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Abstract
In this paper, we consider some norm estimates for mixed Morrey spaces considered
by the first author. Mixed Lebesgue spaces are realized as a special case of mixed
Morrey spaces. What is new in this paper is a new norm estimate for mixed Morrey
spaces that is applicable to mixed Lebesgue spaces as well. An example shows that the
condition on parameters is optimal. As an application, the Olsen inequality adapted
to mixed Morrey spaces can be obtained.
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1 Introduction

We obtain some decomposition results for mixed Lebesgue spaces and mixed Mor-
rey spaces. Let us first recall the definition of mixed Lebesgue spaces. Let 0 <

q1, q2, . . . , qn ≤ ∞ be constants. Write q = (q1, q2, . . . , qn). Then define the mixed
Lebesgue norm ‖ · ‖Lq by
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‖ f ‖Lq ≡
⎛
⎝
∫
R

· · ·
(∫

R

(∫
R

| f (x1, x2, . . . , xn)|q1dx1
) q2

q1
dx2

) q3
q2

· · · dxn
⎞
⎠

1
qn

.

A natural modification for xi is made when qi = ∞. We define the mixed Lebesgue
space Lq(Rn) to be the set of all measurable function f on R

n with ‖ f ‖Lq < ∞.
Here and below we use the notation

q = (q1, q2, . . . , qn), q∗ = (q∗
1 , q∗

2 , . . . , q∗
n ), t = (t1, t2, . . . , tn)

to denote the vectors in Rn . The aim of this paper is to develop a theory of decompo-
sitions based on the following boundedness of the maximal operator.

Here and below, for 0 ≤ a ≤ b ≤ ∞, a ≤ q ≤ b means that a ≤ qi ≤ b for all
i = 1, 2, . . . , n.

Theorem 1 Assume that

1 ≤ tk < min{q1, . . . , qk} ≤ ∞ (k = 1, . . . , n).

Define

M (t) f (x) = sup
Q∈Q

χQ(x)

‖χQ‖Lt
‖ f χQ‖Lt

for a measurable function f . Then for all measurable functions f

‖M (t) f ‖Lq � ‖ f ‖Lq .

For 0 < p < ∞, and 0 < q < ∞ satisfying

n

p
≤

n∑
j=1

1

q j

recall that mixed Morrey spaces are defined by the norm given by

‖ f ‖Mp
q

≡ sup
Q∈D(Rn)

|Q|
1
p − 1

n

∑n
j=1

1
q j ‖ f χQ‖Lq

for measurable functions f : Rn → C, where D(Rn) denotes the set of all dyadic
cubes. We denote by Q(Rn) the set of all cubes whose edges are parallel to the
coordinate axes. If there is no confusion, we substitute D and Q for D(Rn) and
Q(Rn), respectively.

Using Theorem 1, we seek to prove the following decomposition result about the
functions in mixed Morrey spaces.

This result extends [26, Chapter 8, Lemma 5]
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9340 T. Nogayama et al.

Theorem 2 Suppose that the parameters p,q, s, t satisfy

1 < p < s < ∞, 1 < max{q1, . . . , qk} < tk < ∞ (k = 1, . . . , n),

n

p
≤

n∑
j=1

1

q j
,

n

s
≤

n∑
j=1

1

t j
.

Assume that {a j }∞j=1 ⊂ Ms
t (R

n), {λ j }∞j=1 ⊂ [0,∞), and {Q j }∞j=1 ⊂ Q(Rn) fulfill

‖a j‖Ms
t
≤ |Q j | 1s , supp(a j ) ⊂ Q j ,

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

< ∞. (1)

Then f =
∑∞

j=1
λ j a j converges in S ′(Rn) ∩ Lq

loc(R
n) and satisfies

‖ f ‖Mp
q

≤ Cp,q,s,t

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

. (2)

The next assertion concerns the decomposition of functions inMp
q (Rn). Hereafter,

we write N0 = N ∪ {0}. For d ∈ N0, denote by Pd(R
n) the set of all polynomial

functions with degree less than or equal to d, so that P(Rn) ≡ ⋃∞
d=0 Pd(R

n). It
is clear that P−1(R

n) = {0}. Let K ∈ N0. The set PK (Rn)⊥ denotes the set of

measurable function f for which 〈·〉K f ∈ L1(Rn) and
∫
Rn

xα f (x)dx = 0 for any

α ∈ N
n
0 with |α| ≤ K , where 〈·〉 = (1 + | · |2) 1

2 . Such a function f is said to satisfy
the moment condition of order K . In this case, one also writes f ⊥ PK (Rn).

One writes q < t if q j < t j for each j = 1, 2, . . . , n.
The following theorem is a consequence of the paper [11].

Theorem 3 Suppose that the real parameters p,q, K satisfy

1 < p < ∞, 1 < q < ∞,
n

p
≤

n∑
j=1

1

q j
, K ∈ N0 ∩

(
n

q0
− n − 1,∞

)
,

where q0 = min(q1, . . . , qn). Let f ∈ Mp
q (Rn). Then there exists a triplet {a j }∞j=1 ⊂

L∞(Rn) ∩ P⊥
K (Rn), {λ j }∞j=1 ⊂ [0,∞), and {Q j }∞j=1 ⊂ Q(Rn) such that f =∑∞

j=1 λ j a j in S ′(Rn) and that, for any v > 0

|a j | ≤ χQ j ,

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v

⎞
⎠

1
v

∥∥∥∥∥∥∥Mp
q

≤ Cv‖ f ‖Mp
q
. (3)
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Here the constant Cv > 0 is independent of f .

We rephrase Theorems 2 and 3 in the case of mixed Lebesgue spaces.

Corollary 1 Suppose that the parameters q, t satisfy

1 < max{q1, . . . , qk} < tk < ∞ (k = 1, . . . , n).

Assume that {a j }∞j=1 ⊂ L t(Rn), {λ j }∞j=1 ⊂ [0,∞), and {Q j }∞j=1 ⊂ Q(Rn) fulfill

‖a j‖Lt ≤ |Q j |
1
n

∑n
k=1

1
tk , supp(a j ) ⊂ Q j ,

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥
Lq

< ∞.

Then f =
∑∞

j=1
λ j a j converges in Lq(Rn) and satisfies

‖ f ‖Lq ≤ Cp,q,s,t

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥
Lq

.

Corollary 2 Let 1 < q < ∞ and K ∈ N0 ∩
(
n
q − n − 1,∞

)
. Let f ∈ Lq(Rn).

Then there exists a triplet {a j }∞j=1 ⊂ L∞(Rn) ∩ P⊥
K (Rn), {λ j }∞j=1 ⊂ [0,∞), and

{Q j }∞j=1 ⊂ Q(Rn) such that f =∑∞
j=1 λ j a j in Lq(Rn) and that, for any v > 0

|a j | ≤ χQ j ,

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v

⎞
⎠

1
v

∥∥∥∥∥∥∥
Lq

≤ Cv‖ f ‖Lq .

Here the constant Cv > 0 is independent of f .

