
The Journal of Geometric Analysis (2021) 31:5131–5145
https://doi.org/10.1007/s12220-020-00472-5

Hankel Measures for Hardy Spaces

Guanlong Bao1 · Fangqin Ye2 · Kehe Zhu3

Received: 29 April 2020 / Published online: 17 July 2020
©Mathematica Josephina, Inc. 2020

Abstract
In this paper, we study the so-called Hankel measures on the open unit disk. We obtain
several new characterizations for such measures and answer a question raised by J.
Xiao in 2000.
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1 Introduction

Let D be the open unit disk in the complex plane C and let H(D) be the space of
analytic functions in D. Recall that for 0 < p < ∞ the Hardy space H p consists of
those functions f ∈ H(D) such that

‖ f ‖H p = sup
0<r<1

(
1

2π

∫ 2π

0
| f (reiθ )|p dθ

)1/p

< ∞.
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Every function f ∈ H p has non-tangential limits f (ζ ) for almost every ζ on the unit
circle T. This enables us to view H p as a closed subspace of L p(T, dθ). See [8,11]
for the theory of Hardy spaces.

A positive Borel measure μ on D is called a Carleson measure if there exists a
constant C = Cp > 0 such that

∫
D

| f (z)|p dμ(z) ≤ C‖ f ‖p
H p

for all f ∈ H p. Carleson measures play a fundamental role in the theory of Hardy
spaces. According to a celebrated theorem of L. Carleson, the definition of Carleson
measures is actually independent of the exponent p used above. More specifically,
a positive Borel measure μ on D is a Carleson measure if and only if there exists a
constant C > 0 such that μ(SI ) ≤ C |I | for all arcs I ⊂ T, where |I | is the length of
I and

SI =
{
z = rei t : 0 < 1 − r < |I |, ei t ∈ I

}

is the so-called Carleson box based on I .
Motivated by the study of Hankel matrices and Hankel operators on the Hardy

space and in parallel to the notion of Carleson measures, Xiao introduced the notion
of Hankel measures on the unit disk in [20], namely, a complex Borel measure μ on
D is called a Hankel measure if there exists a constant C > 0 such that

∣∣∣∣
∫
D

f 2(z)dμ(z)

∣∣∣∣ ≤ C‖ f ‖2H2 (1)

for f ∈ H2 (or more precisely, for f in a dense subspace of H2). It is clear that every
Carleson measure is a Hankel measure and every Hankel measure must be finite.
Several characterizations of Hankel measures are obtained in [20] in terms of BMOA
defined in Sect. 2 and certain integral transforms of μ.

In this paper, we further explore the notion of Hankel measures. We obtain several
new characterizations of Hankel measures and settle a question that was left open by
Xiao in [20].

2 Some Integral Transforms of Measures

It is well known that a positive Borel measure μ on D is a Carleson measure if and
only if the following Poisson-type transform of μ,

P(μ)(w) =
∫
D

1 − |w|2
|1 − wz|2 dμ(z),

is a bounded function of w on D. See [8,11,26] for example.
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Hankel Measures for Hardy Spaces 5133

We consider two similar integral transforms for complex Borel measures μ on the
open unit disk, that is,

P1(μ)(w) =
∫
D

1

1 − wz
dμ(z), w ∈ D,

and

P2(μ)(w) =
∫
D

1 − |w|2
(1 − wz)2

dμ(z), w ∈ D.

It is clear that every Hankel measure μ has the property that

sup
w∈D

|P2(μ)(w)| = sup
w∈D

∣∣∣∣
∫
D

1 − |w|2
(1 − wz)2

dμ(z)

∣∣∣∣ < ∞. (2)

It was further asked in [20] whether the above condition is sufficient for μ to be a
Hankel measure. We show in this section that the answer to this question is negative.

