ∈ G, we say a direction vC is purely unbalanced at λ if the unique geodesic
D passing through λ satisfying TλD = vC is purely unbalanced.

(9) If λ ∈ R and vC is a direction at λ, then either vC = �λ, vC = �λ, or vC is purely
unbalanced.

(10) If λ ∈ G \ R and vC is a direction at λ, then either vC = �λ, vC ∈ �λ, vC is
purely balanced, or vC is purely unbalanced or exceptional. The sharp direction

10 The musical symbol � is read ‘natural’.
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is the midpoint of the purely balanced curve alluded to in item (7) above (cf.
Corollary 5.7).

4 Hyperbolic Automorphisms in D and Purely Balanced Geodesics
inG

4.1 Hyperbolic Automorphisms ofD

If α ∈ D we define bα ∈ AutD by

bα(z) = z − α

1 − ᾱz
, z ∈ D,

and when τ ∈ T, we define rτ ∈ AutD by

rτ (z) = τ z, z ∈ D.

Each m ∈ AutD can be uniquely represented in the form

m = rτ ◦ bα (4.1)

for some α ∈ D and τ ∈ T.
If m ∈ AutD \ {idD} then m can be viewed as a continuous self-map of D

− and it
is well known that exactly one of the following cases occurs.

(i) m is elliptic, that is, m has exactly one fixed point in D
−, which lies in D.

(ii) m is parabolic, that is, m has exactly one fixed point in D
−, which lies in T.

(iii) m is hyperbolic, that is, m has exactly two fixed points in D
−, which lie in T.

We record the following lemma which gives a well-known criterion for the type of an
automorphism in terms of the parameters α and τ in its representation as in Eq. (4.1).

Lemma 4.1 Let m ∈ AutD \ {idD} and assume that m = rτ ◦ bα where α ∈ D and
τ ∈ T.

(i) m is elliptic ⇔ |τ − 1| > 2|α|.
(ii) m is parabolic ⇔ |τ − 1| = 2|α|.
(iii) m is hyperbolic ⇔ |τ − 1| < 2|α|.
Note that this lemma implies that bz0 is hyperbolic for every z0 ∈ D \ {0}.
Lemma 4.2 If α, β ∈ D and β �= −α, then bβ ◦ bα is hyperbolic.

Proof Clearly bβ ◦ bα �= idD. By direct calculation,

(bβ ◦ bα)(z) = 1 + ᾱβ

1 + β̄α

z − α+β
1+ᾱβ

1 − ᾱ+β̄

1+β̄α
z
.
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Hence, Lemma 4.1 implies that bβ ◦ bα is hyperbolic if and only if

∣
∣
∣
1 + ᾱβ

1 + β̄α
− 1

∣
∣
∣ < 2

∣
∣

α + β

1 + ᾱβ

∣
∣

which simplifies to

|ᾱβ − β̄α| < 2|α + β|.

But, as |α|, |β| < 1 and |α + β| �= 0,

|ᾱβ − β̄α| = |ᾱ(α + β) − β(ᾱ + β̄)| ≤ |α||α + β| + |β||α + β| < 2|α + β|. ��
In the following definition, we introduce a class of automorphisms that plays a special
role in the study of orthogonality.

Definition 4.3 If m ∈ AutD, we say m is irrotational if in the representation of m in
Eq. (4.1), τ = 1.

Remark 4.4 (1) Lemma 4.1 implies that if m is irrotational, then either m = idD or m
is hyperbolic. Lemma 4.2 now implies that if m1 and m2 are irrotational then either
m2 = m−1

1 or m2 ◦ m1 is hyperbolic.
(2) Observe, by direct calculation, that for m ∈ AutD,

m is irrotational ⇔ m′(0) > 0.

The following lemma characterizes when an automorphism is irrotational in terms of
its fixed points.

Lemma 4.5 If m ∈ AutD, then m is irrotational if and only if there exists η ∈ T such
that m(η) = η and m(−η) = −η.

Proof First assume that m = bα is irrotational. When α = 0, every point in T is a
fixed point of m and when α �= 0, by direct computation the fixed points of m are the
roots of the equation η2 = α/ᾱ.

Conversely, assume that η ∈ T,m(η) = η, andm(−η) = −η. By the representation
for m given in Eq. (4.1), we have the equations

τ
η − α

1 − ᾱη
= η and τ

−η − α

1 + ᾱη
= −η, (4.2)

which imply upon elimination of τ that η2 = α/ᾱ. By the first of Eq. (4.2),

τ(η − α) = η(1 − ᾱη) = η − α,

which implies that τ = 1. ��
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8216 J. Agler et al.

The following lemma examines a special point α ∈ D that can be associated with
an irrotational automorphism. This point α will play an essential role in our study of
orthogonality in G.

Lemma 4.6 Let m ∈ AutD. The following are equivalent.

(i) m is irrotational;
(ii) there exists α ∈ D such that m(α) = −α and m′(α) = 1;
(iii) there exists α ∈ D such that m = bα ◦ bα;
(iv) −m is hyperbolic reflection about a point α in D.

Proof (i) ⇒ (ii). Let m = bβ where β ∈ D. Lemma 4.1 implies that −bβ is elliptic.
Choose α ∈ D such that −bβ(α) = α. We have

b′
β(α) = 1 − |β|2

(1 − β̄α)2
= (1 − β̄α) + β̄(α − β)

(1 − β̄α)2

= 1

1 − β̄α
+ β̄

1 − β̄α
bβ(α) = 1

1 − β̄α
+ β̄

1 − β̄α
(−α) = 1.

Hence (ii) holds.
(ii) ⇒ (iii). One can show by Schur reduction that m = bα ◦ rτ ◦ bα for some τ ∈ T.
But by the chain rule,

1 = m′(α) = b′
α(0) · τ · b′

α(α) = (1 − |α|2) · τ · 1

1 − |α|2 = τ.

(iii) ⇒ (iv). By direct calculation, −bα = b−α ◦ r−1. Therefore, as b−α = b−1
α

−bα ◦ bα = b−1
α ◦ r−1 ◦ bα.

Hence, as b−1
α ◦ r−1 ◦ bα is hyperbolic reflection about α, (iv) holds.

