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Abstract

We study the cohomology with high tensor powers of Nakano g-semipositive line
bundles on complex manifolds. We obtain the asymptotic estimates for the dimension
of cohomology with high tensor powers of semipositive line bundles over g-convex
manifolds and various possibly non-compact complex manifolds, in which the order
of estimates are optimal. Besides, estimates for the modified Dirac operator on Nakano
g-positive line bundle on almost complex manifolds are given.
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1 Introduction

Let X be a complex manifold of dimension n and (E, %) be a holomorphic Hermitian
vector bundle over X. Let VZ be the holomorphic Hermitian connection of (E, hE)
and RE") = (VE)2 be the curvature of VE. The Bochner—Kodaira—Nakano formula
and its variation with boundary term, [2,14,18,26], play the central role in various
vanishing theorems on complex manifolds. The latter have important applications in
complex differential and algebraic geometry, such as the characterization of projec-
tive manifolds [22], Moishezon manifolds [13,36,37] and more recently the criterion
for uniruledness and rationally connectedness and related results [6,10,43]. The key
ingredient in these formulas is the curvature term [«/—1RE ’hE), A], where A is the
dual of Hermitian metric on manifolds. With appropriate assumptions on the positiv-
ity of RE, one can achieve the curvature term is strictly positive, i.e., the pointwise
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Hermitian product <[«/ —lR(E'hE), Als, S>h > 0 for forms s with values in E, which

is enough to prove vanishing theorems in various situations, see [16,21].

Instead of the strict positivity, we consider the g-semipositivity, which was intro-
duced in [35] over Kéhler manifolds. A holomorphic Hermitian line bundle on Kihler
manifolds is called Nakano g-positive (resp. semipositive) which means that at every
point the sum of any set of ¢ eigenvalues of the curvature form is positive (resp.
non-negative) when the eigenvalues are computed with respect to the Kihler metric.
Another definition of the g-positivity is the Griffiths g-positive (resp. semipositive),
which means that at every point the curvature form has at least n — ¢ + 1 pos-
itive (resp. semipositive) eigenvalues, see [32, Chapter 3, Sect. 1, Definition 1.1],
[35] and [27]. More precisely, a holomorphic Hermitian line bundle (L, Kty over
a Hermitian manifold (X, w) is Nakano g-semipositive with respect to the Her-
mitian metric w of X, if for any (n, q)-forms s, <[\/—_1R(L’hL),A]s,s)h > 0,
see Definition 1.1, (2.9), (2.10) and [33]. In this setting, the vanishing of har-
monic forms does not hold in general; however, the dimension of harmonic spaces
with values in high tensor power of such line bundles still can be estimated, and
moreover the estimate turns out to be optimal, see [4]. The solution of Grauert—
Riemenschneider conjecture [13,36,37] shows that if R(EHY) > 0 (i.e., Nakano
1-semipositive) on a compact complex manifold X then dim H?(X, LK) = o(k")
as k — oo for all ¢ > 1. Demaily’s solution involves holomorphic Morse inequal-
ities [13]: dim H9(X, LK ® E) < rank(E)]:Z—r: fx(q)(—l)q(QR(L’h”)" + o(k") as
k — oo, where E is an arbitrary holomorphic vector bundle and X (g) is the set
where /—1 REND) has exactly ¢ negative eigenvalues and n — ¢ positive eigenval-
ues. We refer to [26] for a comprehensive account of Demaily’s holomorphic Morse
inequalities and Bergman kernel asymptotics.

Let now E be an arbitrary holomorphic line bundle over X. Along the same lines,
Berndtsson [4] showed that if RZ+"") > 0 then dim H9(X, L* ® E) = O (k") and
it improves the estimate of Siu and Demailly, which gives only dim HY(X, L*® E) =
o(k™) ask — oo (since X (g) is the empty set for a semipositive line bundle). The mag-
nitude k"7 is optimal. By adapting their methods to general (possibly non-compact)
complex manifolds with L2-cohomology [41], we obtain a local estimate of Bergman
density function on compact subsets of the underling manifolds when R > 0. As
applications, the estimates of the Berndtsson type still hold on covering manifolds,
i.e., dimp ﬁ(()g (X, Lk ® E) = O (k") for all q > 1, and 1-convex manifolds, i.e.,
dim H1(X, L* ® E) = O(k"~9) for all ¢ > 1, see [40,41]. With additional assump-
tions on the positivity of (L, k%), the same estimates hold on pseudoconvex domains,
weakly 1-complete manifolds and complete manifolds, see [40]. Note that, on pro-
jective manifolds, the estimate of O (k") type for nef line bundles can be found
in [15], and the case of pseudo-effective line bundles was obtained in [29]. On an
arbitrary compact manifolds, such estimates for semipositive line bundles equipped
with Hermitian metric with analytic singularities were established by [39,40] (in the
latter paper a vector bundle E of arbitrary rank is considered).

In this paper, in order to generalize such estimates to g-convex manifolds, we
use the notion of Nakano g-semipositivity from [33,35], which includes the usual
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semipositivity RL > 0 as a special case. We remark that, inspired by [4,26], this paper
together with [40,41] give a unified approach to the optimal estimate of the dimension
of cohomology of high tensor powers of line bundles with semipositivity on (compact
and non-compact) complex manifolds.

Definition 1.1 [35] Let X be a complex manifold of dim X = n and w a Hermitian
metric on X. Let (L, k") be a holomorphic Hermitian line bundle over X. Let 1 <
q <n.

(A) (L, h")is called Nakano g-positive (resp. semipositive, negative, seminegative)
with respect to w at x € X, if the sum of any set of g eigenvalues of the cur-
vature form Rf; is positive (resp. non-negative, negative, non-positive) when the
eigenvalues are computed with respect to the Hermitian metric w.

(B) (L, h%)is called Griffiths ¢-positive (resp. semipositive, negative, seminegative)
atx € X, ifthe curvature form RL has atleastn—g+1 positive (resp. semipositive,
negative, seminegative) eigenvalues.

For the relation of the notions of Griffiths and Nakano g-positivity, see Remark 2.4.
The basic example of Nakano g-positivity is the dual of canonical bundle Ky on a
compact Kéhler manifold X of dim X = n. With respect to a Kéhler metric w, the Ricci
curvature of X is positive (resp. non-negative) if and only if K} is Nakano 1-positive
(resp. 1-semipositive); the scalar curvature of X is positive (resp. non-negative) if and
only if K} is Nakano n-positive (resp. n-semipositive). The basic example of Griffiths
g-positivity is the dual of tautological line bundle L(E*)*, which is Griffiths (n + 1)-
positive on the projective bundle P(E™) of a holomorphic Hermitian vector bundle
(E, h*) over a compact complex manifold X of dim X = n.

Firstly, we provide arefined local estimate on Bergman density functions for Nakano
g-semipositive line bundles, which generalizes the main result in [4,41] and [40,
Theorem 3.1]. The advantage is that it enables us to study the harmonic spaces of
tensor powers of line bundles with weaker semipositivity on complex manifolds.

Theorem 1.2 Let (X, w) be a Hermitian manifold of dimension n and let (L, hty and
(E, h®) be holomorphic Hermitian line bundles over X. Let 1 < q <n. Let K C X
be a compact subset and (L, h™) be Nakano q-semipositive with respect to @ on a
neighborhood of K. Then there exists C > 0 depending on K, w, (L, hL) and (E, hE),
such that

Bl(x) < CK"™/ forallx e K,k>1,q<j<n, (1.1)

where B,{ (x) is the Bergman density function (3.1) of harmonic (0, j)-forms with
values in L* @ E. In particular, if (L, h™) is semipositive on a neighborhood of K,
the estimate holds on K forallk > 1and 1 < j <n.

As a direct application, it leads to the refinement of [4, Theorem 1.1] and [41,
Theorem 1.2] as follows, refer to Definition 2.3 for I"-covering manifolds.

Corollary 1.3 Let (X, w) be aI'-covering manifold of dimension n, and let (L, hty and
(E, h®) be two T -invariant holomorphic Hermitian line bundles on X. Let 1 < g <n
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and (L, h%) be Nakano q-semipositive with respect to w on X. Then there exists C > 0
such that for any k > 1, ¢ < j < n, we have

dimp ﬁ?ﬁf(X, L*® E) = dimp %/ (X, LF @ E) < Ck" /. 1.2)

In particular, if (L, hL) is semipositive on X, the estimate holds for all k > 1 and
I<j=n

Note that holomorphic Morse inequalities on covering manifolds were obtained in
[28,38].

Secondly, we obtain a refined estimate of L>-cohomology on Hermitian manifolds
from the local estimate of B,f (x) as [40, Theorem 1.1]. It provides a uniform approach
to study the cohomology of high tensor power of Nakano g-semipositive line bundles
over various compact and non-compact manifolds.

Let (X, w) be a Hermitian manifold of dimension n. Let dvy := ®"/n! be the
volume formon X. Let (L, h%) and (E, h%) be holomorphic Hermitian vector bundles
on X with rank(L) = 1. We denote by (L%’q (X, LK ® E), Il - ) the space of square

integrable (0, ¢)-forms with values in L¥ ® E with respect to the L? inner product
induced by the above data. We denote by 55 the maximal extension of the Dolbeault
operator on L%’. (X, L*®E) and by 55* its Hilbert space adjoint. Let #%9 (X, L*® E)
be the space of harmonic (0, ¢)-forms with values in L* ® E on X. For a given
0 < g < n, we say that the concentration condition holds in bidegree (0, ¢) for

harmonic forms with values in L¥ ® E for large k, if there exists a compact subset
K C X and Cp > 0 such that for sufficiently large k, we have

IsI? < Co / s 2dvy, (13)
K

fors € Ker(ﬁ,f) N Ker(ﬁ,f*) N L%,q(X, L* ® E). The set K is called the exceptional
compact set of the concentration. We say that the fundamental estimate holds in
bidegree (0, ¢) for forms with values in L ® E for large k, if there exists a compact
subset K C X and C¢y > 0 such that for sufficiently large k, we have

—F —=E,
lIsI> < Co (||aks||2+ 13, s 1% + / |s|2dvx), (1.4)
K

fors € Dom (5,?) n Dom(gf*) N L%’q (X, L*® E). The set K is called the exceptional
compact set of the estimate.