We say that an L1(T)-function f belongs to BMO , the space of functions having
bounded mean oscillation on T, if

sup
I⊆T

1

|I |
∫
I

∣∣∣∣ f (eiθ ) − 1

|I |
∫
I
f (ei t ) dt

∣∣∣∣ dθ < ∞.

Let BMOA be the space of functions f ∈ H1 whose boundary values have bounded
mean oscillation on T. It is well known (cf. [3,12]) that the space BMOA consists of
those functions f ∈ H(D) satisfying

‖ f ‖2BMOA = sup
a∈D

∫
D

| f ′(z)|2(1 − |σa(z)|2) dA(z) < ∞,

where

d A(z) = 1

π
dxdy = 1

π
r dr dθ, z = x + iy = reiθ ,

and

σa(z) = a − z

1 − az

is the Möbius transformation of D interchanging a and 0.
We begin with the following characterization of Hankel measures from [20].

Theorem 1 Let μ be a complex Borel measure on D. Then the following conditions
are equivalent.

(a) μ is a Hankel measure.
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5134 G. Bao et al.

(b) There exists a positive constant C such that

∣∣∣∣
∫
D

f (z)dμ(z)

∣∣∣∣ ≤ C‖ f ‖H1

for all f ∈ H1.
(c) P1(μ) is in BMOA.

Recall that the Bloch space B consists of those functions f ∈ H(D) for which

‖ f ‖B = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

It is well known that BMOA is a proper subspace ofB. In particular, every function in
BMOA has boundary values almost everywhere,while there are examples of functions
in B that have no radial limit at every point on T. See [26].

Lemma 2 Let μ be a complex Borel measure on D. Then the following two statements
are equivalent.

(a) The measure μ satisfies condition (2), that is, P2(μ) ∈ L∞(D).
(b) The function P1(μ) belongs to the Bloch space B.
Proof For w ∈ D we have

wP1(μ)(w) =
∫
D

w

1 − wz
dμ(z) =

∞∑
n=0

(∫
D

zn dμ(z)

)
wn+1.

It follows that

sup
w∈D

(1 − |w|2)| (wP1(μ)(w))′ |

= sup
w∈D

(1 − |w|2)
∣∣∣∣∣

∞∑
n=0

(n + 1)

(∫
D

zn dμ(z)

)
wn

∣∣∣∣∣
= sup

w∈D

∣∣∣∣
∫
D

1 − |w|2
(1 − wz)2

dμ(z)

∣∣∣∣
= sup

w∈D

∣∣∣∣
∫
D

1 − |w|2
(1 − wz)2

dμ(z)

∣∣∣∣ .
Consequently, the function w 	→ wP1(μ)(w) belongs to B if and only if condition
(2) holds for μ.

It is easy to see that P1(μ) ∈ B if and only if the functionw 	→ wP1(μ)(w) belongs
to B. This proves the desired result. ��

Recall that the Dirichlet-type space D1
0 consists of functions f ∈ H(D) with

‖ f ‖D1
0

= | f (0)| +
∫
D

| f ′(z)| dA(z) < ∞.
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Equivalently, D1
0 is the space of functions f ∈ H(D) satisfying

∫
D

| f ′′(z)|(1 − |z|2) dA(z) < ∞.

It is well known that D1
0 � H1; see [9] for example.

Denote by X the space of functions f ∈ H(D) admitting an integral representation

f (w) =
∫
D

dμ(z)

1 − wz
, w ∈ D,

where μ is a complex Borel measure with |μ|(D) < ∞. For any non-negative integer
n, it is easy to check that

wn =
∫
D

(n + 1)zn dA(z)

1 − wz
, w ∈ D.

Consequently, every polynomial belongs to X .

Lemma 3 Let f ∈ D1
0 and g(z) = z4 f (z), z ∈ D. Then g ∈ X.

Proof Note that

g′(z) = 4z3 f (z) + z4 f ′(z).

