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Abstract
In this paper,we give estimates on partial derivatives and logarithmic partial derivatives
for holomorphic functions on polydiscs. Estimates will also be utilized to characterize
entire solutions of a class of partial differential equations, which gives a new form of
Picard’s theorem and its higher dimensional version.
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1 Introduction

Estimates on the norm of holomorphic functions play an important role in complex
analysis and applications to differential equations, number theory, etc. Estimat-
ing derivatives and logarithmic derivatives traces back to the well-known Borel–
Carathòdory theorem andNevanlinna logarithmic derivative lemma (see e.g., [18,27]),
and there are various works in this direction, see e.g., [2,3,6,10,14,17,21,24,28–30], to
list a few. In the recent paper [15], an estimate on the average 1

2π

∫ 2π
0 | f (n)(reiθ )|dθ

was given by the real part of a holomorphic function f in an elementary way:
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7334 B. Q. Li, L. Yang

Theorem A Let f be a holomorphic function in |z| ≤ R in the complex plane. Then
for 0 < r < R and n ≥ 1,

1

2π

∫ 2π

0
| f (n)(reiθ )|dθ ≤ 2n!

(R − r)n
(A(R, f ) − �{ f (0)}),

where A(r , f ) = max|z|≤r �{ f (z)}.
An application of Theorem A yields the following estimate on logarithmic deriva-

tives of holomorphic functions:

Theorem B Let f be a holomorphic function without zeros in |z| ≤ R. Then for
0 < r < R,

1

2π

∫ 2π

0
log+

∣
∣
∣
f ′(reiθ )
f (reiθ )

∣
∣
∣dθ

≤ log+ 1

R − r
+ log+ log+ M(R, f ) + log+ log+ 1

| f (0)| + 3 log 2,

where M(r , f ) = max|z|≤r
{| f (z)|}.

On the above, log+ M(R, f ) can be controlled by and thus be replaced by the prox-
imity function m(R, f ) = 1

2π

∫ 2π
0 log+ | f (Reiθ )|dθ in a standard way (see [15]). But

the use of themaximummodulus M(R, f ) has its advantage (see Sect. 3), whichmakes
it possible for us to extend the approach to more general settings in an elementary and
efficient way.

There are various estimates on logarithmic derivatives in various settings (see the ref-
erences cited above). The so-called Logarithmic Derivative Lemma is a central tool in
Nevanlinna theory and its applications to other problems such as complex differential
equations. The estimate in Theorem B takes a particular form with an elementary
proof (via essentially Cauchy’s formula only) suitable for a general audience and for
situations where the full force of Nevanlinna theory is not necessary (see [15]).

The present paper has two objectives: firstly to generalize Theorems A and B to
holomorphic functions of several complex variables and further extend Theorem B so
that it allows f to have zeros and also allows higher order partial derivatives in the
estimate, with still an elementary approach; secondly to connect the above questions
to characterizing entire solutions of certain partial differential equations and to the
well-known Picard theorem.

In Cn , there are two natural notions of “neighborhood”: the ball and the polydiscs.
It is a well-known fact, due to H. Poincaré, that for n > 1 there does not exist a
biholomorphic mapping between the ball and the polydisc inCn (see e.g., [11]). Most
of the known C

n-versions of the Logarithmic Derivative Lemma are for holomor-
phic(meromorphic) functions on the balls (see e.g., [2,14,28,30]) and few results on
polydiscs are known (see [26] and Sect. 3). But the easiest approach to some fun-
damental facts about holomorphic functions of several complex variables is based on
polydiscs rather than balls (see [23], p. 2 and [22]). We will give estimates on partial
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Estimates on Partial Derivatives 7335

derivatives and logarithmic partial derivatives parallel to Theorems A and B for holo-
morphic functions on polydiscs with still an elementary approach that essentially only
invoke Cauchy’s formula. The estimates obtained will be utilized in the last section
to characterize entire solutions of a class of partial differential equations, which, as
a consequence, gives a new form of the well-known Picard theorem and its higher
dimensional version.

2 Estimates on Partial Derivatives

We first introduce some standard notations. Let

C
n = {z = (z1, z2, . . . , zn) : z j ∈ C, j = 1, 2, . . . , n}

denote the n-dimensional complex vector space normed by

‖z‖ = (|z1|2 + |z2|2 + · · · + |zn|2) 1
2 .

For a = (a1, a2, . . . , an) ∈ C
n, r = (r1, r2, . . . , rn) ∈ R

n+, define the polydiscs

Dr(a) = {z ∈ C
n : |z j − a j | < r j , j = 1, 2, . . . , n}

and

D̄r(a) = {z ∈ C
n : |z j − a j | ≤ r j , j = 1, 2, . . . , n}.

For brevity we shall denote by D̄r = D̄r(0) the polydisc with center at the origin.
The Bergman–Shilov boundary is given by

∂oDr(a) = {z ∈ C
n : |z j − a j | = r j , j = 1, 2, . . . , n},

which is also called the skeleton of the polydisc and is the product of n circles. Note
that this skeleton of the polydisc contains only part of the points on the boundary
∂Dr(a), i.e., ∂oDr(a) ⊂ ∂Dr(a).