(iv) ⇒ (i). If −m is hyperbolic reflection about α, then

m = −b−1
α ◦ r−1 ◦ bα = bα ◦ bα = bβ

where

β = 2α

1 + |α|2 . ��

Note that each of the α’s which appear in Conditions (ii), (iii), and (iv) of Lemma 4.6
is equal and is uniquely determined by m. Also note that the lemma implies that
bα �→ bα ◦ bα is an injective map defined on the irrotational automorphisms onto
the irrotational automorphisms. In particular, each irrotational automorphism has a
unique irrotational square root with respect to composition.
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4.2 Purely Balanced Geodesics and Royal Points in G

If m ∈ AutD, then the formula,

hm(z) = (z + m(z), zm(z)), z ∈ D, (4.3)

defines a mapping hm : D → G. It is easy to see that, when m is elliptic, hm is not
injective, and thus cannot isometrically parametrize a geodesic. In all other cases, hm
does parametrize a geodesic which we denote by Bm . The essentials of the corre-
spondence between the properties of m and Bm are described in the next proposition.

Proposition 4.7 Let m ∈ AutD.

(i) m = idD ⇔ Bm = R.
(ii) m is hyperbolic ⇔ Bm is purely balanced.
(iii) m is parabolic ⇔ Bm is exceptional.

Proof This proposition is proved in [6, Theorem 7.8]. ��
Lemma 4.8 If m, q are hyperbolic automorphisms of D and Bm = Bq then either
q = m or q = m−1.

Proof Let the fixed points ofm, q be η = {η1, η2} and ζ = {ζ1, ζ2}, respectively. Then
h−1
q ◦ hm is an automorphism, υ say, of D. Thus, hm = hq ◦ υ, that is, for all z ∈ D,

(z + m(z), zm(z)) = hq(υ(z)) = (υ(z) + q ◦ υ(z), υ(z)q ◦ υ(z)).

Therefore, for all z, either

υ(z) = z and q ◦ υ(z) = m(z)

or

q ◦ υ(z) = z and υ(z) = m(z).

Thus, either υ = idD and q = m, or υ = m and q = m−1. ��
For hyperbolic m ∈ AutD, there are important relationships between the fixed

points of m and properties of the corresponding purely balanced geodesic Bm . We
describe three of these in Lemma 4.9, Corollary 4.12, and Proposition 6.3.

Recall that a geodesic D was defined to be purely balanced if D− ∩ R− consists
of exactly two points, both of which lie in E.

Lemma 4.9 If m is hyperbolic and η1 and η2 are the distinct fixed points of m in T,
then

B−
m ∩ R− = {

(2η1, η
2
1), (2η2, η

2
2)

}

.
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Proof If m(η) = η, then hm(η) = (2η, η2). Therefore,

(2η1, η
2
1), (2η2, η

2
2) ∈ B−

m ∩ R−.

Conversely, if λ ∈ B−
m ∩ R−, then since λ ∈ B−

m , there exists ζ ∈ T such that

λ = (ζ + m(ζ ), ζm(ζ )),

and since λ ∈ R−, there exists η ∈ T such that

λ = (2η, η2).

These equations imply that

ζ + m(ζ ) = 2η and ζm(ζ ) = η2.

Hence, for all x ∈ C,

(x − ζ )(x − m(ζ )) = x2 − (ζ + m(ζ ))x + ζm(ζ )

= x2 − 2ηx + η2 = (x − η)2,

which implies that ζ = η and so m(η) = η. ��
A second relationship between Bm and the fixed points of m involves the qualitative
nature of the solutions to the Carathéodory extremal problem.We say, for a domain�,
that a set C of holomorphic maps from � to D is a universal set for the Carathéodory
extremal problem on � if, for every λ ∈ � and every nonzero vector v ∈ Tλ�, there
exists� ∈ C such that the supremum in Eq. (2.1), whenU = �, is attained at F = �.

For ω ∈ T, define a holomorphic function �ω on G by the formula,

�ω(s, p) = 2ωp − s

2 − ωs
, for all (s, p) ∈ G.

The following properties of �ω, ω ∈ T, are established in [1, Theorem 2.1 and
Corollary 4.3].

Proposition 4.10 For every ω ∈ T, �ω is a holomorphic map from G to D. Further-
more, the set {�ω : ω ∈ T} is universal for the Carathéodory extremal problem on
G.

The following result gives a criterion for a geodesic in G to be purely balanced in
terms of a qualitative property of solutions of the Carathéodory extremal problem. It
is contained in [6, Theorem 7.1(iii)].

Proposition 4.11 Let D be a geodesic in G, let λ ∈ D and let v be a nonzero vector
in TλD. The geodesic D is purely balanced if and only if there are two distinct points
ω1, ω2 ∈ T such that the supremum in Eq. (2.1), when U = G, is attained at F = �ω
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precisely when either ω = ω1 or ω = ω2. Furthermore, if D is purely balanced and
ω1, ω2 are as in the preceding sentence, then the royal points of D are (2ω̄1, ω̄

2
1) and

(2ω̄2, ω̄
2
2).

The second promised relationship between a purely balanced geodesic and its royal
points is contained in the following statement.

Corollary 4.12 Let m be a hyperbolic automorphism of D, let η1 and η2 be the distinct
fixed points of m in T, let λ ∈ Bm and let v ∈ TλBm. Then �ω is a solution of the
Carathéodory extremal problem on G at the point λ in direction v if and only if either
ω = η̄1 or ω = η̄2.

4.3 Purely Balanced Geodesics in Standard Position in G

In this subsection, we set out a canonical form for purely balanced geodesics. We
accomplish this goal by cleanly parametrizing the purely balanced geodesics that pass
through a point of the form (0, p) where p < 0.

Lemma 4.13 Let B be a purely balanced (or exceptional) geodesic and let σ ∈ (0, 1).

(0,−σ 2) ∈ B

if and only if there exists m ∈ AutD satisfying

(i) m is hyperbolic (or parabolic, respectively),
(ii) m(σ ) = −σ , and
(iii) B = Bm.

Proof If conditions (i), (ii) and (iii) hold, then

(0,−σ 2) = (

σ + (−σ), σ (−σ)
) = hm(σ ) ∈ Bm = B.

Furthermore, Proposition 4.7 implies that B is purely balanced (or exceptional, respec-
tively).

Conversely, assume that B is purely balanced (or exceptional) and (0,−σ 2) ∈ B.
Using Proposition 4.7, we may choose a hyperbolic (or exceptional, respectively)
b ∈ AutD such that B = Bb. Choose z0 ∈ D such that hb(z0) = (0,−σ 2). Then

b(z0) = −z0 and z20 = σ 2.