Theorem 1.4 Let (X, w) be a Hermitian manifold of dimension n and let (L, Kl
and (E, hE) be holomorphic Hermitian line bundles on X. Let 1 < q < n. Let
the concentration condition holds in bidegree (0, q) for harmonic forms with values
in L* ® E for large k. Let (L, h™) be Nakano q-semipositive with respect to » on
a neighborhood of the exceptional set K. Then there exists C > 0 such that for
sufficiently large k, we have
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dim 7% (X, L*¥ ® E) < Ck" 9. (1.5)

The same estimate also holds for reduced L*-Dolbeault cohomology groups,
dimHy! (X, L} ® E) < Ck"™4 1.6
1m (2)( s ®E) < . (1.6)

In particular, if the fundamental estimate holds in bidegree (0, q) for forms with values
in L* ® E for large k, the same estimate holds for L*-Dolbeault cohomology groups,

0

dim Hy (X, L* ® E) < Ck" 7. 1.7)

(

Finally, by Theorem 1.4, we can study the dimension of cohomology on g-convex
manifolds with semipositive line bundles. Holomorphic Morse inequalities for g-
convex manifolds were obtained by Bouche [5] and [26, Sect. 3.5].

Theorem 1.5 Let X be a q-convex manifold of dimension n and 1 < q < n, and let
(L, h%) and (E, h®) be holomorphic Hermitian line bundles on X. Assume (L, h*) >
0 on a neighborhood of the exceptional subset K. Then, there exists C > 0 such that
forevery j > qandk > 1,

dim H/ (X, LF ® E) < Ck*7/. (1.8)

The extremal case is also interesting when the w-trace of RENY) g non-negative
(i.e., n-semipositive), see Sect. 2. We obtain the finiteness of dimension of cohomology
of high tensor power of such line bundles in Sect. 3 and 4. Related to the Nakano n-
semipositive and the w-trace of curvature tensor, a direct consequence from [44], [21,
Ch.III.(1.34)] and [10, Corollary 5.1], which strengthens [42, Theorem B (A)], is
as follows: If a compact Kéhler manifold X possesses a quasi-positive (1, 1)-form
representing the first Chern class c1(X), then X is projective and rationally connected.
And a compact, simply connected, Kéhler manifolds with non-negative bisectional
curvature is projective and rationally connected, see Proposition 4.19 and 4.20.

For the Nakano g-positive cases, inspired by [27], [25, Theorem 1.1, 2.5] and
[26, Sect. 1.5], we generalize the estimates of modified Dirac operator D;’A (see
[26, Definition 1.3.6, Sect. 1.5]) of high tensor powers of positive line bundles to the
Nakano g-positive case for all 1 < g < n as follows.

Theorem 1.6 Let (X, J) be a compact smooth manifold with almost complex structure
J and dimg X = 2n. Let g7% be a Riemannian metric compatible with J and o :=
gTX(J-, ") be the real (1, 1)-forms on X induced by g™ and J. Let (E,h%) and
(L, h™) be Hermitian vector bundles on X with rank(L) = 1. Let VE and V' be
Hermitian connections on (E,h%t) and (L, h") and let R = (VE)? and R* =
(VL)2 be the curvatures. Let QRL be compatible with J. Assume 1 < q < n and
(L, h™) is Nakano q-positive with respect to w on X (see also (2.10)). Then there
exists C; > 0 such that for any k € N and any s € Q*Z4(X, L* ® E),

IDEASI? > Qugk — CL)lIs|I, (1.9)
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where the constant |1y > 0 defined in (5.3). Especially, for k large enough,

Ker (DE’A |QO'3‘1(X,Lk®E)) =0. (110)

This paper is organized as follows. In Sect. 2 we introduce the notions and basic
facts on Definition 1.1. In Sect. 3 we provide the local estimate of the Bergam den-
sity function associated with Nakano g-semipositive line bundles, Theorem 1.2, and
its applications, Corollary 1.3 and Theorem 1.4. In Sect. 4 we prove Theorem 1.5
and related results. In Sect. 5, estimates for the modified Dirac operator on Nakano
q-positive line bundle on almost complex manifolds, Theorem 1.6, are given. From
[4], we see Theorem 1.2, Corollary 1.3, Theorems 1.4 and 1.5 give the optimal order
O (k"7 of dimension of the cohomology. And Theorem 1.6 provides a precise bound
g for g-positive line bundles along the lines of [25,26]. For techniques and formula-
tions of this paper, we refer the reader to [4,26,37,40,41].

2 Preliminaries
2.1 L2-cohomology

Let (X, ) be a Hermitian manifold of dimension n and (F, %) a holomorphic Her-
mitian vector bundle over X. Let Q279(X, F) be the space of smooth (p, g)-forms on
X with values in F for p, g € N. The volume form is dvy := ‘;l’!

The L2%-scalar product is given by (s1,s2) = fx s1(x), s2(x))pdvyx(x) on
QP4(X, F), where (-, -), = (-, ‘>hF,w is the pointwise Hermitian inner product
induced by w and h*'. We denote by Lf,’q(X, F), the L? completion of Q"7 (X, F),
which is the subspace of Q7-7(X, F) consisting of elements with compact support

Letd - QX F) —> L2 +1(X, F) be the Dolbeault operator and let 8max
be its maximal extension (see [26 Lemma 3.1.2]). From now on we still denote
the maximal extension by 5F 5F and the associated Hilbert space adjoint by

=00 H - (8 m dx)* Con51der the complex of closed, densely defined operators

(X, F) LN L2 (X, F) LN LM+1
Propos1t1on 3.1.2], the operator defined by

(X, F). Note that (3" )2 = 0. By [26,

Dom(O0F) = {s € Dom(@" ) N Dom(3 ") : 3" seDom@" "), §F*seDom(§F)},
OFs =373 "s+3 "3 s fors e Dom(OF), 2.1

is a positive, self-adjoint extension of Kodaira Laplacian, called the Gaffney extension.

Definition 2.1 [26] The space of harmonic forms #7-9 (X, F) is defined by
AP(X, F) :=Ker(O") = {s e Dom@") N L (X, F):0" =0}. 22
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The gth reduced L>-Dolbeault cohomology is defined by

Ker@' )N L3 (X, F)

)
Hi (X, F) = (2.3)

Im@" )N L3, (X. F)]

where [V] denotes the closure of the space V. The ¢th (non-reduced) L2-Dolbeault
cohomology is defined by

Ker@ )N L3 (X, F)

0,
Hyl (X, F) = 24

m@)NLE, (X F)

According to the general regularity theorem of elliptic operators, s € 79(X, F)
implies s € QP 9(X, F). By weak Hodge decomposition (cf. [26, (3.1.21) (3.1.22)]),

Hpl (X, F) = 44X, F) 2.5)

for any ¢ € N. The gth cohomology of the sheaf of holomorphic sections of F' is
isomorphic to the ¢gth Dolbeault cohomology, H? (X, F) = H%4(X, F).

Foragiven 0 < g < n, we say the fundamental estimate holds in bidegree (0, ¢)
for forms with values in F, if there exists a compact subset K C X and C > 0 such
that

—F —F
||s||25c(||a sI® + 119 *||2+/ |s|2dvx), (2.6)
K

fors € Dom(3" )NDom (5F’*) N L(z)yq (X, F). K is called the exceptional compact set

of the estimate. If the fundamental estimate holds, the reduced and non-reduced L2-
Dolbeault cohomology coincide, see [26, Theorem 3.1.8]. For a given 0 < g < n, we
say that the concentration condition holds in bidegree (0, ¢) for harmonic forms
with values in F, if there exists a compact subset K C X and C > 0 such that

IsI? < € / 152, @7
K

fors € Ker(gF) N Ker(ﬁF*) N L(z) q(X , F). We call K the exceptional compact set of
the concentration. Note if the fundamental estimate holds, the concentration condition
also.

2.1.1 The Convexity of Complex Manifolds and I'-Coverings
Definition 2.2 A complex manifold X of dimension 7 is called g-convex if there exists

a smooth function ¢ € €"*°(X, R) such that the sublevel set X, = {o < ¢} € X for
all ¢ € R and the complex Hessian ddp has n — ¢ + 1 positive eigenvalues outside
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a compact subset K C X. Here X, € X means that the closure X, is compact in X.
We call g an exhaustion function and K exceptional set. X is g-complete if K = ¢} in
additional.

Every compact complex manifold is g-convex for all 1 < ¢ < n. By defini-
tion, a compact complex manifold is exactly a O-convex manifold. For non-compact
manifolds, Greene-Wu [16, Ch.IX.(3.5) Theorem] showed that: Every connected
non-compact complex manifold of dimension n is n-complete. Moreover, every con-
nected complex manifold of dimension n is n-convex. Thus, if X is a connected
non-compact complex manifold of dimension n and E a holomorphic vector bundle
over X, H"(X, E) = 0, see [1]. We denote the jth Dolbeault cohomology with com-
pact supports by [Ho’j(X, E)]o, see [19, (20.8) (20.17)]. Note that if X is compact,
[H%/ (X, E)]o is equal to the usual cohomology. The duality between it and the usual
Dolbeault cohomology on g-convex manifold of dimensionn with 1 < g < nis given
by

dim[H%/ (X, E)]o = dim H*" 7/ (X, E* ® Kx) < 0o forall0 < j <n—q.
(2.8)

If ¢ = 1, then, moreover, dim[HO’”(X, E)]p = dim HO(X, E*® Kx), where Ky =
AT 10X

Let M be a relatively compact domain with smooth boundary M in a complex
manifold X. Let p € €°°(X,R) suchthat M = {x € X : p(x) < 0} anddp # 0
onbM = {x € X : p(x) = 0}. We denote the closure of M by M = M U bM. We
say that p is a defining function of M. Let TEOpM = (v e TX(I’O)X :do(v) = 0}
be the analytic tangent bundle to bM at x € bM. The Levi form of p is the 2-
form £, 1= 3dp € €°BbM, TVV*bM @ TOV*bM). M is called strongly (resp.
(weakly)) pseudoconvex if the Levi form .Z), is positive definite (resp. semidefinite).
Note any strongly pseudoconvex domain is 1-convex.

