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Abstract
We study the cohomology with high tensor powers of Nakano q-semipositive line
bundles on complex manifolds. We obtain the asymptotic estimates for the dimension
of cohomology with high tensor powers of semipositive line bundles over q-convex
manifolds and various possibly non-compact complex manifolds, in which the order
of estimates are optimal. Besides, estimates for themodifiedDirac operator onNakano
q-positive line bundle on almost complex manifolds are given.

Keywords Positivity · Semipositivity · Cohomology · Fundamental estimates ·
Q-convex manifolds · Covering manifolds · Pseudoconvex domains · Weakly
1-complete manifolds · Complete manifolds · Bergman kernel · Dirac operator

1 Introduction

Let X be a complexmanifold of dimension n and (E, hE ) be a holomorphic Hermitian
vector bundle over X . Let ∇E be the holomorphic Hermitian connection of (E, hE )

and R(E,hE ) = (∇E )2 be the curvature of∇E . The Bochner–Kodaira–Nakano formula
and its variation with boundary term, [2,14,18,26], play the central role in various
vanishing theorems on complex manifolds. The latter have important applications in
complex differential and algebraic geometry, such as the characterization of projec-
tive manifolds [22], Moishezon manifolds [13,36,37] and more recently the criterion
for uniruledness and rationally connectedness and related results [6,10,43]. The key
ingredient in these formulas is the curvature term [√−1R(E,hE ), �], where � is the
dual of Hermitian metric on manifolds. With appropriate assumptions on the positiv-
ity of RE , one can achieve the curvature term is strictly positive, i.e., the pointwise
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Hermitian product
〈
[√−1R(E,hE ), �]s, s

〉
h

> 0 for forms s with values in E , which

is enough to prove vanishing theorems in various situations, see [16,21].
Instead of the strict positivity, we consider the q-semipositivity, which was intro-

duced in [35] over Kähler manifolds. A holomorphic Hermitian line bundle on Kähler
manifolds is called Nakano q-positive (resp. semipositive) which means that at every
point the sum of any set of q eigenvalues of the curvature form is positive (resp.
non-negative) when the eigenvalues are computed with respect to the Kähler metric.
Another definition of the q-positivity is the Griffiths q-positive (resp. semipositive),
which means that at every point the curvature form has at least n − q + 1 pos-
itive (resp. semipositive) eigenvalues, see [32, Chapter 3, Sect. 1, Definition 1.1],
[35] and [27]. More precisely, a holomorphic Hermitian line bundle (L, hL) over
a Hermitian manifold (X , ω) is Nakano q-semipositive with respect to the Her-

mitian metric ω of X , if for any (n, q)-forms s,
〈
[√−1R(L,hL ), �]s, s

〉
h

≥ 0,

see Definition 1.1, (2.9), (2.10) and [33]. In this setting, the vanishing of har-
monic forms does not hold in general; however, the dimension of harmonic spaces
with values in high tensor power of such line bundles still can be estimated, and
moreover the estimate turns out to be optimal, see [4]. The solution of Grauert–
Riemenschneider conjecture [13,36,37] shows that if R(L,hL ) ≥ 0 (i.e., Nakano
1-semipositive) on a compact complex manifold X then dim Hq(X , Lk) = o(kn)
as k → ∞ for all q ≥ 1. Demaily’s solution involves holomorphic Morse inequal-

ities [13]: dim Hq(X , Lk ⊗ E) ≤ rank(E) k
n

n!
∫
X(q)

(−1)q(
√−1
2π R(L,hL ))n + o(kn) as

k → ∞, where E is an arbitrary holomorphic vector bundle and X(q) is the set
where

√−1R(L,hL ) has exactly q negative eigenvalues and n − q positive eigenval-
ues. We refer to [26] for a comprehensive account of Demaily’s holomorphic Morse
inequalities and Bergman kernel asymptotics.

Let now E be an arbitrary holomorphic line bundle over X . Along the same lines,
Berndtsson [4] showed that if R(L,hL ) ≥ 0 then dim Hq(X , Lk ⊗ E) = O(kn−q) and
it improves the estimate of Siu and Demailly, which gives only dim Hq(X , Lk ⊗E) =
o(kn) as k → ∞ (since X(q) is the empty set for a semipositive line bundle). Themag-
nitude kn−q is optimal. By adapting their methods to general (possibly non-compact)
complex manifolds with L2-cohomology [41], we obtain a local estimate of Bergman
density function on compact subsets of the underling manifolds when RL ≥ 0. As
applications, the estimates of the Berndtsson type still hold on covering manifolds,

i.e., dim� H
0,q
(2) (X , Lk ⊗ E) = O(kn−q) for all q ≥ 1, and 1-convex manifolds, i.e.,

dim Hq(X , Lk ⊗ E) = O(kn−q) for all q ≥ 1, see [40,41]. With additional assump-
tions on the positivity of (L, hL), the same estimates hold on pseudoconvex domains,
weakly 1-complete manifolds and complete manifolds, see [40]. Note that, on pro-
jective manifolds, the estimate of O(kn−q) type for nef line bundles can be found
in [15], and the case of pseudo-effective line bundles was obtained in [29]. On an
arbitrary compact manifolds, such estimates for semipositive line bundles equipped
with Hermitian metric with analytic singularities were established by [39,40] (in the
latter paper a vector bundle E of arbitrary rank is considered).

In this paper, in order to generalize such estimates to q-convex manifolds, we
use the notion of Nakano q-semipositivity from [33,35], which includes the usual
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semipositivity RL ≥ 0 as a special case. We remark that, inspired by [4,26], this paper
together with [40,41] give a unified approach to the optimal estimate of the dimension
of cohomology of high tensor powers of line bundles with semipositivity on (compact
and non-compact) complex manifolds.

Definition 1.1 [35] Let X be a complex manifold of dim X = n and ω a Hermitian
metric on X . Let (L, hL) be a holomorphic Hermitian line bundle over X . Let 1 ≤
q ≤ n.

(A) (L, hL) is called Nakano q-positive (resp. semipositive, negative, seminegative)
with respect to ω at x ∈ X , if the sum of any set of q eigenvalues of the cur-
vature form RL

x is positive (resp. non-negative, negative, non-positive) when the
eigenvalues are computed with respect to the Hermitian metric ω.

(B) (L, hL) is calledGriffiths q-positive (resp. semipositive, negative, seminegative)
at x ∈ X , if the curvature form RL

x has at leastn−q+1positive (resp. semipositive,
negative, seminegative) eigenvalues.

For the relation of the notions of Griffiths and Nakano q-positivity, see Remark 2.4.
The basic example of Nakano q-positivity is the dual of canonical bundle K ∗

X on a
compactKählermanifold X of dim X = n.With respect to aKählermetricω, the Ricci
curvature of X is positive (resp. non-negative) if and only if K ∗

X is Nakano 1-positive
(resp. 1-semipositive); the scalar curvature of X is positive (resp. non-negative) if and
only if K ∗

X is Nakano n-positive (resp. n-semipositive). The basic example of Griffiths
q-positivity is the dual of tautological line bundle L(E∗)∗, which is Griffiths (n + 1)-
positive on the projective bundle P(E∗) of a holomorphic Hermitian vector bundle
(E, hE ) over a compact complex manifold X of dim X = n.

Firstly,weprovide a refined local estimate onBergmandensity functions forNakano
q-semipositive line bundles, which generalizes the main result in [4,41] and [40,
Theorem 3.1]. The advantage is that it enables us to study the harmonic spaces of
tensor powers of line bundles with weaker semipositivity on complex manifolds.

Theorem 1.2 Let (X , ω) be a Hermitian manifold of dimension n and let (L, hL) and
(E, hE ) be holomorphic Hermitian line bundles over X. Let 1 ≤ q ≤ n. Let K ⊂ X
be a compact subset and (L, hL) be Nakano q-semipositive with respect to ω on a
neighborhood of K . Then there exists C > 0 depending on K ,ω, (L, hL) and (E, hE ),
such that

B j
k (x) ≤ Ckn− j for all x ∈ K , k ≥ 1, q ≤ j ≤ n, (1.1)

where B j
k (x) is the Bergman density function (3.1) of harmonic (0, j)-forms with

values in Lk ⊗ E. In particular, if (L, hL) is semipositive on a neighborhood of K ,
the estimate holds on K for all k ≥ 1 and 1 ≤ j ≤ n.

As a direct application, it leads to the refinement of [4, Theorem 1.1] and [41,
Theorem 1.2] as follows, refer to Definition 2.3 for �-covering manifolds.

Corollary 1.3 Let (X , ω) be a�-coveringmanifold of dimension n, and let (L, hL) and
(E, hE ) be two �-invariant holomorphic Hermitian line bundles on X. Let 1 ≤ q ≤ n
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and (L, hL) be Nakano q-semipositive with respect toω on X. Then there exists C > 0
such that for any k ≥ 1, q ≤ j ≤ n, we have

dim� H
0, j
(2) (X , Lk ⊗ E) = dim� H 0, j (X , Lk ⊗ E) ≤ Ckn− j . (1.2)

In particular, if (L, hL) is semipositive on X, the estimate holds for all k ≥ 1 and
1 ≤ j ≤ n.

Note that holomorphic Morse inequalities on covering manifolds were obtained in
[28,38].

Secondly, we obtain a refined estimate of L2-cohomology on Hermitian manifolds
from the local estimate of B j

k (x) as [40, Theorem 1.1]. It provides a uniform approach
to study the cohomology of high tensor power of Nakano q-semipositive line bundles
over various compact and non-compact manifolds.

Let (X , ω) be a Hermitian manifold of dimension n. Let dvX := ωn/n! be the
volume form on X . Let (L, hL) and (E, hE ) be holomorphic Hermitian vector bundles
on X with rank(L) = 1. We denote by (L2

0,q(X , Lk ⊗ E), ‖ · ‖) the space of square
integrable (0, q)-forms with values in Lk ⊗ E with respect to the L2 inner product

induced by the above data. We denote by ∂
E
k the maximal extension of the Dolbeault

operator on L2
0,•(X , Lk⊗E) andby ∂

E∗
k itsHilbert space adjoint. LetH 0,q(X , Lk⊗E)

be the space of harmonic (0, q)-forms with values in Lk ⊗ E on X . For a given
0 ≤ q ≤ n, we say that the concentration condition holds in bidegree (0, q) for
harmonic forms with values in Lk ⊗ E for large k, if there exists a compact subset
K ⊂ X and C0 > 0 such that for sufficiently large k, we have

‖s‖2 ≤ C0

∫

K
|s|2dvX , (1.3)

for s ∈ Ker(∂
E
k ) ∩ Ker(∂

E∗
k ) ∩ L2

0,q(X , Lk ⊗ E). The set K is called the exceptional
compact set of the concentration. We say that the fundamental estimate holds in
bidegree (0, q) for forms with values in Lk ⊗ E for large k, if there exists a compact
subset K ⊂ X and C0 > 0 such that for sufficiently large k, we have

‖s‖2 ≤ C0

(
‖∂E

k s‖2 + ‖∂E,∗
k s‖2 +

∫

K
|s|2dvX

)
, (1.4)

for s ∈ Dom(∂
E
k )∩Dom(∂

E∗
k )∩ L2

0,q(X , Lk ⊗E). The set K is called the exceptional
compact set of the estimate.

