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Abstract
It is well known that the Hilbert matrix H is bounded on weighted Bergman spaces
Ap

α if and only if 1 < α + 2 < p with the conjectured norm π/ sin (α+2)π
p . The

conjecture was confirmed in the case when α = 0 and also in the case when α > 0
and p ≥ 2(α+2), which reduces the conjecture in the case when α > 0 to the interval
α + 2 < p < 2(α + 2). In the remaining case when −1 < α < 0 and p > α + 2 there
has been no progress so far in proving the conjecture, moreover, there is no even an
explicit upper bound for the norm of the Hilbert matrix H onweighted Bergman spaces
Ap

α . In this paper we obtain results which are better than known related to the validity
of the mentioned conjecture in the case when α > 0 and α+2 < p < 2(α+2). On the
other hand, we also provide for the first time an explicit upper bound for the norm of
the Hilbert matrix H on weighted Bergman spaces Ap

α in the case when −1 < α < 0
and p > α + 2.

Keywords Hilbert matrix · Norm · Weighted Bergman spaces

Mathematics Subject Classification Primary 47B35 · Secondary 30H20

1 Introduction

The Hilbert matrix H and its action on the space �2 consisting of square summable
sequences was first studied in [11], where Magnus described the spectrum of the
Hilbert matrix. Thereafter Diamantopoulos and Siskakis in [3,4] begin to study the
action of the Hilbert matrix on Hardy and Bergman spaces, which can be seen as the
beginning of studying of the Hilbert matrix as an operator on spaces of holomorphic
functions. They obtained some partial results concerning the questions of boundedness
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and exact norm of the Hilbert matrix on Hardy and Bergman spaces, which have been
improved in [5] by Dostanić, Jevtić and Vukotić. We note also that Aleman, Montes-
Rodríguez and Sarafoleanu provide a closed formula for the eigenvalues of the Hilbert
matrix in a more general context (see [1]). Following the above results, it was known
that Hilbert matrix H is bounded on Bergman space Ap if and only if 2 < p < ∞
and

‖H‖Ap→Ap = π

sin 2π
p

,

when 4 ≤ p < ∞. It was also conjectured that previous equality remains valid in the
remaining case when 2 < p < 4. This conjecture was actually proven in [2], where
the new method based on the new way to use monotonicity of the integral means was
introduced (see also [9]).

The starting point for studying the boundedness of theHilbert matrix H onweighted
Bergman spaces Ap

α waspaper [6] byGalanopoulos,Girela, Peláez andSiskakis,where
the corresponding partial results were obtained. A complete characterization of the
boundedness of the Hilbert matrix H on the spaces Ap

α is given in [7], where it is
proved

H is bounded on Ap
α if and only if 1 < α + 2 < p.

On the other hand, the preceding result opened the way to the question of the exact
norm of theHilbert matrix acting on theweighted Bergman spaces. In [8] it was proved
that

‖H‖Ap
α→Ap

α
≥ π

sin (α+2)π
p

for 1 < α + 2 < p, (1.1)

and it was conjectured that this lower bound is the exact norm of the Hilbert matrix.
This implies that it is necessary to have the following upper bound

‖H‖Ap
α→Ap

α
≤ π

sin (α+2)π
p

for 1 < α + 2 < p,

to prove mentioned conjecture. The conjecture was confirmed [8] in the case when
α ≥ 0 and p ≥ 2(α+2), which reduces the conjecture in the case α ≥ 0 to the interval
α + 2 < p < 2(α + 2). When α = 0 this was completely solved in [2] (see also [9]).
Very recently, Lindström, Miihkinen and Wikman in [10] confirmed the conjecture in
the case α > 0 when

α + 2 +
√

α2 + 7

2
α + 3 = α + 2 +

√
(α + 2)2 − 1

2
(α + 2) ≤ p < 2(α + 2).
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Among other things in this paper, we improved the previous result by confirming the
conjecture in the case α > 0 when

α + 2 +
√

(α + 2)2 −
(√

2 − 1

2

)
(α + 2) ≤ p < 2(α + 2).

On the other hand, we note that in the case −1 < α < 0 there has been no progress
so far in proving the conjecture, moreover, there is no even an explicit upper bound
for the norm of the Hilbert matrix H on weighted Bergman spaces Ap

α . Finally, in this
paper we also provide an explicit upper bound for the norm of the Hilbert matrix H
on weighted Bergman spaces Ap

α in the case −1 < α < 0 when p > α + 2.

1.1 Basic Notation

Let D (z0, r) = {z ∈ C : |z − z0| < r} be the open Euclidean disc of radius r > 0
centered at the point z0 in the complex plane C. Let also H(D) be the space of
all holomorphic functions in the open unit disc D = D(0, 1). An annulus cen-
tered at the point z0 in the complex plane is defined as follows A(z0, r , R) =
{z ∈ C : r < |z − z0| < R}where r < R. The Euclidean areameasure on the complex
plane will be denoted by dm, that is

dm(z) = dxdy = rdrdθ, where z = x + iy = reiθ .

Given a function f holomorphic in the unit discD, then for 0 < p < ∞ and 0 < r < 1,
we consider its integral means of order p defined in the following way

Mp(r , f ) =
(

1

2π

∫ 2π

0

∣∣∣ f (
reiθ

)∣∣∣p dθ
) 1

p

.

It is well known that r 	→ Mp(r , f ) is an nondecreasing function. This is a simple
consequence of the subharmonicity of | f |p. The Beta function is defined by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt,

where a and b are real numbers such that a > 0 and b > 0. If 0 < a < 1 then we will
use the following well known formula

B(a, 1 − a) = π

sin πa
.
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5912 B. Karapetrović

1.2 Hilbert Matrix andWeighted Bergman Spaces

The Hilbert matrix is an infinite matrix

H =
[

1

n + k + 1

]∞

n,k=0
.

If f (z) = ∑∞
n=0 anz

n is a holomorphic function in the unit disc D, that is f ∈
H(D), then the Hilbert matrix can be viewed as an operator on spaces of holomorphic
functions in the following way

H f (z) =
∞∑
n=0

( ∞∑
k=0

ak
n + k + 1

)
zn .

For 0 < p < ∞ and α > −1 the weighted Bergman space is defined as follows

Ap
α =

{
f ∈ H(D) : ‖ f ‖Ap

α
=

(
α + 1

π

∫
D

| f (z)|p
(
1 − |z|2

)α

dm(z)

)1/p

< ∞
}

.

We note that if α = 0 then Ap = Ap
0 are standard unweighted Bergman spaces. It is

well known (see [3,4,8]) that if a function f belongs to weighted Bergman space Ap
α

then we have

H f (z) =
∫ 1

0
Tt f (z) dt,

where

Tt f (z) = ωt (z) f (φt (z)) , ωt (z) = 1

1 − (1 − t)z
and φt (z) = t

1 − (1 − t)z
.

