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Abstract
We study the space of closed anti-invariant forms on an almost complex manifold,
possibly non-compact. We construct families of (non-integrable) almost complex
structures onR4, such that the space of closed J -anti-invariant forms is infinite dimen-
sional, and also 0- or 1-dimensional. In the compact case, we construct 6-dimensional
almost complex manifolds with arbitrary large anti-invariant cohomology and a 2-
parameter family of almost complex structures on the Kodaira–Thurston manifold
whose anti-invariant cohomology group has maximum dimension.

Keywords Almost complex structure · Anti-invariant form · Anti-invariant
cohomology
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1 Introduction

Cohomological properties provide a connection between analytical and topological
features of complex manifolds. Indeed for a given complex manifold (M, J ), natu-
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Anti-invariant cohomology 4907

ral complex cohomologies are defined, e.g., the Dolbeault, Bott–Chern and Aeppli
cohomology groups, given by

H•,•
∂

(M) = Ker ∂

Im ∂
, H•,•

BC (M) = Ker ∂ ∩ Ker ∂

Im ∂∂
, H•,•

A (M) = Ker ∂∂

Im ∂ + Im ∂
.

Furthermore, if (M, J ) is a compact complex manifold admitting a Kähler metric,
that is a J -Hermitian metric whose fundamental form is closed, as a consequence of
Hodge theory, the complex de Rham cohomology groups decompose as the direct sum
of (p, q)-Dolbeault groups and strong topological restrictions on M are derived.
For an almost complex manifold (M, J ) the exterior differential d acting on the space
of complex valued (p, q)-forms splits as

d = μ + ∂ + ∂ + μ,

where ∂ , respectivelyμ, are the (p, q +1), respectively, the (p−1, q +2) components
of d. It turns out that the almost complex structure J is integrable if and only ifμ = 0.
Consequently, in the non-integrable case, ∂ is not a cohomological operator.
In [13] Li and Zhang, motivated by the study of comparison of tamed and com-
patible symplectic cones on a compact almost complex manifold, introduced the
J -anti-invariant and J -invariant cohomology groups as the (real) de Rham 2-classes
represented by J -anti-invariant, respectively, J -invariant forms and the notion of
C∞−pure-and-full almost complex structures, namely those ones such that the second
de Rham cohomology group decomposes as the direct sum of the J -anti-invariant and
J -invariant cohomology groups. In [5], Drǎghici et al. proved that an almost complex
structure on a compact 4-dimensional manifold is C∞-pure-and-full.

In [6,7], the same authors continue the study of the J -anti-invariant cohomology of
an almost complex manifold (M, J ). Let h−

J be the dimension of the real vector space
of closed anti-invariant 2-forms on (M, J ). Note that in the case when the manifold
is 4-dimensional every closed anti-invariant form α is �gJ -harmonic, where gJ is
a Hermitian metric and �gJ denotes the Hodge Lapacian, see Sect. 2. Thus in the
compact 4 dimensional case h−

J is the dimension of the anti-invariant cohomology.
The following conjectures appear in [6].

Conjecture 2.4 For generic almost complex structures J on a compact 4-manifold M ,
h−

J = 0.

In the case when b+ = 1 this was proved as Theorem 3.1 the same paper. The
conjecture in general was established by Tan et al. [15].

Conjecture 2.5 On a compact 4-manifold, if h−
J ≥ 3, then J is integrable.

By starting with a (compact) Kähler surface with holomorphically trivial canonical
bundle, Drǎghici, Li and Zhang obtain non-integrable almost complex structures with
h−

J = 2. More precisely, for a given (compact) Kähler surface (M, J ) with holomor-
phically trivial canonical bundle, they take a closed 2-form trivializing the canonical
bundle. Then, fixing a conformal class of Hermitian metrics compatible with J , they
consider the Gauduchonmetric representing such a conformal class and they associate
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4908 R. Hind, A. Tomassini

an almost complex structure J f ,s,l depending on three smooth functions satisfying
some suitable conditions. Then, generically, h−

J f ,s,l
= 0, but cases when h−

J f ,s,l
= 1

and h−
J f ,s,l

= 2 also occur. Therefore, again in [6], as an extension of Conjecture 2.5,
the authors asked the following natural

Question 3.23 Are there (compact, 4-dimensional) examples of non-integrable almost
complex structures J with h−

J ≥ 2 other than the ones arising from [6], Proposition
3.21? In particular, are there any examples with h−

J ≥ 3?

For other results onC∞-pure-and-full and J -anti-invariant closed forms see [2–4,9,11].
In this note, motivated by Conjecture 2.5 and Question 3.23, we study the anti-

invariant cohomology and the space of anti-invariant harmonic forms of an almost
complex manifold, possibly non-compact.