If z0 = σ , then the conditions (i), (ii), and (iii) follow if we set m = b. Otherwise, if
z0 = −σ , the conclusions follow if we set m = b−1. ��
Lemma 4.14 If σ > 0 andm ∈ AutD, then m(σ ) = −σ if and only if m = bσ ◦rτ ◦bσ

for some τ ∈ T. Furthermore, if m(σ ) = −σ , then m is hyperbolic if and only if

∣
∣
∣
∣

τ − 1

τ + 1

∣
∣
∣
∣
<

2σ

1 − σ 2 , (4.4)
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and m is parabolic if and only if

∣
∣
∣
∣

τ − 1

τ + 1

∣
∣
∣
∣
= 2σ

1 − σ 2 . (4.5)

Proof

m(σ ) = −σ ⇔ m(b−1
σ (0)) = bσ (0)

⇔ (

b−1
σ ◦ m ◦ b−1

σ

)

(0) = 0

⇔ b−1
σ ◦ m ◦ b−1

σ = rτ for some τ ∈ T

⇔ m = bσ ◦ rτ ◦ bσ for some τ ∈ T,

which proves the first assertion of the lemma.
To prove the second assertion, by direct calculation,

m(z) = τ + σ 2

1 + τσ 2

z − σ(τ+1)
τ+σ 2

1 − σ(τ+1)
1+τσ 2 z

.

Consequently, by Lemma 4.1 (iii), m is hyperbolic if and only if

∣
∣
∣
∣

τ + σ 2

1 + τσ 2 − 1

∣
∣
∣
∣
< 2

∣
∣
∣
∣

σ(τ + 1)

1 + τσ 2

∣
∣
∣
∣

⇔
∣
∣
∣τ + σ 2 − (1 + τσ 2)

∣
∣
∣ < 2 |σ(τ + 1)|

⇔
∣
∣
∣
∣

τ − 1

τ + 1

∣
∣
∣
∣
<

2σ

1 − σ 2 ,

that is, inequality (4.4) holds.
A similar calculation using Lemma 4.1 (ii) shows that m is parabolic if and only if

Eq. (4.5) holds. ��

4.4 The Curve of Purely Balanced Directions

If τ1 and τ2 are in T, we denote by (τ1, τ2) the open segment of points in T extending
from τ1 to τ2 in the counterclockwise direction. In similar fashion we may define half
open and closed segments in the circle. For σ ∈ (0, 1), let τ+

σ denote the unique point
in T that satisfies Eq. (4.5) and Im τ+

σ > 0 and let τ−
σ denote the unique point in T

satisfying Eq. (4.5) and Im τ−
σ < 0. When σ ∈ (0, 1) and τ ∈ T, we define mσ,τ by

mσ,τ = bσ ◦ rτ ◦ bσ . (4.6)

Lemma 4.15 The map (σ, τ ) �→ Bmσ,τ is injective from the set

X
def= {(σ, τ ) : 0 < σ < 1, τ ∈ (τ−

σ , τ+
σ )}
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into the set of purely balanced geodesics in G.

Proof It follows from Lemmas 4.14 and 4.13 that, for (σ, τ ) ∈ X , the geodesic Bmσ,τ

is purely balanced.
Suppose that twopoints (σ, τ ) and (σ ′, τ ′) in X give rise to the samepurely balanced

geodesic B. Notice firstly that B only meets the flat geodesic F0 = {0}×D in a single
point, else, by the uniqueness of geodesics through any pair of distinct points, we have
B = F0, contrary to the hypothesis that B is purely balanced. By Lemma 4.13, both
(0,−σ 2) and (0,−(σ ′)2) lie in B, hence coincide. Since σ, σ ′ are positive, it follows
that σ = σ ′.

To see that τ = τ ′, calculate a tangent vector to B at (0,−σ 2). We find that

h′
mσ,τ

(σ ) = (1 + τ,−σ(1 − τ)).

It follows that, for some nonzero complex number c,

(1 + τ,−σ(1 − τ)) = c(1 + τ ′,−σ(1 − τ ′)),

from which it follows that τ = τ ′. ��
With the notations of the previous paragraph, the following proposition is an imme-

diate consequence of Lemmas 4.13 and 4.14.

Proposition 4.16 Let σ ∈ (0, 1) and let D be a geodesic in G. Then D is a purely bal-
anced geodesic passing through (0,−σ 2) if and only if there exists τ ∈ (τ−

σ , τ+
σ ) such

that D = Bmσ,τ . Moreover D is an exceptional geodesic passing through (0,−σ 2) if
and only if D = Bmσ,τ where either τ = τ+

σ or τ = τ−
σ .

We refer to geodesics of the form Bmσ,τ as being in standard position. The following
proposition states that any purely balanced or exceptional geodesic with a point pre-
scribed in it can be moved to a geodesic in standard position by an automorphism of
G.

Proposition 4.17 Let D be a geodesic in G that is purely balanced (or exceptional)
and let λ ∈ D. There exist σ ∈ (0, 1), τ ∈ (τ−

σ , τ+
σ ) (or τ ∈ {τ−

σ , τ+
σ }, respectively),

and γ ∈ AutG such that γ (λ) = (0,−σ 2) and γ (D) = Bmσ,τ .

Proof Let λ = π(z) where z = (z1, z2) ∈ D
2. Since λ is in the purely balanced or

exceptional geodesic D, λ /∈ R. Consequently, z1 �= z2 and by the intermediate value
theorem, we may choose σ ∈ (0, 1) such that

d(σ,−σ) = d(z1, z2).

Choose b ∈ AutD such that

b(z1) = σ and b(z2) = −σ.
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By Proposition 3.1, γb ∈ AutG. Furthermore, by formula (3.1),

γb(λ) = (b(z1) + b(z2), b(z1)b(z2)) = (0,−σ 2).

As B is assumed purely balanced or exceptional, so also is γb(B), and (0,−σ 2) ∈
γb(D). Therefore, the proposition follows by Proposition 4.16. ��
Corollary 4.18 If λ ∈ R, then there are no purely balanced or exceptional directions
at λ. If λ ∈ G \ R, then there are exactly two exceptional directions at λ, and the
purely balanced directions at λ form a simple smooth curve in CP1 connecting the
exceptional directions.

Proof As no purely balanced or exceptional geodesic meets R, there are no purely
balanced or exceptional directions at points inR. To prove the second assertion of the
corollary, by Proposition 4.17, it suffices to prove the case when λ = (0,−σ 2) for
some σ ∈ (0, 1). But this case is an immediate consequence of Proposition 4.16. ��

5 Orthogonality inG

In this section, we shall study the geodesics that are orthogonal to a fixed flat geodesic.

5.1 Flat Geodesics

Recall that the flat geodesics of G were defined in Sect. 3.3 to be the geodesics D that
have a unique royal point λ and furthermore are such that λ ∈ R. It can be shown that
flat geodesics are truly ‘flat’: they have the form11

Fβ def= {(β + β̄z, z) : z ∈ D} (5.1)

for some β ∈ D. Let us check that, for every β ∈ D, this set is indeed a flat geodesic
of G according to the definition. Firstly, if (s, p) = (β + β̄z, z) for some z, β ∈ D,
then z = p and

s − s̄ p = β + β̄ p − (β̄ + β p̄) = β(1 − |p|2),

whence

|s − s̄ p| < 1 − |p|2.