Since f ∈ D1
0 and D1

0 ⊆ H1 (and H1 is contained in the Bergman space A1 of area
integrable analytic functions on D), we see that g ∈ D1

0 as well.
For any h ∈ D1

0 with h(0) = h′(0) = 0, it is easy to check that

h(z) =
∫
D

(1 − |w|2)h′′(w)

w2(1 − zw)
dA(w), z ∈ D. (3)

See [26]. Let h = g. We obtain

g(z) =
∫
D

(1 − |w|2)[12w2 f (w) + 8w3 f ′(w) + w4 f ′′(w)]
w2(1 − zw)

dA(w).

Define a complex Borel measure μ by

dμ(w) = (1 − |w|2)[12w2 f (w) + 8w3 f ′(w) + w4 f ′′(w)]
w2 dA(w).

Then |μ|(D) < ∞ and

g(z) =
∫
D

dμ(w)

1 − zw
, z ∈ D.

This shows that g ∈ X . ��
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5136 G. Bao et al.

Let ϕ : D → D be an analytic self-map. The function ϕ induces a composition
operator Cϕ : H(D) → H(D), namely, Cϕ f = f ◦ ϕ. It is well known that Cϕ maps
the Bloch space back into itself.

We can now prove the main result of this section, which settles a question raised
by Xiao in [20].

Theorem 4 There exists a complex Borel measureμ onD such that condition (2) holds
but μ is not a Hankel measure.

Proof Consider the function ϕ(z) = (1+ z)/2, which is an analytic self-map of D and
satisfies

|ϕ(z) − ϕ(w)| ≤ |z − w|
for all z and w in D. By [6, p. 2988], ϕ fails to have the so-called Bloch-to-BMOA
pullback property, namely, there exists a function f ∈ B such that g = f ◦ ϕ is not in
BMOA. Since Cϕ is bounded on B, we have g ∈ B \ BMOA.

By [24, Theorem 1], if φ is an analytic self-map ofD, then the composition operator
Cφ is bounded from B to D1

0 if and only if

∫
D

|φ′(z)|
1 − |φ(z)|2 dA(z) < ∞. (4)

We proceed to show that (4) holds for the linear function ϕ above.
Let

I =
∫
D

|ϕ′(z)|
1 − |ϕ(z)|2 dA(z).

Then

I = 2

π

∫ 1

0
r ddr

∫ 2π

0

1

3 − r2 − 2r cos θ
dθ

= 4

π

∫ 1

0
rdr

∫ π

0

1

3 − r2 − 2r cos θ
dθ

= 2

π

∫ 1

0
dr

∫ π

0

1

Cr − cos θ
dθ,

where Cr = (3 − r2)/(2r) > 1. We make the change of variables x = tan(θ/2), so
that

dθ = 2

1 + x2
dx, cos θ = 1 − x2

1 + x2
.

It is clear that
∫ π

0

1

Cr − cos θ
dθ = 2

Cr − 1

∫ +∞

0

dx

1 + Cr+1
Cr−1 x

2
= π√

C2
r − 1

.

123



Hankel Measures for Hardy Spaces 5137

It follows that

I = 2
∫ 1

0

dr√
C2
r − 1

≤ 2
√
2

∫ 1

0

dr√
(1 − r)(r + 3)

< ∞.

Thus we have g ∈ D1
0. Consequently, g ∈ (D1

0 ∩B) \ BMOA. Let h(z) = z4g(z).
It follows from Lemma 3 that h ∈ X . Thus there exists a complex Borel measure
μ with |μ|(D) < ∞ such that h = P1(μ). It is easy to see that h ∈ B \ BMOA.
Combining this with Theorem 1 and Lemma 2, we obtain the desired result. ��

Note that the essential part of the proof above is that there exists a function in
(D1

0 ∩ B) \ BMOA. It is natural to try to look for a lacunary series for this purpose.
But it can be shown that there are no lacunary series in the set (D1

0 ∩ B) \ BMOA.
This explains why we had to use such a detour in the proof of Theorem 4.