Recall Cauchy’s formula for polydiscs (see e.g., [11], p 31): Let f be a function
holomorphic in an open set containing Dr(a). Then

f (a) = 1

(2π i)n

∫

∂oDr(a)

f (z)dz1 · · · dzn∏n
j=1(z j − a j )

, (2.1)

or equivalently, with z j − a j = r j eiθ j ( j = 1, 2, . . . , n),

f (a) = 1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
f (a1 + r1e

iθ1 , . . . , an + rne
iθn ) dθ1 · · · dθn . (2.2)
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7336 B. Q. Li, L. Yang

Let I = (α1, α2, . . . , αn) be a multi-index with α j ∈ Z+, 1 ≤ j ≤ n. We denote
the length of I by |I | = ∑n

j=1 α j , and also denote

DI f = ∂ |I | f
∂z I

= ∂ |I | f
∂zα11 · · · ∂zαnn

for any holomorphic function f in (z1, z2, . . . , zn).

Theorem 2.1 Let f be a function holomorphic in D̄R. Then for 0 < r j < R j ( j =
1, 2, . . . , n) and I = (α1, α2, . . . , αn) ∈ Z

n+ with |I | ≥ 1,

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

∣
∣DI f (r1e

iθ1 , . . . , rne
iθn )

∣
∣ dθ1 · · · dθn

≤ 2α1! . . . αn !∏n
j=1(R j − r j )α j

(
A(R, f ) − �{ f (0)}),

where A(R, f ) = maxz∈D̄R
�{ f (z)}.

Proof For any w = (w1, w2, . . . , wn) ∈ D̄r and æ = (ρ1, . . . , ρn) with ρ j ≤ R j −
r j ( j = 1, . . . , n), we have by Cauchy’s formula for polydiscs (after taking partial
derivatives) that

DI f (w) =α1! . . . αn !
(2π i)n

∫

∂oDæ(w)

f (z)dz1 · · · dzn
∏n

j=1(z j − w j )
α j+1

= α1! . . . αn !
(2π)nρ

α1
1 · · · ραn

n

∫ 2π

0
· · ·

∫ 2π

0

f (w1 + ρ1e
iθ1 , . . . , wn + ρne

iθn )e−i(
∑n

j=1 α j θ j ) dθ1 · · · dθn .

(2.3)

On the other hand, it follows from Cauchy’s formula for polydiscs that

∫

∂oDæ(w)

f (z)
n∏

j=1

(z j − w j )
α j−1 dz1 · · · dzn

=
∫

∂oDæ(w)

f (z)
∏n

j=1(z j − w j )
α j

∏n
j=1(z j − w j )

dz1 · · · dzn = 0.

Since z j − w j = ρ j eiθ j ( j = 1, 2, . . . , n),

∫ 2π

0
· · ·

∫ 2π

0
f (w1 + ρ1e

iθ1 , . . . , wn + ρne
iθn )ei(

∑n
j=1 α j θ j ) dθ1 · · · dθn = 0.
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Estimates on Partial Derivatives 7337

After taking conjugate of the integral above, we have

∫ 2π

0
· · ·

∫ 2π

0
f (w1 + ρ1eiθ1 , . . . , wn + ρneiθn )e

−i(
∑n

j=1 α j θ j ) dθ1 · · · dθn = 0.

(2.4)

Then by (2.3) and (2.4) we have

DI f (w) =2α1! . . . αn !
(2π)n

∫ 2π

0
· · ·

∫ 2π

0

�{ f (w1 + ρ1e
iθ1 , . . . , wn + ρne

iθn )}e−i(
∑n

j=1 α j θ j ) dθ1 · · · dθn .

Therefore, we have

|DI f (w)| ≤ 2α1! . . . αn !
(2π)nρ

α1
1 · · · ραn

n

∫ 2π

0
· · ·

∫ 2π

0

|�{ f (w1 + ρ1e
iθ1 , . . . , wn + ρne

iθn )}| dθ1 · · · dθn .
(2.5)

Applying (2.5) to the holomorphic function f − A(R, f ) with ρ j = R j − r j ( j =
1, 2, . . . , n) and noting that

A(R, f ) − �{ f (w1 + ρ1e
iθ1 , . . . , wn + ρne

iθn )} ≥ 0,

we have

|DI f (w)| ≤ 2α1! . . . αn !
(2π)n(R1 − r1)α1 · · · (Rn − rn)αn

∫ 2π

0
· · ·

∫ 2π

0

(A(R, f ) − �{ f (w1 + ρ1e
iθ1 , . . . , wn + ρne

iθn )}) dθ1 · · · dθn .

