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Abstract

We prove that a 4-dimensional C? conformally compact Einstein manifold with Holder
continuous scalar curvature and with C"* boundary metric has a C"* compactifica-
tion. We also study the regularity of the new structure and the new defining function.
This is a supplementary proof of Anderson’s work and an improvement of Helliwell’s
result in dimension 4.
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1 Introduction

In 1985, Charles Fefferman and Robin Graham [10] introduced a new method to
study the local conformal invariants of manifolds. Similar to n-sphere embedded into
n + 2-dimensional Minkowski space, they tried to embed an arbitrary conformal 7n-
manifold into an n 4 2-dimensional Ricci-flat Lorentz manifold, which they called
the ambient space. The ambient spaces were used to produce local scalar conformal
invariants. An important part of the ambient space construction is the introduction
of conformally compact Einstein metrics for a conformal manifold. The study of
conformally compact Einstein metrics could tell us some relationship between the
Riemannian structure in the interior and the conformal structure on the boundary. Much
progress has been made since then. In recent years, the physics community has also
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Finite boundary regularity for conformally compact 4005

become interested in conformally compact Einstein metrics because the introduction
of AdS/CFT correspondence in the quantum theory of gravity in theoretic physics by
Maldacena [24].

Let M be the interior of a compact (n+ 1)-dimensional manifold M with non-empty
boundary dM. We call a complete metric g on M is C™%(or W*?) conformally
compact if there exits a defining function p on M such that the conformally equivalent
metric

g=p"gs

can extend to a C"%(or WK-P) Riemannian metric on M. The defining function is
smooth on M and satisfies

p>0inM
p=0onoM (1.1)
dp #0 onoM

Here C"* and W*? are usual Holder space and the Sobolev space. We call the induced
metric i = g|yp the boundary metric associated to the compactification g. It is easy
to see that different defining function induces different boundary metric and every
two of the boundary metrics are conformal equivalent. Then the conformal class [A]
is uniquely determined by (M, g4+). We call [h] the conformal infinity of g4 . If in
addition, g is Einstein, i.e.

Ricg, +ngy =0, (1.2)

then we say (M, g4 ) is a conformally compact Einstein manifold.

There are some interesting problems concerning conformally compact Einstein
metric. Such as the existence problem, see [2,14—16,19,21] etc. The unique problem,
see [1,7]. The compactness problem, see [2,6,7].

In this paper, we deal with the boundary regularity problem. Given a conformally
compact Einstein manifold (M, g*) and a compactification g = pg™, if the boundary
metric z is C™%, is there a C"* compactification of g™ ? This problem was first raised
by Fefferman and Graham in 1985 in [10] and they observed thatif dimM =n+1is
odd, the boundary regularity in general breaks down at the order n. If dimM =n + 1
is even, the C"% compactification may exist.

In [8], Chrusciel et al. used the harmonic diffeomorphism at infinity to construct
a good structure near boundary where Einstein equation could be written as an ellip-
tic PDE of second order uniformly degenerating at the boundary. That is so-called
"gauge-broken Einstein equation’. Then they use polyhomogeneity result of some
specific degenerate equation to obtain a good result of the boundary regularity. We
suggest the readers to see [3] for more details about these equations. They proved
that if the boundary metrics are smooth, the C? conformally compact Einstein metrics
have conformal compactifications that are smooth up to the boundary in the sense of
C'* diffeomorphism in dimension 3 and all even dimensions, and polyhomogeneous
smooth in odd dimensions greater than 3. This is certainly a very good result in the
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4006 X.Jin

sense that they made good use of Einstein equation and gave us a suitable coordinate
in infinity to study conformally compact Einstein metrics. I think their method is more
geometrical. The condition of that the initial compactification is C? in all dimension
should be sharp. However, their result only hold for smooth case. It is believed that
their method could also be used to prove the finite regularity although we may loss
half regularity in this situation.

In [1,2], Anderson considered the Bach tensor in dimension 4, and proved the finite
regularity result. He only assume that the initial compactification g is W2? where
p > 4.1 am not sure whether the W27 condition is good enough to prove his result.
As a supplementary proof, we use Anderson’s method to prove his conclusion where
we assume that the initial compactification g is C2 and the scalar curvature is C® for
any o € (0, 1).

In [17], Helliwell solved the issue in all even dimensions by following Anderson’s
method. He considered the Fefferman—Graham ambient obstruction tensor instead of
Bach tensor in higher dimensions. It is conformally invariant and vanishes for Einstein
metrics. Helliwell assumed the initial compactification g is atleastin C"»* fora (n+1)-
smooth manifold. It means the original compactification is C3¢ for a smooth manifold
of dimension 4. Now we reduce the condition C>% to C>“ to improve his result.

