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Abstract
We discuss the number of lattice points with integer coordinates on the sphere of
radius λ and Vinogradov’s Theorem on the representation of integers as a sum of three
primes.
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1 Introduction

In the last 15 years, the circle method has been applied to problems in Harmonic
Analysis, Ergodic Theory, and Partial Differential Equations. See e.g., [1,2,4–6,11,14,
15,19,21,23,27–29,34]. Thus it seems worthwhile to have an introductory exposition
to the topic. The present article tries to give such an exposition. As such, it is a slightly
expanded version of a talk given at the IAS Park City Institute in July 2003. Over the
last several years, I have been working with A. Magyar and E. M. Stein on several
applications of the circle method. Conversations I have had with Magyar and Stein
have greatly enriched my understanding of this method. I have also profited greatly
from Magyar’s paper [14] and unpublished lecture notes of Stein [25].

The circle method of Hardy, Littlewood, and Ramanujan is a method of studying
asymptotically the number of solutions of diophantine equations. For example, Hardy
and Littlewood [10] (with later improvements byVinogradov [32]) studied the number
of representations of an integer m as a sum of � kth powers. That is they studied the
number of solutions in positive integers n1, n2, . . . , n� of the equation
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9114 S. Wainger

m = nk1 + · · · + nk�.

Another example is a theorem of Vinogradov [32] asserting that every sufficiently
large odd integer can be written as a sum of three primes.

Wewill begin by considering rd(λ), the number of lattice points inR
d on the sphere

centered at the origin of radius λ. A lattice point in R
d is a point n = (n1, n2, . . . , nd)

with n1, n2, . . . , nd integers. Then we shall give a brief discussion of Vinogradov’s
Theorem asserting that every sufficiently large odd number can be written as a sum of
3 primes, and will try to explain why it seems so difficult to use the method to show
that every sufficiently large even integer can be written as a sum of 2 primes. Finally,
we will give some references for further reading.

2 The Number of Lattice Points on the Sphere of Radius �

rd(λ), the number of lattice points in R
d on the sphere of radius λ centered at the

origin, is the number of solutions in integers (n1, n2, . . . , nd)of the equation

λ2 = n21 + · · · + n2d . (1)

So rd(λ) = 0 unless λ2 is an integer, and we will always assume λ2 is an integer. Then
there is the following theorem.

Theorem 1 For d ≥ 5, there are positive constants c1(d) and c2(d) such that

c1(d)λd−2 ≤ rd(λ) ≤ c2(d)λd−2.

See [8,13] if d ≥ 6. The statement is false for d ≤ 4. Note that the power of λ that
occurs in Theorem 1 is λd−2 while the area of the corresponding sphere in R

d is
C(d)λd−1. We should expect the power λd−2 to arise for the following reason: We
expect the number of lattice points in the annulus � ≤ |x | ≤ 2� to be about c�d for
large�. On the other hand, the number of spheres having lattice points of radius λwith
� ≤ λ ≤ 2� is the number of λ with � ≤ λ ≤ 2� such that λ2 is an integer, and thus
the number of integers in the interval [�2, 4�2]. Thus if rd(λ) ∼ λa , �a · �2 ∼ �d

so a = d − 2.
We shall try to outline the proof of the upper bound in Theorem 1 by the circle

method, and the lower bound for d ≥ 27. We will then briefly indicate how to obtain
the lower bound for 5 ≤ d ≤ 27.

To prove Theorem 1, one shows

rd(λ) = Md(λ)λd−2 + Ed(λ), (2)

where
C1(d) ≤ Md(λ) ≤ C2(d)

with C1(d) and C2(d) positive, and

|Ed(λ)| ≤ Cλd/2.
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Because in Eq. (1), the power of the n j is 2, other methods can be used to study rd(λ).
In particular, Hardy [9] showed Ed(λ) = 0 if 5 ≤ d ≤ 8. See [8,13]. Even when d = 3
or 4, it can be shown that Ed(λ) = 0. See [3,26]. A better understanding of this can
be found in the work of Mordell [17]. See [20] for a more recent development using
the modular group. In general, the estimate for Ed(λ) can be improved. See [12].

Md(λ) itself is complicated to describe. In particular, it involves Gauss sums,
S(a, q). If (a, q) = 1, that is a and q are relatively prime, and 1 ≤ a ≤ q,

S(a, q) =
q−1∑

n=0

e−2π in2a/q .