Hence, by the criterion (2.3), (s, p) ∈ G. Thus, Fβ ⊂ G. Secondly, Fβ is the range
of the analytic disc h(z) = (β + β̄z, z) in G, and h has an obvious holomorphic left
inverse, to wit, the second coordinate function. Thus, Fβ is a geodesic of G.

11 In earlier papers we defined the flat geodesics to be the Fβ and showed that they are characterized by
the property that they have a single royal point, which lies in R. Here, we reverse the process in order to
bring out the geometric nature of flatness.
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It remains to show that Fβ meetsR− at exactly one point λ, and that λ ∈ R. Indeed,
(s, p) = h(z) ∈ R− if and only if

0 = s2 − 4p = (β + β̄z)2 − 4z = β̄2z2 + 2(|β|2 − 2)z + β2.

If β = 0 then this equation for z has the unique root z = 0, so that F0 meets R−
at the unique point (0, 0). Otherwise, the quadratic equation has two roots, whose
product has modulus one and whose sum has modulus greater than two. It follows that
the equation has exactly one root in D and none in T. Thus, in either case, Fβ has a
unique royal point, and that point lies inR, which is to say that Fβ is a flat geodesic.

Proposition 5.1 Aut G permutes the set of flat geodesics of G. Indeed, for any β ∈ D,

γbα (F
β) = F0,

where

α = β

1 + √

1 − |β|2 (5.2)

is the hyperbolic midpoint of 0 and β in D.

Proof By Corollary 3.2(3), every automorphism of G maps every flat geodesic to a
flat geodesic.

AutG acts transitively on R, by reason of the equation

γm(2z, z2) = (2m(z),m(z)2)

for everym ∈ AutD and z ∈ D. Hence, if λ,μ ∈ R, then we can findm ∈ AutD such
that γm(λ) = μ. It follows that γm(Fλ) is a flat geodesic that contains μ ∈ R. Since
there is a unique flat geodesic through any point of G, we infer that γm(Fλ) = Fμ.
Thus, AutG permutes the flat geodesics of G.

It is not too arduous to calculate that, if (s, p) ∈ Fβ and α is given by Eq. (5.2),
then

γbα (s, p) =
(

0,
p − αs + α2

1 − ᾱs + ᾱ2 p

)

which is in F0. ��

5.2 The Sharp Direction

Since every orbit of AutG meets the flat geodesic F0 and the sharp direction is
covariant, the sharp direction at any point in G can be derived from the following
statement.

123



8224 J. Agler et al.

Proposition 5.2 For any λ ∈ F0,

�λ =
(

1
0

)

C. (5.3)

Proof Consider the point λ = (0, p) ∈ F0. For any nonzero α ∈ C, let

fα(t) = γbtα (λ) for t ∈ R such that |tα| < 1.

Then fα(t) describes a smooth path in Orb(λ) such that fα(0) = λ, and hence f ′
α(0) ∈

Tλ Orb(λ).
Let w ∈ D satisfy w2 = −p, so that λ = π(−w,w). A short calculation shows

that

γbα (λ) = π(bα(w), bα(−w)) = 1

1 + ᾱ2 p

(

−2(α + ᾱ p), p + α2
)

.

Replace α by tα, differentiate with respect to t and set t = 0 to obtain

f ′
α(0) = (−2(α + ᾱ p), 0) ∈ Tλ Orb(λ)

for every α ∈ C \ {0}. By suitable choices of α, we deduce that both (1, 0) and (i, 0)
lie in Tλ Orb(λ). Thus, the complex linear span of (1, 0) is contained in Tλ Orb(λ),
and statement (5.3) follows. ��
Corollary 5.3 For every λ ∈ G, �λ �= �λ.

Proof It is enough to prove it for every λ ∈ F0. For such λ,

�λ =
(

1
0

)

C, �λ =
(

0
1

)

C. ��

It follows that the tangent bundle TG is the direct sum of the sharp bundle λ �→ �λ

and the flat bundle λ �→ �λ.
We remark that a formula for �λ in general is given in [5, Proposition 1.16]. If

λ = (s, p) ∈ Fβ , then

�λ =
⎛

⎜
⎝

1
β − 1

2 s

1 − 1
2 β̄s

⎞

⎟
⎠ C.

5.3 Orthogonality and Irrotational Automorphisms

Recall that a geodesic D is said to be orthogonal to a flat geodesic F if D meets F at
a point λ and TλD = �λ. In view of Proposition 5.1, in studying any flat geodesic F ,
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one may often reduce to the case that

F = F0 = {(0, p) : p ∈ D},

the flat geodesic passing through the origin.

Proposition 5.4 A geodesic D is orthogonal to F0 if and only if D = Bm for some
irrotational m ∈ AutD.

Proof First assume that D ⊥ F0. Choose λ ∈ D ∩ F0. Let λ = (0, p0) and choose
α ∈ D such that α2 = −p0. Let m ∈ AutD where −m is hyperbolic reflection about
α. Observe that Lemma 4.6 implies that m is irrotational.

To see that D = Bm note that Condition (ii) in Lemma 4.6 implies thatm(α) = −α,
which implies that hm(α) = λ. Therefore, λ ∈ Bm . Also, Condition (ii) in Lemma 4.6
implies that m′(α) = 1. Therefore,

h′
m(α) = (1 + m′(α),m(α) + αm′(α)) = (1 + 1,−α + α) = (2, 0),

which implies that TλBm = �λ = TλD. As D and Bm both pass through the point λ

and have the same tangent space at λ, it follows from Theorem 3.3 that D = Bm .
Now assume that m is irrotational. We need to show that Bm ⊥ F0. Condition (ii)

in Lemma 4.6 implies that there exists α ∈ D such that m(α) = −α. As,

hm(α) = (0,−α2) ∈ F0,

it follows that Bm meets F0 at the point λ = (0,−α2). In addition, Condition (ii) in
Lemma 4.6 implies that m′(α) = 1. Therefore, calculating as before, we have

h′
m(α) = (2, 0),

which implies that TλBm = �λ. As Bm meets F0 at the point λ and TλBm = �λ, it
follows that Bm is orthogonal to F0. ��
Corollary 5.5 If μ ∈ R, then �μ = TμR. If μ ∈ G \ R, then the geodesic through μ

with direction �μ is purely balanced.