3 New Characterizations of Hankel Measures

In this section, we obtain several new characterizations for Hankel measures and
indicate how to apply them to the study of Hankel operators on various function
spaces.

Note that for f ∈ H(D), f n is well defined for all positive integers. If p is not a
positive integer, then f p as a function in H(D) is defined onlywhen f is non-vanishing
on D.

Lemma 5 Suppose p > 0 and μ is a complex Borel measure on D. If μ is a Hankel
measure, then there exists a positive constant C such that

∣∣∣∣
∫
D

f p(z)dμ(z)

∣∣∣∣ ≤ C‖ f ‖p
H p

for all non-vanishing functions f in H p.

Proof If f belongs to H p and vanishes nowhere in D, then f p ∈ H1 (cf. [8, p. 47]).
Since μ is a Hankel measure, it follows from part (b) of Theorem 1 that there is a
positive constant C satisfying

∣∣∣∣
∫
D

f p(z)dμ(z)

∣∣∣∣ ≤ C‖ f p‖H1 = C‖ f ‖p
H p ,

which finishes the proof. ��
We can now generalize the equivalence of (a) and (b) in Theorem 1 to the case of

some other Hardy spaces.

Theorem 6 Let μ be a complex Borel measure on D. If n is a positive integer, then the
following two conditions are equivalent.
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5138 G. Bao et al.

(a) μ is a Hankel measure.
(b) There exists a positive constant C such that

∣∣∣∣
∫
D

f n(z) dμ(z)

∣∣∣∣ ≤ C‖ f ‖nHn

for all f in the Hardy space Hn.

Proof That (a) implies (b) follows from the proof of Lemma 5.
To show that (b) implies (a), we use the method of Xiao [20, p. 137]. Suppose

f ∈ H1 and f is not identically zero. It is well known (cf. [8]) that there exists an
inner function B and an outer function O such that f (z) = B(z)O(z) for all z ∈ D.
Set

f1(z) = [B(z) − 1]O(z)

2
, z ∈ D,

and

f2(z) = [B(z) + 1]O(z)

2
, z ∈ D.

Because |B(z)| < 1 for z ∈ D and |B(ζ )| = 1 for almost every ζ ∈ T, we must have
‖ fk‖H1 ≤ ‖ f ‖H1 for k = 1, 2.

Since f1 and f2 are both non-vanishing on D, there exist analytic functions g1 and
g2 such that gn1 = f1 and gn2 = f2. Clearly, g1, g2 ∈ Hn , Consequently, for k = 1, 2,

∣∣∣∣
∫
D

fk(z)dμ(z)

∣∣∣∣ =
∣∣∣∣
∫
D

gnk (z)dμ(z)

∣∣∣∣ ≤ C‖gk‖nHn = C‖ fk‖H1 .

Combining this with f = f1 + f2, we deduce that

∣∣∣∣
∫
D

f (z)dμ(z)

∣∣∣∣ ≤
∣∣∣∣
∫
D

f1(z)dμ(z)

∣∣∣∣ +
∣∣∣∣
∫
D

f2(z)dμ(z)

∣∣∣∣
≤ C‖ f1‖H1 + C‖ f2‖H1

≤ 2C‖ f ‖H1 .

By Theorem 1, μ is a Hankel measure. This completes the proof. ��
Next we are going to show that if μ is a positive Borel measure supported on the

real interval [0, 1) then μ is a Hankel measure if and only if condition (2) holds for
μ. Thus Xiao’s original conjecture actually holds in this situation. As an application,
we will obtain some characterizations of bounded Hankel operators on Hardy spaces,
weighted Bergman spaces, and Dirichlet-type spaces induced by such measures.

For a positive Borel measure μ on [0, 1) and a non-negative integer n, we denote
by μ[n] the n-th moment of μ, that is,

μ[n] =
∫ 1

0
tn dμ(t).
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Hankel Measures for Hardy Spaces 5139

Let Hμ be the Hankel matrix
(
μ[n + k])n,k≥0.