If q = 1, the only integer a with (a, q) = 1 is a = 1 and

S(1, 1) = 1.

If q = 2, the only integer a with (a, q) = 1 is again a = 1 and

S(1, 2) =
1∑

n=0

e−2π in21/2 = 1 + e−iπ = 1 − 1 = 0.

There is the following estimate for the size of S(a, q).

Lemma 2
|S(a, q)| ≤ √

2q.

We defer the proof of Lemma 2 until later.
Now

Md(λ) = C(d)

∞∑

q=1

q∑

a=1
(a,q)=1

e−2π iλ2 a
q

(
1

q
S(a, q)

)d

. (3)

Md(λ) is generally referred to as the singular series. Note that Lemma 2 easily implies
that |Md(λ)| ≤ C(d) for d ≥ 5. Also our remarks on S(1, 1) and S(1, 2) together with
Lemma 2 imply

|Md(λ)| ≥ C(d)

⎛

⎝1 −
∞∑

q≥3

q ·
(√

2

q

)d
⎞

⎠ > C(d)

if d ≥ 27. The condition d ≥ 27 could of course easily be improved.
In thinking about rd(λ), our first task is to change the combinatorial problem of

studying the number of solutions of Eq. (1) to an analytic problem. A key observation
is that ∫ 1

2

− 1
2

e2π i(λ
2−n21−···−n2d )θ dθ =

{
1, if n21 + · · · + n2d = λ2;
0, otherwise.
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9116 S. Wainger

So

rd(λ) =
∞∑

n1,...,nd=−∞

∫ 1
2

− 1
2

e2π i(λ
2−n21−···−n2d )θ dθ (4)

or formally

rd(λ) =
∫ 1

2

− 1
2

e2π iλ
2θ

∞∑

n1,...,nd=−∞

∫ 1
2

− 1
2

e−2π i(n21+···+n2d )θ dθ

or

rd(λ) =
∫ 1

2

− 1
2

e2π iλ
2θ

( ∞∑

n=−∞
e2π in

2θ

)d

dθ. (5)

Of course, the infinite sun in (5) does not converge. To make (5) rigorous, we can
either truncate the sum in (4) or introduce an ε. It turns out that in the case of squares,
introducing an ε > 0 is more convenient. Thus, we note that

∫ 1
2

− 1
2

e2π iλ
2θ e−2π i(n21+···+n2d )θ e−2πε(n21+···+n2d ) dθ

=
{
e−2πε(n21+···+n2d ) = e−2πελ2 , if n21 + · · · + n2d = λ2;
0, otherwise.

So

rd(λ) = e2πελ2
∞∑

n1,...,nd=−∞

∫ 1
2

− 1
2

e−2π i(n21+···+n2d )θ e−2πε(n21+···+n2d )θ dθ

= e2πελ2
∫ 1

2

− 1
2

e2π iλ
2θ

( ∞∑

n=−∞
e−2π(ε+iθ)(n21+···+n2d )

)d

dθ,

or

rd(λ) = e2πελ2
∫ 1

2

− 1
2

e2π iλ
2θ {F(ε + iθ)}d dθ. (6)

where

F(ε + iθ) =
∞∑

n=−∞
e−2π(ε+iθ)n2 . (7)

We will always take ε = 1

λ2
so that the factor e2πελ2 will be a constant. To study

the analytical problem posed by (6), we have to understand F(ε + iθ), which is of
course essentially a classical theta function. A convenient way to study F(ε + iθ)

is via the Poisson summation formula. The Poisson summation formula asserts that
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under suitable hypothesis on a function f ,

∑

n

f (n) =
∑

n

f̂ (n)

where

f̂ (ξ) =
∫ ∞

−∞
e−2πx ·ξ f (x) dx .

See [30].
We are going to apply the Poisson summation formula with

f (x) = e−2π(ε+iθ)x2 .

Now e−πx2 is its own Fourier transform. See [30]. So by a change of variables

f̂ (ξ) = 1√
2(ε + iθ)

e−π
ξ2

2(ε+iθ) .

Then the Poisson summation formula asserts

F(ε + iθ) =
∞∑

n=−∞

1√
2(ε + iθ)

e−π n2
2(ε+iθ) . (8)

If one is lucky in using the Poisson summation formula, the main term in
∑

f̂ (n) is

f̂ (0). Thus, we might hope

F(ε + iθ) = 1√
2(ε + iθ)

+ Error (9)

Just to see that we are on the right track, let us see what would happen if

F(ε + iθ) = 1√
2(ε + iθ)

.

