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Abstract

In this paper, we consider some norm estimates for mixed Morrey spaces considered
by the first author. Mixed Lebesgue spaces are realized as a special case of mixed
Morrey spaces. What is new in this paper is a new norm estimate for mixed Morrey
spaces that is applicable to mixed Lebesgue spaces as well. An example shows that the
condition on parameters is optimal. As an application, the Olsen inequality adapted
to mixed Morrey spaces can be obtained.
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Mathematics Subject Classification 41A17 - 42B35

1 Introduction

We obtain some decomposition results for mixed Lebesgue spaces and mixed Mor-
rey spaces. Let us first recall the definition of mixed Lebesgue spaces. Let 0 <
q1,92, - - -, qn < 00 be constants. Write q = (q1, g2, - . . , gn). Then define the mixed
Lebesgue norm || - ||za by
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l]l
I llza = /(/ (/ If(m,xz,...,xn)lq‘dm) dXz) - dxy,
R R R

A natural modification for x; is made when ¢; = 0o. We define the mixed Lebesgue
space LY(R™) to be the set of all measurable function f on R” with || f||za < oc.
Here and below we use the notation

A=, 92 qn)s Q=G5 @ ....q)), t=({1,10,.... 1)

to denote the vectors in R”. The aim of this paper is to develop a theory of decompo-
sitions based on the following boundedness of the maximal operator.

Here and below, for0 < a < b < 00,a < q < b means that a < gi < b for all
i=1,2,...,n.

Theorem 1 Assume that
1 <t <min{qy,...,qx} <00 (k=1,...,n).

Define

M(t)f(x) = sup xo ()
oeo llxolLt

Ifxollrt

for a measurable function f. Then for all measurable functions f

IM® fliza S fllza.

For0 < p < 00, and 0 < q < oo satisfying

n |

- < Z —
P4
recall that mixed Morrey spaces are defined by the norm given by

1 n 1

1 i=1 77
1Al = 0 S;)lgR)Ile "N fxolla
€ n

for measurable functions f : R” — C, where D(R") denotes the set of all dyadic
cubes. We denote by Q(R") the set of all cubes whose edges are parallel to the
coordinate axes. If there is no confusion, we substitute D and Q for D(R") and
Q(RR™), respectively.

Using Theorem 1, we seek to prove the following decomposition result about the
functions in mixed Morrey spaces.

This result extends [26, Chapter 8, Lemma 5]
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9340 T.Nogayama et al.

Theorem 2 Suppose that the parameters p, q, s, t satisfy

1<p<s<oo, 1 <max{qq,....qx} <txr <00 (k=1,...,n),
n n "1
— < N - < —
P ]1 s j= lt/

Assume that {a]}ool C M{R"), {x; }‘;ol C [0, 00), and{Q,}/ | C Q™) fulfill

o
1
lajllag <1Q;15, supp(aj) € Qj, | Y Ajxo;| <o ey
: w

Then f = Z Ajaj converges in S'(R") N LloC (R™) and satisfies

]

1flag < Crast| 2 kixe,| - @
Jj=1 M

The next assertion concerns the decomposition of functions in /\/lg (R™). Hereafter,
we write Ngo = N U {0}. For d € Ny, denote by P;(R") the set of all polynomial
functions with degree less than or equal to d, so that P(R") = Uff:o Pa(R™). Tt
is clear that P_{(R") = {0}. Let K € Ny. The set Pg (RML denotes the set of

measurable function f for which ()X f € L!'(R") and / x% f(x)dx = 0 for any
]Rn

a € Nj with |a] < K, where (1) = (1 + |- Iz)%. Such a function f is said to satisfy

the moment condition of order K . In this case, one also writes f L Pg (R").

One writes q < tif g; < tj foreach j =1,2,...,n.
The following theorem is a consequence of the paper [11].

Theorem 3 Suppose that the real parameters p, q, K satisfy

l<p<oo, 1<q<oo, z<Z: s KeNMW(——n—loo)
P = 1 q0
where go = min(qq, ..., qy). Let f € MS(R”) Then there exists a triplet {aj}7°1 C

L®[®R") N PERY), (1)%2, C [0,00), and {Q;), C Q") such that f =
> 21 jaj in S'(R") and that, for any v > 0

<=

00
|Clj| < X0 Z()‘,/XQ]')U = Cv”f”/\/[fl’ 3
_ M
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Atomic Decomposition for Mixed Morrey Spaces 9341

Here the constant Cy, > 0 is independent of f.
We rephrase Theorems 2 and 3 in the case of mixed Lebesgue spaces.

Corollary 1 Suppose that the parameters q, t satisfy
1 <max{qq,....,qx} <tr <oo (k=1,...,n).