This is the main result:

Theorem 1.1 Let (M, g %) be a conformally compact Einstein manifold of dimension
4 with a C? compactification g = p*g*. If the scalar curvature S € C°(M) for
some o > 0, the boundary metric h = glayr € C™*(@OM) withm > 2,a € (0, 1),
then under a C** coordinates change, gt has a C™% conformally compactification
g = pg™t with the boundary metric |3y = h.

Remark 1.2 The new coordinates form C”t1-¢ differential structure of M. j is a
C"*1. defining function.

If ¢ = p?g ™ is C%7, then the condition of S in Theorem 1.1 holds automatically.
Hence the conclusion is also true.

If the boundary metric 4 is smooth, then g™ has a smoothly conformally compact-
ification g with the boundary g|yy = h.

The condition that “the scalar curvature S € C° (M)” seems unnatural and this is
because we choose the Yamabe compactification for the new g. This condition is used
to improve the regularity of the new defining function and new compactification for
the Yamabe equation with Dirichlet data. I think the condition may be removed if we
choose another “good” compactification.

It is well known that (see [10]) if (M, g™) is a 4—dimensional conformally compact
Einstein metric with boundary metric 4 and g = r2g™ is the geodesic compactification
associated with £, then according to the Gauss lemma, g4 = r_z(dr2 + gr).

o=t @24 g3 4
where g(® is the Schouten tensor and is determined by 4. g is determined by g* and

h and hence it is a non-local term. The rest of power series is determined by g‘® and
h. This property is also true for higher dimension. From this point of view, Helliwell’s
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Finite boundary regularity for conformally compact 4007

condition of C*¢ initial compactification seems very natural. That we improve it to
C? is a big step as we don’t need any information about the non-local term.

The outline of this paper is as follows. In Sect. 2, we introduce some basic facts about
conformally compact Einstein metrics. We show that the Yamabe compactification
exists. The conditions in Theorem 1.1 are unchanged under this compactification. We
also consider the Bach equation in dimension 4 and it is an elliptic PDE of second
order about Ricci tensor if the scalar curvature is constant. At last, we introduce the
harmonic coordinates.

In Sect. 3, we deduce some boundary conditions. Including the Dirichlet condition
of metric and Ricci curvature, the Neumann condition of Ricci curvature and the
oblique derivative condition of metric. We prove that these conditions are true even if
the compactification g is only C2.

In Sect. 4, we attempt to prove the main theorem. The first difficulty is C% and C1-¢
estimate of Ricci curvature. So we present the intermediate Schauder theory to solve
the problem. Then we finish our proof with the classical Schauder theory. In the end,
with the help of Bach equation, we prove the regularity of defining function in the new
coordinates.

2 Preliminaries

Let (M, g+) be a n + 1-dimensional conformally compact Einstein manifold and
g = p*g™T is a compactification. Then

Kiap +1Vpl* 1

Kap = == 5—— = _[D*p(eu,a) + D*ples. en)], @
D? Vpl2—1) A
Ric=—(n—1)=L ¢ [”“ p|2 ) _ _P} .. (2.2)
P p P
A Vol -1
S=-m22 Lam+ 1)%. 2.3)
P P

Here K5, Ric, S are the sectional curvature, Ricci curvature and scalar curvature of
g and D? denote the Hessian. Readers can see [4] for the conformal transformation
law of curvatures.

Ifgisa Cc? compactification, then from (2.3),|Vp| = 1 on dM. Then by (2.1)
K ap tends to —1 as p — 0. Hence a C? conformally compact Einstein manifold is
asymptotically hyperbolic. Let D?>p|5y = A denote the second fundamental form of
M in (M, g). The equation (2.2) further implies that 9 M is umbilic.

2.1 Constant Scalar Curvature Compactification

Lemma 2.1 Let (M, g..) be a conformally compact n-manifold witha W*P conformal
compactification g = p>g. where p > n/2. Suppose that h = g|yu is the boundary
metric. Then there exits a WP constant scalar curvature compactification § = p>g,4
with boundary metric h.
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4008 X.Jin

4
Proof We only need to solve a Yamabe problem with Dirichlet data. Let g = un-—2g,
then we consider the equation
2 n+2
Agu — 4En 1)Su + 4("n AU = 0
u>0inM 2.4)

u=1onoM

In [23], Ma proved that the equation has a C> solution if the metric g is C>* when
A = —1. Now we extend his conclusion in the case that g € W>? for some p > n/2.
Let . = —1, and we consider the following functional

u)= — u ——_—ou v u|n—=dav
2 4(n—1) 2n Sy dn—1)

on the set

={ue H (M) :ulyy = 1}.

