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Abstract
The rigidity statement of the positive mass theorem asserts that an asymptotically flat
initial data set for the Einstein equations with zero ADM mass, and satisfying the
dominant energy condition, must arise from an embedding into Minkowski space. In
this paper, we address the question of what happens when the mass is merely small.
In particular, we formulate a conjecture for the stability statement associated with the
spacetime version of the positive mass theorem, and give examples to show how it
is basically sharp if true. This conjecture is then established under the assumption
of spherical symmetry in all dimensions. More precisely, it is shown that a sequence
of asymptotically flat initial data satisfying the dominant energy condition, without
horizons except possibly at an inner boundary, and with ADMmasses tending to zero
must arise from isometric embeddings into a sequence of static spacetimes converg-
ing to Minkowski space in the pointed volume preserving intrinsic flat sense. The
difference of second fundamental forms coming from the embeddings and initial data
must converge to zero in L p, 1 ≤ p < 2. In addition some minor tangential results
are also given, including the spacetime version of the Penrose inequality with rigidity
statement in all dimensions for spherically symmetric initial data, as well as symmetry
inheritance properties for outermost apparent horizons.
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1 Introduction

Let (Mn, g, k) be an initial data set for the Einstein equations. This means that (Mn, g)
is a complete Riemannian manifold, possibly with boundary, and k is a symmetric 2-
tensor representing the second fundamental form of an embedding into spacetime.
These satisfy the constraint equations

16πμ = Rg + (Trgk)
2 − |k|2g, 8π J = divg

(
k − (Trgk)g

)
, (1.1)

where μ and J are the energy and momentum density of the matter fields, and Rg

denotes scalar curvature. The dominant energy condition is satisfied if

μ ≥ |J |g. (1.2)

We will say that the initial data are asymptotically flat if there is an asymptotic end in
the manifold Mn that is diffeomorphic to the complement of a ball Rn \ B0(ρ0), and
there exists a constant C such that in the coordinates x provided by this asymptotic
diffeomorphism

∣∣∂β1(gi j − δi j )
∣∣ ≤ C

|x |n−2+|β1| ,
∣∣∂β2ki j

∣∣ ≤ C

|x |n−1+|β2| , (1.3)

for multi-indices β1 ≤ 2, β2 ≤ 1 and

∣∣Rg
∣∣ ≤ C

|x |n+1 ,
∣∣Trgk

∣∣ ≤ C

|x |n . (1.4)

These fall-off conditions are modeled on those of the original Schoen-Yau proof of
the positive mass theorem [34]. We believe our results should follow assuming the
weaker asymptotic decay as in the work of Eichmair et al. [12,13]; however, for the
sake of simplicity of exposition this will not be done.

With the above setting, the ADM energy and linear momentum of the asymptotic
end are finite, well-defined, and given by

E = 1

2(n − 1)ωn−1
lim
r→∞

∫

Sr
(gi j,i − gii, j )ν

j , (1.5)

Pi = 1

2(n − 1)ωn−1
lim
r→∞

∫

Sr
(ki j − (Trgk)gi j )ν

j , (1.6)
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Stability of the Spacetime Positive Mass Theorem 4193

where Sr are coordinate spheres with unit outer normal ν and ωn−1 is the volume of
the standard sphere Sn−1. The ADM mass is then the Lorentz length of the energy-
momentum 4-vector

m =
√
E2 − |P|2. (1.7)

In this paper themain results will be concernedwith spherically symmetric initial data.
It turns out that in spherical symmetry, under the definition of asymptotic flatness in
(1.3) and (1.4), the linear momentum vanishes |P| = 0 and hence m = E as is shown
in Proposition 3.6.

The positive mass inequality asserts that an asymptotically flat complete initial data
set satisfying the dominant energy condition has

E ≥ |P|. (1.8)

This was established by Eichmair et al. in [13] for dimensions 3 ≤ n ≤ 7 by using
stable marginally outer trapped surfaces (MOTS) in analogy with the minimal hyper-
surface technique deployed in the time-symmetric case, and in all dimensions n ≥ 3
for spin manifolds by Bartnik [5] andWitten [40] (see also work of Parker and Taubes
[30]). Earlier, the weaker inequality E ≥ 0 was initially proven by Schoen and Yau
[34] when n = 3 with the help of Jang’s equation, and this reduction argument was
later extended by Eichmair [12] to include dimensions 3 ≤ n ≤ 7.

The rigidity of the positive mass theorem may be broken into two statements. The
first asserts:

E = |P| �⇒ E = |P| = 0. (1.9)

This was proven by Huang and Lee [17] for 3 ≤ n ≤ 7. Their approach only uses
the positive mass inequality as input but not its proof, and thus can be extended to
higher dimensions for spin manifolds. The spin case was previously treated by Beig
and Chrusciel [6] for n = 3 and Chrusciel and Maerten [10] for higher dimensions.
The second statement is that

E = 0 �⇒ (Mn, g, k) embeds as initial data in Minkowski space. (1.10)

As with the inequality, this was originally established by Schoen and Yau in [34]
for three dimensions and extended by Eichmair in [12] to dimensions less than eight.
Finally in the spin case this was treated for all dimensions in work of Beig et al. [6,10].
Here we state the positive mass rigidity theorem in a particular way that allows us to
propose a natural almost rigidity (or stability) conjecture.

Theorem 1.1 (Positivemass rigidity theorem [12,17,34]) Let (Mn, g, k) be a complete
asymptotically flat initial data set, with 3 ≤ n ≤ 7, and satisfying the dominant energy
condition. If the ADM mass vanishes m = 0, then Mn is diffeomorphic to R

n and
(Mn, g) can be isometrically embedded as a graph in Minkowski space. That is

F : (Mn, g) → (R1,n,−dt2 + gE), F(x) = ( f (x), x), (1.11)
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4194 E. Bryden et al.

where gE is the Euclidean metric and

g = F∗(−dt2 + gE) = −d f 2 + gE, (1.12)

and the second fundamental form, h, of the embedding agrees with that of the initial
data

h = k. (1.13)

The purpose of this paper is to establish an almost rigidity or stability version of
this theorem in the spherically symmetric setting. We will say that the initial data are
spherically symmetric if Mn is diffeomorphic toRn \ B0(r0) orRn and the metric and
second fundamental form may be expressed by

g = g11(r)dr
2 + ρ(r)2gSn−1 , ki j = nin j kn(r) + (gi j − nin j )kt (r),

(1.14)

for some radial functions g11, ρ, kn , and kt , where n = √
g11∂r is the unit normal

to coordinate spheres. This decomposition for k exhibits its normal and tangential
components with respect to the coordinate spheres, and is motivated by the implicit
assumption that the initial data come from a spherically symmetric spacetime in which
k is the ‘time derivative’ of g which already has this structure.

The boundary, if nonempty, of the initial data will consist of apparent horizons.
Recall that the strength of the gravitational field around a hypersurface 	 ⊂ Mn may
be measured by the null expansions (null mean curvatures) given by

θ± := H	 ± Tr	k, (1.15)

where H	 is the mean curvature with respect to the unit normal pointing towards
spatial infinity. These quantities can be interpreted as the rate at which the area of a
shell of light changes as it moves away from the surface in the outward future/past
direction (+/−). Future or past trapped surfaces are defined by the inequalities θ+ < 0
or θ− < 0, respectively, and may be thought of as lying in a region of strong gravity. If
θ+ = 0 or θ− = 0, then 	 is called a future or past apparent horizon; these naturally
arise as boundaries of future or past trapped regions. Furthermore, such surfaceswill be
referred to as an outermost apparent horizon if it is not enclosed by any other apparent
horizon. In Lemma 3.1 it is shown that the outermost apparent horizon inherits the
symmetry of its ambient space. In this text the abbreviated term horizon will often be
used for these objects.

We will consider asymptotically flat (Mn, g, k) that have either no horizons or only
a horizon on an inner boundary, in which case the boundary is an outermost apparent
horizon. Under these conditions for spherically symmetric initial data, it is shown in
Lemma 3.4 that the areas (or n − 1 dimensional volumes) of the level sets of ρ are
increasing. Thus we may define the level set

	A = ρ−1(ρA) such that Volg(	A) = A = ωn−1ρ
n−1
A . (1.16)
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Stability of the Spacetime Positive Mass Theorem 4195

We will study regions within and between these level sets

�A = ρ−1[0, ρA], �A1,A2 = ρ−1[ρA1 , ρA2 ], (1.17)

as well as their tubular neighborhoods

TD(	A) = {p ∈ Mn | ∃q ∈ 	A wi th dg(p, q) < D}, (1.18)

where dg(p, q) denotes the distance between p and q.
In order to state themain theoremwe need the notion of uniform asymptotic flatness.

A sequence of initial data (Mn
j , g j , k j ) will be referred to as uniformly asymptotically

flat if each member of the sequence is asymptotically flat according to (1.3) and (1.4),
and the constants ρ0 and C in the definition are independent of j .

Theorem 1.2 Fix A > 0 and D > ρA, and consider a sequence of uniformly asymptot-
ically flat spherically symmetric initial data sets (Mn

j , g j , k j ) satisfying the dominant
energy condition and with no closed horizons except possibly the inner boundary. If
their ADM masses converge to zero m j → 0, then there exist Riemannian manifolds
(M̄n

j , ḡ j ) diffeomorphic to (Mn
j , g j ) with graphical isometric embeddings

Fj :
(
Mn

j , g j

)
→

(
R × M̄n

j ,−dt2 + ḡ j

)
, Fj (x) = ( f j (x), x), (1.19)

g j = F∗
j (−dt2 + ḡ j ) = −d f 2j + ḡ j , (1.20)

such that the static spacetimes

(
R × M̄n

j ,−dt2 + ḡ j

)
converge to Minkowski space (R1,n,−dt2 + gE)

(1.21)

in that the base manifolds converge in the pointed volume preserving intrinsic flat
sense to Euclidean space. More precisely, regions within 	A in (M̄n

j , ḡ j ) converge to
balls in Euclidean space

(
�

j
A ∩ TD

(
	

j
A

)
, ḡ j

) VF−→ ( B0(ρA) , gE ) . (1.22)

Furthermore if there is a uniform constant C such that ‖ k j ‖L2(Mn
j )

≤ C, then for any

1 ≤ p < 2 the second fundamental forms h j of the graphs satisfy

‖ h j − k j ‖
L p

(
�

j
A∩TD(	

j
A),ḡ j

)→ 0. (1.23)

The intrinsic flat distance dF (� j ,�
′
j ) between pairs of compact oriented Rieman-

nian manifolds with boundary was first introduced by the third author with Wenger
in [38]. Intuitively it measures the filling volume between the given manifolds. It is
0 if and only if there is an orientation preserving isometry between the manifolds � j
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and �′
j [38]. The volume preserving intrinsic flat distance was introduced in [36] and

includes an extra term involving the global difference of volumes

dVF (� j ,�
′
j ) = dF (� j ,�

′
j ) + |Vol j (� j ) − Vol∞(�′

j )|. (1.24)

This has been studied by Portegies in [32] and by Jauregui-Lee in [20]. In particular
they have shown that

dVF (� j ,�∞) → 0 �⇒ Vol(Bpj (r)) → Vol(Bp∞(r)), (1.25)

for sequences of points p j ∈ � j converging to p∞ ∈ �∞.
Theorem 1.2 has been proven for time-symmetric initial data sets by Lee and the

third author in [23]. In that setting k j = 0 and f j can be taken to be constant so that
h j = 0 and (1.23) follows trivially. The intrinsic flat convergence is proven in [23]
by constructing an explicit filling manifold. In fact, LeFloch and the third author have
proven in [24] that the metric tensors converge in the H1

loc sense. Note that examples
in [23] demonstrate that even in the spherically symmetric time-symmetric setting one
can have sequences with ADMmass converging to 0 which do not converge to regions
in Euclidean space in the smooth or Gromov–Hausdorff sense. Applying techniques
from [23] in our Example 2.4, it is shown why one needs a tubular neighborhood in
(1.22). Furthermore, in Examples 2.1 and 2.2 we demonstrate the need to assume that
there are no interior horizons.

Without time symmetry, when k j �= 0, Theorem 1.2 makes no claim as to the
convergence of the original sequence of Riemannianmanifolds (Mn

j , g j ). Example 2.7
illustrateswhy the initial sequence (Mn

j , g j )neednot converge in any reasonable sense.
Therewe construct sequences of initial data sets of zeromass lying inMinkowski space
which become increasingly null on large regions, so that volumes disappear instead
of converging.