Assume that {aj}j'il C LYR™Y), {)‘j}?il C [0, 00), and {Qj}fl’.il C QR™) fulfill

o0
1y 1
lajlle <1017 2%, supp(ay) € Q0 |3 hjxo,| < oo
j=1 L4

Then f = Zoo . Lja;j converges in LY(R") and satisfies
]:

o0
1£lla < Cpgus | > Hixo,
Jj=1 La

Corollary2 Let 1 < q < oo and K € Ny N (g —n— 1,oo). Let f € LI(RY).
Then there exists a triplet {aj};?il C LR N PI%(R”), {)\j};?ozl C [0, 00), and
{Q,i};’; C QR™) such that f = Z?’;l Ajaj in LY(R") and that, for any v > 0

o0
lajl < xo;. || D_0ixe)? < Gyl fllLa.
j=1

L4
Here the constant C, > 0 is independent of f.

Theorem 3 is a special case of Theorem 4 to follow, which concerns the decomposi-

tion of Hardy-mixed Morrey spaces. Based on [21], we define Hardy-mixed Morrey
1

spaces. For 0 < q, p < oo satisfying r < Zn LT the Hardy-mixed Morrey
p J=1q;

4qj
space H /\/lg(R") is defined as the set of any f € S'(R") for which the quasi-norm

”f”HMg = ||sup,>0 le'® £ ”M.’j is finite, where ¢’® f stands for the heat extension

of f3

=P

1
WP< 4

See [28] for the equivalent norms of the Hardy—Morrey spaces. We rephrase Theo-
rems 2 and 3 in full generality in terms of Hardy-mixed Morrey spaces. The following
result is again a consequence of the paper [11].

emf(x)=< )f> (t >0, x e R,
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9342 T.Nogayama et al.

Theorem 4 Suppose that the real parameters p, q, K satisfy

n
1
O<p<oo, 0<q<o0, 252—, K6N00<£—n—l,oo),
p — 9 q0
where qo = min(qi,...,qn). Let f € HM{;(R”). Then there exists a triplet
{aj}52, € L¥@®") N PR, {2;}52, C [0,00), and {Q;}32, C QR") such

that f = Zjil Ajajin S'(R") and that, for any v > 0,

<=

o
lajl < xo; || D_(Rjxg)" < Coll fll g pag- )
—
J M
Here the constant Cy is a constant that is independent on v but not on f.

We remark that Theorems 2 and 4 are the special cases of the results in [11].
Theorem 2 has the following counterpart.

Theorem 5 Suppose that the parameters p, q, s, t satisfy

l<p<s<oo, O0<max{l,qy,...,qx} <tr<oo (k=1,...,n),

n n

L oroyl
PV Ij

n
P j=1

1
Write v(q) = min{l, q1,...,q,} and d, = |:n (E — 1):| Assume that a triple
v

(a3 ()32 (Q152)) € (MER™) NP1 (R™) x [0, 00) x QR")

j=1
fulfills
1
00 v(q)
1
lajliag <1015, supp(aj) € Qj. || D 0jxo)"™@ < 0.
=1
J M
0 . .
Then f = Z - Ajaj converges in S'(R") and satisfies
]:
1
00 v(q)
1Al < Cpast || 2o (ixe)"@
=1
j M
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Atomic Decomposition for Mixed Morrey Spaces 9343

Remark that in [14] Jia and Wang considered the case of ¢; = ¢ < 1 fori =
1,2,...,n. We also remark that Theorems 4 and 5 with g; = ¢ = p < 1 for
i = 1,2,...,n are included in [10, Theorems 2.1 and 2.2]. Theorem 2 is new and
even in Theorem 3-5 we do not have to postulate q < 1. Concerning Mf; (R™) and
H ./\/lflJ (R™) when q > 1, we have the following assertion:

Proposition1 Ler 1 < p < oo and 1 < q < oo satisfy
|

< —.

B Z qj

=1

n
p

(D) If f € MGR"), then f € HMgR").
Q) IffeH ./\/lg (R™), then f can be represented by a locally integrable function and
the representative belongs to ./\/lg R™).

We elaborate a detailed proof of Proposition 1 in Sect. 3.
As an application of Theorem 2, we can reprove the following Olsen inequality
about the fractional integral operator I, where I, (0 < a < n) is defined by

@fuw=/ IOy,
R

n|x — y|"Te

The following result is known:

Proposition 2 [18, Theorem 1.11] Suppose that the parameters o, p, q, s, t satisfy

n w1 n K1
l<p<s<oo, l<q<t<oo, _SZ_’ - < _
PO S 4l
j= j=
and
1 o 1 i t
e NN
p n s p S

Then 1 is bounded from ./\/lg(R") to Mi(R").
Based upon Proposition 2, we can prove the following result.

Theorem 6 Suppose that the parameters o, p, q, p*, q*, s, t satisfy

l<p,pfs<oo, 1<q,q"t< o0,

n "] n "1 n "1
- S - _* _*7 - S _’
PO P T4 s 4l
1 o 1 o
max{t(, ..., tj} <q;, —>—, — =<-—, 5
J p n p* n
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9344 T.Nogayama et al.

foreach j =1,2,...,n, and that

1 1 1 o i
=22 U G, (6)
s prp on s p

Then for all f € M§(R") and g € M2.(R")
g T flipmg = C”g”/\/tgi M laqzs

where the constant C is independent of f and g.