Theorem 1.4 Let (X , ω) be a Hermitian manifold of dimension n and let (L, hL)

and (E, hE ) be holomorphic Hermitian line bundles on X. Let 1 ≤ q ≤ n. Let
the concentration condition holds in bidegree (0, q) for harmonic forms with values
in Lk ⊗ E for large k. Let (L, hL) be Nakano q-semipositive with respect to ω on
a neighborhood of the exceptional set K . Then there exists C > 0 such that for
sufficiently large k, we have
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dimH 0,q(X , Lk ⊗ E) ≤ Ckn−q . (1.5)

The same estimate also holds for reduced L2-Dolbeault cohomology groups,

dim H
0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (1.6)

In particular, if the fundamental estimate holds in bidegree (0, q) for forms with values
in Lk ⊗ E for large k, the same estimate holds for L2-Dolbeault cohomology groups,

dim H0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (1.7)

Finally, by Theorem 1.4, we can study the dimension of cohomology on q-convex
manifolds with semipositive line bundles. Holomorphic Morse inequalities for q-
convex manifolds were obtained by Bouche [5] and [26, Sect. 3.5].

Theorem 1.5 Let X be a q-convex manifold of dimension n and 1 ≤ q ≤ n, and let
(L, hL) and (E, hE ) be holomorphic Hermitian line bundles on X. Assume (L, hL) ≥
0 on a neighborhood of the exceptional subset K . Then, there exists C > 0 such that
for every j ≥ q and k ≥ 1,

dim H j (X , Lk ⊗ E) ≤ Ckn− j . (1.8)

The extremal case is also interesting when the ω-trace of R(L,hL ) is non-negative
(i.e., n-semipositive), see Sect. 2.We obtain the finiteness of dimension of cohomology
of high tensor power of such line bundles in Sect. 3 and 4. Related to the Nakano n-
semipositive and the ω-trace of curvature tensor, a direct consequence from [44], [21,
Ch.III.(1.34)] and [10, Corollary 5.1], which strengthens [42, Theorem B (A)], is
as follows: If a compact Kähler manifold X possesses a quasi-positive (1, 1)-form
representing the first Chern class c1(X), then X is projective and rationally connected.
And a compact, simply connected, Kähler manifolds with non-negative bisectional
curvature is projective and rationally connected, see Proposition 4.19 and 4.20.

For the Nakano q-positive cases, inspired by [27], [25, Theorem 1.1, 2.5] and
[26, Sect. 1.5], we generalize the estimates of modified Dirac operator Dc,A

k (see
[26, Definition 1.3.6, Sect. 1.5]) of high tensor powers of positive line bundles to the
Nakano q-positive case for all 1 ≤ q ≤ n as follows.

Theorem 1.6 Let (X , J ) be a compact smooth manifold with almost complex structure
J and dimR X = 2n. Let gT X be a Riemannian metric compatible with J and ω :=
gT X (J ·, ·) be the real (1, 1)-forms on X induced by gT X and J . Let (E, hE ) and
(L, hL) be Hermitian vector bundles on X with rank(L) = 1. Let ∇E and ∇L be
Hermitian connections on (E, hE ) and (L, hL) and let RE := (∇E )2 and RL :=
(∇L)2 be the curvatures. Let

√−1
2π RL be compatible with J . Assume 1 ≤ q ≤ n and

(L, hL) is Nakano q-positive with respect to ω on X (see also (2.10)). Then there
exists CL > 0 such that for any k ∈ N and any s ∈ �0,≥q(X , Lk ⊗ E),

‖Dc,A
k s‖2 ≥ (2μqk − CL)‖s‖2, (1.9)
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where the constant μq > 0 defined in (5.3). Especially, for k large enough,

Ker
(
Dc,A
k |�0,≥q (X ,Lk⊗E)

)
= 0. (1.10)

This paper is organized as follows. In Sect. 2 we introduce the notions and basic
facts on Definition 1.1. In Sect. 3 we provide the local estimate of the Bergam den-
sity function associated with Nakano q-semipositive line bundles, Theorem 1.2, and
its applications, Corollary 1.3 and Theorem 1.4. In Sect. 4 we prove Theorem 1.5
and related results. In Sect. 5, estimates for the modified Dirac operator on Nakano
q-positive line bundle on almost complex manifolds, Theorem 1.6, are given. From
[4], we see Theorem 1.2, Corollary 1.3, Theorems 1.4 and 1.5 give the optimal order
O(kn− j ) of dimension of the cohomology. And Theorem 1.6 provides a precise bound
μq for q-positive line bundles along the lines of [25,26]. For techniques and formula-
tions of this paper, we refer the reader to [4,26,37,40,41].

2 Preliminaries

2.1 L2-cohomology

Let (X , ω) be a Hermitian manifold of dimension n and (F, hF ) a holomorphic Her-
mitian vector bundle over X . Let �p,q(X , F) be the space of smooth (p, q)-forms on
X with values in F for p, q ∈ N. The volume form is dvX := ωn

n! .
The L2-scalar product is given by 〈s1, s2〉 = ∫

X 〈s1(x), s2(x)〉hdvX (x) on
�p,q(X , F), where 〈·, ·〉h := 〈·, ·〉hF ,ω is the pointwise Hermitian inner product
induced by ω and hF . We denote by L2

p,q(X , F), the L2 completion of �
p,q
0 (X , F),

which is the subspace of �p,q(X , F) consisting of elements with compact support.

Let ∂
F : �

p,q
0 (X , F) → L2

p,q+1(X , F) be the Dolbeault operator and let ∂
F
max

be its maximal extension (see [26, Lemma 3.1.2]). From now on we still denote
the maximal extension by ∂

F := ∂
F
max and the associated Hilbert space adjoint by

∂
F∗ := ∂

F∗
H := (∂

F
max)

∗
H . Consider the complex of closed, densely defined operators

L2
p,q−1(X , F)

∂
F

−→ L2
p,q(X , F)

∂
F

−→ L2
p,q+1(X , F). Note that (∂

F
)2 = 0. By [26,

Proposition 3.1.2], the operator defined by

Dom(�F ) =
{
s ∈ Dom(∂

F
) ∩ Dom(∂

F∗
) : ∂

F
s∈Dom(∂

F∗
), ∂

F∗
s∈Dom(∂

F
)
}
,

�Fs = ∂
F
∂
F∗
s + ∂

F∗
∂
F
s for s ∈ Dom(�F ), (2.1)

is a positive, self-adjoint extension of Kodaira Laplacian, called theGaffney extension.

Definition 2.1 [26] The space of harmonic forms H p,q(X , F) is defined by

H p,q(X , F) := Ker(�F ) = {s ∈ Dom(�F ) ∩ L2
p,q(X , F) : �Fs = 0}. (2.2)

123



4940 H. Wang

The qth reduced L2-Dolbeault cohomology is defined by

H
0,q
(2) (X , F) := Ker(∂

F
) ∩ L2

0,q(X , F)

[Im(∂
F
) ∩ L2

0,q(X , F)]
, (2.3)

where [V ] denotes the closure of the space V . The qth (non-reduced) L2-Dolbeault
cohomology is defined by

H0,q
(2) (X , F) := Ker(∂

F
) ∩ L2

0,q(X , F)

Im(∂
F
) ∩ L2

0,q(X , F)
. (2.4)

According to the general regularity theorem of elliptic operators, s ∈ H p,q(X , F)

implies s ∈ �p,q(X , F). By weak Hodge decomposition (cf. [26, (3.1.21) (3.1.22)]),

H
0,q
(2) (X , F) ∼= H 0,q(X , F) (2.5)

for any q ∈ N. The qth cohomology of the sheaf of holomorphic sections of F is
isomorphic to the qth Dolbeault cohomology, Hq(X , F) ∼= H0,q(X , F).

For a given 0 ≤ q ≤ n, we say the fundamental estimate holds in bidegree (0, q)

for forms with values in F , if there exists a compact subset K ⊂ X and C > 0 such
that

‖s‖2 ≤ C

(
‖∂F

s‖2 + ‖∂F∗‖2 +
∫

K
|s|2dvX

)
, (2.6)

for s ∈ Dom(∂
F
)∩Dom(∂

F,∗
)∩ L2

0,q(X , F). K is called the exceptional compact set

of the estimate. If the fundamental estimate holds, the reduced and non-reduced L2-
Dolbeault cohomology coincide, see [26, Theorem 3.1.8]. For a given 0 ≤ q ≤ n, we
say that the concentration condition holds in bidegree (0, q) for harmonic forms
with values in F , if there exists a compact subset K ⊂ X and C > 0 such that

‖s‖2 ≤ C
∫

K
|s|2dvX , (2.7)

for s ∈ Ker(∂
F
) ∩Ker(∂

F∗
) ∩ L2

0,q(X , F). We call K the exceptional compact set of
the concentration. Note if the fundamental estimate holds, the concentration condition
also.

2.1.1 The Convexity of Complex Manifolds and 0-Coverings

Definition 2.2 A complexmanifold X of dimension n is called q-convex if there exists
a smooth function � ∈ C∞(X , R) such that the sublevel set Xc = {� < c} � X for
all c ∈ R and the complex Hessian ∂∂� has n − q + 1 positive eigenvalues outside
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a compact subset K ⊂ X . Here Xc � X means that the closure Xc is compact in X .
We call � an exhaustion function and K exceptional set. X is q-complete if K = ∅ in
additional.

Every compact complex manifold is q-convex for all 1 ≤ q ≤ n. By defini-
tion, a compact complex manifold is exactly a 0-convex manifold. For non-compact
manifolds, Greene-Wu [16, Ch. IX. (3.5)Theorem] showed that: Every connected
non-compact complex manifold of dimension n is n-complete. Moreover, every con-
nected complex manifold of dimension n is n-convex. Thus, if X is a connected
non-compact complex manifold of dimension n and E a holomorphic vector bundle
over X , Hn(X , E) = 0, see [1]. We denote the j th Dolbeault cohomology with com-
pact supports by [H0, j (X , E)]0, see [19, (20.8) (20.17)]. Note that if X is compact,
[H0, j (X , E)]0 is equal to the usual cohomology. The duality between it and the usual
Dolbeault cohomology on q-convex manifold of dimension n with 1 ≤ q ≤ n is given
by

dim[H0, j (X , E)]0 = dim H0,n− j (X , E∗ ⊗ KX ) ≤ ∞ for all 0 ≤ j ≤ n − q.

(2.8)

If q = 1, then, moreover, dim[H0,n(X , E)]0 = dim H0(X , E∗ ⊗ KX ), where KX =
∧nT 1,0∗X .

Let M be a relatively compact domain with smooth boundary bM in a complex
manifold X . Let ρ ∈ C∞(X , R) such that M = {x ∈ X : ρ(x) < 0} and dρ �= 0
on bM = {x ∈ X : ρ(x) = 0}. We denote the closure of M by M = M ∪ bM . We
say that ρ is a defining function of M . Let T (1,0)bM := {v ∈ T (1,0)

x X : ∂�(v) = 0}
be the analytic tangent bundle to bM at x ∈ bM . The Levi form of ρ is the 2-
form Lρ := ∂∂ρ ∈ C∞(bM, T (1,0)∗bM ⊗ T (0,1)∗bM). M is called strongly (resp.
(weakly)) pseudoconvex if the Levi form Lρ is positive definite (resp. semidefinite).
Note any strongly pseudoconvex domain is 1-convex.

Acomplexmanifold X is calledweakly 1-complete if there exists a smoothplurisub-
harmonic function ϕ ∈ C∞(X , R) such that {x ∈ X : ϕ(x) < c} � X for any c ∈ R.
ϕ is called an exhaustion function. Note any 1-convex manifold is weakly 1-complete.

A Hermitian manifold (X , ω) is called complete, if all geodesics are defined for all
time for the underlying Riemannian manifold.

Definition 2.3 Let (X , ω) be a Hermitian manifold of dimension n on which a discrete
group � acts holomorphically, freely and properly such that ω is a �-invariant Her-
mitian metric and the quotient X/� is compact. We say X is a �-covering manifold,
see also [3,26,41].