Starting with the non-compact case, we first note that the space of closed anti-
invariant formswith respect to the standard integrable complex structure i onR4 ≡ C

2

is infinite dimensional: indeed, for every given holomorphic function h(z1, z2), the
real and imaginary parts of h(z1, z2)dz1 ∧ dz2 are closed and anti-invariant.

As Theorem 3.7, we show the same can also hold in the non-integrable case.

Theorem There exists a (non-integrable) almost complex structure on R
4, such that

the space of closed J -anti-invariant forms is infinite dimensional.

As a consequence, we see that compactness is essential for Conjecture 2.5
In contrast we also show the following (see Theorem 3.8, and Lemma 3.4 for the

integrability statement).

Theorem There exists a family of almost complex structures {J f } on C
2, parameter-

ized by smooth functions f : C2 → R, with the following properties.

• J f coincides with the standard complex structure i exactly at points where f = 0;
• J f is integrable if and only if the gradient of f in the z2 direction is 0;
• if f has compact support and f �≡ 0 then h−

J f
= 1.

In particular, an arbitrarily small, compactly supported, perturbation of a complex
structure having an infinite dimensional space of anti-invariant forms may admit only
a single such form up to scale. This provides supporting evidence for Conjecture
2.5, showing that typically anti-invariant forms do not persist under non-integrable
perturbations.

A similar argument gives the following, see Corollary 3.9.

Corollary There exist almost complex structures on C
2 which agree with i outside of

a compact set and have h−
J = 0.

We note that integrable complex structures on C
2 which agree with i outside of a

compact set are biholomorphic to C
2 itself, and so have h−

J = ∞. This follows from
Yau [17], Theorem 5, since such complex structures can be extended to give complex
structures on CP2.

Given the original motivations for studying anti-invariant cohomology groups it
is natural to ask about compatibility properties for our almost complex structures.
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Anti-invariant cohomology 4909

We point out in Remark 3.10 that the almost complex structures described in both
of the above theorems are indeed almost Kähler, that is, they are compatible with a
symplectic form on C

2.
In the compact case, we construct a 2-parameter family of (non-integrable) almost

complex structures on theKodaira–Thurstonmanifold, dependingon two smooth func-
tions, for which the anti-invariant cohomology group has maximum dimension equal
to 2 (see Proposition 4.2). This provides an affirmative answer to Question 3.23. In the
last section, we give a simple construction to obtain 6-dimensional compact almost
complex manifolds with arbitrary large anti-invariant cohomology (see Proposition
5.1). Hence dimension 4 is also an essential part of Conjecture 2.5.

For almost-complex structure on a 4-manifold which are tamed by a symplectic
form, Drǎghici et al. [5], Theorem 3.3, that h−

J ≤ b+ − 1. Thus any counterexamples
to Conjecture 2.5 cannot come from tame almost-complex structures on symplectic
4-manifolds with b+ ≤ 3. Moreover Li [12], Theorem 1.1, shows that symplectic
4-manifolds of Kodaira dimension 0 all have b+ ≤ 3. We thank Weiyi Zhang for
pointing this out.

2 Anti-invariant Cohomology

In this Section we will fix some notation and recall the generalities on anti-invariant
forms and some notion about the cohomology of almost complex manifolds. Let M
be a smooth 2n-dimensional manifold. We will denote by J a smooth almost complex
structure on M , that is a smooth (1, 1)-tensor J field satisfying J 2 = −id. The almost
complex structure J is said to be integrable if its Nijenhuis tensor, that is the (1, 2)-
tensor given by

NJ (X , Y ) = [J X , JY ] − [X , Y ] − J [J X , Y ] − J [X , JY ],

According to Newlander–Nirenberg Theorem, J is integrable if and only if J is
induced by a structure of complex manifold on M . Let J be a smooth almost-
complex structure on a M and denote by �r (M) the bundle of r -forms on M ; let
�r (M) := �(M,�r (M)) be the space of smooth global sections of �r (X) and let
�r (M;C) = �r (M) ⊗ C. Then J acts in a natural way on the space �r (M;C) of
smooth sections of �r (M;C) giving rise to the following bundle decomposition

�r (M;C) =
⊕

p+q=r

�
p,q
J (M).

Accordingly, �r (M;C) and �r (M) decompose, respectively, as

�r (M;C) =
⊕

p+q=r

�
p,q
J (M).
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4910 R. Hind, A. Tomassini

and

�r (M) =
⊕

p+q=r , p≤q

�(p,q),(q,p)(M)R,

where, for p < q

�(p,q),(q,p)(M)R = {α ∈ �
p,q
J (M) ⊕ �

q,p
J (M) | α = α},

and

�(p,p)(M)R = {β ∈ �
p,p
J (M) | β = β}.