Itis coercive and weakly lower semi-continuous. Then / attains its infimumin A, which
means that Ju € A, I(u) = im;](v). Since for any n € H(} M),teRu+tneA,
ve

we have that
d I(u + tn)| =0
JE— u N = .
dt D=0

Then u is a H' weak solution. By the Sobolev embedding theorem it follows that
i e L2, Now let

then u is a weak solution of —Agu + fu =0, ulygy = land f € L%, By a standard
method in PDE we can infer that u € L9 for any ¢ > 2. (One can see more details
in [5, Theorem 2.3]) So fu € L? for any p’ < p and it implies that u € w2 If
choose p’ > n/2, then u is Holder continuous. Then f € L?, and finally we get that
u € WP The strong maximum principle tells us that i is positive in M. O

Ifge C? and Sy € C? for some o > 0, we know that Eq. 2.4 has a C29 solution

u. Then g = uﬁg is still CZ, and the new defining function p = up € C>°.In
the following of this section, we don’t distinguish g with g. When we refer to the
compactification g, we mean the scalar curvature of g is —1 near the boundary and
the defining function is C>°.
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2.2 The Bach Equation

For a 4-dimensional manifold, the Bach tensor is a conformal invariant and vanishes
for Einstein metric, see [4]. In local coordinates,

Bij = Pij,kk - Pik,jk — P Wi (2.5)

where P;j = %Ri = % gij 1s the Schouten tensor.
Let {y# }/33:O be the smooth structure on M and when restricted on M, {y’ }1.3:] i

smooth structure of 3 M. From above we can assume that g € C*°(M)NC 2 (M), S g
—1. Then the fact that g is Einstein and (2.5) imply that

—
2]

ARiceg =T % dRic+ Q (2.6)

in y-coordinates. Here A = g*#3, dg, I' is the Christoffel symbol of g, I" % dRic
denote the bilinear form of I' andd Ric and Q denotes a quadratic curvature term.

2.3 The Harmonic Coordinates Near Boundary

In the rest of the paper, if there are no special instructions, any use of indices will
follow the convention that Roman indices will range from 1 to n, while Greek indices
range from O to n.

We call the coordinates {x” gzo harmonic coordinates with respect to g if

Agxﬂ =0

for 0 < B < n. We are now going to construct harmonic coordinates in a neighbour-
hood of M if g is smooth.
In fact, if g € C1%, a € (0, 1) for any point p € M, there is a neighbourhood
V and smooth structure {y”? }%=O where y°|3), = 0. Then by solving a local Dirichlet
problem:
{Agxﬂz()inv @7
xPlynam = yPlvnom '

there is a C%¢ solution by [13] and we have the Schauder estimate:

1x? =3P llcaaqy< €U AGE = yP) Deawy+ 1| 2P = yP ll ey = C 1| Ay llcay)
We can assume that the y-coordinates is the normal coordinates at p, then Ay(p) = 0.
Hence if V is small enough,|| x# — y# | c2.«(vy tends to 0. {xﬂ}gzo, 0<B<nisa

coordinate around p.
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4010 X.Jin

In particular, if g € C 2 then the solution x € C 2")‘(y) for any @ € (0, 1). Hence

0 0 Lo g
8ap = 8 3% 5P e C"(M)
In harmonic coordinates {x” }2:0’ the Ricci tensor could be written as:
Agij = —2R;j + 0(g,d8)

where Q(g, dg) is a polynomial of g and dg. For more details, one can see [9].

Here we refer to the special coordinates constructed in Sect. 4 in [11]. Instead of
the harmonic coordinates above, those coordinates may also be useful in our situation,
and may also help us to deal with it in higher dimension of even number. That’s an
interesting problem.

3 The Boundary Conditions

In this section, we derive a boundary problem for g and Ricci curvature of a conformal
compact Einstein manifold in the harmonic coordinates as defined in Sect. 2. We do
it locally, that is, for any p € d M, there is a neighbourhood V contains p and a local
harmonic chart {x?}. Let D = V N M be the boundary portion and let g € C?(V)
be the Yamabe compactification. We will give the Dirichlet and Neumann boundary
conditions of g and Ric(g) on D. Here we state that the boundary conditions in this
section hold for all dimension.