Proof Fix μ ∈ G, let F be the flat geodesic passing through μ, and let D be the
geodesic such thatμ ∈ D and TμD = �μ. We wish to show that D = Rwhenμ ∈ R,
and otherwise, that D is purely balanced.

Choose γ ∈ AutG such that λ = γ (μ) ∈ F0. As γ is an automorphism and
D ⊥ F , γ (D) ⊥ F0. Therefore, by Proposition 5.4, there exists an irrotational m
such that γ (D) = Bm .

As m is irrotational, by Proposition 4.7, there are only two possibilities:

(i) m = idD and Bm = R, and
(ii) m is hyperbolic and Bm is purely balanced.

In case (i), since γ fixes R, μ ∈ R and �μ = TμR. In case (ii), μ /∈ R, and �μ is
purely balanced. ��
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The following result is essentially Corollary 5.5 stated in different language.

Corollary 5.6 The royal geodesic is orthogonal to every flat geodesic. If a geodesic D
is orthogonal to a flat geodesic, then either D = R or D is purely balanced.

The following result implies that at points not on the royal geodesic, the sharp direction
is the midpoint of the curve of purely balanced directions.

Corollary 5.7 For the curve of purely balanced geodesics Bτ = Bmσ,τ constructed in
Proposition 4.16, T(0,−σ 2)Bτ = �(0,−σ 2) if and only if τ = 1.

Proof Proposition 5.4 implies that T(0,−σ 2)Bτ = �(0,−σ 2) if and only if mσ,τ is irrota-
tional. But Lemma 4.6 implies thatmσ,τ is irrotational if and only if τ = m′

σ,τ (σ ) = 1.
��

5.4 Foliation of G by Orthogonal Geodesics

If F is a geodesic inR
2 (that is, a line), thenR

2 is foliated by the geodesics orthogonal
to F . Theorem 5.10 is an analogous result in G.

Lemma 5.8 If F is a flat geodesic in G, and D1 and D2 are geodesics that are orthog-
onal to F, then either D1 = D2 or D1 ∩ D2 = ∅.

Proof As AutG acts transitively on flat geodesics, we may assume without loss of
generality that F = F0. Let D1 and D2 be geodesics that are orthogonal to F . By
Proposition 5.4, there exist irrotational automorphisms m1 and m2 of D such that
D1 = Bm1 and D2 = Bm2 .

If Bm1 ∩ Bm2 �= ∅, then there exist z1 and z2 in D such that hm1(z1) = hm2(z2),
equations which imply either

z1 = z2 and m1(z1) = m2(z2) (5.4)

or

z1 = m2(z2) and m1(z1) = z2. (5.5)

If Eq. (5.4) holds then m1(z1) = m2(z1), or equivalently, (m−1
2 ◦ m1)(z1) = z1.

Hence,m−1
2 ◦m1 is elliptic, and Remark 4.4(1) implies thatm1 = m2. Thus, D1 = D2.

If Eq. (5.5) holds, then (m2 ◦ m1)(z1) = z1 and we see that m2 ◦ m1 is elliptic.
Then Remark 4.4(1) implies that m1 = m−1

2 , and again, D1 = D2. ��

Lemma 5.9 Fix a flat geodesic F and a pointμ ∈ G\F. There exists a purely balanced
geodesic D such that D is orthogonal to F and μ ∈ D.

123



Intrinsic Directions in the Symmetrized Bidisc 8227

Proof Without loss of generality, we may assume that F = F0. Choose z1, z2 ∈ D

such that

μ = π(z1, z2) = (z1 + z2, z1z2).

Represent π(z1,−z2) in flat coordinates,

π(z1,−z2) = (z1 − z2,−z1z2) = (β + β̄ p0, p0),

where β, p0 ∈ D. We have

z1 − z2 = β − β̄z1z2,

which implies that

z2 = z1 − β

1 − β̄z1
= bβ(z1).

If we set D = Bbβ , then, as hbβ (z1) = μ, we can assert that μ ∈ D. Furthermore, as
bβ is irrotational, Proposition 5.4 guarantees that D is orthogonal to F . ��
By combining the previous two lemmas we obtain the following theorem.

Theorem 5.10 If F is a flat geodesic, then G is foliated by the geodesics in G that are
orthogonal to F.

6 Distinguished Geodesics inG

In the previous section, we studied the purely balanced geodesics that are orthogonal
to a fixed flat geodesic. In this section, in contrast, we fix a purely balanced geodesic
D and study the flat geodesics F such that D is orthogonal to F . This leads to the
remarkable discovery that such flat geodesics are naturally parametrized by a real
geodesic in D.

Definition 6.1 For any geodesic D, we say that a point λ ∈ D is a sharp point in D if
D is orthogonal to the flat geodesic passing through λ. The set of sharp points in D is
denoted by �(D).

Thus, �(D) = {λ ∈ D : TλD = �λ}. Corollary 5.5 implies that �(R) = R and that, if
D �= R, then �(D) is non-empty only if D is purely balanced. We therefore restrict
attention to the case that D is a purely balanced geodesic Bm .

Proposition 6.3, which gives a description of the sharp points in a purely balanced
geodesic B, represents the third promised relationship between B = Bm and the fixed
points of m.

If B is a purely balanced geodesic, we may define a real geodesic in B in the
following manner. By Proposition 4.7, there exists hyperbolic m ∈ AutD such that
B = Bm . Let η = {η1, η2} denote the set of fixed points ofm and letCη denote the real
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hyperbolic geodesic in D that has η1 and η2 as endpoints. Finally, we define 
B ⊂ B
by


B = hm(Cη),

where, for z ∈ D, hm(z) = (z + m(z), zm(z)).

Lemma 6.2 If B is a purely balanced geodesic and B = Bm, then the definition of 
B

does not depend on the choice of m.

Proof Suppose that m, q ∈ AutD are such that Bm = B = Bq . By Lemma 4.8, either
q = m or q = m−1. In the former case it is immediate that m and q yield the same
curve 
B . In the latter case, since the fixed points ζ of m−1 coincide with those η of
m, we have η = ζ , and so Cη = Cζ . Moreover, since m is a hyperbolic isometry of
D, m maps geodesics to geodesics in D, and so m(Cη) = Cη = Cζ . For any z ∈ D,
we have hm−1(m(z)) = hm(z), and therefore

hq(Cζ ) = hm−1(m(Cη)) = hm(Cη) = 
B .

��
Proposition 6.3 If B is a purely balanced geodesic, then �(B) = 
B.