Conjecture 1.3 Theorem1.2 holdswithout requiring spherical symmetrywhen suitable
definitions are made for the regions �A. To achieve the conclusion exactly as stated
we expect that E → 0 should replace m → 0 in the hypotheses for the general case.
It is possible that a similar statement holds for m → 0, but the approach would have
to be different from the one used here in light of examples with boost. In the outline
below, we clarify which steps strongly use spherical symmetry and which hold more
generally.

The corresponding almost rigidity or stability conjecture in the time-symmetric
case was stated and proven in the spherically symmetric setting by Lee et al. [23]. It
has been confirmed in the graph setting by Huang et al. in [18] and for geometrostatic
manifolds by the third author with Stavrov in [37]. Initial controls on the metric tensor
towards proving the time-symmetric conjecture have been found by Allen for regions
covered by smooth inverse mean curvature flow in [1], and by the first author for
axisymmetric manifolds [8].

With the definition of asymptotic flatness used here the ADM mass m and ADM
energy E agree in spherical symmetry since the linear momentum P vanishes (Propo-
sition 3.6). In general when mass and energy differ, Conjecture 1.3 could be quite
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Stability of the Spacetime Positive Mass Theorem 4197

subtle in the case of large linear momentum, as the construction of the base manifolds
(M̄n, ḡ) presented here does not behave well in this setting. The methods used here
and based on the Jang equation are tailored to the situation when E is small, which
will not be the case if |P| stays uniformly away from zero.

We now give an outline of the proof of Theorem 1.2, which is modeled on the
Schoen-Yau approach to the positive mass theorem [34]. It should be noted that some
of the arguments do not require spherical symmetry. The first step is to solve the
2nd order quasi-linear elliptic Jang equation for each (Mn

j , g j , k j ) to obtain solutions
f j with asymptotically cylindrical blow-up at the outermost apparent horizon. See
Sect. 4 for details. The original study of this equation in [34] observed that the solution
only blows-up at apparent horizons. Prescribed blow-up at the outermost horizon was
obtained in work of Eichmair et al. for low dimensions [12,14,27]. In the spherically
symmetric case, the equation can be reduced to a 1st order ODE and the desired
solutions can be produced in any dimension [Theorem 4.1]. From the solutions a
sequence of Riemannian manifolds,

the Jang deformations:
(
M̄n

j , ḡ j = g j + d f 2j

)
, (1.26)

can be constructed which serve as the base for the ambient static spacetimes of Theo-
rem 1.2. Schoen-Yau showed that the scalar curvature of the Jangmetric is nonnegative
modulo a divergence term as stated in (4.8). The Jang manifolds are also uniformly
asymptotically flat [Lemma 4.3], and have the sameADMmasses as the original initial
data [Corollary 4.2]. A primary difference is that they have a cylindrical end where
previously there was a boundary. In Example 2.5 we explicitly solve the Jang equation
for a constant time slice of the Schwarzschild spacetime so that one can see precisely
how this step may be implemented constructively.

The nonnegativity property of the scalar curvature of (M̄n
j , ḡ j ) allows one to further

conformally transform the Jang deformations to Riemannian manifolds of zero scalar
curvature,

the conformal transformations:
(
M̃n

j , g̃ j = u4/(n−2)
j ḡ j

)
. (1.27)

Along the cylindrical ends u j decays exponentially fast to zero and hence conformally
closes this end (see [34] and Proposition 5.1). In general the masses of the confor-
mal deformations converge to zero. Thus if no horizons are present or one restricts
attention to domains outside the outermost minimal surface, it is expected (by the
time-symmetric almost rigidity conjecture) that regions in (M̃n

j , g̃ j ) converge to balls
in Euclidean space in the intrinsic flat sense. The hope is then to prove that the confor-
mal factors u j are sufficiently close to 1 in order to establish that regions in (M̄n

j , ḡ j )

converge to balls in Euclidean space as well. See Remark 5.2.
In the spherically symmetric setting the conformal deformation is Euclidean space

g̃ j = gE, so the mass is 0 and there are no horizons (cf. Lemma 5.3). Therefore ḡ j is
related to the Euclidean metric via the conformal factor u j , and establishing (1.22) is
reduced to controlling u j . A global L2 gradient bound in terms of the mass is obtained
from the stability property associated with the Jang surface in Lemma 5.6, and this is
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parlayed into C0, 12 control away from the center of the manifold in Proposition 5.10
by using the uniform asymptotically flat assumption and Lemma 5.9. We then have
that u j → 1 uniformly on appropriate subdomains avoiding the center. This work is
completed in Sect. 5.

The volume preserving intrinsic flat convergence (1.22) is proven in Sect. 6 in
two main steps. The overall approach is to apply a result of Lakzian and the third
author [22], as stated in Proposition 6.1, to achieve intrinsic flat convergence. First,
control on u j is used to show that regions avoiding the center are smoothly close
to annuli in Euclidean space (see Lemma 6.2). Secondly, we prove that the volumes
of the regions closer to the center are small using area monotonicity and the coarea
formula in Lemma 6.5. The remaining required terms are estimated in various lemmas
throughout the section. Moreover, volume convergence follows from the above and is
stated in Lemma 6.8.Without spherical symmetry onemight imagine doing something
similar, cutting out many wells rather than just the center as in joint work of the third
author with Stavrov in [37], or using a completely different approach as in joint work
of the third author with Huang and Lee in [18].

In Sect. 7 convergence of second fundamental forms (1.23) is established, where the
proof relies on nonnegativity of the spacetime Hawking mass. Control on |h j − k j |ḡ j

away from the center is given in Proposition 7.1 using estimates for the conformal
factorsu j , aswell as the stability property associatedwith the Jang surface.While |h j−
k j |ḡ j might be large near the center, with the additional hypothesis on k j and the small
volume inside in Proposition 7.2, convergence in the desired tubular neighborhood is
achieved in Theorem 7.3. Finally, in Sect. 8 we prove Theorem 1.2 using all the above.

2 Examples

In this section we provide some examples which illustrate the importance of various
hypotheses in Theorem 1.2, and some intuition as to what is happening in the proof. In
the time-symmetric setting, where the objects of study are manifolds with nonnegative
scalar curvature, examples are given with closed interior horizons (Examples 2.1 and
2.2) that fail to have volume preserving intrinsic flat convergence to Euclidean space.

The additional assumption of no closed interior horizons and no boundary is also
considered. In this setting, a time-symmetric initial data set is a graph over itself and
the solution to Jang’s equation is constant. An example within this context is provided
that contains a deep well, demonstrating why tubular neighborhoods are introduced
in order to obtain volume preserving intrinsic flat convergence (Example 2.4).

The proof of Theorem 1.2 will then be applied to slices of the Schwarzschild space-
time, so one can see what happens when there is a boundary horizon. Difficulties arise
even in this time-symmetric example because solutions to Jang’s equation blow-up
near the horizon so that the base spaces (M̄n, ḡ) possess an asymptotically cylindrical
end. In Example 2.5 we see exactly how Schwarzschild slices arise as graphs over
base spaces which are close to Euclidean space in the volume preserving intrinsic flat
sense. This clarifies why the proof of Theorem 1.2 is delicate when the manifolds have
boundary.
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Stability of the Spacetime Positive Mass Theorem 4199

Fig. 1 InExample 2.1we see that a sequenceof balls centeredon the horizons of a sequenceofSchwarzschild
manifolds with m j → 0 has volume converging to twice the volume of a Euclidean ball

Finally we consider examples which are not time-symmetric. In Example 2.7 it is
demonstrated how even the restriction to sequences of spacelike graphs (Mn

j , g j , k j )
in Minkowski space does not allow for proper control over the original sequence
of Riemannian manifolds (Mn

j , g j ). This justifies why Theorem 1.2 only deals with
convergence of the base manifolds, and does not address convergence of the given
sequence of initial data.

2.1 Horizons in Time-Symmetric Examples

The assumption of no closed interior horizons is necessary to avoid the formation
of bubbles and other phenomena which may occur behind a horizon. Since the inner
boundary is allowed to be a horizon, these hypotheses mean that the main theorem
applies within the domain of outer communication. This is consistent with the basic
intuition that the ADMmass cannot effectively ‘see’ within a black hole. The follow-
ing well-known examples explain why one cannot hope to obtain volume preserving
intrinsic flat convergence without these assumptions.

Example 2.1 Riemannian Schwarzschild space is a constant time slice of the
Schwarzschild spacetime, with a metric that can be written as

g =
(
1 + z′(r)2

)
dr2 + r2gSn−1 (2.1)

where z′(r) = √
2m/(r − 2m). It has a horizon (minimal surface) at r = 2m, and

can be extended smoothly past the horizon by writing r as a function of z. In fact the
graph is that of a parabola. If we take a sequence of Riemannian Schwarzschild spaces
of smaller and smaller mass m, this parabola becomes more vertical and the vertex
decreases to the origin. See Fig. 1. This sequence ofRiemannian Schwarzschild spaces
converges smoothly to Euclidean space on compact sets that avoid the increasingly
thin necks, and by any weak notion of convergence is seen to converge to a double
sheeted Euclidean space. The volumes of balls centered around points on the horizon
converge to twice the volume of a Euclidean ball. It is only by removing the part
behind the horizon that one may consider the limit to be a single Euclidean space, and
obtain volume preserving convergence to Euclidean space.
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4200 E. Bryden et al.

Fig. 2 In Example 2.2 we see that a sequence of balls centered on the horizons of a sequence of manifolds
with m j → 0 has volume converging to the sum of the volumes of a Euclidean ball and a ball in a sphere

Example 2.2 Startwith theRiemannianSchwarzschild initial data viewed as a parabola
using the function r(z) described in the previous example. Keep the region outside
the horizon exactly isometric to Riemannian Schwarzschild, but behind the black hole
attach a round sphere in aC1 way. This is achieved by ensuring that the inducedmetrics
and mean curvatures of the interface surfaces agree from both sides. This guarantees
that the scalar curvature is distributionally nonnegative across the interface surface.
Furthermore since Riemannian Schwarzschild is scalar flat and the sphere has positive
scalar curvature, applying Ricci flow for a very short time, one obtains a smoothmetric
which is C1 close to the original and has positive scalar curvature everywhere. The
almost spherical region of the resulting manifold is called a bubble. See Fig. 2. Now
perform this construction with a sequence of Schwarzschild spaces having masses
converging to zero, while keeping the bubble the same size throughout the sequence.
By any notion of weak convergence this sequence converges to a Euclidean space
with a sphere attached to it. In analogy with the previous example, balls of a fixed
radius centered at points on the horizon have volumes converging to the sum of the
volume of a ball of the same radius in Euclidean space plus a ball of the same radius
in the sphere. Again we do not obtain volume preserving intrinsic flat convergence to
Euclidean space, unless the part inside the horizon is cut out.

2.2 DeepWells in Time-Symmetric Examples

Let us now consider Theorem 1.2 in the time-symmetric case where there are no
horizons and no boundary. In such a setting the solution to Jang’s equation is constant,
so the theorem states that volume preserving intrinsic flat convergence occurs within
the initial data themselves, as opposed to convergence of ambient spacetimes in which
the data embed. This was established by Lee et al. in [23]. In this subsection we first
recall in Lemma 2.3 an example construction technique from [23]. We then review
an example, Example 2.4, with deep wells demonstrating the need to use tubular
neighborhoods to obtain volume preserving intrinsic flat convergence.
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Recall the definition of Hawking mass for a surface	 in a Riemannian 3-manifold

mH (	) = 1

2

√
A

ω2

(

1 − 1

4π

∫

	

(
H

2

)2
)

, (2.2)

where A and H are the area and mean curvature of 	. As described in Sect. 3.3 this
may be generalized in spherical symmetry to higher dimensions n by

m(s) = ρn−2(s)

2
(1 − ρ′(s)2), (2.3)

where the metric is expressed in a radial arclength coordinate s and with area radius
function ρ(s). The first variation of Hawking mass becomes

m′(s) = ρn−1(s)ρ′(s)
2(n − 1)

R, (2.4)

which is nonnegative for nondecreasing area radius functions and nonnegative scalar
curvature.