2.1.2 Kodaira Laplacian with @-Neumann Boundary Conditions

Let (X , ω) be a Hermitian manifold of dimension n and (F, hF ) be a holomorphic
Hermitian vector bundles over X . Let M be a relatively compact domain in X . Let ρ
be a defining function of M satisfying M = {x ∈ X : ρ(x) < 0} and |dρ| = 1 on
bM , where the pointwise norm | · | is given by gT X associated to ω.
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Let en ∈ T X be the inward pointing unit normal at bM and e(0,1)
n its projection

on T (0,1)X . In a local orthonormal frame {w1, . . . , ωn} of T (1,0)X , we have e(0,1)
n =

−∑n
j=1 w j (ρ)w j . Let B0,q(X , F) := {s ∈ �0,q(M, F) : i

e(0,1)
n

s = 0 on bM}. Then
B0,q(M, F) = Dom(∂

F∗
H )∩�0,q(M, F) and theHilbert space adjoint ∂

F∗
H of ∂

F
coin-

cides with the formal adjoint ∂
F∗

of ∂
F
on B0,q(M, F), see [26, Proposition 1.4.19].

The operator �N s := ∂
F
∂
F∗
s + ∂

F∗
∂
F
s for s ∈ Dom(�N ) := {s ∈ B0,q(M, F) :

∂
F
s ∈ B0,q+1(M, F)}. The Friedrichs extension of �N is a self-adjoint operator and

is called the Kodaira Laplacian with ∂-Neumann boundary conditions, which coin-
cides with the Gaffney extension of the Kodaira Laplacian, see [26, Proposition 3.5.2].

�0,•(M, F) is dense in Dom(∂
F
) in the graph norms of ∂

F
, and B0,•(M, F) is dense

in Dom(∂
F∗
H ) and in Dom(∂

F
)∩Dom(∂

F∗
H ) in the graph norms of ∂

F∗
H and ∂

E + ∂
E∗
H ,

respectively, see [26, Lemma 3.5.1]. Here the graph norm is defined by ‖s‖ + ‖Rs‖
for s ∈ Dom(R).

2.2 Nakano q-Semipositive Line Bundles and the!-Trace

Let (X , ω) be aHermitianmanifold of dimension n and (E, hE ) a holomorphicHermi-
tian vector bundle over X . Let∇E be the holomorphicHermitian connection of (E, hE )

and R(E,hE ) = (∇E )2 be the curvature. Let
∧p,q T ∗X := ∧p T 1,0∗X ⊗ ∧q T 0,1∗X

and let
∧p,q T ∗

x X be the fiber of the bundle
∧p,q T ∗X for x ∈ X , and�p,q(X , E) :=

C∞(X ,
∧p,q T ∗X ⊗ E) the space of smooth (p, q)-forms with values in E . We set

〈, 〉h the induced pointwise Hermitian metric in the context.
Let (L, hL) be a holomorphic Hermitian line bundle over X . Then RL =

∂∂ log |s|2
hL

for any local holomorphic frame s, and the Chern–Weil form of the first

Chern class of L is c1(L, hL) =
√−1
2π RL , which is a real (1, 1)-form on X . We use

the notion of positive (p, p)-form, see [16, Chapter III, §1, (1.1) (1.2) (1.5) (1.7)].
If a (p, p)-form T is positive, we write T ≥ 0. Let � be the dual of the operator
L := ω ∧ · on �p,q(X) with respect to the Hermitian inner product 〈, 〉h on X . In a
local orthonormal frame {w j }nj=1 of T 1,0X and its dual {w j } of T 1,0∗X , R(L,hL ) =
R(L,hL )(wi , w j )w

i∧w j ,L = √−1
∑n

j=1 w j∧w j∧· and� = −√−1
∑n

j=1 iw j iw j .

For s ∈ �p,q(X),
〈
[√−1R(L,hL ), �]s, s

〉
h

∈ C∞(X , R).

Recall the notion of q-semipositivity of line bundle in Definition 1.1, see [33, (1)]
and [35, Sect. 4]. By the definition, for 1 ≤ q ≤ n, (L, hL) isNakano q-semipositive
with respect to ω at x ∈ X , which means that

〈
[√−1R(L,hL ), �]α, α

〉
h

≥ 0 for all α ∈ ∧n,qT ∗
x X . (2.9)

We denoted it by (�q) ≥ 0 at x . For 1 ≤ q ≤ n, (L, hL) is Nakano q-positive with
respect to ω at x , which means that

〈
[√−1R(L,hL ), �]α, α

〉
h

> 0 for all α ∈ ∧n,qT ∗
x X\{0}. (2.10)
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Wedenoted it by (�q) > 0 at x . For a subsetY ⊂ Y , (L, hL) isNakano q-semipositive
(resp. positive) with respect to ω on Y , if (�q) ≥ 0 (resp. > 0) at every point of Y .
In a local orthonormal frame {ω j } of T 1,0X around x , (2.9) is equivalent to

〈
R(L,hL )(ωi , ω j )ω

j ∧ iωi α, α
〉
h

≥ 0 for all α ∈ ∧0,qT ∗
x X . (2.11)

And (2.10) can be represented by replacing
∧n,q T ∗

x X and ≥ by
∧n,q T ∗

x X\{0} and
> in (2.11), respectively.

Remark 2.4 (notions of the q-positivity) Note that the notion of Nakano q-positive
depends on the choice of Hermitianmetricω. On the other hand, the notion of Griffiths
q-positive is independent of the choice of ω. If L is Nakano q-positive at x , then L is
also Griffiths q-positive at x . If L is Griffiths q-positive at x , then there exists a metric
ω such that L is Nakano q-positive at x with respect to ω. Actually, if L is Griffiths
q-positive on X , then for any compact set K there exists a Hermitian metric ω on
X such that L is Nakano q-positive on K with respect to ω, see [26, (3.5.7)] or [27,
(9)] for the construction ofω. The Nakano 1-semipositivity (resp. positivity) coincides
with the Griffiths 1-semipositivity (resp. positivity), i.e., the usual semipositivity (resp.
positivity). By definition, q-positivity implies the q-semipositivity. For vector bundles,
we refer to [32,35] for the definitions of the q-positive in the sense of Nakano and
Griffiths.

2.2.1 The Special Case (�1) ≥ 0

An important special case is (�1) ≥ 0, which is equivalent to (L, hL) is semipositive
as follows.

Definition 2.5 A holomorphic Hermitian line bundle (L, hL) is semipositive at x ∈
X , if R(L,hL )(U ,U ) ≥ 0 for U ∈ T 1,0

x X , denoted by (L, hL)x ≥ 0. For a subset
Y ⊂ X , (L, hL) is semipositive on Y if (L, hL)x ≥ 0 at all x ∈ Y . The definition of
(L, hL)x > 0 is analogue.

From the definition, (L, hL)x ≥ 0 implies (�q) ≥ 0 at x for all 1 ≤ q ≤ n.
Conversely, (�1) ≥ 0 at x implies (L, hL)x ≥ 0. Thus, (�q) ≥ 0 is a refinement of
(L, hL) ≥ 0.

Proposition 2.6 Let (L, hL) ≥ 0 (resp.> 0) at x ∈ X. Then, for any Hermitian metric
ω on X, 1 ≤ q ≤ n and α ∈ ∧n,q T ∗

x X
(
resp.

∧n,q T ∗
x X\{0}),

〈
[√−1R(L,hL ), �]α, α

〉
h

≥ 0 (resp. > 0). (2.12)

Proof Let {ω j } be an orthonormal frame around x such that
√−1R(L,hL )

x =√−1c j (x)ω j ∧ ω j . Let CJ (x) := ∑
j∈J c j (x) for each ordered J = ( j1, . . . , jq)
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with |J | = q. Let α ∈ ∧n,q T ∗
x X and α = ∑

J fN J (x)wN ∧ w J , N = (1, . . . , n)

and |J | = q,

〈
[√−1R(L,hL ), �]α, α

〉
h
(x) =

∑
J

CJ (x)| fN J (x)|2. (2.13)

Since (L, hL)x ≥ 0, c j (x) ≥ 0 for all 1 ≤ j ≤ n and thus CJ (x) ≥ 0 for all
1 ≤ |J | ≤ n. And the positive case follows similarly. ��
Proposition 2.7 (L, hL)x ≥ 0 if and only if (�1) ≥ 0 at x.

Proof Suppose (�1) ≥ 0 at x . Let U ∈ T 1,0
x X with U = ∑n

k=1 ukωk in a local
orthonormal frame {ω j }nj=1 of T

1,0X around x . We set α = ukωk ∈ T 0,1∗
x X , and then

R(L,hL )(U ,U ) = u j RL(ωi , ω j )ui = 〈RL(ωi , ω j )ω
j ∧ iωi α, α〉h ≥ 0. ��

The general relation among (�q) ≥ 0, 1 ≤ q ≤ n, is as follows.

Proposition 2.8 If (�q) ≥ 0 at x, then (�q+1) ≥ 0 at x.

Proof From (�q) ≥ 0 at x and (2.13), CJ (x) ≥ 0 for each ordered |J | = q.
Let CK (x) := ∑

k∈K ck(x) for each ordered |K | = q + 1. Then CK (x) =
1
q

∑
|J |=q,J⊂K CJ (x) ≥ 0, and thus (�q+1) ≥ 0 at x by (2.13). ��

Remark 2.9 Clearly, the positive case (>) of Proposition 2.7 and 2.8 also holds.

2.2.2 The Special Case (�n) ≥ 0

Another interesting case is (�n) ≥ 0, which is equivalent to the ω-trace of Chern
curvature tensor R(L,hL ) is non-negative as follows.

Definition 2.10 The ω-trace of Chern curvature tensor R(L,hL ), τ(L, hL , ω) ∈
C∞(X , R), is defined by

√−1R(L,hL ) ∧ ωn−1 = τ(L, hL , ω)ωn .

Equivalently, let {w j }nj=1 be a local orthonormal frame of T (1,0)X with respect to ω

and {w j } the dual frame of T (1,0)∗X ,

τ(L, hL , ω) := TrωR
(L,hL ) =

n∑
j=1

R(L,hL )(w j , w j )

=
∑
i,k

R(L,hL )

(
∂

∂zi
,

∂

∂zk

)
〈dzi , dzk〉gT∗X .

We say the ω-trace of Chern curvature tensor R(L,hL ) is semipositive (resp. positive)
if τ(L, hL , ω) ≥ 0 (resp. > 0). From (2.13), it follows immediately:

Proposition 2.11 We have the following:
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(1) τ(L, hL , ω)|α|2h =
〈
[√−1R(L,hL ), �]α, α

〉
h

for all α ∈ ∧n,nT ∗
x X, x ∈ X.

(2) τ(L, hL , ω)x ≥ 0 if and only if (�n) ≥ 0 at x.
(3) τ(L, hL , ω)x > 0 if and only if (�n) > 0 at x.
(4) τ(L, hL , ω) = −τ(L∗, hL∗

, ω).