In fact, as it is showed in [17,18] that, if g is c3e compact, we have following
boundary conditions:

Proposition 3.1 Let (M, g©) be a n + 1-dimensional conformally compact Einstein
manifold with a C> Yamabe compactification g = p*g™. glom = h is the boundary
metric. Suppose that {x? }’;:0 are any coordinates near the boundary such that xg is

defining function and {x' }i'_ are coordinates of dM . We have:

gij = hij, G.1
n—1 . 1 1 n—1_,
Rij = ,T(Rlch)ij+ ES—mSh hl]-l-WH hl‘j, (32)
1 0j
. o\ zh—10H g%
Ro; ——(g ) TB_)CZ-_WRU’ (3.3)
1 : 0i 1 n—1
Roo = — (gOIgojRij + g% <5 (S — Sp) — 7}12)) : (34
(£%)
_1 _
N (Ro) = (™) * (=&’P 3Ry + 8" iRy (3.5)

where N = \gi& = (goo)*%goﬁ g be the unit norm vector on M and Ryg, S, H are

Ricci curvature, scalar curvature and mean curvature respect to g.
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The formula (3.1) is trivial and (3.5) is deduced by the second Bianchi identity and the
fact that the scalar curvature is constant near the boundary. Here we briefly recall the
proof of The formula (3.2), (3.3) and (3.4). For a C3e conformally compact Einstein
metric, there is a unique C>® geodesic compactification with the same boundary
metric [20, Lemma 5.1]. Then for such a C2 geodesic compactification, we have a
good formula for Ricci curvature and scalar curvature on the boundary. At last, we
use the Ricci formula under conformal change to get (3.2), (3.3) and (3.4).

In this section, we will show that the formula (3.2), (3.3) and (3.4) still hold for C2
conformally compact Einstein metric.

In fact, if g is C* conformally compact, then there exists a sequence of C>* (M)
metrics gx which converge to g in C2 norm in smooth structure of M. However, g are
not conformal Einstein in general. In the following, we omit the index k and assume
that g is a C>% metric on M. By choosing a defining function p satisfying [Vplg =1
on M, we make g* = p~2g. Then with Taylor theorem, there is a C>¢ function b
such that |V p|? = 1 4 bp near the boundary.

D? n(|Vpl2—=1) A F
Ric = —(n—1) p+[ ( p|2 )——p]g+—, (3.6)
o o o J
Ap IVpl2—=1 trF
S=-2n—+4nmn+1)—s5—+—, (3.7)
o o o

where F = p(Ricg, +ng4) = pRicg + (n — 1)D*p — (nb — Ap)g € C*(M).
Now we prove the following formulas:

0i
00)*%2% g’

n Bxi_gW

1 0i ,0j 00 (1 n—1., F F
R = ! ‘IR + S S H + ’ D ’ h, D ’ H N
00 ( 00)2 (g 8 15} 8 2( h) 2 Q( 8 )

Roi = —(g Rij+ Q(F,DF,h, Dg, H),

n—1 _. 1 1 n—1 -,

(3.8)

Here h=g|3p, H is the mean curvature, Q isapolynomialand Q(F, DF,h,Dg,H) =
0if F = DF = 0on dM. We will use three lemmas to prove (3.8).

First, there is a unique C>* geodesic compactification of g* with boundary metric
h and denote it by g = r?g™. Let § = u’g where u = % satisfying that = 1 on the
boundary and u € C%% . Then F = r(Ricg, +ngy) =ufF isstill Cch(M). We will
calculate the boundary curvature of g and notice that the second fundamental form of
g at M is not 0, but determined by the tensor F.

Lemma 3.2 Suppose that § = r*g is a C* conformally compactification of manifold
(M, g4) with boundary metric h. Then on the boundary 0M,

5= n’%lwh) + O(F. DF), (3.9)
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4012 X.Jin

_ n—1 - - _
Rij = E(Rich),'j - Sphij + Q(F, DF,h,Dg). (3.10)

1
2(n — )(n —2)

Here S and Iéi_j are the scalar curvature and Ricci curvature of §. Q is a polynomial
satisfying Q(F,DF,h,Dg) =0if F = DF =0.

Proof Let us choose the coordinates (r, y‘, ..., y"), near M such that g = dr? +gr,
i.e.

gi=g" =0,g,=¢g"=1

According to Gauss Codazzi equation,

Rij = 2 Riap;
= 2" (Rp)inj + AitAxj — AijAx) + Rirrj (3.11)
= (Rp)ij + 8 AiA; + HA;j + Rirrj.

Taking trace with respect to i and j,

s _ Lo 72 _ sijsklxox o

Rep = 2(8 =S+ H” — 878" Ai Ayj)- (3.12)
Then

Rirrj = §(V3, Vs, r,3;) — 8(Va, Vi, 0r, 3;) — 8(Vi3,.5,10r, 9;)
= —,8(V3;9r,0)) + &(Va, 9, V5,9;) (3.13)
= —8,A;j + A%(3;, ).