Recall that the Hilbert matrix H is bounded on weighted Bergman space Ap
α if and

only if 1 < α + 2 < p. In that case, by following [8], from the continuous version of
Minkowski inequality we have estimate

‖H f ‖Ap
α

≤
∫ 1

0
‖Tt f ‖Ap

α
dt,

and

‖Tt f ‖Ap
α

= t
α+2
p −1

(1 − t)−
α+2
p

(
α + 1

π

∫
Dt

|w|p−4| f (w)|pgt (w)α dm(w)

) 1
p

,

(1.2)
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where

gt (w) = 2Rew − t − (2 − t)|w|2
(1 − t)|w|2 , Dt = D (ct , ρt ) , ct = 1

2 − t
and ρt = 1 − t

2 − t
.

In the rest of the paper we will use the following function

ψp,α(t) = t
α+2
p −1

(1 − t)−
α+2
p ,

where 0 < t < 1. It is easy to check that

gt (w) = 1

|w|2 · ρ2
t − |w − ct |2

ρt
for w ∈ D (ct , ρt ) .

Therefore we conclude

‖Tt f ‖Ap
α

= ψp,α(t)

(
α + 1

π

∫
Dt

|w|p−2(α+2)| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

.

The previous formula is valid for all 1 < α + 2 < p and it will be used in the last
section of this paper. On the other hand, following [8] in the special case when α > 0
we obtain

gt (w)α ≤
(
1 + |w|2 − t − (2 − t)|w|2

(1 − t)|w|2
)α

=
(
1 − |w|2

|w|2
)α

. (1.3)

By combining (1.2) and (1.3) we get

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
α + 1

π

∫
Dt

|w|p−2(α+2)| f (w)|p
(
1 − |w|2

)α

dm(w)

) 1
p

.

1.3 The Functions9˛ and8˛

Let α > 0. Then we define the functions 
α and �α as follows


α(x) = 2x2 − (4(α + 2) + 1) x − 2
√

α + 2
√
x + α + 2,

and

�α(x) = 2x2 − (4(α + 2) + 1) x + 2
√

α + 2
√
x + α + 2,

where x ∈ (α + 2, 2(α + 2)). We note that these functions will play a crucial role in
our paper. Next we obtain


 ′
α(x) = 4x − 4(α + 2) − 1 −

√
α + 2√
x

and 
 ′′
α(x) = 4 +

√
α + 2

2x
√
x

,
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5914 B. Karapetrović

for x ∈ (α + 2, 2(α + 2)). Therefore


 ′′
α(x) > 0,

for every x ∈ (α + 2, 2(α + 2)). This leads that function 
 ′
α is increasing on interval

(α + 2, 2(α + 2)). On the other hand, we find


 ′
α(α + 2) = −2 < 0 and 
 ′

α(2(α + 2)) = 4(α + 2) − 1 − 1√
2

> 0.

Based on the above considerations we can conclude that it is valid


α(x) ≤ max {
α(α + 2),
α(2(α + 2))} ,

for every x ∈ (α + 2, 2(α + 2)). Since


α(α + 2)=−2(α + 2)(α + 3) < 0 and 
α(2(α + 2))=−
(
2
√
2 + 1

)
(α + 2)<0,

we have

α(x) < 0, (1.4)

for every x ∈ (α + 2, 2(α + 2)). By straightforward calculations we also derive

�′
α(x) = 4x − 4(α + 2) − 1 +

√
α + 2√
x

and �′′
α(x) = 4 −

√
α + 2

2x
√
x

,

for x ∈ (α + 2, 2(α + 2)). Function �′′
α is increasing on interval (α + 2, 2(α + 2))

which implies

�′′
α(x) > �′′

α(α + 2) = 4 − 1

2(α + 2)
> 0,

for every x ∈ (α + 2, 2(α + 2)). Hence function �′
α is also increasing on interval

(α + 2, 2(α + 2)). This leads to

�′
α(x) > �′

α(α + 2) = 4(α + 2) − 4(α + 2) − 1 + 1 = 0,

where x ∈ (α + 2, 2(α + 2)), whence it follows that �α is an increasing function on
interval (α + 2, 2(α + 2)). Then

�α(α + 2) = −2(α + 1)(α + 2) < 0 and �α(2(α + 2)) =
(
2
√
2 − 1

)
(α + 2) > 0.

This means that function�α has a unique zero α0 on the interval (α + 2, 2(α + 2)).
Moreover, we get�α < 0 on (α + 2, α0) and�α > 0 on (α0, 2(α + 2)). The previous
notation will be used in the rest of the paper.
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1.4 TheMain Results

Let α > 0 and let α0 be a unique zero of the function �α on the interval
(α + 2, 2(α + 2)). We are now ready to state the main results of the paper.

Theorem 1.1 Let α > 0 and α0 ≤ p < 2(α + 2). Then ‖H‖Ap
α→Ap

α
= π

sin (α+2)π
p

.

An immediate consequence we obtain the following result.

Corollary 1.1 Let α > 0 and

α + 2 +
√

(α + 2)2 −
(√

2 − 1

2

)
(α + 2) ≤ p < 2(α + 2).

Then

‖H‖Ap
α→Ap

α
= π

sin (α+2)π
p

.

Proof It is enough to prove that

�α

(
α + 2 +

√
(α + 2)2 −

(√
2 − 1

2

)
(α + 2)

)
> 0.

Namely, the previous inequality implies

α0 < α + 2 +
√

(α + 2)2 −
(√

2 − 1

2

)
(α + 2),

whence by Theorem 1.1 it follows the required conclusion. We can split the function
�α into two parts

�α(x) = ϒα(x) + 
α(x),

where we denoted

ϒα(x) = 2

[
(x − (α + 2))2 −

(
(α + 2)2 −

(√
2 − 1

2

)
(α + 2)

)]
,

and


α(x) = 2
√

α + 2
√
x − x − 2

(√
2 − 1

)
(α + 2).
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Note that

ϒα

(
α + 2 +

√
(α + 2)2 −

(√
2 − 1

2

)
(α + 2)

)
= 0.

So it is enough to prove


α

(
α + 2 +

√
(α + 2)2 −

(√
2 − 1

2

)
(α + 2)

)
> 0,

or equivalently


α

(
a +

√
a2 −

(√
2 − 1

2

)
a

)
> 0,

where a = α + 2. This leads to

2
√
a

√√√√a +
√
a2 −

(√
2 − 1

2

)
a >

(
2
√
2 − 1

)
a +

√
a2 −

(√
2 − 1

2

)
a,

whence after squaring we get the following equivalent form

(
3 − 2

√
2
)√

a2 −
(√

2 − 1

2

)
a >

(
3 − 2

√
2
)
a −

(√
2

2
− 1

4

)
.

Since

(
3 − 2

√
2
)√

a2 −
(√

2 − 1

2

)
a > 0,

it is enough to prove

((
3 − 2

√
2
)√

a2 −
(√

2 − 1

2

)
a

)2

>

((
3 − 2

√
2
)
a −

(√
2

2
− 1

4

))2

,

which after some calculations reduces to

a >

√
2 − 1

2

8
(
5
√
2 − 7

) = 13 + 9
√
2

16
.
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The last inequality is true, since

a = α + 2 > 2 >
13 + 9

√
2

16
.