This result recaptures [23, Proposition 1.8] as the special case of g; = g and ¢; = ¢ for
alli =1,2,...,m. Note that a detailed calculation in [22, p. 6] shows that Theorem
6 is not just a combination of Proposition 2 and Lemma 1.

Lemma 1 Suppose that the parameters p, q, p*, q*, s, t satisfy

l<p,pfs<oo, 1<q,q"t<oo0,

n "1 n A n "1
—<Y — ==Y = -y -
PS4 P oY S Sl
Assume
L NE N O B
s Pt Pty 4 g
Then

If - glag < 1 Fggligl e (f € MER™), g € ME.R™)).
q*

We can prove this lemma easily by using Holder’s inequality. So we omit the proof.
We write 00’ = 1 and 5" = 25 for I < s < 0o. We have the following proposition:

Proposition 3 In addition to the assumption in Theorem 6, suppose that u € (1, o]
satisfies u' < min{q1, q2, ..., qu, p}. Let 2 € L*(S" 1) be homogeneous of degree
zero, that is, §2 satisfies, for any A > 0, 2(Ax) = 2 (x). Then,

l8 To.u (D pgy = Cllgl g 120201y 1 agg -
q*
where

0 —
Ipaf(0) = / Le=D) by,
R X — ¥l

Proposition 3 is a direct consequence of Theorem 6, the next lemma and the bound-
edness of the Hardy-Littlewood maximal operator M.
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Atomic Decomposition for Mixed Morrey Spaces 9345

Lemma2 [12]If1 < u < oo, then we have
He.of X)) < Cl2| pun-1y e F(X)],

where F(x) = M (|f|",) (x)%.

Hardy-mixed Morrey spaces admit a characterization by using the grand maximal
operator. To formulate the result, we recall the following two fundamental notions
[25].

(1) Topologize S(R") by norms {py}neN given by

pn@) = Y sup (1 + xDN 3% (x)]

\algNXERn

for each N € N. Define Fy = {p € SR") : pn(p) < 1}.
(2) Let f € S'(R"). The grand maximal operator M f is given by

Mf) =sup{lt "y )% f)] >0, ¥ € Fy) (xeRY), (7))

where we choose and fix a large integer N.
The following proposition can be proved.

Proposition4 Let0 < q < 00,0 < p < o0, and% <> qi Then
J

IMFlpaz ~ W aaz

forall f € S'(R").

When p < 1and g1 = ¢2 = - - - = gy, this proposition is contained in [14]. Here for
the sake of convenience, we give the proof of Proposition 4 in Sect. 3.

We plan to prove our results in the following manner. First of all, we elaborate
the proof of Theorem 1 in Sect. 2. Next, we concentrate on Theorem 2 in Sect. 4.1.
Subsequently, based on the argument of the proof of Theorem 2, we prove Theorem 5
in Sect. 4.2. Necessary lemmas for the proofs are stated in each subsection. Finally,
Sect. 5 is devoted to the proof of Theorem 6.

2 Proof of Theorem 1

We invoke a result due to Bagby [2].

Lemma3 Letl <qi,...,qm <ocandl < p <oo. Fori =1,2...,m,let ($2;, ;)
be o-finite measure spaces, and 2 = 21 X --- X 2. For f € L'(R" x £2),

L MEG N 05 [ NP
The following lemma is used in the induction step (see [18, (12)]).
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9346 T.Nogayama et al.

Here and below, for > Oand j = 1,2, ..., n, we denote by M the 1-dimensional

maximal operator which acts on the j-th variable and write M](.t) f=W;llf |t ])%

Lemma4d Letq = (q1,92,.--,qn) € (1,00)" and let
tn € [1, min{q1, g2, ..., qn})-
Then
[M 7| <17
forall f € LYR™).
For the proof we use the following notation for 4 € LO(R"):
IR0 1o Gt <o %) = [ (121 @t ]| L) Comts -+ Xn)

and when m = 1, we define

1

a
7l @ (X2, ey X)) = (/ Ih(m,...,xn)lqldxl) -
R

Proof Thanks to Lemma 3, we obtain

(ty (tn)
”Mn / HM I, xn) L @1 eiin l)dx
- / “Mn[ aql an1y 4%n
R L(ﬁ """ T)
1l q
! n(‘Ll 1) dxn = 11.flIza
L In>"" In
Thus, we obtain the desired result. O

Proof of of Theorem 1 We start with a preliminary observation for maximal operators.
Letx € R". Let Q = Iy x - - - x I, where each /; is an interval in R with same length.
Then,

XQ(x) ®?:1 le(-x)
Tl 1 Fxel = —=—"fxp
[Tj=i 12517 =l

®"]1':2 le(xZa .. ’xn)
1_[] 2|1 |

1
[(X" 1)/|f<y1, |’1xh(y1)dy1>'}xﬁlj

Jj=2 L(r2 AAAAA )

1
7j
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®’%:2 X1, (X2, ..., Xp)
< J J : [Ml(zl)f] X

- n I 1_[ I .
nj=2|lj|tj j=2 ! L2 stn)

Continuing this procedure, we have

XQ( x)

o ||fo|| <M M (f) ().