From (3.6) and (3.7) ,we have:

Aij  Ar_ F
Rij=—(n=D=% - —&j+ 7,
Rri = Ea
r
_ _ (3.14)
A F,
Rrr - __r la
r r
- Ar trF
S=-2n—+ —
r r
Ric and S is continuous on M, so on M (r = 0) we have:
_ 1 - -
Ajj = — l(Frrhij — Fij),
" (3.15)

_ _ 1 -
H=Ar =F,, = —trF.
2n
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Hence

Rij =—(n— l)arA,'j — B,Argij - Arargij + ai‘Fij"
Rri == arﬁriy

- - - (3.16)
R, = _arAr + arFrr,
S = —ZnBrAr + 8rtrF.
Combining all the formulas above, we get that
- n 2
S = p— Sp—H” + |A|h — —artrF
(3.17)
= (5= Bt (nFL 4 FoytriF 4 \FR) — Say0r
n—1 rr (n— 1)2 rr rr h n r

which is (3.9).

_ n—1 - - _ _ _ _
Rij = —— (Rij + 8 AuAyj + HAy) = Frrdr i + 0, Fy

1

1 (3.18)
+ (A = S = Su+ H? = |AP) + 0, Fr)hyj

Noticing that A; j is totally determined by F and h, hence (3.10) holds. O

Lemma3.3 Let g = p2gy be a C>* conformally compact metric of (M, g) and
g = r’g, be C>% geodesic compactification with the same boundary metric glyy =

glay =h.Letr =up, A= D?p, then Algyy = A — u,h.

Proof In the local coordinates (r, yl, yz, ..., y") near OM, Aij = —f‘l.’l.. Then the

relationship between the connection V of g and V of g is:
r ~r 1 r r 1
Fij = Fij — ;(Sjui +0;uj — gijuy) = ;urh,-j.
8§ = M_zg, grad, = u2grad-, then

Aij = D?p(3:,9;) = g(V3,Vp, ) = —g(Vp, Vy,9))
= —T};¢(Vp,d,) =-T},8(Vp,0,)

uVr —rVu (3.19)
=178 (V.0 ) = —Tg (——— 0,
= —T7;8(Vr,Vr) = Aij — ushij
]

@ Springer



4014 X.Jin

Lemma 3.3 tells us that u, = Hn;H Using the fact that u|yy = 1,

- H-H
Vu =

Vr.
n

Lemma 3.4 Suppose that g, g are defined as in Lemma 3.3, then on the boundary 0 M,
n—13d(H - H)
n 0Xx;

1 n—1_,
~(§—8)————H" + Q(F,DF, H),
2 2n

+ O(F,DF, H),

ri

R,,

_ 1 _ n—1_, _ _
Rij :Rij+(E(S—S)) h,‘j+FH hl‘j+Q(F, DF,H). (3.20)

Here Q(F,DF,H) =0if F = DF = 0.
Proof Let g = u~2g, then

. _ D?u Au ”W”@ _
Ric=Ric+(n—1)—+ | — + g.
u u

u?

We also know that

_ o (H-—H - H—H- 9.(H—H)
Au =divVu = div Vr ) = Ar + ,

n n n
_, o H—H _
D7u(0;,9;) = g(Vy; Vu, 9j) = Aij,
- 19(H - H
BPu(oi, o) = uy = -0 H),
n 0x;

- o.(H—H . H—H -
D%(E),,EJ,):M:A - Ar.

n

Then on 0 M, we conclude that

n—193(H — H) 7 n—193(H —H)

Rri = Rri + 3)6,' = 8r ri n 8)61' 5
- - —1)(H - H) - H — H)?
Rrrerr+nAu_(n )( )Ar+( )’
n n
5 - (H-H)? H—H -
Rij = Rij + | Au A ———— J hij + (n = h——Ajj;. (3.21)

Taking trace with respect to i and j,

_ - 1 - —1)(H — H) - -1 - -
S=5+2mAu+ g gy 2 i+ "L —ma.
n n n
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Then
. 1 - 1 - —1)(H-H) - -1 - -
Au=—<S—S—L+ A —ppq O DHE R0 (H—H)H>.
2n n n
(3.22)
The result follows from (3.21) and (3.22). O

In the end, Lemmas 3.2 and 3.4 imply (3.8).