Thus

|DI f (w)| ≤ 2α1! . . . αn !∏n
j=1(R j − r j )α j

(
A(R, f ) − �{ f (w)})

in view of (2.2). Integrating the both sides for w ∈ ∂0Dr, we obtain

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

∣
∣DI f (r1e

iθ1 , . . . , rne
iθn )

∣
∣ dθ1 · · · dθn

≤ 2α1! . . . αn !∏n
j=1(R j − r j )α j

(
A(R, f ) − �{ f (0)})

by (2.2) again. This completes the proof. 	
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7338 B. Q. Li, L. Yang

3 Estimates on Logarithmic Derivatives

Theorem 2.1 implies easily the following estimate (3.1) on logarithmic derivatives of
holomorphic functions without zeros on polydiscs, allowing higher order derivatives.
The method given below for Theorem 3.1 however does not go through for general
holomorphic functions with zeros, which will be treated in a different way, see The-
orem 3.2. We should note that the estimate in Theorem 3.1 is different from the one
in Theorem 3.2 since the latter contains extra terms arising from possible zeros of the
function.

As in one variable, the proximity function m(r, f ) of f for r ∈ R
n+ is defined as

m(r, f ) = 1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+ ∣

∣ f (r1e
iθ1 , . . . , rne

iθn )
∣
∣ dθ1 · · · dθn,

where log+ |x | = max{log |x |, 0}. We have the following

Theorem 3.1 Let f be a holomorphic function without zeros in D̄R ⊂ C
n . Then for

0 < r j < R j ( j = 1, 2, . . . , n) and 1 ≤ j ≤ n,

m

⎛

⎜
⎝r,

∂k f
∂zkj

f

⎞

⎟
⎠ ≤ ck

(

log+ log
M(R, f )

| f (0)| + log+ 1

R j − r j
+ 1

)

, (3.1)

where M(R, f ) = maxz∈D̄R
{| f (z)|} and ck is a positive constant depending only on

k.

Throughout the paper, ck denotes a positive constant depending on k, the actual
value of which may vary at each occurrence.

Proof We prove the theorem by induction on the number k.Without loss of generality,
we take j = 1. First, we assume that k = 1. Since f is a holomorphic function without
zeros in D̄R, we can apply Theorem 2.1 with I = (1, 0, . . . , 0) to log f (z) for a holo-
morphic branch of the logarithm to obtain, noting that A(R, log f ) = logM(R, f ),
that

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

∣
∣
∣

∂ f
∂z1

f

(
r1e

iθ1 , . . . , rne
iθn

)∣∣
∣ dθ1 · · · dθn

≤ 2

R1 − r1

(
logM(R, f ) − log | f (0)|).
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By this inequality and the convex property of log x, we deduce that

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+

∣
∣
∣
∣
∣

∂ f
∂z1

f

(
r1e

iθ1 , . . . , rne
iθn

)
∣
∣
∣
∣
∣
dθ1 · · · dθn

≤ 1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log

(∣
∣
∣
∣
∣

∂ f
∂z1

f

(
r1e

iθ1 , . . . , rne
iθn

)
∣
∣
∣
∣
∣
+ 1

)

dθ1 · · · dθn

≤ log

(
1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

(∣
∣
∣
∣
∣

∂ f
∂z1

f

(
r1e

iθ1 , . . . , rne
iθn

)
∣
∣
∣
∣
∣
+ 1

)

dθ1 · · · dθn
)

≤ log+
(

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

(∣
∣
∣
∣
∣

∂ f
∂z1

f

(
r1e

iθ1 , . . . , rne
iθn

)
∣
∣
∣
∣
∣

)

dθ1 · · · dθn
)

+ log 2

≤ log+ 1

R1 − r1
+ log+ log

M(R, f )

| f (0)| + 3 log 2.

Therefore, (3.1) is valid when k = 1.
Suppose that (3.1) is true for k = 1, 2, . . . , l − 1. Let us prove that it is also valid

for k = l. It is easy to check that

∂ l

∂zl1
(log f ) = ∂ l−1

∂zl−1
1

(
fz1
f

)

=
fzl1
f

+ Pl

(
fz1
f

,
fz21
f

, . . . ,
fzl−1

1

f

)

, (3.2)

where Pl is a polynomial of degree l and f
z j1

= ∂ j f

∂z j1
.

By (3.2) and the property of log+ x we have

log+
∣
∣
∣
∣
∣

fzl1
f

∣
∣
∣
∣
∣
≤ cl

⎧
⎨

⎩

l−1∑

j=1

log+
∣
∣
∣
∣
∣

f
z j1

f

∣
∣
∣
∣
∣
+ 1

⎫
⎬

⎭
+ log+

∣
∣
∣
∣
∣

∂ l

∂zl1
(log f )

∣
∣
∣
∣
∣
. (3.3)

Applying Theorem 2.1 with I = (l, 0, . . . , 0) to log f (z) we have

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

∣
∣ ∂ l

∂zl1
(log f )(r1e

iθ1 , . . . , rne
iθn )

∣
∣ dθ1 · · · dθn

≤ 2l!
(R1 − r1)l

(
logM(R, f ) − log | f (0)|).

Similarly, by this inequality and the convex property of log x, we deduce that

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+ | ∂ l

∂zl1
(log f )(r1e

iθ1 , . . . , rne
iθn )| dθ1 · · · dθn

≤ l log+ 1

R1 − r1
+ log+ log

M(R, f )

| f (0)| + log(4l!).
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Here we omit the details in order to avoid unnecessary repetition. This together with
(3.3) and the hypothesis of induction yield that

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+

∣
∣
∣
∣
∣
∣
∣

∂l f
∂zlj

f

(
r1e

iθ1 , . . . , rne
iθn

)
∣
∣
∣
∣
∣
∣
∣
dθ1 · · · dθn

≤ cl

(

log+ log
M(R, f )

| f (0)| + log+ 1

R j − r j
+ 1

)

,

where cl denotes a positive constant depending on l. Thus (3.1) is also true for k = l.
This completes the proof. 	