Thus, it follows that
MO Fx) < M M (f) ().

Therefore, it suffices to show that

”M;gt”).”M](ll)(f)HLq 5 “f”Lq (8)

We proceed by induction on n. For n = 1, the result follows by the classical case of
the boundedness of the Hardy-Littlewood maximal operator.
Suppose that the result holds for n = m — 1 with m > 1 in N: assume that

(tm—1) t
M0 MR a1 S B @1

forl < fy < min{qy, ..., qx} < ooforeachk =1,...,m—1,andforh € LO(R™"1).
Since t,, < min{qy, ..., qn}, for g € LO(R’"), thanks to Lemma 4 we have

M) H
H 8 L@1-am)
m

L)

Llam) — ||g||L(‘i1 ----- qm) «

|| [”g”L(ql ----- In— 1)] |

Thus, by the induction assumption, letting g = Mr(,f’fll) M 1(”)( f) in the above, we
obtain

[l )] = |mie [0 )|

L(i11 »»»»» qm) L(511 »»»»»

L@1:--qm)

[ wpo)

Hence, inequality (8) holds for any dimension n. We obtain the desired result. O
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9348 T.Nogayama et al.

One can show that the condition

tr < min{q1, q2, ..., gk}

is sharp.

Proposition5 In Theorem 1, for each k = 1,2,...,n, the condition t;, <
min{q1, g2, . .., gk} can not be removed.

Proof We induct on n. The base case n = 1 is clear since the Hardy-Littlewood
maximal operator is bounded on L?(R) if and only if p > 1. Assume that the con-
clusion of Proposition 5 is true for n = m — 1 and that M 12 is bounded on
L(91:92-4m) (R™) Let h € L12-m-1)(R™=1) and N € N. Then

X[—N.N (M(tl,tz,...,tm—l) [X[_N’N]m—lh] ® X[—N,N])

< M2 tm) [(X[fN,N]’"—lh) ® X[—N,N]] )

Consequently,

@N)an

TR I A
X[-N, N1 M v [X[*N»N]m_lh] HL(ql-qz»»-qqul)

= ”X[—N,N]'NM(II’ZZ ..... tm—1) [X[_N’N]m—lh] & X[-N,N] ‘L(ql,qz_mqm)

< HM(“’IZ’“"[’"’I) [X[—N,N]’"flh] & X[-N,N] ”L(quqz.u.,qm)
< C [ (x—n.np-1h) @ xi=n.M1 L s

B
< C@N)am ||kl @121 -

So, we are led to

HXPN,N]'"—‘M(“JZ ..... tﬂlil)[X[*N,Nlm_lh]H

= C||h||L<q|~qz-wqm—1>-

L41:925-dm—1)

Letting N — 00, we obtain

[ prCmtnznp SR e LT p—

L1925 4m—1)

By the induction assumption, we have # < min{q1,q2,...,qx} for all £k =
1,2,...,m — 1. If we start from the inequality

X[—N.N (X[—N,N] ® M2 =) [X[—N,N]W'*lh])

< M) [xt-~.N1 ® (x(_n.np-1h)]
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and argue similarly, we obtain

HM(tZ»thstm)hH =< C“hHL(‘IZv‘i} ----- qm) +

L(QZ»‘B »»»»» qm) —

Thus t,, < min(q2, g3, ..., g») by the induction assumption. It remains to show that
tm < q1. To this end, we consider the function of the form:

o0

FOxo, oo xm) = Z X([jN,(j+1)N]x[_N,N]m*1)(x]ax27 oo Xm)h i (xm),

j=—00

where h; € L% (R). Then for all (x1, x2, ..., X»)

X(Rx[—N,N]mfl)(-xla X2y eney xm)M(t)f(_Xl, X2y eny xm)

oo
= Z X([jN,(j+1)N]><[_N,N]rH)(xl7xz, S Xm)M(tm) [X[fN,N]hj] (xm).
Jj=—00
We abbreviate

Hpy (x) = M) [xi=~.n1hj ] ().

Hence, we obtain

o0
Z X([jN,(j+1)N]><[—N,N]’”*1)M(tm) [X[fN,N]hj]
Jj=—00 La
1
00 q1
= Z /RX[jN,(j-H)N] (Hp () dxy X[—N,N]-1
Jj=—0o0 L(42,am)
1 1 o0 a
~ N aT ST (H )
Jj=—00
Lam
In the same way, we deduce
®
R
1
L .41 > “
S QN > (xevmhiCadl)™ ,
j=—00
Ldam
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9350 T.Nogayama et al.

since M® is bounded. Thus, letting N — oo, we obtain

H {M(tm)h }

o e =

Lam (g41) — Lam (¢91)

