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Abstract
Weconsider various definitions of functions of vanishingmean oscillation on a domain
� ⊂ R

n . If the domain is uniform, we show that there is a single extension operator
which extends functions in these spaces to functions in the corresponding spaces onR

n ,
and also extends BMO(�) to BMO(Rn), generalizing the result of Jones. Moreover,
this extension maps Lipschitz functions to Lipschitz functions. Conversely, if there
is a linear extension map taking Lipschitz functions with compact support in � to
functions in BMO(Rn), which is bounded in the BMO norm, then the domain must be
uniform. In connectionwith these resultswe investigate the approximation of functions
of vanishing mean oscillation by Lipschitz functions on unbounded domains.

Keywords Bounded mean oscillation · Vanishing mean oscillation · Continuous
mean oscillation · Extension theorems · Uniform domains

Mathematics Subject Classification 42B35 · 46E30

Dedicated to the memory of E. M. Stein.

Almaz Butaev was partially supported by a PIMS postdoctoral Fellowship at the University of Calgary
and the Natural Sciences and Engineering Research Council (NSERC) of Canada. Galia Dafni was
partially supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the
Centre de recherches mathématiques (CRM) and the Fonds de recherche du Québec-Nature et
technologies (FRQNT).

B Galia Dafni
galia.dafni@concordia.ca

Almaz Butaev
almaz.butaev@ucalgary.ca

1 Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4,
Canada

2 Department of Mathematics and Statistics, Concordia University, Montreal, QC H3G 1M8, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-020-00526-8&domain=pdf
http://orcid.org/0000-0002-5078-7724


Approximation and Extension of Functions of Vanishing Mean Oscillation 6893

1 Introduction

Let f be a real-valued function defined on some subset � ⊂ R
n . It is a natural

question to ask how to extend f to a function on R
n while preserving some of its

properties. Those properties can be described by requiring that f belong to some
function space. Most trivially, bounded functions on any set � can be immediately
extended to bounded functions on R

n . Less trivially, Lipschitz continuous functions
on any set � can be extended to Lipschitz functions on R

n : the McShane–Whitney
theorem states that an L-Lipschitz function on a nonempty set � can be extended to
an L-Lipschitz function F on R

n (see [17]) or more generally on a metric measure
space (see [18]), with F = f on �, for example by setting

F(x) = inf{ f (y) + L|x − y| : y ∈ �}.

Looking at smoother functions, the problem of extending Cm functions from closed
sets to R

n crucially depends on how differentiable functions are defined on a closed
set. Considering them as jets, Whitney proved the extension theorem introducing his
famous decomposition (see e.g. Chapter VI in [29] or Chapter II in [5]). However,
defining Cm functions on a closed set as traces of Cm(Rn) functions to that set makes
the problem much harder. Only recently classic questions in this setting were settled
by Fefferman [11–13].

In the category of Sobolev spacesWs,p , if the domain� is regular enough then there
is a universal operator extending Ws,p(�) functions to Ws,p(Rn) simultaneously for
all s > 0 and 1 ≤ p ≤ ∞. This is shown by Stein in [30], extending the results of
Calderón (for extension in rougher domains see [21]).

In this paper, we want to go in the other direction, namely from Lipschitz func-
tions to functions of zeroth order smoothness, specifically functions of vanishingmean
oscillation. The space of functions of vanishing mean oscillation, VMO, was intro-
duced by Sarason in [26] as a subspace of BMO, the functions of bounded mean
oscillation defined by John and Nirenberg [19]. For a function f ∈ L1

loc(R
n), set

ω( f , t) := sup
�(Q)≤t
Q⊂R

n

 
Q

| f (x) − fQ |dx, t > 0. (1)

Here, the supremum is taken over all cubes with sides parallel to the axes, �(Q) is the
sidelength of the cube Q, |Q| is its measure, and fQ := ffl

Q f := |Q|−1
´
Q f is the

average of f on Q. Following [1], we call ω( f , ·) the modulus of mean oscillation.
We say f ∈ BMO(Rn) if

‖ f ‖BMO := sup
t>0

ω( f , t) < ∞,

and this defines a norm modulo constants. The space VMO(Rn) can be defined using
either one of the two characterizations in the following theorem, which was proved in
[26] for the case n = 1.
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6894 A. Butaev, G. Dafni

Theorem 1 (Sarason) For f ∈ BMO(Rn), the following are equivalent:

1. lim
t→0+ ω( f , t) = 0;

2. f ∈ UC(Rn) ∩ BMO(Rn), the closure of the uniformly continuous functions in
BMO.

If insteadwe consider the closure in BMOof the continuous functionswith compact
support (or equivalently the C∞ functions with compact support), we get a smaller
space which is sometimes also called VMO (see [8]) or CMO (for “continuous mean
oscillation” - see [25]), the notation we will use. Note that since the functions are
considered modulo constants, “compact support” means the function is equal to a
constant outside some compact set. Membership in CMO is equivalent to the function
satisfying vanishing mean oscillation conditions not only as the size of the cube goes
to zero (condition 1 in Theorem 1), but also as the size of the cube increases to ∞ and
as the cube itself goes to ∞- see Theorem 6 below, which was proved by Uchiyama in
[31], originally appears in [25], and is credited byNeri to Herz, Strichartz and Sarason.
A comprehensive exposition of the properties of these spaces is given by Bourdaud in
[2].

Let � be an open subset of R
n and f ∈ L1

loc(�). We can consider the modulus of
mean oscillation restricted to cubes which are contained in �

ω�( f , t) := sup
�(Q)≤t
Q⊂�

 
Q

| f (x) − fQ |dx, t > 0, (2)

and define

f ∈ BMO(�) if ‖ f ‖BMO(�) := sup
t>0

ω�( f , t) < ∞.

This is again a norm modulo constants provided we also assume � is connected, i.e.
is a domain. Jones [20] considered these spaces and proved the following extension
theorem:

Theorem 2 (Jones) There is a bounded linear extension from BMO(�) to BMO(Rn)

if and only if � is a uniform domain.

In fact, Jones’ condition on the domain was phrased differently, in terms ofWhitney
decompositions, as we will see in Sect. 2.3, but it was shown in [15] that this condition
is equivalent to the domain being uniform.

We want to consider the same question for the spaces VMO(�) and CMO(�): for
which domains is there a extension operator from these spaces to the corresponding
spaces on R

n? Our main result shows that there exists a linear operator T that simul-
taneously extends CMO,VMO and BMO functions on a uniform domain � to the
corresponding functions on R

n . Moreover, the same operator also extends Lipschitz
functions.
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Approximation and Extension of Functions of Vanishing Mean Oscillation 6895

As in the smooth case, this question turns out to be closely related to the definition
of these spaces. In view of Sarason’s result, Theorem 1, we define

VMO1(�) := { f ∈ BMO(�) : lim
t→0+ ω�( f , t) = 0}

and

VMO2(�) := UC(�) ∩ BMO(�).

That VMO2 ⊂ VMO1 is immediate from the definition of uniform continuity.
In the case of a bounded domain the two conditions are known to be equivalent.
In fact a stronger result is true: every function with vanishing mean oscillation can
be approximated in BMO(�) by smooth functions with compact support in �, i.e.
VMO1(�) = CMO(�) for a bounded domain (see Theorem 5 below, which is
proved and credited to Jones in [4]). Using similar techniques, namely approxima-
tion by bounded functions via truncations, we are able to prove an analogue of the
Neri/Uchiyama result (Proposition 3) showing that CMO(�), for any domain �, can
also be characterized by three vanishing oscillation results. However, as we show in
Example 8, Sarason’s equivalence can fail when � is unbounded, that is, we can have
a proper inclusion VMO2 � VMO1. In [16], this question is considered in a more
general context of ametric measure space with a general basis for BMO, and Sarason’s
equivalence is proved in the compact case and for subsets ofR

n with a basis satisfying
rather strong conditions, such as a cube or a ball. We will see that as a corollary of our
extension result, we get the analogue of Sarason’s theorem for a uniform domain.

Theorem 3 Let � ⊂ R
n be a uniform domain. Then there exists a linear extension

operator T such that

(i) T : BMO(�) → BMO(Rn) is bounded;
(ii) T : VMO1(�) → VMO(Rn) is bounded;
(iii) T : VMO2(�) → VMO(Rn) is bounded;
(iv) T : CMO(�) → CMO(Rn) is bounded;
(v) T : Lip(�) → Lip(Rn) is bounded.

Boundedness in (i)-(iv) refers to the BMO norm while in (v) the boundedness is with
respect to the Lipschitz constant.

Corollary 1 If � is a uniform domain then VMO1(�) = VMO2(�).