Then we would have

rd(λ) = Cd

∫ 1
2

− 1
2

e2π iλ
2θ 1

(ε + iθ)d/2 dθ.

Now let us make a change of variable θ = xε. Then recalling the fact that ε = 1

λ2
,

we arrive at the equation

rd(λ) = Cd λd−2
∫ λ2

2

− λ2
2

e2π i x
1

(1 + i x)d/2 dx .
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9118 S. Wainger

Notice that the integrand is independent of λ, so that we would have

rd(λ) = Cd λd−2
∫ ∞

−∞
e2π i x

1

(1 + i x)d/2 dx + O(1)

(which of course is too good an error to be true).

It is not hard to see that
∫ ∞

−∞
e2π i x

(1 + i x)d/2 dx �= 0. If d ≥ 5 is an even integer, one

sees this by the residue theorem. If d = 1, this follows by distorting the contour to an
integral over [i, i∞] and using the fact that (1 + i x)−1/2 is multiple valued. If d is a
larger odd integer, we can reduce the matters to d = 1 by integration by parts.

Let us now return to Eq. (9), and consider the error.
The error is

1√
2(ε + iθ)

∑

n �=0

e−π n2
ε+iθ .

The absolute value of the nth term in the above series is exp
(
−C n2ε

ε2+θ2

)
for some

positive C . Thus, we can expect to control the error only if θ2 ≤ ε, that is, if |θ | ≤ 1

λ
.

If |θ | ≤ 1

λ
, then

|Error| ≤ C1
1

(ε2 + θ2)1/4
e
−C2

ε

ε2+θ2 .

So

Fd(ε + iθ) =
(

1

2(ε + iθ)

)d/2

+ O
((

1

ε2 + θ2

)d/4
)

e
−C3

ε

ε2+θ2

=
(

1

2(ε + iθ)

)d/2

+ O
(

1

εd/4

(
ε

ε2 + θ2

)d/4
)

e
−C3

ε

ε2+θ2

=
(

1

2(ε + iθ)

)d/2

+ O(λd/2).

This leads to the estimate

∫ 1
λ

− 1
λ

e2π iλ
2θ {F(ε + iθ)}d dθ = C(d)λd−2 + O(λ

d
2 −1)

Now the thrust of the circle method is that the main contribution to the integral in (6)
should come from small intervals around rationals a/q with 1 ≤ a ≤ q, (a, q) = 1
and q not too large. In the present example, we define

I (a, q) =
{
θ :

∣∣∣∣θ − a

q

∣∣∣∣ ≤ 1

qλ

}
.
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An Introduction to the Circle Method of Hardy, Littlewood and Ramanujan 9119

The intervals I (a, q) are disjoint for q ≤ λ

20
since if I (a, q) ∩ I (a1, q1) �= ∅

∣∣∣∣
a

q
− a1

q1

∣∣∣∣ ≤ 2
1

q∗λ

where q∗ = min(q, q1). Since (a, q) = (a1, q1)=1,

∣∣∣∣
a

q
− a1

q1

∣∣∣∣ ≥ 1

qq1
.

Thus
1

2
q∗λ ≤ qq1,

and min(q, q1) ≥ λ

2
. Thus

rd(λ) =
λ
20∑

q=1

q∑

a=1
(a,q)=1

∫

I (a,q)

e2π iλ
2θ {F(ε + iθ)}d dθ +

∫

Eλ

e2π iλ
2θ {F(ε + iθ)}d dθ.

According to well-known principle of Dirichlet, for each θ ∈ [0, 1] there is a q

with (a, q) = 1 such that

∣∣∣∣θ − a

q

∣∣∣∣ ≤ 1

λq
, q ≤ λ. Thus

Eλ ⊂
⋃

λ
2θ ≤q≤λ

I (a, q).

Now we would like to find an approximation to F(ε + iθ) for θ ∈ I (a, q) with
q ≤ λ. To this end for θ ∈ I (a, q), we write n in the sum defining F(ε + iθ) as

n = mq + μ, 0 ≤ μ ≤ q − 1.

Thus

F(ε + iθ) =
∞∑

n=−∞
e−2πn2(ε+iθ) =

q−1∑

μ=0

∞∑

m=−∞
e−2π(mq+μ)2(ε+i(θ− a

q )+i aq )
.