This completes the proof. ��
Remark 1.1 Note that Corollary 1.1 improves the last best known result recently
obtained by Lindström, Miihkinen and Wikman in [10], where they get the same
conclusion under the assumptions α > 0 and

α + 2 +
√

(α + 2)2 − 1

2
(α + 2) ≤ p < 2(α + 2),

which was discussed earlier. ��
On the other hand, let

β = α + 2 +
√

(α + 2)2 − (α + 2).

Then by straightforward calculations we obtain

�α(β) = 2
(
β2 − 2(α + 2)β + α + 2

)
︸ ︷︷ ︸

=0

−
(√

β − √
α + 2

)2
< 0,

which implies that β < α0. In the case when α > 0 and α + 2 < p ≤ β we obtain
the following partial result.

Theorem 1.2 Let α > 0, α + 2 < p ≤ α + 2 + √
(α + 2)2 − (α + 2) and suppose

that the following condition holds

∫ 1

0
ψp,α(t)ξp,α(t) dt ≤ 1

α + 1

∫ 1

0
ψp,α(t) dt = 1

α + 1
B

(
α + 2

p
, 1 − α + 2

p

)
,

(1.5)
where we denoted

ψp,α(t) = t
α+2
p −1

(1 − t)−
α+2
p and ξp,α(t) =

∫ 1

(
t

2−t

)2 ρ
p
2 −(α+2)(1 − ρ)α dρ,

for 0 < t < 1. Then

‖H‖Ap
α→Ap

α
= π

sin (α+2)π
p

.
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Remark 1.2 We note that condition (1.5) is not always satisfied under the given con-
ditions even when p/2− (α + 2) + 1 > 0, that is p > 2α + 2, which actually allows
the convergence of the integral ξp,α(0). Namely a calculation involvingMathematica
shows that when α = 1 then β ≈ 5.449 and α0 ≈ 5.487 and also for

α + 2 < 2α + 2 < p = 4.4 < β < α0,

we have

∫ 1

0
ψp,α(t)ξp,α(t) dt − 1

α + 1

∫ 1

0
ψp,α(t) dt ≈ 0.962 > 0.

On the other hand, if α = 1 and α + 2 < 2α + 2 < p = 5.2 < β < α0 then

∫ 1

0
ψp,α(t)ξp,α(t) dt − 1

α + 1

∫ 1

0
ψp,α(t) dt ≈ −0.103 < 0,

which allows the application of Theorem 1.2 in some cases where it is not possible to
apply Theorem 1.1. We also have

β =α + 2 +
√

(α + 2)2 − (α + 2)<α0<α + 2 +
√

(α + 2)2−
(√

2 − 1

2

)
(α + 2),

and since
√
2 − 1/2 ≈ 0.914 (actually

√
2 − 1/2 > 0.914) we can write

α + 2 +
√

(α + 2)2 − (α + 2) < α0 < α + 2 +
√

(α + 2)2 − 0.914(α + 2). (1.6)

From (1.6) we can conclude that there remains a small gap between β and α0 to which
we cannot apply the above Theorem 1.1 and Theorem 1.2. �

Finally, in the case when

−1 < α < 0 and p > α + 2,

for the first time we obtain an explicit upper bound for the norm of the Hilbert matrix
H on weighted Bergman spaces Ap

α . Namely, we have the following result.

Theorem 1.3 Let −1 < α < 0 and p > α + 2.

(i) If p ≥ 2(α + 2) then

‖H‖Ap
α→Ap

α
≤ 2

α+2
p

π

sin (α+2)π
p

.
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(ii) If α + 2 < p < 2(α + 2) then

‖H‖Ap
α→Ap

α
≤ 2

α+2
p

(
1 + 2

2(α+2)
p −1

)
π

sin (α+2)π
p

.

In the rest of the paper, we present the proofs of Theorem 1.1, Theorem 1.2, and
Theorem 1.3.

2 Preliminaries

Let α > 0 and α + 2 < p < 2(α + 2). We consider functions

ψp,α(t) = t
α+2
p −1

(1 − t)−
α+2
p and ξp,α(t) =

∫ 1

(
t

2−t

)2 ρ
p
2 −(α+2)(1 − ρ)α dρ,

where 0 < t < 1 as in the statement of Theorem 1.2. For s ∈ [0, 1] we denote

Fp,α(s) = ξp,α(s)
∫ s

0
ψp,α(t) dt +

∫ 1

s
ψp,α(t)ξp,α(t) dt

− 1

α + 1

(
1 −

(
s

2 − s

)2
)α+1 ∫ 1

0
ψp,α(t) dt .

As we will see later it is of interest to examine under what conditions the function
Fp,α is nonpositive on the segment [0, 1]. Let also

Bp,α = B

(
α + 2

p
, 1 − α + 2

p

)
=

∫ 1

0
ψp,α(t) dt .

Then

F ′
p,α(s) = ξ ′

p,α(s)
∫ s

0
ψp,α(t) dt + ξp,α(s)ψp,α(s) − ψp,α(s)ξp,α(s)

− 1

α + 1
· (α + 1) ·

(
1 −

(
s

2 − s

)2
)α

· (−1) · 4s

(2 − s)3
·
∫ 1

0
ψp,α(t) dt

= −
((

s

2 − s

)2
) p

2 −(α+2) (
1 −

(
s

2 − s

)2
)α

4s

(2 − s)3

∫ s

0
ψp,α(t) dt

+ 4s

(2 − s)3

(
1 −

(
s

2 − s

)2
)α ∫ 1

0
ψp,α(t) dt

=
4s

(
1 −

(
s

2−s

)2)α

(2 − s)3

(
Bp,α −

(
s

2 − s

)p−2(α+2) ∫ s

0
ψp,α(t) dt

)
.
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Therefore

F ′
p,α(s) = 4s

(2 − s)3

(
1 −

(
s

2 − s

)2
)α (

s

2 − s

)p−2(α+2)

Gp,α(s), (2.1)

where we denote

Gp,α(s) =
(

s

2 − s

)2(α+2)−p

Bp,α −
∫ s

0
ψp,α(t) dt . (2.2)

We find

G ′
p,α(s) = (2(α + 2) − p)

(
s

2 − s

)2(α+2)−p−1 2

(2 − s)2
Bp,α − ψp,α(s)

= (4(α + 2) − 2p) Bp,α

(
s

2 − s

)2(α+2)−p−1 1

(2 − s)2
− ψp,α(s).

Hence
G ′

p,α(s) = (4(α + 2) − 2p) Bp,αψp,α(s)Ep,α(s), (2.3)

where

Ep,α(s) =
(

s

2 − s

)2(α+2)−p−1 s− α+2
p +1

(1 − s)
α+2
p

(2 − s)2
− 1

(4(α + 2) − 2p) Bp,α
,

or equivalently

Ep,α(s) =
(

s

2 − s

)2(α+2)−p+1

s− α+2
p −1

(1− s)
α+2
p − 1

(4(α + 2) − 2p) Bp,α
. (2.4)

By differentiation we obtain

E ′
p,α(s) = (2(α + 2) − p + 1)

(
s

2 − s

)2(α+2)−p 2

(2 − s)2
s− α+2

p −1
(1 − s)

α+2
p

+
(

s

2 − s

)2(α+2)−p+1 (
−α + 2

p
− 1

)
s− α+2

p −2
(1 − s)

α+2
p

+
(

s

2 − s

)2(α+2)−p+1

s− α+2
p −1α + 2

p
(1 − s)

α+2
p −1

(−1)

=
(

s

2 − s

)2(α+2)−p+1

s− α+2
p −2

(1 − s)
α+2
p K p,α(s),

where

Kp,α(s) = (4(α + 2) − 2p + 2)
1

2 − s
− α + 2

p
− 1 − α + 2

p

s

1 − s
,

123



Hilbert Matrix and Its Norm onWeighted Bergman Spaces 5921

or

Kp,α(s) = (4(α + 2) − 2p + 2)
1

2 − s
− 1 − α + 2

p

1

1 − s
.