Lemma 2.3 LetM denote the collection of asymptotically flat spherically symmetric
manifolds

(
r−1[rmin,∞) ⊂ R

n, g = (1 + [z′(r)]2)dr2 + r2gSn−1

)
(2.5)

with nonnegative scalar curvature that have no closed interior minimal surfaces and
either no boundary, or minimal surface boundary r−1(rmin). LetH be the collection of
admissible Hawking mass functions, that is increasing functions m : [rmin,∞) → R

such that

m(rmin) = 1

2
rn−2
min , (2.6)

and

m(r) <
1

2
rn−2, (2.7)

for r > rmin ≥ 0. There is a constructive bijection between M and H such that

m(r) = rn−2

2

(
z′(r)2

1 + z′(r)2

)
<

1

2
rn−2. (2.8)

In [23] this result was used to construct an example with an arbitrarily deep well.
Here we also describe the volumes in this example, justifying the necessity of cutting
off the region using tubular neighborhoods of fixed size D to obtain volume preserving
intrinsic flat convergence in Theorem 1.2.
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Fig. 3 This manifold (Mn
j , g j )

of Example 2.4 has a deep well
with large volume in the shaded

region �
j
Aδ j ,A

⊂ Mn
j

Example 2.4 Given A > 0, L > 0, and δ > 0 there exists (Mn, g) ∈ M with ADM
mass m < δ such that the distance d(	min, 	A) > L , where 	A is a symmetry
sphere with area A and 	min is either the boundary ∂Mn or the pole. See Fig. 3. In
fact the example is constructed by first choosing a radius rε depending on δ, and then
constructing the admissible Hawking mass function so that the distance between the
levels rε and rε/2 is an arbitrary value L . Thus the volume between these level sets,
computed with the coarea formula, provides a lower bound

Volg(�A) ≥ AδL, (2.9)

where Aδ is the area of the level set r−1(rε) which depends on δ but not L . Taking a
sequence with

δ j → 0 and L j = j/Aδ j → ∞, (2.10)

we obtain a sequence of spherically symmetric examples which are increasingly deep
and have

Volg j (�
j
A) ≥ Volg j (�

j
Aδ j ,A

) → ∞. (2.11)

By (1.22) of Theorem 1.2 it holds that for any fixed D > 0,

Volg j

(
�

j
A ∩ TD(	

j
A)

)
→ VolgE (B0(ρA)) < ∞. (2.12)

This fixed distance D > 0 of the tubular neighborhood is needed to cut off the
arbitrarily large volumes in the arbitrarily deep wells.

2.3 Riemannian Schwarzschild Space

Let us now consider Theorem1.2 in the time-symmetric casewhere there is a boundary
horizon; for simplicitywe restrict the discussion in this subsection to dimension n = 3.
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Stability of the Spacetime Positive Mass Theorem 4203

Even though this setting is time-symmetric the solutions of Jang’s equation will not
be constant, rather they will blow-up at the horizon boundary. These solutions are
then used to embed the initial data (M3, g, 0) into (R × M̄3,−dt2 + ḡ) as a graph
over the base space (M̄3, ḡ). This base will have different properties than the original
data, in particular it will have an asymptotically cylindrical end. Next an appropriate
conformal factor u is found so that the new metric g̃ = u4ḡ is scalar flat. These are
some of the main steps in the proof of Theorem 1.2, and will in this subsection be
computed explicitly for Riemannian Schwarzschild initial data.

Example 2.5 Recall that the induced metric on a time slice M3 = r−1[2m,∞) of the
Schwarzschild spacetime of mass m can be written in the form

g =
(
1 − 2m

r

)−1

dr2 + r2gS2 . (2.13)

The Jang equation may be solved explicitly in this case for a blow-up solution. To
see this observe that from [7] and the discussion in Sect. 4.2, Jang’s equation may be
reduced to a first order ODE by setting

v =
√
g11 f ′

√
1 + g11 f ′2 , (2.14)

where g11 = 1 − 2m/r . Namely, the Jang equation in this case becomes simply

v′ + 2

r
v = 0, (2.15)

and the blow-up solution is v = ( 2m
r

)2
. It follows that

g11 f ′2 = v2

1 − v2
= 1

(r/2m)4 − 1

= 1

(1 − 2m/r)(1 + 2m/r)(r/2m)2[1 + (r/2m)2] , (2.16)

so that

f ′ = (1 − 2m/r)−1

(r/2m)
√

(1 + 2m/r)[1 + (r/2m)2] . (2.17)

Therefore the Jang metric is

ḡ = g + d f 2 = ḡ11dr
2 + r2gS2 = (g11 + f ′(r)2)dr2 + r2gS2 (2.18)

with

ḡ11 = g11 + f ′(r)2
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4204 E. Bryden et al.

Fig. 4 On the left, the Riemannian Schwarzschild geometry (light blue) and its Jang perturbation (M̄3, ḡ)
in purple are shown as embedded into E4, with the graphical height z coordinate directed upwards. On the
right, the Riemannian Schwarzschild space is illustrated as a graph over the base Jang perturbation. This
depiction takes place in 5-dimensional Minkowski space R1,4 ⊃ (R × M̄3, −dt2 + ḡ), where the spatial
z coordinate is directed inwards. Light cones are shown in yellow (Color figure online)

= (1 − 2m/r)−2
[
(1 − 2m/r) + 1

(r/2m)2(1 + 2m/r)[1 + (r/2m)2]
]

.

(2.19)

This clearly has an asymptotically cylindrical end as r → 2m. Figure 4 illustrates how
the Riemannian Schwarzschild geometry embeds as a graph over this Jang deforma-
tion. Note that it becomes increasingly null upon approach to the horizon.

The conformal deformation to zero scalar curvature can also be given explicitly for
this Schwarzschild example. To do this let r = r(r̃) be such that

ḡ11

(
dr

dr̃

)2

=
(r
r̃

)2
, (2.20)

then

ḡ = ḡ11

(
dr

dr̃

)2

dr̃2 +
(r
r̃

)2
r̃2gS2 =

(r
r̃

)2 [
dr̃2 + r̃2gS2

]
=

(r
r̃

)2
gE. (2.21)

We may solve for r̃ in terms of r by

log r̃ =
∫ r

4m

√
ḡ11r

−1dr . (2.22)

Now set u−4 = (r/r̃)2 so that gE = u4ḡ. Thus, u = √
r̃/r serves as the desired

conformal factor yielding a scalar flat deformation. The fact that this conformal change
resulted in a Euclidean metric is not special to the Schwarzschild example, as will be
seen in Sect. 5.
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Fig. 5 A sequence of Riemannian Schwarzschild manifolds as graphs over their Jang deformations with
masses tending to zero. See also Fig. 4

Figure 5 depicts a sequence of Riemannian Schwarzschild manifolds (M3
j , g j )

with massesm j → 0, embedded as graphs over a sequence of base Jang deformations
(M̄3

j , ḡ j ) with asymptotically cylindrical ends that converge in the pointed volume
preserving intrinsic flat sense to Euclidean space.

2.4 Graphs in Minkowski Space

If (Mn
j , g j , k j ) arise as spacelike graphs t = f j (x) in Minkowski space, then the Jang

metric ḡ j obtained by solving Jang’s equation is exactly the Euclidean metric and k j
is the second fundamental form of the graph. In the notation of Theorem 1.2 we have

ḡ j = gE, g j = −d f 2j + gE, h j = k j . (2.23)

Theorem 1.2 is trivially true and there is nothing to prove. On the other hand, such
examples can exhibit pathological behavior from the point of view of establishing
volumepreserving intrinsicflat convergenceof (Mn

j , g j ). In this subsection an example
is presented todemonstratewhywe saynothing about the limitingbehavior of (Mn

j , g j )

in Theorem 1.2. In particular, even for sequences of spacelike graphs in Minkowski
space one cannot hope for more than subsequential convergence, and the limiting
space need not be well-behaved.

Remark 2.6 If (Mn
j , g j , k j ) arise as spacelike graphs t = f j (x) in Minkowski space,

then g j = −d f 2j +gE is positive definite, so the Lipschitz norm satisfies LipgE( f j ) <

1. Thus by Arzela–Ascoli a subsequence of the f j converge to a Lipschitz function
f∞ with LipgE( f j ) ≤ 1. However, the graph of f∞ need not be spacelike!

Example 2.7 Consider a sequence of graphs t = f j (x) in Minkowski space which are
spherically symmetric, with LipgE( f j ) < 1, and converging to f∞ that satisfies

f ′∞(r) = 1 for r ∈ [ρA1 , ρA2 ] (2.24)

as in Fig. 6, where r is the radial distance function for gE. It can be arranged that g j

converge in the C0 sense. The limit is a semidefinite metric g∞ with

g∞(∂r , ∂r ) = − f ′∞(r)2 + 1 = 0 for r ∈ [ρA1 , ρA2 ]. (2.25)
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4206 E. Bryden et al.

Fig. 6 In Example 2.7 we see
that even if our given manifold is
a graph in Minkowski space the
manifold (in blue) can have
regions (in dark blue) of very
small volume because it is
almost null (Color figure online)

By the coarea formula

Volg j (�A1,A2) ≤ A2dg j (	A1, 	A2) → 0, (2.26)

since

dg j (	A1 , 	A2) =
∫ ρA2

ρA1

√
g j (∂r , ∂r )dr → 0. (2.27)

In contrast

Volḡ j (�A1,A2) → VolgE(B0(ρA2) \ B0(ρA1)) �= 0. (2.28)

Thus we find nice behavior of the base spaces (M̄n
j , ḡ j ) as described in Theorem 1.2,

with pathological limiting behavior for the original sequence (Mn
j , g j ).

3 Manifolds with Spherical Symmetry

In this section we prove that outermost apparent horizons inherit the symmetries of
the asymptotically flat initial data sets in which they lie (Lemma 3.1), that the areas
of symmetry spheres are monotonic in spherically symmetric initial data sets without
horizons or with outermost apparent horizon boundary (Lemma 3.4), and establish the
spacetime Penrose Inequality in all dimensions under the assumption of spherically
symmetry (Theorem 3.5). These results are of use to us when proving Theorem 1.2.
Prior work in these directions is reviewed within.

3.1 Horizons in Initial Data with Symmetry

Lemma 3.1 Let (Mn, g, k) be an asymptotically flat initial data set which admits a
continuous symmetry with generator η. This means that η is a Killing field which
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Stability of the Spacetime Positive Mass Theorem 4207

leaves k invariant, and thus the following Lie derivatives vanish Lηg = Lηk = 0. If
the outermost apparent horizon is smooth, then η must be tangential to it.

In particular, if (Mn, g, k) is spherically symmetricwith smooth outermost apparent
horizon then this surface is also spherically symmetric.

Remark 3.2 The existence of outermost apparent horizons due to appropriate trapping
is proven in [2,11]. Like minimal surfaces, they are shown to have a singular set which
is no larger than codimension 7. Thus for 2 ≤ n ≤ 7 the outermost apparent horizon
is smooth.

Remark 3.3 The symmetry inheritanceproperty for stableMOTSwas alreadyobserved
in [3, Theorem 8.1] (see also [29]) when n = 3. There a spacetime perspective was
taken, as opposed to the initial data point of view used here.

Proof The following argument is a generalization of that in [9] for outermost minimal
surfaces in axisymmetry. Suppose that the outermost apparent horizon 	 does not
admit the stated symmetry. Then the Killing field η is not tangential to 	 at all points.
Thus, if ϕt denotes the flow of this Killing field so that ∂tϕt = η ◦ ϕt , then there is a
nonzero t0 near zero such that a domain within ϕt0(	) lies outside of 	. Furthermore,
observe that since (Mn, g, k) is invariant under the action of ϕt the surface ϕt0(	) is
an apparent horizon of the same type.

Consider now the compact setU which is the union of all smooth compact embedded
apparent horizons within Mn , and define the trapped region T to be the union of U
with all the bounded components of Mn \ U . As described in [4, Theorem 3.3] the
outermost apparent horizon arises as the boundary ∂T , moreover it is embedded and
smooth away from a singular set of Hausdorff codimension at most 7; in fact it will
be smooth by the assumptions of this lemma. Because ∂T must enclose both 	 and
ϕt0(	), it cannot agree with 	 at all points. This, however, contradicts the outermost
assumption for 	. ��

3.2 Monotonicity of Area

In this and the following subsection, the discussion is relevant to the spacetime Penrose
inequality in spherical symmetry. The next result may be derived from the arguments
in [26, Sect. 4].