Since

e−2π i(mq+μ)2 a
q = e−2π iμ2 a

q ,

F(ε + iθ) =
q−1∑

μ=0

e−2π iμ2 a
q Fμ

(
ε + i

(
θ − a

q

))
.
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9120 S. Wainger

where

Fμ

(
ε + i

(
θ − a

q

))
=

∞∑

m=−∞
e−2π(mq+μ)2(ε+i(θ− a

q ))
.

We study Fμ

(
ε + i

(
θ − a

q

))
by the Poisson’s summation formula with f (x) =

e−2π(xq+μ)2(ε+i(θ− a
q )). Then

f̂ (0) = C(d)
1

q(ε + i(θ − a
q ))1/2

,

(which is independent of μ). Arguing as in the case that
a

q
= 0, we find for θ ∈

I (a, q), q ≤ λ

(F(ε + iθ))d =
(
S(a, q)

q

)d C(d)

(ε + i(θ − a
q ))d/2 + O(λd/2).

To obtain this approximate expression for F(ε + iθ), it is necessary to show if
(a, q) = 1

|S(a, q,m)| ≤ Cq1/2

where

S(a, q,m) =
q∑

n=1

e−2π in2 a
q e2π im

a
q .

This estimate is proved in the same manner as Lemma 2 below.
So, by a change of variables

∫

I (a,q)

(F(ε + iθ))de2π iλ
2θ dθ

= C(d)

(
S(a, q)

q

)d

e2π iλ
2 a
q

∫

|β|≤ 1
λq

e2π iλ
2β

(ε + iβ)d/2 dβ + O(λd/2−1).

Notice the factors
(
S(a,q)

q

)d
e2π iλ

2 a
q are just those arising in the formula (3) forMd(λ).

Next we replace the range of integration |β| ≤ 1

λq
by the entire real axis, making

another error of order λd/2−1. Thus we find

rd(λ) = C(d)λd−2
∑

q≤ λ
20

q∑

a=1
(a,q)=1

(
S(a, q)

q

)d

e2π iλ
2 a
q

+O

(∫

Eλ

|F(ε + iθ)|d dθ + O(λd/2)

)
.
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But for θ ∈ Eλ, q ≥ λ
20 , so |F(ε + iθ)| ≤ C

(
S(a,q)

q

)d
1

εd/2 ≤ C
(
S(a,q)

q

)d
λd/2,

and finally, since
(
S(a,q)

q

)d ≤ C
( 1

λ

)d/2
for q ≥ λ

20 , we arrive at the formula (2).

It remains to prove Lemma 2. We use what is commonly called Weyl differencing.
See [16] or [33].

S(a, q) =
q−1∑

n=0

e−2π in2 a
q .

Now

|S(a, q)|2 =
q−1∑

n=0

q−1∑

m=0

e2π i(m
2−n2) aq =

q−1∑

n=0

n+q−1∑

m=n

e2π i(m
2−n2) aq

=
q−1∑

n=0

q−1∑

k=0

e2π ik(k+2n) aq ,

so

|S(a, q)|2 ≤
q−1∑

k=0

∣∣∣∣∣∣

q−1∑

n=0

e4π ikn
a
q

∣∣∣∣∣∣
.

Since (a, q) = 1, the inner sum is zero for all but at most two values of k. Thus

|S(a, q)|2 ≤ 2q.

To show Md(λ) is bounded below for d ≥ 5, we must consider

Aλ(q) =
q∑

a=1
(a,q)=1

e2π iλ
2 a
q

(
S(a, q)

q

)d

.

It turns out that if

(q1, q2) = 1, Aλ(q1 q2) = Aλ(q1)Aλ(q2).

This is done in [8, Chap. 12] and in the more general context of studying the number
of representations of an integer as a sum of d k–th powers in [18,32]. Thus

Md(λ) = C(d)
∏

p
p prime

(1 + Aλ(p) + · · · + Aλ(p
m) + · · · ).

Next one can see that the proof of Lemma 2 shows |S(a, q)| ≤ √
2q if q ≡ 0(4),

S(a, q) = 0 if q ≡ 2(4) and |S(a, q)| ≤ √
q , if q is odd. Using these estimates and
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9122 S. Wainger

Eq. (3), it is straight forward to check that the infinite product is bounded below. I
learned this argument from [25].