This forces g1 > 1, (see [25, p. 75, § 5.1]). O

3 Proof of Propositions 1 and 4
3.1 Proof of Proposition 1

To prove Proposition 1, we need the description of the (pre) dual spaces of mixed
Morrey spaces [19]. Recall that when 1 < p < oo and 1 < q < oo satisfy

n
_<_

then the predual space ’Hf;/, (R") of the mixed Morrey space ./\/l{]) (R™) is given by

o
Hi (R =Yg =D wibj : {32, € L"), eachb;isa(p/,q')-block
j=1
Here by “a (p’, q’)-block” we mean an Lq/(R")-function supported on a cube Q with
15 1 1

j=1 77"

’ n Z - /
LY (R™)-norm lesser or equal to | Q] %" The norm of Hg ,(R"™) is defined
by

MW—MZM

j=1

where inf is over all admissible expressions above. A fundamental fact about this
space is that H([; ,(R"™) is separable, that the dual of Hg ,(R™) is cannonically identified
with M (R") and that

|ww=mhﬁmumwcq.
q/

Proposition 1 was investigated by Long [16] and Zorko [29] when g; = g for all j =
1,...,n;see[15] as well. Wereferto[1],[9], and [19] for more recent characterizations
of the predual spaces.

Example 1 Suppose that I < #; < min(q{, g5, ..., q;) < oo.If we let k be the opera-
tor norm of the maximal operator M " on L9’ (R"), whose finiteness is guaranteed by
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Atomic Decomposition for Mixed Morrey Spaces 9351

Theorem 1, then we obtain x ~! xo M g isa (p/, q’)-block modulo a multiplicative
constant for any (p’, q’)-block g. Indeed, it is supported on a cube Q and it satisfies

Lyn 1
[« xoM 8|, = Ixogl e =gl < 10]
Proof of Proposition 1 (1) Denote by B(R) = {x € R" : |x| < R} for R > 0. Since

—n
IflLisry < CR™PTIf Nl

we have f € S’(R"). Asis described in [6], we have a pointwise estimate |¢'® f| <
M f, where M denotes the Hardy—Littlewood maximal operator. Since M is shown
to be bounded in [4], we have f € H MY (R").

(2) Let f € HMUE@R™). Then {e'® f},~¢ is a bounded set of M (R"), which admits
a separable predual as we have seen. Therefore, there exists a sequence {tj}‘J?i]

decreasing to O such that {e’i® f }?‘;1 converges to a function g in the weak-*

topology of ./\/lg (R™). Meanwhile, it can be shown that lim, ¢ ¢’ Af = fin the
topology of S’(R™) [21]. Since the weak-* topology of Mg (R™) is stronger than
the topology of S'(R"), it follows that f = g € M§(R").

3.2 Proof of Proposition 4
The proof is similar to Hardy spaces with variable exponents [5,17]. We content

ourselves with stating two fundamental estimates (13) and (14).
We define the (discrete) maximal function with respect to ¢’2 by

Miear f(x) = sup [e¥ 2 f(x)] (x € R"). ©)
JEZ

Recall that, for f € S’(R"), the grand maximal function is defined by
Mf@) =sup{lt "y )« fO) 11 >0, % € Fyb (xeRY, (10
where Fy is given by
Fn={p e SR") : pn(p) = 1}. (11

Suppose that we are given an integer K > 1. We write

2/ A
M}Teatf(x)zsup<sup le” ZF ) ) (x € R"). (12)

jez \yern (1 +47|x — y|H)K

The next lemma connects M;*

heat With Mheqe in terms of the usual Hardy—Littlewood
maximal function M.
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9352 T.Nogayama et al.

Lemma5 ([17, Lemma 3.2], [20, §4]) For 0 < 0 < 1, there exists Ky so that for all
K > Ky, we have

M f () < CM O [Myea f1(x) = CM |:sup |e2"Af|9] )7 (x eRY) (13)
keZ

forany f € S'(R"), where M@ is the powered maximal operator given by
MPg(x) = Mllg"I()7 (x € R)

for measurable functions g.

In the course of the proof of [17, Theorem 3.3], it can be shown that

Mf) ~  sup |t x OO S M f(x) (14)
te€Fn, JEZ

once we fix an integer K > land N > 1
With the fundamental pointwise estimates (13) and (14), Proposition 4 can be
proved with ease. We omit the details.

4 Proofs of Theorems 2-5
4.1 Proof of Theorem 2

By decomposing Q ; suitably, we may suppose each Q; is dyadic.
To prove this, we resort to the duality. For the time being, we assume that there
exists N € N such that A; = 0 whenever j > N. Let us assume in addition that a;

are non-negative. Fix a non-negative (p’, q’)-block g € ’Hf;/, (R™) with the associated
cube Q.