With the preparation above, let’s considera C 2 conformally compact Einstein metric
g =p2g”t on (M, y). We can choose a sequence of C_3"" metric g which converge
to gin C2(M) norm. Let Pk = W, SO py € C3%(M) and [V prlg, = 1on oM.

k

Let g,': = (ox) " 2gx, then gi is a C>% conformally compactification of (M, g,j') with
defining function pi. Defining Fy = pr(Ri Cot + ng,j) as above, then the formula of
Ricg, on 0M is like (3.10) and Fj converge to 0 in CY1(OM) norm.

Finally, as the Ricci curvature of g converge to that of g uniformly, we conclude
that (3.7), (3.19) and (3.20) hold.

3.1 Other Boundary Conditions

We see that if the metric g in Lemma 3.3 is conformally Einstein, then A = 0 on d M
and the boundary is umbilic. This conclusion is also true even if g is C> compact and
in this case the geodesic compactification is at least C!. Then we have

H

Aj j = ;]’li j-
Taking the derivative of the equation above along M,
s

H H
akAij = Thij + Fakhij.
Combining it with (3.3), we get that
1 1 g%
Ay = —— (") (ROk + @R,-j) (3.23)

Technically, this is not a boundary condition because both sides are of the second
derivative of g. However, this plays an important role in proving the regularity and we
will use the condition later.

If we choose harmonic coordinates, we also have the following boundary condition:

np 1
8 an g(xﬁ_iaagnﬁ =0 (3.24)

This is just the local expression of Agx* = 0.
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4 Proof of the Main Theorem

We prove the main theorem in this section with the Bach equation in harmonic
coordinates and some boundary conditions in last section. Firstly, let’s recall some
intermediate Schauder theory of elliptic PDE in [12,22], i.e. C* and C Lo ostimate.

4.1 Intermediate Schauder Estimate

Suppose €2 is a bounded convex domain in R” and a is a positive number satisfying
a=k+ B ke, e (0,1]) Defining

|ID%u(x) — D%u(u)|

= D“ su
ula = Y [D%ulo+ Y sup P

lel<k Jor| =k ¥+ Y €2

Let H,(Q2) deno_te the Holder space of functions with finite norm |u|, on €2, i.e.
H,(Q) = CFA(Q). Setting

Qs = {x € Q|dist(x, 0R2) > §}

Let b be a number satisfying a + b > 0 and define

b b
|V = sup 8+ |ulq.q

§>0

Let Ha(b)(Q) denote the space of functions u in H,(2s), (V§ > 0) such that |u|gfé2 is

finite. Let Hcfb_o)(Q) be the space of functions u in Héb)(Q) such that if § — 0, then
8P 1ul, 0 — 0.
Basic properties: (the following constant C depends on a, b, €2.)
1. H,f_a)(@ = H,(Q) = CHA(Q). Noticing that if a is positive integer, H,(2) =
N9k
2. 1fb > b/, then ul("y, < Clul"o;
3.If0 < d’ < a,d’+b > 0and b is not a non-positive integer, then |u|[(f)52
b
Cluly:
4. If0<cj<a-+b,a>0,j=1,2, then

IA

|uv|éb) < C(|u|éb_cl)|v|(()cl) + |M|E)Cz)|v|éb—cz))

Specially, if # and v are continuous functions (bounded), then |uv|£,b) < C(lu |£,b) +

b
).

With the preparation above, we could state the intermediate Schauder theory. Assuming
that 2 is a bounded C? domain where y > 1 and a, b are not integer satisfying

O<b<a, a>2, b=y
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Let

P =) palx)D"

o] <2

be the elliptic differential operator of second order on Q where
Po € HY (), if o] <2
Do € Hyp(2), if |a] =2
pe € HZ"70(Q), if b < |al.

Then we have:

Lemma4.1 [12, Theorem 6.1] Let P, a, b be defined as above. If po < 0 and the
principal part of P is positive, then the Dirichlet problem

Pu=f inQ, u=uy onod2
has a unique solution u € Htg_b)(Q)for every f € Héz__zb)(Q) anduy € Hp(0S2, and
we have

Q) < Clulpag + 1 F1E ()

We also have the following regularity result:

Lemma4.2 [12, Theorem 6.3] Let 2, P, a, b satisfy the hypotheses in Lemma 4.1,
—b)

and let u € CO(Q) N C%(Q), ulyq € Hp(dQ), Pu H;2_2 (). Then it follows that
ue HP@).