In particular for r = 2, J acts as involution on �2(M) by

Jα(X , Y ) = α(J X , JY ),

for every pair of vector fields X , Y on M . Then we denote as usual by �−
J (M)

(respectively, �+
J (M)) the +1 (resp. −1)-eigenbundle; then the space of corre-

sponding sections �−
J (M) (respectively, �+

J (M)) are defined to be the spaces of
J -anti-invariant, (respectively, J -invariant) forms, i.e.,

�±
J (M) = {α ∈ �2(M) | Jα = ±α}

�(2,0),(0,2)(M)R = �−
J (M), �1,1(M)R = �+

J (M).

Let

Z±
J (M) = Z2(M) ∩ �±

J (M) = {α ∈ �±
J (M) | dα = 0}.

If {ϕ1, . . . , ϕn} is a local coframe of (1, 0)-forms on (M, J ), then �−
J (M) is locally

spanned by

{Re(ϕr ∧ ϕs), Im(ϕr ∧ ϕs), 1 ≤ r < s ≤ n}.

Then, according to the previous decomposition on forms, Li and Zhang [13] defined
the following cohomology spaces

H±
J (X) =

{
a ∈ H2

d R(X;R) | ∃ α ∈ Z±
J | a = [α]

}
,

and they gave the following (see [13, Definition 4.12])

Definition 2.1 An almost complex structure J on M is said to be

• C∞-pure if

H+
J (M) ∩ H−

J (M) = {0} .
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• C∞-full if

H2
d R(M;R) = H+

J (M) + H−
J (M).

• C∞-pure-and-full if

H2
d R(M;R) = H+

J (M) ⊕ H−
J (M).

Given an almost complex manifold (M, J ), we denote by

h−
J (M) = dimRZ−

J (M).

For a given Hermitian metric gJ on the 2n-dimensional almost complex manifold
(M, J ), we will denote by H−

J (M) the space of J -anti-invariant harmonic 2-forms,
that is

H−
J (M) := {α ∈ �−(M) | �gJ α = 0},

where �gJ denotes the Hodge Laplacian.
Following [6], [10, Prop.2.4], once a J -Hermitian metric gJ is fixed, the space

Z−
J (M) is contained in the kernel of a second-order elliptic differential operator E,

that is Z−
J (M) ⊂ KerE. Explicitly,

Eα = �gJ α + 1

(n − 2)!d((α ∧ d(ωn−2))),

where ω is the fundamental form of gJ . Hence, if M is a compact 2n-dimensional
almost complex manifold, then Z−

J (M) has finite dimension. Also, in view of [1],
assuming M is connected, if α is any closed anti-invariant form vanishing to infinite
order at some point p, then α = 0.

In the casewhen 2n = 4, then any J -anti-invariant closed formα on (M, J ) satisfies
�gJ α = Eα = 0 and so Z−

J (M) ⊂ H−
J (M). Thus if M is compact the natural map

Z−
J (M) ↪→ H−

J (M) is an isomorphism. This also holds for compact M in higher
dimensions provided that J is compatible with a symplectic form, that is, (M, J ) is an
almost Kähler manifold, see for example, [6] or [10, Proposition 2.2, Corollary 2.3].

Finally, again in dimension 2n = 4, we can check that in fact Z−
J (M) ⊂ H+

gJ
⊂

H−
J (M) whereH+

gJ
is the space of self-dual harmonic forms. So in the compact case

we have h−
J (M) ≤ b+(M).

3 Closed J-Anti-invariant Forms and an Integrability Condition

Let J be an almost complex structure on a 4-dimensional manifold. Let ω �= 0 be a
closed J -anti-invariant form on M . Then, according to [5, Lemma 2.6] (see also [10,
Prop. 2.6]) the zero set ω−1(0) of ω has empty interior, so that M \ω−1(0) is open and
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dense. Since M \ ω−1(0) coincides with the subset of M where ω is non-degenerate
(see [5, Lemma 2.6] or [10, Lemma 1.1]), we have the following

Lemma 3.1 Let (M, J ) be a 4-dimensional almost complex manifold and 0 �= ω ∈
Z−

J . Then ω is a symplectic form on the open dense set M \ ω−1(0).

Let J0 be the standard complex structure on the vector space Cn � R
2n induced by

the multiplication by i , that is,

J0(z1, . . . , zn) = (ei π
2 z1, . . . , ei π

2 zn).

Then, for every given real number r , define Jr
0 ∈ End(Cn), by setting

Jr
0 (z1, . . . , zn) = (ei π

2 r z1, . . . , ei π
2 r zn).