Example 2.12 Let (X , ω) be a Kähler manifold of dimension n, let (K ∗
X , hω) be the

dual of canonical line bundle KX := ∧nT (1,0)∗X associated with the Hermitianmetric
hω induced from ω. The ω-trace of R(K ∗

X ,hω) coincides with the scalar curvature r Xω
of (X , ω) up to the multiplication of 2, i.e., for r Xω := 2

∑
j Ric(ω j , ω j ),

2τ(K ∗
X , hω, ω) = 2TrωR

(K ∗
X ,hω) = r Xω . (2.14)

2.2.3 The!-Trace of Chern Curvature Tensor of Vector Bundles

Let (E, hE ) be a holomorphic Hermitian vector bundle over a complex manifold
(X , ω). Theω-trace of Chern curvature tensor R(E,hE ), τ(E, hE , ω) := TrωR(E,hE ) ∈
C∞(X ,End(E)) is defined by

√−1R(E,hE ) ∧ ωn−1 = τ(E, hE , ω)ωn, (2.15)

see [10, Sect. 1.5.]. Note in [26, (4.15)]�ω(RE ) is the contraction of RE with respect to
ω and thus

√−1�ω(RE ) = τ(E, hE , ω) in our notations.We define τ(E, hE , ω) ≥ 0
(resp. > 0) at x ∈ X by

〈τ(E, hE , ω)s, s〉hE ≥ 0 (2.16)

(resp. > 0) for s ∈ Ex (resp. s ∈ Ex\{0}). Similarly, we can define τ(E, hE , ω) ≤ 0
(resp.< 0). Let (E∗, hE∗

)be the dual bundlewith the inducedmetric givenby (E, hE ),

τ(E, hE , ω) = −τ(E∗, hE∗
, ω) (2.17)

coincide as Hermitian matrices, see [21]. For the projection π : P(E∗) → X and
the dual of tautological line bundle OE∗(1) := (L(E∗))∗ over P(E∗) with Hermitian
metrics ωP(E∗) and hOE∗ (1) induced from ω and hE , see [21, Ch. III, Sect. 5], we set

τ(OE∗(1)) := τ
(
OE∗(1), hOE∗ (1), ωP(E∗)

)
. (2.18)

3 Bergman Density Function and Applications

3.1 Local Estimates for Bergman Density Functions

Let (X , ω) be a Hermitian (paracompact) manifold of dimension n and (L, hL) and
(E, hE ) be Hermitian holomorphic line bundles over X . For k ∈ N we form the
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Hermitian line bundles Lk := L⊗k and Lk ⊗ E , the latter endowed with the metric
hk = (hL)⊗k ⊗hE . Let∇L be the holomorphic Hermitian connection of (L, hL). The
curvature of (L, hL) is defined by RL = (∇L)2, then the Chern–Weil form of the first

Chern class of L is c1(L, hL) =
√−1
2π RL , which is a real (1, 1)-form on X .

Let dvX := ωn

n! be the volume form on X . We denote that the maximal extension of

theDolbeault operator ∂
E
k := (∂

Lk⊗E
)max, itsHilbert space adjoint ∂

E∗
k := (∂

Lk⊗E
)∗H ,

and the Gaffney extension of Kodaira Laplacian �E
k := �Lk⊗E . Let H o,q(X , Lk ⊗

E) := Ker(�E
k )∩L2

0,q(X , Lk ⊗E) be the space of harmonic (0, q)-forms with values

in Lk ⊗ E on X . For simplifying the notations, sometimes we will denote ∂ , ∂
∗
and

�. For forms with values in Lk ⊗ E , we denote the Hermitian norm | · | := | · |hk ,ω
induced by ω, hL , hE and the L2-inner product ‖ · ‖ := ‖ · ‖L2

0,q (X ,Lk⊗E) for each

q ∈ N. Let {w j }nj=1 be a local orthonormal frame of T (1,0)X with respect to ω with

dual frame {w j } of T (1,0)∗X .
LetH 0,q(X , Lk⊗E) be the space of harmonic (0, q)-formswith values in Lk⊗E .

Let {skj } j≥1 be an orthonormal basis and denote by Bq
k the Bergman density function

defined by

Bq
k (x) =

∑
j≥1

|skj (x)|2hk ,ω , x ∈ X , (3.1)

where | · |hk ,ω is the pointwise norm of a form. The function (3.1) is well defined by
an adaptation of [11, Lemma 3.1] to form case.

We follow the notations in [41, Sect. 3.2] and show the sub-meanvalue formulas
of harmonic forms in H n,q(X , Lk ⊗ E). Let (L, hL) and (E, hE ) be Hermitian
holomorphic line bundles over X . For any compact subset K in X , the interior of K is
denoted by K̊ . Let K1, K2 be compact subsets in X , such that K1 ⊂ K̊2. Then there
exists a constant c0 = c0(ω, K1, K2) > 0 such that for any x0 ∈ K1, the holomorphic
normal coordinate around x0 is V ∼= W ⊂ C

n , where

W := B(c0) := {z ∈ C
n : |z| < c0}, V := B(x0, c0) ⊂ K̊2 ⊂ K2,

z(x0) = 0, and ω(z) = √−1
∑

i, j hi j (z)dzi ∧ dz j with hi j (0) = 1
2δi j .

Lemma 3.1 Let (X , ω) be a Hermitian manifold of dimension n and (L, hL) and
(E, hE ) be holomorphic Hermitian line bundles over X. Let K1 and K2 be compact
subsets in X such that K1 ⊂ K̊2. Let 1 ≤ q ≤ n. Assume (L, hL) satisfies (2.9) for
x ∈ K̊2. Then,

(1) there exists a constant C > 0 such that

∫

|z|<r
|α|2hk ,ωdvX ≤ Cr2q

∫

X
|α|2hk ,ωdvX (3.2)

for any α ∈ H n,q(X , Lk ⊗ E) and 0 < r < C0
2n ;
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(2) there exists a constant C > 0 such that

|α(x0)|2hk ,ω ≤ Ckn
∫

|z|< 2√
k

|α|2hk ,ωdvX (3.3)

for any x0 ∈ K1, α ∈ H n,q(X , Lk ⊗ E) and k sufficiently large,

where | · |2hk ,ω is the pointwise Hermitian norm induced by ω, hL and hE .

Proof In [41, Lemma 3.4, 3.5] the assertion was proved for all 1 ≤ q ≤ n for a
semipositive line bundle on K̊2. However, in order to prove the assertion for a fixed
q, it is enough to assume (L, hL) is Nakano q-semipositive, i.e., it satisfies (2.9) for
x ∈ K̊2. Indeed, if (L, hL) satisfies (2.9) for x ∈ K̊2, we have

c1(L, hL) ∧ Tα ∧ ωq−1 = (2π)−1
〈
[√−1RL ,�]α, α

〉
h
ωn ≥ 0 (3.4)

on K̊2. Thus, the inequality in [41, (3.11)], i∂∂(Tα ∧ ωq−1) ≥ −C4|α|2hωn , still holds
for α ∈ H n,q(X , Lk ⊗ E) and the rest part of the proof is unchanged. Thus this
sub-meanvalue proposition analogue to [41, Lemma 3.4, Lemma 3.5] follows. ��

Analogue to [4,40,41],weobtain a local estimates for theBergmandensity functions
as follows.

Theorem 3.2 Let (X , ω) be a Hermitian manifold of dimension n and let (L, hL)

and (E, hE ) be holomorphic Hermitian line bundles over X, and 1 ≤ q ≤ n. Let
K ⊂ X be a compact subset and (L, hL) is Nakano q-semipositive with respect to ω

on a neighborhood of K . Then there exists C > 0 depending on K , ω, (L, hL) and
(E, hE ), such that

Bq
k (x) ≤ Ckn−q for all x ∈ K , k ≥ 1, (3.5)

where Bq
k (x) is defined by (3.1) for harmonic (0, q)-forms with values in Lk ⊗ E.

Proof We repeat the procedure in the proof of [41, Theorem 1.1] by using Lemma 3.1
instead of [41, Lemma 3.4, 3.5]. By combine (3.3) and the case r = 2√

k
of (3.2), we

have there exists C > 0 such that

Sqk (x) := sup

{ |α(x)|2hk ,ω
‖α‖2

L2

: α ∈ H n,q(X , Lk ⊗ E)

}
≤ Ckn−q (3.6)

for any x ∈ K1 and k ≥ 1. Finally, it follows from the fact Sqk (x) ≤ Bq
k (x) ≤ CSqk (x)

and replacing E
⊗

�n(T (1,0)X) for E inH n,q(X , Lk ⊗ E). ��
Proof of Theorem 1.2 Combining Theorem 3.2 and Proposition 2.8. ��
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3.2 The Growth of Cohomology on Coverings

Proof of Corollary 1.3 For a fundamental domain U � X with respect to �, by Theo-
rem 1.2 and Proposition 2.8, dim� H 0, j (X , Lk ⊗ E) = ∫

U B j
k (x)dvX ≤ Ckn− j for

all j ≥ q. ��

Corollary 3.3 Let (X , ω) be a �-covering Hermitian manifold of dimension n. Let
(L, hL) and (E, hE ) be two �-invariant holomorphic Hermitian line bundles on X.

(1) If τ(L, hL , ω) ≥ 0 on X, then there exists C > 0 such that for any k ≥ 1,

dim� H
0,n
(2) (X , Lk ⊗ E) ≤ C . (3.7)

(2) If τ(L, hL , ω) ≤ 0 on X, then there exists C > 0 such that for any k ≥ 1,

dim� H
0,0
(2) (X , Lk ⊗ E) ≤ C . (3.8)

Proof Apply Proposition 2.11(2)(4), Corollary 1.3 and Serre duality [9, 6.3.15]. ��

Since connected complex manifolds are either compact or n-complete, see [16,
IX.(3.5)], we can rephrase Corollary 3.3 for the trivial � by (2.8) as follows.
Let (X , ω) be a connected Hermitian manifold of dimension n. Let (L, hL) and
(E, hE ) be holomorphic Hermitian line bundles on X . If τ(L, hL , ω) ≥ 0 on X ,
then dim Hn(X , Lk ⊗ E) ≤ C for any k ≥ 1; if τ(L, hL , ω) ≤ 0 on X , then
dim[H0,0(X , Lk ⊗ E)]0 ≤ C for any k ≥ 1.

3.3 The Growth of Cohomology on General HermitianManifolds

As another application, we can refine the main result in [40].

Proof of Theorem 1.4 By Theorem 3.2 and the concentration condition, we have

dim H
0,q
(2) (X , Lk ⊗ E) = dimH 0,q(X , Lk ⊗ E)

=
∑
j≥1

‖skj ‖2 ≤ C0

∫

K
Bq
k (x)dvX

≤ C0Ckn−q vol(K ) (3.9)

for sufficiently large k. Note that H0,q
(2) (X , F) = H

0,q
(2) (X , F) and the dimension is

finite, when the fundamental estimate holds in bidegree (0, q) for forms with values
in a holomorphic Hermitian vector bundle (F, hF ). ��
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4 Refined Estimates on ComplexManifolds with Convexity

4.1 Proof of the Result on q-convexManifolds

Let X be a q-convex manifold of dimension n. Let � be a exhaustion function of
X and K a compact exceptional set in X . By definition, � ∈ C∞(X , R) satisfies
Xc := {� < c} � X for all c ∈ R,

√−1∂∂� has n − q + 1 positive eigenvalues on
X\K . In this section, we fix real numbers u0, u and v satisfying u0 < u < c < v and
K ⊂ Xu0 .

We outline the idea of our proof of Theorem 1.5. Let (L, hL), (E, hE ) be holo-
morphic Hermitian line bundles on X . The fundamental estimate holds in bidegree
(0, j) for forms with values in Lk ⊗ E for large k and each q ≤ j ≤ n on Xc when
X is a q-convex manifold, see Proposition 4.2, which was obtained in [26, Theorem
3.5.8] for the proof of Morse inequalities on q-convex manifolds. We observe that the
Nakano q-semipositive is preserved by the modification of hL , see Proposition 4.3.
By Theorem 1.4, Proposition 2.6 and related cohomology isomorphism, we obtain the
desired results for j ≥ q.

Firstly, we choose now a Hermitian metric ω on X from [26, Lemma 3.5.3].