Theorem 3 is a special case of Theorem 4 to follow, which concerns the decomposi-
tion of Hardy-mixed Morrey spaces. Based on [21], we define Hardy-mixed Morrey

spaces. For 0 < q, p < ∞ satisfying
n

p
≤
∑n

j=1

1

q j
, the Hardy-mixed Morrey

space HMp
q (Rn) is defined as the set of any f ∈ S ′(Rn) for which the quasi-norm

‖ f ‖HMp
q

= ∥∥supt>0 |et� f |∥∥Mp
q
is finite, where et� f stands for the heat extension

of f ;

et� f (x) =
〈

1√
(4π t)n

exp

(
−|x − ·|2

4t

)
, f

〉
(t > 0, x ∈ R

n).

See [28] for the equivalent norms of the Hardy–Morrey spaces. We rephrase Theo-
rems 2 and 3 in full generality in terms of Hardy-mixed Morrey spaces. The following
result is again a consequence of the paper [11].
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9342 T. Nogayama et al.

Theorem 4 Suppose that the real parameters p,q, K satisfy

0 < p < ∞, 0 < q < ∞,
n

p
≤

n∑
j=1

1

q j
, K ∈ N0 ∩

(
n

q0
− n − 1,∞

)
,

where q0 = min(q1, . . . , qn). Let f ∈ HMp
q (Rn). Then there exists a triplet

{a j }∞j=1 ⊂ L∞(Rn) ∩ P⊥
K (Rn), {λ j }∞j=1 ⊂ [0,∞), and {Q j }∞j=1 ⊂ Q(Rn) such

that f =∑∞
j=1 λ j a j in S ′(Rn) and that, for any v > 0,

|a j | ≤ χQ j ,

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v

⎞
⎠

1
v

∥∥∥∥∥∥∥Mp
q

≤ Cv‖ f ‖HMp
q
. (4)

Here the constant Cv is a constant that is independent on v but not on f .

We remark that Theorems 2 and 4 are the special cases of the results in [11].
Theorem 2 has the following counterpart.

Theorem 5 Suppose that the parameters p,q, s, t satisfy

1 < p < s < ∞, 0 < max{1, q1, . . . , qk} < tk < ∞ (k = 1, . . . , n),

n

p
≤

n∑
j=1

1

q j
,

n

s
≤

n∑
j=1

1

t j
.

Write v(q) ≡ min{1, q1, . . . , qn} and dq =
[
n

(
1

v(q)
− 1

)]
. Assume that a triple

({a j }∞j=1, {λ j }∞j=1, {Q j }∞j=1) ∈ (Ms
t (R

n) ∩ P⊥
dq (R

n)) × [0,∞) × Q(Rn)

fulfills

‖a j‖Ms
t
≤ |Q j | 1s , supp(a j ) ⊂ Q j ,

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

< ∞.

Then f =
∑∞

j=1
λ j a j converges in S ′(Rn) and satisfies

‖ f ‖HMp
q

≤ Cp,q,s,t

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

.
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Remark that in [14] Jia and Wang considered the case of qi = q ≤ 1 for i =
1, 2, . . . , n. We also remark that Theorems 4 and 5 with qi = q = p ≤ 1 for
i = 1, 2, . . . , n are included in [10, Theorems 2.1 and 2.2]. Theorem 2 is new and
even in Theorem 3–5 we do not have to postulate q ≤ 1. Concerning Mp

q (Rn) and
HMp

q (Rn) when q > 1, we have the following assertion:

Proposition 1 Let 1 < p < ∞ and 1 < q < ∞ satisfy

n

p
≤

n∑
j=1

1

q j
.

(1) If f ∈ Mp
q (Rn), then f ∈ HMp

q (Rn).
(2) If f ∈ HMp

q (Rn), then f can be represented by a locally integrable function and
the representative belongs to Mp

q (Rn).

We elaborate a detailed proof of Proposition 1 in Sect. 3.
As an application of Theorem 2, we can reprove the following Olsen inequality

about the fractional integral operator Iα , where Iα (0 < α < n) is defined by

Iα f (x) =
∫
Rn

f (y)

|x − y|n−α
dy.

The following result is known:

Proposition 2 [18, Theorem 1.11] Suppose that the parameters α, p,q, s, t satisfy

1 < p < s < ∞, 1 < q < t < ∞,
n

p
≤

n∑
j=1

1

q j
,

n

s
≤

n∑
j=1

1

t j

and

1

p
− α

n
= 1

s
,

q j

p
= t j

s
( j = 1, 2, . . . , n).

Then Iα is bounded fromMp
q (Rn) toMs

t (R
n).

Based upon Proposition 2, we can prove the following result.

Theorem 6 Suppose that the parameters α, p,q, p∗,q ∗, s, t satisfy

1 < p, p∗, s < ∞, 1 < q,q ∗, t < ∞,

n

p
≤

n∑
j=1

1

q j
,

n

p∗ ≤
n∑
j=1

1

q∗
j
,

n

s
≤

n∑
j=1

1

t j
,

max{t1, . . . , t j } < q∗
j ,

1

p
>

α

n
,

1

p∗ ≤ α

n
, (5)
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9344 T. Nogayama et al.

for each j = 1, 2, . . . , n, and that

1

s
= 1

p∗ + 1

p
− α

n
,

t j
s

= q j

p
( j = 1, 2, . . . , n). (6)

Then for all f ∈ Mp
q (Rn) and g ∈ Mp∗

q ∗(Rn)

‖g · Iα f ‖Ms
t
≤ C‖g‖Mp∗

q ∗
· ‖ f ‖Mp

q
,

where the constant C is independent of f and g.

This result recaptures [23, Proposition 1.8] as the special case of qi = q and ti = t for
all i = 1, 2, . . . ,m. Note that a detailed calculation in [22, p. 6] shows that Theorem
6 is not just a combination of Proposition 2 and Lemma 1.

Lemma 1 Suppose that the parameters p,q, p∗,q ∗, s, t satisfy

1 < p, p∗, s < ∞, 1 < q,q ∗, t < ∞,

n

p
≤

n∑
j=1

1

q j
,

n

p∗ ≤
n∑
j=1

1

q∗
j
,

n

s
≤

n∑
j=1

1

t j
.

Assume

1

s
= 1

p∗ + 1

p
,

1

t j
= 1

q∗
j

+ 1

q j
.

Then

‖ f · g‖Ms
t
≤ ‖ f ‖Mp

q
‖g‖Mp∗

q ∗
( f ∈ Mp

q (Rn), g ∈ Mp∗
q ∗(Rn)).

We can prove this lemma easily by using Hölder’s inequality. So we omit the proof.
We write ∞′ = 1 and s′ = s

s−1 for 1 < s < ∞. We have the following proposition:

Proposition 3 In addition to the assumption in Theorem 6, suppose that u ∈ (1,∞]
satisfies u′ < min{q1, q2, . . . , qn, p}. Let Ω ∈ Lu(Sn−1) be homogeneous of degree
zero, that is, Ω satisfies, for any λ > 0, Ω(λx) = Ω(x). Then,

∥∥g · IΩ,α( f )
∥∥Ms

t
≤ C ‖g‖Mp∗

q ∗
‖Ω‖Lu(Sn−1) ‖ f ‖Mp

q
,

where

IΩ,α f (x) ≡
∫
Rn

Ω(x − y)

|x − y|n−α
f (y)dy.

