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Abstract
Weprove that a 4-dimensionalC2 conformally compact EinsteinmanifoldwithHölder
continuous scalar curvature and with Cm,α boundary metric has a Cm,α compactifica-
tion. We also study the regularity of the new structure and the new defining function.
This is a supplementary proof of Anderson’s work and an improvement of Helliwell’s
result in dimension 4.
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1 Introduction

In 1985, Charles Fefferman and Robin Graham [10] introduced a new method to
study the local conformal invariants of manifolds. Similar to n-sphere embedded into
n + 2-dimensional Minkowski space, they tried to embed an arbitrary conformal n-
manifold into an n + 2-dimensional Ricci-flat Lorentz manifold, which they called
the ambient space. The ambient spaces were used to produce local scalar conformal
invariants. An important part of the ambient space construction is the introduction
of conformally compact Einstein metrics for a conformal manifold. The study of
conformally compact Einstein metrics could tell us some relationship between the
Riemannian structure in the interior and the conformal structure on the boundary.Much
progress has been made since then. In recent years, the physics community has also
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Finite boundary regularity for conformally compact 4005

become interested in conformally compact Einstein metrics because the introduction
of AdS/CFT correspondence in the quantum theory of gravity in theoretic physics by
Maldacena [24].

LetM be the interior of a compact (n+1)-dimensionalmanifoldM with non-empty
boundary ∂M . We call a complete metric g+ on M is Cm,α(or Wk,p) conformally
compact if there exits a defining function ρ on M such that the conformally equivalent
metric

g = ρ2g+

can extend to a Cm,α(or Wk,p) Riemannian metric on M . The defining function is
smooth on M and satisfies

⎧
⎨

⎩

ρ > 0 in M
ρ = 0 on ∂M
dρ �= 0 on ∂M

(1.1)

HereCm,α andWk,p are usualHölder space and the Sobolev space.We call the induced
metric h = g|∂M the boundary metric associated to the compactification g. It is easy
to see that different defining function induces different boundary metric and every
two of the boundary metrics are conformal equivalent. Then the conformal class [h]
is uniquely determined by (M, g+). We call [h] the conformal infinity of g+. If in
addition, g+ is Einstein, i.e.

Ricg+ + ng+ = 0, (1.2)

then we say (M, g+) is a conformally compact Einstein manifold.
There are some interesting problems concerning conformally compact Einstein

metric. Such as the existence problem, see [2,14–16,19,21] etc. The unique problem,
see [1,7]. The compactness problem, see [2,6,7].

In this paper, we deal with the boundary regularity problem. Given a conformally
compact Einsteinmanifold (M, g+) and a compactification g = ρ2g+, if the boundary
metric h isCm,α, is there aCm,α compactification of g+? This problemwas first raised
by Fefferman and Graham in 1985 in [10] and they observed that if dimM = n + 1 is
odd, the boundary regularity in general breaks down at the order n. If dimM = n + 1
is even, the Cm,α compactification may exist.

In [8], Chruściel et al. used the harmonic diffeomorphism at infinity to construct
a good structure near boundary where Einstein equation could be written as an ellip-
tic PDE of second order uniformly degenerating at the boundary. That is so-called
’gauge-broken Einstein equation’. Then they use polyhomogeneity result of some
specific degenerate equation to obtain a good result of the boundary regularity. We
suggest the readers to see [3] for more details about these equations. They proved
that if the boundary metrics are smooth, the C2 conformally compact Einstein metrics
have conformal compactifications that are smooth up to the boundary in the sense of
C1,λ diffeomorphism in dimension 3 and all even dimensions, and polyhomogeneous
smooth in odd dimensions greater than 3. This is certainly a very good result in the
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4006 X. Jin

sense that they made good use of Einstein equation and gave us a suitable coordinate
in infinity to study conformally compact Einstein metrics. I think their method is more
geometrical. The condition of that the initial compactification is C2 in all dimension
should be sharp. However, their result only hold for smooth case. It is believed that
their method could also be used to prove the finite regularity although we may loss
half regularity in this situation.

In [1,2], Anderson considered the Bach tensor in dimension 4, and proved the finite
regularity result. He only assume that the initial compactification g is W 2,p where
p > 4. I am not sure whether the W 2,p condition is good enough to prove his result.
As a supplementary proof, we use Anderson’s method to prove his conclusion where
we assume that the initial compactification g is C2 and the scalar curvature is Cσ for
any σ ∈ (0, 1).