Proof We first show that �(B) ⊆ 
B . Fix λ ∈ �(B). By Proposition 4.17, we may
assume that B is in standard position,λ = (0,−σ 2) and B = Bmσ,τ for someσ ∈ (0, 1)
and τ ∈ T. Furthermore, as λ ∈ �(B), Corollary 5.7 implies that τ = 1. Since the
fixed points of mσ,1 are ±1, Cη = (−1, 1). Therefore, as σ ∈ (−1, 1),

λ = (0,−σ 2) = hmσ,1(σ ) ∈ hmσ,1(Cη) = 
B .

We now turn to the proof that 
B ⊆ �(B). Fix a purely balanced geodesic B with
royal points (2ξ, ξ2) and (2η, η2). Assume that B is parametrized as in Eq. (4.3), so
that B = Bm for some hyperbolic m ∈ AutD, with fixed points at ξ and η in T.
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Choose ϕ ∈ AutD satisfying ϕ(ξ) = 1 and ϕ(η) = −1. Since ϕ ◦ m ◦ ϕ−1(1) =
1 and ϕ ◦ m ◦ ϕ−1(−1) = −1, it follows that there exists r ∈ (−1, 1) such that
ϕ ◦ m ◦ ϕ−1 = br . Furthermore, γϕ(B) is parametrized by the function g defined by

g(z) = (z + br (z), zbr (z)), z ∈ D. (6.1)

Since br (−1) = −1, br (1) = 1, and br |[−1, 1] is strictly increasing, it follows
from the Intermediate Value Theorem that there exists a unique ρ ∈ (−1, 1) such that
br (ρ) = −ρ. By Lemma 4.6, b′

r (ρ) = 1, and we deduce from Eq. (6.1) that

g(ρ) = (0,−ρ2) and g′(ρ) = (2, 0).

Since g parametrizes γϕ(B), g′(ρ) ∈ Tg(ρ)γϕ(B). Therefore, by Eq. (5.3), g(ρ) is a
sharp point in γϕ(B).

Now fix t ∈ (−1, 1). Since bt ◦ br = br ◦ bt ,

γbt ◦ g(z) = γbt (z + br (z), zbr (z))

= (bt (z) + bt ◦ br (z), bt (z)bt ◦ br (z))

= (bt (z) + br ◦ bt (z), bt (z)br ◦ bt (z)) = g ◦ bt (z),

for all z ∈ D. Hence γbt ◦ g(ρ) = g ◦ bt (ρ), and the tangent space

Tg◦bt (ρ)γϕ(B) = γ ′
bt ◦ g(ρ) Tg(ρ)γϕ(B).

Therefore, as g(ρ) is a sharp point in γ ◦ ϕ(B),

Tg◦bt (ρ)γ ◦ ϕ(B) = γ ′
bt ◦ g(ρ) Tg(ρ)γϕ(B)

= γ ′
bt ◦ g(ρ) �g(ρ) = �g◦bt (ρ),

that is,

g ◦ bt (ρ) ∈ �(γϕ(B)). (6.2)

Since Eq. (6.2) holds for all t ∈ (−1, 1) and

{bt (ρ) : t ∈ (−1, 1)} = (−1, 1) = C({−1, 1}),

it follows that g((−1, 1)) ⊆ �(γϕ(B)), which is to say that


γϕ(B) ⊆ �(γϕ(B)).

As γϕ is an automorphism of G, 
B ⊆ �(B), as was to be proved. ��
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Definition 6.4 A simple real geodesic inG is a curve of the form h(C)where h : D →
G is a hyperbolic isometry and C is a real geodesic in D.

A distinguished geodesic in G is a simple real geodesic in G whose endpoints lie
in the edge E of the distinguished boundary of G.

Thus, a simple real geodesic in G is a curve C in G such that, for any pair of points
λ,μ ∈ C , the segment of C joining λ and μ achieves the minimum hyperbolic length
of any curve in G joining λ and μ. Note that not all real geodesics are simple.

Two types of distinguished geodesic 
 in G are as follows. We say 
 is a royal
distinguished geodesic if 
 = h(C) where h : D → R is a hyperbolic isometry and
C is a real hyperbolic geodesic in D. We say 
 is a purely balanced distinguished
geodesic if 
 = 
B for some purely balanced geodesic B.

Proposition 6.5 
 is a distinguished geodesic in G if and only if it is either a royal or
a purely balanced distinguished geodesic.

Lemma 6.6 If λ ∈ G \ R, then there exists a purely balanced geodesic B such that
λ ∈ 
B.

Proof Let B be the geodesic in G such that λ ∈ B and T Bλ = �λ. By Corollary 5.5,
B is purely balanced. Also, since λ ∈ �(B), Proposition 6.3 implies that λ ∈ 
B . ��
Lemma 6.7 If B1 and B2 are distinct purely balanced geodesics in G, then 
B1 ∩

B2 = ∅.

Proof If λ ∈ 
B1 ∩ 
B2 , then

TλB1 = �λ = TλB2.

Hence, Theorem 3.3 implies that B1 = B2. ��
The above two lemmas have the following immediate consequence.

Theorem 6.8 The purely balanced distinguished geodesics foliate G \ R.

As a consequence of Theorem 6.8, we may seek coordinates for G \ R based on a
parametrization of the purely balanced distinguished geodesics in G. Let

X = {{ξ1, ξ2} : ξ1, ξ2 ∈ E, ξ1 �= ξ2}

Since E is a circle, topologically, X is homeomorphic to M \ E, a Möbius band
without boundary. For each point ξ = {ξ1, ξ2} ∈ X , we may construct a smooth
parametrization

t �→ Bξ,t , t ∈ (0, 1),

of the family of purely balanced geodesics B such that B ∩ E = ξ . Finally, for each
ξ ∈ X and each t ∈ (0, 1), we may smoothly parametrize 
ξ,t using (0, 1). These
parametrizations lead to the following result.

Theorem 6.9 G \ R is naturally homeomorphic to X × (0, 1) × (0, 1) via the
parametrizations described above.
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7 The Closest Point Property inG

In [6, Lemma 9.8], it was shown that if F is a flat geodesic in G and μ ∈ G \ F , then

inf
λ∈F dG(λ, μ) is attained at a point λ0 ∈ F . (7.1)

Further12, it was shown that if λ0 and μ satisfy Eq. (7.1), and D denotes the geodesic
passing through μ and λ0, then

μ ∈ R ⇒ D = R and μ /∈ R ⇒ D is purely balanced. (7.2)

This result prompts the following definition.

Definition 7.1 Let F be a flat geodesic in G and let μ ∈ G. We say that λ0 is a closest
point in F to μ if

dG(λ0, μ) = inf
λ∈F dG(λ, μ).

If D is a geodesic in G, we say that D has the closest point property with respect to
F if F meets D in a point λ0 and for some μ ∈ D \ {λ0},

λ0 is a closest point in F to μ. (7.3)

Theorem 7.9 implies that if D has the closest point property with respect to F , then,
in fact, statement (7.3) holds for every μ ∈ D.