Lemma 4.1 For any C1 > 0 there exists a metric gT X (with Hermitian form ω) on X
such that for any j ≥ q and any holomorphic Hermitian vector bundle (F, hF ) on
X,

〈
(∂∂�)(wl , wk)w

k ∧ iwl s, s
〉
h

≥ C1|s|2, s ∈ �
0, j
0 (Xv\Xu0 , F), (4.1)

where {wl}nl=1 is a local orthonormal frame of T (1,0)X with dual frame {wl}nl=1 of
T (1,0)∗X.

Now we consider the q-convex manifold X associated with the metric ω obtained
above as aHermitianmanifold (X , ω). Note for arbitrary holomorphic vector bundle F

on a relatively compact domain M in X , the Hilbert space adjoint ∂
F∗
H of ∂

F
coincides

with the formal adjoint ∂
F∗

of ∂
F
on B0, j (M, F) = Dom(∂

F∗
H ) ∩ �0, j (M, F), 1 ≤

j ≤ n. So we simply use the notion ∂
F∗

on B0, j (M, F), 1 ≤ j ≤ n.
Secondly, we will modify Hermitian metric hLχ on L and show the fundamental

estimate fulfilled. Let χ(t) ∈ C∞(R) such that χ ′(t) ≥ 0, χ ′′(t) ≥ 0, which will be
determined later. We define a Hermitian metric hLχ := hLe−χ(�) on L , and thus the
modified curvature is

RLχ = RL + χ ′(�)∂∂� + χ ′′(�)∂� ∧ ∂�. (4.2)

Proposition 4.2 Let X be a q-convex manifold of dimension n with the exceptional set
K ⊂ Xc. Then there exists a compact subset K ′ ⊂ Xc and C0,C3 > 0 such that for
sufficiently large k, we have

‖s‖2 ≤ C0

k

(
‖∂E

k s‖2 + ‖∂E∗
k,Hs‖2

)
+ C0

∫

K ′
|s|2dvX (4.3)
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for any s ∈ Dom(∂
E
k ) ∩ Dom(∂

E∗
k,H ) ∩ L2

0, j (Xc, Lk ⊗ E) and q ≤ j ≤ n, where

χ ′(�) ≥ C3 on Xv\Xu and the L2-norm is given by ω, hL
k

χ and hE on Xc.

Proof See [40, Proposition 3.8] or [26, Theorem 3.5.8]. ��
Thirdly, wewill show that (Lχ , hLχ ) preserves the certain semipositivity of (L, hL)

by choosing a appropriate χ as follows. Let C3 > 0 be in Lemma 4.2. We choose
χ ∈ C∞(R) such that χ ′′(t) ≥ 0, χ ′(t) ≥ C3 on (u, v) and χ(t) = 0 on (−∞, u0).
Therefore, χ ′(�(x)) ≥ C3 > 0 on Xv\Xu and χ(�(x)) = χ ′(�(x)) = 0 on Xu0 . Note
K ⊂ Xu0 and u0 < u < c < v. Now we have a fixed χ which leads to the following
proposition.

Proposition 4.3 X is a q-convex manifold with Hermitian metric ω given by
Lemma 4.1. Let j ≥ q. Suppose (L, hL) satisfies

〈
[√−1R(L,hL ), �]α, α

〉
h

≥ 0 for all α ∈ ∧n, j T ∗
x X , x ∈ Xc. (4.4)

Then, (Lχ , hLχ ) satisfies

〈
[√−1R(Lχ ,hLχ ),�]α, α

〉
h

≥ 0 for all α ∈ ∧n, j T ∗
x X , x ∈ Xc. (4.5)

In particular, if (L, hL) ≥ 0 on Xc, (Lχ , hLχ ) satisfies

〈
[√−1R(Lχ ,hLχ ),�]α, α

〉
h

≥ 0 for all α ∈ ∧n, j T ∗
x X , x ∈ Xc, j ≥ q. (4.6)

Proof
√−1RLχ = √−1RL +√−1χ ′(�)∂∂�+√−1χ ′′(�)∂�∧ ∂� on Xc. From the

above definition of χ , we have χ ′(�) ≥ 0 on X , χ ′(�) = 0 on Xu0 , and χ ′′(�) ≥ 0 on
X . Since

√−1∂�∧∂� ≥ 0 on Xc, we have
√−1χ ′′(�)∂�∧∂� ≥ 0 on Xc. Therefore,

we only need to show that, for all α ∈ ∧n, j T ∗
x X , x ∈ Xc\Xu0 ,

〈
[√−1∂∂�,�]α, α

〉
h

≥ 0. (4.7)

In fact, from Lemma 4.1, for s ∈ �
n, j
0 (Xv\Xu0) = �

0, j
0 (Xv\Xu0 , KX ) with s(x) =

α ∈ ∧n, j T ∗
x X , x ∈ Xc\Xu0 ,

〈
[√−1∂∂�,�]α, α

〉
h

=
〈
[√−1∂∂�,�]s, s

〉
h
(x) =

〈√−1∂∂� ∧ �s, s
〉
h
(x)

=
〈
(∂∂�)(wl , wk)w

k ∧ iwl s, s
〉
h
(x)

≥ C1|s|2h(x) = C1|α|2h ≥ 0. (4.8)

Thus the proof is complete. ��
Now we combine the above components and obtain:
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Theorem 4.4 Let X be a q-convex manifold of dimension n with a Hermitian metric ω

given by Lemma 4.1. Let (L, hL) and (E, hE ) be holomorphic Hermitian line bundles
on X. Let the exceptional set K ⊂ Xc. Let j ≥ q and (L, hL) satisfies, with respect
to ω,

〈
[√−1R(L,hL ), �]α, α

〉
h

≥ 0 for all α ∈ ∧n, j T ∗
x X , x ∈ Xc. (4.9)

Then, for all k ≥ 1, dim H j (X , Lk ⊗ E) ≤ Ckn− j .

Proof Proposition 4.2 entails the fundamental estimate holds in bidegree (0, j) for
forms with values in Lk ⊗ E for large k on Xc with respect to ω, hLχ and hE and
j ≥ q. Thus, by Proposition 4.3 and Theorem 1.4, there exists C > 0 such that for
sufficiently large k,

dim H0, j
(2) (Xc, L

k ⊗ E) = dimH 0, j (Xc, L
k ⊗ E) ≤ Ckn− j (4.10)

holds with respect to hE and the chosenmetricsω and hLχ on Xc (as in [40]). By results
of Hörmander [26, Theorem 3.5.6], Andreotti–Grauert [26, Theorem 3.5.7] and the
Dolbeault isomorphism [26, Theorem B.4.4], we have, for j ≥ q,

H j (X , Lk ⊗ E) ∼= H j (Xv, L
k ⊗ E) ∼= H0, j (Xv, L

k ⊗ E)

∼= H0, j
(2) (Xc, L

k ⊗ E). (4.11)

Thus the conclusion holds for sufficiently large k. Note that for any holomorphic
vector bundle F , dim H j (X , F) < ∞ for j ≥ q by the result of Andreotti–Grauert
[26, Theorem B.4.8]. So the conclusion holds for all k ≥ 1. ��
Proof of Theorem 1.5 Let Xc be a sublevel set including K such that (L, hL) ≥ 0 on
Xc. From Proposition 2.6, (L, hL) ≥ 0 on Xc implies for any Hermitian metric ω,

〈
[√−1R(L,hL ), �]α, α

〉
h

≥ 0 for all α ∈ ∧n, j T ∗
x X , x ∈ Xc, j ≥ 1. (4.12)

Then the conclusion follows by Theorem 4.4. ��
By adapting the duality formula [19, 20.7 Theorem] to Theorem 1.5, we have the

analogue result to [41, Remark 4.4] for seminegative line bundles.

Corollary 4.5 Let X be a q-convex manifold of dimension n and let (L, hL), (E, hE )

be holomorphic Hermitian line bundles on X. Let (L, hL) be seminegative on a neigh-
borhood of the exceptional subset K . Then there exists C > 0 such that for any
0 ≤ j ≤ n − q and k ≥ 1, the j th cohomology with compact supports

dim[H0, j (X , Lk ⊗ E)]0 ≤ Ck j . (4.13)

Proof For any q ≤ s ≤ n, dim[H0,n−s(X , Lk ⊗ E)]0 = dim H0,s(X , Lk∗ ⊗ E∗ ⊗
KX ) ≤ Ckn−s by Theorem 1.5 and (2.8), see [1] and [19, 20.7 Theorem]. ��

123



4952 H. Wang

Remark 4.6 (Vanishing theorems on q-convex manifolds) Let (E, hE ) be a holo-
morphic vector bundle on X . If (L, hL) > 0 on Xc with K ⊂ Xc instead of the
hypothesis (L, hL) ≥ 0 on Xc in Theorem 1.5, then for j ≥ q and sufficiently large
k, dim H j (X , Lk ⊗ E) = 0, see [26, Theorem 3.5.9]. And it can be generalized to
Nakano q-positive as follows.

Theorem 4.7 Let (X , ω) be a q-convex manifold of dimension n with the Hermitian
metric ω given by Lemma 4.1 and 1 ≤ q ≤ n. Let E, L be holomorphic vector bundle
with rank(L) = 1. Let K ⊂ X be the exceptional set. If (L, hL) is Nakano p-positive
with respect toω on Xc with K ⊂ Xc, then for j ≥ max{p, q} and k sufficiently large,

H j (X , Lk ⊗ E) = 0. (4.14)

Proof We can shrink Xc with K ⊂ Xc such that (L, hL) is p-positive with respect to
ω on the closure Xc. By (2.11), there exists CL > 0 such that

〈RL(wi , w j )w
j ∧ iwi s, s〉h ≥ CL |s|2h (4.15)

for any s ∈ B0, j (Xc, F) with arbitrary holomorphic line bundle F and j ≥ p. Thus
there exists C2 > 0, for each s ∈ B0, j (Xc, Lk ⊗ E) with j ≥ max{p, q} and k
sufficiently large,

‖s‖2 ≤ C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) (4.16)

holds with respect to hL and ω as in [26, Lemma 3.5.4], and thus it holds for s ∈
H 0, j (Xc, Lk ⊗ E) with j ≥ max{p, q}. Then, for k sufficiently large, H j (X , Lk ⊗
E) ∼= H 0, j (Xc, Lk ⊗ E) = 0 with j ≥ max{p, q}. ��
Remark 4.8 (Complex spaces) Let X be a j-convex Kähler manifold with dim X = n
and 1 ≤ j ≤ n. Let (L, hL) be a holomorphic Hermitian line bundle and (L, hL) ≥ 0
on X . Let S be a complex space and f : X → S a proper surjective holomorphic map.
Then, by Theorem 1.5 and [30], dim H p(S, Rq f∗(KX ⊗ Lk)) = O(kn−p−q) for all
(p, q) with p + q ≥ j , where Rq f∗(·) is the qth higher direct image sheaf.

4.2 Pseudoconvex,Weakly 1-Complete, and Complete Manifolds

Analogue to the case of q-convex manifolds, we can generalize other results in [40]
as follows. Holomorphic Morse inequalities for weakly 1-complete manifolds and
pseudoconvex domain were obtained in [27] and [26, Theorem 3.5.10, 3.5.12].