In [17], Helliwell solved the issue in all even dimensions by following Anderson’s
method. He considered the Fefferman–Graham ambient obstruction tensor instead of
Bach tensor in higher dimensions. It is conformally invariant and vanishes for Einstein
metrics. Helliwell assumed the initial compactification g is at least inCn,α for a (n+1)-
smoothmanifold. It means the original compactification isC3,α for a smoothmanifold
of dimension 4. Now we reduce the condition C3,α to C2,σ to improve his result.

This is the main result:

Theorem 1.1 Let (M, g+) be a conformally compact Einstein manifold of dimension
4 with a C2 compactification g = ρ2g+. If the scalar curvature S ∈ Cσ (M) for
some σ > 0, the boundary metric h = g|∂M ∈ Cm,α(∂M) with m ≥ 2, α ∈ (0, 1),
then under a C2,λ coordinates change, g+ has a Cm,α conformally compactification
g̃ = ρ̃2g+ with the boundary metric g̃|∂M = h.

Remark 1.2 The new coordinates form Cm+1,α differential structure of M . ρ̃ is a
Cm+1,α defining function.

If g = ρ2g+ is C2,σ , then the condition of S in Theorem 1.1 holds automatically.
Hence the conclusion is also true.

If the boundary metric h is smooth, then g+ has a smoothly conformally compact-
ification g̃ with the boundary g̃|∂M = h.

The condition that “the scalar curvature S ∈ Cσ (M)” seems unnatural and this is
because we choose the Yamabe compactification for the new g̃. This condition is used
to improve the regularity of the new defining function and new compactification for
the Yamabe equation with Dirichlet data. I think the condition may be removed if we
choose another “good” compactification.

It is well known that (see [10]) if (M, g+) is a 4−dimensional conformally compact
Einsteinmetric with boundarymetric h and g = r2g+ is the geodesic compactification
associated with h, then according to the Gauss lemma, g+ = r−2(dr2 + gr ).

gr = h + g(2)r2 + g(3)r3 + · · ·

where g(2) is the Schouten tensor and is determined by h. g(3) is determined by g+ and
h and hence it is a non-local term. The rest of power series is determined by g(3) and
h. This property is also true for higher dimension. From this point of view, Helliwell’s
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Finite boundary regularity for conformally compact 4007

condition of C3,α initial compactification seems very natural. That we improve it to
C2,σ is a big step as we don’t need any information about the non-local term.

The outline of this paper is as follows. In Sect. 2,we introduce somebasic facts about
conformally compact Einstein metrics. We show that the Yamabe compactification
exists. The conditions in Theorem 1.1 are unchanged under this compactification. We
also consider the Bach equation in dimension 4 and it is an elliptic PDE of second
order about Ricci tensor if the scalar curvature is constant. At last, we introduce the
harmonic coordinates.

In Sect. 3, we deduce some boundary conditions. Including the Dirichlet condition
of metric and Ricci curvature, the Neumann condition of Ricci curvature and the
oblique derivative condition of metric. We prove that these conditions are true even if
the compactification g is only C2.

In Sect. 4, we attempt to prove the main theorem. The first difficulty isCα andC1,α

estimate of Ricci curvature. So we present the intermediate Schauder theory to solve
the problem. Then we finish our proof with the classical Schauder theory. In the end,
with the help of Bach equation, we prove the regularity of defining function in the new
coordinates.

2 Preliminaries

Let (M, g+) be a n + 1-dimensional conformally compact Einstein manifold and
g = ρ2g+ is a compactification. Then

Kab = K+ab + |∇ρ|2
ρ2 − 1

ρ
[D2ρ(ea, ea) + D2ρ(eb, eb)], (2.1)

Ric = −(n − 1)
D2ρ

ρ
+

[
n(|∇ρ|2 − 1)

ρ2 − �ρ

ρ

]

g, (2.2)

S = −2n
�ρ

ρ
+ n(n + 1)

|∇ρ|2 − 1

ρ2 . (2.3)

Here Kab, Ric, S are the sectional curvature, Ricci curvature and scalar curvature of
g and D2 denote the Hessian. Readers can see [4] for the conformal transformation
law of curvatures.

If g is a C2 compactification, then from (2.3),|∇ρ| = 1 on ∂M . Then by (2.1)
K+ab tends to −1 as ρ → 0. Hence a C2 conformally compact Einstein manifold is
asymptotically hyperbolic. Let D2ρ|∂M = A denote the second fundamental form of
∂M in (M, g). The equation (2.2) further implies that ∂M is umbilic.