We also show the analogue of the other direction in Jones’ characterization of
extension domains for BMO, but instead of assuming that we have an extension from
BMO(�)weonlyneed to assume that the extension acts on themuch smallerCMO(�).

Theorem 4 If there is a bounded linear extension operator T : CMO(�) →
BMO(Rn), then � is uniform.

The proofs of these results consist of a combination of Jones’ construction in the
proof of his extension theorem, Theorem 2, with a smoothing technique which goes
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6896 A. Butaev, G. Dafni

back to Sarason’s proof of Theorem 1. Both of these distill a function f ∈ BMO
into discrete data, namely its averages on cubes, thereby producing a step function.
As observed by Sarason, in the case of f ∈ VMO, the step function approximates
f in the BMO norm. The smoothing is just the basic way of turning a step function
into a continuous function via averaging over balls, but as we show in Sect. 2, this
actually produces a function which is not just continuous but locally Lipschitz. Thus,
the proof allows us to go immediately from condition 1 in Theorem 1 to the density
of Lipschitz functions in VMO(Rn). Depending on the modulus of mean oscillation,
something much stronger may be true: as proved in [7,24] and [28] (see also [27]),
functions in VMO(Rn) for which ω( f , t) satisfies a Dini condition are themselves
uniformly continuous; the special case whenω( f , t) ≤ Ctα , 0 ≤ α ≤ 1, gives Hölder
or Lipschitz continuity.

2 Averaging and Approximation

In this section, we do not yet consider the extension problem for a function on a domain
but rather a more general situation in which we have a countable collection of cubes
{Si } with disjoint interiors, whose union forms an open set O. We assume all cubes
have sides parallel to the axes. We are given a real-valued function φ on O such that
φ is constant on each of the cubes Si , hence φ is a step function. We denote the value
of φ on Si by φSi .

Definition 1 Let R be a measurable function on O with 0 < R(x) < dist(x, ∂O) for
all x ∈ O. We define the averaging of φ by

φ̃(x) =
 
B(x,R(x))

φ(y)dy =
ˆ

φ(y)χ̃B(x,R(x))(y)dy,

where we use χ̃B to denote the normalized characteristic function χB|B| of the ball B.
Denote by A the linear operator taking φ to φ̃.

We note some basic properties of φ̃. First of all, φ̃ coincides with φ for those points
x ∈ Si for which B(x, R(x)) ⊂ Si , namely

φ̃(x) = φ(x) = φSi if x ∈ Si and R(x) < dist(x, ∂Si ). (3)

Furthermore, for each x , letting

N (x) = {S j : S j ∩ B(x, R(x)) 	= ∅}, (4)

since the values of φ̃(x) are determined by the values of φ on the cubes in N (x), we
have, for a given Si ,

∀x ∈ Si |φ(x) − φ̃(x)| ≤
 
B(x,R(x))

|φ(x) − φ(y)|dy ≤ sup
S j∈N (x)

|φSi − φS j |. (5)
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Similarly,

|φ̃(x) − φ̃(y)| ≤ sup
S j∈N (x),Sk∈N (y)

|φS j − φSk |. (6)

The goal of the following lemma is to refine this rough estimate and show that
φ̃ possesses certain smoothness, depending on the smoothness of R and the discrete
smoothness of φ.

Lemma 1 Let x1, x2 ∈ O and set

d := |x1 − x2|
mini=1,2 R(xi )

, ρ := |R(x1) − R(x2)|
maxi=1,2 R(xi )

.

Then,

|φ̃(x1) − φ̃(x2)| ≤ C sup
Si ,S j∈N (x1)∪N (x2)

∣
∣φSi − φS j

∣
∣min{d + ρ, 1}. (7)

In particular, if we have ρ ≤ Cd then the minimum on the right-hand-side is
bounded by a constant multiple of d.

Proof Denote R(xi ) by Ri and B(xi , R(xi )) by Bi , i = 1, 2, and N (x1) ∪ N (x2) by
N . Without loss of generality, assume R2 ≥ R1. We may also assume φS1 = 0, where
x1 ∈ S1. Then,

|φ̃(x1) − φ̃(x2)| =
∣
∣
∣
∣

ˆ
φ(y)

[

χ̃B1(y) − χ̃B2(y)
]

dy

∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

S j∈N

ˆ
S j

φS j

[

χ̃B1(y) − χ̃B2(y)
]

dy

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

S j∈N

ˆ
S j

[φS j − φS1 ]
[

χ̃B1(y) − χ̃B2(y)
]

dy

∣
∣
∣
∣
∣
∣

≤ sup
Si ,S j∈N

∣
∣φSi − φS j

∣
∣

∑

S j∈N

ˆ
S j

∣
∣χ̃B1(y) − χ̃B2(y)

∣
∣ dy

= sup
Si ,S j∈N

∣
∣φSi − φS j

∣
∣

ˆ
∣
∣χ̃B1(y) − χ̃B2(y)

∣
∣ dy.
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We can estimate the last integral on the right-hand-side by

ˆ
∣
∣χ̃B1(y) − χ̃B2(y)

∣
∣ dy

=
ˆ
B1∩B2

∣
∣
∣
∣

1

|B1| − 1

|B2|
∣
∣
∣
∣
dy +

ˆ
B1�B2

∣
∣χ̃B1(y) − χ̃B2(y)

∣
∣ dy

= |B1 ∩ B2|(|B2| − |B1|)
|B1||B2| + |B1 \ B2|

|B1| + |B2 \ B1|
|B2| . (8)

Note that the quantity above is bounded by 3. Thus, the case d +ρ > 1 is proved with
C = 3 (it also follows from (6)).

So we restrict to the case d + ρ ≤ 1, hence |x1 − x2| ≤ R1 < R1 + R2, which
means B1 ∩ B2 	= ∅. Since ρ = R2−R1

R2
< 1, we can use Bernoulli’s inequality to

bound the first term in (8) as follows:

∣
∣
∣
∣

1

|B1| − 1

|B2|
∣
∣
∣
∣
|B1 ∩ B2| = |B1 ∩ B2|(|B2| − |B1|)

|B1||B2| ≤ |B2| − |B1|
|B2|

= 1 − Rn
1

Rn
2

= 1 − (1 − ρ)n ≤ nρ.

For the second term in (8), we need to only consider the case B1 \ B2 	= ∅, i.e.
B1 	⊂ B2. Since by the triangle inequality B1 ⊂ B(x2, R1 + |x1 − x2|), we must have
R1 + |x1 − x2| > R2 and

|B1 \ B2|
|B1| ≤ |B(x2, R1 + |x1 − x2|) \ B2|

|B1| = (R1 + |x1 − x2|)n − Rn
2

Rn
1

≤ (1 + d)n − 1 =
n

∑

k=1

(
n

k

)

dk ≤ (2n − 1)d.

For the last term in (8), we can proceed similarly and use the two estimates above to
get

|B2 \ B1|
|B2| ≤ (R2 + |x1 − x2|)n − Rn

1

Rn
2

=
[(

1 + |x1 − x2|
R2

)n

− Rn
1

Rn
2

]

=
[

1 − Rn
1

Rn
2

]

+
n

∑

k=1

(
n

k

)( |x1 − x2|
R2

)k

≤ nρ + (2n − 1)d.

Combining all the estimates, we get (7) with C = 2n − 1. ��
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2.1 Approximation onR
nR
n

R
n

As an application of the averaging lemma Lemma 1, we prove the following improved
version of the implication (1 �⇒ 2) in Sarason’s result, Theorem 1. Of course,
this result immediately follows from that theorem by the approximation of uniformly
continuous functions by Lipschitz functions, but the lemma gives us the Lipschitz
approximation directly fromwhat is essentially Sarason’s proof. We came up with this
observation in answer to a question of M. Mitrea; the density of Lipschitz functions
in VMO(Rn) was also proved in an indirect way in [23].

Proposition 1 If f ∈ BMO(Rn) satisfies lim
t→0

ω( f , t) = 0 then f can be approximated

in the BMO norm by Lipschitz functions. That is, given ε > 0, there exists a Lipschitz
function fε on R

n with fε ∈ BMO(Rn) and ‖ fε − f ‖BMO < ε.

Proof Fix f as in the hypothesis of the proposition, and ε > 0. We want to find a
Lipschitz function fε which is within ε of f in the BMO norm. We follow the steps
in Sarason’s proof for the case n = 1, with Lemma 1 allowing us to conclude that the
approximation is not just uniformly continuous but actually Lipschitz.