A complex manifold X is called weakly 1-complete if there exists a smooth plurisub-
harmonic function ¢ € €°° (X, R) such that {x € X : ¢(x) < ¢} € X forany ¢ € R.
¢ is called an exhaustion function. Note any 1-convex manifold is weakly 1-complete.

A Hermitian manifold (X, w) is called complete, if all geodesics are defined for all
time for the underlying Riemannian manifold.

Definition 2.3 Let (X, w) be a Hermitian manifold of dimension n on which a discrete
group I' acts holomorphically, freely and properly such that w is a I"-invariant Her-
mitian metric and the quotient X/ I' is compact. We say X is a I'-covering manifold,
see also [3,26,41].

2.1.2 Kodaira Laplacian with 8-Neumann Boundary Conditions

Let (X, w) be a Hermitian manifold of dimension n and (F, k') be a holomorphic
Hermitian vector bundles over X. Let M be a relatively compact domain in X. Let p
be a defining function of M satisfying M = {x € X : p(x) < 0} and |[dp| = 1 on
bM, where the pointwise norm | - | is given by g7 X associated to w.

@ Springer



4942 H. Wang

Let e, € TX be the inward pointing unit normal at bM and eﬁ,o’l) its projection

on TOD X In a local orthonormal frame {wy, ..., w,}of T@LO X we have e,(,o’l) =
—> i wj(p)w;. Let B*(X, F) := {s € Q%4 (M, F) : i, 0.8 =0 onbM}. Then
B% (M, F) = Dom(gz*) NQ%9 (M, F) and the Hilbert space adjoint 52* of 5F coin-
cides with the formal adjoint gF* of 5F on B04 (M, F), see [26, Proposition 1.4.19].
The operator Ly s = 5F5F*s + 5F*5Fs for s € Dom(Oy) := {s € B4 (M, F) :
5Fs € B%“4t1(M, F)}. The Friedrichs extension of [y is a self-adjoint operator and

is called the Kodaira Laplacian with 3-Neumann boundary conditions, which coin-
cides with the Gaffney extension of the Kodaira Laplacian, see [26, Proposition 3.5.2].
QY*(M, F) is dense in Dom(gF) in the graph norms ofgp, and B%*(M, F) is dense
in Dom (51:,*) and in Dom(3" ) N Dom(gf,*) in the graph norms of 51;,* and 3" + 52*,
respectively, see [26, Lemma 3.5.1]. Here the graph norm is defined by ||s| + || Rs||
for s € Dom(R).

2.2 Nakano g-Semipositive Line Bundles and the @-Trace

Let (X, w) be a Hermitian manifold of dimensionz and (E, h£) a holomorphic Hermi-
tian vector bundle over X. Let VZ be the holomorphic Hermitian connection of (E, hE)
and REH") = (VE)2 be the curvature. Let A\P9 T*X := AP T10*X @ A\Y TOl*X
andlet \”*? T} X be the fiber of the bundle A”*? T*X forx € X, and QP9(X, E) :=
€ (X, NP1 T*X ® E) the space of smooth (p, ¢)-forms with values in E. We set
(, )» the induced pointwise Hermitian metric in the context.

Let (L,h%) be a holomorphic Hermitian line bundle over X. Then Rl =
39 log |s|i ; for any local holomorphic frame s, and the Chern—Weil form of the first

Chern class of L is ¢; (L, h%) = gRL, which is a real (1, 1)-form on X. We use
the notion of positive (p, p)-form, see [16, Chapter III, §1, (1.1) (1.2) (1.5) (1.7)].
If a (p, p)-form T is positive, we write T > 0. Let A be the dual of the operator
L := w A -on QP9(X) with respect to the Hermitian inner product (, ), on X.In a

local orthonormal frame {w;}’_; of 710X and its dual {w/} of T10*Xx, RLHD) =
RED) (wy, wjywi AW, £ = /=1 Yy wiAw Acand A = =/ =T igiiy
For s € QP4(X), <[«/—1R(L’hL), Als, s>h € CX(X, R).

Recall the notion of g-semipositivity of line bundle in Definition 1.1, see [33, (1)]
and [35, Sect. 4]. By the definition, for 1 < ¢ <n, (L, hl)is Nakano g-semipositive
with respect to w at x € X, which means that

<[«/—1R(L’hL), A]a,a>h >0 foralla € A™ITX. (2.9)

We denoted it by (x;) > Oatx.For1 < ¢ <n, (L, h') is Nakano g-positive with
respect to w at x, which means that

<[«/—1R(L’hL), Ala, a>h >0 foralla € A™TFX\{0}. (2.10)
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We denoteditby (x;) > Oatx.ForasubsetY C Y, (L, h')is Nakano ¢-semipositive
(resp. positive) with respect to w on Y, if (x;,) > 0 (resp. > 0) at every point of Y.
In a local orthonormal frame {w;} of 719X around x, (2.9) is equivalent to

<R<L”1L>(wi,aj)af A i, a>h >0 foralla € A®ITFX. @.11)

And (2.10) can be represented by replacing A" T X and > by A" T} X\{0} and
> in (2.11), respectively.

Remark 2.4 (notions of the g-positivity) Note that the notion of Nakano g-positive
depends on the choice of Hermitian metric w. On the other hand, the notion of Griffiths
g-positive is independent of the choice of w. If L is Nakano g-positive at x, then L is
also Griffiths g-positive at x. If L is Griffiths ¢-positive at x, then there exists a metric
 such that L is Nakano g-positive at x with respect to w. Actually, if L is Griffiths
g-positive on X, then for any compact set K there exists a Hermitian metric @ on
X such that L is Nakano g-positive on K with respect to w, see [26, (3.5.7)] or [27,
(9)] for the construction of w. The Nakano 1-semipositivity (resp. positivity) coincides
with the Griffiths 1-semipositivity (resp. positivity), i.e., the usual semipositivity (resp.
positivity). By definition, g-positivity implies the g-semipositivity. For vector bundles,
we refer to [32,35] for the definitions of the g-positive in the sense of Nakano and
Griffiths.

2.2.1 The Special Case (x1) > 0

An important special case is (x;) > 0, which is equivalent to (L, hly is semipositive
as follows.

Definition 2.5 A holomorphic Hermitian line bundle (L, h’) is semipositive at x €
X, if REY (WU, T) = 0for U e T°°X, denoted by (L, i), > 0. For a subset
Y C X, (L, h) is semipositive on Y if (L, h%), > 0 atall x € Y. The definition of
(L,hY), > 0is analogue.

From the definition, (L, hL)x > 0 implies (x;) > Oatx forall 1 < g < n.
Conversely, (x1) > 0 at x implies (L, k%), > 0. Thus, (x4) > 0 is a refinement of

(L, hY) > 0.

Proposition 2.6 Let (L, h™) > 0 (resp. > 0)at x € X. Then, for any Hermitian metric
wonX,1<qg<nanda e \"1T}X (resp. AN TX*X\{O}),

([\/—IR(U‘L), Ala, a>h > 0 (resp. > 0). 2.12)

L
Proof Let {cqj} be an orthonormal frame around x such that +/ —lR)(CL’h )
V=lcj(x)w! ANw’. Let Cy(x) = ZjeJ cj(x) for each ordered J = (ji, ..., jg)
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with [J| = g. Leta € A" TX and e = 3, fvs 0wV Aw/, N = (1,...,n)
and |J| = ¢,

(W=TR®EM, Ao} () = Y Colfwvs (I (2.13)
J

Since (L, ht), > 0, cj(x) > Oforall 1 < j < n and thus Cy(x) > 0 for all
1 < |J| < n. And the positive case follows similarly. O

Proposition 2.7 (L, h™), > 0 if and only if (x1) > 0 at x.

Proof Suppose (x1) > 0 at x. Let U € Txl’OX with U = 22:1 urwy in a local
orthonormal frame {wj}’}:1 of 710X around x. We set o = ua* € T)?’]*X, and then

REM WU, Uy = RE (i, @)u; = (RE(wi, @)@ A iy, a)y = 0. o
The general relation among (x;) > 0, 1 < g < n, is as follows.
Proposition 2.8 If (x;) > 0 at x, then (x441) > 0 at x.

Proof From (x,) > 0 at x and (2.13), C;(x) > O for each ordered |J/| = g.
Let Cx(x) := ZkeK ck(x) for each ordered |K| = g + 1. Then Cg(x) =
é lelzq,JCK Cy(x) > 0, and thus (x;41) > 0 at x by (2.13).

O

Remark 2.9 Clearly, the positive case (>) of Proposition 2.7 and 2.8 also holds.

2.2.2 The Special Case (x;) > 0

Another interesting case is (x,) > 0, which is equivalent to the w-trace of Chern
Ly . .
curvature tensor R is non-negative as follows.

Definition 2.10 The w-trace of Chern curvature tensor R(L*hL), (L, ht, w) €
€ (X, R), is defined by v—IRE) A w,_1 = T(L, hE, w)w,.

Equivalently, let {w; };?:1 be a local orthonormal frame of 719 X with respect to w
and {w/} the dual frame of 70-0* X,

n
L L _
r(L,hL,a)) = TrwR(L’h ) = E R )(wj,wj)
j=1

9 9
= ZR(L’hL) o o= | {dzi, dZi) grex.
2 9z 97, ¢

We say the w-trace of Chern curvature tensor R‘¢ b g semipositive (resp. positive)
if (L, h’, ) > 0 (resp. > 0). From (2.13), it follows immediately:

Proposition 2.11 We have the following:
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(1) (L. hE, w)|af? = <[«/—1R(L’hL), Ale, a>h foralla € N™"TFX, x € X.