Proposition 3 is a direct consequence of Theorem 6, the next lemma and the bound-
edness of the Hardy–Littlewood maximal operator M .

123



Atomic Decomposition for Mixed Morrey Spaces 9345

Lemma 2 [12] If 1 < u ≤ ∞, then we have

|IΩ,α f (x)| ≤ C ‖Ω‖Lu(Sn−1) |IαF(x)|,

where F(x) ≡ M
(
| f |u′)

(x)
1
u′ .

Hardy-mixed Morrey spaces admit a characterization by using the grand maximal
operator. To formulate the result, we recall the following two fundamental notions
[25].

(1) Topologize S(Rn) by norms {pN }N∈N given by

pN (ϕ) ≡
∑

|α|≤N

sup
x∈Rn

(1 + |x |)N |∂αϕ(x)|

for each N ∈ N. Define FN ≡ {ϕ ∈ S(Rn) : pN (ϕ) ≤ 1}.
(2) Let f ∈ S ′(Rn). The grand maximal operator M f is given by

M f (x) ≡ sup{|t−nψ(t−1·) ∗ f (x)| : t > 0, ψ ∈ FN } (x ∈ R
n), (7)

where we choose and fix a large integer N .

The following proposition can be proved.

Proposition 4 Let 0 < q < ∞, 0 < p < ∞, and n
p ≤∑n

j=1
1
q j
. Then

‖M f ‖Mp
q

∼ ‖ f ‖HMp
q

for all f ∈ S ′(Rn).

When p ≤ 1 and q1 = q2 = · · · = qn , this proposition is contained in [14]. Here for
the sake of convenience, we give the proof of Proposition 4 in Sect. 3.

We plan to prove our results in the following manner. First of all, we elaborate
the proof of Theorem 1 in Sect. 2. Next, we concentrate on Theorem 2 in Sect. 4.1.
Subsequently, based on the argument of the proof of Theorem 2, we prove Theorem 5
in Sect. 4.2. Necessary lemmas for the proofs are stated in each subsection. Finally,
Sect. 5 is devoted to the proof of Theorem 6.

2 Proof of Theorem 1

We invoke a result due to Bagby [2].

Lemma 3 Let 1 < q1, . . . , qm < ∞ and 1 < p < ∞. For i = 1, 2 . . . ,m, let (Ωi , μi )

be σ -finite measure spaces, and Ω = Ω1 × · · · × Ωm. For f ∈ L0(Rn × Ω),

∫
Rn

‖M f (x, ·)‖p
L(q1,...,qm ) dx �

∫
Rn

‖ f (x, ·)‖p
L(q1,...,qm ) dx .

The following lemma is used in the induction step (see [18, (12)]).
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9346 T. Nogayama et al.

Here and below, for t > 0 and j = 1, 2, . . . , n, we denote by Mj the 1-dimensional

maximal operator which acts on the j-th variable and write M (t)
j f = (Mj [| f |t ]) 1

t

Lemma 4 Let q = (q1, q2, . . . , qn) ∈ (1,∞)n and let

tn ∈ [1,min{q1, q2, . . . , qn}).

Then
∥∥∥M (tn)

n f
∥∥∥
Lq

� ‖ f ‖Lq

for all f ∈ Lq(Rn).

For the proof we use the following notation for h ∈ L0(Rn):

‖h‖L(q1,...,qm ) (xm+1, . . . , xn) ≡ ∥∥[‖h‖L(q1,...,qm−1)

]∥∥
L(qm ) (xm+1, . . . , xn)

and when m = 1, we define

‖h‖L(q1) (x2, . . . , xn) ≡
(∫

R

|h(x1, . . . , xn)|q1dx1
) 1

q1
.

Proof Thanks to Lemma 3, we obtain

∥∥∥M (tn)
n f

∥∥∥qn
Lq

=
∫
R

∥∥∥M (tn)
n f (·, xn)

∥∥∥qn
L(q1,...,qn−1)

dxn

=
∫
R

∥∥Mn[| f |tn ](·, xn)
∥∥ qn

tn

L

( q1
tn ,...,

qn−1
tn

) dxn

�
∫
R

∥∥[| f (·, xn)|tn ]
∥∥ qn

tn

L

( q1
tn ,...,

qn−1
tn

) dxn = ‖ f ‖qnLq .

Thus, we obtain the desired result. ��
Proof of of Theorem 1 We start with a preliminary observation for maximal operators.
Let x ∈ R

n . Let Q = I1 ×· · ·× In where each I j is an interval inRwith same length.
Then,

χQ(x)

‖χQ‖Lt
‖ f χQ‖Lt =

⊗n
j=1 χI j (x)

∏n
j=1 |I j |

1
t j

∥∥∥∥∥∥
f χ n∏

j=1
I j

∥∥∥∥∥∥
Lt

=
⊗n

j=2 χI j (x2, . . . , xn)

∏n
j=2 |I j |

1
t j

×
∥∥∥∥∥∥

[(
χI1(x1)

|I1|
∫

| f (y1, ·)|t1χI1(y1)dy1

) 1
t1

]
χ n∏

j=2
I j

∥∥∥∥∥∥
L(t2,...,tn )

123



Atomic Decomposition for Mixed Morrey Spaces 9347

≤
⊗n

j=2 χI j (x2, . . . , xn)

∏n
j=2 |I j |

1
t j

∥∥∥∥∥∥
[
M (t1)

1 f
]
χ n∏

j=2
I j

∥∥∥∥∥∥
L(t2,...,tn )

.

Continuing this procedure, we have

χQ(x)

‖χQ‖Lt
‖ f χQ‖Lt ≤ M (tn)

n · · · M (t1)
1 ( f )(x).

Thus, it follows that

M (t) f (x) ≤ M (tn)
n · · · M (t1)

1 ( f )(x).

Therefore, it suffices to show that

∥∥∥M (tn)
n · · · M (t1)

1 ( f )
∥∥∥
Lq

� ‖ f ‖Lq . (8)

We proceed by induction on n. For n = 1, the result follows by the classical case of
the boundedness of the Hardy–Littlewood maximal operator.

Suppose that the result holds for n = m − 1 with m > 1 in N: assume that

‖M (tm−1)

m−1 · · · M (t1)
1 h‖L(q1,...,qm−1) � ‖h‖L(q1,...,qm−1)

for 1 < tk < min{q1, . . . , qk} < ∞ for each k = 1, . . . ,m−1, and for h ∈ L0(Rm−1).
Since tm < min{q1, . . . , qm}, for g ∈ L0(Rm), thanks to Lemma 4 we have

∥∥∥M (tm)
m g

∥∥∥
L(q1,...,qm )

=
∥∥∥
[∥∥∥M (tm)

m g
∥∥∥
L(q1,...,qm−1)

]∥∥∥
L(qm )

=
∥∥∥∥
[∥∥Mm[|g|tm ]∥∥

L

( q1
tm ,...,

qm−1
tm

)
]∥∥∥∥

1
tm

L(
qm
tm )

�
∥∥[‖g‖L(q1,...,qm−1)

]∥∥
L(qm ) = ‖g‖L(q1,...,qm ) .