Next we can write

Kp,α(s) = 1

(2 − s)(1 − s)
L p,α(s),

where we denote

L p,α(s) = (4(α + 2) − 2p + 2) (1 − s) − (2 − s)(1 − s) − α + 2

p
(2 − s).

Finally we obtain

L p,α(s) = −s2 −
(
4(α + 2) − 2p − 1 − α + 2

p

)
s + 4(α + 2) − 2p − 2(α + 2)

p
,

and

E ′
p,α(s) =

(
s

2 − s

)2(α+2)−p+2

s− α+2
p −3

(1 − s)
α+2
p −1L p,α(s). (2.5)

Let

Ap,α = 4(α + 2) − 2p − 2(α + 2)

p
.

Note that

L p,α(s) = −s2 −
(
Ap,α + α + 2

p
− 1

)
s + Ap,α. (2.6)

We denote the discriminant of the quadratic equation L p,α(s) = 0 by Dp,α . Then

Dp,α =
(
Ap,α + α + 2

p
− 1

)2

+ 4Ap,α,

or

Dp,α = A2
p,α + 2

(
1 + α + 2

p

)
Ap,α +

(
1 − α + 2

p

)2

.

Equivalently, we get

Dp,α =
⎛
⎝Ap,α +

(
1 +

√
α + 2

p

)2⎞
⎠

⎛
⎝Ap,α +

(
1 −

√
α + 2

p

)2⎞
⎠ .
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In view of Sect. 1.3 we have

Ap,α +
(
1 +

√
α + 2

p

)2

= − 1

p
· 
α(p) > 0,

where we used the fact that α + 2 < p < 2(α + 2) and inequality (1.4). This means
that discriminant Dp,α has the same sign as the factor

Ap,α +
(
1 −

√
α + 2

p

)2

= − 1

p
· �α(p).

We actually have

Dp,α = 1

p2
· 
α(p) · �α(p).

Now we are ready to state our first preliminary result.

Lemma 2.1 Let α > 0 and α0 ≤ p < 2(α + 2). Then Fp,α(s) ≤ 0 for all s ∈ [0, 1].
Proof Since α0 ≤ p < 2(α + 2) we have (see Sect. 1.3) that


α(p) < 0 and �α(p) ≥ 0,

which implies

Dp,α = 1

p2
· 
α(p) · �α(p) ≤ 0.

On the other hand, since Dp,α is a discriminant of a quadratic function L p,α given by
(2.6) we can conclude that

L p,α ≤ 0 on [0, 1].

By using Eq. (2.5) we get

E ′
p,α ≤ 0 on [0, 1],

which in turn implies that Ep,α is nonincreasing function on [0, 1]. By Eq. (2.4) we
obtain

Ep,α(s) =
(

s

2 − s

)2(α+2)−p+1

s− α+2
p −1

(1 − s)
α+2
p − 1

(4(α + 2) − 2p) Bp,α

=
(

1

2 − s

)2(α+2)−p+1

s2(α+2)−p− α+2
p (1 − s)

α+2
p − 1

(4(α + 2) − 2p) Bp,α
.
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Hence

Ep,α(s) =
(

1

2 − s

)2(α+2)−p+1

s
Ap,α
2 (1 − s)

α+2
p − 1

(4(α + 2) − 2p) Bp,α
. (2.7)

Also

Ap,α +
(
1 −

√
α + 2

p

)2

︸ ︷︷ ︸
>0

= − 1

p
· �α(p) ≤ 0,

which leads to
Ap,α < 0. (2.8)

Combining (2.7) and (2.8) we obtain

lim
s→0+ Ep,α(s) = +∞ and Ep,α(1) = − 1

(4(α + 2) − 2p) Bp,α
< 0.

As we have already concluded that the function Ep,α(s) is nonincreasing on [0, 1] we
derive that there exists s0 ∈ (0, 1) such that

Ep,α ≥ 0 on [0, s0] and Ep,α ≤ 0 on [s0, 1] .

From (2.3) we find that

G ′
p,α ≥ 0 on [0, s0] and G ′

p,α ≤ 0 on [s0, 1] .

Therefore the function Gp,α is nondecreasing on [0, s0] and nonincreasing on [s0, 1].
So we have

Gp,α(s) ≥ min
{
Gp,α(0),Gp,α(1)

}
,

for all s ∈ [0, 1]. Since (see (2.2))

Gp,α(0) = 0 and Gp,α(1) = Bp,α −
∫ 1

0
ψp,α(t) dt = 0,

we get Gp,α ≥ 0 on [0, 1]. From (2.1) we find F ′
p,α ≥ 0 on [0, 1] which implies that

Fp,α is nondecreasing function on [0, 1]. Finally

Fp,α(s) ≤ Fp,α(1),
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for all s ∈ [0, 1]. Since

Fp,α(1) = ξp,α(1)︸ ︷︷ ︸
=0

∫ 1

0
ψp,α(t) dt = 0 · Bp,α = 0,

we conclude that

Fp,α(s) ≤ 0,

for all s ∈ [0, 1]. This finishes the proof. ��
We need also the following preliminary result which will be used later.

Lemma 2.2 Let α > 0, α +2 < p ≤ β = α +2+√
(α + 2)2 − (α + 2) and suppose

that the following condition holds

∫ 1

0
ψp,α(t)ξp,α(t) dt ≤ 1

α + 1

∫ 1

0
ψp,α(t) dt .

Then Fp,α(s) ≤ 0 for all s ∈ [0, 1].
Proof Note that given condition

∫ 1

0
ψp,α(t)ξp,α(t) dt ≤ 1

α + 1

∫ 1

0
ψp,α(t) dt,

is actually equivalent to
Fp,α(0) ≤ 0. (2.9)

In view of Sect. 1.3 we have


α(p) < 0 and �α(p) < 0,

which implies

Dp,α = 1

p2
· 
α(p) · �α(p) > 0.

We also notice that

L p,α(s) = −s2 − Cp,αs + Ap,α for s ∈ [0, 1],

where we denote

Cp,α = Ap,α + α + 2

p
− 1.
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The roots of the quadratic equation L p,α(s) = 0 are given by

xp,α = −Cp,α − √
Dp,α

2
and X p,α = −Cp,α + √

Dp,α

2
.