Let now J be any almost complex structure on the manifold C
n � R

2n ; then there
exists A : R

2n → GL(2n,R) such that J is conjugated to the standard complex
structure J0, i.e.,

Jx = A(x)J0A−1(x).

For r = r(x) ∈ R, define

Jr
x := A(x)Jr

0 A−1(x).

Let (M, J ) be a 2n-dimensional almost complex manifold and letω ∈ �−
J (M). Let

U be a coordinate neighborhood. We can find A(x) for x ∈ U conjugating Jx to J0.
Given a smooth function r : M → R equal to 0 outside of U we can define a bilinear
form θr on M which agrees with ω outside of U by setting, at any given x ∈ U ,

θr
x (v,w) = ωx (v, Jr(x)

x w), (1)

for every pair of tangent vectors v, w.

Lemma 3.2 The form θr is skew-symmetric and J-anti-invariant, that is, θr ∈ �−
J (M).

Proof For any given pair of tangent vectors v, w at x ,

Jxθ
r
x (v,w) = θr

x (Jxv, Jxw) = ωx (Jxv, Jr+1
x w) = −ωx (v, Jr

x w) = −θr
x (v,w),

that is Jθr = −θr .
Note that when r = 0 we have θ0 = ω is skew. To check θr is skew for all r , we

fix x (and so can think of r as a real number) and working in Tx M can choose a basis
such that we can identify J with the standard complex structure J0 on C

n . Then

d

dr
Jr = π

2
Jr+1.
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Hence

d

dr
θr (v,w) = d

dr
ω(v, Jrw) = π

2
ω(v, Jr+1w) = π

2
θ(v, Jw).

For the same fixed v, w, we define a function

f (r) = (θr (v,w) + θr (w, v))2 + (θr (v, Jw) + θr (Jw, v))2.

Then

d f

dr
= π

2
(θr (v,w) + θr (w, v))(θr (v, Jw) + θr (w, Jv))

+π

2
(θr (v, Jw) + θr (Jw, v))(−θ(v,w) + θ(Jw, Jv)) = 0,

using the fact that Jθr = −θr . Hence f ′(r) = 0 and since f (0) = 0 we see that
f (r) = 0 for all r and θr is skew for all r . ��
The last Lemma allows to produce anti-invariant forms starting from an anti-invariant
one. For the sake of completeness we recall the proof of an integrability result in the
4-dimensional case obtained by Drǎghici et al. (see [5, Lemma 2.12]).

Proposition 3.3 Let (M, J ) be a 4-dimensional almost complex manifold. Let 0 �=
ω ∈ Z−

J (M). If the form θx (·, ·) = ωx (·, Jx ·) is closed, then J is integrable.

Proof It suffices to check the Nijenhuis tensor NJ = 0, at any point of the dense subset
M \ ω−1(0). This implies NJ = 0 on the whole M and J is integrable.

By Lemma 3.1 the 2-form ω is a symplectic structure on M \ ω−1(0). Let x ∈
M \ ω−1(0) and U be a coordinate neighborhood of x contained in M \ ω−1(0).
Define a local complex 2-form on (M, J ) by setting, for every x ∈ U ,

�x = ωx − iθx .

We show that � is of type (2, 0). Indeed, for every given v, w,

�x (v − i Jv, w + i Jw) = (ωx − iθx )(v − i Jv, w + i Jw)

= ωx (v,w) + ωx (Jv, Jw) − i
(
θx (v,w) + θx (Jv, Jw)

)

+i
(
ωx (v, Jw) − ωx (Jv, w) − i(θx (v, Jw) − θx (Jv, w))

)

= 0,

since ω and θ are J -anti-invariant. Therefore, � vanishes on any pair of complex
vectors of type (1, 0), (0, 1), respectively, that is

� ∈ �
2,0
J (U) ⊕ �

0,2
J (U).
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4914 R. Hind, A. Tomassini

Similarly,

�x (v + i Jv, w + i Jw) = (ωx − iθx )(v + i Jv, w + i Jw)

= ωx (v,w) − ωx (Jv, Jw) − i
(
θx (v,w) − θx (Jv, Jw)

)

+i
(
ωx (v, Jw) + ωx (Jv, w) − i

(
θx (v, Jw) + θx (Jv, w)

))

= 2
(
ωx (v, w) − iθx (v,w)

) + 2i
(
ωx (v, Jw) − iθx (v, Jw)

)

= 2
(
ωx (v, w) − iθx (v,w)

) + 2i
(
θx (v, w) + iωx (v, w)

)

= 0.