) t(L,ht, w), >0 if and only if (x,;,) > 0 at x.
(3) ©(L,h%, w) > 0ifand only if (x,) > 0 at x.
@) t(L,ht, w) = —t(L*, hY", ).

Example 2.12 Let (X, w) be a Kidhler manifold of dimension n, let (K%, h,,) be the
dual of canonical line bundle Ky := A"T1:0%* X agsociated with the Hermitian metric
h,, induced from w. The w-trace of RKx-") coincides with the scalar curvature rX
of (X, w) up to the multiplication of 2, i.e., for r(ff =2 Z/’ Ric(wj, wj),

20(K%, hey, w) = 2Tr, REx M) = X (2.14)

2.2.3 The @-Trace of Chern Curvature Tensor of Vector Bundles
Let (E, hE) be a holomorphic Hermitian vector bundle over a complex manifold
(X, w). The w-trace of Chern curvature tensor RE"9 1 (E, hf | w) := Tr,RE) ¢
%*°(X, End(E)) is defined by

VZAREN) A | = (E, hE, @)y, (2.15)
see[10, Sect. 1.5.]. Note in [26, (4.15)] A, (RE) is the contraction of RE with respect to
w and thus /—1A,(RE) = ©(E, h®, w) in our notations. We define t(E, hf, w) > 0
(resp. > 0) at x € X by

(T(E, hE, w)s, s)e =0 (2.16)

(resp. > 0) for s € E, (resp. s € Ex\{0}). Similarly, we can define t(FE, hE, w)y <0
(resp. < 0).Let (E*, h® ") be the dual bundle with the induced metric givenby (E, hf),

T(E, hE, w) = —t(E*, hE", w) (2.17)
coincide as Hermitian matrices, see [21]. For the projection 7 : P(E*) — X and

the dual of tautological line bundle Og« (1) := (L(E*))* over P(E™) with Hermitian
metrics @p g+ and h22* () induced from w and 7%, see [21, Ch. 111, Sect. 5], we set

7(0p+(1)) =1 (05*(1), RO wp(E*)) . (2.18)

3 Bergman Density Function and Applications
3.1 Local Estimates for Bergman Density Functions

Let (X, ) be a Hermitian (paracompact) manifold of dimension n and (L, h*) and
(E, h*) be Hermitian holomorphic line bundles over X. For k € N we form the
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Hermitian line bundles L¥ := L® and L* ® E, the latter endowed with the metric
hi = (W)@ @ hE . Let VL be the holomorphic Hermitian connection of (L, k). The
curvature of (L, hL) is defined by RL = (V£)2, then the Chern—Weil form of the first
Chern class of L is ¢; (L, ht) = gRL, which is a real (1, 1)-form on X.

Letdvy = ‘Z—',l be the volume form on X. We denote that the maximal extension of

— 7k — 7k
the Dolbeault operator B,iE = (BL ®E)max,its Hilbert space adjointaf* = (8L ®E)2,

and the Gaffney extension of Kodaira Laplacian Df = OL"®E Let o4 X, LF®
E) = Ker(D,f) N L%’q (X, L*® E) be the space of harmonic (0, ¢)-forms with values
in L¥ ® E on X. For simplifying the notations, sometimes we will denote 9, 9" and
[J. For forms with values in L¥ ® E, we denote the Hermitian norm | - | := | - | hi,w
induced by w, A%, hE and the L?-inner product | - || := | - IILaq(X,Lk@E) for each
q € N. Let {w j}’;:l be a local orthonormal frame of 719 X with respect to w with
dual frame {w/} of T(-0*x

Let 7% (X, LF® E) be the space of harmonic (0, g)-forms with values in LFQE.

Let {sf } j>1 be an orthonormal basis and denote by BZ the Bergman density function
defined by

Bl(x) =) Is*®)}, . x € X, (3.1)
j=1

where | - |, is the pointwise norm of a form. The function (3.1) is well defined by
an adaptation of [11, Lemma 3.1] to form case.

We follow the notations in [41, Sect. 3.2] and show the sub-meanvalue formulas
of harmonic forms in ##"9(X, LF ® E). Let (L, h*) and (E, h¥) be Hermitian
holomorphic line bundles over X. For any compact subset K in X, the interior of K is
denoted by K.Let K 1, K2 be compact subsets in X, such that K; C 152. Then there
exists a constant ¢y = co(w, K1, K2) > 0 such that for any xo € K1, the holomorphic
normal coordinate around xg is V = W C C”", where

W = B(co) :={z € C" : |z] < co}, V := B(xo,c0) C K2 C K2,
2(x0) = 0,and w(z) = V=1, ; hij(2)dzi A dZj with h;j(0) = 38;;.
Lemma3.1 Let (X, ) be a Hermitian manifold of dimension n and (L,h") and
(E, h®) be holomorphic Hermitian line bundles over X. Let K| and K, be compact

subsets in X such that K| C Kc'z. Let 1 < g < n. Assume (L, ht) satisfies (2.9) for
x € K. Then,

(1) there exists a constant C > 0 such that

/ | lalp, odvx < Cr¥ f loel;, dvx (3.2)
zZ|l<r X

foranya € #"4(X, L*¥ ® E) and0 < r < %
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(2) there exists a constant C > 0 such that

a2, ,, < Ck” / ol ,dvx (3.3)
|Z|<ﬁ

forany xo € K1, @ € ™9 (X, L* ® E) and k sufficiently large,

where | - |ik » I8 the pointwise Hermitian norm induced by w, h* and hE.

Proof In [41, Lemma 3.4, 3.5] the assertion was proved for all 1 < ¢ < n for a
semipositive line bundle on K 2. However, in order to prove the assertion for a fixed
g, it is enough to assume (L, h’) is Nakano g-semipositive, i.e., it satisfies (2.9) for
x € K». Indeed, if (L, h’) satisfies (2.9) for x € K», we have

AL hEY ATy A gy = (271)—1([\/—11#, Ala, a)hwn >0 (3.4)

on K». Thus, the inequality in [41, (3.11)], 189 (Ty A wy—1) > —Cala|wy, still holds
for @ € ™9(X,LF ® E) and the rest part of the proof is unchanged. Thus this
sub-meanvalue proposition analogue to [41, Lemma 3.4, Lemma 3.5] follows. O

Analogue to [4,40,41], we obtain alocal estimates for the Bergman density functions
as follows.

Theorem 3.2 Let (X, w) be a Hermitian manifold of dimension n and let (L, h')
and (E, hE) be holomorphic Hermitian line bundles over X, and 1 < q < n. Let
K C X be a compact subset and (L, h) is Nakano q-semipositive with respect to w
on a neighborhood of K. Then there exists C > 0 depending on K, w, (L, h') and
(E, hE), such that

Bl(x) < Ck"™? forallx € K, k> 1, (3.5)

where BZ (x) is defined by (3.1) for harmonic (0, q)-forms with values in L¥® E.

Proof We repeat the procedure in the proof of [41, Theorem 1.1] by using Lemma 3.1
instead of [41, Lemma 3.4, 3.5]. By combine (3.3) and the case r = 2 of (3.2), we

N
have there exists C > 0 such that
loe ()7

S{(x) == sup :Tg“’ caeANX, LYQE) < ke (3.6)
ol

for any x € K| and k > 1. Finally, it follows from the fact SZ x) < BZ x)<cC SZ (x)
and replacing E ® A"(T19X) for E in #™9(X, L*¥ ® E). o

Proof of Theorem 1.2 Combining Theorem 3.2 and Proposition 2.8. O
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3.2 The Growth of Cohomology on Coverings

Proof of Corollary 1.3 For a fundamental domain U € X with respect to I', by Theo-
rem 1.2 and Proposition 2.8, dimp 5%/ (X, L*¥ ® E) = [, B] (x)dvyx < Ck"~/ for
all j > gq. O

Corollary 3.3 Let (X, w) be a I'-covering Hermitian manifold of dimension n. Let
(L, h%Y) and (E, h%) be two T -invariant holomorphic Hermitian line bundles on X.

(D) Ift(L, hl, ) > 0 on X, then there exists C > 0 such that for any k > 1,

dimr Hey (X, LF ® E) < C. (3.7)
2) Ift(L, ht, @) < 0on X, then there exists C > 0 such that for any k > 1,

dimp Heyy (X, LK ® E) < C. (3.8)

Proof Apply Proposition 2.11(2)(4), Corollary 1.3 and Serre duality [9, 6.3.15]. O

Since connected complex manifolds are either compact or n-complete, see [16,
I1X.(3.5)], we can rephrase Corollary 3.3 for the trivial I' by (2.8) as follows.
Let (X, ) be a connected Hermitian manifold of dimension n. Let (L, k%) and
(E, hE) be holomorphic Hermitian line bundles on X. If (L, ht, w) > 0 on X,
then dim H" (X, LF ® E) < C for any k > 1; if t(L,hL,a)) < 0 on X, then
dim[H*%(X, LF ® E)]y < C forany k > 1.

3.3 The Growth of Cohomology on General Hermitian Manifolds
As another application, we can refine the main result in [40].

Proof of Theorem 1.4 By Theorem 3.2 and the concentration condition, we have

dim Hy! (X, L* @ E) = dim #4(X, L* @ E)
= Y=o [ Bt
j=1 K
< CoCK"™ vol(K) 3.9)

for sufficiently large k. Note that H 02"1 (X, F) = ﬁ(()z? (X, F) and the dimension is
finite, when the fundamental estimate holds in bidegree (0, ¢) for forms with values
in a holomorphic Hermitian vector bundle (F, . O
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4 Refined Estimates on Complex Manifolds with Convexity
4.1 Proof of the Result on g-convex Manifolds

Let X be a g-convex manifold of dimension n. Let o be a exhaustion function of
X and K a compact exceptional set in X. By definition, o € ¢°°(X, R) satisfies
X.:={o <c}€Xforallc € R, /—13d0 has n — ¢ + 1 positive eigenvalues on
X\ K. In this section, we fix real numbers ug, # and v satisfying ug < u < ¢ < v and
K C Xy,.