Then

(
Cp,α + 2

)2 = C2
p,α + 4

(
Cp,α + 1

)
> C2

p,α + 4Ap,α = Dp,α. (2.10)

We also have

Cp,α + 2 = 4(α + 2) − 2p − 2(α + 2)

p
+ α + 2

p
− 1 + 2

= 4(α + 2) − 2p − α + 2

p
+ 1

= − 1

p
·
(
2p2 − (4(α + 2) + 1) p + 2

√
α + 2

√
p + α + 2 − 2

√
α + 2

√
p
)

,

that is

Cp,α + 2 = − 1

p
·
⎛
⎝�α(p)︸ ︷︷ ︸

<0

−2
√

α + 2
√
p

⎞
⎠ > 0. (2.11)

From (2.10) and (2.11) we find

Cp,α + 2 >
√
Dp,α,

which leads to

X p,α = −Cp,α + √
Dp,α

2
< 1.

Therefore
xp,α < X p,α < 1, (2.12)

and
L p,α(s) = − (

s − xp,α
) (
s − X p,α

)
, (2.13)

for s ∈ [0, 1]. It is also easy to see that

Ap,α = 4(α + 2) − 2p − 2(α + 2)

p
= − 2

p

(
p2 − 2(α + 2)p + α + 2

)
,

and

Ap,α = − 2

p

(
p −

(
α + 2 −

√
(α + 2)2 − (α + 2)

))
︸ ︷︷ ︸

>0

(p − β), (2.14)
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where we used the fact that p > α + 2 > α + 2 − √
(α + 2)2 − (α + 2). Then we

can consider the following two cases.
Case α + 2 < p < β In this case from (2.14) we obtain that Ap,α > 0. Hence

Dp,α = C2
p,α + 4Ap,α > C2

p,α,

which implies
√
Dp,α > −Cp,α and

√
Dp,α > Cp,α . Therefore

xp,α = −Cp,α − √
Dp,α

2
< 0 and X p,α = −Cp,α + √

Dp,α

2
> 0,

and by using (2.12) we have

xp,α < 0 < X p,α < 1.

Recall that L p,α(s) = − (
s − xp,α

) (
s − X p,α

)
for s ∈ [0, 1] (see (2.13)). So we get

L p,α ≥ 0 on
[
0, X p,α

]
and L p,α ≤ 0 on

[
X p,α, 1

]
.

By using (2.5) we have

E ′
p,α ≥ 0 on

[
0, X p,α

]
and E ′

p,α ≤ 0 on
[
X p,α, 1

]
.

We can conclude that function Ep,α is nondecreasing on
[
0, X p,α

]
and nonincreasing

on
[
X p,α, 1

]
. Therefore

Ep,α
(
X p,α

) = max
s∈[0,1] Ep,α(s).

We recall that (see (2.7))

Ep,α(s) =
(

1

2 − s

)2(α+2)−p+1

s
Ap,α
2 (1 − s)

α+2
p − 1

(4(α + 2) − 2p) Bp,α
,

which leads to

Ep,α(0) = Ep,α(1) = − 1

(4(α + 2) − 2p) Bp,α
< 0,

where we used the fact that Ap,α > 0 in this case. Next we claim Ep,α
(
X p,α

)
> 0.

Assume to the contrary that Ep,α
(
X p,α

) ≤ 0. This implies that Ep,α(s) ≤ 0 for all
s ∈ [0, 1]. From (2.3)we getG ′

p,α ≤ 0 on [0, 1]. Hence functionGp,α is nonincreasing
on [0, 1]. Since

Gp,α(0) = Gp,α(1) = 0,
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we find that Gp,α ≡ 0 on [0, 1] which in turn implies G ′
p,α ≡ 0 on [0, 1]. This leads

to Ep,α ≡ 0 on [0, 1] (see again (2.3)). This is in a contradiction with (2.7), because
formula (2.7) implies that function Ep,α cannot be identically equal to zero on [0, 1].
In this way we have proved that

Ep,α
(
X p,α

)
> 0.

We have already proved that Ep,α(0) = Ep,α(1) < 0 and that Ep,α is nondecreasing
on

[
0, X p,α

]
and nonincreasing on

[
X p,α, 1

]
. Thus there exists s1 ∈ (

0, X p,α
)
such

that

Ep,α ≤ 0 on [0, s1] and Ep,α ≥ 0 on
[
s1, X p,α

]
,

and there exists s2 ∈ (
X p,α, 1

)
such that

Ep,α ≥ 0 on
[
X p,α, s2

]
and Ep,α ≤ 0 on [s2, 1] .

So we obtain

Ep,α ≤ 0 on [0, s1] , Ep,α ≥ 0 on [s1, s2] and Ep,α ≤ 0 on [s2, 1] .

By using (2.3) we find

G ′
p,α ≤ 0 on [0, s1] , G ′

p,α ≥ 0 on [s1, s2] and G ′
p,α ≤ 0 on [s2, 1] .

Therefore function Gp,α is nonincreasing on [0, s1], nondecreasing on [s1, s2] and
nonincreasing on [s2, 1]. Since Gp,α(0) = Gp,α(1) = 0 there exists s3 ∈ [s1, s2] such
that

Gp,α ≤ 0 on [0, s3] and Gp,α ≥ 0 on [s3, 1] .

From (2.1) we can conclude that

F ′
p,α ≤ 0 on [0, s3] and F ′

p,α ≥ 0 on [s3, 1] .

Hence function Fp,α is nonincreasing on [0, s3] and nondecreasing on [s3, 1]. This
implies that

Fp,α(s) ≤ max
{
Fp,α(0), Fp,α(1)

}
,

for all s ∈ [0, 1]. By (2.9) we have Fp,α(0) ≤ 0 and since Fp,α(1) = 0 we finally
conclude that Fp,α(s) ≤ 0 for all s ∈ [0, 1].
Case p = β It remains for us to consider what is happening in this case. From (2.14)
we find that Ap,α = 0. Hence we have Dp,α = C2

p,α + 4Ap,α = C2
p,α and

Cp,α = Ap,α + α + 2

p
− 1 = α + 2

p
− 1 < 0,
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which implies
√
Dp,α = −Cp,α . Therefore

xp,α = −Cp,α − √
Dp,α

2
= 0 and X p,α = −Cp,α + √

Dp,α

2
= −Cp,α > 0,

and by using (2.12) again we get

xp,α = 0 < X p,α < 1.

Since L p,α(s) = − (
s − xp,α

) (
s − X p,α

)
for s ∈ [0, 1] (see (2.13)) we find that

L p,α ≥ 0 on
[
0, X p,α

]
and L p,α ≤ 0 on

[
X p,α, 1

]
,

and by using (2.5) we have

E ′
p,α ≥ 0 on

[
0, X p,α

]
and E ′

p,α ≤ 0 on
[
X p,α, 1

]
.

Therefore we can conclude that function Ep,α is nondecreasing on
[
0, X p,α

]
and

nonincreasing on
[
X p,α, 1

]
. Recall that (see (2.7))

Ep,α(s) =
(

1

2 − s

)2(α+2)−p+1

s
Ap,α
2 (1 − s)

α+2
p − 1

(4(α + 2) − 2p) Bp,α
,

and since

Ap,α = 4(α + 2) − 2p − 2(α + 2)

p
= 0,

we obtain

Ep,α(s) =
(

1

2 − s

) α+2
p +1

(1 − s)
α+2
p − 1

2(α+2)
p Bp,α

.