Therefore,� ∈ �
2,0
J (U) is nowhere vanishing and closed. Let α be any local complex

(1, 0)-form. Then, by type reason, α ∧ � = 0. Hence, at x ,

0 = d(α ∧ �) = dα ∧ � = (dα)0,2 ∧ �,

which implies that the (0, 2)-part (dα)0,2 of dα vanishes and NJ (x) = 0. ��
Let (x1, x2, y1, y2) be natural coordinates on R

4 and f = f (x1, x2, y1, y2) be a
smooth R-valued function on R

4. Define J f ∈ End(TR
4) by setting

J f
∂

∂x1
= f

∂

∂x2
+ ∂

∂ y1
, J f

∂

∂x2
= ∂

∂ y2
, J f

∂

∂ y1
=− ∂

∂x1
− f

∂

∂ y2
, J f

∂

∂ y2
=− ∂

∂x2
(2)

and extend it C∞(R4)-linearly. Then J f gives rise to an almost complex structure on
R
4.

Lemma 3.4 The almost complex structure J = J f is integrable if and only if

fx2 = 0, fy2 = 0.

Proof It is enough to show that NJ ( ∂
∂x1

, ∂
∂x2

) = 0 if and only if

fx2 = 0, fy2 = 0.

We easily compute

NJ ( ∂
∂x1

, ∂
∂x2

) = [J ∂
∂x1

, J ∂
∂x2

] − [ ∂
∂x1

, ∂
∂x2

] − J [J ∂
∂x1

, ∂
∂x2

] − J [ ∂
∂x1

, J ∂
∂x2

]
= [ f ∂

∂x2
+ ∂

∂ y1
, ∂

∂ y2
] − J [ f ∂

∂x2
+ ∂

∂ y1
, ∂

∂x2
] − J [ ∂

∂x1
, ∂

∂ y2
]

= − fy2
∂

∂x2
+ fx2

∂
∂ y2

Lemma is proved. ��
According to the definition of J f , the induced almost complex structure J f on T ∗

R
4

is given by

J f dx1=−dy1, J f dx2= f dx1 − dy2, J f dy1=dx1, J f dy2=− f dy1+dx2.

(3)
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Consequently, setting

ϕ1 = dx1 + iddy1, ϕ2 = dx2 + i(− f dx1 + dy2),

then {ϕ1, ϕ2} is a complex (1, 0)-coframe on the almost complex manifold (R4, J f ),
so that

β = Re(ϕ1 ∧ ϕ2), γ = Im(ϕ1 ∧ ϕ2),

is a global frame of �−
J f

(R4). Explicitly,

β = dx1 ∧ dx2 − f dx1 ∧ dy1 − dy1 ∧ dy2, γ = dx1 ∧ dy2 − dx2 ∧ dy1. (4)

Lemma 3.5 Let α be an arbitrary smooth section of �−
J f

(R4). Set

α = aβ + bγ,

for a, b smooth R-valued functions on R
4. Then dα = 0 if and only if the following

condition holds

⎧
⎪⎪⎨

⎪⎪⎩

ay1 − bx1 + ( f a)x2 = 0
ax1 + by1 + ( f a)y2 = 0
ay2 − bx2 = 0
ax2 + by2 = 0.

(5)

Proof Expanding dα we get:

dα = da ∧ β − ad f ∧ dx1 ∧ dy1 + db ∧ γ

= (ax1dx1 + ax2dx2 + ay1dy1 + ay2dy2) ∧ (dx1 ∧ dx2 − f dx1 ∧ dy1 − dy1 ∧ dy2)
−a( fx1dx1 + fx2dx2 + fy1dy1 + fy2dy2) ∧ dx1 ∧ dy1+
+(bx1dx1 + bx2dx2 + by1dy1 + by2dy2) ∧ (dx1 ∧ dy2 − dx2 ∧ dy1)
= −ax1dx1 ∧ dy1 ∧ dy2 + ax2 f dx1 ∧ dx2 ∧ dy1 − ax2dx2 ∧ dy1 ∧ dy2+
+ay1dx1 ∧ dx2 ∧ dy1 + ay2dx1 ∧ dx2 ∧ dy2 − ay2 f dx1 ∧ dy1 ∧ dy2
+a fx2dx1 ∧ dx2 ∧ dy1 − a fy2dx1 ∧ dy1 ∧ dy2 − bx1dx1 ∧ dx2 ∧ dy1+
−bx2dx1 ∧ dx2 ∧ dy2 − by1dx1 ∧ dy1 ∧ dy2 − by2dx2 ∧ dy1 ∧ dy2
= (ay1 − bx1 + (a f )x2 ) dx1 ∧ dx2 ∧ dy1 + (ay2 − bx2 ) dx1 ∧ dx2 ∧ dy2+
−(ax1 + by1 + (a f )y2 ) dx1 ∧ dy1 ∧ dy2 − (ax2 + by2 ) dx2 ∧ dy1 ∧ dy2.