Theorem 4.9 Let M � X be a smooth (weakly) pseudoconvex domain in a complex
manifold X of dimension n. Letω be aHermitianmetric on X. Let (L, hL) and (E, hE )

be holomorphic Hermitian line bundles on X. Let 1 ≤ q ≤ n. Assume (L, hL) is
Nakano q-semipositive with respect to ω on M, and (L, hL) is Nakano q-positive
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with respect to ω in a neighborhood of bM. Then there exists C > 0 such that for
sufficiently large k, we have

dim H0, j
(2) (M, Lk ⊗ E) ≤ Ckn− j for all q ≤ j ≤ n. (4.17)

Proof We follow [40, Theorem 1.5, (3.29)] and [26, Theorem 3.5.10]. Let ρ ∈
C∞(X , R) be a defining function of M such that M = {x ∈ X : ρ(x) < 0} with
|dρ| = 1 on the boundary bM . Let x ∈ bM . For s ∈ �0,•(M, Lk ⊗ E), the Levi form
defined by Lρ(s, s)(x) := ∑n

j,k=2(∂∂ρ)(wk, w j )〈w j ∧ iwk s(x), s(x)〉h . Since M is

pseudoconvex, it follows that, for s ∈ B0,q(M, Lk ⊗ E),

∫

bM
Lρ(s, s)dvbM ≥ 0. (4.18)

Let Xc := {x ∈ X : ρ(x) < c} for c ∈ R. We fix u < 0 < v such that L is Nakano
q-positive with respect to ω on a open neighborhood of Xv\Xu , then there exists
CL > 0 such that for any holomorphic Hermitian vector bundle (F, hF ) on X ,

〈RL(wl , wk)w
k ∧ iwl s, s〉h ≥ CL |s|2, s ∈ �

0,q
0 (Xv\Xu, F). (4.19)

By the Bochner–Kodaira–Nakano formula with boundary term [26, Corol-
lary 1.4.22], there exist C4 ≥ 0 and C5 ≥ 0 such that for any s ∈ B0,q(M, Lk ⊗ E)

with supp(s) ∈ Xv\Xu ,

3

2
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) ≥ 〈RLk⊗E⊗K ∗

X (w j , wk)w
k ∧ iw j s, s〉

+
∫

bM
Lρ(s, s)dvbM − C4‖s‖2

≥
∫

M
(kCL − C5 − C4)|s|2dvX . (4.20)

For any k ≥ k0 := [2C4+C5
CL

] + 1, we have CL − C4+C5
k ≥ 1

2CL . Let C2 := 3
CL

. For

any s ∈ B0,q(M, Lk ⊗ E) with supp(s) ⊂ Xv\Xu and k ≥ k0 > 0, we have

‖s‖2 ≤ C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) (4.21)

where the L2-norm ‖ · ‖ is given by ω, hL
k
and hE on M .

Note the fact that B0,q(M, Lk ⊗ E) is dense in Dom(∂
E
k ) ∩ Dom(∂

E∗
k,H ) ∩

L2
0,q(M, Lk ⊗ E) with respect to the graph norm of ∂

E
k + ∂

E∗
k,H . Following the same

argument in Lemma 4.2 (without the modification of hL by χ ), we conclude that there
exists a compact subset K ′ ⊂ M and C0 > 0 such that for sufficiently large k, we
have
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‖s‖2 ≤ C0

k
(‖∂E

k s‖2 + ‖∂E∗
k,Hs‖2) + C0

∫

K ′
|s|2dvX (4.22)

for any s ∈ Dom(∂
E
k ) ∩Dom(∂

E∗
k,H ) ∩ L2

0,q(M, Lk ⊗ E), where the L2-norm is given

by ω, hL
k
and hE on M . That is, the fundamental estimate holds in bidegree (0, q)

for forms with values in Lk ⊗ E for large k. Finally, we apply Theorem 1.4 and
Proposition 2.8. ��

The polynomial growth of dimension of cohomology of Griffiths q-positive line
bundles on weakly 1-complete manifolds via holomorphic Morse inequalities, we
refer to [27]. For the Nakano q-positive cases, by applying Theorem 4.9 as in [40,
Proof of Theorem 1.6], we obtain:

Corollary 4.10 Let X be a weakly 1-complete manifold of dimension n with a smooth
plurisubharmonic exhaustion function ρ and ω be a Hermitian metric on X. Let
(L, hL) and (E, hE ) be holomorphic Hermitian line bundles on X. Let 1 ≤ q ≤ n
and (L, hL) is Nakano q-semipositive with respect to ω on X.

(1) Assume (L, hL) is Nakano q-positive with respect to ω on X\K for a compact
subset K . Then, for any sublevel set Xc := {ρ < c} with smooth boundary and
K ⊂ Xc, there exists C > 0 such that for k sufficiently large,

dim H0, j
(2) (Xc, L

k ⊗ E) ≤ Ckn− j for all q ≤ j ≤ n. (4.23)

(2) Assume (L, hL) is positive on X\K for a compact subset K . Then there exists
C > 0 such that for k sufficiently large,

dim H j (X , Lk ⊗ E) ≤ Ckn− j for all q ≤ j ≤ n. (4.24)

Proof (1) is from Xc is a smooth pseudoconvex domain and Theorem 4.9; (2) follows
from (1) and H j (X , Lk ⊗ E) ∼= H0, j

(2) (Xc, Lk ⊗ E) for all j ≥ q and sufficiently large
k. ��

Similarly, we also can refine [40, Theorem 1.2] on complete manifolds.

Theorem 4.11 Let (X , ω) be a complete Hermitian manifold of dimension n. Let
(L, hL) be a holomorphic Hermitian line bundle on X. Assume there exists a compact
subset K ⊂ X such that

√−1R(L,hL ) = ω on X\K. Let 1 ≤ q ≤ n and (L, hL) is
Nakano q-semipositive with respect to ω on K . Then there exists C > 0 such that for
sufficiently large k, we have

dim H0, j
(2) (X , Lk ⊗ KX ) ≤ Ckn− j for all q ≤ j ≤ n. (4.25)

Proof Since (X , ω) is complete, ∂
E∗
k,H = ∂

E∗
k for arbitrary holomorphic Hermitian

vector bundle (E, hE ). In a local orthonormal frame {ω j }nj=1 of T (1,0)X with dual

frame {w j }nj=1 of T
(1,0)∗X , ω = √−1

∑n
j=1 ω j ∧ ω j and � = −√−1iw j iw j . Thus
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√−1R(L,hL ) = √−1
∑n

j=1 ω j ∧ ω j outside K . Let {ek} be a local frame of Lk . For

s ∈ �
n,q
0 (X\K , Lk), we can write s = ∑

|J |=q sJω
1 ∧ · · · ∧ ωn ∧ ωJ ⊗ ek locally,

thus

[√−1RL ,�]s =
∑

|J |=q

(qsJω
1 ∧ · · · ∧ ωn ∧ ωJ ) ⊗ ek = qs. (4.26)

Since (X\K ,
√−1R(L,hL )) is Kähler, we apply Nakano’s inequality [26, (1.4.52)],

‖∂ks‖2 + ‖∂∗
ks‖2 ≥ k〈[√−1RL ,�]s, s〉 ≥ qk‖s‖2 ≥ k‖s‖2. (4.27)

Therefore, we have ‖s‖2 ≤ 1
k (‖∂ks‖2 + ‖∂∗

ks‖2) for s ∈ �
n,q
0 (X\K , Lk) with 1 ≤

q ≤ n with respect to hL and ω.
Next we follow the analogue argument in [40, Proposition 3.8] to obtain the

fundamental estimates as follows. Let V and U be open subsets of X such that
K ⊂ V � U � X . We choose a function ξ ∈ C∞

0 (U , R) such that 0 ≤ ξ ≤ 1
and ξ ≡ 1 on V . We set φ := 1 − ξ , thus φ ∈ C∞(X , R) satisfying 0 ≤ φ ≤ 1 and
φ ≡ 0 on V .

Now let s ∈ �
n,q
0 (X , Lk), thus φs ∈ �

n,q
0 (X\K , Lk). We set K ′ := U , then

‖φs‖2 ≥ ‖s‖2 −
∫

K ′
|s|2dvX , (4.28)

and similarly there exists a constant C1 > 0 such that

1

k
(‖∂k(φs)‖2 + ‖∂∗

k(φs)‖2) ≤ 5

k
(‖∂ks‖2 + ‖∂∗

ks‖2) + 12C1

k
‖s‖2. (4.29)

By combining the above three inequalities, there exists C0 > 0 such that for any
s ∈ �

n,q
0 (X , Lk) = �

0,q
0 (X , Lk ⊗ KX ) and k large enough

‖s‖2 ≤ C0

k
(‖∂ks‖2 + ‖∂∗

ks‖2) + C0

∫

K ′
|s|2dvX . (4.30)

Finally, since �
0,•
0 (X , Lk ⊗ KX ) is dense in Dom(∂

KX
k ) ∩ Dom(∂

KX∗
k ) in the graph

norm, the fundamental estimate holds in bidegree (0, q) for forms with values in
Lk ⊗KX for k large. So the conclusion follows from Theorem 1.4 and Proposition 2.8.

��

4.3 Vanishing Theorems and the EstimateO(kn−q)

In this section, we restrict to Kähler manifolds X and E = KX . Firstly, inspired by
[17,31], we see the injectivity for Nakano q-semipositive line bundles.
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Lemma 4.12 Let (X , ω) be a compact Kähler manifold of dimension n and let (L, hL)

be holomorphic Hermitian line bundle on X. Let 1 ≤ q ≤ n and (L, hL) be Nakano
q-semipositive with respect to ω on X. Let s ∈ H0(X , Lk)\{0} for some k > 0. Then,
for every j ≥ q and m ≥ 1, the multiplication map · ⊗ s :

H j (X , KX ⊗ Lm) → H j (X , KX ⊗ Lm+k) (4.31)

is injective. In particular, if (L, hL) is semipositive, it holds for all j ≥ 1.

Proof We follow [17, 1.5 Enoki’s proof]. By Proposition 2.8 and Hodge theorem, we
only need to show the multiplication map · ⊗ s between the harmonic spaces

H n,q(X , Lm) → H n,q(X , Lm+k) (4.32)

is injective for m ≥ 1. Let u ∈ H n,q(X , Lm). Since s ∈ H0(X , Lk),

∂
Lm+k

(s ⊗ u) = 0. From the q-semipositive and Nakano’s inequality [26, (1.4.51)],〈
[√−1R(L,hL ), �]u, u

〉
h

= 0 on X . From [26, (1.4.44),(1.4.38c)], (∇Lm
)1,0∗(s⊗u) =

s ⊗ ((∇Lm
)1,0∗u) = 0. Also we have

〈
[√−1RLm+k

,�](s ⊗ u), (s ⊗ u)
〉
h

= 0. Thus

‖∂Lm+k∗
(s ⊗ u)‖2 = ‖(∇Lm+k

)1,0∗(s ⊗ u)‖2 = 0.

We obtain s ⊗ u ∈ H n,q(X , Lm+k). Suppose s ⊗ u = 0 on X . Since s �= 0 and [16,
Ch.VII.3. (2.4) Lemma], u = 0 on X . ��

Let κ(L) be the Kodaira dimension of L on a compact complex manifold X given
by

κ(L) := −∞, when H0(X , Lk) = 0 for all k > 0; otherwise, (4.33)

κ(L) := max{m ∈ N : lim sup
k→∞

dim H0(X , Lk)

km
> 0} ∈ [0, dim X ]. (4.34)

By the above lemma and Corollary 1.3 with the trivial �, we obtain:

Theorem 4.13 Let (X , ω)bea compactKählermanifold of dimensionn and let (L, hL )

be holomorphic Hermitian line bundle on X. Let 1 ≤ q ≤ n and (L, hL) be Nakano
q-semipositive with respect to ω on X. Then, for all j > max{n − κ(L), q − 1} and
m > 0,

H j (X , KX ⊗ Lm) = 0. (4.35)

Proof We follow [31, Theorem 4.5]. Suppose there exist m > 0 and j > n − κ(L)

with j ≥ q such that H j (X , KX ⊗ Lm) �= 0. Let u ∈ H j (X , KX ⊗ Lm)\{0} and
let {s j }Ni=1 ⊂ H0(X , Lk) be linearly independent. By the injectivity Lemma 4.12,
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{si ⊗ u}Ni=1 ⊂ H j (X , KX ⊗ Lm+k) are linearly independent. By Corollary 1.3 for
compact Kähler manifolds, we see

dim H0(X , Lk)

kκ(L)
≤ dim H j (X , KX ⊗ Lk+m)

kn− j+1 ≤ C(k + m)n− j

kn− j+1 ≤ C

k
. (4.36)

By applying lim supk→+∞, there is a contradiction. ��
Corollary 4.14 Let (X , ω) be a compact Kähler manifold and let (L, hL) be a holo-

morphic Hermitian line bundle. If TrωR(L∗,hL∗
) ≥ 0 on X and κ(L∗) > 0, then

κ(L) = −∞. In particular, if the scalar curvature rω = 0 on X and κ(K ∗
X ) > 0, then

κ(KX ) = −∞.