Let

c = α + 2

p
= α + 2

β
= α + 2

α + 2 + √
(α + 2)2 − (α + 2)

.

It is easy to check that

1

2
< c = α + 2

α + 2 + √
(α + 2)2 − (α + 2)

< 2 − √
2,

because of α + 2 > 2. Then

Ep,α(s) =
(

1

2 − s

)c+1

(1 − s)c − sin πc

2πc
,
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which implies that

Ep,α(0) = πc − 2c sin πc

2c+1πc
and Ep,α(1) = − sin πc

2πc
< 0.

Since 1/2 < c < 2 − √
2 we have

2c sin πc ≤ 2c < 22−
√
2 <

π

2
< πc.

Therefore

Ep,α(0) = πc − 2c sin πc

2c+1πc
> 0 and Ep,α(1) = − sin πc

2πc
< 0.

We have also already proved that function Ep,α is nondecreasing on
[
0, X p,α

]
and

nonincreasing on
[
X p,α, 1

]
. Thus there exists S ∈ (

X p,α, 1
)
such that

Ep,α ≥ 0 on [0, S] and Ep,α ≤ 0 on [S, 1] .

Then from (2.3) we obtain that

G ′
p,α ≥ 0 on [0, S] and G ′

p,α ≤ 0 on [S, 1] .

Hence the function Gp,α is nondecreasing on [0, S] and nonincreasing on [S, 1]. So
we conclude that

Gp,α(s) ≥ min
{
Gp,α(0),Gp,α(1)

}
,

for all s ∈ [0, 1]. On the other hand, since (see (2.2))

Gp,α(0) = 0 and Gp,α(1) = Bp,α −
∫ 1

0
ψp,α(t) dt = 0,

we obtain Gp,α ≥ 0 on [0, 1]. Then from (2.1) we find F ′
p,α ≥ 0 on [0, 1] which

implies that Fp,α is nondecreasing function on [0, 1]. Therefore Fp,α(s) ≤ Fp,α(1)
for all s ∈ [0, 1]. Since

Fp,α(1) = ξp,α(1)
∫ 1

0
ψp,α(t) dt = 0 · Bp,α = 0,

we have that Fp,α(s) ≤ 0 for all s ∈ [0, 1]. On the other hand, note that in this case
it was not necessary to further assume at the beginning that inequality (2.9) is valid.
This completes the proof. ��
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Remark 2.1 It will be interesting to see what happens in the case when β < p < α0.
Then we can apply the same procedure as in the proof of Lemma 2.2. Namely, in this
case from (2.14) we conclude that Ap,α < 0. Therefore from (2.7) we obtain

lim
s→0+ Ep,α(s) = +∞ and Ep,α(1) = − 1

(4(α + 2) − 2p) Bp,α
< 0.

On the other hand, we have

Cp,α = Ap,α︸︷︷︸
<0

−
(
1 − α + 2

p

)
︸ ︷︷ ︸

>0

< 0,

and Dp,α = C2
p,α + 4Ap,α < C2

p,α which implies
√
Dp,α < −Cp,α . Hence

xp,α = −Cp,α − √
Dp,α

2
> 0,

and by using (2.12) we get

0 < xp,α < X p,α < 1.

This already complicates the determination of the sign of the quadratic function
L p,α(s) on the interval [0, 1] and proceeding further similarly as in the proof of
Lemma 2.2, it turns out that it is not easy to conclude under which conditions the
function Fp,α(s) is nonpositive on the interval [0, 1] in all possible cases. �

3 Proofs of Theorem 1.1 and Theorem 1.2

Let us first consider the case when α > 0 and α + 2 < p < 2(α + 2). Later we will
focus on the special cases when α0 ≤ p < 2(α + 2) or α + 2 < p ≤ β as in the
statements of Theorem 1.1 or Theorem 1.2, respectively. Let f ∈ Ap

α . In view of (1.1)
we have the corresponding lower bound, so we need to prove

‖H f ‖Ap
α

≤ π

sin (α+2)π
p

‖ f ‖Ap
α
. (3.1)

We will use the technique developed in the paper [2]. Denote

ϕ(r) = 2Mp
p(r , f ) and χ(r) = ϕ(r) − ϕ(0),

for 0 ≤ r < 1. Of course, functions ϕ and χ depend on the choice of the initial
function f which we assume to be fixed in the considerations that follow. Then ϕ is
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nondecreasing and differentiable function on the interval (0, 1), which implies that
function χ is also nondecreasing and differentiable on (0, 1). Therefore

χ ′ ≥ 0 on (0, 1) and χ(r) =
∫ r

0
χ ′(s) ds, (3.2)

for 0 ≤ r < 1. As shown in Sect. 1.2 we know that

‖H f ‖Ap
α

≤
∫ 1

0
‖Tt f ‖Ap

α
dt, (3.3)

and

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
α + 1

π

∫
Dt

|w|p−2(α+2)| f (w)|p
(
1 − |w|2

)α

dm(w)

) 1
p

,

where

Dt = D (ct , ρt ) , ct = 1

2 − t
and ρt = 1 − t

2 − t
.

Note that it is valid

Dt ⊂ A (0, ct − ρt , ct + ρt ) = A

(
0,

t

2 − t
, 1

)
.

We denote

At = A

(
0,

t

2 − t
, 1

)
.

Consequently

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
α + 1

π

∫
At

|w|p−2(α+2)| f (w)|p
(
1 − |w|2

)α

dm(w)

) 1
p

,

or equivalently

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
(α + 1)

∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

ϕ(r) dr

) 1
p

. (3.4)

On the other hand

π

sin (α+2)π
p

‖ f ‖Ap
α

=
∫ 1

0
ψp,α(t)

(
(α + 1)

∫ 1

0
r
(
1 − r2

)α

ϕ(r) dr

) 1
p

dt . (3.5)
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Because of (3.3), (3.4) and (3.5), we can conclude that (3.1) holds if the following
inequality is true ∫ 1

0
ψp,α(t)

(
Ip,α(t)1/p − J 1/pα

)
dt ≤ 0, (3.6)

where

Ip,α(t) =
∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

ϕ(r) dr ,

and

Jα =
∫ 1

0
r
(
1 − r2

)α

ϕ(r) dr .

Note that Ip,α(t) and Jα also depend on the function ϕ, that is on the function f that
was initially selected. We obtain

Ip,α(t)1/p − J 1/pα ≤ 1

p
J

1
p −1

α

(
Ip,α(t) − Jα

)
,

where we used the well known fact that xγ − yγ ≤ γ yγ−1(x− y) for x ≥ 0, y ≥ 0 and
γ ∈ (0, 1) as well as the fact that it is valid 1/p ∈ (0, 1) because of p > α + 2 > 2.
Thus we have that (3.6) holds if the following inequality is true

∫ 1

0
ψp,α(t)

(
Ip,α(t) − Jα

)
dt ≤ 0,

or

∫ 1

0
ψp,α(t)

(∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

ϕ(r) dr −
∫ 1

0
r
(
1 − r2

)α

ϕ(r) dr

)
dt ≤ 0,

or equivalently
Vp,α + ϕ(0)Wp,α ≤ Up,α, (3.7)

where we denoted

Vp,α =
∫ 1

0
ψp,α(t)

∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

χ(r) drdt,

and

Wp,α =
∫ 1

0
ψp,α(t)

∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

drdt

−
∫ 1

0
ψp,α(t)

∫ 1

0
r
(
1 − r2

)α

drdt,
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and

Up,α =
∫ 1

0
ψp,α(t)

∫ 1

0
r
(
1 − r2

)α

χ(r) drdt .