We consider a grid of pairwise disjoint cubes of sidelength δ > 0 and for each cube
S in the grid we define φδ to be equal to the average of f on S, denoted fS . This is
the same set-up as in Sect. 2, with O = R

n . Continuing as in Sect. 2, we apply the
averaging with a function R which is constant, i.e. for all x , R(x) = r for some fixed
r > 0. This gives us a convolution, namely

fε = φ̃δ = φδ ∗ χ̃Br ,

where χ̃Br = 1
|Br |χBr is the normalized characteristic function of the ball Br =

B(0, r). We will choose δ depending on ε and r depending on δ so that fε is the
desired Lipschitz function.

Here, we break the argument into two parts: the approximation of f by the step
function φδ in the BMO norm, and the approximation of the step function by the
convolution in the L∞ norm.

First, let us estimate ‖g‖BMO, where g = f − φδ . If ω(t) = ω( f , t) denotes the
modulus of oscillation of f , we claim that the oscillation of g on a cube Q is bounded
by a constant times ω(3δ).

Note that g has average 0 on each of the cubes in the grid. Thus if Q = ∪Si is the
union of cubes in the grid, then gQ = 0 and the oscillation of g on Q is controlled by
the oscillation of f on the cubes in the grid:

 
Q

|g| =
∑

i

|Si |
|Q|

 
Si

|g| =
∑

i

|Si |
|Q|

 
Si

| f − fSi | ≤ sup
Si

 
Si

| f − fSi |. (9)

This is in turn bounded by ω(δ) ≤ ω(3δ).
For a general cube Q, if �(Q) > 2δ then there are cubes Q′ and Q′′ which are

unions of cubes of the grid such that Q′ ⊂ Q ⊂ Q′′ and |Q′| ≈ |Q| ≈ |Q′′| with
constants depending only on n. This can be seen by first dilating to reduce to the case
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6900 A. Butaev, G. Dafni

δ = 1 and assuming the grid is given by Z
n . Write Q = I1 × I2 × . . . In where each

I j is an interval of length � = �(Q). If l ≥ 2, and we set m = ���, the greatest integer
in l, then each I j contains an interval of length m − 1 and is contained in an interval
of length m + 1 with integer endpoints. Letting Q′ and Q′′ be the products of these
intervals, respectively, we get the desired inclusion with constants bounded above by

supm≥2

(
m+1
m−1

)n = 3n and below by 1.

Thus, we have that

|gQ | ≤
 
Q

|g| ≤ Cn

 
Q′′

|g|

and therefore,

 
Q

|g − gQ | ≤ Cn

 
Q′′

|g − gQ | ≤ 2Cn

 
Q′′

|g| = 2Cn

 
Q′′

|g − gQ′′ |,

and since Q′′ is a union of grid cubes, we can apply (9) to conclude that the oscillation
of g on Q is also bounded by a constant multiple of the oscillation of f on the cubes
of the grid, which in turn is bounded by ω(3δ).

The only remaining case is a cube of sidelength �(Q) ≤ 2δ. In that case, we can
again find a cube Q′′ ⊃ Q with Q′′ = ∪Si and �(Q′′) = 3δ. We can assume without
loss of generality that fSi = 0 for one of the grid cubes Si contained in Q′′. For another
grid cube S j ⊂ Q′′, we have

| fS j | = | fS j − fSi | ≤
 
Si

 
S j

| f (x) − f (y)|dxdy

≤ 32n
 
Q′′

 
Q′′

| f (x) − f (y)|dxdy ≤ Cn

 
Q′′

| f (x) − fQ′′ |dx ≤ Cnω(3δ).

(10)

This means that on Q′′, | f − g| = |φδ| is bounded by Cnω(3δ). Thus

 
Q

|g − gQ | ≤
 
Q

| f − fQ | + 2 sup
Q′′

| f − g| ≤ (2 + Cn)ω(3δ).

Now, we need to estimate ‖h‖BMO, where h = φδ − fε . We will show that for the
given δ and r ≤ δ, h is a bounded function with

‖h‖BMO ≤ 2‖h‖∞ ≤ Cω(3δ).

By the definition of fε as φ̃δ = φδ ∗ χ̃Br , we have, as in (5),

∀x ∈ S |h(x)| ≤ sup
S′∈N (x)

| fS − fS′ |,
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and since r ≤ δ, N (x) consists only of those cubes in the grid which are adjacent to
S. Just as we did above in (10), we can estimate | fS − fS′ | ≤ Cnω(3δ). Thus, we have
shown the desired estimate on ‖h‖∞.

Combining, we have that

‖ f − fε‖BMO ≤ ‖g‖BMO + ‖h‖BMO � ω(3δ),

which is bounded by ε if we choose δ sufficiently small, by our hypothesis on f . Here
and below we use the notation A � B if there exists a constant C , independent of A
and B, such that A ≤ CB. If A � B and B � A we write A ≈ B.

Finally, the fact that fε is Lipschitz will follows from Lemma 1. The Lipschitz
constant will depend on the choice of δ and r and will blow up as δ → 0. We let
r = δ/2.

Fix x1, x2 ∈ R
n with |x1−x2| ≤ r . Applying Lemma 1 to fε = φ̃δ , with our choice

of R, we have that d = r−1|x1 − x2| and ρ = 0, so that

| fε(x1) − fε(x2)| ≤ C sup
Si ,S j∈N (x1)∪N (x2)

∣
∣ fSi − fS j

∣
∣ r−1|x1 − x2|.

The restriction |x1 − x2| ≤ r = δ/2 forces the set Br (x1) ∪ Br (x2) to have diameter
bounded by 3r = 3δ/2, and therefore the grid cubes intersecting this set, namely the
cubes in N (x1) ∪ N (x2), lie in a cube Q′′ of sidelength 3δ. By (10), we get that

sup
Si ,S j∈N (x1)∪N (x2)

≤ Cnω(3δ).

Thus, we conclude that locally fε is Lipschitz with Lipschitz constant L =
Cω(3δ)δ−1.

Going from the local to the global is standard: given any x, y ∈ R
n , we take points

xi , i = 1, . . . k, lying on the straight line from x to y, with x0 = x , xk = y and
|xi − xi−1| ≤ r for all 1 ≤ i ≤ k. Applying the local Lipschitz estimate, we have

| fε(y) − fε(x)| ≤
k

∑

i=1

| fε(xi ) − fε(xi−1)| ≤
k

∑

i=1

L|xi − xi−1| = L|y − x |.

��

2.2 Approximation on a Domain

Let � ⊂ R
n be a domain. Recall that a function f is called locally Lipschitz if it is

Lipschitz continuous in a neighborhood of every point x ∈ �. However, the Lipschitz
constantmay vary frompoint. The followingmore restrictive condition,which requires
the Lipschitz constant to be uniform over all points, was originally called Lipschitz in
the small by Luukainen [22], hence the notation.
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6902 A. Butaev, G. Dafni

Definition 2 By LS(�)we denote the set of uniformly locally Lipschitz functions, i.e.
f ∈ LS(�) if there exists r > 0 such that

| f (x) − f (y)| ≤ K |x − y|, ∀x, y ∈ �; |x − y| < r .

We denote by Lip(�) the set of Lipschitz functions on �, i.e. f ∈ Lip(�) if

| f (x) − f (y)| ≤ K |x − y|, ∀x, y ∈ �.

BothCMO(�) andVMO2(�) can equivalently be defined as the closures of smaller
classes. Indeed by the locally compact version of the Stone-Weierstrass theorem,
Lipschitz functions compactly supported in � are dense in C0(�), the closure of the
continuous functions of compact support, in the ‖.‖∞ norm, hence in the BMO norm.
Moreover, as is shown in [14], every UC(�) function can be approximated by LS(�)

functions. Furthermore, if � is a quasi-convex set (i.e. for any x, y ∈ � there is a
rectifiable curve γ ⊂ � of length � |x − y| ), then LS(�) = Lip(�) (see e.g. [14]).
These observations are summarized in the following proposition

Proposition 2 Let � be any domain in R
n. Then,

• Compactly supported Lipschitz functions in � are dense in CMO(�).
• Uniformly locally Lipschitz functions are dense in VMO2(�)

• If � is a quasi-convex domain then Lipschitz functions are dense in VMO(�).

When a domain is bounded, the following stronger result, attributed to Jones, is
Theorem 1 in [4]:

Theorem 5 ([4], d’après Jones) If � is bounded and f ∈ VMO1(�) then f can be
approximated in the BMO norm by smooth functions with compact support in �, i.e.
VMO1(�) = VMO2(�) = CMO(�).

Recall the following characterization of CMO(Rn) mentioned in the introduction,
which originally appears in [25] (who credits Herz, Strichartz and Sarason), and is
proved in [31].