Lemma 3.4 Let (Mn, g, k) be a spherically symmetric asymptotically flat initial data
set as in (1.14). Outside of the outermost apparent horizon, the area of symmetry
spheres in (Mn, g) is a strictly increasing function of the radial coordinate. In partic-
ular, the warping function ρ defining g is also an increasing function.

Proof Let Sr denote the level sets of r . Since

k = kng11dr
2 + ktρ

2gSn−1 (3.1)

the null expansions (null mean curvatures) are given by

θ± = H ± TrSr k = (n − 1)

(√
g11

∂rρ

ρ
± kt

)
. (3.2)
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Since the null expansions are both positive near infinity, as the mean curvature H
dominates TrSr k according to decay rates, when moving inwards from infinity they
must remain positive outside of the outermost apparent horizon where θ+ = 0 or
θ− = 0. Note that here we are using Lemma 3.1 which asserts that the outermost
apparent horizon (if present) is one of the spheres Sr0 . Therefore

θ± > 0 for r > r0. (3.3)

To finish the proof simply add the two null expansions, and observe that since both
are positive we obtain

0 < θ+ + θ− = 4
√
g11

∂rρ

ρ
for r > r0. (3.4)

Hence, the warping function ρ is an increasing function. ��

3.3 The Spacetime Penrose Inequality in All Dimensions

The spherically symmetric Penrose inequality without the maximal assumption was
established in dimension n = 3 in [15], although the case of equality was not treated.
A similar result is stated in [16] for all dimensions, but the hypotheses are too strong
for our purposes and they also do not address the case of equality. The full result
including the case of equality was given in [7] for n = 3, and here we easily extend it
to all dimensions.

Theorem 3.5 Let (Mn, g, k), n ≥ 3 be an asymptotically flat spherically symmetric
initial data set satisfying the dominant energy condition, and let A0 denote the area
of the outermost apparent horizon. Then

m ≥ 1

2

( A0

ωn−1

) n−2
n−1

(3.5)

and equality holds if and only if the initial data outside the outermost apparent hori-
zon arise from an embedding into the Schwarzschild spacetime. In particular, for a
sequence of initial data with m j → 0 we have A j → 0.

Proof We will follow and generalize the arguments of [7] to higher dimensions. The
proof is based on the generalized Jang equation introduced in [7]. The corresponding
Jang deformation is similar to that of the original with the addition of an extra function
φ that plays the role of warping factor for embeddings into a static spacetime, namely
ḡ = g+φ2d f 2 where f satisfies Eq. (3) of [7] for a canonical choice of φ. The scalar
curvature of the spherically symmetric generalized Jang metric

ḡ = ds̄2 + ρ2(s̄)gSn−1 (3.6)
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is given by

R = (n − 1)ρ−2[(n − 2)
(
1 − ρ2

s̄

)
− 2ρρs̄ s̄]. (3.7)

Here s̄ denotes radial distance from the boundary so that s̄ = 0 corresponds to the
outermost apparent horizon. The fact that the outermost apparent horizon is a level set
of s̄ is a consequence of Lemma 3.1.

By comparing arbitrary spherically symmetric metrics to that of Schwarzschild
we may derive and generalize the Hawking mass (Misner–Sharp mass in spherical
symmetry [28]) to higher dimensions

m̄(s̄) := 1

2
ρn−2

(
1 − ρ2

s̄

)
= 1

2

(
A(s̄)

ωn−1

) n−2
n−1

⎡

⎣1 − 1

(n − 1)2ω
2

n−1
n−1A(s̄)

n−3
n−1

∫

Ss̄
H̄2

⎤

⎦ ,

(3.8)

where

A(s̄) = ωn−1ρ
n−1(s̄), H̄ = (n − 1)

ρs̄

ρ
. (3.9)

A direct computation yields

2m̄s̄ = 1

n − 1
ρs̄ρ

n−1 R̄. (3.10)

Therefore integrating produces

m̄(∞) − m̄(0) =
∫ ∞

0

ρs̄ρ
n−1

2(n − 1)
R̄ds̄ = 1

2(n − 1)ωn−1

∫

M̄n
ρs̄ R̄dVḡ. (3.11)

We may now choose φ = ρs̄ and follow the arguments in [7, p. 750]. This allows
one to integrate away the divergence term appearing in R̄, leaving only nonnegative
terms on the right-hand side of (3.11). It follows that m̄(∞) ≥ m̄(0), and this gives
the desired inequality

m ≥ ρn−2(0)

2
= 1

2

( A0

ωn−1

) n−2
n−1

(3.12)

since the ADM mass of the Jang metric agrees with that of the given initial data in
addition to the fact that the area of the apparent horizon agrees in both metrics as well.
The case of equality follows directly from the arguments of [7]. ��
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3.4 Decay of the Second Fundamental Form

We now prove that under the definition of asymptotic flatness for spherical symmetry
given in Sect. 1, the ADM linear momentum vanishes |P| = 0, and hence the ADM
mass coincides with the ADM energy m = E .

Proposition 3.6 Under the asymptotic decay conditions (1.3) and (1.4), a spherically
symmetric initial data set (Mn, g, k) satisfies the stronger decay

|k|g = O

(
1

|x |n
)

. (3.13)

In particular, the ADM linear momentum vanishes |P| = 0 and the ADMmass agrees
with the ADM energy m = E.

Proof Recall that the spherically symmetric initial data (Mn, g, k) may be expressed
by

g = ds2 + r(s)2gSn−1 , kab = nanbkn + (gab − nanb)kt , (3.14)

where n = ∂s . Consider the divergence constraint

J = divg
(
k − (Trgk)g

)
. (3.15)

Observe that

∇anb = 〈∇an, ∂b〉 = 2rr ′ (gSn−1
)
ab , (3.16)

and therefore

∇akab = 2rr ′ [(gSn−1
)
aa (kn − kt )nb + (

gSn−1
)
ab (kn − kt )na

] + nanb(∂akn − ∂akt ).

(3.17)

It follows that

(
divg k

)
(∂b) = (k′

n − k′
t )nb + 2(n − 1)r ′

r
(kn − kt )nb. (3.18)

Furthermore

divg
(
(Trgk)g

)
(∂b) = ∂bTrgk = ∂bkn + (n − 1)∂bkt , (3.19)

and hence

J (∂b) = (k′
n − k′

t )nb + 2(n − 1)r ′

r
(kn − kt )nb − ∂bkn − (n − 1)∂bkt . (3.20)
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The only nonzero component is in the ∂s direction, and from this we find that

k′
t + 2(n − 1)r ′

nr
kt = 1

n
J (∂s) + 2(n − 1)r ′

nr
kn . (3.21)

Since

Trgk = kn + (n − 1)kt (3.22)

this may be rewritten as

k′
t + 2(n − 1)r ′

r
kt = 1

n
J (∂s) + 2(n − 1)r ′

nr
Trgk =: K. (3.23)

A priori the assumed decay for k leads to kt = O(s1−n). However the ODE (3.23)
shows that the fall-off is stronger. Indeed, from the dominant energy condition and the
assumed decay

Trgk = O

(
1

sn

)
,

|J (∂s)|g ≤ |J |g ≤ μ = 1

16π

(
Rg + (Trgk)

2 − |k|2g
)

= O

(
1

sn+1

)
, (3.24)

and thus

kt = 1

r2(n−1)

[∫ s

s0
r2(n−1)Kds + C

]
= O

(
1

sn

)
. (3.25)

It then follows from the trace decay in (3.24) that kn also satisfies the fall-off in (3.25),
and hence

|k|g = O

(
1

sn

)
, (3.26)

which implies that the ADM linear momentum vanishes |P| = 0. ��

4 Solving Jang’s Equation to Obtain the BaseManifolds

4.1 Review of Jang’s EquationWithout Symmetry

Given an initial data set (Mn, g, k), the following quantities may be used to measure
how far away it is from being realized as a graph t = f (x) in Minkowski space

ḡ = g + d f 2, k̄ = k − ∇2
g f

1 + |∇ f |2g
. (4.1)
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In particular, such an embedding exists if and only if ḡ = gE and k̄ = 0. A necessary
condition for this to occur is the Jang equation [4]

Trḡ k̄ = 0 ⇔
(

gab − f a f b

1 + |∇ f |2g

)⎛

⎝ ∇ab f√
1 + |∇ f |2g

− kab

⎞

⎠ = 0, (4.2)

where f a = gab∂b f . Thus, one may think of Jang’s equation as an attempt to find a
candidate graph for an embedding into Minkowski space.

Even though such an embedding may not exist for the given initial data, we may
use these ideas to construct an isometric embedding into a relevant static spacetime.
Namely consider the map

F : (Mn, g) → (R × Mn,−dt2 + ḡ) (4.3)

defined by

F(x) = ( f (x), x). (4.4)

Then

F∗(−dt2 + ḡ) = −d f 2 + ḡ = g, (4.5)

and the second fundamental form is

h = ∇2
ḡ f√

1 − |∇ f |2ḡ
= ∇2

g f√
1 + |∇ f |2g

. (4.6)

Another motivation for the Jang equation which is pertinent to the positive mass
theorem, is to consider it as a method for deforming initial data to obtain weakly non-
negative scalar curvature. In this setting onemay view the Jang graph as a submanifold
of the (n + 1)-dimensional dual Riemannian manifold (R × Mn, dt2 + g). The Jang
metric ḡ is then the induced metric on the graph and h is again the second fundamental
form. If k is extended trivially off the t = 0 slice to the whole (n + 1)-dimensional
ambient space, then the Jang equation simply states that the Jang surface M̄n satisfies
the apparent horizon equation

HM̄n − TrM̄n k = 0, (4.7)

where HM̄n is the mean curvature of the Jang surface. A computation [34] then shows
that the scalar curvature of the Jang metric is nonnegative modulo a divergence term
whenever the dominant energy condition is satisfied, that is

Rḡ = 16π(μ − J (w)) + |h − k|2ḡ + 2|q|2ḡ − 2divḡq, (4.8)
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where

wa = f a
√
1 + |∇ f |2g

, qa = f b
√
1 + |∇ f |2g

(hab − kab). (4.9)

This positivity property for Rḡ allows one to conformally transform ḡ to zero scalar
curvature. Hence through the Jang deformation combined with a conformal transfor-
mation, the initial data is taken into the time-symmetric setting.

4.2 Existence of Solutions to Jang’s Equation

The Jang deformation preserves uniform asymptotic flatness as will be shown below,
and preserves the mass so that m̄ = m. An interesting feature of the Jang equation’s
existence theory is its ability to detect apparent horizons. That is, it can only blow-
up at apparent horizons in which case it approximates a cylinder over these surfaces
[34]. In dimension n = 3 it has been shown that this cylindrical blow-up behavior
can in fact be prescribed at the outermost apparent horizon [12,14,27]. Suppose that
the boundary is decomposed into a disjoint union of future (+) and past (−) apparent
horizon components ∂M3 = ∂+M3 ∪ ∂−M3, and that there are no other apparent
horizons present. If in a neighborhood of ∂±M3 there are constants l ≥ 1 and c > 0
such that

c−1τ l ≤ θ±(Sτ ) ≤ cτ l , (4.10)

where τ(x) = dist(x, ∂M3) and Sτ are surfaces of constant distance to the boundary,
then there exists a smooth solution f of Jang’s equation with the property that f (x) →
±∞ as x → ∂±M3. Furthermore, the asymptotics for this blow-up are given by

c−1
1 τ− l−1

2 + c−1
2 ≤ ± f ≤ c1τ

− l−1
2 + c2 if l > 1,

−c−1
1 log τ + c−1

2 ≤ ± f ≤ −c1 log τ + c2 if l = 1,
(4.11)

for some positive constants c1, c2. In the spherically symmetric case, this type of
existence result may be established in all dimensions (Fig. 7).