Therefore, dα = 0 if and only if (5) holds. ��
Remark 3.6 Set z1 = x1 + iy1, z2 = x2 + iy2 and

∂z1 = 1
2 (∂x1 − i∂y1), ∂z2 = 1

2 (∂x2 − i∂y2)

∂z1 = 1
2 (∂x1 + i∂y1), ∂z2 = 1

2 (∂x2 + i∂y2).
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4916 R. Hind, A. Tomassini

Then a pair of real valued functions (a, b) on R4 is a solution of (5) if and only if the
complex valued function w = a − ib solves the following

{
∂z1w + i

2∂z2( f (w + w)) = 0
∂z2w = 0.

(6)

The system above is a perturbed Cauchy–Riemann PDEs system. Furthermore, it
is immediate to note that, condition (5) of Lemma 3.5 can be rewritten as

db = (ay1 + (a f )x2)dx1 + ay2dx2 − (ax1 + (a f )y2)dy1 − ax2dy2.

Therefore, given a, there exists a b such that α = aβ + bγ is a closed J -anti-invariant
form on (R4, J ) if and only if the differential form

(ay1 + (a f )x2)dx1 + ay2dx2 − (ax1 + (a f )y2)dy1 − ax2dy2,

is closed. The latter condition is equivalent to the following PDEs system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ax1y2 − ax2 y1 − (a f )x2x2 = 0
ax1y2 − ax2 y1 + (a f )y2y2 = 0
ax1x1 + ay1y1 + (a f )x2y1 + (a f )x1y2 = 0
ax1x2 + ay1y2 + (a f )x2y2 = 0.
ax2x2 + ay2 y2 = 0.

(7)

We are ready to state and prove the following

Theorem 3.7 Let f (x1, x2, y1, y2) = x2, J = Jx2 be defined as in (2) and gJ be a
J -Hermitian metric on R

4. Let

β = dx1 ∧ dx2 − f dx1 ∧ dy1 − dy1 ∧ dy2, γ = dx1 ∧ dy2 − dx2 ∧ dy1.

Then

(I) J is a non-integrable almost complex structure on R
4.

(II) For every given pair (s, t) ∈ R
2, such that

s2 + t2 + t = 0,

the form

αs,t = tesx1+t y1β − sesx1+t y1γ,

is a J -anti-invariant and closed. Therefore, H−
J (R4) has infinite dimension.

Proof (I) In view of Lemma 3.4, J is integrable if an only if fx2 = fy2 = 0. By
assumption, we get fx2 = 1. Therefore J is not integrable.
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(II) Set z1 = x1 + iy1, z2 = x2 + iy2. Then, for f = x2, the complex PDEs system
(6) becomes

{
∂z1w + i

4 (z2 + z2)∂z2w + i
4 (w + w) = 0

∂z2w = 0.
(8)

A straightforward computation shows that, given any pair of real numbers (s, t)
satisfying

s2 + t2 + t = 0,

the complex function

w = tes
z1−z̄1

2 +t
z1−z̄1
2i + ises

z1−z̄1
2 +t

z1−z̄1
2i ,

solves (8). Take

sn =
√

n − 1

n
, tn = −1

n
,

Then, for such a choice, s2n + t2n + tn = 0. In view of the computations above, for any
given integer n ≥ 1, the J -anti-invariant forms

αn := tnesn x1+tn y1β − snesn x1+tn y1γ,

are closed, and consequently gJ -harmonic. Therefore, {αn}n≥1 is a sequence of har-
monic forms on (R4, J , gJ ) and it is immediate to check that, for any given positive
integer m, the forms {α1, . . . , αm} are linearly independent. This ends the proof. ��

Next we demonstrate the contrasting behavior when our almost complex structure
is defined using functions with compact support.

Theorem 3.8 Let f have compact support and the almost complex structures J f on
C
2 be defined by (2).
Then if f is non-zero we have h−

J f
= 1.

Note that since f has compact support neither fx2 nor fy2 can vanish identically and
so by Lemma 3.4 we see that J f is non-integrable. As mentioned in the introduction,
Yau’s solution to the Calabi conjecture actually implies that no integrable complex
structures J can be standard outside of a compact set and satisfy h−

J = 1.

Proof We determine the anti-holomorphic forms by finding solutions to the system
(7).