Theorem 6 ([25,31]) For f ∈ BMO(Rn) we have f ∈ CMO(Rn) if and only if the
following conditions hold

1. lim
t→0+ ω( f , t) = 0;

2. lim
β→∞ sup

�(Q)≥β

 
Q

| f (x) − fQ |dx = 0;

3. lim
β→∞ sup

dist(Q,0)≥β

 
Q

| f (x) − fQ |dx = 0.

The original formulation of condition 3, the “vanishing at infinity”, is weaker in
the statement of the Lemma in [31], where it is only assumed that for a fixed cube Q,

Q + x → ∞ as x → ∞, (11)
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but in the proof it is observed that conditions 1 and 2 together with (11) give the
uniform condition 3. See also Theorems 6 and 7 in [2], where it is shown that for
n ≥ 2, condition 3 implies 2.

The analogue of Theorem 6 is true for an arbitrary domain �.

Proposition 3 Let � be a domain. For f ∈ BMO(�), β > 0, denote by Qβ the
collection of all cubes Q ⊂ � with �(Q) ≥ β or dist(Q, 0) ≥ β, and set

γ�( f , β) := sup
Q∈Qβ

 
Q

| f (x) − fQ |dx

if Qβ 	= ∅, γ�( f , β) = 0 otherwise. Then,

CMO(�) = { f ∈ VMO1(�) : lim
β→∞ γ�( f , β) = 0}.

One direction follows from the definition of CMO(�) as the closure of the contin-
uous functions with compact support in BMO(�), and the fact that if f ∈ BMO(�)

has compact support, then γ�( f , β) → 0 as β → ∞.
In the case of a bounded �, Qβ = ∅ and γ�( f , β) = 0 for all sufficiently large β

so this is just Theorem 5. We follow the main steps of the proof of this theorem in [4]
to get the result for the unbounded case. The first step is to approximate f in BMO
by functions in L∞(O). This is done via the truncations, as in Lemma A.17 in [3]:

Lemma 2 Fix f ∈ VMO1(�) with lim
β→∞ γ�( f , β) = 0. Set

f k = max(min( f , k),−k), k ∈ N.

Then f k ∈ VMO1(�), lim
β→∞ γ�( f k, β) = 0 and f k → f in BMO(�).

Proof For every cube Q, we have

 
Q

| f k(x) − ( f k)Q |dx ≤
 
Q

| f (x) − fQ |dx (12)

(see [9] for the constant 1 in this inequality). Thus, f k satisfies the same vanishing
mean oscillation conditions as f .

To estimate the distance of f k to f in BMO(�), apply the following equivalence
of norms to g = f k − f :

‖g‖BMO(�) ≈ sup
Q⊂�

�(Q)≤dist(Q,∂�)

 
Q

| f (x) − fQ |dx . (13)

See Theorem A1.1 in [4] (in the case of the �∞ norm in R
n), whose proof takes place

in a cube and is, therefore, valid for any domain, not just a bounded one.
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Given ε > 0, by the assumptions on f , there exist δ and β0 such that
ffl
Q | f − fQ | <

ε/2 for Q ⊂ � in one of three cases: �(Q) < δ, �(Q) ≥ β0 or dist(Q, 0) ≥ β0. In
each of these cases we have

 
Q

|( f − f k) − ( f − f k)Q | ≤
 
Q

| f − fQ | +
 
Q

| f k − ( f k)Q | ≤ 2
 
Q

| f − fQ | < ε.

Any cube that is not in one of these three cases much have �(Q) ∈ [δ, β0] and
dist(Q, 0) < β0, which means Q ⊂ B(0, β0 + β0

√
n). If we also assume �(Q) ≤

dist(Q, ∂�) we have that

Q ⊂ Kδ,β0 := {x ∈ � : |x | ≤ β0 + β0
√
n, dist(x, ∂�) ≥ δ}

which is a compact subset of �. Thus

 
Q

|( f − f k) − ( f − f k)Q | ≤ 2

δn

ˆ
Kδ,β0

| f − f k |.

Since f k converge to f pointwise, | f − f k | ≤ | f | for all k, and f ∈ L1
loc(�), we can

apply theDominatedConvergence Theorem tomake this smaller than ε for sufficiently
large k.

By (13), we have thus shown that ‖ f − f k‖BMO(�) → 0 as k → ∞. ��
Lemma 3 If f ∈ L∞(�) ∩ VMO1(�) then there is a sequence of functions f j ∈
L∞(�) ∩ VMO1(�) with dist(supp( f j ), ∂�) > 0 for each j and such that f j → f
in BMO(�). Moreover, if f satisfies lim

β→∞ γ�( f , β) = 0 then we can take f j with

compact support in �.

Proof The first statement is what is shown in proof of Theorem 1 in [4] for� bounded.
It can be adapted to the unbounded case by setting the auxiliary functions h j to be
identically equal to 1 when dist(x, ∂�) ≥ 1, that is, h j is the truncation of the function
1 − 1

j ϕ� below by 0 and above by 1, namely

h j = max
(

min
(

1 − 1

j
ϕ�, 1

)

, 0
)

for ϕ�(x) := log(dist(x, ∂�)−1),

and letting

f j = f h j .

There is only one step in the proof of Theorem 1 in [4] which uses the boundedness
of the domain, the last step at the top of p. 349, in order to show that, for some fixed
ε0 > 0,

sup

{ 
B

|h j − 1| : B ⊂ �, r(B) ≥ ε0

}

→ 0 as j → ∞.
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By our definition of BMO(�) we want to show this for balls B in the �∞ norm in R
n ,

namely cubes, but if we prove it for Euclidean balls it is equivalent.
To see that this holds for an unbounded �, fix B ⊂ � with radius r0 = r(B) ≥ ε0

and note that ϕB(x) := log(dist(x, ∂B)−1) ≥ ϕ�. Thus

 
B

|h j − 1| = 1

|B|
{ˆ

{x∈B:ϕ�(x)≥ j}
1dx +

ˆ
{x∈B:0<ϕ�(x)< j}

1

j
ϕ�(x)dx

}

≤ |x ∈ B : ϕB(x) ≥ j |
|B| + 1

j |B|
ˆ

{x∈B:ϕB (x)>0}
ϕB(x)dx

= |x ∈ B : dist(x, ∂B) ≤ e− j |
|B|

+ 1

j |B|
ˆ

{x∈B:dist(x,∂B)<1}
log(dist(x, ∂B)−1)dx

≤ 1

r0n

ˆ r0

r0−e− j
r n−1dr + 1

jr0

ˆ r0

r0−1
− log(r0 − r)dr

≤
ˆ 1

1−e− j /ε0

rn−1dr + 1

jε0

ˆ 1

0
− log(r)dr

and the right-hand-side tends to 0 as j → ∞, independently of B.
For the second statement, assuming limβ→∞ γ�( f , β) = 0, we let f j = f h̃ j ,

where we define h̃ j by using � j = � ∩ B(0, j) instead of �, i.e. h̃ j is defined on � j

as the truncation of 1− 1
j ϕ� j below by 0 and above by 1, and extended by zero to all

of �. Since we already showed f is approximated by f h j , we just have to estimate
‖ f h̃ j − f h j‖BMO. This means estimating the mean oscillation over cubes for which
g = h̃ j − h j does not vanish. In particular this implies not both h̃ j , h j are equal to
zero or both equal to 1. Since � j ⊂ �, for x ∈ � j , dist(x, ∂� j ) ≤ dist(x, ∂�) so if
dist(x, ∂� j ) ≥ 1 then dist(x, ∂�) ≥ 1, which implies h̃ j (x) = 1 = h j (x). Thus for
x ∈ � j ,

h̃ j (x) 	= h j (x) �⇒ dist(x, ∂� j ) < min(1, dist(x, ∂�))

�⇒ dist(x, ∂B(0, j))) < 1 �⇒ |x | > j − 1.