We outline the idea of our proof of Theorem 1.5. Let (L, hl), (E, h*) be holo-
morphic Hermitian line bundles on X. The fundamental estimate holds in bidegree
(0, j) for forms with values in L* ® E for large k and each ¢ < j < n on X, when
X is a g-convex manifold, see Proposition 4.2, which was obtained in [26, Theorem
3.5.8] for the proof of Morse inequalities on g-convex manifolds. We observe that the
Nakano g-semipositive is preserved by the modification of A%, see Proposition 4.3.
By Theorem 1.4, Proposition 2.6 and related cohomology isomorphism, we obtain the
desired results for j > q.

Firstly, we choose now a Hermitian metric w on X from [26, Lemma 3.5.3].

Lemma4.1 For any Cy > 0 there exists a metric g X (with Hermitian form o) on X
such that for any j > q and any holomorphic Hermitian vector bundle (F, ht) on
X,

(080w, TT* Admys.s) = Crlsl s € 27 X\Kup ), @)

where {w;}]_, is a local orthonormal frame of T8O X with dual frame {u)l}?:1 of
T(l ,0)% X.

Now we consider the g-convex manifold X associated with the metric w obtained
above as a Hermitian manifold (X, w). Note for arbitrary holomorphic vector bundle F
on a relatively compact domain M in X, the Hilbert space adjoint 52* of 3" coincides
with the formal adjoint @'~ of 3 on B (M, F) = Dom(@5") N Q% (M, F), 1 <
Jj < n.So we simply use the notion 5” on Bo’j(M, F),1<j<n.

Secondly, we will modify Hermitian metric h§ on L and show the fundamental
estimate fulfilled. Let x (1) € €°°(R) such that x'(z) > 0, x”(¢) > 0, which will be

determined later. We define a Hermitian metric hi := hte=x©@ on L, and thus the
modified curvature is

R™ = R" + x'(0)990 + 1" ()90 A Do 42)
Proposition 4.2 Let X be a q-convex manifold of dimension n with the exceptional set

K C X.. Then there exists a compact subset K' C X, and Cy, C3 > 0 such that for
sufficiently large k, we have

Co [ zE =E
Isi? = =2 (18 512 + 13 rs1%) + Co /K s Pdux (43)
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or any s € Dom(gE) N Dom(gE* )N L? (X, L* ® E) and q < j < n, where
k kH 0,
x'(0) = C3 on X,\X, and the L*-norm is given by w, hﬁk and h® on X..

Proof See [40, Proposition 3.8] or [26, Theorem 3.5.8]. O

Thirdly, we will show that (L, h™x) preserves the certain semipositivity of (L, h%)
by choosing a appropriate x as follows. Let C3 > 0 be in Lemma 4.2. We choose
x € €°(R) such that x”(t) > 0, x'(t) > C3 on (u, v) and x (t) = 0 on (—00, ugp).
Therefore, x'(0(x)) > C3 > 0on X,\ X, and x (o(x)) = x'(0(x)) = 0 on X,,. Note
K C Xy, and ugp < u < ¢ < v. Now we have a fixed x which leads to the following
proposition.

Proposition4.3 X is a g-convex manifold with Hermitian metric w given by
Lemma 4.1. Let j > q. Suppose (L, h") satisfies

([«/—_IR(LJ‘L), A]a,a>h >0 foralla € N"IT*X, x € X.. (4.4)
Then, (L, hix) satisfies
(IV=TRECHD, A]a,oz>h >0 foralla € N"IT*X,x € X.. (4.5
In particular, if (L, hty > 0on X,, (Ly, hix) satisfies
([\/—_IR(LX’hLX), Ale, ot)h >0 foralac /\"’ij*X,x €Xej>q. (4.6)

Proof /—1RLx = /=TRL 4+ /=1x'(0)330 +~/—1x"(0)d0 A do on X.. From the
above definition of x, we have x’(0) > 0on X, x'(0) = 0on X,,, and x”(0) > 0on
X. Since /—130 Ad0 > 0on X., we have /—1x"(0)d0 Ado > 0 on X.. Therefore,
we only need to show that, for all @ € AT T)X,x € XC\Y“O,

[vV—1000, Ala,a) > 0. 4.7
< )

In fact, from Lemma 4.1, for s € Q7 (X,\X,,,) = Q07 (X,\X,,, Kx) with s(x) =
o e NMTHX, x € X\ Xy

<[«/—_1359, Ala, oc>h - <[«/—_1859, Als, s>h (x) = <\/—_135Q A As, s>h (x)

- <(a§Q)(w,, TOTE A i 5, s>h (x)

> Cils[;(x) = Cilal; = 0. 4.8)
Thus the proof is complete. O

Now we combine the above components and obtain:
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Theorem 4.4 Let X be a q-convex manifold of dimension n with a Hermitian metric w
given by Lemma 4.1. Let (L, h™) and (E, ht) be holomorphic Hermitian line bundles
on X. Let the exceptional set K C X,. Let j > q and (L, h) satisfies, with respect
to w,

<[«/—1R(L”’L), A](x,oc>h >0 foralla € N"IT*X, x € X.. (4.9)

Then, for all k > 1, dim H/ (X, LF ® E) < Ck"~/.

Proof Proposition 4.2 entails the fundamental estimate holds in bidegree (0, j) for
forms with values in L¥ ® E for large k on X, with respect to w, h; and h* and
Jj = q. Thus, by Proposition 4.3 and Theorem 1.4, there exists C > 0 such that for
sufficiently large k,

0

dim H(z’)j (X, L* ® E) = dim #%/ (X, L @ E) < Ck"~/ (4.10)

holds with respect to hE and the chosen metrics w and h§ on X, (as in [40]). By results
of Hormander [26, Theorem 3.5.6], Andreotti—Grauert [26, Theorem 3.5.7] and the
Dolbeault isomorphism [26, Theorem B.4.4], we have, for j > ¢,

H/(X,L*® E) = H/(X,,L*® E) = H*/ (X, L ® E)
~ H(Oz’)j(Xc, LF®E). A.11)
Thus the conclusion holds for sufficiently large k. Note that for any holomorphic

vector bundle F, dim H/ (X, F) < oo for j > g by the result of Andreotti—Grauert
[26, Theorem B.4.8]. So the conclusion holds for all kK > 1. O

Proof of Theorem 1.5 Let X, be a sublevel set including K such that (L, hty > 0on

X.. From Proposition 2.6, (L, ht)y > 0on X, implies for any Hermitian metric w,

([«/—IR(L’hL), Ala, oc>h >0 foralla € A™IT X, x € Xo, j = 1. (4.12)

Then the conclusion follows by Theorem 4.4. O

By adapting the duality formula [19, 20.7 Theorem] to Theorem 1.5, we have the
analogue result to [41, Remark 4.4] for seminegative line bundles.

Corollary 4.5 Let X be a q-convex manifold of dimension n and let (L, h"), (E, hF)
be holomorphic Hermitian line bundles on X. Let (L, h™) be seminegative on a neigh-
borhood of the exceptional subset K. Then there exists C > 0 such that for any
0<j<n-—gqandk > 1, the jth cohomology with compact supports

dim[H®/ (X, L* ® E)]p < Ck/. (4.13)

Proof Forany ¢ < s < n, dim[H*"5(X, L*¥ ® E)]o = dim H**(X, L** ® E* ®
Kx) < Ck"™* by Theorem 1.5 and (2.8), see [1] and [19, 20.7 Theorem]. O
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Remark 4.6 (Vanishing theorems on g-convex manifolds) Let (E, h%) be a holo-
morphic vector bundle on X. If (L, ht)y > 0 on X, with K C X, instead of the
hypothesis (L, h%) > 0 on X, in Theorem 1.5, then for j > ¢ and sufficiently large
k, dim H/ (X, LF® E) = 0, see [26, Theorem 3.5.9]. And it can be generalized to
Nakano g-positive as follows.

Theorem 4.7 Let (X, w) be a q-convex manifold of dimension n with the Hermitian
metric w given by Lemma 4.1 and 1 < g < n. Let E, L be holomorphic vector bundle
withrank(L) = 1. Let K C X be the exceptional set. If (L, h) is Nakano p-positive
with respect to w on X with K C X, then for j > max{p, q} and k sufficiently large,

H/(X,L*® E) = 0. 4.14)

Proof We can shrElk X, with K C X, such that (L, h%) is p-positive with respect to
w on the closure X .. By (2.11), there exists Cy, > 0 such that

(RE(wi, W)W Adgys,s)n > Crls|p (4.15)

for any s € B%J (X, F) with arbitrary holomorphic line bundle F and j > p. Thus
there exists C, > 0, for each s € BO’J(XC, LF ® E) with j > max{p, ¢} and k
sufficiently large,

Cy —E —E
Isl? < == 3 sI? + 113 “s11?) (4.16)

holds. with respect to h' and w as in [26, Lemma 3.5.4], and thus it holds for s €
%O’J(XC, _Lk ® E) with j > max{p, ¢q}. Then, for k sufficiently large, H’ (X, LF®
E) = %/ (X., L* ® E) = 0 with j > max{p, ¢}. O

Remark 4.8 (Complex spaces) Let X be a j-convex Kihler manifold with dim X = n
and 1 < j < n.Let (L, h"*) be a holomorphic Hermitian line bundle and (L, k%) > 0
on X. Let S be acomplex space and f : X — § a proper surjective holomorphic map.
Then, by Theorem 1.5 and [30], dim H? (S, R? f.(Kx ® L)) = O(k"~P~9) for all
(p,q) with p + g > j, where R f,(-) is the gth higher direct image sheaf.

4.2 Pseudoconvex, Weakly 1-Complete, and Complete Manifolds

Analogue to the case of g-convex manifolds, we can generalize other results in [40]
as follows. Holomorphic Morse inequalities for weakly 1-complete manifolds and
pseudoconvex domain were obtained in [27] and [26, Theorem 3.5.10, 3.5.12].