7.1 Critical Pairs

Definition 7.2 Let λ0, μ ∈ G. We say that the pair (λ0, μ) is a critical pair if for every
admissible direction v ∈ �λ0 ,

d

dt
dG(λ0 + tv, μ)

∣
∣
t=0 ≥ 0. (7.4)

Lemma 7.3 Let F be a flat geodesic in G and let μ ∈ G \ F. If λ0 is a closest point
in F to μ, then (λ0, μ) is a critical pair.

If λ0, μ ∈ G and the geodesic D passing through λ0 and μ is purely balanced, then
we may let D = Bm , where m is hyperbolic with fixed points at η1 and η2. It then
follows, by Lemma 4.12, that

dG(λ0, μ) = max
ω∈{η̄1,η̄2}

d(�ω(λ0),�ω(μ)).

12 Corollary 7.10 asserts that λ0 is unique.
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Consequently, if v ∈ �λ0 , the following formula holds:

d

dt
dG(λ0 + tv, μ)

∣
∣
t=0 = max

ω∈{η̄1,η̄2}
d

dt
d(�ω(λ0 + tv),�ω(μ))

∣
∣
t=0. (7.5)

Lemma 7.4 Assume that λ0 = (0, p0) is a point in F0, the flat geodesic passing
through the origin, and let μ ∈ G \ F0. Assume that the geodesic D passing through
λ0 and μ is purely balanced and let D = Bm where m is hyperbolic with fixed points
η1 and η2. (λ0, μ) is a critical pair if and only if, for all ξ ∈ C,

either
d

dt
d(p0 + tξ,w1)

∣
∣
∣
t=0

≥ 0 or
d

dt
d(p0 + tξ,w2)

∣
∣
∣
t=0

≥ 0, (7.6)

where w1, w2 ∈ D are defined by

w1 = η1�η̄1(μ) and w2 = η2�η̄2(μ). (7.7)

Proof First notice that v ∈ �(λ0,μ) if and only if v = (0, d) for some d ∈ C. Conse-
quently, using Definition 7.2 and (7.5), we see that (λ0, μ) is a critical pair if and only
if for all ξ ∈ C there exists ω ∈ {η̄1, η̄2} such that

d

dt
d(�ω(0, p0 + tξ),�ω(μ))

∣
∣
∣
t=0

≥ 0. (7.8)

Note that, if ω ∈ T,

d(�ω(0, p0 + tξ),�ω(μ)) = d(ω(p0 + tξ),�ω(μ))

= d(p0 + tξ, ω̄�ω(μ)).

Hence statement (7.8) becomes

for all ξ ∈ C there exists ω ∈ {η̄1, η̄2} such that
d

dt
d(p0 + tξ, ω̄�ω(μ))

∣
∣
∣
t=0

≥ 0,

which is equivalent to statement (7.6). ��
A moment’s thought reveals that statement (7.8) is equivalent to the assertion that w2
is the hyperbolic reflection of w1 about the point p0. Thus, we obtain the following
result.

Lemma 7.5 Assume that λ0 = (0, p0) is a point in the flat geodesic F0 passing through
the origin, and let μ ∈ G \ F0. Assume that the geodesic D passing through λ0 and
μ is purely balanced and let D = Bm where m is hyperbolic with fixed points η1 and
η2. Let w1 = η1�η̄1(μ) and w2 = η2�η̄2(μ). Then (λ0, μ) is a critical pair if and
only if w2 is the hyperbolic reflection of w1 about p0.
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7.2 Critical Pairs and Orthogonality

Lemma 7.6 Let p0 ∈ D \ {0}. A geodesic D is purely balanced and meets F0 at the
point (0, p0) if and only if there exists α ∈ D \ {0} and hyperbolic m ∈ AutD such
that D = Bm, m(α) = −α, and α2 = −p0.

Proof By Proposition 4.7, m is hyperbolic if and only if D = Bm is purely balanced.
In addition, m(α) = −α and α2 = −p0 if and only if hm(α) = (0, p0). ��
Lemma 7.7 Let m ∈ AutD be hyperbolic and assume that α ∈ D \ {0} where m(α) =
−α, and α2 = −p0. There exists τ ∈ T such that13 m = bα ◦ rτ ◦ bα . Furthermore,
if we let η1, η2 denote the fixed points of m and define

σ = η1 + η2 and π = η1η2,

then

σ = 1 − |α|2
ᾱ

1 − τ

1 + τ
and π = −α

ᾱ
. (7.9)

Proof That the generalm ∈ AutD satisfyingm(α) = −α has the formm = bα◦rτ ◦bα

follows by Schur reduction.
To prove Eq. (7.9), it suffices to show that the equation m(x) = x is equivalent to

the equation x2 − σ x + π = 0.

m(x) = x ⇔ (bα ◦ rτ ◦ bα)(x) = x

⇔ τbα(x) = b−α(x)

⇔ τ(x − α)(1 + ᾱx) = (x + α)(1 − ᾱx)

⇔ ᾱ(1 + τ)x2 − (1 − |α|2)(1 − τ)x − α(1 + τ) = 0

⇔ x2 − 1 − |α|2
ᾱ

1 − τ

1 + τ
x − α

ᾱ
= 0

⇔ x2 − σ x + π = 0.

��
We remark that Eq. (7.9) implies that τ = 1 if and only if σ = 0, a fact which
also follows from Lemma 4.5 and Condition (ii) in Lemma 4.6. Also observe that the
formulas (7.9) imply the formulas

1 + τ

1 − τ
σ = 1 − |α|2

ᾱ
and, since τ ∈ T,

1 + τ

1 − τ
σ̄ = −1 − |α|2

α
. (7.10)

13 By the Chain Rule, τ = m′(α).
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Lemma 7.8 Assume that λ0 = (0, p0) is a point in F0, the flat geodesic passing
through the origin, and let μ ∈ G \ F0. Assume that the geodesic D passing through
λ0 and μ is purely balanced and let D = Bm where m is hyperbolic with fixed points
η1 and η2. If (λ0, μ) is a critical pair, then D is orthogonal to F0.

Proof By Lemma 7.6, there exists α ∈ D such that

m(α) = −α, and α2 = p0, (7.11)

equations that imply

hm(α) = (0, p0). (7.12)

As also μ ∈ Bm , there exists β ∈ D such that

hm(β) = μ. (7.13)

Lemma 4.12 guarantees that if we define m1 and m2 by

m1 = (η1�η̄1) ◦ hm and m1 = (η2�η̄2) ◦ hm (7.14)

then m1,m2 ∈ AutD. Observe that

m1(α) = η1�η̄1(0, p0) = p0,

and using Eq. (7.7), that

m1(β) = η1�η̄1(μ) = w1.