The Hankel matrix Hμ formally induces a linear operator on H(D), sometimes
called the Hankel operator induced by μ and still denoted byHμ, as follows. For any
function

z 	→ f (z) =
∞∑
n=0

anz
n

in H(D), we define

Hμ( f )(z) =
∞∑
n=0

( ∞∑
k=0

μ[n + k]ak
)
zn .

If we identify a function in H(D) with its sequence of Taylor coefficients (which
can be thought of as an infinite-dimensional column vector), then the action ofHμ is
exactly matrix multiplication (the matrix on the left and the infinite column vector on
the right).

A classical example is when μ is the Lebesgue measure on [0, 1). In this case, the
Hankel matrix Hμ reduces to the classical Hilbert matrix

H =
(

1

n + k + 1

)
n,k≥0

.

See [4,5,13–15,19,20] for some recent work on the Hilbert matrix and other Hankel
matrices.

The action of the Hankel operatorHμ on Hardy spaces has been studied for a long
time. For example, the Hankel operator Hμ acting on H2 was studied in [18,19], the
action ofHμ on H1 was studied in [10,15], and the operatorHμ on other Hardy spaces
H p was investigated in [5,13].

The operatorsHμ have also been studied on various other analytic function spaces
in recent years. We mention two of them here. First, for 0 < p < ∞ and α > −1, the
weighted Bergman space Ap

α consists of those f ∈ H(D) such that

∫
D

| f (z)|p(1 − |z|2)αdA(z) < ∞.

Second, for 0 < p < ∞ and α > −1, the Dirichlet-type space D p
α consists of f ∈

H(D) with f ′ ∈ Ap
α . D. Girela and N. Merchán [15] characterized the boundedness

of the operator Hμ acting on Ap
α and D p

α spaces. See [4,7,14,16,17] for more results
about Hμ acting on other spaces of analytic functions.

For the sake of comparison, we mention the following results obtained in [5,13,15].

Theorem 7 Let μ be a positive Borel measure on [0, 1). Suppose 1 < s < ∞,
−1 < α < p−2, 1 < q < ∞, and q−2 < β ≤ q−1. Then the following conditions
are equivalent.
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5140 G. Bao et al.

(a) Hμ is bounded on Hs.
(b) Hμ is bounded on Ap

α .
(c) Hμ is bounded on Dq

β .
(d) μ is a Carleson measure.
(e)

sup
w∈D

∫ 1

0

1 − |w|2
|1 − wt |2 dμ(t) < ∞.

(f) μ[n] = O
( 1
n

)
.

Our next result shows that Xiao’s conjecture about the characterization of Hankel
measures by condition (2) is true for positive Borel measures supported on [0, 1).
Furthermore, in this case, condition (2) holds if and only if μ is a Carleson measure.

Recall from [2,22,23] that for any 0 < p < ∞ the space Qp consists of functions
f ∈ H(D) such that

‖ f ‖2Qp
= sup

a∈D

∫
D

| f ′(z)|2(1 − |σa(z)|2)p dA(z) < ∞.

It is well known that Qp coincides with BMOA when p = 1, and Qp is the Bloch
space B for all p > 1. So the most interesting cases of Qp are when 0 < p < 1.

Lemma 8 Suppose 0 < p < ∞ and

f (z) =
∞∑
n=0

anz
n,

where {an} is a decreasing sequence of non-negative numbers. Then f ∈ Qp if and
only if an = O(n−1).

This result can be found in [22, p. 29] and [13, pp. 589-590]. We now state and
prove our next main result.

Theorem 9 Let μ be a positive Borel measure on [0, 1). Then the following conditions
are equivalent.

(a) μ is a Hankel measure.
(b) μ satisfies condition (2), that is,

sup
w∈D

∣∣∣∣
∫ 1

0

1 − |w|2
(1 − wt)2

dμ(t)

∣∣∣∣ < ∞.