Then by using a change of variable ρ = r2 we get

Wp,α = 1

2

∫ 1

0
ψp,α(t)

∫ 1

t
2−t

(
r2

) p
2 −(α+2) (

1 − r2
)α

d
(
r2

)
dt

−1

2

∫ 1

0

(
1 − r2

)α

d
(
r2

) ∫ 1

0
ψp,α(t) dt

= 1

2

∫ 1

0
ψp,α(t)

∫ 1

(
t

2−t

)2 ρ
p
2 −(α+2) (1 − ρ)α dρdt

−1

2

∫ 1

0
(1 − ρ)α dρ

∫ 1

0
ψp,α(t) dt

= 1

2

(∫ 1

0
ψp,α(t)ξp,α(t) dt − 1

α + 1

∫ 1

0
ψp,α(t) dt

)

= 1

2
Fp,α(0).

On the other hand by using Fubini theorem we obtain

Vp,α =
∫ 1

0
ψp,α(t)

(∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α

χ(r) dr

)
dt

=
∫ 1

0
ψp,α(t)

(∫ 1

t
2−t

r p−2(α+2)+1
(
1 − r2

)α
∫ r

0
χ ′(s) dsdr

)
dt

=
∫ 1

0
ψp,α(t)

(∫ 1

t
2−t

∫ r

0
r p−2(α+2)+1

(
1 − r2

)α

χ ′(s) dsdr
)
dt

=
∫ 1

0
ψp,α(t)

(∫ 1

0

∫ 1

max
{
s, t

2−t

} r p−2(α+2)+1
(
1 − r2

)α

χ ′(s) drds
)
dt

=
∫ 1

0
ψp,α(t)

(∫ 1

0
χ ′(s)

∫ 1

max
{
s, t

2−t

} r p−2(α+2)+1
(
1 − r2

)α

drds

)
dt

=
∫ 1

0
ψp,α(t)

(∫ 1

0

χ ′(s)
2

∫ 1

max2
{
s, t

2−t

} ρ
p
2 −(α+2) (1 − ρ)α dρds

)
dt,
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and by using change of variable s = u/(2 − u) we get

Vp,α =
∫ 1

0
ψp,α(t)

⎛
⎝∫ 1

0

χ ′
(

u
2−u

)
(2 − u)2

∫ 1

max2
{

u
2−u , t

2−t

} ρ
p
2 −(α+2) (1 − ρ)α dρdu

⎞
⎠ dt,

or equivalently

Vp,α =
∫ 1

0
ψp,α(t)

(∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
ξp,α (max{u, t}) du

)
dt .

This implies that

Vp,α =
∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)(∫ 1

0
ψp,α(t)ξp,α (max{u, t}) dt

)
du,

or

Vp,α =
∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)(
ξp,α(u)

∫ u

0
ψp,α(t)dt+

∫ 1

u
ψp,α(t)ξp,α (t) dt

)
du.

Similarly we have

Up,α =
∫ 1

0
r
(
1 − r2

)α

χ(r) dr
∫ 1

0
ψp,α(t) dt

=
∫ 1

0
r
(
1 − r2

)α
∫ r

0
χ ′(s) dsdr

∫ 1

0
ψp,α(t) dt

=
∫ 1

0
χ ′(s)

∫ 1

s
r
(
1 − r2

)α

drds
∫ 1

0
ψp,α(t) dt

=
∫ 1

0

χ ′(s)
2

1

α + 1

(
1 − s2

)α+1
ds

∫ 1

0
ψp,α(t) dt,

which leads to

Up,α =
∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
1

α + 1

(
1 −

(
u

2 − u

)2
)α+1

du
∫ 1

0
ψp,α(t) dt,

or equivalently

Up,α =
∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)⎛
⎝ 1

α + 1

(
1 −

(
u

2 − u

)2
)α+1 ∫ 1

0
ψp,α(t) dt

⎞
⎠ du.
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Based on the foregoing considerations we can conclude

Vp,α −Up,α =
∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
Fp,α(u) du.

Finally to obtain (3.7) it is enough to prove that

∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
Fp,α(u) du + ϕ(0)

2
Fp,α(0) ≤ 0.

Note also that ϕ(0) = 2| f (0)|p. So we can conclude the following. In the case when
α > 0 and α + 2 < p < 2(α + 2) if

∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
Fp,α(u) du + | f (0)|pFp,α(0) ≤ 0, (3.8)

then it is valid inequality (3.1). Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let f ∈ Ap
α where α > 0 and α0 ≤ p < 2(α + 2). In view of

(1.1) it is enough to prove that inequality (3.1) is valid. By using Lemma 2.1 we have
that

Fp,α(u) ≤ 0, (3.9)

for all u ∈ [0, 1]. From (3.2) we conclude that

1

(2 − u)2
χ ′

(
u

2 − u

)
≥ 0. (3.10)

Combining (3.9) and (3.10) we obtain

∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
Fp,α(u) du + | f (0)|pFp,α(0) ≤ 0,

which leads that inequality (3.8) is valid. This implies that inequality (3.1) is also
valid, which completes the proof. ��
Next we will use the previously presented results as well as Lemma 2.2 from Sect. 2.
Thus we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Let f ∈ Ap
α where α > 0 and α + 2 < p ≤ β. We can

use Lemma 2.2, because we know that under the assumptions of Theorem 1.2 the
following condition is satisfied

∫ 1

0
ψp,α(t)ξp,α(t) dt ≤ 1

α + 1

∫ 1

0
ψp,α(t) dt = 1

α + 1
B

(
α + 2

p
, 1 − α + 2

p

)
.
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Therefore

Fp,α(u) ≤ 0,

for all u ∈ [0, 1]. Since χ ′ ≥ 0 we derive that

∫ 1

0

1

(2 − u)2
χ ′

(
u

2 − u

)
Fp,α(u) du + | f (0)|pFp,α(0) ≤ 0,

which implies validity of the inequality (3.1). This finishes the proof. ��

4 Proof of Theorem 1.3

In this section we consider the case when −1 < α < 0 and p > α + 2. Let also
f ∈ Ap

α . As we showed in Sect. 1.2 we have

‖H f ‖Ap
α

≤
∫ 1

0
‖Tt f ‖Ap

α
dt,

and

‖Tt f ‖Ap
α

= ψp,α(t)

(
α + 1

π

∫
Dt

|w|p−2(α+2)| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

,

where

Dt = D (ct , ρt ) , ct = 1

2 − t
and ρt = 1 − t

2 − t
.