Recall the form of the spherically symmetric initial data

g = g11(r)dr
2 + ρ2(r)gSn−1, kab = nanbkn + (gab − nanb)kt , (4.12)

defined on the compliment of a ball Mn = R
n \ B0(r0). It is assumed that ∂Mn = Sr0

is the only apparent horizon, which means that the null expansions satisfy

θ±(r) = (n − 1)

(√
g11

ρr

ρ
± kt

)
> 0, r > r0, (4.13)

and that either θ+(r0) = 0, θ−(r0) = 0, or θ+(r0) = θ−(r0) = 0 depending on
whether Sr0 is a future horizon, past horizon, or both, respectively. As observed in
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Fig. 7 On the left we see the Riemannian Schwarzschild manifold (in blue), and its Jang perturbation
(in purple). On the right we see the Jang perturbation viewed as the base of a static spacetime. Due to
the asymptotically cylindrical end, the light cones of this spacetime are increasingly narrow as we move
towards the central cylinder. Above the base we see the embedding of the Riemannian Schwarzschild space
in blue. The graph of the Jang map has an asymptote at the central cylinder, but it is becoming increasingly
null so that the Schwarzschild manifold in blue does not have a cylindrical inner end (Color figure online)

[25] the Jang equation in spherical symmetry may be reduced to a first order ODE by
setting

v =
√
g11 fr√

1 + g11 f 2r
. (4.14)

The equation (4.2) then becomes

√
g11vr + (n − 1)

(√
g11

ρr

ρ
v − kt

)
+ (v2 − 1)kn = 0. (4.15)

Observe that |v| ≤ 1 and blow-up occurs precisely when v = ±1. A maximum
principle type argument shows that the outermost horizon condition (4.13) ensures
that |v| < 1 away from Sr0 . Building upon this estimate, existence and uniqueness for
the spherically symmetric Jang equation may be established following the arguments
of [7, Theorem 2]; this prior results was stated for dimension three but the proof carries
over to higher dimensions. The result may be stated as follows, under the hypothesis
that the initial data satisfy the following fall-off conditions in the asymptotic end

|k|g =O1(r
1−n), Trgk = O1(r

−n),

g11 − 1 =O1(r
2−n), ρ − r = O2(1).

(4.16)

Theorem 4.1 Assume that the initial data set is spherically symmetric, smooth, either
complete or with outermost apparent horizon boundary, and satisfies the asymptotics
(4.16). Then there exists a unique solution v ∈ C∞((r0,∞)) ∩C1([r0,∞)) of (4.15)
(the spherically symmetric Jang equation) such that−1 < v(r) < 1, r > r0, with v(r0)
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taking the value 0 or ±1 depending on whether r0 = 0 and the manifold is complete,
or Sr0 is a past (future) horizon, respectively. Furthermore, in the asymptotic end the
decay is of the form

v = O2(r
1−n), as r → ∞. (4.17)

In all cases this gives rise to a spherically symmetric solution f ∈ C∞(Mn) of the
Jang equation (4.2) satisfying

f = O3(r
2−n), as r → ∞. (4.18)

Corollary 4.2 Under the hypotheses of Theorem 4.1 the Jang deformed initial data
(M̄n, ḡ) is smooth, spherically symmetric, and asymptotically flat with the same mass
m̄ = m. If (Mn, g, k) has a boundary then the Jang deformation, in addition, has an
asymptotically cylindrical end satisfying the asymptotics (4.11).

4.3 Uniform Asymptotics for the Solution of Jang’s Equation

The asymptotic fall-off for solutions of Jang’s equation given in the previous theorem
depend on spherical symmetry and are not necessarily uniform. By allowing for a
slightly weaker fall-off wemay obtain uniform fall-off in the general case independent
of any symmetry.

Lemma 4.3 Let (Mn
j , g j , k j ) be a sequence of uniformly asymptotically flat initial

data, and let f j ∈ C∞(Mn) be corresponding solutions of Jang’s equation with
f j (x) → 0 as |x | → ∞ where x ∈ R

n \ BρA are coordinates given by the asymptotic
diffeomorphisms. Then for any small ς > 0 there exist uniform constants C and r̄ ,
depending only on ς , such that

|∂β f (x)| ≤ C
|x |n−2−ς+|β| for |x | ≥ r̄ , (4.19)

where r̄ > ρA. In particular, the sequence of Jang deformations (M̄n
j , ḡ j ) is uniformly

asymptotically flat.

Proof We shall adapt to our purposes an argument of Schoen-Yau which can be found
in [34, pp. 248–249] (see also [12, Proposition 4]). Let r(x) = |x | and for 0 < p <

n − 2, λ > 0, r > λ
1

p+1 define the radial function

f̄ (r) = λ

∫ ∞

r

(
s2p+2 − λ2

)− 1
2
ds. (4.20)

Observe that there is a constant c1 = c1(p) such that

0 < f̄ (r) ≤ c1λr
−p, (4.21)
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and

d f̄

dr
→ −∞ as r → λ

1
p+1 . (4.22)

A computation shows that the Jang operator evaluated at this radial function yields

(

gab − f̄ a f̄ b

1 + |∇ f̄ |2g

)⎛

⎝ ∇ab f̄√
1 + |∇ f̄ |2g

− kab

⎞

⎠

≤ −λ(n − 2 − p)r−p−2 + c2
(
r−n + λr−p−n) , (4.23)

where c2 is a uniformconstant arising from the uniformly asymptotically flat condition.
We may then choose a uniform λ large enough to ensure that the right-hand side

of (4.23) is nonpositive for r > λ
1

p+1 , and thus f̄ is a super-solution. Similarly,
− f̄ is a sub-solution on this domain. Since f and f̄ both vanish at spatial infinity,
and the derivative (4.22) is infinity, a maximum principle argument guarantees that
− f̄ ≤ f ≤ f̄ . Therefore

| f (x)| ≤ c1λ|x |−p for |x | ≥ λ
1

1+p . (4.24)

From this, higher order fall-off follows by rescaling combined with the Schauder

estimates as in Proposition 3 of [34]. Lastly, we may set r̄ = λ
1

p+1 to obtain the
statement of this lemma. ��

5 The Conformal Transformations

In this section we construct the conformal transformations and control the conformal
factor as described in the introduction.

5.1 Review of Conformal ChangeWithout Symmetry

In the previous section we have obtained, from the given initial data (Mn, g, k), a Jang
deformation (M̄n, ḡ) which is complete, asymptotically flat, and with an additional
asymptotically cylindrical end if the original data possessed a boundary. The positivity
property (4.8) for the scalar curvature of the Jang metric leads to a stability-type
inequality via integration by parts combined with Cauchy–Schwarz

∫

M̄n

(
c−1
n |∇φ|2ḡ + Rḡφ

2
)
dVḡ

≥
∫

M̄n

(
16π(μ − J (w)) + |h − k|2ḡ + |q|2ḡ

)
φ2dVḡ (5.1)
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for all φ ∈ C∞
c (M̄n), where cn = n−2

4(n−1) . The left-hand side arises from the basic
quadratic form associated with the conformal Laplacian Lḡ = �ḡ −cn Rḡ , and asserts
that on compact subsets this operator has nonnegative spectrum (for the Dirichlet
problem). In fact the spectrum is strictly positive, since if the principal eigenvalue is
zero each term on the right-hand side of (5.1) would vanish, implying that Rḡ = 0
and the principal eigenfunction is harmonic, which is impossible. Thus, a standard
exhaustion argument together with asymptotic analysis [12,34] shows that there is a
positive solution u > 0 of the zero scalar curvature equation

Lḡu = 0 on M̄n,

u(x) = 1 + α

|x |n−2 + O2

(
1

|x |n−1

)
as |x | → ∞, (5.2)

for some constant α. This allows a conformal transformation g̃ = u
4

n−2 ḡ to zero scalar
curvature in which the relation between the masses is given by m̃ = m̄ + 2α [34, p.
259].

Moreover in the case that (M̄n, ḡ) possesses an additional cylindrical end, the
solution u tends to zero in the limit along that end. In fact the decay along the cylindrical
end is exponentially fast u ∼ e−γ s , where s is an arclength parameter along the
cylindrical end and γ is the principal eigenvalue of �∂Mn − cn R∂Mn . In spherical
symmetry additional assumptions are not required to obtain γ > 0 since the scalar
curvature of the outermost apparent horizon R∂Mn is positive, although in the general
case a sufficient condition is for the dominant energy condition to be strict near the
horizon as was used in [34]. The next proposition records these observations.

Proposition 5.1 Given a smooth Jang deformation (M̄n, ḡ) there exists a positive

solution u ∈ C∞(M̄n) of (5.2), so that the conformal metric g̃ = u
4

n−2 ḡ has zero
scalar curvature Rg̃ = 0 and (M̃n, g̃) is asymptotically flat with mass

m̃ = m̄ + 2α. (5.3)

If an asymptotically cylindrical end is present in the Jang deformation, then the con-
formal factor is asymptotic to e−γ s along this end with an arclength parameter s.
Furthermore, if the initial data are spherically symmetric then the function u and
hence metric g̃ are also spherically symmetric.

Remark 5.2 Without any symmetry in dimension n = 3, it follows from a slightly
generalized positive mass inequality [34] that m̃ ≥ 0, and in addition that α ≤ 0 (see
(5.8) below). Thus if m = m̄ → 0 then m̃ → 0. The almost rigidity conjecture in the
time-symmetric setting then suggests, modulo horizon issues, that (M̃3, g̃) is close in
the intrinsic flat sense to Euclidean space.

5.2 Spherically Symmetry Gives g̃ = gE

We point out that in the spherically symmetric case the existence of a conformal
transformation to zero scalar curvature may be obtained from the alternate observation
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that all spherically symmetric metrics are conformally flat. This is related to a rigidity
phenomena associated to zero scalar curvature in spherical symmetry. The following
result, which is similar to Birkhoff’s Theorem [39] in general relativity, is well-known
although the authors do not knowof a proper reference in the literature and thus include
it here. It should be noted that a proof may be obtained from the arguments of [23],
although here we give another approach.

Lemma 5.3 Let (Mn, g), n ≥ 3 be spherically symmetric, complete, scalar flat, and
asymptotically flat. Then either it is isometric to flat Euclidean space (Rn, δ) or the
constant time slice of a Schwarzschild spacetime, that is Mn ∼= R

n \ {0} and

g =
(
1 + m

2|x |n−2

) 4
n−2

δ. (5.4)

Proof This conclusion may be derived from the observation that the Hawking mass of
radial spheres is constant under the assumption of zero scalar curvature. The inverse
mean curvature flow proof of the Penrose inequality [19] then guarantees the desired
result where the parameter m is the value of the constant Hawking mass.

An alternative proof is to directly compute the scalar curvature of the spherically
symmetric metric in polar form as in (3.7), and analyze the ODE as is done in [31, p.
70]. It is found that ρ′ = 1+ cρ2−n for some constant c < 0, the area radius function
ρ(r) > 0 for all r ∈ (−∞,∞), and it has a unique minimum (corresponding to a

minimal surface) at ρ = |c| 1
n−2 . It follows that ρ may be treated as a radial coordinate

and so

g = dr2 + ρ2(r)gSn−1 =
(
1 + c

ρn−2

)−1
dρ2 + ρ2gSn−1 for ρ ≥ |c| 1

n−2 .

(5.5)

Since ρ(r) has a reflection symmetry across the minimal surface, this may be doubled
to obtain the stated conclusion. ��

This rigidity result suggests that the conformal transformation obtained in Propo-
sition 5.1, in the case of spherical symmetry, gives rise to Euclidean space as we will
now see.

Corollary 5.4 Let (Mn, g, k) be a spherically symmetric, asymptotically flat initial
data set satisfying the dominant energy condition which is either complete or has
an outermost apparent horizon boundary. Then the conformally transformed Jang
deformation of Proposition 5.1 is isometric to Euclidean space (M̃n, g̃) ∼= (Rn, gE).

Proof We only treat the case with boundary, as the case without boundary is similar.
Let τ be the radial distance function from the boundary for (Mn, g). With the help of
(4.11) the Jang metric takes the form

ḡ = (1 + f 2τ )dτ 2 + ρ2gSn−1 =
(
1 + cτ−l−1 + O(τ−l)

)
dτ 2 + ρ2gSn−1 . (5.6)
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Set s = 2
√
c

l τ−l/2 and use the expansion ρ = ρ(0) + O(τ ) to obtain

ḡ =
(
1 + O(s−2− 2

l )
)
ds2 +

(
ρ(0)2 + O(s− 2

l )
)
gSn−1 , (5.7)

which illustrates the cylindrical asymptotics. Since u ∼ e−γ s , a straightforward com-
putation shows that theHawkingmass (3.8) of the radial spheresm(s) → 0 as s → ∞.
Moreover, since Rg̃ = 0, as in the proof of Lemma 5.3 the Hawking mass of these
spheres must be constant, and hence zero. The desired conclusion now follows. ��
Remark 5.5 The results of this subsection rely heavily on the spherically symmetric
assumption.Without this hypothesis, the conformally changedmanifold is only known
to be scalar flat rather than isometric to Euclidean space. Any progress in showing that
this manifold is close to Euclidean space will most likely be obtained in conjunction
with advances toward the Riemannian version of the stability conjecture.