Another argument can be found in [8].
It is interesting to note that, for p prime, onemay interpret 1+Aλ(p)+· · ·+Aλ(pm)

in terms of solutions to the congruence

n21 + · · · + n2d ≡ λ2(mod pm). (∗)

Note that the number of solutions of

n21 + · · · + n2d ≡ λ2(mod pm)

with 1 ≤ n j ≤ pm is

1

pm

pm∑

n1=1

· · ·
pm∑

nd=1

pm∑

a=1

e2π i(λ
2−n21−···−n2d ) a

pm

= 1

pm

m∑

j=0

pm∑

n1=1

· · ·
pm∑

nd=1

pm− j∑

a=1
(a,pm− j )=1

e
2π i(λ2−n21−···−n2d ) a

pm− j

= 1

pm

m∑

j=0

p jd
pm− j∑

n1=1

· · ·
pm− j∑

nd=1

pm− j∑

a=1
(a,pm− j )=1

e
2π i(λ2−n21−···−n2d ) a

pm− j

= 1

pm

m∑

j=0

p jde
2π iλ2 a

pm− j [S(a, pm− j )]d

= pm(d−1)
m∑

j=0

1

p(m− j)d

pm− j∑

a=1
(a,pm− j )=1

e
2π iλ2 a

pm− j [S(a, pm− j )]d .

So

m∑

j=0

p j∑

a=1
(a,pm− j )=1

(
S(a, p j )

p j

)d

e
2π iλ2 a

pm− j = 1

pmd−1 · (number of solutions of (∗)).

Thus

1 + Aλ(p) + · · · + Aλ(p
m) = pm(1−d)N (λ, pm) (∗∗)

where
N (λ, pm) = number of solutions of the congruence (∗)
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A generalization of (∗∗) becomes important in studying the number of ways of rep-
resenting an integer m as a sum of � kth powers. See [32, Chap. 2] or [18, Chap.
5].

3 The Number of Representations of an Integer as a Sum of Primes

In the discussion of rd(λ), we were able to accurately describe the generating function,
F(ε + iθ), for every θ . In many applications of the circle method, this is not possible,
and themajor difficulty arises in estimating the generating function on the set onwhich
a really good approximation is unknown. A case in point is the problem of representing
an integer N as a sum of two or three primes. We will give a short introduction to this
topic. Details may be found in [7] or [22]. Thus, we let ρ2(N ) denote the number of
representations of an even integer as a sum of two primes and ρ3(N ) the number of
representations of an odd integer as a sum of three primes. We will first discuss what
we might expect the size of ρ2(N ) and ρ3(N ) to be. Then we shall try to understand
why one can successfully treat ρ3(N ) but not ρ2(N ). The substitute for F(ε + iθ)will
be

SN (θ) =
∑

p≤N

e2π i pθ .

(In this section, pwill always denote a prime.)Wewill indicate how SN (θ) is described
well on a small set called the major arcs, and finally we shall try to give some hint as
to how SN (θ) is estimated for θ not in the major arcs.

Let us first make some guess as to the size of ρ2(N ) and ρ3(N ). Consider first
ρ2(N ). The number of ways of writing

n = p1 + p2

with p1 and p2 is the number of primes in the sequence n − p1, with p1 prime. This

latter sequence has about
n

log n
terms, so if the primes were uniformly distributed in

this sequence we would expect

p2(n) ∼
n

log n

log
(

n
log n

) ∼ n

log2 n
.

We proceed to discuss ρ3(N ). Again the sequence n− p, p prime has roughly
n

log n

elements. If for most of these p, n − p = p2 + p3 in about
n

log2 n
ways, we would

expect

ρ3(N ) ∼ n2

log3 n
.

And in fact Vinogradov proved
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9124 S. Wainger

Theorem 3 There are positive constants N0, C1 and C2 such that for n ≥ N0 and n
odd,

C1
n2

log3 n
≤ ρ3(N ) ≤ C2

n2

log3 n
.

We give a brief introduction to the proof of Theorem 3 together with an explanation
as to why the study of representing integers as sums of three primes is more tractable
that handling the analogous problem for two primes. For more details, consult [22],
which is the book I followed when I taught the material.

Let SN (θ) =
∑

1≤p≤N

e2π i pθ . At the present time, it is possible to find a good approx-

imation to SN for only small set of θ ’s (as N gets large). Call this set UN . Then write

ρ3(N ) =
∫ 1

0
e2π i Nθ [SN (θ)]3 dθ =

∫

UN

+
∫

C(UN )

.