Note that for x ∈ � \ � j , we always have |x | ≥ j > j − 1.
Thus, we only need to estimate the oscillation of f g on a cube Q with

Q∩B(0, j−1)c 	= ∅.Aswe saw in theproof ofLemma2above, limβ→∞ γ�( f , β) = 0
implies that given ε > 0, the oscillation of f is bounded by ε/3 on every Q which is
not contained in B(0, β) for some β > 0; take j sufficiently large and set β = j − 1.
Furthermore, as in [4], the mean oscillation of ϕ� on any cube is bounded indepen-
dently of �, meaning that ‖g‖BMO ≤ ‖h̃ j‖BMO + ‖h j‖BMO � 1

j → 0. Also by
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definition ‖g‖∞ ≤ 1. Thus we have, as in [4], that

 
Q

| f (x)g(x) − ( f g)Q | ≤ 1

|Q|2
ˆ
Q

ˆ
Q

| f (x)g(x) − f (y) f (y)|dxdy

≤ ‖g‖∞
|Q|2

ˆ
Q

ˆ
Q

| f (x) − f (y)|dxdy

+‖ f ‖∞
|Q|2

ˆ
Q

ˆ
Q

|g(x) − g(y)|dxdy

<
2ε

3
+ C‖ f ‖∞

j
< ε

for j sufficiently large. ��
Proof of Proposition 3 Once we have Lemmas 2 and 3, to prove the Proposition we
only need to approximate f ∈ L∞(�) ∩ VMO1(�) with compact support in � by
continuous functions with compact support. This can be done as in [4], by convolution
with a test function with sufficiently small support, and the test function can be as
smooth as we like. Alternatively, we can apply the procedure of Proposition 1 with a
grid of sufficiently small sidelength (say δ < dist(supp( f ), ∂�)/2

√
n) to guarantee

that the Lipschitz function produced by the averaging is supported inside �. ��

2.3 Uniform Domains

We will follow Jones in [20], introducing them via Whitney cubes.
Let � ⊂ R

n be a domain and �′ be the interior of its complement in R
n . Let E

and E ′ be the Whitney decompositions of � and �′, respectively, (see e.g. [29] for
the definition and properties of Whitney decompositions).

For Q1, Q2 in E , we define two distance functions d1 and d2 as follows. By
d1(Q1, Q2) we denote the length of (i.e. number of cubes in) a shortest chain of
adjacent cubes in E connecting Q1 to Q2. Assuming the cubes in theWhitney decom-
position are closed, here and below, adjacent cubes means those with nonempty
intersections, so they are either neighbors or coinciding (the word touching is used in
[20]). A chain of adjacent Whitney cubes is called a Whitney chain.

The other function is defined by

d2(Q1, Q2) :=
∣
∣
∣
∣
log

(
�(Q1)

�(Q2)

)∣
∣
∣
∣
+ log

(

2 + dist(Q1, Q2)

�(Q1) + �(Q2)

)

, (14)

where here, as above, dist(Q1, Q2) is the usual Euclidean distance between Q1 and
Q2.

Definition 3 We say that � is a uniform domain if there exists constant κ such that
for all cubes S1, S2 ∈ E

d1(S1, S2) ≤ κd2(S1, S2).
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Remark 1 It was shown in [15] that � is uniform in the above sense if and only if
there are constants C, D > 0 such that any two points x, y ∈ � are connected by a
rectifiable curve γ ⊂ � with

1. length(γ ) ≤ C |x − y|
2. s(γ (x, z)), s(γ (y, z)) ≤ D dist(z, ∂�), ∀z ∈ γ .

Here s(γ (z1, z2)) is the arclength of the part of γ connecting z1 to z2. Condition 1
shows that uniform domains are necessarily quasi-convex, while the existence of a
curve γ satisfying condition 2 means that � is a John domain.

We want to use d1 and d2 to control the difference in average values of functions.
Note that by the properties of theWhitney decomposition, if S1, S2 are adjacent Whit-
ney cubes then

1

4
≤ �(S1)

�(S2)
≤ 4. (15)

This means that along a shortestWhitney chain between two cubes S1 and S2, the side-
length cannot grow bymore than 4d1(S1,S2). The following lemma follows immediately
from this fact and the proof of Lemma 2.2 in [20].

Lemma 4 Let f ∈ L1
loc(�) and S1, S2 be two Whitney cubes in E of sidelenghts

�(S1) ≤ �(S2). Then the average values of f over S1, S2 satisfy

| fS1 − fS2 | ≤ Cd1(S1, S2)ω�( f , 4d1(S1,S2)�(S1)),

where ω�( f , t) is the modulus of oscillation of f .

Combined with Definition 3, the lemma gives the following corollary.

Corollary 2 Let � be a uniform domain, f ∈ L1
loc(�), and S1, S2 be Whitney cubes in

E. If d2(S1, S2) ≤ K then there are constants C,C ′ > 0 depending on K and κ such
that

| fS1 − fS2 | ≤ Cω�( f ,C ′�(S1)).

3 Proof of Theorem 3: Extension from a Uniform Domain

We first define the extension T in Theorem 3 for an unbounded uniform domain �.
Given a function φ in L1

loc(�), we want to extend φ to a function on R
n . By Corollary

2.9 in [20], ∂� hasmeasure zero. Therefore, to define the extension almost everywhere
on R

n , we only need to define it on �′ := �
c
.

As above, we decompose � and �′ into collections of Whitney cubes E and E ′,
respectively, assuming that � contains Whitney cubes of arbitrary large size, which,
as shown in [20] for a uniform domain, is the case if and only if � is unbounded.
For every S′ ∈ E ′, there exists S ∈ E with �(S) ≥ �(S′). We say such a cube S is a
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matching cube to S′ if it is nearest to S′ (in Euclidean distance). There may be several
choices for S. As pointed out in [20], if S is a matching cubes of S′, then

�(S′) ≤ �(S) ≤ 2�(S′), (16)

(otherwise �(S) ≥ 4�(S′) so by (15) its neighbors will have sidelength at least �(S)

and one of them will be closer to S′). Moreover, for a uniform domain, Lemma 2.10
in [20] shows

dist(S, S′) ≤ 65κ2�(S′), (17)

where κ is the constant in Definition 3.
Following the definition of the extension in [20], for each Whitney cube S′

i in E ′,
we fix a matching cube Si ∈ E . Denoting by φSi the average of φ on Si , we set

φ(x) = φSi , x ∈ S′
i . (18)

Note that the function φ, now defined almost everywhere on R
n , is the original exten-

sion of Jones [20]. While we use φ for both the function in � and its extension in �′,
Jones denotes this function by φ̃ and the extension mapping by �. It is clearly linear.

Since φ is a step function on O = �′, we are back in the setup of Sect. 2 with the
Whitney decomposition {S′

i } forming the collection of cubes. For x ∈ �′, noting that
∂�′ = ∂�, we define

R(x) = cndist(x, ∂�), (19)

for some constant cn ∈ (0, 1) to be determined. By the properties of the Whitney
decomposition, each S′

i ∈ E ′ satisfies

�(S′
i ) ≤ dist(S′

i , ∂�) ≤ 4
√
n�(S′

i ). (20)

Combined with (15), this shows we can choose cn sufficiently small (say (16
√
n)−1)

so that if x ∈ S′
i then R(x) ≤ �(S′

j ) for every Whitney cube S′
j adjacent to S′

i , which
meansN (x), defined by (4), consists exactly of S′

i and the Whitney cubes adjacent to
it.

Definition 4 Givenφ in L1
loc(�) and extended by the Jones extension (18) to�′ := �

c
,

we set

φ̃(x) =
{

φ(x), x ∈ �,

A(φ)(x) x ∈ �′,

where φ̃ = A(φ) is defined from φ on�′ as in Definition 1, using the function R given
by (19) for an appropriate choice of cn . Denote by T the operator φ → φ̃, so that T
is a composition of the Jones’ extension map � and the map which is the identity on
� and the averaging operator A on �′, hence it is a linear map.
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For the rest of the section, we will assume the functions φ, φ̃ are as in Definition 4.
The following is an immediate consequence of Lemma 1 and the fact that by the

properties of the distance function, R is Lipschitz with Lipschitz constant cn .

Corollary 3 For x1, x2 ∈ �′,

|φ̃(x1) − φ̃(x2)| ≤ C sup
Si ,S j

∣
∣φSi − φS j

∣
∣min

( |x1 − x2|
mini=1,2 dist(xi , ∂�)

, 1

)

,

where the supremum is taken over all cubes Si and S j in the Whitney decomposition
of � which are matching cubes to the cubes in N (x1) ∪ N (x2).

Furthermore, we obtain the following refinement for points in the adjacent cubes

Corollary 4 For x1, x2 ∈ �′, if x ∈ S′
i , i = 1, 2, with S′

1 and S′
2 adjacent, then there

exist C and C ′ so that

|φ̃(x1) − φ̃(x2)| ≤ Cω�(φ,C ′�(S′
1))

|x1 − x2|
�(S′

1)
.

Proof Due to Corollary 3 , (15) and (20), it is enough to show that if S1 and S2 are
matching cubes to adjacent cubes S′

1 and S′
2, respectively, then

|φS1 − φS2 | ≤ Cω�(φ,C ′�(S1)).