2.1 Constant Scalar Curvature Compactification

Lemma 2.1 Let (M, g+) be a conformally compact n-manifold with a W 2,p conformal
compactification g = ρ2g+ where p > n/2. Suppose that h = g|∂M is the boundary
metric. Then there exits a W 2,p constant scalar curvature compactification ĝ = ρ̂2g+
with boundary metric h.
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Proof We only need to solve a Yamabe problem with Dirichlet data. Let ĝ = u
4

n−2 g,
then we consider the equation

⎧
⎪⎨

⎪⎩

�gu − n−2
4(n−1) Su + n−2

4(n−1)λu
n+2
n−2 = 0

u > 0 in M
u ≡ 1 on ∂M

(2.4)

In [23], Ma proved that the equation has a C2,α solution if the metric g is C2,α when
λ = −1. Now we extend his conclusion in the case that g ∈ W 2,p for some p > n/2.
Let λ = −1, and we consider the following functional

I (u) = 1

2

∫

M

(

|∇u|2 + n − 2

4(n − 1)
Su2

)

dv + n − 2

2n

∫

M

n − 2

4(n − 1)
|u| 2n

n−2 dv

on the set

A = {u ∈ H1(M) : u|∂M = 1}.

It is coercive andweakly lower semi-continuous.Then I attains its infimumin A,which
means that ∃u ∈ A, I (u) = inf

v∈A
I (v). Since for any η ∈ H1

0 (M), t ∈ R, u + tη ∈ A,

we have that

d

dt
I (u + tη)|t=0 = 0.

Then u is a H1 weak solution. By the Sobolev embedding theorem it follows that

u ∈ L
2n
n−2 . Now let

f (x) = n − 2

4(n − 1)

(
S + u

4
n−2

)
,

then u is a weak solution of −�gu + f u = 0, u|∂M = 1 and f ∈ L
n
2 . By a standard

method in PDE we can infer that u ∈ Lq for any q ≥ 2. (One can see more details
in [5, Theorem 2.3]) So f u ∈ L p′

for any p′ < p and it implies that u ∈ W 2,p′
. If

choose p′ > n/2, then u is Hölder continuous. Then f ∈ L p, and finally we get that
u ∈ W 2,p. The strong maximum principle tells us that u is positive in M. 
�

If g ∈ C2 and Sg ∈ Cσ for some σ > 0, we know that Eq. 2.4 has a C2,σ solution

u. Then ĝ = u
4

n−2 g is still C2, and the new defining function ρ̂ = uρ ∈ C2,σ . In
the following of this section, we don’t distinguish g with ĝ. When we refer to the
compactification g, we mean the scalar curvature of g is −1 near the boundary and
the defining function is C2,σ .
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Finite boundary regularity for conformally compact 4009

2.2 The Bach Equation

For a 4-dimensional manifold, the Bach tensor is a conformal invariant and vanishes
for Einstein metric, see [4]. In local coordinates,

Bi j = P k
i j,k − P k

ik, j − PklWki jl (2.5)

where Pi j = 1
2 Ri j − S

12gi j is the Schouten tensor.
Let {yβ}3β=0 be the smooth structure on M and when restricted on ∂M, {yi }3i=1 is

smooth structure of ∂M . From above we can assume that g ∈ C∞(M)∩C2(M), Sg ≡
−1. Then the fact that g+ is Einstein and (2.5) imply that

�Ricαβ = 
 ∗ ∂Ric + Q (2.6)

in y-coordinates. Here � = gαβ∂α∂β, 
 is the Christoffel symbol of g, 
 ∗ ∂Ric
denote the bilinear form of 
 and∂Ric and Q denotes a quadratic curvature term.

2.3 The Harmonic Coordinates Near Boundary

In the rest of the paper, if there are no special instructions, any use of indices will
follow the convention that Roman indices will range from 1 to n, while Greek indices
range from 0 to n.

We call the coordinates {xβ}nβ=0 harmonic coordinates with respect to g if

�gx
β = 0

for 0 ≤ β ≤ n. We are now going to construct harmonic coordinates in a neighbour-
hood of ∂M if g is smooth.