Proof H0(X , Lm) ∼= Hn(X , KX ⊗ Lm∗) = 0 and rω = 2
∑

j Ric(ω j , ω j ) =
2TrωRK ∗

X . ��
Secondly, as applications of Bochner–Kodaira–Nakano formulas, certain Kodaira

type vanishing theorems of Nakano q-semipositive line bundles hold as follows.

Proposition 4.15 Let (X , ω) be a complete Kähler manifold of dimension n and 1 ≤
q ≤ n. Let (L, hL) be a Nakano q-semipositive line bundle with respect to ω on X.
Assume there exists C0 > 0 and a compact subset K � X such that

√−1R(L,hL ) ≥
C0ω on X\K. Then,

H0, j
(2) (X , KX ⊗ L) = 0 for all j ≥ q. (4.37)

Proof Since (X , ω) is complete, ∂
L∗
H = ∂

L∗
. For s ∈ �

n, j
0 (X , L) for j ≥ q, from

Bochner–Kodaira–Nakano formula, we have

‖∂L
s‖2 + ‖∂L∗

s‖2 ≥ 〈[√−1RL ,�]s, s〉 ≥ C0‖s‖2X\K = C0‖s‖2 − C0‖s‖2K .

(4.38)

Since�
n, j
0 (X , L) is dense in Dom(∂

L
)∩Dom(∂

L∗
), (4.38) holds for s ∈ Dom(∂

L
)∩

Dom(∂
L∗

). Since K � X , s|X\K = 0 for s ∈ H n, j (X , L), and then H n, j (X , L) =
0. From (4.38), the fundamental estimate holds for (0, j)-formwith values in KX ⊗L ,
and thus H0, j

(2) (X , KX ⊗ L) ∼= H 0, j (X , KX ⊗ L) = 0. ��
Proposition 4.16 Let (X , ω) be a weakly 1-complete Kähler manifold of dimension n
and 1 ≤ q ≤ n. Let (L, hL) be a Nakano q-semipositive line bundle with respect to ω

on X. Assume there exists a compact subset K � X and
√−1R(L,hL ) = ω on X\K.

Then,

H j (X , KX ⊗ L) = 0 for all j ≥ q. (4.39)
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Proof Let ϕ ∈ C∞(X , R) be an exhaustion function of X such that
√−1∂∂ϕ ≥ 0

on X and Xc := {ϕ < c} � X for all c ∈ R. We choose a regular value c ∈ R of ϕ

such that K � Xc by Sard’s theorem. Thus Xc is a smooth pseudoconvex domain and√−1RL = ω > 0 on a neighborhood of bXc, in particular on Xc\K . It follows that
for s ∈ �n, j (Xc, L), j ≥ q,

〈[√−1RL ,�]s, s〉 = 〈[√−1RL ,�]s, s〉K + 〈[ω,�]s, s〉Xc\K ≥ ‖s‖2Xc\K .

(4.40)

If s ∈ Bn, j (Xc, L), ‖∂L
s‖2 + ‖∂L∗

s‖2 ≥ 〈[√−1RL ,�]s, s〉 + ∫
bMc

Lρ(s, s)dvXc

by [26]. Since Xc is pseudoconvex,
∫
bMc

Lρ(s, s)dvXc ≥ 0. Since ∂
L∗
H = ∂

L∗
on

B0, j (Xc, KX ⊗ L),

‖∂L
s‖2 + ‖∂L∗

H s‖2 ≥ ‖s‖2 − ‖s‖2K (4.41)

holds for s ∈ B0, j (Xc, KX ⊗ L), thus for s ∈ Dom(∂
L
) ∩Dom(∂

L∗
) ∩ L2

n, j (Xc, L).

In particular, if s ∈ H n,q(Xc, L), s|Xc\K = 0 and so H n, j (X , L) = 0 for j ≥ q.
Since the fundamental estimate holds for (0, j)-form with values in KX ⊗ L on Xc,
H0, j

(2) (Xc, KX ⊗L) = H 0, j (Xc, KX ⊗L) = 0 for j ≥ q. Moreover, by [34, Theorem

1.2] and ω = √−1RL on X\Xc, it follows H j (X , KX ⊗ L) ∼= Hn, j (X , L) ∼=
Hn, j

(2) (Xc, L) = 0. ��
For a pseudoconvex domain M , we follow the above argument for Xc and obtain:

Proposition 4.17 Let M be a smooth pseudoconvex domain in a Kähler manifold
(X , ω) of dimension n and 1 ≤ q ≤ n. Let (L, hL) be a Nakano q-semipositive line
bundle with respect to ω on M. Assume (L, hL) is Nakano q-positive with respect to
ω on a neighborhood of bM. Then for every j ≥ q,

H0, j
(2) (M, KX ⊗ L) = 0. (4.42)

Proof Let (L, hL) be Nakano q-positive with respect to ω on a neighborhood U of
bM such that U is compact. Let V � U and V be a smaller neighborhood of bM . By
the Bochner–Kodaira–Nakano formula with boundary term [26, Corollary 1.4.22], for
any s ∈ B0,q(M, L ⊗ KX ), k ≥ 0,

3

2
‖∂KX s‖2 + ‖∂KX ,∗

s‖2 ≥ 〈RL(w j , wk)w
k ∧ iw j s, s〉

≥ 〈RL(w j , wk)w
k ∧ iw j s, s〉M∩V

≥ C‖s‖2M∩V = C(‖s‖2 − ‖s‖2M\V ), (4.43)

whereC > 0, given by the Nakano q-positive line bundle L with respect toω onU and
the compactness of M ∩ V ⊂ U is independent of the choice of s. Thus, we follow the
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argument for Xc = M in Proposition 4.16 and obtainH 0,q(M, L ⊗ KX ) = 0. Since
the fundamental estimate holds, H0,q

(2) (M, L ⊗ KX ) = 0. And the assertion holds for
all j ≥ q by Proposition 2.8 and Remark 2.9. ��

4.4 Remarks on!-Trace and Kodaira TypeVanishing Theorems

Let (E, hE ) be a holomorphic Hermitian vector bundle on a Hermitian manifold
(X , ω). The ω-trace of R(E,hE ) can be represented by

τ(E, hE , ω) := TrωR
(E,hE ) :=

∑
j

R(E,hE )(ω j , ω j )

=
∑
i,k

R(E,hE )

(
∂

∂zi
,

∂

∂zk

)
〈dzi , dzk〉gT∗X .

Comparing to the usual trace Tr[R(E,hE )] ∈ �1,1(X) depending only on hE ,
τ(E, hE , ω) := TrωR(E,hE ) ∈ End(E) depends on hE and ω. By Bochner–Kodaira–
Nakano formulas, Serre duality and Le Potier’s Theorem [21, 3.5.1, (3.5.8)], it follows
that:

Proposition 4.18 Let (E, hE ) be a holomorphic Hermitian vector bundle over a com-
pact Kähler manifold (X , ω). (1) If τ(OE∗(1)) ≤ 0 and < 0 at one point on P(E∗),
then H0(X , Sm(E)) = 0 for all m ≥ 1. (2) If τ(E) ≤ 0 and < 0 at one point on X,
then H0(X , Em) = 0 for all m ≥ 1.

Proof The case m = 1 of (2) follows from Bochner–Kodaira–Nakano formulas (or
using the Lichnerowicz formula [26, (1.4.31)])). From the fact τ(E⊗m) = τ(E)⊗m ,
refer to [21, III.(1.12)] or [43, (3.7)], we have (2) holds for all m ≥ 1. And (1) is from
Le Potier’s Theorem [21, 3.5.1, (3.5.8)] and (2) for E = OE∗(1). ��

Recall that a compact complex manifold X is said to be rationally connected if any
two points of X can be joined by a chain of rational curves, see [10]. We say a real
(1, 1)-form α ∈ �1,1(X) is quasi-positive on X , if α ≥ 0 on X and > 0 at one point.

Proposition 4.19 Let X be a compact Kähler manifold with a quasi-positive (1, 1)-
form representing the first Chern class c1(X). Then X is projective and rationally
connected.

Proof Calabi–Yau theorem [44] provides a Kähler metric ω on X such that the Ricci
form

√−1RK ∗
X = Ricω is quasi-positive, so K ∗

X is big and X is projective. Since

(X , ω) is Kähler, Ricω = √−1Tr[RT 1,0X ] and it coincides with τ(T 1,0X , hω, ω) =
TrωRT 1,0X as Hermitian matrices. Thus, τ(T 1,0X , hω, ω) ≥ 0 and > 0 at one point.
By τ(T 1,0X) = −τ(T 1,0∗X) and Proposition 4.18 (2), we have H0(X , (T 1,0∗X)m) =
0 for all m ≥ 1, and the rationally connected follows from [10, 5.1. Corollary]. ��

Equivalently, it follows from [21, Ch.III. (1.34)] and [10, 5.1 Corollary] that: A
compact Käher manifold with quasi-positive Ricci curvature is projective and ratio-
nally connected. It strengthens [42, Theorem B (A)] which asserted such a manifold
is simply connected and has no nonzero holomorphic q-forms for q > 0, since any
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rationally connected projectivemanifold has these properties, see [12, Corollary 4.18].
And it also leads to the fact [8,24] that every smooth Fano manifold X is rationally
connected (See [12,23,45]).

Proposition 4.20 Let X be a compact Kähler manifold of non-negative bisectional
curvature. The following conditions are equivalent: (A) X is simply connected; (B)
The first Betti number is zero; (C) X has quasi-positive Ricci curvature; (D) X is
projective and rationally connected.

Proof From [20, Corollary 1] and Proposition 4.19, we see (A), (B) and (C) are equiv-
alent and (C) implies (D). And [12, Corollary 4.18] entails (D) implies (A). ��

5 Dirac Operator on Nakano q-positive Line Bundles

Inspired by [27] and [25, Theorem 1.1, 2.5], we consider q-positive line bundles and
the Dirac operators. We give some estimates of modified Dirac operators on high
tensor powers of q-positive line bundles based on [26, Sect. 1.5].

5.1 Nakano q-positive Line Bundles with Respect to!

In this section, we work on the following setting. Let (X , J ) be a smooth manifold
with almost complex structure J and dimR X = 2n. Let gT X be a Riemannian metric
compatible with J and ω := gT X (J ·, ·) be the real (1, 1)-forms on X induced by gT X

and J . Let (E, hE ) and (L, hL) be Hermitian vector bundles on X with rank(L) = 1.
Let∇E and∇L beHermitian connections on (E, hE ) and (L, hL) and let RE := (∇E )2

and RL := (∇L)2 be the curvatures. Assume that
√−1
2π RL is compatible with J . Thus,

the Chern–Weil form c1(L, hL) :=
√−1
2π RL representing the first Chern class c1(L)

of L is a real (1, 1)-forms on X . (For example, X is a compact complex manifold and
(E, hE ,∇E ), (L, hL ,∇L) are holomorphic Hermitian).