Assume first that each Q; contains Q as a proper subset. If we group j’s such that
Q; are identical, we can assume that Q ; is the jth dyadic parent of Q foreach j € N.
Then by the Holder inequality [3]

/ f0)gx)dx = ZA /Q a;j(x)g(x)dx < ZA lajlzaco)lgll o o)

j=1

from f = Z;’O:l Ajaj. Due to the size condition of a; and g, we obtain

0 1
/Rnf(x)g(x)dx Z IQI" =13~ JIQ;I O]

j=1

n
i Ly

:\._.

q P

8

<3S 1017 T 10,15
Jj=1
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Note that

o0

1
ZMXQ; = H)"jOXQjO = 1Qjol 72 jo
j=1 a

Mg
for each jy. Consequently, it follows from the condition p < s that
i 11 1_1 i ad
fR fgE) dx <Y 101751017 | D hixe; | =C D kixe;
j=1 j=1 M(I; j=1 ./\/l(];
Conversely assume that Q contains each Q ;. Then by the Holder inequality
(e.¢] o
/R f)g)ydx =) "2 /Q aj()g@)dx < ajllajllziop gl -
Jj=1 i Jj=1
Thanks to the condition of a;, we obtain

Lyw 11 |

o0
A’lf(x)g(x)dx§ZAj|Qj|" =t A'|Qj|§||é.’||Lt’(Qj)~

j=1

Thus, in terms of the maximal operator M ) defined in Theorem 1, we obtain

o
/ g dx = > ;101 x inf M©g(y)
R? j:1 )’er

A
o —

Rn

o0
> hjxo; ) | M®g(y) dy
=1
o0
A
=1

S/RH Y xixo; ) | xoM gy dy.
J

Hence, by Example 1, we obtain
o
/ g dx < x| > ajxo;
R = M

This is the desired result. Finally, we can remove the assumption that A ; = 0 for large
J by the monotone convergence theorem. Thus, the proof is complete.
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4.2 Proof of Theorem 5

Recall again that the grand maximal operator M was given by

M[f(x) =supfle; * f(X)] : ¢ € Fy, t >0} (x €R").

Then we know that

Maj(x) < C (X3Q_, (OMa;(x) + (Mg, (x))"”f“) , (15)

1

where d; = [n (ﬁ — 1)] and v(q) = min(l, g1, ...,qn). See [17, (5.2)] for
viq

more details. The first term can be controlled by an argument similar to Theorem 2.

The second term can be handled by using the Fefferman—Stein maximal inequality for
mixed Morrey spaces [18].

n 1

Proposition6 Let 1 < q, p < o0, % < ijl 7 and 1 < r < oo. Then
J

1/r o0 1/r
<c > 11
Jj=1

My

oo
PG
j=1

J M
for all sequences of measurable functions { f; }?‘;1.

See [24, Theorem 2.2], [27, Lemma 2.5] for the case of classical Morrey spaces.
Let us show Theorem 5. Using Proposition 4 and (15), we have

oo
1A gy ~ IMFllpgg < (D2 45 Ma;
Jj=1 M(l;

° n+dg+1
Z)‘f (X3Q./Maj +(Mxg;) ™ >
Jj=1 M

A

n+dg+1

00 00
Z)»j)@QjMaj + Z)»j(MXQj) " =1+ I
Jj=1 MP Jj=1 ME

A

First, we consider ;. The proof is similar to Theorem 2. For the sake of complete-
ness, we supply the proof. Thanks to decomposing Q ; suitably, we may suppose each
Q; is dyadic. We will use duality again. We assume that there exists N € N such that
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Aj =0 whenever j > N.Letr = P and w = ——, so that », w > 1. Then,
v(q) ( )’
o o w0
ZAJ-)@Q].Maj < Z jX3Q]Ma (q)
j=1 ML j=1 Ml
oo oo
= Z[AijjMaj]U(q)
Jj=1 M,

Fix a non-negative (r’', w’)-block g € HCV/,(R”) with the associated cube Q. Assume
first that each Q; contains Q as a proper subset. If we group j’s such that Q; are
identical, we can assume that Q; is the jth dyadic parent of Q for each j € N. Then,

/Rn Z [)\/‘X3Q,- (x)Ma; (x)]v(q) gx)dx = ZA;(q) /‘Q [Ma.,- (x)]v(q) g(x)dx
o o

< Zkv(q) H v(q)‘

gl L
Loy 1LY ()

g 1

(@)
= D AW [ Ma] [ gl )
j=1

- <1 > v@
WYL | Maj] g 101" TN

M

”g”LW’(Q)

.
Il
-

Using the boundedness of the Hardy—Littlewood maximal operator on M (R"), we
have

fRn Z (%) x30; (X)Maj(X)]v(q) g(x)dx
j_

1 n (1 1) v(q)
WL [ Maj] g 101" TN

M

”g”LW’(Q)

-
Il
—_

U(Q) n Z} lw [ :Iv(q) ,
0| o+ 1 el

-
I
—_

_pqg

1 n 1
v(q) a2l o -1 v(q)
2910 7ier 1 1l

A
WK

.
Il
—
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Thus, using the size condition of a; and g, we obtain

1
v(q)

/ﬂ% 3 [hixso, (OMa;)]" Y g(o)dx
j=1

L
1 v(q)

< v(q) n Z} lu) 1 v(q) l )]l li/ o
< (Lo Hiersie] el
j=1
1
RN R AN
=101 | Yo [mesl]
Jj=1
Note that
1
) (@) 1
> Gixo)"? = |hioxoy | = 0l Qal”
Jj=1 M
for each jo € N. Thus,
1
< v(q)
/ 3" [hixse, 0Ma;)]"?Y gx)dx
R
1
s 11 1 0 V@
Syl T | [ 2o (xe )t
k=1 i=1
J M

~ @
~ Z O XQ,)v(q)
Jj=1 M

Conversely assume that Q contains each Q ;. Then by the Holder inequality and
the boundedness of the Hardy-Littlewood maximal operator on Lt(R"),

J.