Thus, by the induction assumption, letting g = M (tm−1)

m−1 · · · M (t1)
1 ( f ) in the above, we

obtain
∥∥∥M (tm)

m · · · M (t1)
1 ( f )

∥∥∥
L(q1,...,qm )

=
∥∥∥M (tm)

m

[
M (tm−1)

m−1 · · · M (t1)
1 ( f )

]∥∥∥
L(q1,...,qm )

�
∥∥∥M (tm−1)

m−1 · · · M (t1)
1 ( f )

∥∥∥
L(q1,...,qm )

=
∥∥∥
∥∥∥M (tm−1)

m−1 · · · M (t1)
1 ( f )

∥∥∥
L(q1,...,qm−1)

∥∥∥
L(qm )

�
∥∥‖ f ‖L(q1,...,qm−1)

∥∥
L(qm ) � ‖ f ‖L(q1,...,qm ) .

Hence, inequality (8) holds for any dimension n. We obtain the desired result. ��
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One can show that the condition

tk < min{q1, q2, . . . , qk}

is sharp.

Proposition 5 In Theorem 1, for each k = 1, 2, . . . , n, the condition tk <

min{q1, q2, . . . , qk} can not be removed.

Proof We induct on n. The base case n = 1 is clear since the Hardy–Littlewood
maximal operator is bounded on L p(R) if and only if p > 1. Assume that the con-
clusion of Proposition 5 is true for n = m − 1 and that M (t1,t2,...,tm ) is bounded on
L(q1,q2,...,qm )(Rm). Let h ∈ L(t1,t2,...,tm−1)(Rm−1) and N ∈ N. Then

χ[−N ,N ]m
(
M (t1,t2,...,tm−1)

[
χ[−N ,N ]m−1h

]⊗ χ[−N ,N ]
)

≤ M (t1,t2,...,tm )
[
(χ[−N ,N ]m−1h) ⊗ χ[−N ,N ]

]
.

Consequently,

(2N )
1
qm

∥∥∥χ[−N ,N ]m−1M (t1,t2,...,tm−1)
[
χ[−N ,N ]m−1h

]∥∥∥
L(q1,q2,...,qm−1)

=
∥∥∥χ[−N ,N ]m M (t1,t2,...,tm−1)

[
χ[−N ,N ]m−1h

]⊗ χ[−N ,N ]
∥∥∥
L(q1,q2,...,qm )

≤
∥∥∥M (t1,t2,...,tm−1)

[
χ[−N ,N ]m−1h

]⊗ χ[−N ,N ]
∥∥∥
L(q1,q2,...,qm )

≤ C
∥∥(χ[−N ,N ]m−1h

)⊗ χ[−N ,N ]
∥∥
L(q1,q2,...,qm )

≤ C(2N )
1
qm ‖h‖L(q1,q2,...,qm−1) .

So, we are led to

∥∥∥χ[−N ,N ]m−1M (t1,t2,...,tm−1)[χ[−N ,N ]m−1h]
∥∥∥
L(q1,q2,...,qm−1)

≤ C‖h‖L(q1,q2,...,qm−1) .

Letting N → ∞, we obtain

∥∥∥M (t1,t2,...,tm−1)h
∥∥∥
L(q1,q2,...,qm−1)

≤ C‖h‖L(q1,q2,...,qm−1) .

By the induction assumption, we have tk < min{q1, q2, . . . , qk} for all k =
1, 2, . . . ,m − 1. If we start from the inequality

χ[−N ,N ]m
(
χ[−N ,N ] ⊗ M (t1,t2,...,tm−1)

[
χ[−N ,N ]m−1h

])

≤ M (t1,t2,...,tm )
[
χ[−N ,N ] ⊗ (χ[−N ,N ]m−1h

)]
,
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and argue similarly, we obtain

∥∥∥M (t2,t3,...,tm )h
∥∥∥
L(q2,q3,...,qm )

≤ C‖h‖L(q2,q3,...,qm ) .

Thus tm < min(q2, q3, . . . , qm) by the induction assumption. It remains to show that
tm < q1. To this end, we consider the function of the form:

f (x1, x2, . . . , xm) =
∞∑

j=−∞
χ([ j N ,( j+1)N ]×[−N ,N ]m−1)(x1, x2, . . . , xm)h j (xm),

where h j ∈ Lqm (R). Then for all (x1, x2, . . . , xm)

χ(R×[−N ,N ]m−1)(x1, x2, . . . , xm)M (t) f (x1, x2, . . . , xm)

≥
∞∑

j=−∞
χ([ j N ,( j+1)N ]×[−N ,N ]m−1)(x1, x2, . . . , xm)M (tm)

[
χ[−N ,N ]h j

]
(xm).

We abbreviate

Hm(x) ≡ M (tm)
[
χ[−N ,N ]h j

]
(xm).

Hence, we obtain

∥∥∥∥∥∥
∞∑

j=−∞
χ([ j N ,( j+1)N ]×[−N ,N ]m−1)M

(tm)
[
χ[−N ,N ]h j

]
∥∥∥∥∥∥
Lq

=

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=−∞

∫
R

χ[ j N ,( j+1)N ] (Hm(·m))q1 dx1

⎞
⎠

1
q1

χ[−N ,N ]m−1

∥∥∥∥∥∥∥
L(q2,...,qm )

∼ (2N )
1
q1

+···+ 1
qm−1

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=−∞

(Hm(·m))q1

⎞
⎠

1
q1

∥∥∥∥∥∥∥
Lqm

.

In the same way, we deduce

∥∥∥χ(R×[−N ,N ]m−1)M
(t) f

∥∥∥
Lq

� (2N )
1
q1

+···+ 1
qm−1

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=−∞

(|χ[−N ,N ]h j (·m)|)q1
⎞
⎠

1
q1

∥∥∥∥∥∥∥
Lqm

,
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since M (t) is bounded. Thus, letting N → ∞, we obtain

∥∥∥{M (tm)h j }∞j=−∞
∥∥∥
Lqm (�q1 )

≤
∥∥∥{h j }∞j=−∞

∥∥∥
Lqm (�q1 )

.

This forces q1 > tm (see [25, p. 75, § 5.1]). ��

3 Proof of Propositions 1 and 4

3.1 Proof of Proposition 1

To prove Proposition 1, we need the description of the (pre) dual spaces of mixed
Morrey spaces [19]. Recall that when 1 < p < ∞ and 1 < q < ∞ satisfy

n

p
≤

n∑
j=1

1

q j
,

then the predual space Hp′
q ′(Rn) of the mixed Morrey space Mp

q (Rn) is given by

Hp′
q ′(Rn) =

⎧⎨
⎩g =

∞∑
j=1

μ j b j : {μ j }∞j=1 ∈ �1(N), each b j is a (p′,q ′)-block

⎫⎬
⎭ .

Here by “a (p′,q ′)-block” we mean an Lq ′
(Rn)-function supported on a cube Q with

Lq ′
(Rn)-norm lesser or equal to |Q|

1
n

∑n
j=1

1
q′
j
− 1

p′
. The norm of Hp′

q ′(Rn) is defined
by

‖g‖Hp′
q ′

= inf
∞∑
j=1

|μ j |,

where inf is over all admissible expressions above. A fundamental fact about this

space is thatHp′
q ′(Rn) is separable, that the dual ofHp′

q ′(Rn) is cannonically identified

withMp
q (Rn) and that

‖ f ‖Mp
q

= sup

{
‖ f · g‖L1 : ‖g‖Hp′

q ′
= 1

}
.