We next derive a more general estimate on logarithmic derivatives for holomorphic
functions in polydiscs, allowing zeros and higher order partial derivatives.

Theorem 3.2 Let f be a holomorphic function in D̄R ⊂ C
n with f (0) �= 0 being a

finite number. Then for 0 < r j < R j and 1 ≤ j ≤ n,

m

⎛

⎜
⎝r,

∂k f
∂zkj

f

⎞

⎟
⎠

≤ ck

(

log+ log
M(R, f )

| f (0)| + log+ 1

R j − r j
+ log+ R j + log+ 1

r j
+ 1

)

(3.4)

where ck is a positive constant depending only on k.

As mentioned in Sect. 1, the use of the maximum modulus on the estimate (3.4)
enables us to easily extend the bound fromone dimension to higher dimensions (see the
proof below); moreover, the maximummodulus can also be replaced by the proximity
function m(R, f ) for a more familiar form. We refer to [26] for related but different
results with very involved proofs.

Corollary 3.3 Under the same conditions of Theorem 3.2, we have for 0 < r j <

R j ( j = 1, 2, . . . , n) and 1 ≤ j ≤ n that

m

⎛

⎜
⎝r,

∂k f
∂zkj

f

⎞

⎟
⎠ ≤ ck

(
log+ m(R, f ) + log+ log+ 1

| f (0)|

+
n∑

j=1

(

log+ 1

R j − r j
+ log+ R j + log+ 1

r j
+ 1

)

, (3.5)

where ck is a positive constant depending only on k.
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Proof of Theorem 3.2 Assume for the moment that the theorem holds when n = 1.
Assume also, without loss of generality, that j = 1. Rewrite ∂k f

∂zk1
(r1eiθ1 , r2eiθ2 , . . . ,

rneiθn ) as g(k)(z) in the single variable z evaluated at r1eiθ1 , where g(z) =
f (z, r2eiθ2 , . . . , rneiθn ). Then applying the theorem when n = 1 to g in |z| ≤ r1
we immediately obtain, thanks to the maximum modulus with M(r1, g) ≤ M(R, f ),
that

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+

∣
∣
∣
∣
∣
∣
∣

∂k f
∂zk1

f

(
r1e

iθ1 , . . . , rne
iθn

)

∣
∣
∣
∣
∣
∣
∣
dθ1 · · · dθn

≤ ck

(

log+ 1

R1 − r1
+ log+ 1

r1
+ log+ R1 + 1

+ 1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log+ log

M(R, f )

|g(0)| dθ2 · · · dθn
)

. (3.6)

To estimate the last term in (3.6) with g(0) = f (0, r2eiθ2 , . . . , rneiθn ), we use the
convexity of the logarithmic function to deduce that

1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log+ log

M(R, f )

|g(0)| dθ2 · · · dθn

≤ 1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log

{

log
M(R, f )

|g(0)| + 1

}

dθ2 · · · dθn

≤ log

{
1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log

M(R, f )

|g(0)| dθ2 · · · dθn + 1

}

≤ log+ 1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log

M(R, f )

|g(0)| dθ2 · · · dθn + log 2

= log+{logM(R, f )

− 1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log | f (0, r2eiθ2 , . . . , rneiθn )|dθ2 · · · dθn} + log 2.

(3.7)

We claim that for any holomorphic function G in D̄r ⊂ C
n with G(0) �= 0,

log |G(0)| ≤ 1

2π

∫ 2π

0
· · ·

∫ 2π

0
log

∣
∣G(r1e

iθ1 , . . . , rne
iθn )

∣
∣dθ1 · · · dθn . (3.8)

When n = 1, this holds clearly by applying Cauchy’s formula (2.2) (taking the real

parts after applying the formula) to the function G(z)
∏m

j=1
r2−ā j z
r(z−a j )

if G has zeros

a1, . . . , am in |z| < r , noting that | z̄z−ā j z
r(z−a j )

| = 1 when |z| = r . When n > 1, repeatedly
using this one variable result we deduce that
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7342 B. Q. Li, L. Yang

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log |G(r1e

iθ1 , r2e
iθ2 , . . . , rne

iθn )|dθ1 · · · dθn

≥ 1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log |G(0, r2e

iθ2 , r3e
iθ3 , . . . , rne

iθn )dθ2 · · · dθn · · ·
· · ·

≥ log |G(0, . . . , 0)|.

This proves the claim. Applying (3.8) to the integral in the last inequality of (3.7) we
obtain that

1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log+ log

M(R, f )

|g(0)| dθ2 · · · dθn

≤ log+ log
M(R, f )

f (0)
+ log 2.