[ijggj (x)Ma; (x)]v(q) g(x)dx

L

I
-

J

M

A;(q) /3Q [Maj(x)]v(q)g(x)dx
J

~.
I

PRICY H [Ma ()
J

L

<
Il
—_

t
lell o (a:—)
LGg, N Ge) v(q)
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3

(q)
= Z)‘;(q) |Ma, ||zt?3Q,-) Igllzo" 30
=

S AV a0 18l g,
j=1

IA
8

Considering the condition of @, we obtain
o0
/ Z (4130, () Ma;(0]" g(x)dx

00 v(q) 1 Z/ 1 t v(q)
< Z 10,1 ||a/||/w I8lle0,)

15w

o0 U() s v(q)
<Y M q[|Q1| = ] I8l 2o 30,-

Thus, in terms of the maximal operator M () defined in Theorem 1, we obtain

_1
v(q)

/Rn Z [)‘jXSQj (x)Ma; (x)]v(q) g(x)dx
j=1

_L
v(q)

< ZAU“‘HQ | inf M“’ g(y)
j=1
00 v(q)
< / Z (hixo, )"V | M@ g(y)dy
_1
00 v(q)
< / Z 3ix0, )" | XM g(v) dy

As in Example 1, k' xoM® g is a (+', w')-block as long as « is the operator norm
of M®) on L9'(R"). Hence, we obtain

S vq)
/ > [rixse,0)Ma;(0)]"? g(x)dx
R =1
o L
. o0 (@ 1 0 D
< k@ Z()‘./XQj)v(q) — k@ Z()‘jXQj)U(q)
j=1 M, j=1

My
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Next, we consider /5. Put

9

n n

n+dy;+1 n+dy+1
U=——p, v=—"—74(

Then, by Proposition 6 and the embedding £'@ < ¢!, we have

M
00 ntdg+1 " 00
L= ZM(MXQ_/)% <D rixe
Jj=1 M Jj=1 ME
o oo
<1 D_0xe)"®
j=1 v

Thus, we obtain the desired result.

4.3 Proof of Theorem 4

We outline the proof of Theorem 4 since this is similar to [13]. As in [21, Exercise
3.34],if0 <r < land f € S(R") N L. (R") satisfies f Mg(R”), then we can

loc

find {a.,'}?O | C LR N PLl (R™) and a sequence {Qj};i] of cubes:

(1) supp(a;) C Qj,
@ f=Y% a;inS'®",

1
o0 a
@ {3 Uajlimxo) | 5 Mf.
Using this inequality, we can prove Theorem 4.
Proof of Theorem 4 Let f € H /\/lf; (R™). Then we consider the decomposition:

e'tf = ) Modp

QeD

in the topology of S’ (R™), where atQ € P,Jg (R™), )JQ > 0 and

lapl < xaos | D0 *owse| S IMIEA g S IMFllgg-
QED Mg

Due to the weak-* compactness of the unit ball of L°°(IR"), there exists a sequence
{t1}72, that converges to 0 such that

ho = lim A}, ag = lim af
[—o00 [—o00
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exist for all Q € D in the sense that

lim/ a%(x)go(x)dx:/ ag(x)e(x)dx
[—o00 R? Rn?
forall ¢ € L'(R"). We claim

/= Z/\QGQ

QeD

in the topology of S’ (R"). Let ¢ € S(R") be a test function. Then we have
T HA T 1 1
(f0) = lim ("4 f, p) = lim QZE;)AQ /}R g

from the definition of the convergence in &’(R"). Once we fix m, we have

) g i g (16)
Il X10,2-myn ”M{{
and
' [ abewons| < [ pwolar.
Rn 30
Since
M fll pqp M fll g2
> [ g =3 g <o,
0D, Ixt0.2-mynl pmz J30 1 x0.2-myr l Az
we are in the position of using the Fubini theorem to have
Z/ Z kt’Qaté(x) p(x)dx = Z Z kt’Q/ até(x)go(x)dx.
mez R" QeD,, meZ QeDy, R
With this in mind, let us set
ami= Y A / alh () (x)dx
QGDHI Rn
for eachm € Z and [ € N. Then we have
lamil < C27 (M flipellolpr (m € Z) (17)
q
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thanks to (16).
Let m € Z. Then we have

am,| = Z )»UQ/ alé(x)(p(x)dx
0eDy, 30

1
= > A f3 L0 (e = 2. 5 ee@)(x —c(Q)F | dx

B!