Theorem 4.9 Let M € X be a smooth (weakly) pseudoconvex domain in a complex
manifold X of dimension n. Let w be a Hermitian metric on X. Let (L, htyand (E, hE)
be holomorphic Hermitian line bundles on X. Let 1 < q < n. Assume (L, Kty is
Nakano q-semipositive with respect to @ on M, and (L, h™) is Nakano q-positive
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with respect to w in a neighborhood of bM. Then there exists C > 0 such that for
sufficiently large k, we have

dim Hyy/ (M, L* ® E) < CK"™/ forallq < j <n. 4.17)

Proof We follow [40, Theorem 1.5, (3.29)] and [26, Theorem 3.5.10]. Let p €
%> (X, R) be a defining function of M such that M = {x € X : p(x) < 0} with
ldp| = 1 on the boundary bM. Let x € bM.Fors € Q"*(M, L* ® E), the Levi form
defined by .Z) (s, s)(x) := sz’kzz(ﬁap)(wk, w;) (W A i, s(x), s(x))y. Since M is
pseudoconvex, it follows that, for s € Bo’q(M JLYQE ),

Ly (s, s)dvpy > 0. (4.18)
bM

Let X, :={x e X:pkx) <clforce R Wefixu <0<v sgch that L is Nakano
q-positive with respect to w on a open neighborhood of X,\X,, then there exists
Cr. > 0 such that for any holomorphic Hermitian vector bundle (F, Kt )on X,

(RE (wy, W)WE A by, shn = CLlsl, s € QUUX\X,, F). (4.19)

By the Bochner—Kodaira—Nakano formula with boundary term [26, Corol-
lary 1.4.22], there e)gst C4 > 0 and C5 > 0 such that for any s € BY4 (M, LF® E)
with supp(s) € X,\ X,

3 k * o .
E(na,fsn2 +19F*s11%) = (R EESKY (w;, w)w Aigs, s)
+ / Z, (5. $)dvpas — Calls|?
bM

> f (kCp — Cs — C4)|s|*dvy. (4.20)
M

For any k > ko := [ZC“C;LQ] + 1, we have C; — % > %CL. Let Cp = CiL For
any s € BY4(M, L*¥ ® E) with supp(s) C X,\X, and k > ko > 0, we have

Cy —E —E
lIs|I* < — U9 sI? 4113 s1%) 4.21)

where the L?-norm | - || is given by w, hL* and hE on M.
Note the fact that B%9(M, L¥ ® E) is dense in Dom(gf) N Dom(gf,;) N
L%, M, L* ® E) with respect to the graph norm of 55 + 552 Following the same

argument in Lemma 4.2 (without the modification of 2% by x), we conclude that there
exists a compact subset K’ C M and Cy > 0 such that for sufficiently large k, we
have
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Co  =E =E
1517 < 2T + 135517+ Co [ 15y @22)
K/

forany s € Dom(gf) N Dom(g,?;,) N L%’q (M, LF® E), where the L2%-norm is given

by w, th and hE on M. That is, the fundamental estimate holds in bidegree (0, q)
for forms with values in L¥ ® E for large k. Finally, we apply Theorem 1.4 and
Proposition 2.8. O

The polynomial growth of dimension of cohomology of Griffiths g-positive line
bundles on weakly 1-complete manifolds via holomorphic Morse inequalities, we
refer to [27]. For the Nakano g-positive cases, by applying Theorem 4.9 as in [40,
Proof of Theorem 1.6], we obtain:

Corollary 4.10 Let X be a weakly 1-complete manifold of dimension n with a smooth
plurisubharmonic exhaustion function p and w be a Hermitian metric on X. Let
(L, Ly and (E, hE) be holomorphic Hermitian line bundles on X. Let 1 < g <n
and (L, h') is Nakano q-semipositive with respect to  on X.

(1) Assume (L, h) is Nakano q-positive with respect to @ on X\K for a compact
subset K. Then, for any sublevel set X, := {p < c} with smooth boundary and
K C X, there exists C > 0 such that for k sufficiently large,

0.i

dim Hg) (X, LY®Q E) < CK"™/ forallg < j <n. (4.23)

(

(2) Assume (L, h) is positive on X\K for a compact subset K. Then there exists
C > 0 such that for k sufficiently large,

dim H/ (X, LK ® E) < Ck"™/ forallqg < j <n. (4.24)

Proof (1) is from X, is a smooth psegdoconvex domain and Theorem 4.9; (2) follows
from (1)and H/ (X, L*Q E) = H(Oz’)j (X¢, LK®E) forall j > g and sufficiently large
k. O

Similarly, we also can refine [40, Theorem 1.2] on complete manifolds.

Theorem 4.11 Let (X, w) be a complete Hermitian manifold of dimension n. Let
(L, h™) be a holomorphic Hermitian line bundle on X. Assume there exists a compact
subset K C X such that \/—_IR(LJ‘L) =won X\K. Let 1 <g <nand (L, hL) is
Nakano q-semipositive with respect to w on K. Then there exists C > 0 such that for
sufficiently large k, we have

dim Hyy! (X, LY ® Kx) < CK"™/ forallq < j <n. (4.25)

Proof Since (X, w) is complete, 552 = 55* for arbitrary holomorphic Hermitian
vector bundle (E, h%). In a local orthonormal frame {w Vi of 730X with dual
frame {w/‘}’;=1 of T0O*X, 0 = V=1Y_ 0/ A@/ and A = —/Tiz;iy;. Thus
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J=IRLMY = /77 > o’ A @’ outside K. Let {ex} be a local frame of LX. For
s € QyY(X\K, L¥), we can write 5 = > =g sjol Ao Ao Aw! @ e locally,
thus

[vV—1RE, Als = Z (qsjo' A A" ABT) @ ex = gs. (4.26)
IJl=q

Since (X\K, v—TR®"") is Kahler, we apply Nakano’s inequality [26, (1.4.52)],
3esl® + 13gsl®> = k(IW—1RE, Als, s) > gk|s||*> = klls||*. (4.27)

Therefore, we have [ls|> < L(|3ks)|? + [0;s)1?) for s € Q¢ (X\K, L¥) with 1 <
g < n with respect to h* and w.

Next we follow the analogue argument in [40, Proposition 3.8] to obtain the
fundamental estimates as follows. Let V and U be open subsets of X such that
K Cc V. € U @ X. We choose a function £ € %OOO(U,R) such that 0 < & < 1
and€ = 1lonV.Weset¢:=1—§&, thus ¢ € €°(X,R) satisfying 0 < ¢ < 1 and
¢ =0on V.

Now let s € Q47(X, LY), thus ¢ps € Qp?(X\K, L¥). We set K := U, then

16517 = 1slP = [ 1sPdox, (4.28)

and similarly there exists a constant C; > 0 such that

1 _ —x 5 _ — 12C
E(”ak((ﬁs)”z + 135 (P9)II*) < z(naksn2 + 13sl1®) + Tlnsn? (4.29)

By combining the above three inequalities, there exists Cop > 0 such that for any
seQyl(X, LY = Qg’q(X, L* ® Kx) and k large enough

Co  — —
lIs)? < 7(||aks||2 + 119s1%) + Co / Is[*dvy. (4.30)
K/

Finally, since Qg”(X ,L* ® Kyx) is dense in Dom(gfx) N Dom(glfx*) in the graph
norm, the fundamental estimate holds in bidegree (0, g) for forms with values in
L*® K x for k large. So the conclusion follows from Theorem 1.4 and Proposition 2.8.

O

4.3 Vanishing Theorems and the Estimate O(k"~9)

In this section, we restrict to Kdhler manifolds X and £ = K. Firstly, inspired by
[17,31], we see the injectivity for Nakano g-semipositive line bundles.
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Lemma4.12 Let (X, w) be a compact Kéihler manifold of dimension n and let (L, h™)
be holomorphic Hermitian line bundle on X. Let 1 < g < n and (L, h™) be Nakano
g-semipositive with respect to w on X. Let s € HO(X, L*)\{0} for some k > 0. Then,
for every j > q and m > 1, the multiplication map - @ s :

H/ (X, Kx ® L") — H/(X, Kx ® LK) (4.31)

is injective. In particular, if (L, h') is semipositive, it holds for all j > 1.

Proof We follow [17, 1.5 Enoki’s proof]. By Proposition 2.8 and Hodge theorem, we
only need to show the multiplication map - ® s between the harmonic spaces

(X, LY — (X, LR (4.32)

is injective for m > 1. Let u € J™9(X,L™). Since s € HOX, LK),
_Lm+k

0 (s ® u) = 0. From the g-semipositive and Nakano’s inequality [26, (1.4.51)],
<[«/—1R<L’hL), Alu, u>h — Oon X. From [26, (1.4.44),(1.4.38¢)], (VL") 0% (s @u) =

s @ (VE")10%;) = 0. Also we have <[«/—1RL’”*’{, Als ®u), (s ® u)>h = 0. Thus

_rm+k m
137 Fsowl* = (V" s @ u > = 0.

We obtain s ® u € 4 (X, L"**). Suppose s ® u = 0 on X. Since s # 0 and [16,
Ch.VIL3. (2.4) Lemma], u = O on X. O

Let « (L) be the Kodaira dimension of L on a compact complex manifold X given
by

k(L) := —oo, when H(X, L¥) = 0 for all k > 0; otherwise, (4.33)
. dim HO(X, L%) .

k(L) := max{m € N : limsup B E— > 0} € [0,dim X]. (4.34)
k—o00

By the above lemma and Corollary 1.3 with the trivial I', we obtain:

Theorem 4.13 Let (X, w) be a compact Kiihler manifold of dimension n and let (L, Kb
be holomorphic Hermitian line bundle on X. Let 1 < q < n and (L, hL) be Nakano
q-semipositive with respect to w on X. Then, for all j > max{n —«(L), g — 1} and
m > 0,

H/(X,Kx ® L") = 0. (4.35)
Proof We follow [31, Thg:orem 4.5]. Suppose there exist m > Oand j > n —«k(L)
with j > ¢ such that H/ (X, Kx ® L™) # 0. Letu € H/(X, Kx ® L™)\{0} and

let {s j}f»v= | C H O(X, L*) be linearly independent. By the injectivity Lemma 4.12,
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{s;i ® u}lN: | CH J(X, Kx ® L"™*k) are linearly independent. By Corollary 1.3 for
compact Kéhler manifolds, we see

dim HO(X, LK) dim H/ (X, Kx ® LK) C(k =i C
X, L0 X Ex® LT CRAmTT € 436
k(L) Jen—i+1 Jen—i+1 k
By applying lim sup,_, . ., there is a contradiction. O

Corollary 4.14 Let (X, w) be a compact Kdihler manifold and let (L, h™) be a holo-

morphic Hermitian line bundle. If TrwR(L*’hL ) > 0 on X and k(L*) > 0, then
k(L) = —oo. In particular, if the scalar curvature ro, = 0 on X andK(K;‘() > 0, then
K(Kyx) = —o0.