Proposition 1 was investigated by Long [16] and Zorko [29] when q j = q for all j =
1, . . . , n; see [15] aswell.We refer to [1], [9], and [19] formore recent characterizations
of the predual spaces.

Example 1 Suppose that 1 ≤ t ′k < min(q ′
1, q

′
2, . . . , q

′
k) < ∞. If we let κ be the opera-

tor norm of the maximal operator M (t ′) on Lq ′
(Rn), whose finiteness is guaranteed by
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Theorem 1, then we obtain κ−1χQM (t ′)g is a (p′,q ′)-block modulo a multiplicative
constant for any (p′,q ′)-block g. Indeed, it is supported on a cube Q and it satisfies

∥∥∥κ−1χQM
(t ′)g

∥∥∥
Lq ′ ≤ ‖χQg‖Lq ′ = ‖g‖Lq ′ ≤ |Q|

1
n

∑n
j=1

1
q′
j
− 1

p′
.

Proof of Proposition 1 (1) Denote by B(R) = {x ∈ R
n : |x | < R} for R > 0. Since

‖ f ‖L1(B(R)) ≤ CR− n
p +n‖ f ‖Mp

q
,

we have f ∈ S ′(Rn). As is described in [6], we have a pointwise estimate |et� f | ≤
M f , whereM denotes the Hardy–Littlewoodmaximal operator. SinceM is shown
to be bounded in [4], we have f ∈ HMp

q (Rn).
(2) Let f ∈ HMp

q (Rn). Then {et� f }t>0 is a bounded set ofMp
q (Rn), which admits

a separable predual as we have seen. Therefore, there exists a sequence {t j }∞j=1

decreasing to 0 such that {et j� f }∞j=1 converges to a function g in the weak-*

topology of Mp
q (Rn). Meanwhile, it can be shown that limt↓0 et� f = f in the

topology of S ′(Rn) [21]. Since the weak-* topology of Mp
q (Rn) is stronger than

the topology of S ′(Rn), it follows that f = g ∈ Mp
q (Rn).

3.2 Proof of Proposition 4

The proof is similar to Hardy spaces with variable exponents [5,17]. We content
ourselves with stating two fundamental estimates (13) and (14).

We define the (discrete) maximal function with respect to et� by

Mheat f (x) ≡ sup
j∈Z

|e2 j� f (x)| (x ∈ R
n). (9)

Recall that, for f ∈ S ′(Rn), the grand maximal function is defined by

M f (x) ≡ sup{|t−nψ(t−1·) ∗ f (x)| : t > 0, ψ ∈ FN } (x ∈ R
n), (10)

where FN is given by

FN ≡ {ϕ ∈ S(Rn) : pN (ϕ) ≤ 1}. (11)

Suppose that we are given an integer K � 1. We write

M∗
heat f (x) ≡ sup

j∈Z

(
sup
y∈Rn

|e2 j� f (y)|
(1 + 4 j |x − y|2)K

)
(x ∈ R

n). (12)

The next lemma connects M∗
heat with Mheat in terms of the usual Hardy–Littlewood

maximal function M .
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Lemma 5 ( [17, Lemma 3.2], [20, §4]) For 0 < θ < 1, there exists Kθ so that for all
K ≥ Kθ , we have

M∗
heat f (x) ≤ CM (θ)[Mheat f ](x) = CM

[
sup
k∈Z

|e2k� f |θ
]

(x)
1
θ (x ∈ R

n) (13)

for any f ∈ S ′(Rn), where M (θ) is the powered maximal operator given by

M (θ)g(x) ≡ M[|g|θ ](x) 1
θ (x ∈ R

n)

for measurable functions g.

In the course of the proof of [17, Theorem 3.3], it can be shown that

M f (x) ∼ sup
τ∈FN , j∈Z

|τ j ∗ f (x)| � M∗
heat f (x) (14)

once we fix an integer K � 1 and N � 1.
With the fundamental pointwise estimates (13) and (14), Proposition 4 can be

proved with ease. We omit the details.

4 Proofs of Theorems 2–5

4.1 Proof of Theorem 2

By decomposing Q j suitably, we may suppose each Q j is dyadic.
To prove this, we resort to the duality. For the time being, we assume that there

exists N ∈ N such that λ j = 0 whenever j ≥ N . Let us assume in addition that a j

are non-negative. Fix a non-negative (p′,q ′)-block g ∈ Hp′
q ′(Rn) with the associated

cube Q.
Assume first that each Q j contains Q as a proper subset. If we group j’s such that

Q j are identical, we can assume that Q j is the j th dyadic parent of Q for each j ∈ N.
Then by the Hölder inequality [3]

∫
Rn

f (x)g(x) dx =
∞∑
j=1

λ j

∫
Q
a j (x)g(x) dx ≤

∞∑
j=1

λ j‖a j‖Lq(Q)‖g‖Lq ′
(Q)

from f =∑∞
j=1 λ j a j . Due to the size condition of a j and g, we obtain

∫
Rn

f (x)g(x) dx ≤
∞∑
j=1

λ j |Q|
1
n

∑n
j=1

1
q j

− 1
s |Q j | 1s |Q|

1
n

∑n
j=1

1
q′
j
− 1

p′

≤
∞∑
j=1

λ j |Q| 1p− 1
s |Q j | 1s .
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Note that

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

≥
∥∥∥λ j0χQ j0

∥∥∥Mp
q

= |Q j0 |
1
p λ j0

for each j0. Consequently, it follows from the condition p < s that

∫
Rn

f (x)g(x) dx ≤
∞∑
j=1

|Q| 1p − 1
s |Q j |

1
s − 1

p

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

≤ C

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

.

Conversely assume that Q contains each Q j . Then by the Hölder inequality

∫
Rn

f (x)g(x) dx =
∞∑
j=1

λ j

∫
Q j

a j (x)g(x) dx ≤
∞∑
j=1

λ j‖a j‖Lt(Q j )
‖g‖Lt ′ (Q j )

.

Thanks to the condition of a j , we obtain

∫
Rn

f (x)g(x) dx ≤
∞∑
j=1

λ j |Q j |
1
n

∑n
j=1

1
t j

− 1
s |Q j | 1s ‖g‖Lt ′ (Q j )

.

Thus, in terms of the maximal operator M (t′) defined in Theorem 1, we obtain

∫
Rn

f (x)g(x) dx ≤
∞∑
j=1

λ j |Q j | × inf
y∈Q j

M (t ′)g(y)

�
∫
Rn

⎛
⎝

∞∑
j=1

λ jχQ j (y)

⎞
⎠M (t ′)g(y) dy

≤
∫
Rn

⎛
⎝

∞∑
j=1

λ jχQ j (y)

⎞
⎠χQ(y)M (t ′)g(y) dy.

Hence, by Example 1, we obtain

∫
Rn

f (x)g(x) dx ≤ κ

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

.

This is the desired result. Finally, we can remove the assumption that λ j = 0 for large
j by the monotone convergence theorem. Thus, the proof is complete.
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4.2 Proof of Theorem 5

Recall again that the grand maximal operator M was given by

M f (x) = sup{|ϕt ∗ f (x)| : ϕ ∈ FN , t > 0} (x ∈ R
n).