QeD,, [Bl=K

since a’é € 73115 (R™). Thus, by the mean-value theorem, we have

1
lami| < Clp) Y 1pleQ)" +! sup

Q€D ve3Q

Here C(¢) is a constant depending on ¢.
Meanwhile, for each m € Z", we have

> Moxe|  SIMSlag
Q€Dyy,|c(Q)—rit| <n M,

which implies

> Moxe|  SIMSflag
Q€Dy,|c(Q)—mm|<n L90

or equivalently

1

a0
> 27" | S IMS g
Q€D |c(Q)—m|<n
Since £90(Z") — ¢1(Z"),

Y. IS 20 M fll g
Q€D |c(Q)—m|<n

Combining this estimate with (18), we obtain

lamil S > 1H1e(@)" K sup

meZ Q€Dy,|c(Q)—nt|<n
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|)L |£(Q)n+K+l

-y oy ke

meZ" Q€Dy,|c(Q)—rm|<n

<2m ("+K+1)m||Mf||Mg. (19)

Since K +1>n (— — 1) we obtain
n
n+K+1>—.
q0
Thus by (17) and (19), we obtain

YN LR mn
|lam.1] S min (2 w " m 2% ) )

Since

o0

Z min (2‘70 ~atK+lym 2%> S,

m=—0oQ

we are in the position of using the Lebesgue convergence theorem to have

o o0
in 3 o= 3 (jimens).
m=—00 m=—00
That is,
o
o) = fim (@ fp) = 3 (Jim 3 4 [ dpweos
—00 e \ 7@ = Rn

Hence, using Fubini’s theorem again, we obtain

oo

_ : no 1

troor= > [ Jim [ | X ey | ocoas

m=-=00 QeDy,

= Z Z hm </ rpa (X)w(x)dX>
m——OOQeD

= Z > / AQaQ(x)cﬂ()c)dx—<ZlQaQ <p>
m=—00 QeD,, QeD

Consequently, we obtain the desired result. O
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5 Proof of Theorem 6

First, we prove two lemmas. We invoke an estimate from [7, Lemma 2.2] and [8,
Lemma 2.1].

Lemma 6 There exists a constant depending only on n and o such that, for every cube
Q, we have Iy x o (x) = CL(Q)* xo(x) forall x € Q.

To prove the next estimate, we use Proposition 2. We invoke another estimate from
[13, Lemma 4.2].

Lemma7 Let K = 0,1,2,... Suppose that A is an L°(R") N 'PIJ(‘(R")-function
supported on a cube Q. Then,

]

1
[Ie A(X)| < Co,k Al Lo £(Q)" Z mxw(x) (x eR".  (20)

Now we prove Theorem 6. We may assume that f € L3°(R") is a positive measur-
able function in view of the positivity of the integral kernel. We decompose f according
to Theorem 3 with K > o — & — 1; f = Z] 1A aj,where{QJ}oo1 C D@R"),

{aj} 2, CL®MRY)N PL(R”) and {Aj }C>O 1 C [0, co) fulfill (3). Then by Lemma 7,
we obtam

18() Lo f ()] < CZZ k<n+K+1 o (L@ 8xatg, ).
j=1k=1

Therefore, we conclude

00 00 k - k =
AeREQ )T ek Q))7
j=1k=1 MP

Mg

For each (j, k) € N x N, write

kO )5 PRy
= 2D T EEODT
2k(l’l+K+]) ”g”Mp* j
q*
Then,
o~y A E2E0 )T et _ b
ZZ k(+K+1) lgll o |g|X2ij = Z KjkDjks
j=1k=I Mg* jk=1

each b is supported on a cube 20 j and

I C <0 Q.

]k ”MI’
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Observe that X,k ;= 2kn pmp X0;- Hence, if we choose 1 < 6 so that
n
K>a——*—1+9n—n,
P

then we have

o o0
ZZkaXZij
j=1k=1 M

n

o0 00 k ¥
- IS e o
= kKD X2t0;

= M;

= > 2,007 (Mxg,)’
j=1 M

1 0
(M[Ajéz(gj)e( p*)XQJD

s 1 n 79
<C Z(M [x,-éz(Q,-)"@_"*)XQj )

j=1 -

IA
a

M
By virtue of Proposition 6, the Fefferman—Stein inequality for mixed Morrey spaces,

. 1 Ha—2 .
with f; = 1;7£(Q;)” <a f’*) X0;> we can remove the maximal operator and we
obtain

Ig - o fllagg = Cllgl Zx €N " xo;
Jj=1 M
t

We distinguish two cases here.

(1) fa = pi then p = s and q = t. Thus, we can use (3).
2) fa > 1171 then, by Proposition 2 and Lemma 6, we obtain
o0 " o
a——%
ZM‘@(QJ') " X0; =C Moz ZMXQ,—
= M; =l M;
oo
=C Z)‘/XQ/
j=1 ME
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Thus, we are still in the position of using (3).

Consequently, we obtain

oo o0
oD kg, S Ifllag < oo @1)
j=1k=1 M

Observe also that p* > s and that @ * > t. Thus, by Theorem 2 and (21), it follows
that

o o0
lg - Lafllag; < Cligl e |2 kikxaro,| = Clglym 1F -
=1 k=1 A E
t
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