Proof HO(X,L™) = H"(X,Kx ® L™) = 0 and r,, = 2)_; Ric(wj, ®}) =
2Tr, RXx. O

Secondly, as applications of Bochner—Kodaira—Nakano formulas, certain Kodaira
type vanishing theorems of Nakano g-semipositive line bundles hold as follows.

Proposition 4.15 Let (X, w) be a complete Kdhler manifold of dimension n and 1 <
q < n. Let (L, h™) be a Nakano q-semipositive line bundle with respect to w on X.

Assume there exists Co > 0 and a compact subset K ; X such that \/—1R (L,h") >
Cow on X\K. Then,

HY (X.Kx®L) =0 forall j > q. (4.37)

Proof Since (X, w) is complete, 51;,* = 51‘*. For s € Qg’j(X, L) for j > ¢, from
Bochner-Kodaira—Nakano formula, we have

=L =L
197 s> + 113”751 = ([V=IR", Als.s) = CollsI5\x = Collsl* — Collsl%-
(4.38)

Since 2/ (X, L) is dense in Dom(3") NDom (3", (4.38) holds for s € Dom(3") N

Dom(3"*). Since K C X.slx\k =0fors € ™/ (X, L), and then #"/ (X, L) =
0. From (4.38), the fundamental estimate holds for (0, j)-form with valuesin Kx ® L,

and thus H(Oz’)/ X, Kx®L)= #%(X,Kx ®L) =0. o

Proposition 4.16 Let (X, w) be a weakly 1-complete Kdhler manifold of dimension n
and 1 < g < n. Let (L, h™") be a Nakano q-semipositive line bundle with respect to w
on X. Assume there exists a compact subset K G X and V=IREM) = o on X\K.
Then,

HI(X,Kx®L)=0 forall j > q. (4.39)
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Proof Let ¢ € €°°(X,R) be an exhaustion function of X such that /—139¢ > 0
on X and X, := {¢ < ¢} € X for all ¢ € R. We choose a regular value ¢ € R of ¢
such that K C X by Sard’s theorem. Thus X, is a smooth pseudoconvex domain and
V—1IRE = a) > 0 on a neighborhood of bX_, in particular on X \K. It follows that
fors € Q"I (X., L), Jj>gq,

(IV=TR", Als,s) = (IV=1R", Als, s)k + ([, Als, ) xax = lIsllk\x-
(4.40)

Ifs € B (Xe, L), [ 512 + 1317 = (W=IRE Als.s) + [y Zo(s. $)dvy,

by [26]. Since X, is pseudoconvex, fch Z,(s,s)dvx, > 0. Since 51{,* = 51‘* on

B% (X, Kx ® L),
—L —L
187 s1> 4+ 187 s1? = lIsI> = lIsll% (4.41)

holds for s € B/ (X, Kx ® L), thus for s € Dom(@") NDom(@ )N L2 ;(X,. L).
In particular, if s € J2"9(X., L), s|x.,\k = 0 and so H™I(X, L) =0forj > gq.
Smce the fundamental estimate holds for (0, j)-form with values in Kx ® L on X,

(2) (X, Kx®L) = #%I(X., Kx®L) = 0for j > q. Moreover, by [34, Theorem
1.2] and @ = /—IRY on X\X., it follows H/(X,Kx @ L) = H"/(X,L) =
H (Xe. L) =0. o

For a pseudoconvex domain M, we follow the above argument for X, and obtain:

Proposition 4.17 Let M be a smooth pseudoconvex domain in a Kdihler manifold
(X, w) of dimension n and 1 < q < n. Let (L, h*) be a Nakano q-semipositive line
bundle with respect to w on M. Assume (L, h*) is Nakano q-positive with respect to
w on a neighborhood of bM. Then for every j > q,

(2) (M Kx®L)=0. (4.42)

Proof Let (L, h™) be Nakano g-positive with respect to @ on a neighborhood U of
bM such that U is compact. Let V € U and V be a smaller neighborhood of bM. By
the Bochner—Kodaira—Nakano formula with boundary term [26, Corollary 1.4.22], for
any s € Bo’q(M, L®Kx), k>0,

3 —Kx 2 —Kx* 2 L
) — \—k
Ella siIF4+ 197" slI* = (R (wj, w)w" A iz, s, 5)
> RL . s _k S
> (R (wj, w)w" Al S, S)Mnv

> Clislyny = CIsI® = lIslpy),  (443)

where C > 0, given by the Nakano g-positive line bundle L with respect to w on U and
the compactness of M NV C U is independent of the choice of 5. Thus, we follow the
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argument for X, = M in Proposition 4.16 and obtain #%9(M, L ® Kx) = 0. Since
the fundamental estimate holds, H(Oz’)q (M, L ® Kx) = 0. And the assertion holds for
all j > g by Proposition 2.8 and Remark 2.9. O

4.4 Remarks on @-Trace and Kodaira Type Vanishing Theorems

Let (E, hE) be a holomorphic Hermitian vector bundle on a Hermitian manifold
(X, ). The w-trace of R(E ") can be represented by

t(E, hF, w) == T, REM) = 3 REM) (), @)
j

9 9
= S REM (D T ) (dz, dZ) yrex.
a 9z, 0%k ¢

Comparing to the usual trace Tr[R(E’hE)] e Q1(X) depending only on hf,
T(E,hE, w) = TrwR(E’hE) € End(E) depends on h¥ and w. By Bochner—Kodaira—
Nakano formulas, Serre duality and Le Potier’s Theorem [21, 3.5.1, (3.5.8)], it follows
that:

Proposition 4.18 Let (E, h) be a holomorphic Hermitian vector bundle over a com-
pact Kéiihler manifold (X, w). (1) If t(Og=(1)) < 0 and < 0 at one point on P(E™),
then HO(X, S™(E)) = 0 forallm > 1. (2) If t(E) < 0 and < 0 at one point on X,
then HO(X, E™) = 0 for allm > 1.

Proof The case m = 1 of (2) follows from Bochner—Kodaira—Nakano formulas (or
using the Lichnerowicz formula [26, (1.4.31)])). From the fact 7 (E®™") = t(E)®™,
refer to [21, II1.(1.12)] or [43, (3.7)], we have (2) holds for all m > 1. And (1) is from
Le Potier’s Theorem [21, 3.5.1, (3.5.8)] and (2) for E = Opg=(1). m|

Recall that a compact complex manifold X is said to be rationally connected if any
two points of X can be joined by a chain of rational curves, see [10]. We say a real
(1, I)-form & € Q11 (X) is quasi-positive on X, if @ > 0 on X and > 0 at one point.
Proposition 4.19 Let X be a compact Kdhler manifold with a quasi-positive (1, 1)-

form representing the first Chern class c¢1(X). Then X is projective and rationally
connected.

Proof Calabi—Yau theorem [44] provides a Kihler metric @ on X such that the Ricci
form +/—1RXX = Ric, is quasi-positive, so Ky is big and X is projective. Since
(X, w) is Kihler, Ric, = ~/—ITr[RT"°X] and it coincides with (T "-°X, h,,, w) =
Tr, RT""X as Hermitian matrices. Thus, 7(T'°X, h,, @) > 0 and > 0 at one point.
By 1(T"9X) = —¢(T1:9*X) and Proposition 4.18 (2), we have H (X, (T1-%*x)") =
0 for all m > 1, and the rationally connected follows from [10, 5.1. Corollary]. O

Equivalently, it follows from [21, Ch.III. (1.34)] and [10, 5.1 Corollary] that: A
compact Kidher manifold with quasi-positive Ricci curvature is projective and ratio-
nally connected. It strengthens [42, Theorem B (A)] which asserted such a manifold
is simply connected and has no nonzero holomorphic g-forms for g > 0, since any
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rationally connected projective manifold has these properties, see [12, Corollary 4.18].
And it also leads to the fact [8,24] that every smooth Fano manifold X is rationally
connected (See [12,23,45]).

Proposition 4.20 Let X be a compact Kdihler manifold of non-negative bisectional
curvature. The following conditions are equivalent: (A) X is simply connected; (B)
The first Betti number is zero; (C) X has quasi-positive Ricci curvature; (D) X is
projective and rationally connected.

Proof From [20, Corollary 1] and Proposition 4.19, we see (A), (B) and (C) are equiv-
alent and (C) implies (D). And [12, Corollary 4.18] entails (D) implies (A). O

5 Dirac Operator on Nakano g-positive Line Bundles

Inspired by [27] and [25, Theorem 1.1, 2.5], we consider g-positive line bundles and
the Dirac operators. We give some estimates of modified Dirac operators on high
tensor powers of g-positive line bundles based on [26, Sect. 1.5].

5.1 Nakano g-positive Line Bundles with Respect to @

In this section, we work on the following setting. Let (X, J) be a smooth manifold
with almost complex structure J and dimg X = 2n. Let g7 X be a Riemannian metric
compatible with J and w := g7 X (J-, -) be the real (1, 1)-forms on X induced by g7 %
and J. Let (E, hf) and (L, h%) be Hermitian vector bundles on X with rank(L) = 1.
Let VE and V£ be Hermitian connectionson (E, h£) and (L, h%) andlet RE := (VE)?2
and R := (VL)2 be the curvatures. Assume that % R™ is compatible with J. Thus,

the Chern—Weil form ¢; (L, h%) := %RL representing the first Chern class c1(L)
of Lisareal (1, 1)-forms on X. (For example, X is a compact complex manifold and
(E,hE,VE), (L, ht, VL) are holomorphic Hermitian).