Similarly,

m2(α) = p0 and m2(β) = w2.

Consequently, if we set ϕ = m2 ◦ m−1
1 ,

ϕ(p0) = p0 and ϕ(w1) = w2.

AsLemma 7.5 guarantees thatw2 is the hyperbolic reflection ofw1 about p0, it follows
that ϕ is hyperbolic reflection about p0. Therefore, as ϕ′(p0) = −1,

m′
1(α) + m′

2(α) = 0 (7.15)

Noting that, for η ∈ T,

∇(η�η̄)(s, p) =
(−2η + 2η̄p

(2 − η̄s)2
,

2

2 − η̄s

)

,
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we see that

m′
1(α) = ∇(η1�η̄1)(0, p0) · h′

m(α)

= ( − 1
2η1 + 1

2 η̄1 p0, 1
) · (

1 + m′(α), α(m′(α) − 1)
)

= (1 + m′(α))(− 1
2η1 + 1

2 η̄1 p0) + α(m′(α) − 1).

Likewise

m′
2(α) = (1 + m′(α))(− 1

2η2 + 1
2 η̄2 p0) + α(m′(α) − 1).

Therefore, by Eq. (7.15) and Lemma 7.7,

0 = m′
1(α) + m′

2(α)

= (1 + m′(α))(− 1
2η1 + 1

2 η̄1 p0) + α(m′(α) − 1)

+ (1 + m′(α))(− 1
2η2 + 1

2 η̄2 p0) + α(m′(α) − 1)

= (1 + τ)(− 1
2σ − 1

2 σ̄ α2) + 2α(τ − 1) by Lemma7.7

= −1 − τ

2

(1 + τ

1 − τ
σ + 1 + τ

1 − τ
σ̄α2 + 4α

)

= −1 − τ

2

(1 − |α|2
ᾱ

− 1 − |α|2
α

α2 + 4α
)

by Eq.(7.10)

= −1 − τ

2ᾱ

(

1 − |α|2)2.

Consequently, asm′(α) = τ ,m′(α) = 1 and Lemma 4.6 implies thatm is irrotational.
By Proposition 5.4, D is orthogonal to F0. ��

7.3 The Closest Point Property and Orthogonality

Theorem 7.9 Let F be a flat geodesic in G. Assume that D is a geodesic in G that
meets F at the point λ0. The following are equivalent.

(i) For every μ ∈ D, λ0 is a closest point in F to μ;
(ii) there exists μ ∈ D such that λ0 is a closest point in F to μ;
(iii) D is orthogonal to F.

Proof Clearly, (i) implies (ii). If (ii) holds, then (7.2) implies that D is purely balanced
and Lemma 7.3 implies that (λ0, μ) is a critical pair. Therefore, Lemma 7.8 implies
that (iii) holds.

Now suppose that (iii) holds. Fix μ ∈ D. Choose λ1 ∈ F such that λ1 is a closest
point in F to μ. By (ii) implies (iii), if D1 is the geodesic passing through λ1 and μ,
then D1 is orthogonal to F . As D and D1 are both orthogonal to F and μ ∈ D ∩ D1,
Lemma 5.8 implies that λ1 = λ0. Therefore, λ0 is a closest point in F to μ. ��
Corollary 7.10 Assume that F is a flat geodesic in G and μ ∈ G. If λ1 and λ2 are both
a closest point in F to μ, then λ1 = λ2.
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Proof Suppose

inf
λ∈F dG(λ, μ)

is attained at two points λ1 and λ2 in F . If we let D1 be the geodesic passing through
λ1 and μ and let D2 be the geodesic passing through λ2 and μ, then the equivalence
of Conditions (ii) and (iii) in Theorem 7.9 implies that D1 and D2 are both orthogonal
to F . Therefore, as μ ∈ D1 ∩ D2, Lemma 5.8 implies that D1 = D2. Hence, λ1 = λ2.

��
The following corollary of Theorem 7.9 is equivalent to Theorem 1.2 from the intro-
duction of the paper.

Corollary 7.11 Let F be a flat geodesic in G and let D be a geodesic in G. Then D
has the closest point property with respect to F if and only if D is orthogonal to F.
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16. Kosiński, L., Zwonek, W.: Extremal holomorphic maps in special classes of domains, Annali della
Scuola Normale Superiore di Pisa. Classe di Scienze 16(1), 159–182 (2016)

17. Krantz, S.G.: Function Theory of Several Complex Variables. Wiley, New York (1982)
18. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math.

Fr. 109, 427–484 (1981)
19. Pflug, P., Zwonek, W.: Description of all complex geodesics in the symmetrized bidisc. Bull. Lond.

Math. Soc. 37, 575–584 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Jim Agler1 · Zinaida Lykova2 · N. J. Young2,3

B N. J. Young
Nicholas.Young@ncl.ac.uk

Jim Agler
jagler@ucsd.edu

Zinaida Lykova
Zinaida.Lykova@ncl.ac.uk

1 Department of Mathematics, University of California at San Diego, La Jolla, CA 92103, USA

2 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1
7RU, UK

3 School of Mathematics, Leeds University, Leeds LS2 9JT, UK

123

http://orcid.org/0000-0003-2707-1450

	Intrinsic Directions, Orthogonality, and Distinguished Geodesics in the Symmetrized Bidisc
	Abstract
	1 Introduction
	2 The Hyperbolic Metric on a Lempert Domain
	3 Automorphisms, Complex Geodesics and Directions in G
	3.1 The Automorphism Group of G
	3.2 The Complex Geodesics in G
	3.3 The Five Types of Geodesic
	3.4 Directions
	3.4.1 The Flat Direction
	3.4.2 The Sharp Direction
	3.4.3 Other Directions


	4 Hyperbolic Automorphisms in mathbbD and Purely Balanced Geodesics  in G
	4.1 Hyperbolic Automorphisms of mathbbD
	4.2 Purely Balanced Geodesics and Royal Points in G
	4.3 Purely Balanced Geodesics in Standard Position in G
	4.4 The Curve of Purely Balanced Directions

	5 Orthogonality in G
	5.1 Flat Geodesics
	5.2 The Sharp Direction
	5.3 Orthogonality and Irrotational Automorphisms
	5.4 Foliation of G by Orthogonal Geodesics

	6 Distinguished Geodesics in G
	7 The Closest Point Property in G
	7.1 Critical Pairs
	7.2 Critical Pairs and Orthogonality
	7.3 The Closest Point Property and Orthogonality

	Acknowledgements
	References