Let

ηt (z) = ρt z + ct for z ∈ D and 0 < t < 1.

Note that ηt (D) = Dt ⊂ D. We will also use the following well known result, which
is a consequence of Littlewood Subordination Principle (see Chapter 11 in [12]).

Lemma 4.1 (see Theorem 11.6 in [12]) If η : D → D is holomorphic function, p > 0
and α > −1 then

∫
D

|( f ◦ η)(z)|p
(
1 − |z|2

)α

dm(z) ≤
(
1 + |η(0)|
1 − |η(0)|

)α+2 ∫
D

| f (z)|p
(
1 − |z|2

)α

dm(z),

for all holomorphic functions f on D.

After the preliminary results mentioned above, we are now ready to prove Theorem
1.3 from the Sect. 1.4.
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Proof of Theorem 1.3 Let f ∈ Ap
α . Then we consider the following two cases as in the

statement of Theorem 1.3.
Case (i) p ≥ 2(α + 2) In this case we actually have that |w|p−2(α+2) ≤ 1 for all
w ∈ Dt = ηt (D). Therefore

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
α + 1

π

) 1
p
(∫

ηt (D)

| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

.

After change of variable w = ηt (z) we obtain

‖Tt f ‖Ap
α

≤ ψp,α(t)

(
α + 1

π

) 1
p
(

ρα
t

∫
D

|( f ◦ ηt ) (z)|p
(
1 − |z|2

)α ∣∣η′
t (z)

∣∣2 dm(z)

) 1
p

= ψp,α(t)

(
α + 1

π

) 1
p
(

ρα+2
t

∫
D

|( f ◦ ηt ) (z)|p
(
1 − |z|2

)α

dm(z)

) 1
p

.

Since

ρα+2
t

(
1 + |ηt (0)|
1 − |ηt (0)|

)α+2

=
(

ρt · 1 + ct
1 − ct

)α+2

=
(
1 − t

2 − t
· 3 − t

1 − t

)α+2

=
(
3 − t

2 − t

)α+2

,

by using Lemma 4.1 we obtain

ρα+2
t

∫
D

|( f ◦ ηt ) (z)|p
(
1 − |z|2

)α

dm(z) ≤
(
3 − t

2 − t

)α+2 ∫
D

| f (z)|p
(
1 − |z|2

)α

dm(z).

Hence we conclude

‖Tt f ‖Ap
α

≤
(
3 − t

2 − t

) α+2
p

ψp,α(t)

(
α + 1

π

∫
D

| f (z)|p
(
1 − |z|2

)α

dm(z)

) 1
p

,

or

‖Tt f ‖Ap
α

≤
(
3 − t

2 − t

) α+2
p

ψp,α(t)‖ f ‖Ap
α
.

Note that

(
3 − t

2 − t

) α+2
p ≤ 2

α+2
p ,

for all 0 < t < 1. This leads to

‖Tt f ‖Ap
α

≤ 2
α+2
p ψp,α(t)‖ f ‖Ap

α
.
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Finally we obtain

‖H f ‖Ap
α

≤
∫ 1

0
‖Tt f ‖Ap

α
dt ≤ 2

α+2
p ·

∫ 1

0
ψp,α(t) dt · ‖ f ‖Ap

α
= 2

α+2
p

π

sin (α+2)π
p

‖ f ‖Ap
α
.

Therefore

‖H‖Ap
α→Ap

α
≤ 2

α+2
p

π

sin (α+2)π
p

.

Case (ii) α + 2 < p < 2(α + 2) In this case we have

|w| ≥ ct − |w − ct | > ct − ρt = t

2 − t
for all w ∈ Dt .

Therefore

|w|p−2(α+2) ≤
(

t

2 − t

)p−2(α+2)

=
(
2 − t

t

)2(α+2)−p

for all w ∈ Dt .

This implies that ‖Tt f ‖Ap
α
is not greater than

(
2 − t

t

) 2(α+2)
p −1

ψp,α(t)

(
α + 1

π

∫
ηt (D)

| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

.

Similar to the Case (i) we get that it is valid

(
α + 1

π

∫
ηt (D)

| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

≤
(
3 − t

2 − t

) α+2
p ‖ f ‖Ap

α
,

which leads to

(
α + 1

π

∫
ηt (D)

| f (w)|p
(

ρ2
t − |w − ct |2

ρt

)α

dm(w)

) 1
p

≤ 2
α+2
p ‖ f ‖Ap

α
.

Hence we obtain

‖Tt f ‖Ap
α

≤ 2
α+2
p

(
2 − t

t

) 2(α+2)
p −1

ψp,α(t)‖ f ‖Ap
α
. (4.1)
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On the other hand, we have

(
2 − t

t

) 2(α+2)
p −1

ψp,α(t) =
(
2 − t

t

) 2(α+2)
p −1

t
α+2
p −1

(1 − t)−
α+2
p

= (t + 2(1 − t))
2(α+2)

p −1 t−
α+2
p (1 − t)−

α+2
p

≤ t
2(α+2)

p −1 + 2
2(α+2)

p −1
(1 − t)

2(α+2)
p −1

t
α+2
p (1 − t)

α+2
p

,

where we actually used the known fact which states that the following inequality is
valid

(x + y)γ ≤ xγ + yγ ,

for all x ≥ 0, y ≥ 0 and γ ∈ (0, 1) as well as the fact that

2(α + 2)

p
− 1 ∈ (0, 1),

because of α + 2 < p < 2(α + 2). So we get

(
2 − t

t

) 2(α+2)
p −1

ψp,α(t) ≤ t
α+2
p −1

(1 − t)−
α+2
p + 2

2(α+2)
p −1

(1 − t)
α+2
p −1t−

α+2
p ,

or (
2 − t

t

) 2(α+2)
p −1

ψp,α(t) ≤ ψp,α(t) + 2
2(α+2)

p −1
ψp,α(1 − t). (4.2)

From (4.1) and (4.2) we obtain

‖Tt f ‖Ap
α

≤ 2
α+2
p

(
ψp,α(t) + 2

2(α+2)
p −1

ψp,α(1 − t)

)
‖ f ‖Ap

α
.

Since

∫ 1

0
ψp,α(1 − t) dt =

∫ 1

0
ψp,α(t) dt = B

(
α + 2

p
, 1 − α + 2

p

)
= π

sin (α+2)π
p

,

we find

‖H f ‖Ap
α

≤
∫ 1

0
‖Tt f ‖Ap

α
dt

≤ 2
α+2
p

(∫ 1

0
ψp,α(t) dt + 2

2(α+2)
p −1

∫ 1

0
ψp,α(1 − t) dt

)
‖ f ‖Ap

α
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= 2
α+2
p

(
π

sin (α+2)π
p

+ 2
2(α+2)

p −1 π

sin (α+2)π
p

)
‖ f ‖Ap

α

= 2
α+2
p

(
1 + 2

2(α+2)
p −1

)
π

sin (α+2)π
p

‖ f ‖Ap
α
.

Finally we obtain

‖H‖Ap
α→Ap

α
≤ 2

α+2
p

(
1 + 2

2(α+2)
p −1

)
π

sin (α+2)π
p

.

This completes the proof. ��
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