5.3 Controlling the Conformal Factor u

For the remainder of this section we will examine how the mass may be used to control
the conformal factor u and the Jang deformation. Since g̃ is flat its mass vanishes
m̃ = 0, and therefore the formula of Proposition 5.1 relating the masses of each
deformation yields −2α = m; where we have also used that the Jang transformation
preserves mass. Furthermore, multiplying equation (5.2) through by u and integrating
by parts, and using the divergence structure present in Rḡ yields

−c−1
n (n − 2)ωn−1 α︸︷︷︸

−m
2

≥
∫

M̄n

[
4

n − 2
|∇u|2ḡ +

(
16π(μ − J (w)) + |h − k|2ḡ + |q|2ḡ

)
u2

]
dVḡ.

(5.8)

It follows that L2 gradient bounds for the conformal factor are given in terms of the
mass.

Lemma 5.6 Assume that the given spherically symmetric initial data (Mn, g, k) satis-
fies the dominant energy condition. If u is the solution of (5.2) given byProposition 5.1,
then

‖ ∇u ‖2
L2(M̄n ,ḡ)

≤ (n − 2)2ωn−1

8cn
m. (5.9)

Remark 5.7 We remark that a version of Lemma 5.6 is likely to hold without the
assumption of spherical symmetry, when a smooth Jang deformation exists. Namely, if
the positive mass theorem is valid for (M̃n, g̃) then −2α ≤ m, and (5.9) again follows
from (5.8). The issue is that the n-dimensional Riemannian positive mass theorem
[33,35] is not immediately applicable, as (M̃n, g̃) may not be a smooth manifold,
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geometrically or topologically. The later pathology arises from the fact that in higher
dimensions, although the outermost apparent horizon is of positive Yamabe invariant,
it may not be of spherical topology. Nonetheless, Eichmair [12] has found an effective
way to deal with these concerns.

Next observe that the L2 gradient bound for u on the Jang surface may be translated
into a similar bound for log u on Euclidean space. This follows from Corollary 5.4

since gE = u− 4
n−2 ḡ, and in particular

|∇u|2ḡ = u
4

n−2 |∇u|2gE , dVḡ = u− 2n
n−2 dVgE . (5.10)

Corollary 5.8 Under the hypotheses of Lemma 5.6

‖ ∇ log u ‖2L2(Rn ,gE)
≤ (n − 2)2ωn−1

8cn
m. (5.11)

The global Sobolev bounds for the conformal factor obtained from the stability
inequality can be parlayed into C0 and even Hölder estimates away from the central
fixed point of the spherical symmetry. To accomplish we will first need to obtain
uniform control for u in the asymptotically flat end.

Lemma 5.9 Let (Mn
j , g j , k j ) be a sequence of spherically symmetric, uniformly

asymptotically flat initial data satisfying the dominant energy condition and with
either outermost apparent horizon boundary or no boundary. Let (M̄n

j , ḡ j ) be the cor-

responding Jang deformations conformally related to (M̃n
j , g̃ j ) via conformal factors

u j solving (5.2). Then there exist uniform constants c and r̄ such that

u j (r) ≤ exp cr−2(n−2) for r ≥ r̄ , (5.12)

where r = |x | is the radial coordinate from (1.3) and r̄ is as in Proposition 4.3.

Proof For convenience, within the proof the subscript j will be suppressed. Coordinate
spheres in the asymptotic region will be denoted by Sr ; note that they are distinct from
the surfaces 	A used in other parts of the manuscript. Let M̄n

r denote the component
of M̄n lying inside Sr . Multiply Eq. (5.2) through by u and integrate by parts up to a
coordinate sphere Sr , r ≥ r̄ , and use the divergence structure present in Rḡ as in (5.8)
to find

0 = −
∫

M̄n
r

u
(
c−1
n �ḡu − Rḡu

)
dVḡ

=
∫

M̄n
r

(
c−1
n |∇u|2ḡ + Rḡu

2
)
dVḡ −

∫

Sr
c−1
n u∂ν̄udAḡ

≥
∫

M̄n
r

(
c−1
n |∇u|2ḡ + 2u2|q|2ḡ − 2u2divḡq

)
dVḡ −

∫

Sr
c−1
n u∂ν̄udAḡ

≥ −
∫

Sr

(
1
2cn

∂ν̄u
2 + 2q(ν̄)u2

)
dAḡ,

(5.13)
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where ν̄ is the unit outer normal with respect to ḡ. Since all quantities are spherically
symmetric and r is arbitrary, we obtain the differential inequality

∂r log u ≥ −2cnq(∂r ) for r ≥ r̄ . (5.14)

According to the uniform fall-off (4.16) and (4.19), q(∂r ) may be estimated to yield

∂r log u ≥ −c̄r−2n+1+2ς (5.15)

where c̄ > 0 is a uniform constant. Integrating on the interval [r , r1] produces

log u(r1) − log u(r) ≥ c̄

2n − 2 − 2ς

(
r−2n+2+2ς
1 − r−2n+2+2σ

)
. (5.16)

Now let r1 → ∞ and use that u(r1) → 1 to obtain

log u(r) ≤ cr−2(n−2), (5.17)

with c = c̄(2n − 2 − 2ς)−1. ��
Let r̃ denote the radial distance function for gE = g̃, so that

gE = dr̃2 + r̃2gSn−1 . (5.18)

Consider annular domains � Ã1, Ã2
⊂ E

n whose boundary consists of two coordinate

spheres having areas Ã1 < Ã2. The next result shows that the conformal factors
defining g̃ are uniformly close to 1 in Hölder space away from the center of the
spherical symmetry. Note that in light of Example 2.4 we see that it is not possible to
have such C0 control near the center.

Proposition 5.10 Let (Mn
j , g j , k j ) be a sequence of spherically symmetric, uniformly

asymptotically flat initial data satisfying the dominant energy condition and with
either outermost apparent horizon boundary or no boundary. Let (M̄n

j , ḡ j ) be the cor-

responding Jang deformations conformally related to (M̃n
j , g̃ j ) via conformal factors

u j solving (5.2). Let Ã0 > 0 be fixed, assume m j < Ã−2
0 is uniformly small, and set

Ã j = 1√
m j

. Then there exists a uniform constant C such that

‖ log u j ‖
C0, 12

(
� Ã0, Ã j

,gE

)≤ Cm
1
4
j√

Ã0

. (5.19)

Proof For convenience the subscript j will be suppressed in the proof. Estimate (5.11)
shows that for any r̃1 < r̃2 we have

r̃ n−1
1

∫ r̃2

r̃1
(∂r̃ log u)2 dr̃ ≤ c̃nm, (5.20)
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where c̃n = (n − 2)2c−1
n /8. With the help of Hölder’s inequality it follows that

| log u(r̃2) − log u(r̃1)| =
∣
∣∣∣∣

∫ r̃2

r̃1
∂r̃ log udr̃

∣
∣∣∣∣

≤ |r̃2 − r̃1| 12
(∫ r̃2

r̃1
(∂r̃ log u)2 dr̃

) 1
2

≤
(
c̃nm

r̃n−1
1

|r̃2 − r̃1|
) 1

2

.

(5.21)

If

r̃0 =
(

Ã0

ωn−1

) 1
n−1

(5.22)

denotes the area radius for the inner boundary of � Ã0, Ã j
then

| log u(r̃2) − log u(r̃1)|
|r̃2 − r̃1| 12

≤
√

c̃nm

r̃n−1
0

=
√
c̃nωn−1m

Ã0
(5.23)

for r̃1 ≥ r̃0, which yields one half of the desired Hölder estimate.
The next goal is to obtain C0 bounds. Note that (5.21) implies

| log u(r̃1)| ≤ | log u(r̃2)| +
√
c̃nmr̃2

r̃ n−1
0

. (5.24)

In order to control u(r̃2) uniformly we will utilize Lemma 5.9. The estimate there,
however, is given in terms of the radial coordinate r associated with the uniform
asymptotic coordinates of ḡ. The two coordinates r and r̃ may be compared in the
asymptotic end by relating the volumes of coordinate spheres. Let Sr denote a coordi-
nate sphere of radius r , then uniform asymptotic flatness shows that its volume with
respect to ḡ satisfies

|Sr |ḡ ≤ ωn−1r
n−1 + c1r

n−2 for r ≥ r̄ , (5.25)

for some uniform constant c1 (uniform constants will be denoted by ci , i = 1, 2, . . .).
With the help of (5.12), the volume of this same sphere computed with respect to
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gE = u
4

n−2 ḡ may be estimated by

|Sr |gE = u
2(n−1)
n−2 |Sr |ḡ

≤ e
2c(n−1)
n−2 r−2(n−2)

(
ωn−1r

n−1 + c1r
n−2

)

≤ ωn−1r
n−1 + c2r

n−2.

(5.26)

On the other hand

|Sr |gE = ωn−1r̃
n−1, (5.27)

and hence

r̃ ≤ r + c3 ⇒ 1

r
≤ 1

r̃
+ c4

r̃2
. (5.28)

We may now combine (5.12), (5.24), and (5.28) to find for large r̃2 that

| log u(r̃1)| ≤ c

r(r̃2)2(n−2)
+

√
c̃nmr̃2

r̃ n−1
0

≤ c5

r̃2(n−2)
2

+
√
c̃nmr̃2

r̃ n−1
0

.

(5.29)

By choosing r̃2 = m− 1
2 the desired result follows. ��

6 Intrinsic Flat Convergence of the BaseManifolds

In this sectionweprove the following propositionwhich implies (1.22) of Theorem1.2.
Recall that

�
j
A =

{
x ∈ Mn

j | ρ j (x) ≤ ρA

}
(6.1)

is the region within the level set 	 j
A of area A with respect to g j and ḡ j . A priori we

do not know the area of the level set	 j
A with respect to the metric g̃ j = u

4
n−2
j ḡ j = gE.

This section strongly uses spherical symmetry and the fact that the metrics ḡ and g
are monotone as was proven in Lemma 3.4.

Proposition 6.1 Given any A > 0, D > 0, and ε > 0 there exists δ = δ(A, D, ε) > 0
such that if mass m j < δ then

dVF
((

� j , ḡ j
)
,
(
�′

j , gE
))

< ε, (6.2)
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where

� j = �
j
A ∩ TD(	

j
A) ⊂ M̄n

j with metric tensor ḡ j (6.3)

and

�′
j = �

j
A ⊂ E

n with metric tensor g̃ j = u
4

n−2
j ḡ j = gE. (6.4)

Furthermore for fixed A > 0 and D > 0, if m j → 0 then

(�′
j , gE) → (B0(ρA), gE) smoothly as j → ∞. (6.5)

To prove the volume preserving intrinsic flat convergence statement (6.2), we will
show they have diffeomorphic subregionsWj andW ′

j where the metric tensors are C0

close and the volumes not covered by these subregions are small. This will be stated
more precisely below. Based on the examples of Sect. 2, we cannot expect the region
near the asymptotically cylindrical end of (� j , ḡ j ) to be C0 close to (�′

j , gE). We
will therefore choose an

Aε = Aε(A, D) > 0, (6.6)

and then cut out the annular domain �
j
Aε ,A

from inside � j and �′
j to create regions

where we will have the appropriate control. Set

Wj = �
j
Aε ,A

⊂ �
j
A ∩ TD

(
	

j
A

)
⊂ M̄n

j , (6.7)

and

W ′
j = �

j
Aε ,A

⊂ E
n . (6.8)

The precise choice of Aε will be made later in Sect. 6.5.

6.1 Estimates onWj

To begin the proof of Proposition 6.1 we apply the results of the previous section to
establish uniform closeness between ḡ j and gE on diffeomorphic domains. This is a
primary step towards proving the intrinsic flat distance estimate (6.2). Secondly we
show the smooth convergence to a ball in En (6.5).