Then we know that

Ma j (x) ≤ C

(
χ3Q j (x)Maj (x) + (MχQ j (x))

n+dq+1
n

)
, (15)

where dq =
[
n

(
1

v(q)
− 1

)]
and v(q) = min(1, q1, . . . , qn). See [17, (5.2)] for

more details. The first term can be controlled by an argument similar to Theorem 2.
The second term can be handled by using the Fefferman–Stein maximal inequality for
mixed Morrey spaces [18].

Proposition 6 Let 1 < q, p < ∞, n
p ≤∑n

j=1
1
q j

, and 1 < r ≤ ∞. Then

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(M f j )
r

⎞
⎠

1/r
∥∥∥∥∥∥∥Mp

q

≤ C

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

| f j |r
⎞
⎠

1/r
∥∥∥∥∥∥∥Mp

q

for all sequences of measurable functions { f j }∞j=1.

See [24, Theorem 2.2], [27, Lemma 2.5] for the case of classical Morrey spaces.
Let us show Theorem 5. Using Proposition 4 and (15), we have

‖ f ‖HMp
q

∼ ‖M f ‖Mp
q

≤
∥∥∥∥∥∥

∞∑
j=1

λ jMa j

∥∥∥∥∥∥Mp
q

�

∥∥∥∥∥∥
∞∑
j=1

λ j

(
χ3Q j Ma j + (MχQ j )

n+dq+1
n

)∥∥∥∥∥∥Mp
q

�

∥∥∥∥∥∥
∞∑
j=1

λ jχ3Q j Ma j

∥∥∥∥∥∥Mp
q

+
∥∥∥∥∥∥

∞∑
j=1

λ j (MχQ j )
n+dq+1

n

∥∥∥∥∥∥Mp
q

≡ I1 + I2.

First, we consider I1. The proof is similar to Theorem 2. For the sake of complete-
ness, we supply the proof. Thanks to decomposing Q j suitably, we may suppose each
Q j is dyadic. We will use duality again. We assume that there exists N ∈ N such that
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λ j = 0 whenever j ≥ N . Let r = p

v(q)
and w = q

v(q)
, so that r ,w > 1. Then,

∥∥∥∥∥∥
∞∑
j=1

λ jχ3Q j Ma j

∥∥∥∥∥∥Mp
q

≤

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

[
λ jχ3Q j Ma j

]v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

=
∥∥∥∥∥∥

∞∑
j=1

[
λ jχ3Q j Ma j

]v(q)

∥∥∥∥∥∥

1
v(q)

Mr
w

.

Fix a non-negative (r ′,w ′)-block g ∈ Hr ′
w ′(Rn) with the associated cube Q. Assume

first that each Q j contains Q as a proper subset. If we group j’s such that Q j are
identical, we can assume that Q j is the j th dyadic parent of Q for each j ∈ N. Then,

∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx =

∞∑
j=1

λ
v(q)

j

∫
Q

[
Maj (x)

]v(q)
g(x)dx

≤
∞∑
j=1

λ
v(q)

j

∥∥∥[Maj
]v(q)

∥∥∥
Lw(Q)

‖g‖Lw ′
(Q)

≤
∞∑
j=1

λ
v(q)

j

∥∥Maj
∥∥v(q)

Lq
(Q)

‖g‖Lw ′
(Q)

≤
∞∑
j=1

λ
v(q)
j

⎡
⎣∥∥Maj

∥∥
Lt(Q)

|Q|
1
n

∑n
j=1

(
1
q j

− 1
t j

)⎤
⎦

v(q)

‖g‖Lw ′
(Q)

.

Using the boundedness of the Hardy–Littlewood maximal operator on Ms
t (R

n), we
have

∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

≤
∞∑
j=1

λ
v(q)
j

⎡
⎣∥∥Maj

∥∥
Lt(Q)

|Q|
1
n

∑n
j=1

(
1
q j

− 1
t j

)⎤
⎦

v(q)

‖g‖Lw ′
(Q)

≤
∞∑
j=1

λ
v(q)

j |Q|
1
n

∑n
j=1

1
w j

[
|Q|− 1

s
∥∥Maj

∥∥Ms
t

]v(q) ‖g‖Lw ′
(Q)

�
∞∑
j=1

λ
v(q)

j |Q|
1
n

∑n
j=1

1
w j

[
|Q|− 1

s
∥∥a j
∥∥Ms

t

]v(q) ‖g‖Lw ′
(Q)

.
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Thus, using the size condition of a j and g, we obtain

⎛
⎝
∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

⎞
⎠

1
v(q)

�

⎛
⎝

∞∑
j=1

λ
v(q)

j |Q|
1
n

∑n
j=1

1
w j

[
|Q|− 1

s |Q j | 1s
]v(q) |Q|

1
n

∑n
j=1

1
w′
j
− 1

r ′
⎞
⎠

1
v(q)

= |Q| 1p − 1
s

⎛
⎝

∞∑
j=1

[
λ j |Q j | 1s

]v(q)

⎞
⎠

1
v(q)

.

Note that
∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

≥
∥∥∥λ j0χQ j0

∥∥∥Mp
q

= λ j0 |Q j0 |
1
p

for each j0 ∈ N. Thus,

⎛
⎝
∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

⎞
⎠

1
v(q)

�
∞∑
k=1

|Q| 1p − 1
s |Qk |

1
s − 1

p

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

∼

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

.

Conversely assume that Q contains each Q j . Then by the Hölder inequality and
the boundedness of the Hardy–Littlewood maximal operator on L t(Rn),

∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

=
∞∑
j=1

λ
v(q)
j

∫
3Q j

[
Maj (x)

]v(q)
g(x)dx

≤
∞∑
j=1

λ
v(q)

j

∥∥∥[Maj
]v(q)

∥∥∥
Lø(3Q j )

‖g‖Lø ′
(3Q j )

(
ø = t

v(q)

)
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≤
∞∑
j=1

λ
v(q)

j

∥∥Maj
∥∥v(q)

Lt(3Q j )
‖g‖Lø ′

(3Q j )

≤
∞∑
j=1

λ
v(q)

j

∥∥a j
∥∥v(q)

Lt ‖g‖Lø ′
(3Q j )

.

Considering the condition of a j , we obtain

∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

�
∞∑
j=1

λ
v(q)

j

[
|Q j |

1
n

∑n
j=1

1
t j

− 1
s
∥∥a j
∥∥Ms

t

]v(q)

‖g‖Lø ′
(3Q j )

≤
∞∑
j=1

λ
v(q)
j

[
|Q j |

1
n

∑n
j=1

1
t j

]v(q)

‖g‖Lø ′
(3Q j )

.

Thus, in terms of the maximal operator M (t′) defined in Theorem 1, we obtain

⎛
⎝
∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

⎞
⎠

1
v(q)

≤
⎛
⎝

∞∑
j=1

λ
v(q)

j |Q j | × inf
y∈Q j

M (ø ′)g(y)

⎞
⎠

1
v(q)

≤
⎛
⎝
∫
Rn

⎛
⎝

∞∑
j=1

(
λ jχQ j (y)

)v(q)

⎞
⎠M (ø ′)g(y) dy

⎞
⎠

1
v(q)

≤
⎛
⎝
∫
Rn

⎛
⎝

∞∑
j=1

(
λ jχQ j (y)

)v(q)

⎞
⎠χQ(y)M (ø ′)g(y) dy

⎞
⎠

1
v(q)

.