This and (3.6) yield the conclusion (3.4) of the theorem.
It remains to prove (3.4) when n = 1, which was assumed to be true above. We

include a proof using Theorem 3.1 and invoking Cauchy’s formula only. To this end,
take ρ = R+r

2 , and assume a1, . . . , as are the zeros of f in |z| ≤ ρ. Let g(z) =
f (z)h(z), where

h(z) =
s∏

j=1

ρ2 − ā j z

ρ(z − a j )
.

Then g has no zeros in |z| ≤ ρ and |h(z)| = 1 on |z| = ρ. It is easy to check (or by
the Leibniz rule),

( f h)(k)

f h
= f (k)

f
+ c1

f (k−1)

f

h′

h
+ · · · + ck−1

f ′

f

h(k−1)

f
+ h(k)

h
, (3.9)

where c j are positive constants depending only on k (actually c j = ( j
k

)
), and also for

k ≥ 1,

(
h′

h

)(k−1)

= h(k)

h
+ Pk

(
h′

h
, . . . ,

h(k−1)

h

)

, (3.10)

where Pl is a polynomial of degree k. It is clear that

h′

h
=

s∑

j=1

( −1

z − a j
− ā j

ρ2 − ā j z

)
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and thus for k ≥ 1 and |z| = r ,

∣
∣
∣
∣
∣

(
h′

h

)(k−1)
∣
∣
∣
∣
∣
≤ (k − 1)!

s∑

j=1

(
1

|z − a j |k + ρk

|ρ2 − ā j z|k
)

≤ (k − 1)!
(

s

(d(z))k
+ 1

(ρ − r)k

)

,

where d(z) is the least of the distances |z − a j |, j = 1, 2, . . . , s. To estimate the term
with d(z) we follow the known method using the following elementary lemma (see
e.g., [8], p. 35): Let z1, . . . , zl be l points in the complex plane and let d(z) be the
least of the distances |z − z j |, j = 1, . . . , l. Then

1

2π

∫ 2π

0
log+ r

d(reiθ )
dθ ≤ 2 log l + 1

2
.

It follows from this lemma that for k ≥ 1,

m

(

r ,

(
h′

h

)(k−1)
)

≤ ck

(

log s + log+ 1

r
+ log+ 1

ρ − r
+ 1

)

. (3.11)

Applying Cauchy’s formula (2.2) to the function

log

⎛

⎝ f (z)
q∏

j=1

R2 − ā j z

R(z − a j )

⎞

⎠ ,

where a1, . . . , as, as+1, . . . , aq are the zeros of f in |z| ≤ R, we have that

log
(
| f (0)|

( R

ρ

)s) ≤ log
(
| f (0)|

∏

|a j |≤ρ

R

|a j |
)

≤ log
(
| f (0)|

q∏

j=1

R

|a j |
)

= 1

2π

∫ 2π

0
log | f (Reiθ )|dθ.

Thus, s log R
ρ

≤ log M(R, f )
| f (0)| . Noting that log R

ρ
= ∫ R

ρ
1
t dt ≥ R−ρ

R , we obtain that

log s ≤ log log
M(R, f )

| f (0)| + log
R

R − ρ
.

This together with (3.11) yields that for k ≥ 1,
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m

(

r ,

(
h′

h

)(k−1)
)

≤ ck

(

log log
M(R, f )

| f (0)| + log R + log+ 1

r
+ log+ 1

R − r
+ 1

)

(3.12)

in view of the fact that ρ = R+r
2 . We conclude by (3.10) and a simple induction on k

that

m

(

r ,
h(k)

h

)

≤ ck

{

log log
M(R, f )

| f (0)| + log+ R + log+ 1

r
+ log+ 1

R − r
+ 1

}

. (3.13)

In (3.9), the function f h is holomorphic without any zeros and thus the estimate (3.4)
already holds for f h by Theorem 3.1. That is, for k ≥ 1 we have that

m

(

r ,
( f h)(k)

f h

)

≤ ck

{

log+ log
M(ρ, h f )

( f h)(0)
+ log+ 1

ρ − r
+ log+ ρ + 1

}

≤ ck

{

log+ log
M(ρ, f )

| f (0)| + log+ 1

ρ − r
+ log+ ρ + log+ 1

r
+ 1

}

in view of the fact that |h(0)| ≥ 1 and h(z) = 1 when |z| = ρ. This estimate when
k = 1 and the estimate (3.13) when k = 1 yield the estimate (3.4) when k = n = 1.
Using (3.9) with an induction on k, we obtain the conclusion (3.4) when n = 1. This
completes the proof. 	