(c) P1(μ) ∈ Qp for some 0 < p < ∞.
(d) P1(μ) ∈ Qp for all 0 < p < ∞.
(e) μ[n] = O

( 1
n

)
.
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Proof If μ is a positive Borel measure on [0, 1), then for any w ∈ D we have

P1(μ)(w) = P1(μ)(w) =
∞∑
n=0

(∫ 1

0
tn dμ(t)

)
wn =

∞∑
n=0

μ[n]wn .

Clearly, {μ[n]} is a decreasing sequence of non-negative numbers. From Lemma 8 we
see that conditions (c), (d), and (e) are equivalent.

On the other hand, by Theorem 1, P1(μ) ∈ BMOA if and only if μ is a Hankel
measure. By Lemma 2, P1(μ) ∈ B if and only if μ satisfies condition (2). Since
B = Q2 and BMOA = Q1, both (a) and (b) are equivalent to (e). The proof is
complete. ��

Combining Theorem 9 with Theorem 7, we obtain new characterizations for the
Hankel operator Hμ to be bounded on Hardy spaces, weighted Bergman spaces, and
Dirichlet-type spaces in terms of Hankel measures and Qp functions.

4 Balayage of CarlesonMeasures

In this section, we re-examine the condition
∣∣∣∣
∫
D

f (z) dμ(z)

∣∣∣∣ ≤ C‖ f ‖H1 (5)

for all f ∈ H1 and explore its relationship to the classical notion of balayage (see
[11] for definition).

It is clear that condition (5) simply says that the linear functional

L( f ) =
∫
D

f (z) dμ(z)

is bounded on H1. Since the dual space of H1 can be identified with BMOA under
the usual integral pairing over the unit circle, condition (5) holds if and only if there
exists a function g ∈ BMOA such that

∫
D

f (z) dμ(z) = 1

2π

∫ 2π

0
f (eiθ )g(eiθ ) dθ

for all f ∈ H1. Furthermore, by Fubini’s theorem, we have

L( f ) =
∫
D

f (z) dμ(z)

=
∫
D

[
1

2π

∫ 2π

0

f (eiθ ) dθ

1 − ze−iθ

]
dμ(z)

= 1

2π

∫ 2π

0
f (eiθ )g(eiθ ) dθ,
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5142 G. Bao et al.

where

g(w) =
∫
D

dμ(z)

1 − wz
= P1(μ)(w), w ∈ D.

This was the proof in [20] for the equivalence of conditions (b) and (c) in Theorem 1.
On the other hand, if we reproduce f using the Poisson transform instead of the

Cauchy transform in the arguments above, we obtain

L( f ) =
∫
D

f (z) dμ(z)

=
∫
D

[
1

2π

∫ 2π

0

1 − |z|2
|1 − ze−iθ |2 f (eiθ ) dθ

]
dμ(z)

= 1

2π

∫ 2π

0
f (eiθ )g(eiθ ) dθ,

where

g(eiθ ) =
∫
D

1 − |z|2
|1 − ze−iθ |2 dμ(z)

is the balayage of μ. Note that the balayage has only been studied for positive Borel
measures before, but it is clear that it can also be defined for complex Borel measures
on D.

It is well known that if μ is a (positive) Carleson measure on D, then its balayage
belongs to BMO; see [11] for example. Since a BMO function is the sum of a
function in BMOA and the conjugate of another function in BMOA, each BMO
function induces a bounded linear functional on H1. Thus every Carleson measure is
automatically a Hankel measure, which of course is also clear from the definitions.

The main result of this section is the following.

Theorem 10 Supposeμ is a finite real-valued Borel measure onD. Thenμ is a Hankel
measure if and only if the balayage of μ is in BMO.