Lemma 6.2 Given any ε > 0 and fixed A > Aε > 0 there exists a δ = δ(ε, Aε) > 0
such that

ḡ j ≤ (1 + ε)2gE and gE ≤ (1 + ε)2 ḡ j on �
j
Aε ,A

, (6.9)

whenever the mass m j < δ.
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Proof Choose Ã0 < Aε and Ã > A. Then, according to Proposition 5.10, there is a
uniform constant C such that

‖ u j − 1 ‖
C0

(
� Ã0, Ã

)≤ Cm
1
4
j√

Ã0

, (6.10)

where � Ã0, Ã
⊂ E

n is the annular domain whose boundary consists of two coordinate

spheres having areas Ã0 < Ã. Thus, for allm j sufficiently small we find that� j
Aε ,A

⊂
� Ã0, Ã

and

(1 + ε)−2 ≤ u
4

n−2
j ≤ (1 + ε)2, (6.11)

from which the desired result follows. ��
Lemma 6.3 Fix A > 0 and D > 0, and let the symmetry spheres	

j
A ⊂ M̄n

j be defined
by

Areag j

(
	

j
A

)
= Areaḡ j

(
	

j
A

)
= A. (6.12)

If m j → 0 then

AreagE
(
	

j
A

)
→ A, (6.13)

and so the spheres

(
	

j
A, gE

)
→ (∂B0(ρA), gE) smoothly (6.14)

and the balls
(
�′

j , gE
)

→ (B0(ρA), gE) smoothly. (6.15)

Proof Observe that (6.13) follows from the C0 convergence of the metric tensors in
Lemma 6.2. Moreover (6.14) and (6.15) follow immediately from (6.13). ��

6.2 Applying the Lakzian–Sormani Theorem

In work of Lakzian et al. [22], the following theorem was proven providing a concrete
means to estimate the intrinsic flat distance. Intuitively this theorem observes that two
manifolds � j and �′

j , as in (6.3) and (6.4), are close in the intrinsic flat sense if they
have diffeomorphic subregions Wj and W ′

j , as in (6.7) and (6.8) where the metric

tensors are C0 close and the volumes not covered by these subregions are small. See
Fig. 8. When using this result for the current problem note that a dictionary between
the notation is � = � j , �′ = �′

j , W = Wj , W ′ = W ′
j , g = ḡ j , and g′ = gE.
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Fig. 8 To prove that two regions � j and �′
j are close in the intrinsic flat sense using the Lakzian-Sormani

theorem, one first identifies subregions Wj ⊂ � j and W ′
j ⊂ �′

j that are C0 close and then shows that

the volumes of the excesses � j \ Wj and �′
j \ W ′

j are small. It must also be ensured that the distance
distortions are small. See Theorem 6.4

Theorem 6.4 [22] Suppose that (�, g) and (�′, g′) are oriented precompact Rieman-
nian manifolds with diffeomorphic subregions W ⊂ � and W ′ ⊂ �′. Identifying
W = W ′ assume that

g ≤ (1 + ε)2g′ and g′ ≤ (1 + ε)2g on W . (6.16)

Taking the extrinsic diameters

max{diamg(�), diamg′(�′)} ≤ D0 (6.17)

define a hemispherical width

ω >
arccos(1 + ε)−1

π
D0 which goes to 0 as ε → 0. (6.18)

Taking the difference in distances with respect to the outside manifolds, set

λ = sup
x,y∈W

|d�,g(x, y) − d�′,g′(x, y)| ≤ 2D0 (6.19)

and define the height

� = max
{√

2λD0, D0

√
ε2 + 2ε

}
. (6.20)

Then

dF (�,�′) ≤ (2� + ω)
(
Volg(W ) + Volg′(W ′) + Areag(∂W ) + Areag′(∂W ′)

)

+ Volg(� \ W ) + Volg′(�′ \ W ′).
(6.21)
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6.3 Estimating theVolumes

In this subsection all volumes and areas appearing in the first line of (6.21) will
be shown to be uniformly bounded, and those in the second line will be shown to
be arbitrarily small. In addition, it will be established that the volumes Volḡ j (� j )

converges to that of a ball in Euclidean space.

Lemma 6.5 Volumes outside the diffeomorphic subregions may be estimated by

Volḡ j (� j \ Wj ) ≤ DAε, (6.22)

and

VolgE(�′
j \ W ′

j ) ≤ (1 + ε)n−1DAε . (6.23)

In particular, both are less than 2n−1DAε .

Proof First observe that

� j \ Wj = �
j
A ∩ TD(	

j
A) \ �

j
Aε ,A

= �
j
Aε

∩ TD(	
j
A). (6.24)

By Lemma 3.4, the largest area of the radial levels in this set is Aε . Applying the
coarea formula to these levels and the fact that the depth of the set is D, we have

Volḡ j (� j \ Wj ) ≤ DAε . (6.25)

Applying the coarea formula again and using (6.16) yields

VolgE(�′
j \ W ′

j ) ≤ DVolgE(	
j
Aε

) ≤ D(1 + ε)n−1 Volḡ(	
j
Aε

) = D(1 + ε)n−1Aε .

(6.26)

��
Lemma 6.6 Volumes of the diffeomorphic subregions may be estimated by

Volḡ j (Wj ) ≤ DA, (6.27)

and

VolgE(W ′
j ) ≤ (1 + ε)n−1DA. (6.28)

In particular, both are less than 2n−1DA.

Proof This follows from Lemma 3.4 and the coarea formula

Volḡ j (Wj ) ≤ Volḡ j (� j ) ≤ DVolḡ
(
	

j
A

)
= DA. (6.29)
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Furthermore

VolgE
(
W ′

j

)
≤ DVolgE

(
	

j
A

)
= D(1 + ε)n−1A. (6.30)

��

Lemma 6.7 Boundary areas of the diffeomorphic subregions may be estimated by

Areaḡ j (∂Wj ) ≤ Aε + A ≤ 2A, (6.31)

and

AreagE
(
∂W ′

j

)
≤ (1 + ε)n−1(Aε + A) ≤ 2(1 + ε)n−1A. (6.32)

In particular, both are less than 2n A.

Proof We know that ∂Wj has at most two components, both of which are radial levels
of area less than A by monotonicity. The same holds for ∂W ′

j , except that as above

the upper bound on the outer area is (1 + ε)n−1A. ��

The next lemmawill be used to obtain volume preserving intrinsic flat convergence.
It follows from the last few lemmas.

Lemma 6.8 The difference of total volumes may be estimated by

∣∣∣Volḡ j (� j ) − VolgE(�′
j )

∣∣∣ <
(
(1 + ε)n − 1

)
DA + 2D(1 + ε)n−1Aε . (6.33)

Proof From Lemma 6.5 we have

∣∣∣VolgE(�′
j ) − VolgE(W ′

j )

∣∣∣ ≤ D(1 + ε)n−1Aε, (6.34)

and

∣∣Volḡ j (� j ) − Volḡ j (Wj )
∣∣ ≤ DAε < D(1 + ε)n−1Aε . (6.35)

Moreover by (6.16)

|VolgE(W ′
j ) − Volḡ j (Wj )| ≤ (

(1 + ε)n − 1
)

Volḡ j (Wj ) ≤ (
(1 + ε)n − 1

)
DA. (6.36)

��
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Fig. 9 Fig. 9 Line segment trajectory

6.4 Estimating Distances and Diameters

Lemma 6.9 Let D ≥ ρA, then

max{diamḡ j (� j ), diamgE

(
�′

j

)
} ≤ D0 (6.37)

where D0 ≤ 4πD.

Proof This follows because the depth of the tubular neighborhood is D, and the largest
symmetry sphere satisfies

diamḡ j

(
	

j
A

)
= πρA ≤ πD. (6.38)

So by the triangle inequality the diameter of � j is no larger than 2D + πD ≤ 4πD.
In addition

diamgE

(
	

j
A

)
≤ (1 + ε) diamḡ j

(
	

j
A

)
= (1 + ε)πD. (6.39)

So by the triangle inequality the diameter of �′
j is no larger than 2D + (1+ ε)πD ≤

4πD. ��
Lemma 6.10 The difference of distances satisfies

λ j = sup
x,y∈Wj

|dḡ j (x, y) − dgE(x, y)| ≤ (1 + ε)πρAε + 4πεD, (6.40)

where Wj is identified with W ′
j .

Proof Let σ = σx,y be a line segment from σ(0) = x to σ(1) = y in �′
j so that

lgE(σ ) = |x − y| = dgE(x, y). (6.41)

Then there is a first time that σ(t1) ∈ 	
j
Aε

and a last time that σ(t2) ∈ 	
j
Aε
. See Fig. 9.
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By triangle inequality we have

dḡ j (x, y) ≤ dḡ j (σ (0), σ (t1)) + dḡ j (σ (t1), σ (t2)) + dḡ(σ (t2), σ (1))

≤ lḡ j (σ ([0, t1])) + πρAε + lḡ j (σ ([t2, 1]))
≤ (1 + ε) lgE (σ ([0, t1])) + πρAε + (1 + ε) lgE (σ ([t2, 1]))
≤ πρAε + (1 + ε)lgE (σ ([0, 1]))
= πρAε + (1 + ε)dgE(x, y)

≤ πρAε + εD0 + dgE(x, y).

(6.42)

Here we have used Lemma 6.9 and the fact that 	 j
Aε

is connected.
Let γ = γx,y be a ḡ j -length minimizing geodesic from γ (0) = x to γ (1) = y in

� j so that

lḡ j (γ ) = dḡ j (x, y). (6.43)

Then there is a first time that γ (t1) ∈ 	
j
Aε

and a last time that γ (t2) ∈ 	
j
Aε
. By the

triangle inequality we have

dgE(x, y) ≤ dgE(γ (0), γ (t1)) + dgE(γ (t1), γ (t2)) + dgE(γ (t2), γ (1))

≤ lgE (γ ([0, t1])) + diamgE(	
j
Aε

) + lgE (γ ([t2, 1]))
≤ (1 + ε)lḡ j (γ ([0, t1])) + (1 + ε)

diamḡ j (	
j
Aε

) + (1 + ε)lḡ j (γ ([t2, 1]))
≤ (1 + ε)πρAε + (1 + ε)lḡ j (γ ([0, 1]))
= (1 + ε)πρAε + (1 + ε)dḡ j (x, y)

≤ (1 + ε)πρAε + εD0 + dḡ j (x, y).

(6.44)

Combining these with D0 ≤ 4πD from Lemma 6.9 we obtain the desired result. ��

6.5 Proof of Proposition 6.1

First note that by Lemmas 6.5–6.9 applied to Theorem 6.4 we have

dF (� j ,�
′
j ) ≤ (

2� j + ω
) (

2D2n−1A + 2A2n
)

+ 2D2n−1Aε, (6.45)

where

� j = max
{√

2λ j D0, D0

√
ε2 + 2ε

}
, (6.46)

Furthermore by Lemma 6.8

|Volḡ j (� j ) − VolgE(� j )| <
(
(1 + ε)n − 1

)
DA + D2n Aε . (6.47)
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Given A > 0, D > 0, and ε > 0 we must choose δ = δ(A, D, ε) > 0 sufficiently
small so that

dVF (� j ,�
′
j ) = dF (� j ,�

′
j ) + |Volḡ j (� j ) − VolgE(� j )| < ε (6.48)

whenever δ < m j . Therefore choose ε and Aε appropriately in order to satisfy

D2n Aε < ε/4, (6.49)
(
(1 + ε)n − 1

)
DA < ε/4, (6.50)

and

(
2� j + ω

)
CA,D < ε/4, (6.51)

where

CA,D = (2D2n−1A + 2A2n). (6.52)

Observe that these together imply (6.48). It remains only to show that (6.51) may be
obtained from choosing ε and Aε small.

According to the definition of � j and ω, (6.51) will be valid if

2D0

√
ε2 + 2εCA,D < ε/8, (6.53)

2
√
2λ j D0CA,D < ε/8, (6.54)

and

ωCA,D = 2
arccos(1 + ε)−1

π
D0CA,D < ε/8. (6.55)

Moreover, from Lemma 6.10 it follows that (6.54) holds if

2
√
8πεDD0CA,D < ε/16, (6.56)

and

2
√
4πρAε D0CA,D < ε/16. (6.57)

Thus we choose the area of the inner level set Aε = Aε(A, D) > 0 small enough so
that (6.49), and (6.57) hold. Recall that ρAε is the radius of the n − 1-sphere whose
area is Aε . In addition, we choose ε = ε(A, D, ε) small enough so that (6.50), (6.53),
(6.55), and (6.56) hold. It follows that there exists δ = δ(ε, Aε) > 0 such thatm j < δ

implies dVF (� j ,�
′
j ) < ε. Finally (6.5) was established in Lemma 6.3.
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7 Convergence of the Second Fundamental FormDifferences

InTheorem1.2 a statement (1.23) is given concerning the convergence of the difference
of the second fundamental forms of the initial data and Jang graphs. In this section we
give a proof of that statement.