Proof of Corollary 3.3 The conclusion clearly follows from the following fact, which
will be proved using Cauchy’s formula: Suppose that f is a holomorphic function in
D̄R ⊂ C

n . Then,

logM(r, f )

≤
⎛

⎝
n∏

j=1

R j + r j
R j − r j

⎞

⎠ 1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+ | f (R1e

iθ1 , . . . , Rne
iθn )| dθ1· · ·dθn,

(3.14)

where r = (r1, . . . , rn) and R = (R1, . . . , Rn) with r j < R j (1 ≤ j ≤ n). This fol-
lows from an induction on n.When n = 1, this is awell-known result (see e.g., [8]).We

however include a direct proof for completeness. Letting h(z) = R2−ā j z
R(z−a j )

, where a j ’s

are the zeros of f in |z| ≤ R, and applyingCauchy’s formula to R2−|w|2
R2−zw̄

log( f (z)h(z)),
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where | f (w)| = M(r, f ) for some w with |w| = r < R, we deduce that

log( f (w)h(w)) = 1

2π i

∫

|z|=R

log( f (z)h(z))

z − w

R2 − |w|2
zz̄ − zw̄

dz

= 1

2π

∫ 2π

0
log( f (Reiθ )h(Reiθ ))

R2 − |w|2
|Reiθ − w|2 dθ,

in view of the fact that |h(z)| = 1 on |z| = R. Taking the real parts and noting that
|h(w)| ≥ 1, we obtain that

logM(r, f ) ≤ R + r

R − r

1

2π

∫ 2π

0
log+ | f (Reiθ )|dθ.

We then use an induction on n. It is true already when n = 1. Suppose that
f (ζ1, . . . , ζn) = M(r, f ) with r = (r1, . . . , rn) and |ζ j | ≤ r j , 1 ≤ j ≤ n. Then
by the induction hypothesis we have that

log | f (ζ1, . . . , ζn)|

≤
n∏

j=2

R j + r j
R j − r j

1

(2π)n−1

∫ 2π

0
· · ·

∫ 2π

0
log+ f (ζ1, R2e

iθ1 , . . . , Rne
iθn ) dθ2 · · · dθn

≤
n∏

j=1

R j + r j
R j − r j

1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log+ f (R1e

iθ1 , . . . , Rne
iθn ) dθ1 · · · dθn .

4 Entire Solutions of PDEs and Picard’s Theorem

Characterizing complex analytic solutions of differential equations is a topic of a long
history (see e.g., the monographs [9,12]). It is well known that there is no systematic
way to solve nonlinear PDEs. Characterization of entire solutions of a class of PDEs
(see (4.2) and (4.6)) will be given by utilizing the estimates from the previous sections;
this is motivated by its connection to seemingly unrelated Picard’s theorem on entire
functions.

Recall that the famous Picard theorem ([19]) for entire functions asserts that a
nonconstant entire function inCmust assume every complex number with at most one
exception, which also immediately implies, by a simple transform, that a nonconstant
meromorphic function inC assumes every complexvalueswith atmost twoexceptions.
Later in a separate paper ([20]), Picard further quantified his theorem and proved the
following

Theorem C (Picard’s Theorem) An entire function that is not a polynomial must
assume every complex number with at most one exception infinitely often.

Picard’s theorem is among the most striking results in complex analysis and plays a
decisive role in the development of the theory of entire and meromorphic functions,
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with various proofs and extensions, see e.g., [1,4,5,13,31] and see also [25] for an
exposition (the history, methods and references) of the theorem. In [16], a connection
between Picard’s theorem and entire solutions of a differential equation was given,
which suggests the following heuristic: A Picard-type theorem is apt to imply a char-
acterization of entire solutions of a differential equation, and vice versa. Inspired by
this, we establish the following

Theorem 4.1 Consider the ordinary differential equation

p(z) f ′(z) + a(z)g( f (z)) = 0 (4.1)

where p is a nonzero polynomial, a(z) a nonzero entire function inC, and g a nonzero
meromorphic function in C with at least two distinct zeros. Then an entire solution f
to (4.1) must be a polynomial in C.

While Theorem 4.1 and TheoremC seem unrelated, they turn out to be equivalent in
the sense that one implies the other. This equivalence enables us to discover more gen-
eral results on differential equations and also new Picard-type theorems (see below).
As a matter of fact, we are able to prove the equivalence between Theorems 4.2 and
4.3, which are natural higher dimensional versions of Theorem C and Theorem 4.1,
respectively.

We say that the zero set Z( f ) (counted with multiplicity) of a function f in C
n is

transcendental if Z( f ) is not contained in the zero set of a nonzero polynomial. In the
one variable case, that Z( f ) is transcendental coincides with the statement that Z( f )
contains infinitely many points.

Theorem 4.2 (AC
n-Version of Picard’s Theorem) Suppose that f is an entire function

in C
n that is not a polynomial. Then for every complex number a with at most one

exception, the zero set Z( f − a) must be transcendental. In particular, when n = 1,
f must assume every complex number with at most one exception infinitely often.

Theorem 4.3 Consider the partial differential equation

p(z)
∂ f (z)

∂z j
+ a(z)g( f (z)) = 0 (4.2)

in Cn, where 1 ≤ j ≤ n, p(z) is a nonzero polynomial and a(z) an entire function in
C
n, and g a nonzero meromorphic function in C with at least two distinct zeros. Then

an entire solution f of (4.2) must be a polynomial in Cn.

We now give the proof of the equivalence between Theorems 4.2 and 4.3, which,
as a consequence, gives the equivalence between Theorems C and 4.1.