The integral over UN will give the main contribution ∼ N 2

log3 N
. Thus we have to

prove
∫

C(UN )

is say O N 2

log4 N
. We can estimate

∫

C(UN )

by

sup
θ∈C(UN )

|SN (θ)|
∫ 1

0
|SN (θ)|2 dθ ≤ C sup

θ∈C(UN )

|SN (θ)| N

log N

for some constant C by the Plancherel Theorem since the coefficients, an , of SN (θ)

are 1 if n is a prime and 0 otherwise,
∫ 1

0
|SN (θ)|2 dθ is just the number of primes

≤ N .
On the other hand, one could not proceed this way in studying ρ2(N ), for if one

took a power of SN (θ) out of the integral

∫ 1

0
[SN (θ)]2 e2π i Nθ dθ,

one would no longer be in a position to use Plancherel’s Theorem.

It turns out that the main contribution comes from small intervals around
a

q
with

(a, q) = 1, and 1 ≤ q ≤ log4 N with N large.
Let us see how one finds an approximation for SN (θ). Note first that if (a, q) = 1,

SN

(
a

q

)
=

q∑

r=1

e2π ir
a
q π(N , r , q)
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where π(N , r , q) is the number of primes ≤ N which are congruent to r mod q. A
theorem of Siegel asserts that if (r , q) = 1

π(N , r , q) = 1

φ(q)
L(N ) + OA N e−c

√
log N

uniformly for q ≤ (log N )A for any positive A. Here φ(q) = the number of integers

q which are relatively prime to q and L(N ) = ∫ N
2

dt

ln t
. Thus for q ≤ (log N )A

SN

(
a

q

)
= 1

φ(q)
L(N )

q∑

r=1
(r ,q)=1

e2π ir
a
q + O(N e−c

√
log N ).

The r sum can be evaluatedwith the help of theMöbius inversion formula. TheMöbius
function μ(d) is defined as follows:

μ(d) :
⎧
⎨

⎩

μ(1) = 1;
μ(d) = (−1)r , if d is the product of r distinct primes;
μ(d) = 0, if d is divisible by a square.

The Möbius inversion formula states that

∑

d|n
μ(d) =

{
1, if n = 1;
0, otherwise.

The standard proof of the Möbius inversion formula given in elementary number
theory always seemed mysterious to me. There is another proof using the Riemann
zeta function that seems more natural to me.

For Res > 1,

ζ(s) =
∞∑

1

1

ns
=

∏

p
p prime

1(
1 − 1

ps

) .

So
1

ζ(s)
=

∏

p

(
1 − 1

ps

)
=

∞∑

1

μ(n)

ns
.

Now if A(s) =
∞∑

n=1

a(n)

ns
and B(s) =

∞∑

n=1

b(n)

ns
are two Dirichlet series then

A(s)B(s) =
∞∑

n=1

∞∑

m=1

a(n)

ns
b(m)

ms
=

∞∑

k=1

1

ks

∞∑

n=1
k|n

a(n) b
(n
k

)
.

ζ(s)
1

ζ(s)
= 1 = 1

1s
+ 0

2s
+ 0

3s
+ · · · .
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Take a(n) = 1 and b(m) = μ(m) and get

∑

k|n
μ

(n
k

)
= 0, if k �= 1,

∑

d|n
μ(d) = 0, if n �= 1,

μ(1) =
∑

d|1
μ(d) = 1.

The Möbius inversion formula is often used in summing over values of r where r is
restricted to be relatively prime to another integer q. Thus

∑

r=1
(r ,q)=1

q

e2π ir
a
q =

q∑

r=1

e2π ir
a
q

∑

d|(r ,q)

μ(d) =
∑

d|q
μ(d)

∑

d|r
1≤r≤q

e2π ir
a
q

=
∑

d|q
μ(d)

q/d∑

m=1

e2π imd a
q = μ(q)

Since the inner sum is zero for d �= q. Thus one finds

SN

(
a

q

)
= μ(q)

φ(q)
L(N ) + O(N e−c

√
log N ).

Note that the main term does not depend on a as opposed to S(a, q) arising in the

study of rd(λ). This is a big advantage in some problems. Also φ(q) > c
q

ln ln q
.

Thus the factor
μ(q)

φ(q)
is better than the corresponding factor

S(a, q)

q
which arose

before. Nest we note that we can find a good approximation to SN

(
a

q
+ β

)
if |β| ≤

| log N |A
N

, q ≤ logA N . To see this, we write

SN

(
a

q
+ β

)
=

∑

p≤N

e2π i p
a
q e2π i pβ.