First note that the first two lines in Eq. (7) imply that a f is a harmonic function
of x2, y2, which is identically 0 outside of a compact set (since f is). Hence a f is
identically 0 everywhere.
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Fix x1, y1, say x1 = s, y1 = t , so that f does not vanish identically on the corre-
sponding x2, y2 plane. Working in this plane, as a f is identically 0 it follows that a
is identically 0 on the open set where f is nonzero. But the final line in Eq. (7) says
that a is also harmonic in x2, y2, hence a vanishes identically on the whole plane, and
similarly on all nearby x2, y2 planes.

Next we look at x1, y1 planes. As a f = 0 the third line in Eq. (7) says that a is
harmonic. But as we know that a is 0 close to (s, t) we can conclude that a = 0
everywhere.

Therefore the only closed anti-invariant forms aβ + bγ are of the form a = 0 and
b constant, showing that h−

J f
= 1 as required. ��

Similar almost complex structures give the following corollary.

Corollary 3.9 There exist almost complex structures on C
2 which agree with i outside

of a compact set and have h−
J = 0.

Proof The proof of Theorem 3.8 implies that if J = J f on some region, say {|z1−3| <

1} and f is not identically 0 on the planes {z1 = c} when |c − 3| < 1 then any closed
anti-invariant form on {|z1 −3| < 1} is a multiple of γ . We fix such an f with support
in a ball B2(3, 0) about (3, 0) of radius 2.

Consider the mapping T : C2 → C
2, (z1, z2) �→ (z2,−i z1), which takes {|z2 −

3| < 1} to {|z1 − 3| < 1}. Then ρ = T ∗γ = dx1 ∧ dx2 − dy1 ∧ dy2 and J ′ = T ∗ J f

coincides with i outside of a ball about B2(0, 3). Also, any closed J ′-anti-invariant
form on {|z2 − 3| < 1} is a multiple of ρ on {|z2 − 3| < 1}.

Now, both J and J ′ agree with i outside of the two balls, and so we can find an
almost complex structure J ′′ agreeing with J on B2(3, 0) and J ′ on B2(0, 3) and i
away from the two balls. Any corresponding J ′′ anti-invariant form is a multiple of
both γ and ρ on {|z1 −3| < 1, |z2 −3| < 1} and so is equal to 0 on this region. Hence
by unique continuation, see Sect. 2, the form must be identically 0 everywhere. ��

We conclude this section with a remark about the compatibility of our almost
complex structures with symplectic forms.

Remark 3.10 The almost complex structures referred to in Theorems 3.7 and 3.8 are
almost Kähler, that is, they are compatible with symplectic forms on C

2. In the case
when f = f (x1, x2) we can check directly that J f is compatible with the symplectic
form

ω f = dx1 ∧ dy1 + dx2 ∧ dy2 + f dx1 ∧ dx2.

In the case when f has compact support the almost complex structure J f is tamed
by

ωK = Kdx1 ∧ dy1 + dx2 ∧ dy2,

for a sufficiently large constant K . This means that ωK (v, J f v) ≥ 0 with equality
only if v = 0. It then follows from Gromov’s theory of pseudoholomorphic curves,
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[8], see also [16] for this application, that J f is in fact compatible with a symplectic
form ωc.

Standardmethods in symplectic geometry, see [14], can be used to show thatω f and
ωc are diffeomorphic to the standard symplectic formω0 = dx1∧dy1+dx2∧dy2, and
in fact the diffeomorphisms can be chosen smoothly with f . Hence in both theorems
we may assume without loss of generality that our almost complex structures are all
compatible with ω0.

4 Families of Non-integrable Almost Complex Structures with h−J = 2
on the Kodaira–ThurstonManifold

We recall the construction of the Kodaira–Thurston Manifold.
Let R4 be the Euclidean space with coordinate (x1, . . . , x4) endowed with the

following product ∗: given any a = (x1, . . . , x4), y = (y1 . . . , y4) ∈ R
4, define

x ∗ y = (x1 + y1, x2 + y2, x3 + x1y2 + y3, x4 + y4).

Then (R4, ∗) is a nilpotent Lie group and

� = {(γ1, . . . , γ4) ∈ R
4 | γ j ∈ Z, j = 1, . . . , 4},

is a uniform discrete subgroup of (R4, ∗), so that M = �\R4 is a 4-dimensional
compact manifold. Setting,

E1 = dx1, E2 = dx2, E3 = dx3 − x1dx2, E4 = dx4,

then it is immediate to check that E1, E2, E3, E4 are �-invariant 1-forms onR4, and,
consequently, they give rise to a global coframe on M . Then the following structure
equations hold

dE1 = 0, dE2 = 0, dE3 = −E1 ∧ E2, dE4 = 0.