This follows immediately from Corollary 2 once one shows that d2(S1, S2) ≤ K for
some K > 0. In order to see the latter, note that from (17) (Lemma 2.10 in [20]) we
know that

dist(S1, S
′
2) ≤ dist(S1, S

′
1) + diam(S′

1) + dist(S′
1, S

′
2)

≤ 65κ2�(S′
1) + diam(S′

1) = (65κ2 + √
n)�(S′

1).

Similarly

dist(S1, S2) ≤ dist(S1, S
′
1) + diam(S′

1) + dist(S′
1, S2) ≤ (130κ2 + √

n)�(S′
2).

By the condition on the sidelength of matching cubes, we have that

dist(S1, S2)

�(S1) + �(S2)
≤ dist(S1, S2)

�(S′
2)

≤ 130κ2 + √
n.

Then, by (16) we have

d2(S1, S2) =
∣
∣
∣
∣
log

(
�(S1)

�(S′
1)

�(S′
1)

�(S′
2)

�(S′
2)

�(S2)

)∣
∣
∣
∣
+ log

(

2 + dist(S1, S2)

�(S1) + �(S2)

)

≤ K .

��
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Finally, this gives an estimate on the oscillation of φ̃ on cubes in �′ terms of the
modulus of oscillation of φ in �.

Corollary 5 There exists constants C, C ′ and c such that if a cube Q ⊂ �′ has
sidelength �(Q) ≤ cδ(Q), where δ(Q) = dist(Q, ∂�), then

 
Q

|φ̃(x) − φ̃Q |dx ≤ Cω�(φ,C ′δ(Q))
�(Q)

δ(Q)
.

In ω�(φ, t) is assumed to be concave, we have furthermore that

 
Q

|φ̃(x) − φ̃Q |dx ≤ Cω�(φ,C ′�(Q)).

Proof Since φ̃ is continuous, we have φ̃Q = φ̃(x0) for some x0 ∈ Q. Take a Whitney
cube S′

1 containing x0. Then by (20),

diam(Q) ≤ c
√
n δ(Q) ≤ c

√
n dist(x0, ∂�) ≤ c

√
n (dist(S′

1, ∂�) + √
n �(S′

1))

≤ c5n �(S′
1) <

�(S′
1)

4
,

for c < 1
20n . By (15), this means every x ∈ Q lies in S′

1 or one of its adjacent cubes,
so we can apply Corollary 4 to get

 
|φ̃(x) − φ̃Q |dx =

 
|φ̃(x) − φ̃(x0)|dx ≤ Cω�(φ,C ′�(S′

1))
�(Q)

δ(Q)
.

Applying (20) again, we also get that �(S′
1) ≤ dist(S′

1, ∂�) ≤ dist(x0, ∂�) ≤ δ(Q)+
diam(Q) ≤ 2δ(Q). Since the modulus of oscillation is increasing, the proof of the
first inequality is complete.

For the second inequality, we just need to note that a concave function f (x) which
vanishes at the origin satisfies t f (x) ≤ f (t x) for all t ∈ [0, 1]. ��

3.1 The BMO Extension

Here, we assume φ ∈ BMO(�), so Jones’ result gives us that the extended function
�φ, which we still call φ, is in BMO(Rn), with ‖φ‖BMO(Rn) ≤ C‖φ‖BMO(�). We
will show

‖φ̃ − φ‖∞ ≤ c‖φ‖BMO(Rn),

and therefore ‖φ̃‖BMO(Rn) ≤ C(c + 1)‖φ‖BMO(�), proving that our extension is
bounded.
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Since φ̃ = φ on �, we only need to show the L∞ estimate on �′. Recall that by
(5) we have, if x ∈ S′

i for some Whitney cube of S′
i of �′,

|φ(x) − φ̃(x)| ≤ sup
S′
j∈N (x)

|φS′
i
− φS′

j
|. (21)

Since in the definition of R in (19) we chose cn sufficiently small to guarantee that
N (x) consists only of cubes S′

j adjacent with S′
i , hence satisfying d1(S

′
i , S

′
j ) ≤ 1, we

can apply Lemma 4 (actually it enough to apply Lemma 2.2 in [20]) to get that the
supremum on the right-hand-side of (21) is bounded by c‖φ‖BMO(Rn).

3.2 The VMO1(Ä) Extension

In this section, we show that the extension defined above maps VMO1(�) to
VMO(Rn), so we assume in what follows that φ ∈ BMO(�)with lim

t→0+ ω�( f , t) = 0.

From the results in the preceding section we have that ‖φ̃‖BMO(Rn) � ‖φ‖BMO(�).
The next step is to show that φ̃ on �′ inherits the vanishing mean oscillation

condition from φ on �.

Lemma 5 For φ, φ̃ as above,

lim
t→0+ ω�′(φ̃, t) = 0.

Furthermore, if ω�(φ, t) is concave in t, we get that there exist constants C,C ′ with

ω�′(φ̃, t) ≤ Cω�(φ,C ′t). (22)

Proof As discussed above (see (13)), it is shown in Lemma A1.1 and Theorem A1.1
of [4] that the BMO norm can be controlled by looking only at cubes with �(Q) ≤
cdist(Q, ∂�) for some fixed c, and the proofs do not depend on the fact that the
domain is bounded. In fact, the proof of Theorem A1.1 in [4] reduces to estimating
the oscillation in a single ball by balls that are contained inside it, giving the following
result when applied to φ̃ on �′:

ω�′(φ̃, t) ≈ sup
Q⊂�′

�(Q)≤min(t,cδ(Q))

 
Q

|φ̃(x) − φ̃Q |dx, (23)

where we have used the notation δ(Q) := dist(Q, ∂�) as in Corollary 5.
Fix C,C ′ and c as in Corollary 5. Let ε > 0 be given and take δ > 0 sufficiently

small so thatω�(φ,C ′δ) < ε/C . Then if �(Q) ≤ cδ(Q)with δ(Q) ≤ δ, that corollary
implies

 
Q

|φ̃(x) − φ̃Q |dx ≤ Cω�(φ,C ′δ) < ε.
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For Q with δ(Q) > δ, Corollary 5 gives

 
Q

|φ̃(x) − φ̃Q |dx ≤ C‖φ‖BMO(�)

�(Q)

δ
,

which can be made smaller than ε for �(Q) < δ(C‖φ‖BMO(�))
−1ε.

The casewhereω�(φ, t) is concave in t is simpler as the bound follows immediately
from (23) and Corollary 5. ��

Note that in case ω�(φ, t) is not concave, we can always replace it by its least
concave majorant (see for example Sect. 2.6 in [10]) in order to obtain (22). As
the proof above shows, however, the estimate that Corollary 5 gives us without this
assumption is better since away from the boundary the extension φ̃ is Lipschitz.

To show that φ on � and φ̃ on �′ combine into one function in VMO(Rn), we
use the following lemma, which is a version of Proposition 3 in [6]. The proof given
there is a quantified version of the proof of Lemma 2.11 in [20], keeping track of the
modulus of continuity instead of the BMO norm, and applies on any uniform domain,
not necessarily bounded.

Lemma 6 Let � be a uniform domain and φ1, φ2 be BMO functions on � and �′,
respectively, satisfying

lim
t→0+ ω�(φ1, t) = 0 = lim

t→0+ ω�′(φ2, t).

If there exists a bounded, nondecreasing function η : [0,∞) → [0,∞) which is
continuous at 0, with η(0) = 0, such that for each S′ ∈ E ′ with S′ ⊂ �′, and for some
S ∈ E which is a matching cube of S′,

|(φ1)S − (φ2)S′ | ≤ η(�(S′)), (24)

then the function � defined by

�(x) =
{

φ1(x), x ∈ �

φ2(x), x ∈ �′

is in VMO(Rn) with

‖�‖BMO = ‖ωRn (�, ·)‖∞ � ‖ω�(φ1, ·)‖∞ + ‖ω�′(φ2, ·)‖∞ + ‖η‖∞.

We want to apply the lemma with φ1 = φ on � and φ2 = φ̃ on �′. Note that
an estimate on the BMO norm is already given to us by the BMO extension in the
previous section, so we just need to use the lemma to conclude that the extension φ̃ is
in VMO(Rn). It therefore remains to verify (24). We only need to check this for for
some S ∈ E which is a matching cube of S′, meaning we can take the matching cube
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Approximation and Extension of Functions of Vanishing Mean Oscillation 6913

that we had chosen in the definition of the Jones extension of φ to �′ in (18). That
means that

|(φ1)S − (φ2)S′ | = |φS′ − φ̃S′ | ≤ sup
x∈S′,S′

j∈N (x)
|φS′ − φS′

j
|,

where we have used (21). As in the previous section, we can use Lemma 4 with f = φ̃

on �′, and recalling that R(x) was chosen so that N (x) consists of only adjacent
cubes to S′ � x , to bound the right-hand-side by ω�′(φ̃, 4�(S′)). By Lemma 5 and
the comments following it above, this is controlled by η(�(S′)), where we take η(t) to
be the least concave majorant of Cω�(φ, 4C ′t). Thus, the hypothesis (24) has been
verified and we get the conclusion that our extension � = φ̃ ∈ VMO(Rn). For the
bound on the norm, since the least concave majorant preserves the L∞ norm, we have

‖φ̃‖BMO(Rn) � ‖ω�(φ, ·)‖∞ + ‖ω�′(φ̃, ·)‖∞ + ‖η‖∞ � ‖φ‖BMO(�),

as we already knew from the previous section.