As in Example 1, κ−1χQM (ø ′)g is a (r ′,w ′)-block as long as κ is the operator norm
of M (ø ′) on Lq ′

(Rn). Hence, we obtain

⎛
⎝
∫
Rn

∞∑
j=1

[
λ jχ3Q j (x)Maj (x)

]v(q)
g(x)dx

⎞
⎠

1
v(q)

� κ
1

v(q)

∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠
∥∥∥∥∥∥

1
v(q)

Mr
w

= κ
1

v(q)

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

.
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Next, we consider I2. Put

u = n + dq + 1

n
p, v = n + dq + 1

n
q.

Then, by Proposition 6 and the embedding �v(q) ↪→ �1, we have

I2 =

∥∥∥∥∥∥∥

⎡
⎣

∞∑
j=1

λ j (MχQ j )
n+dq+1

n

⎤
⎦

n
n+dq+1

∥∥∥∥∥∥∥

n+dq+1
n

Mu
v

�

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

≤

∥∥∥∥∥∥∥

⎛
⎝

∞∑
j=1

(λ jχQ j )
v(q)

⎞
⎠

1
v(q)

∥∥∥∥∥∥∥Mp
q

.

Thus, we obtain the desired result.

4.3 Proof of Theorem 4

We outline the proof of Theorem 4 since this is similar to [13]. As in [21, Exercise
3.34], if 0 < r < 1 and f ∈ S ′(Rn) ∩ L1

loc(R
n) satisfies f ∈ Mp

q (Rn), then we can
find {a j }∞j=1 ⊂ L∞(Rn) ∩ P⊥

L (Rn) and a sequence {Q j }∞j=1 of cubes:

(1) supp(a j ) ⊂ Q j ,

(2) f =∑∞
j=1 a j in S ′(Rn),

(3)
{∑∞

j=1
(‖a j‖L∞χQ j )

r
} 1

r � M f .

Using this inequality, we can prove Theorem 4.

Proof of Theorem 4 Let f ∈ HMp
q (Rn). Then we consider the decomposition:

et� f =
∑
Q∈D

λtQa
t
Q

in the topology of S ′(Rn), where atQ ∈ P⊥
K (Rn), λtQ ≥ 0 and

|atQ | ≤ χ3Q,

∥∥∥∥∥∥
∑
Q∈D

λtQχ3Q

∥∥∥∥∥∥Mp
q

� ‖M[et� f ]‖Mp
q

� ‖M f ‖Mp
q
.

Due to the weak-* compactness of the unit ball of L∞(Rn), there exists a sequence
{tl}∞l=1 that converges to 0 such that

λQ = lim
l→∞ λ

tl
Q, aQ = lim

l→∞ atlQ
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exist for all Q ∈ D in the sense that

lim
l→∞

∫
Rn

atlQ(x)ϕ(x)dx =
∫
Rn

aQ(x)ϕ(x)dx

for all ϕ ∈ L1(Rn). We claim

f =
∑
Q∈D

λQaQ

in the topology of S ′(Rn). Let ϕ ∈ S(Rn) be a test function. Then we have

〈 f , ϕ〉 = lim
l→∞〈etl� f , ϕ〉 = lim

l→∞
∑
Q∈D

λ
tl
Q

∫
Rn

atlQ(x)ϕ(x)dx

from the definition of the convergence in S ′(Rn). Once we fix m, we have

|λtlQ | �
‖M f ‖Mp

q

‖χ[0,2−m )n‖Mp
q

(16)

and
∣∣∣∣
∫
Rn

atlQ(x)ϕ(x)dx

∣∣∣∣ ≤
∫
3Q

|ϕ(x)|dx .

Since

∑
Q∈Dm

‖M f ‖Mp
q

‖χ[0,2−m )n‖Mp
q

∫
3Q

|ϕ(x)|dx = 3n
‖M f ‖Mp

q

‖χ[0,2−m )n‖Mp
q

‖ϕ‖L1 < ∞,

we are in the position of using the Fubini theorem to have

∑
m∈Z

∫
Rn

⎛
⎝ ∑

Q∈Dm

λ
tl
Qa

tl
Q(x)

⎞
⎠ϕ(x)dx =

∑
m∈Z

∑
Q∈Dm

λ
tl
Q

∫
Rn

atlQ(x)ϕ(x)dx .

With this in mind, let us set

am,l ≡
∑

Q∈Dm

λ
tl
Q

∫
Rn

atlQ(x)ϕ(x)dx

for each m ∈ Z and l ∈ N. Then we have

|am,l | ≤ C2
nm
p ‖M f ‖Mp

q
‖ϕ‖L1 (m ∈ Z) (17)
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9360 T. Nogayama et al.

thanks to (16).
Let m ∈ Z. Then we have

am,l =
∑

Q∈Dm

λ
tl
Q

∫
3Q

atlQ(x)ϕ(x)dx

=
∑

Q∈Dm

λ
tl
Q

∫
3Q

atlQ(x)

⎛
⎝ϕ(x) −

∑
|β|≤K

1

β!∂
βϕ(c(Q))(x − c(Q))β

⎞
⎠ dx

since atlQ ∈ P⊥
K (Rn). Thus, by the mean-value theorem, we have

|am,l | ≤ C(ϕ)
∑

Q∈Dm

|λtlQ |�(Q)n+K+1 sup
y∈3Q

1

1 + |y|n+1 . (18)

Here C(ϕ) is a constant depending on ϕ.
Meanwhile, for each m̃ ∈ Z

n , we have

∥∥∥∥∥∥
∑

Q∈Dm ,|c(Q)−m̃|≤n

λ
tl
QχQ

∥∥∥∥∥∥Mp
q0

� ‖M f ‖Mp
q
,

which implies

∥∥∥∥∥∥
∑

Q∈Dm ,|c(Q)−m̃|≤n

λ
tl
QχQ

∥∥∥∥∥∥
Lq0

� ‖M f ‖Mp
q

or equivalently

⎛
⎝ ∑

Q∈Dm ,|c(Q)−m̃|≤n

2−mn|λtlQ |q0
⎞
⎠

1
q0

� ‖M f ‖Mp
q
.

Since �q0(Zn) ↪→ �1(Zn),

∑
Q∈Dm ,|c(Q)−m̃|≤n

|λtlQ | � 2
mn
q0 ‖M f ‖Mp

q
.

Combining this estimate with (18), we obtain

|am,l | �
∑
m̃∈Zn

∑
Q∈Dm ,|c(Q)−m̃|≤n

|λtlQ |�(Q)n+K+1 sup
y∈3Q

1

1 + |y|n+1
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∼
∑
m̃∈Zn

∑
Q∈Dm ,|c(Q)−m̃|≤n

|λtlQ |�(Q)n+K+1

1 + |m̃|n+1

� 2
mn
q0

−(n+K+1)m‖M f ‖Mp
q
. (19)

Since K + 1 > n
(

1
q0

− 1
)
, we obtain

n + K + 1 >
n

q0
.