Denoting by {E1, . . . , E4} the dual global frame on M , then

[E1, E2] = E3,

the other brackets vanishing. Let λ = λ(x4), μ = μ(x4) be non-constant R-valued
smooth Z-periodic functions. Define an almost complex structure J = Jλ,μ on M by
setting

J E1 = eλ(x4)E2, J E2 = −e−λ(x4)E1, J E3 = eμ(x4)E4, J E4 = −e−μ(x4)E3. (9)

Lemma 4.1 The almost complex structure J is non-integrable.
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Proof We compute

NJ (E1, E3) = [J E1, J E3] − [E1, E3] − J [J E1, E3] − J [E1, J E3]
= [eλ(x4)E2, eμ(x4)E4] − J [eλ(x4)E2, E3] − J [E1, eμ(x4)E4]
= −E4(eλ(x4))E2 = −eλ(x4)λ′(x4)E2 �= 0.

��
Proposition 4.2 Let J = Jλ,μ be the family of the (non-invariant) almost complex
structures on the Kodaira–Thurston manifold defined as in (9). Then h−

J (M) = 2.

Proof By the definition of J , the following

ψ1 = E1 + ie−λ(x4)E2, ψ2 = E3 + ie−μ(x4)E4,

is a global (1, 0)-coframe on (M, J ). Then

θ1 = E1 ∧ E3 − e−(λ(x4)+μ(x4))E2 ∧ E4, θ2 = e−μ(x4)E1 ∧ E4 + e−λ(x4)E2 ∧ E3,

globally span �−
J (M). We immediately obtain

dθ1 = 0, d(eλ(x4)θ2) = 0,

that is θ1, eλ(x4)θ2 are closed J -anti-invariant forms, hence harmonic, which span
�−

J (M). Since b+(M) = 2 and h−
J (M) ≤ b+(M) for every compact almost complex

manifold, we conclude that h−
J (M) = 2 and

H−
J (M) � SpanR〈θ1, eλ(x4)θ2〉.

��
Remark 4.3 It should be noted that the two-parameter family of almost complex struc-
tures on the Kodaira surface as in Proposition 4.2 cannot be metric related to an
integrable almost complex structure, as, on the contrary, in view of [6, Proposition
3.20], such almost complex structures have h−

Jλ,μ
≤ 1.

5 6-Dimensional Compact Almost ComplexManifolds with Arbitrarily
Large Anti-invariant Cohomology

In this Section we provide simple examples of compact 6-dimensional manifolds
endowed with a non-integrable almost complex structure with arbitrary large anti-
invariant cohomology.
Let �g be a compact Riemann surface of genus g ≥ 2. On the differentiable product
X = �g ×�g , denote by J the complex product structure. LetT2 = R

2/Z2 be the real
2-torus, where we indicate with (t1, t2) global coordinates on R

2 and let f : X → R
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be a smooth positive non-constant function. Let M = X ×T
2. Define J ∈ End(T M)

by setting

J (
V , a

∂

∂t1
+ b

∂

∂t2

) = (
J V ,− b

f

∂

∂t1
+ f a

∂

∂t2

)
.

Then, we have the following

Proposition 5.1 J is a non-integrable almost complex structure on M = X ×T
2 such

that

h−
J (M) ≥ 2g2.

Proof It is immediate to check that J 2 = −id. Let p ∈ X such that d f (p) �= 0 and
let (z1 = x1 + iy1, z2 = x2 + iy2) be local holomorphic coordinates on X around p.
We may assume that ∂

∂z1
f (p) �= 0. We have:

NJ ( ∂
∂x1

, ∂
∂t1

) = [J ∂
∂x1

,J ∂
∂t1

] − [ ∂
∂x1

, ∂
∂t1

] − J [J ∂
∂x1

, ∂
∂t1

] − J [ ∂
∂x1

,J ∂
∂t1

]
= [ ∂

∂x1
, f ∂

∂t1
] − J [ ∂

∂x1
, f ∂

∂t2
]

= fx1(p) ∂
∂tt

+ fy1(p) ∂
∂t2

�= 0.

Denote by {γ1, . . . , γg}, {γ ′
1, . . . , γ

′
g}, respectively, be a basis of H1,0

∂
on the first and

on the second copy of �g , respectively. Then

H (2,0)
∂

(X) � SpanC〈γr ∧ γ ′
s , 1 ≤ r , s ≤ g〉,

and clearly d(γr ∧ γ ′
s ) = 0, for every 1 ≤ r , s ≤ g. Then h−

J (X) = 2g2. Therefore,

h−
J (M) ≥ 2g2.

��
Remark 5.2 The previous Proposition gives a positive answer to the question raised in
[3, Question 5.2] where it was asked for examples of non-integrable almost complex
structures J on a compact 2n-dimensional manifold with h−

J (M) > n(n − 1).
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