Put �(x) =
∑

p≤x

e2π i p
a
q . Then

SN

(
a

q
+ β

)
=

∫ N

3/2
e2π i tβd�(t) dt

= �(N )e2π i Nβ − 2π iβ
∫ N

3/2
�(t)e2π i tβ dt
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= �(N )e2π i Nβ − 2π iβ
∫ N

3/2

μ(q)

φ(q)
L(t)e2π i tβ dt + O(N e−√

log N )

if |β| ≤ C
(log N )U

N
.

Thus another integration by parts shows

SN

(
a

q
+ β

)
= μ(q)

φ(q)

∫ N

3/2

1

ln t
e2π i tβ dt + O(N e−c

√
log N )

for q ≤ (log N )A and |β| ≤ (log N )A

N
. This is the set UN . Note that |UN | ≤

(log N )3A

N
.

To estimate SN (θ) in the complement ofUN , Vinogradov used Schwartz’s inequal-
ity in a very clear way. Suppose

T =
N∑

n=1

N∑

m=1

dnbme
2π inmθ .

Then even if the dn and bm are very rough, there can be cancelation in the double sum
for T . To fix matters consider

T =
q∑

n=1

q∑

m=1

dnbme
2π imn a

q

with (a, q) = 1. Let D =
( q∑

n=1

d2n

)1/2

and B =
( q∑

m=1

b2m

)1/2

. Then the trivial

estimate would be
T ≤ qDB.

In fact one has the estimate

T ≤ √
qDB. (∗)

If q ≥ (log N )A, since we are talking about beating a trivial estimate by a small power
of log N , this makes a tremendous saving.

To see (∗) apply Schwartz’s inequality to the outer sum to see

|T | = D

⎧
⎨

⎩

q∑

n=1

∣∣∣∣∣

q∑

m=1

bme
2π imn a

q

∣∣∣∣∣

2
⎫
⎬

⎭

1/2

= D

⎧
⎨

⎩

q∑

m1=1

q∑

m2=1

q∑

n=1

bm1bm2e
2π i(m1−m2)n

a
q

⎫
⎬

⎭

1/2

.

Now the sum on n is zero unless m1 = m2 in which case it is q. Thus |T | ≤ √
qDB.
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To see how double sums arise in studying SN (θ) note that

SN (θ) =
∑

√
N≤n≤N

(n,P)=1

e2π inθ + O(
√
N )

where
P =

∏

p≤N

p.

Now we have to apply the Möbius inversion formula.

∑

d|n
μ(d) =

{
1, if n = 1;
0, otherwise.

So

SN (θ) =
∑

√
N≤n≤N

∑

d|(n,P)

μ(d)e2π inθ + O(
√
N ) =

∑

d|P
μ(d)

∑

n
d|n√

N≤n≤N

e2π inθ

The d’s we have to be careful about are those of the size roughly of N . We write
n = md and get a sum of the form

∑

d

μ(d)
∑

m

e2π imθ .

If d is large, m must be small. Also all but a negligible number of large d have a
large prime factor p, say p > e

√
log N . Now the idea roughly to write d = pd1 where

p > e
√
log N . Then the range of summation on d1 is d1 ≤ N

e
√
log N

. Now the sum is

something like ∑

d1≤ N

e
√
log N

μ(d1)
∑

m

e2π id1mpθ

and one can control the size of mp.
So roughly the sum becomes

∑

d1≤ N

e
√
log N

μ(d1)
∑

�
� not too large

d(�)e2π id1�θ ,

where d(�) is dominated by the number of divisors of �. This is now the type of double
sum that can be controlled by an application of Schwartz’s inequality as described
above. For more details see Pracher [22].
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4 Further Reading

I taught a one semester course in the Fall semester 2002 on the circle method. I covered
two topics: (1) The number of solutions in integers of m = nk1 + · · · + nkl and (2)
Vinogradov’s Theorem on the representation of an integer as a sum of three primes.
The study of rd(λ) was a simplified version of [15] together with arguments for the
singular series for the general problem of the number of solution ofm = nk1+· · ·+nkl ,
I followed [15]. See also [31]. For Vinogradov’s Theorem, I followed the treatment in
Pracher [22], an algebraic approach to the study of rd(λ) can be found in [24].
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