3.3 The Lipschitz Extension

Assume φ is Lipschitz in�with Lipschitz constant L and apply the extension operator
T in Definition 4. We claim that φ̃ = Tφ is Lipschitz on R

n with Lipschitz constant
bounded by a multiple of L .

Let us first show that φ̃ is Lipschitz on �′. Suppose that x1 and x2 belong to
Whitney cubes S′

1 and S′
2 in �′, respectively, and assume without loss of generality

that �(S1) ≤ �(S2).
If S′

1 and S′
2 are adjacent, we can apply Corollary 4 and the Lipschitz continuity of

φ on � to conclude that

|φ̃(x1) − φ̃(x2)| � ω�(φ,C ′�(S1))
�(S1)

|x1 − x2| � L|x1 − x2|. (25)

Now suppose S′
1 and S

′
2 are not adjacent, which means |x1− x2| � �(S′

1)+�(S′
2) �

mini=1,2 dist(xi , ∂�). Let x ′
1 and x ′

2 be the centers of cubes S′
1 and S′

2 respectively.
Then by construction of φ̃

|φ̃(x1) − φ̃(x2)| ≤ |φ̃(x1) − φ̃(x ′
1)| + |φ̃(x ′

2) − φ̃(x2)| + ∣
∣φS1 − φS2

∣
∣ .

Applying (25) to the first two terms we get

|φ̃(x1) − φ̃(x2)| �
∣
∣φS1 − φS2

∣
∣ + L|x1 − x2|.

Furthermore,

∣
∣φS1 − φS2

∣
∣ ≤

 
S1

 
S2

|φ(x) − φ(y)|dxdy ≤ L(dist(S1, S2) + �(S1) + �(S2)).
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6914 A. Butaev, G. Dafni

By (17) (Lemma 2.10 in [20]), we know that dist(Si , S′
i ) � �(S′

i ) ≈ �(Si ) so by the
triangle inequality we get

∣
∣φS1 − φS2

∣
∣ � L(dist(S′

1, S
′
2) + �(S′

1) + �(S′
2)) � L|x1 − x2|.

This shows that φ̃ is Lipschitz on �′.
Once we know that φ̃ is Lipschitz on � and �′ separately, by uniform continuity

we can extend it to ∂� from either side. To see that this is well-defined, we need to
show that if x ∈ ∂� and xi → x , x ′

i → x with xi ∈ �, x ′
i ∈ �′ then lim φ̃(xi ) =

lim φ̃(x ′
i ). Note that by the uniform continuity of φ and the properties of Whitney

cubes, there is a unique limit of φSi for any sequence of Whitney cubes Si in � with
dist(Si , x) → 0. Thus, all that remains to show is that if x ′

i ∈ �′, xi → x and xi ∈ S′
i ,

then dist(Si , x) → 0 where Si are matching cubes for the S′
i . But this again follows

from the Jones estimate that dist(Si , S′
i ) � �(S′

i ) which must go to zero.
So φ̃ is now defined pointwise everywhere on R

n and is Lipschitz continuous on
� and �′, with a constant bounded by a multiple of L .

Finally, if x ∈ � and x ′ ∈ �′, there must be a point in y ∈ ∂� which lies on
the straight line between them. Applying the Lipschitz continuity on � to the pair
x, y, and the Lipschitz continuity on �′ to the pair y, x ′, we get the desired Lipschitz
estimate.

3.4 The VMO2 Extension

It follows from the definition of VMO2 that in order to prove part (iii) of Theorem 3,
it suffices to prove parts (i) and (v), namely that the same extension is bounded on
BMO and on Lipschitz functions. To see this, suppose φ ∈ VMO(�) and let {φ j } be
a sequence of Lipschitz functions on � such that ‖φ j −φ‖BMO(�) → 0. Then, by (v),
each Tφ j is Lipschitz on R

n , and by (i), ‖Tφ j − Tφ‖BMO(Rn) → 0. Thus, Tφ j is
the limit in BMO(Rn) of Lipschitz functions, hence is in the closure of the uniformly
continuous function in BMO(Rn), which is VMO(Rn). Note that the boundedness in
the norm is just part (i). Also note that it would have sufficed to prove that the extension
maps uniformly continuous functions on � to uniformly continuous function on R

n .

3.5 The CMO Extension

By Proposition 2, compactly supported Lipschitz functions are dense in CMO, and
since we have shown the extension maps Lipschitz to Lipschitz and is bounded in the
BMO norm, it suffices to show it preserves compact support.

Lemma 7 Fix a Whitney cube S′
0 in �′ and a matching Whitney cube S0 in �. If there

is a constant C ∈ R such that

φ ≡ C, on all Whitney cubes S ⊂ � with d2(S, S0) > M,
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and M is sufficiently large then

φ̃ ≡ C, on all Whitney cubes S′ ⊂ �′ with d2(S
′, S′

0) > 4M .

From the definition on d2 in (14), and the relationship between the size of the
Whitney cubes and the distance to the boundary, (20), we see that the condition
d2(S, S0) > M for large M is equivalent to S being close to boundary ∂� or S
being far away from S0 in the Euclidean distance, hence the hypothesis is the same as
saying that φ has compact support in �. Similarly, the conclusion is equivalent to φ̃

having compact support in�′. This shows the Lemma implies our desired conclusion.

Corollary 6 If φ is compactly supported in �, then so is φ̃.

We now prove the Lemma.

Proof Let S′ be a Whitney cube in �′ with d2(S′, S′
0) > M . We denote by S ⊂ �

a matching cube of S′. We will show that for sufficiently large M , d2(S′, S′
0) > M

implies d2(S, S0) > M/4.
We consider two possibilities

Case 1: Suppose

∣
∣
∣
∣
log

�(S′)
�(S′

0)

∣
∣
∣
∣
≥ M/2,

Then for a matching cube S ⊂ �, we have, by (16), for M sufficiently large,

∣
∣
∣
∣
log

�(S)

�(S0)

∣
∣
∣
∣
≥

∣
∣
∣
∣
log

�(S′)
�(S′

0)

∣
∣
∣
∣
− log 4 ≥ M/2 − log 4 > M/4.

Case 2:
∣
∣
∣
∣
log

�(S′)
�(S′

0)

∣
∣
∣
∣
< M/2, log

(

2 + dist(S′, S′
0)

�(S′
0) + �(S′)

)

≥ M/2,

In this case, writing

dist(S′, S′
0) ≤ dist(S′, S) + diam(S) + dist(S, S0) + diam(S0) + dist(S0, S

′
0),

and using both (16) and (17) (Lemma 2.10 in [20]), we get

dist(S, S0)

�(S) + �(S0)
≥ dist(S′, S′

0)

�(S) + �(S0)
− dist(S′, S)

�(S) + �(S0)
− dist(S′

0, S0)

�(S) + �(S0)
− √

n

≥ dist(S′, S′
0)

2(�(S′) + �(S′
0))

− dist(S′, S)

�(S)
− dist(S′

0, S0)

�(S0)
− √

n

≥ dist(S′, S′
0)

2(�(S′) + �(S′
0))

− 130κ2 − √
n.
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Therefore, taking M sufficiently large so that the hypotheses of this case imply
1
4

(

2 + dist(S′,S′
0)

�(S′
0)+�(S′)

)

≥ 130κ2 − √
n, we have

log

(

2 + dist(S, S0)

�(S0) + �(S)

)

≥ log

(
1

4

(

2 + dist(S′, S′
0)

�(S′
0) + �(S′)

)

+1

4

(

2 + dist(S′, S′
0)

�(S′
0) + �(S′)

)

− 130κ2 − √
n

)

≥ log

(
1

4

(

2 + dist(S′, S′
0)

�(S′
0) + �(S′)

))

≥ M/2 − log 4,

and this again can be made greater than M/4. ��

3.6 The Bounded Case

Now suppose � is a bounded uniform domain. Recall from the discussion in Sect. 2.2
that for a bounded domain, we have VMO1(�) = VMO2(�) = CMO(�), so as
above it is enough to show that the extension maps BMO(�) to BMO(Rn) and Lips-
chitz functions to Lipschitz functions. In [20], pp. 57–58, Jones adjusts his extension
operator � to the case of a bounded domain by setting �φ on S′

i to be φS0 whenever
S′
i is a Whitney cube in �′ with �(S′

i ) > L , where L is the maximum sidelength of the
Whitney cubes in �, and S0 is a fixed Whitney cube in � with sidelength equal to L .
The definition for the case �(S′

i ) ≤ L is the same as in the unbounded case above. The
effect of this is tomake the extension�φ constant on the region of�′ lying sufficiently
far away from ∂�, thus creating an extension of compact support. The averaging oper-
ator A preserves this property. Thus the BMO and Lipschitz boundedness go through
in the same way as for the unbounded case.