For the boundary oblique derivative conditions, we have the following lemma:
Lemma4.3 [22, Theorem 3] Let a, b be non-integer and 1 < b < a,a > 2 and
Q C R" be bounded domain with Hp boundary. Let

P=" pa)D* inQ, M=y mu(x)D* ondQ.

la|=<2 la|=<1

Here

Y pat ZclEPVEER", Y mav® >0

la|=2 la|=1
where c is a positive number. We also let
(2-b) . ) )
Pa € H 57 (), if la] =27 mg € Hp—1(092) if || <1,

pe € HOV iflal =2 and b < 2.
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(a) If po <0, mg < 0, then the oblique derivative problem

Pu=f inQ, Mu=g onoiQ2 4.1

has a unique solution u € H;_b)(Q) for every f € Ha(z__zb)(Q) and g €

Hyp_1(02). Moreover,
_ 2—b
Q) < CUglp-1.00 + 11573 ().
(b) Ifu € CO(Q) N C2(Q) is a solution of (4.1) with f € HZ,”(Q),g € Hy_1(0%2)
and the directional derivative Z|a\=1 my, exists at each point of 02, then u €

H ().

4.2 The C"-° Regularity of Ricci Curvature

For a C? conformally compact Einstein metric g = p2gy. p € C>7, we know that
Ric € CO(M) in the initial smooth y-coordinates. We observe that from (2.2)

2 _ J—
pRic=—(n—1)D*p + [W - Api| g = 0(3g.9%p) € C°(M, {y}).

Now we compute the metric and curvature in harmonic coordinates {xﬂ}%zo. As g is
C% x e C?* (y), YA € (0, 1). Then in x-coordinates, we have that

Ric( 9 9 >=ﬂ8yrmc< 9 9 )eCO(M,{x}) 4.2)

ax«’ 9xP dx% 9x¥ ayr’ oyt
a 0 ayY oy’ a 9 —
Ric| —,— | = Ric| —,— )€ C°(M, 4.3
pRIc <8x“ Bxﬂ> Poxa gya ' ayr’ ayT (M. txh) - (43)

By lemma 4.4 below, we conclude that Ric € Hél_g) (M).

Lemma 4.4 Suppose that f is a continuous function on M and p f € C°(M), then
f e BT ().

Proof As |Vp| =1 ondM, we can assume that % <|Vp| <2ondM x [0, ¢) for a
small € > 0. Let

Qs ={x € M|dist(x,dM > 8}, Ms={x € M|p(x) > 5}.
A direct calculation shows that
Qs CMs; C Qs
2 7
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So we don’t distinguish Q25 and Ms when studying the definition of |u|((ll”)9. Since

pof € C”(M), for any x, y € Ms,

lo(x) f(x) —p(y)fI <cC
do(x,y) -

Then

C> o) fx) —pX)f) +px)f) =) fOI

d’(x,y)
Lfe) —fml lo(x) — p(y)l
> p(x)—da(x’y) If(y)l—dg(x’y) ,
which means
p(x)% < C+1floms10ls.

By assumption, f is continuous, in particular, f is bounded. As a consequence,
8| flo.ms < C’ for any & > 0. This proves the lemma. O

Lemma 4.5 In harmonic coordinates, g € HZ(;;_U)(M).

Proof In harmonic charts,
Agc{ﬂ = _2Raﬂ + 0(g,99)

Leta =2+ 0, b =1+ o, then according to Lemma 4.2, gog € Hz(;lf_a)(ﬁ). O
Now we have that g € Hz(:,*”)(ﬁ), so the curvature Rm € Hél 70)(M). By linear
transformation of tensor in coordinate system [similar to (4.2)], Rm is still continuous
in x-coordinates. Recall that Q in (2.6) is the quadratic term of curvature, then Q €
HY™) (M) from the basic property 4 in Sect. 4.1.

AsgeC (M, y), 3.2), (3.3) hold in y-coordinates on d M. In the harmonic coor-
dinates {xﬁ}%zo,

Thenon oM,
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N Wy (a9
Ric| —, — | = — Ric| —,— ).
9x0’ dx« 9x0 9xv Ayr’ ay*T

For any p € 0M, consider the C%* harmonic chart (V, {xe}gzo) around p. Let
D = V N oM be the boundary portion. Then the Bach equation (2.6) could be written
as

, 9
ARicyg = Wffﬂ + Q. 4.4)

Here f(fﬁ =T xRice HY™ M), 6 =0,1,2,3. We will firstly deal with the R;;
term where 1 < i, j < 3. Consider the following equations:

0 _ 0
Aauijo_ fl-j inV
m]lju ISOHD
Auij = fl.j inVv
uf.‘j =0 onD

4.5)

where k = 1,2, 3. By Lemmas 4.1 and 4.3, the 4 equations above have solutions in

. -
H2(+a U)(V). Let Rjj = R;j — aeu?j, then

ARicij = Q+ Q(g, g, 9°g, 0u, 0>u) € HY' =7 (V)

From Lemma4.2 and the boundary conditions of R;;, we have that R; i€ Héli_a) V),

which means that Iéij e C19(V) and R;j € C?(V). We could also prove that Roo €
CL9 (V) and Rgy € C°(V) in the same way.