The almost complex structure J induced a splitting of the complexification of
the tangent bundle, i.e., TX ® C = TL0x &P 791X and the cotangent bundle. Let
0 < p,q < n,andlet \”"? T*X be the fiber of the bundle A”? T*X := APT'*X ®
ATO X for x € X. Fork € N, we denote by Q79(X, L¥ ® E) the space of (p, q)-
forms with values in LX ® E on X and set Q%29 (X, LKQ E) := [any QY (X, LF®

Jj=q
E). As defined in Sect. 2, we denote by (-, -); and | - |, the pointwise Hermitian
inner product and Hermitian norm, and by (-, -) and | - || the L? inner product and

L%-norm. Let A be the dual of the operator £ := w A - on QP9 (X) with respect to the
Hermitian inner product (-, -), on X. In a local orthonormal frame {w j};le of TOX

with respect to ¢” ¥ and its dual {w/} of 710k x| RUEAD) — RULAD) (4, wHw AW/,
L=V=1Y"_jw/ Aw/ and A = —/=1Yj_ iyji,;. Forany s € Q7(X, LK ®
E), <[v—1R(L‘hL), Als, s>h € (X, R). We set

wg =— Y RE(wi, WHW A i, € End(A(T*1X)). CRY
i
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For a real 3-form A on X, one can define modified Dirac operator DE’A acting on
QU (X, L*Q@ E) = @2 Q%7 (X, L* ® E), see [26, Definition 1.3.6, (1.5.27)]. Ma-

Marinescu obtained the precise lower bound of D,i’A as follows. The proof is based
on a application of Lichnerowicz formula, see [26, (1.5.34), (1.5.30)] and [25].

Theorem 5.1 [26] There exists C > 0 such that foranyk € N, s € QO"(X, LF® E),

1Dy A1 = 2k(—was, s) — Clis|*. (5.2)
As a consequence, they obtained the spectral gap property [26, Theorem 1.5.7, 1.5.8],
which play the essential role in their approach to the Bergman kernel. In this section,

we generalize [26, Theorem 1.5.7] to the case of Nakano g-positive line bundles.

Definition 5.2 For each 1 < ¢ < n, the number g € RU {Zo0} defined by

([v/—1RE, Alu, u)p,

m )
UENITEX |u|h

g () = L opg = inf g, (5.3)

In terms of local orthonormal frame {w;} of 710X it follows that

, (RE (i, wj)@! A g, ), . (—waar, @)
Mg = inf : = inf —
aenITEX xeX e, aenITEX xeX e},
5.4)
In other words, if A1(x) < A1(x) < --- < X,(x) are the eigenvalues of R)f with

respect to w at x € X, then 4 (x) = Z?:l Aj(x) and pg = infrex pq(x).

Theorem 5.3 Let X be compact. Let 1 < g < n and (L, h") is Nakano q-positive line
bundle with respect to w on X. Then there exists C;, > 0 such that for any k € N and
any s € Q¥Z9(X, L* ® E),

IDEASI? = Qugk — Co)lIs|I, (5.5

where the constant |14 > 0 defined in (5.3). Especially, for k large enough,

Ker (D]?A|QOZ‘7(X,L]‘®E)> =0. (56)

Proof As in (2.13), we choose a local orthonormal frame around x € X such that
RE(w;i, w)) = 8;jci(x) for 1 <i,j <n.Then

Wy = — Zc jO)w! A, € End(A(T;%X)). (5.7)
j=1
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Let Cj(x) := Zjej c¢j(x) for each ordered J = (ji,..., jy;) with |J| = ¢. For

a € /\g’q X\{0}, we represent it by « = ) ayw’ with |J| = ¢g. From (5.4) and
(5.7), we have

e Gl

= inf inf =———— = inf inf C . 5.8

Hq xeXa;eC Y, lagl? xeX |J|=¢q 7 () (5-8)

Fors(x) € /\S’q X ® LK ® E,, we can represent it by s(x) = Do 5700w’ ®el’.‘

for a local orthonormal frame {ef.‘} of LK ® E. Thus |s(x)|,21 = Zl,i |sJ,,-(x)|2. By
(5.7) and (5.8), Theorem 5.1 entails that, for any s € Q*9(X, L* ® E),

1D 511 = 2k(—wqs, s) — Cls||* = 2k f > Cr)lsyil*dvx = Clis|* (5.9)
Xy

By (2.9), (2.11) and (5.3), we have u, > 0. By (5.8), it follows that
1D 512 = 2kpgls|® = Clis|? (5.10)

holds for s € Q%¢(X, L¥ ® E). By Proposition 2.8 and Remark 2.9, we see Mjt1 >
wj > 0 foreach j > q. Thus the assertion holds for s € Q%24(X, L* ® E). ]

Remark 5.4 From Remark 2.9, the positive assumption [26, (1.5.21)] is equivalent to
Nakano 1-positive line bundle with respect to . By (5.8), u1 = infyex 1<j<n ¢ (X).
Thus [26, Theorem 1.5.7] follows from Theorem 5.3 by choosing g = 1.

In general, for a real 3-form A on X, (D,f’A)2 may not preserve the Z-grading
of QO"(X JLFQE ). As a special case, we can consider Kodaira Laplacian DLk@E,
which preserves the Z-grading. On a complex manifold X, Hodge—Dolbeault operator

Ik Ik
satisfies Dy 1= v2(3 0 +3 C0%) = DOA, for A = —1T,, see [26, (1.4.17)],

and the Kodaira Laplacian satisfies DLk@E = %D,% Then, from Hodge theorem, Serre
duality and the equivalent definition of the g-positive line bundle (see Remark 2.4),
Theorem 5.3 leads to Andreotti—Grauert vanishing theorem [1, Proposition 27] (see
also [16, (5.1) Theorem]):

Corollary 5.5 ([1]) Let X be a compact complex manifold of dimension n and (E, h*)
and (L, h™) be holomorphic Hermitian vector bundles on X with rank(L) = 1. If
R has at least p positive eigenvalues and at least q negative eigenvalues at every
x € X, then, for je{jeN:j<qg—1orj>n— p+ 1} and sufficiently large k,
HI(X,L*® E) = 0.

By the same argument in [25, Theorem 4.4, Corollary 4.5-4.6] gnd [26, (6.1.15)],
Theorem 5.3 still holds on I'-covering manifolds as follows. Let X be a I'-covering

manifold of dimension n. Let J be I'-invariant almost complex structure on X.Let gtX
be a [-invariant Riemannian metric compatible with J and w := g7X(J-, -) be the
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real (1, 1)-forms on X induced by g” X and J. Let (E, hE) and (7, h1) be T-invariant
holomorphic Hermitian vector bundles on X with rank(L) = 1. Let VE and VL be

Chern connections on (E hE) and (L hL) and let RE (VE)2 and RL (VL)2 be

the curvatures. Let Dk =2 (E)L ok + aL ok, *) be the Hodge—Dolbeault operator
Tk

defined on Dom(Dy) = Dom(@- ©5) 1 Dom@- ©E*) and O F .= 152 the

self-adjoint extension of Kodaira Laplacian.

Theorem 5.6 Assume 1 < q < n and (Z hz) is Nakano q-positive with respect to o
on X. Then there exists C; > 0 such that for any k € N and any 5 € Dom(Dk) N

Lj X, L*® E),

IDFI* = Qugk — CPIFI, (5.11)
where the constant j1qy > 0 defined in (5.3).

For the L? Andreotti-Grauert theorem on covering manifolds, see [7, Theorem 3.5]
and [25, Sect. 4].

5.2 Semipositive Line Bundles of Type g

Let X be a complex manifold of dimension z and (L, h%) be a holomorphic Hermitian
line bundle. For 1 < g < n, we have the notion of semipositive line bundles of type
q as follows, refer to [32, Chapter 3, Sect. 1, Definition 1.1]. We say (L, hL) is
semipositive of type ¢ if (L, k") > 0 everywhere and /—1 R,(CL’hL) is positive on a
(n — g + 1)-dimensional subspace of Tx(l’o)X atevery x € X,

We remark that, by [32, Chapter 3, Sect. 2, Proposition 2.1 (1),(2)] and Defini-
tion 1.1, if (L, k) is semipositive of type g on a complex manifold X, then (L, %) is
Nakano g-positive at every point x € X with respect to arbitrary Hermitian metric @
on X. As a consequence, by replacing the hypothesis Nakano g-positive with respect
to w by semipositive of type ¢ in Theorem 5.3 and 5.6, the conclusion therein still
holds.

Besides, by adapting the notion of semipositive of type g to Theorem 4.7, we obtain
another generalization of [26, Theorem 3.5.9] as follows.

Corollary 5.7 Let (X, w) be a g-convex manifold of dimension n. Let E, L be holo-
morphic vector bundle with rank(L) = 1. Let K C X be the exceptional set and
1 < p < n If (L, h") is semipositive of type p on X, with K C X, then for
Jj = max{p, q} and k sufficiently large,

H/(X,L*® E) =0. (5.12)
Proof Since (L, h') is semipositive of type p on X., (L, h’) is Nakano g-positive

with respect to w given by Lemma 4.1 on X. Finally, we use Theorem 4.7. O
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Corollary 5.8 Let M be a smooth pseudoconvex domain in a Kéihler manifold (X, w)
of dimension n and 1 < q < n. Let (L, ht) be a semipositive line bundle on M.
Assume (L, h') is semipositive of type q on a neighborhood of bM. Then for every

Jj=q
H(Oz’)j(M, Kx®L)=0. (5.13)

Proof Propositions 2.6 and 4.17 and the fact that (L, h’) is Nakano g-positive with
respect to any Hermitian metric w on a neighborhood of b M. O
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