Theorem 4.3 �⇒ Theorem 4.2. Assume that f is an entire function that is not a
polynomial such that Z( f − c) and Z( f − d) are not transcendental, where c, d
are two distinct complex numbers. Then it is clear by the definition that there exists
a nonzero polynomial p(z) in C

n such that Z( f − c) ∪ Z( f − d) ⊂ Z(p). Thus,

a(z) := p(z) ∂ f (z)
∂z j

( f −c)( f −d)
is entire. Clearly,
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p(z)
∂ f (z)

∂z1
− a(z)( f − c)( f − d) = 0,

which is of the form in (4.2). Thus, f must be polynomial by Theorem 4.3, a contra-
diction. 	

Theorem 4.2 �⇒ Theorem 4.3. Without loss of generality, we assume that j = 1
and then the given Eq. (4.2) is of the form

p(z)
∂ f (z)

∂z1
+ a(z)g( f (z)) = 0. (4.3)

Since the meromorphic function g has at least two distinct zeros, say c, d, we can
write g(z) = (z − c)m(z − d)nh(z), where m, n are two positive integers and h is a
nonzero meromorphic function in C and holomorphic at c and d with h(c)h(d) �= 0.
We can then write (4.3) as

p(z)
∂ f (z)

∂z1
= −a(z)( f (z) − c)m( f (z) − d)nh( f (z)). (4.4)

Suppose that f is an entire solution of this equation and f is not a polynomial. We
will derive a contradiction below.

We may assume that p(z) ∂ f (z)
∂z1

�≡ 0, since otherwise f ≡ c or f ≡ d, a contradic-

tion. Thus, there is a point a = (a1, a2, . . . , an) such that (p
∂ f
∂z1

)(a1, a2, . . . , an) �= 0,

which implies that both p and ∂ f (z)
∂z1

do not vanish at point a. In particular, the one
variable function F(z1) := f (z1, a2, . . . , an), the restriction of f to the first variable
when a′ = (a2, . . . , an) is fixed, is a nonconstant entire function in z1 and p(z1, a′)
is a nonzero polynomial in z1. We have from (4.4) that

p(z1, a
′)F ′(z1) = −a(z1, a

′)(F(z1) − c)m(F(z1) − d)nh(F(z1)). (4.5)

By Picard’s theorem, at least one of the nonconstant entire functions F(z1) − a and
F(z1) − b has infinitely many zeros. We can obviously take such a zero ζ so that it
is not a zero of p(z1, a′). It is clear that both sides of (4.5) vanish at ζ with however
different multiplicities due to the derivative F ′(z1), which is absurd. This completes
the proof. 	


We next give a proof of Theorem 4.3 independent of Picard’s theorem. Due to its
equivalence to Theorem 4.2 we thus furnish another proof of Theorem C and thus
Picard’s theorem. The method turns out to be better than what we desired and applies
to more general higher order partial differential equations, which clearly includes the
one in Theorem 4.3 as a special case:

Theorem 4.4 Consider the partial differential equation

m∑

|α|=1

aα(z)
∂ |α| f (z)

∂zα11 · · · ∂αn zn
+ a(z)g( f (z)) = 0 (4.6)
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in a polydisc D̄R ⊆ C
n,where aα’s are polynomials (not all zeros) and a(z) a nonzero

holomorphic function in D̄R, and g a nonzero meromorphic function inCwith at least
two distinct zeros. Then a holomorphic solution f in D̄R of (4.6) satisfies that

m(r, f ) = O

⎧
⎨

⎩
log+ m(R, f ) +

n∑

j=1

log
1

R j − r j

⎫
⎬

⎭
, (4.7)

as r j → R j , where r = (r1, . . . , rn) and R = (R1, . . . , Rn) with r j < R j <

+∞, 1 ≤ j ≤ n. In particular, if R j = +∞, 1 ≤ j ≤ n and f is an entire solution
of (4.6) in Cn, then f must be a polynomial in Cn.

Proof Suppose that f is a nonconstant holomorphic solution of the PDE (4.6) (If f
is constant, the conclusion already holds). Since the nonzero meromorphic function g
in C has at least two distinct zeros, say c, d, we can write g(z) = (z − c)(z − d)h(z),
where h is a nonzero meromorphic function in C with h(c) �= ∞ and h(d) �= ∞.
Thus, the given equation can be written as

m∑

|α|=1

aα(z)
∂ |α| f (z)

∂zα11 · · · ∂zαnn = b(z)( f (z) − c)( f (z) − d), (4.8)

where b(z) = −a(z)h( f (z)). We claim that the function b(z) must be an entire
function. In fact, if b(z) is not holomorphic at a pointw inCn , then h is not holomorphic
at f (w) since a(z) is entire. Thus, f (w) �= c, d since h is holomorphic at c, d. Then
the right-hand side of (4.8) and thus the left-hand side of (4.8) is not holomorphic at
w, which is impossible since the left-hand side of (4.8) is an entire function. We now
write (4.6) as

m∑

|α|=1
aα

∂ |α| f (z)
∂z

α1
1 ···∂zαnn

( f (z) − c)( f (z) − d)
= b(z). (4.9)