To study the regularity of Ry;, i = 1,2, 3, we need to consider the following 12
equations:

0 _ 0
Auy; = fo; inV

- 46
N@g) = —(g%) 2/ Rj; + P! (dg) on D (4.6)

Here6 =0, 1, 2, 3and Pﬁ (0g) is apolynomial of g and g_1 to be determined, hence in
C? (D). Lemma4.3 tells us that these 12 equations have solutions ugl. € Hz(;l;a) (M).
Now let I:’Oi = Ro; — 0p ugi,then

ARicoi = Q+ Q(g. dg, 0%g, du, 8*u) € HI= (V).
We recall the Neumann boundary condition (3.5):

_1 i
N(Roi) = (8%) 2 (—g/PdpRji + g T4 Rye).
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Then

N(Ro;) = N(Ro; — dgufy;) = N(Ro;) — N(dpu;)
= (§) "2 (=g PagRi + " TTyRye) + 36((8%) 3¢/ Ryi
— P{(3g)) + Q(dg. du)
= (¢ 1" T Ry. — 09 PL (3g) + Q(3g, du, Rij).

So if we select some good polynomial Pf (0g), we could make that there is no second

derivative of metric g in (gOO)_%g’”3 Fi’ﬂRm — 0y Pi9 (0g). In other words,
N(Roi) = Q(dg, du, R;j) € C°(D)

We again use Lemma 4.3 to conclude that Ro; € Hz(:;”) (V).So Ro; € C19(V) and
Ro; € C°(V).

Now we have proved that Rys € C°(V) forall 0 < o, B < 3,50 f0s =T % Ric €
C?(V). Then the solutions of Egs. 4.5 and 4.6 ”Zﬁ are in C2° (V). Finally, we get
that Ryp € €19 (V) by the same method above.

Thus we have finished the first step of the proof, i.e. Ric € C? (M) in harmonic
charts.

4.3 The C™ 2 Regularity of Metric in Harmonic Charts

We have already shown that g, € C L% for any A € (0, 1) in harmonic charts, then
Agap = —2Rap + 0(g. 98) @7
If 1 <i, j <3, we have the boundary conditions
8ij = hij,

So 8ij € C 2’)”.
Let A;; be the second fundamental form,

1 1
Aij = (&™) (9pgi; — digpj — 0j8pi)-

Since Ric € C19 (M), according to (3.23), A;; € C*° (dM). Combining it with that
gij € C*H(M),

d;jgi0 + digjo € C*7 (IM) (4.8)
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Recall the boundary condition (3.24)

1
g"d, (gvtﬁ - Eaagnﬁ> =0.

Let o = 0, and with (4.8) we conclude that
. 1
(gfoaj + Egooao) 200 € C*7 (IM) (4.9)

So goo € C>*(M).
Let o =i in (3.24), and with (4.8) we get that

, 1
(gfoa,- + zgooao) gio € C*° (M) (4.10)

So gio € C*>*(M). Now we have proved that g is C>* in harmonic charts. Hence
{x?}3_, form a C3* differential structure of M. Repeat the steps above, we could
improve the regularity of metric g gradually, and finally g € C™%(M, x). Hence
{(x?}3_, form a C" - differential structure of M.

4.4 Regularity of the Defining Function

We already show that p € C 2.9(M) and p is smooth in interior. Then the only thing
is to study the boundary regularity of the defining function. For any p € dM, take
the harmonic chart (V,x) of p and let D = V N dM, We could also assume that
8aa =1, 8ij =802 =803 = - = gon = 00 # j), go1 = —8 at p where § € (0, 1)
is sufficiently close to 1. according to (2.2) and (2.3)

S D? 1A
Ric — g =—(n—1)—'0+n —'og.
n+1 P n+1 p
Locally, when acting on (8%, %),
_ a9 n+1 _ . Sgoi
Ap — D-el. D2 — — )= o boo( R —
p—(n+1)- gy p<ax0,8x1) a—1 S0P Rico =~
4.11)

If 1 — & is small enough, then the left side of the formula above is a elliptic operator
around p. Since p|p =0, p € C"™%(x).

In order to improve the C™*1¢ regularity of p, we need that p(Rico;) in (4.11) is at
least C"~ 1%, Actually,

A(pRic) = pA(Ric) + RicAp +2g(Vp, VRic)
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The right side of this formula is C" =3 with the help of Bach equation. pRic|ap = 0,
s0 p(Ricor) € C"~ 1% and the defining function p is C"*1e,
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