7.1 Outside Control

The pointwise control on the conformal factor gives rise to L2 control of the difference
of second fundamental forms. Recall that�A is the domain inside the symmetry sphere
of volume A in (M̄n, ḡ) and (Mn, g). By combining Proposition 5.10 and (5.8) we
obtain the following.

Proposition 7.1 Let (Mn
j , g j , k j ) be a sequence of spherically symmetric, uniformly

asymptotically flat initial data satisfying the dominant energy condition andwith either
outermost apparent horizon boundary or no boundary. For every A0 > 0 there exists
a uniform constant C such that

‖ h j − k j ‖2
L2(M̄n

j \� j
A0

,ḡ j )
≤ Cm j . (7.1)

Proof According to Proposition 5.10 and the asymptotics of u j , we find by choosing
0 < Ã0 < A0 that

|u j − 1| ≤ c1m
1
4
j on M̄n

j \ �
j
A0

, (7.2)

for some uniform constant c1. Thus for large j , the inequality (5.8) implies

c−1
n (n − 2)ωn−1m j ≥

∫

M̄n
j

|h j − k j |2ḡ j
u2jdVḡ j

≥ 1
2

∫

M̄n
j \� j

A0

|h j − k j |2ḡ j
dVḡ j . (7.3)

��

7.2 Inside Control

The conformal factors u j decay exponentially fast along the cylindrical ends of
(M̄n

j , ḡ j ), and thus the techniques used above to obtain estimates outside a fixed level
surface do not extend down the cylindrical end. Nevertheless, with an extra hypothesis
of uniform L2 control for the initial data second fundamental forms k j , we are able to
obtain uniform L2 bounds for the difference of second fundamental forms on tubular
neighborhoods of the anchor surface. It may be possible to weaken this hypothesis,
however we expect that some condition on k j is necessary in order to control the
difference of second fundamental forms.
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Proposition 7.2 Let (Mn
j , g j , k j ) be a sequence of spherically symmetric, uniformly

asymptotically flat initial data satisfying the dominant energy condition andwith either
outermost apparent horizon boundary or no boundary. Further, assume the uniform
bound ‖ k j ‖L2(Mn

j )
≤ B. Given A > 0 and D > 0 there exists C depending only on

A, B, and D such that

‖ h j − k j ‖
L2(�

j
A∩TD(	

j
A),ḡ j )

≤ C . (7.4)

Proof For convenience in this proof we will drop the subscript j . Recall from (5.1)
that

∫

M̄n
|h − k|2ḡφ2dVḡ ≤

∫

M̄n

(
c−1
n |∇φ|2ḡ + Rḡφ

2
)
dVḡ (7.5)

for all φ ∈ C∞
c (M̄n). Choose a particular test function such that 0 ≤ φ ≤ 1, φ ≡ 1

on TD+1(	A), and |∇φ|ḡ ≤ 2 then

∫

TD(	A)

|h − k|2ḡdVḡ ≤ 2c−1
n Volḡ(TD+1(	A))

+
∫

TD+1(	A)

Rḡφ
2dVḡ. (7.6)

Write

ḡ = ds̄2 + ρ(s̄)2gSn−1 (7.7)

such that the interval 0 < s̄ < D + 2 covers TD+1(	A), and notice that

Rḡ = −2(n − 1)
ρ̈

ρ
+ (n − 1)(n − 2)

1 − ρ̇2

ρ2 . (7.8)

Integrating by parts produces

∫

TD+1(	A)

Rḡφ
2dVḡ

= ωn−1

∫ D+2

0

[
−2(n − 1)

ρ̈

ρ
+ (n − 1)(n − 2)

1 − ρ̇2

ρ2

]
φ2ρn−1ds̄

= ωn−1

∫ D+2

0

[
4(n − 1)φφ̇ρn−2ρ̇ + (n − 1)(n − 2)φ2ρn−3ρ̇2

+(n − 1)(n − 2)φ2ρn−3
]
ds̄.

(7.9)
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Since the mean curvature of coordinate spheres is H̄ = (n − 1)ρ−1ρ̇, this may be
rewritten as

∫

TD+1(	A)

Rḡφ
2dVḡ =

∫

TD+1(	A)

(
4〈φ∇φ, ∂s̄〉H̄ + n − 2

n − 1
φ2 H̄2

)
dVḡ

+
∫ D+2

0
ωn−1(n − 1)(n − 2)φ2ρn−3ds̄.

(7.10)

We now estimate each term of (7.10) separately. By uniform asymptotic flatness of
ḡ in Lemma 4.3 and asymptotic control (7.2) of u, we have that

ρ(D + 2) =
(
A(D + 2)

ωn−1

) 1
n−1

(7.11)

is uniformly bounded and thus

∫ D+2

0
φ2ρn−3ds̄ ≤ (D + 2)

(
A(D + 2)

ωn−1

) n−3
n−1 ≤ c1. (7.12)

Next according to Lemma 6.8 it holds that Volḡ(TD+1(	)) is uniformly bounded, and
hence by Hölder’s inequality

∫

TD+1(	A)

〈φ∇φ, ∂s̄〉H̄dVḡ ≤ 2Volḡ(TD+1(	))
1
2

(∫

TD+1(	A)

H̄2dVḡ

) 1
2

≤ c2 ‖ H̄ ‖L2(TD+1(	A),ḡ) . (7.13)

The remaining term of (7.10) may also be estimated by the L2 norm of H̄ .
To complete the proof we will use the extra hypothesis concerning k to bound H̄

in L2. First observe that

ḡ = g + d f 2 = (1 + f 2s )ds2 + ρ(s)2gSn−1 ⇒ ds̄

ds
=

√
1 + f 2s , (7.14)

so that

H̄ = (n − 1)ρ−1 dρ

ds̄
= (n − 1)ρ−1 dρ

ds

ds

ds̄
= 1

√
1 + f 2s

H (7.15)

where H is the mean curvature with respect to g. Furthermore, let ψ : TD+1(	A) →
Mn be thediffeomorphismonto its image associatedwith the coordinate change s̄ → s.
Then
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∫

TD+1(	A)

H̄2dVḡ =
∫

TD+1(	A)

[
H̄2 − (TrSs̄ k)

2

1 + f 2s

]
dVḡ

+
∫

TD+1(	A)

(TrSs̄ k)
2

1 + f 2s
dVḡ

=
∫ D+2

0
(1 + f 2s )−1

∫

Ss̄

[
H2 − (TrSs̄ k)

2
]
d Aḡds̄

+
∫

ψ[TD+1(	A)]
(TrSs̄ k)

2
√
1 + f 2s

dVg

≤
∫ D+2

0
(n − 2)2ω

n−3
n−2
n−1A(s̄)

n−3
n−2 ds̄

+
∫

Mn
(n − 1)2|k|2gdVg,

(7.16)

where we have used that the spacetime Hawking mass

m(s) := 1

2

(
A(s)

ωn−1

) n−2
n−1

⎡

⎣1 − 1

(n − 1)2ω
2

n−1
n−1A(s)

n−3
n−1

∫

Ss

(
H2 − (TrSs k)

2
)
ddAg

⎤

⎦

(7.17)

is nonnegative [21], and the areas of coordinate spheres agree with respect to both
metrics g and ḡ, that is A(s) = A(s̄). Again using that ρ(D+2) is uniformly bounded
produces

∫

TD+1(	A)

H̄2dVḡ ≤ (D + 2)(n − 2)2ω
n−3
n−2
n−1c3 + (n − 1)2 ‖ k ‖2L2(Mn)

, (7.18)

from which the desired result follows. ��

7.3 Global Control

Here we show that the difference of second fundamental forms tends to zero in L p,
1 ≤ p < 2 on the tubular neighborhoods �A ∩ TD(	A) ⊂ M̄n , when the masses
go to zero. This result, and in fact even a uniform bound, cannot be extended to the
entire domain �A. The reason is due to the cylindrical asymptotics contained within
this domain, and the observation that in the limit along the cylinder h− k converges to
I I−i∗k, where I I is the second fundamental form of ∂Mn inMn and i : ∂Mn ↪→ Mn

is inclusion. Since I I − i∗k does not necessarily vanish, it follows that h − k is not
necessarily in L p(�A).

Theorem 7.3 Let (Mn
j , g j , k j ) be a sequence of spherically symmetric, uniformly

asymptotically flat initial data satisfying the dominant energy condition and with
either outermost apparent horizon boundary or no boundary. Further, assume the
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uniform bound ‖ k j ‖L2(Mn
j )

≤ B and that m j → 0. Then for any 1 ≤ p < 2, A > 0,

and D > 0

‖ h j − k j ‖
L p(�

j
A∩TD(	

j
A),ḡ j )

→ 0. (7.19)

Proof Let Aε > 0 be fixed. Then by Hölder’s inequality

∫

�
j
A∩TD(	

j
A)

|h j − k j |pḡ j
dVḡ j

=
∫
[
�

j
A∩TD(	

j
A)

]
∩�

j
Aε

|h j − k j |pḡ j
dVḡ j +

∫
[
�

j
A∩TD(	

j
A)

]
\� j

Aε

|h j − k j |pḡ j
dVḡ j

≤ Volḡ j

([
�

j
A ∩ TD(	

j
A)

]
∩ �

j
Aε

) 2−p
2

(∫

�
j
A∩TD(	

j
A)

|h j − k j |2ḡ j
dVḡ j

) p
2

+ Volḡ j

([
�

j
A ∩ TD(	

j
A)

]
\ �

j
Aε

) 2−p
2

(∫
[
�

j
A∩TD(	

j
A)

]
\� j

Aε

|h j − k j |2ḡ j
dVḡ j

) p
2

.

(7.20)

Using the notation and results of Lemma 6.5, observe that

Volḡ j

([
�

j
A ∩ TD(	

j
A)

]
∩ �

j
Aε

)
= Volḡ j (� j \ Wj ) ≤ DAε. (7.21)

Furthermore by Lemma 6.8

Volḡ j

([
�

j
A ∩ TD(	

j
A)

]
\ �

j
Aε

)
≤ Volḡ j (� j ) ≤ C1, (7.22)

by Proposition 7.1

‖ h j − k j ‖
L2(M̄n

j \� j
Aε

,ḡ j )
≤

√
C3(Aε)m j , (7.23)

and by Proposition 7.2

‖ h j − k j ‖
L2(�

j
A∩TD(	

j
A),ḡ j )

≤ C2. (7.24)

It follows that

‖ h j − k j ‖p

L p(�
j
A∩TD(	

j
A),ḡ j )

≤ (DAε)
2−p
2 C p

2 + C
2−p
2

1 (C3(Aε)m j )
p
2 . (7.25)

This can be made arbitrarily small by choosing Aε small and j appropriately large. ��
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8 Proof of Theorem 1.2

The proof of the main theorem follows quickly from Proposition 6.1 and Theorem 7.3.
Recall that

� j = �
j
A ∩ TD(	

j
A) ⊂ M̄n

j with metric tensor ḡ j , (8.1)

and

�′
j = �

j
A ⊂ E

n with metric tensor g̃ j = u
4

n−2
j ḡ j = gE. (8.2)

By the triangle inequality

dVF
(
(� j , ḡ j ), (B0(ρA), gE)

) ≤ dVF
(
(� j , ḡ j ), (�

′
j , gE)

)

+dVF
(
(�′

j , gE), (B0(ρA), gE)
)

. (8.3)

As m j → 0 we have that (6.2) produces

dVF
(
(� j , ḡ j ), (�

′
j , gE)

)
→ 0, (8.4)

and (6.5) yields

dVF
(
(�′

j , gE), (B0(ρA), gE)
)

→ 0, (8.5)

since smooth convergence implies convergence in the volume preserving intrinsic flat
sense. Finally, Theorem 7.3 gives (1.23).
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