Proof Suppose that μ is a real-valued Borel measure on D and its balayage is g. By
an earlier argument, we have

∫
D

f (z) dμ(z) = 1

2π

∫ 2π

0
f (eiθ )g(eiθ ) dθ. (6)

If g is in BMO , then it can be written as g = h + h, where h belongs to BMOA,
because g is real. It follows that

∫
D

f (z) dμ(z) = f (0)h(0) + 1

2π

∫ 2π

0
f (eiθ )h(eiθ ) ddθ.
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By the well-known duality relation (H1)∗ = BMOA, condition (5) is valid. This
along with Theorem 1 shows that μ is a Hankel measure.

Conversely, if μ is a Hankel measure, then by Theorem 1 again, we have (5) for
all f ∈ H1. Combining this with (6), we can find a positive constant C such that

1

2π

∣∣∣∣
∫ 2π

0
f (eiθ )g(eiθ ) dθ

∣∣∣∣ ≤ C‖ f ‖H1

for all f ∈ H1. Since μ is real, we can write g = h+h, where h is analytic. It follows
that there is another positive constant C such that

1

2π

∣∣∣∣
∫ 2π

0
f (eiθ )h(eiθ ) dθ

∣∣∣∣ ≤ C‖ f ‖H1

for all f ∈ H1. Since the dual space of H1 is isomorphic to BMOA, we conclude
that h ∈ BMOA, which gives g ∈ BMO . This completes the proof of the theorem.

��

5 Further Remarks

Hankel measures have also been studied in [21] in the context of weighted Bergman
spaces.More specifically, a complex Borel measureμ onD is called a Hankel measure
for the weighted Bergman space A2

α if there exists a positive constant C such that

∣∣∣∣
∫
D

f 2 dμ

∣∣∣∣ ≤ C‖ f ‖2A2
α
, f ∈ A2

α.

Note that the term “pseudo-Carleson measure” was used in [21] instead of Hankel
measures. Since these measures are closely related to Hankel operators and a sys-
tematic study of them was first carried out by Xiao in [20,21], it is probably more
appropriate to stick to the term “Hankel measures” or “Hankel–Xiao measures.”

It is well known that the Hardy space H p can be thought of as the limiting case of
Ap

α when α → −1+; see [25] for example. Sometimes, it is possible to derive results
about Hardy spaces from the corresponding results about weighted Bergman spaces,
and vice versa, as was demonstrated in [25] by several classical examples in complex
analysis. But this is not always the case, as we will see below.

First, our Theorem 6 can be considered as the limiting case (when α → −1+) of
the second inequality on page 452 of [21].

Second, the equivalence of conditions (a) and (b) in our Theorem 9 is the limiting
case (when α → −1+) of the equivalence of conditions (i) and (iii) in [21]. In particu-
lar, a positive measure μ supported on [0, 1) is a Hankel measure for the Hardy space
H2 if and only if it is a Hankel measure for A2

α . Although we provided a proof here
for completeness, experts in the field would recognize the equivalence of Theorems 7
and 9 .
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Third, our Theorem 4 shows that there are cases when it is NOT possible (and
actually wrong) to obtain a result for the Hardy space H2 by taking the limit (when
α → −1+) of the corresponding result for weighted Bergman spaces A2

α . It was
shown in [21] that, for any given α > −1, a complex Borel measure μ on D is a
Hankel measure for A2

α if and only if

sup
w∈D

∣∣∣∣∣
∫
D

[
1 − |w|2
(1 − wz)2

]α+2

dμ(z)

∣∣∣∣∣ < ∞.

If we formally take the limit α → −1+, the condition above becomes our condition
(2), which, according to our Theorem 4, does NOT characterize Hankel measures for
H2.

Finally, we mention that Hankel measures (or Hankel–Xiao measures) have also
been studied in 2011 by [1, Theorem 5] in the context of the classical Dirichlet space
on the unit disk.

Acknowledgements We thank J. Xiao for several useful suggestions and conversations that helped us
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