The almost complex structure J induced a splitting of the complexification of
the tangent bundle, i.e., T X ⊗ C = T 1,0X

⊕
T 0,1X , and the cotangent bundle. Let

0 ≤ p, q ≤ n, and let
∧p,q T ∗

x X be the fiber of the bundle
∧p,q T ∗X := ∧pT 1,0∗X⊗

∧qT 0,1∗X for x ∈ X . For k ∈ N, we denote by �p,q(X , Lk ⊗ E) the space of (p, q)-
forms with values in Lk ⊗ E on X and set�0,≥q(X , Lk ⊗ E) := ⊕n

j≥q �0, j (X , Lk ⊗
E). As defined in Sect. 2, we denote by 〈·, ·〉h and | · |h the pointwise Hermitian
inner product and Hermitian norm, and by 〈·, ·〉 and ‖ · ‖ the L2 inner product and
L2-norm. Let � be the dual of the operator L := ω ∧ · on �p,q(X) with respect to the
Hermitian inner product 〈·, ·〉h on X . In a local orthonormal frame {w j }nj=1 of T

1,0X

with respect to gT X and its dual {w j } of T 1,0∗X , R(L,hL ) = R(L,hL )(wi , w j )w
i ∧w j ,

L = √−1
∑n

j=1 w j ∧w j and � = −√−1
∑n

j=1 iw j iw j . For any s ∈ �p,q(X , Lk ⊗
E),

〈
[√−1R(L,hL ), �]s, s

〉
h

∈ C∞(X , R). We set

wd = −
∑
i, j

RL(wi , w j )w
j ∧ iwi ∈ End(�(T ∗0,1X)). (5.1)
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For a real 3-form A on X , one can define modified Dirac operator Dc,A
k acting on

�0,•(X , Lk ⊗ E) = ⊕
j≥0 �0, j (X , Lk ⊗ E), see [26, Definition 1.3.6, (1.5.27)]. Ma-

Marinescu obtained the precise lower bound of Dc,A
k as follows. The proof is based

on a application of Lichnerowicz formula, see [26, (1.5.34), (1.5.30)] and [25].

Theorem 5.1 [26] There exists C > 0 such that for any k ∈ N, s ∈ �0,•(X , Lk ⊗ E),

‖Dc,A
k s‖2 ≥ 2k〈−wds, s〉 − C‖s‖2. (5.2)

As a consequence, they obtained the spectral gap property [26, Theorem 1.5.7, 1.5.8],
which play the essential role in their approach to the Bergman kernel. In this section,
we generalize [26, Theorem 1.5.7] to the case of Nakano q-positive line bundles.

Definition 5.2 For each 1 ≤ q ≤ n, the number μq ∈ R ∪ {±∞} defined by

μq(x) := inf
u∈∧n,q T ∗

x X

〈[√−1RL ,�]u, u〉h
|u|2h

, μq := inf
x∈X μq(x). (5.3)

In terms of local orthonormal frame {ω j } of T 1,0X , it follows that

μq = inf
α∈∧0,q T ∗

x X ,x∈X

〈
RL(ωi , ω j )ω

j ∧ iωi α, α
〉
h

|α|2h
= inf

α∈∧0,q T ∗
x X ,x∈X

〈−wdα, α〉h
|α|2h

.

(5.4)

In other words, if λ1(x) ≤ λ1(x) ≤ · · · ≤ λn(x) are the eigenvalues of RL
x with

respect to ω at x ∈ X , then μq(x) = ∑q
j=1 λ j (x) and μq = infx∈X μq(x).

Theorem 5.3 Let X be compact. Let 1 ≤ q ≤ n and (L, hL) is Nakano q-positive line
bundle with respect to ω on X. Then there exists CL > 0 such that for any k ∈ N and
any s ∈ �0,≥q(X , Lk ⊗ E),

‖Dc,A
k s‖2 ≥ (2μqk − CL)‖s‖2, (5.5)

where the constant μq > 0 defined in (5.3). Especially, for k large enough,

Ker
(
Dc,A
k |�0,≥q (X ,Lk⊗E)

)
= 0. (5.6)

Proof As in (2.13), we choose a local orthonormal frame around x ∈ X such that
RL
x (ωi , ω j ) = δi j ci (x) for 1 ≤ i, j ≤ n. Then

wd = −
∑
j≥1

c j (x)w
j ∧ iw j ∈ End(�(T ∗0,1

x X)). (5.7)
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Let CJ (x) := ∑
j∈J c j (x) for each ordered J = ( j1, . . . , jq) with |J | = q. For

α ∈ ∧0,q
x X\{0}, we represent it by α = ∑

J αJw
J with |J | = q. From (5.4) and

(5.7), we have

μq = inf
x∈X inf

αJ∈C

∑
J CJ (x)|αJ |2∑

J |αJ |2 = inf
x∈X inf|J |=q

CJ (x). (5.8)

For s(x) ∈ ∧0,q
x X ⊗ Lk

x ⊗ Ex , we can represent it by s(x) = ∑
J ,i sJ ,i (x)w J ⊗eki

for a local orthonormal frame {eki } of Lk ⊗ E . Thus |s(x)|2h = ∑
J ,i |sJ ,i (x)|2. By

(5.7) and (5.8), Theorem 5.1 entails that, for any s ∈ �0,q(X , Lk ⊗ E),

‖Dc,A
k s‖2 ≥ 2k〈−wds, s〉 − C‖s‖2 = 2k

∫

X

∑
J ,i

CJ (x)|sJ ,i |2dvX − C‖s‖2 (5.9)

By (2.9), (2.11) and (5.3), we have μq > 0. By (5.8), it follows that

‖Dc,A
k s‖2 ≥ 2kμq‖s‖2 − C‖s‖2 (5.10)

holds for s ∈ �0,q(X , Lk ⊗ E). By Proposition 2.8 and Remark 2.9, we see μ j+1 >

μ j > 0 for each j ≥ q. Thus the assertion holds for s ∈ �0,≥q(X , Lk ⊗ E). ��
Remark 5.4 From Remark 2.9, the positive assumption [26, (1.5.21)] is equivalent to
Nakano 1-positive line bundle with respect to ω. By (5.8), μ1 = infx∈X ,1≤ j≤n c j (x).
Thus [26, Theorem 1.5.7] follows from Theorem 5.3 by choosing q = 1.

In general, for a real 3-form A on X , (Dc,A
k )2 may not preserve the Z-grading

of �0,•(X , Lk ⊗ E). As a special case, we can consider Kodaira Laplacian �Lk⊗E ,
which preserves theZ-grading. On a complex manifold X , Hodge–Dolbeault operator

satisfies Dk := √
2(∂

Lk⊗E + ∂
Lk⊗E,∗

) = Dc,A
k , for A = − 1

4Tas , see [26, (1.4.17)],

and the Kodaira Laplacian satisfies�Lk⊗E = 1
2D

2
k . Then, fromHodge theorem, Serre

duality and the equivalent definition of the q-positive line bundle (see Remark 2.4),
Theorem 5.3 leads to Andreotti–Grauert vanishing theorem [1, Proposition 27] (see
also [16, (5.1) Theorem]):

Corollary 5.5 ([1]) Let X be a compact complex manifold of dimension n and (E, hE )

and (L, hL) be holomorphic Hermitian vector bundles on X with rank(L) = 1. If
RL has at least p positive eigenvalues and at least q negative eigenvalues at every
x ∈ X, then, for j ∈ { j ∈ N : j ≤ q − 1 or j ≥ n − p + 1} and sufficiently large k,
H j (X , Lk ⊗ E) = 0.

By the same argument in [25, Theorem 4.4, Corollary 4.5-4.6] and [26, (6.1.15)],
Theorem 5.3 still holds on �-covering manifolds as follows. Let X̃ be a �-covering
manifold of dimension n. Let J̃ be�-invariant almost complex structure on X̃ . Let gT X̃

be a �-invariant Riemannian metric compatible with J̃ and ω := gT X̃ ( J̃ ·, ·) be the
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real (1, 1)-forms on X̃ induced by gT X̃ and J̃ . Let (Ẽ, hẼ ) and (L̃, hL̃) be �-invariant
holomorphic Hermitian vector bundles on X̃ with rank(L̃) = 1. Let ∇ Ẽ and ∇ L̃ be
Chern connections on (Ẽ, hẼ ) and (L̃, hL̃) and let RẼ := (∇ Ẽ )2 and RL̃ := (∇ L̃)2 be

the curvatures. Let D̃k := √
2(∂

L̃k⊗Ẽ + ∂
L̃k⊗Ẽ,∗

) be the Hodge–Dolbeault operator

defined on Dom(D̃k) = Dom(∂
L̃k⊗Ẽ

) ∩ Dom(∂
L̃k⊗Ẽ,∗

) and �L̃k⊗Ẽ := 1
2 D̃

2
k the

self-adjoint extension of Kodaira Laplacian.

Theorem 5.6 Assume 1 ≤ q ≤ n and (L̃, hL̃) is Nakano q-positive with respect to ω

on X̃ . Then there exists CL̃ > 0 such that for any k ∈ N and any s̃ ∈ Dom(D̃k) ∩
L2
0,≥q(X̃ , L̃k ⊗ Ẽ),

‖D̃k s̃‖2 ≥ (2μqk − CL̃)‖̃s‖2, (5.11)

where the constant μq > 0 defined in (5.3).

For the L2 Andreotti–Grauert theorem on covering manifolds, see [7, Theorem 3.5]
and [25, Sect. 4].

5.2 Semipositive Line Bundles of Type q

Let X be a complex manifold of dimension n and (L, hL) be a holomorphic Hermitian
line bundle. For 1 ≤ q ≤ n, we have the notion of semipositive line bundles of type
q as follows, refer to [32, Chapter 3, Sect. 1, Definition 1.1]. We say (L, hL) is

semipositive of type q if (L, hL) ≥ 0 everywhere and
√−1R(L,hL )

x is positive on a
(n − q + 1)-dimensional subspace of T (1,0)

x X at every x ∈ X ,
We remark that, by [32, Chapter 3, Sect. 2, Proposition 2.1 (1),(2)] and Defini-

tion 1.1, if (L, hL) is semipositive of type q on a complex manifold X , then (L, hL) is
Nakano q-positive at every point x ∈ X with respect to arbitrary Hermitian metric ω

on X . As a consequence, by replacing the hypothesis Nakano q-positive with respect
to ω by semipositive of type q in Theorem 5.3 and 5.6, the conclusion therein still
holds.

Besides, by adapting the notion of semipositive of type q to Theorem 4.7, we obtain
another generalization of [26, Theorem 3.5.9] as follows.

Corollary 5.7 Let (X , ω) be a q-convex manifold of dimension n. Let E, L be holo-
morphic vector bundle with rank(L) = 1. Let K ⊂ X be the exceptional set and
1 ≤ p ≤ n. If (L, hL) is semipositive of type p on Xc with K ⊂ Xc, then for
j ≥ max{p, q} and k sufficiently large,

H j (X , Lk ⊗ E) = 0. (5.12)

Proof Since (L, hL) is semipositive of type p on Xc, (L, hL) is Nakano q-positive
with respect to ω given by Lemma 4.1 on Xc. Finally, we use Theorem 4.7. ��
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Corollary 5.8 Let M be a smooth pseudoconvex domain in a Kähler manifold (X , ω)

of dimension n and 1 ≤ q ≤ n. Let (L, hL) be a semipositive line bundle on M.
Assume (L, hL) is semipositive of type q on a neighborhood of bM. Then for every
j ≥ q,

H0, j
(2) (M, KX ⊗ L) = 0. (5.13)

Proof Propositions 2.6 and 4.17 and the fact that (L, hL) is Nakano q-positive with
respect to any Hermitian metric ω on a neighborhood of bM . ��
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