Alternatively, the bounded case can be proved via a different extension, also of
compact support, which the authors previously constructed in [6]. That extension was
continuous on �′ and had the property that the values of φ̃ on a Whitney cube S′
only depended on the values of φ on a matching cube S in �, and not on those in
neighboring cubes. This required the use of a bump function introduced in the proof
of Theorem 5, which is Theorem 1 in [4].

4 Proof of Theorem 4

Let � be any domain in R
n . In the proof of the necessity in Theorem 1 [20], Jones

fixes a Whitney cube S0 in � and defines the function φS0 on � by d1(S0, Sx ), where
Sx is aWhitney cube containing x (this is well-defined up to a set of measure zero). He
then shows that φS0 ∈ BMO(�) with the norm bounded independently of the choice
of S0.

In our case, we want to create a “test function” in CMO(�), or more precisely a
Lipschitz function with compact support. We begin by truncating the Jones function:
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for M > 0, define

φM
S0 (x) = min(d1(S0, Sx ), M).

By (12) and Lemma 2.4 in [20],

‖φM
S0‖BMO(�) ≤ ‖φS0‖BMO(�) ≤ C .

Then we take φ̃ to be the averaged version of φM
S0
, applying the averaging operator A

defined in Sect. 2 to the step function φM
S0

on �, with the function R(x) defined as in
(19), namely R(x) = cndist(x, ∂�) with cn sufficiently small.

We claim that for any M > 0

1. φ̃ ∈ BMO(�) with BMO norm uniformly bounded in M and S0.
2. φ̃ has a compact support that depends on M and S0
3. φ̃ ∈ Lip(�) with Lip constant depending on M and S0.

We already know that φM
S0

had BMO norm bounded by a constant independent of M
and S0, and this is not changed by the averaging process since, as we saw in Sect. 3.1,
‖φ̃ − φM

S0
‖∞ ≤ C‖φM

S0
‖BMO.

Note that φ̃ is constantly equal to M on Whitney cubes S which are sufficiently far
(depending on M) from S0 in the d1 distance. This means that the support of φ̃, i.e.
the set on which it is not constant, is contained in some d1-“ball” (i.e. a ball in the
quasi-hyperbolic distance in �) centred at S0. Properties (15) and (20) of the Whitney
cubes imply that the Euclidean distance dist(x, S0) is bounded above and dist(x, ∂�)

is bounded below on the support of φ̃, showing that it has compact support in �.
Furthermore, R(x) is bounded below on this support by some constant δ > 0

depending on S0 and M . Now Lemma 1 can be applied to conclude that φ̃ is Lipschitz
with a Lipschitz constant bounded by a multiple of δ−1.

Suppose any f ∈ CMO(�) can be linearly extended to a function T f ∈ BMO(Rn)

and there exists K > 0 independent of f such that

‖T f ‖BMO(Rn) ≤ K‖ f ‖BMO(�),

Thus, by the Fefferman-Stein lemma (see e.g. Lemma 2.1 in [20]), for any two cubes
Q0, Q1 ∈ �

|( f )Q0 − ( f )Q1 | ≤ Cd2(Q0, Q1) · ‖T f ‖BMO(Rn) ≤ CKd2(Q0, Q1) ‖ f ‖BMO(�).

(26)

Then for any two Whitney cubes S0, S1 ∈ �, we can choose f = φ̃ = AφM
S0

as
above, with M = d1(S0, S1) + 1. Furthermore we choose Q0, Q1 as subcubes of S0
and S1 respectively such that φ̃ = 0 and φ̃Q1 = d1(S0, S1). Such a choice is possible
for cn sufficiently small, with �(Q0), �(Q1) comparable in sidelength to �(S0), �(S1),
respectively, by (3). The latter guarantees that d2(Q0, Q1) � d2(S0, S1), which turns
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(26) into

d1(S0, S1) ≤ CKd2(S0, S1) ‖φ̃‖BMO(�).

As ‖φ̃‖BMO(�) is uniformly bounded and S0, S1 were arbitrary chosen, we see that �
is a uniform domain with κ � CK‖φ̃M

S0
‖BMO(�).

As a corollary of the proof, we see that the hypothesis in Theorem 4 can be weak-
ened to assuming the extension maps Lipschitz functions with compact support in �

(modulo constants) to functions in BMO(Rn), boundedly in the BMO norm.

5 Examples

In this section, we consider two examples complementing Theorem 3 and Corollary 1.
The first example shows that unlike CMO and VMO, there are subspaces of BMO for
which no extension can be simultaneously an extension fromBMO(�) → BMO(Rn),
even when � is Lipschitz. The second example shows that for certain non-uniform
domains VMO1(�) is strictly larger than VMO2(�).

Example 7 Let BMOodd(R) be the set of odd BMO functions (modulo constants) on
the real line. Namely, f ∈ BMOodd if and only if f ∈ BMO(R) and for almost all
x, y ∈ R

f (x) + f (−x) = f (y) + f (−y).

Note that BMOodd is a subspace of BMO(R).
We claim that there is no simultaneous extension operator E from BMO(R+) to

BMO(R) and from [BMOodd(R)]|R+ to BMOodd(R).

Let f (x) =
√

log+ 1
|x | . Then f ∈ VMO(R) and as it follows from [4], there are

UC functions { fn} compactly supported on (0, 1) such that fn → f in BMO(R+). If
E is a continuous extension from BMO(R+) to BMO(R), then

E f = lim
n

E fn .

in BMO(R). Moreover, fn are in [BMOodd(R)]|R+ and if E simultaneously extends
the latter class to BMOodd(R), then E f ∈ BMOodd(R). This however contradicts to
Proposition 12 in [2] which says every f ∈ BMOodd must satisfy

sup
a>0

1

a

ˆ a

0
| f (t)|dt < ∞.

We can construct similar examples in higher dimensions e.g. by defining

B(Rn) = { f (x1, . . . , xn) = g(xn), g ∈ BMOodd(R)};
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this class of functions is a subspace of BMO(Rn). The same reasoning as above shows
that there is no linear extension T bounded from B(Rn)|Rn+ to B(Rn) and from
BMO(Rn+) to BMO(Rn) simultaneously.

Example 8 Let � = R
2 \ {(x, 0), x ≥ 0}. Consider a smooth function

g(x) =
{

log x, if x ≥ 2
0, if x ≤ 1,

and f (x, y) defined on � as

f (x, y) =
{

g(x), if y ≥ 0
−g(x), if y ≤ 0,

It is clear that f (x, y) is smoothon� and therefore aVMO1(�).Weclaim, however,
that f /∈ VMO2(�). More specifically, for some ε0 there is no g ∈ UC(�) such that

‖ f − g‖BMO ≤ ε0. (27)

Indeed, consider cubes Q+
k and Q−

k that have sidelengths 2−k−2 and centred at
points (2k, 2−k) and (2k,−2−k) respectively.

Then

| fQ+
k

− fQ−
k
| ≈ 2k (28)

Note that

d1(Q
+
k , Q−

k ) ≈ k,

and by Lemma 2.2 in [20]

|| fQ+
k

− fQ−
k
| − |gQ+

k
− gQ−

k
|| � ‖ f − g‖BMO(�) · d1(Q+

k , Q−
k ),

so

|| fQ+
k

− fQ−
k
| − |gQ+

k
− gQ−

k
|| � k‖ f − g‖BMO(�) (29)

If (27) held for any ε0, then (28) and (29) would imply

|gQ+
k

− gQ−
k
| � k,

but then

k � |gQ+
k

− gQ−
k
| ≤ |Q+

k |−1

∣
∣
∣
∣
∣

ˆ
Q+
k

g(x, y) − g(x,−y)dxdy

∣
∣
∣
∣
∣
≤ ωg(2

−k).

This means g /∈ UC(�).
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