Thus by (17) and (19), we obtain

|am,l | � min
(
2

mn
q0

−(n+K+1)m
, 2

mn
p

)
.

Since

∞∑
m=−∞

min
(
2

mn
q0

−(n+K+1)m
, 2

mn
p

)
� 1,

we are in the position of using the Lebesgue convergence theorem to have

lim
l→∞

∞∑
m=−∞

am,l =
∞∑

m=−∞

(
lim
l→∞ am,l

)
.

That is,

〈 f , ϕ〉 = lim
l→∞〈etl� f , ϕ〉 =

∞∑
m=−∞

⎛
⎝ lim

l→∞
∑

Q∈Dm

λ
tl
Q

∫
Rn

atlQ(x)ϕ(x)dx

⎞
⎠ .

Hence, using Fubini’s theorem again, we obtain

〈 f , ϕ〉 =
∞∑

m=−∞

⎛
⎝ lim

l→∞

∫
Rn

⎛
⎝ ∑

Q∈Dm

λ
tl
Qa

tl
Q(x)

⎞
⎠ϕ(x)dx

⎞
⎠

=
∞∑

m=−∞

∑
Q∈Dm

lim
l→∞

(∫
Rn

λ
tl
Qa

tl
Q(x)ϕ(x)dx

)

=
∞∑

m=−∞

∑
Q∈Dm

∫
Rn

λQaQ(x)ϕ(x)dx =
〈∑
Q∈D

λQaQ, ϕ

〉
.

Consequently, we obtain the desired result. ��
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5 Proof of Theorem 6

First, we prove two lemmas. We invoke an estimate from [7, Lemma 2.2] and [8,
Lemma 2.1].

Lemma 6 There exists a constant depending only on n and α such that, for every cube
Q, we have IαχQ(x) ≥ C�(Q)αχQ(x) for all x ∈ Q.

To prove the next estimate, we use Proposition 2. We invoke another estimate from
[13, Lemma 4.2].

Lemma 7 Let K = 0, 1, 2, . . . Suppose that A is an L∞(Rn) ∩ P⊥
K (Rn)-function

supported on a cube Q. Then,

|IαA(x)| ≤ Cα,K ‖A‖L∞�(Q)α
∞∑
k=1

1

2k(n+K+1−α)
χ2k Q(x) (x ∈ R

n). (20)

Now we prove Theorem 6. We may assume that f ∈ L∞
c (Rn) is a positive measur-

able function in viewof the positivity of the integral kernel.Wedecompose f according
to Theorem 3 with K > α − n

p∗ − 1; f = ∑∞
j=1 λ j a j , where {Q j }∞j=1 ⊂ D(Rn),

{a j }∞j=1 ⊂ L∞(Rn) ∩ P⊥
K (Rn) and {λ j }∞j=1 ⊂ [0,∞) fulfill (3). Then by Lemma 7,

we obtain

|g(x)Iα f (x)| ≤ C
∞∑
j=1

∞∑
k=1

λ j

2k(n+K+1−α)

(
�(Q j )

α|g(x)|χ2k Q j
(x)
)

.

Therefore, we conclude

‖g · Iα f ‖Ms
t
≤ C‖g‖Mp∗

q ∗

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

λ j�(2k Q j )
α− n

p∗

2k(n+K+1)
· �(2k Q j )

n
p∗

‖g‖Mp∗
q ∗

|g|χ2k Q j

∥∥∥∥∥∥
Ms

t

.

For each ( j, k) ∈ N × N, write

κ jk ≡ λ j�(2k Q j )
α− n

p∗

2k(n+K+1)
, b jk ≡ �(2k Q j )

n
p∗

‖g‖Mp∗
q ∗

|g|χ2k Q j
.

Then,

∞∑
j=1

∞∑
k=1

λ j�(2k Q j )
α− n

p∗

2k(n+K+1)
· �(2k Q j )

n
p∗

‖g‖Mp∗
q ∗

|g|χ2k Q j
=

∞∑
j,k=1

κ jkb jk,

each b jk is supported on a cube 2k Q j and

‖b jk‖Mp∗
q ∗

≤ �(2k Q j )
n
p∗ .
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Observe that χ2k Q j
≤ 2knMχQ j . Hence, if we choose 1 < θ so that

K > α − n

p∗ − 1 + θn − n,

then we have
∥∥∥∥∥∥

∞∑
j=1

∞∑
k=1

κ jkχ2k Q j

∥∥∥∥∥∥Ms
t

=
∥∥∥∥∥∥

∞∑
j=1

∞∑
k=1

λ j�(2k Q j )
α− n

p∗

2k(n+K+1)
χ2k Q j

∥∥∥∥∥∥Ms
t

=
∥∥∥∥∥∥

∞∑
j=1

λ j�(Q j )
α− n

p∗ (MχQ j )
θ

∥∥∥∥∥∥Ms
t

≤ C

∥∥∥∥∥∥
∞∑
j=1

(
M

[
λ j

1
θ �(Q j )

1
θ

(
α− n

p∗
)
χQ j

])θ

∥∥∥∥∥∥Ms
t

≤ C

⎛
⎜⎜⎝

∥∥∥∥∥∥∥

⎧⎨
⎩

∞∑
j=1

(
M

[
λ j

1
θ �(Q j )

1
θ

(
α− n

p∗
)
χQ j

])θ

⎫⎬
⎭

1
θ

∥∥∥∥∥∥∥Mθs
θq

⎞
⎟⎟⎠

θ

.

By virtue of Proposition 6, the Fefferman–Stein inequality for mixed Morrey spaces,

with f j = λ j
1
θ �(Q j )

1
θ

(
α− n

p∗
)
χQ j , we can remove the maximal operator and we

obtain

‖g · Iα f ‖Ms
t
≤ C‖g‖Mp∗

q ∗

∥∥∥∥∥∥
∞∑
j=1

λ j�(Q j )
α− n

p∗ χQ j

∥∥∥∥∥∥Ms
t

.

We distinguish two cases here.

(1) If α = n
p∗ , then p = s and q = t. Thus, we can use (3).

(2) If α > n
p∗ , then, by Proposition 2 and Lemma 6, we obtain

∥∥∥∥∥∥
∞∑
j=1

λ j�(Q j )
α− n

p∗ χQ j

∥∥∥∥∥∥Ms
t

≤ C

∥∥∥∥∥∥
Iα− n

p∗

⎡
⎣

∞∑
j=1

λ jχQ j

⎤
⎦
∥∥∥∥∥∥Ms

t

≤ C

∥∥∥∥∥∥
∞∑
j=1

λ jχQ j

∥∥∥∥∥∥Mp
q

.
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Thus, we are still in the position of using (3).

Consequently, we obtain

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

κ jkχ2k Q j

∥∥∥∥∥∥Ms
t

� ‖ f ‖Mp
q

< ∞. (21)

Observe also that p∗ > s and that q ∗ > t. Thus, by Theorem 2 and (21), it follows
that

‖g · Iα f ‖Ms
t
≤ C‖g‖Mp∗

q ∗

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

κ jkχ2k Q j

∥∥∥∥∥∥Ms
t

≤ C‖g‖Mp∗
q ∗

‖ f ‖Mp
q
.
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