Corollary 3.3, by a standard argument using induction on the order of derivatives,
implies that for any constant A,

m

⎛

⎜
⎝r,

∂ |α| f (z)
∂z

α1
1 ···∂zαnn
f − A

⎞

⎟
⎠ = O

⎛

⎝log+ m(R, f ) +
n∑

j=1

log
1

R j − r j

⎞

⎠ (4.10)

as r j → R j .
Note that log b = log+ b− log+ 1

b . Since b is entire, we have, in view of (3.8), that

m

(

r,
1

b

)

= m(r, b) − 1

2π

∫ 2π

0
· · ·

∫ 2π

0
log

∣
∣b(r1e

iθ1 , . . . , rne
iθn )

∣
∣dθ1 · · · dθn

≤ m(r, b) + O(1).
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(When using (3.8), if b(0) = 0 we can easily take a ζ such that b(ζ ) �= 0 and then
replace z by z + ζ throughout the proof.) We thus deduce from (4.10) that

m

(

r,
1

b

)

≤ m(r, b) + O(1)

≤
m∑

|α|=1

m

⎛

⎝r,
∂ |α| f (z)

∂zα11 · · · ∂zαnn
(

1

f − c
− 1

f − d

)

+ O

⎛

⎝
n∑

j=1

log r j

⎞

⎠

⎞

⎠

= O

⎧
⎨

⎩
log+ m(R, f ) +

n∑

j=1

log
1

R j − r j

⎫
⎬

⎭

as r j → R j . Write (4.9) as

f − c =

m∑

|α|=1
aα

∂ |α| f (z)
∂z

α1
1 ···∂zαnn

b(z)( f − d)
.

We obtain using (4.10) again that

m(r, f ) ≤ m(r, f − c) + O(1)

≤ m

(

r,
1

b

)

+
m∑

|α|=1

m

⎛

⎜
⎝r,

∂ |α| f (z)
∂z

α1
1 ···∂zαnn

( f − d)

⎞

⎟
⎠ + O(1)

= O

⎧
⎨

⎩
log+ m(R, f ) +

n∑

j=1

log
1

R j − r j

⎫
⎬

⎭
,

as r j → R j . This proves (4.7).
When the polydisc D̄R is the entire space Cn and f is an entire solution, the term
1

R j−r j
in the above proof can clearly be replaced by log R j . In fact, parallel to (4.10),

it follows from Corollary 3.3 that

m

⎛

⎜
⎝r,

∂ |α| f (z)
∂z

α1
1 ···∂zαnn
f − A

⎞

⎟
⎠ = O

⎛

⎝log+ m(R, f ) +
n∑

j=1

log R j

⎞

⎠ (4.11)

as R j → ∞. We then have, by the above arguments, that

m(r, f ) = O

⎧
⎨

⎩
log+ m(R, f ) +

n∑

j=1

log R j

⎫
⎬

⎭
, (4.12)
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as R j → ∞.We next prove that f must be a polynomial in this case.Wewill utilize the
following version of the Borel Lemma (see [16], p. 449; cf. [8], p. 38): Let φ(r) > 0
be a function of r ≥ r0 such that φ is bounded on |z| ≤ r for large r and A > 1 is a
constant. Then there is a sequence {rl} with r0 < rl → ∞ as l → ∞ such that

φ(rl + 1

φ(rl)
) ≤ Aφ(rl).

Taking r = (r , r , . . . , r) and R = (R, R, . . . , R) with R = r + 1
φ(r) , where φ(r) =

m(r, f ),we then obtain a sequence {rl}with rl → ∞ as l → ∞ such thatm(R, f ) ≤
Am(r, f ) for some A > 1 when r = rl . It then follows from (4.12) that

m(r, f ) = O(log+ m(r, f ) + log r)

and thusm(r, f ) = O(log r)when r = rl and l → ∞.Write rl = 2tl , tl = (tl , . . . , tl),
and rl = (rl , . . . , rl). Then we have, in view of (3.14), that

logM(tl , f ) ≤
(
2tl + tl
2tl − tl

)n

m(rl , f )

= O(log rl) = O(log tl).

Thus, M(tl , f ) ≤ AtNl for some constants C, N > 0, and all large l. For any w ∈ C
n ,

we then deduce by Cauchy’s formula (2.1) that for any multi-index I = (α1, . . . , αn)

with |I | > N ,

|DI f (w)| =
∣
∣
∣
∣
∣
α1! . . . αn !
(2π i)n

∫

∂oDtl (w)

f (z)dz1 · · · dzn
∏n

j=1(z j − w j )
α j+1

∣
∣
∣
∣
∣

≤ α1! . . . αn !
(2π)n

C(tl + ||w||)N
t |I |l

→ 0

as l → ∞. Thus, DI f (w) = 0 for all I with |I | > N . This is true for all w ∈ C
n .

Hence, f is a polynomial by integration. This completes the proof. 	

To conclude the paper, we note that the functions in our interests of the present paper

are holomorphic or entire functions.Whilemeromorphic functionsmay be considered,
some results obtained above however do not hold any more; e.g., the meromorphic
function f (z) = 1

ez1+···+zn−1
is a solution of the equation ∂ f (z)

∂z1
+ a(z)g( f (z)) = 0 in

C
n , which is of the form (4.2) in Theorem 4.3 with a(z) = p(z) = 1 and g(w) =

w(w + 1). But, f is transcendental.
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