In fact, if g ∈ C1,α, α ∈ (0, 1) for any point p ∈ ∂M, there is a neighbourhood
V and smooth structure {yβ}nβ=0 where y

0|∂M = 0. Then by solving a local Dirichlet
problem:

{
�gxβ = 0 in V
xβ |V∩∂M = yβ |V∩∂M

(2.7)

there is a C2,α solution by [13] and we have the Schauder estimate:

‖ xβ − yβ ‖C2,α(V )≤ C(‖ �(xβ − yβ) ‖)Cα(V )+ ‖ xβ − yβ ‖C2,α(∂V )= C ‖ �y ‖Cα(V )

We can assume that the y-coordinates is the normal coordinates at p, then�y(p) = 0.
Hence if V is small enough,‖ xβ − yβ ‖C2,α(V ) tends to 0. {xβ}nβ=0, 0 ≤ β ≤ n is a
coordinate around p.
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In particular, if g ∈ C2, then the solution x ∈ C2,α(y) for any α ∈ (0, 1). Hence

gαβ = g

(
∂

∂xα
,

∂

∂xβ

)

∈ C1,α(M)

In harmonic coordinates {xβ}nβ=0, the Ricci tensor could be written as:

�gi j = −2Ri j + Q(g, ∂g)

where Q(g, ∂g) is a polynomial of g and ∂g. For more details, one can see [9].
Here we refer to the special coordinates constructed in Sect. 4 in [11]. Instead of

the harmonic coordinates above, those coordinates may also be useful in our situation,
and may also help us to deal with it in higher dimension of even number. That’s an
interesting problem.

3 The Boundary Conditions

In this section, we derive a boundary problem for g and Ricci curvature of a conformal
compact Einstein manifold in the harmonic coordinates as defined in Sect. 2. We do
it locally, that is, for any p ∈ ∂M, there is a neighbourhood V contains p and a local
harmonic chart {xβ}. Let D = V ∩ ∂M be the boundary portion and let g ∈ C2(V )

be the Yamabe compactification. We will give the Dirichlet and Neumann boundary
conditions of g and Ric(g) on D. Here we state that the boundary conditions in this
section hold for all dimension.

In fact, as it is showed in [17,18] that, if g is C3,α compact, we have following
boundary conditions:

Proposition 3.1 Let (M, g+) be a n + 1-dimensional conformally compact Einstein
manifold with a C3,α Yamabe compactification g = ρ2g+. g|∂M = h is the boundary
metric. Suppose that {xβ}nβ=0 are any coordinates near the boundary such that x0 is

defining function and {xi }ni=0 are coordinates of ∂M . We have:

gi j = hi j , (3.1)

Ri j = n − 1

n − 2
(Rich)i j +

(
1

2n
S − 1

2 (n − 2)
Sh

)

hi j + n − 1

2n2
H2hi j , (3.2)

R0i = −
(
g00

)− 1
2 n − 1

n

∂H

∂xi
− g0 j

g00
Ri j , (3.3)

R00 = 1
(
g00

)2

(

g0i g0 j Ri j + g00
(
1

2
(S − Sh) − n − 1

2n
H2

))

, (3.4)

N (R0i ) =
(
g00

)− 1
2
(
−g jβ∂β R ji + gηβ
τ

iβ Rητ

)
, (3.5)

where N = ∇x0|∇x0| = (g00)− 1
2 g0β∂β be the unit norm vector on ∂M and Rαβ, S, H are

Ricci curvature, scalar curvature and mean curvature respect to g.
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The formula (3.1) is trivial and (3.5) is deduced by the second Bianchi identity and the
fact that the scalar curvature is constant near the boundary. Here we briefly recall the
proof of The formula (3.2), (3.3) and (3.4). For a C3,α conformally compact Einstein
metric, there is a unique C2,α geodesic compactification with the same boundary
metric [20, Lemma 5.1]. Then for such a C2 geodesic compactification, we have a
good formula for Ricci curvature and scalar curvature on the boundary. At last, we
use the Ricci formula under conformal change to get (3.2), (3.3) and (3.4).

In this section, we will show that the formula (3.2), (3.3) and (3.4) still hold for C2

conformally compact Einstein metric.
In fact, if g is C2 conformally compact, then there exists a sequence of C3,α(M)

metrics gk which converge to g inC2 norm in smooth structure of M .However, gk are
not conformal Einstein in general. In the following, we omit the index k and assume
that g is a C3,α metric on M . By choosing a defining function ρ satisfying |∇ρ|g = 1
on ∂M, we make g+ = ρ−2g. Then with Taylor theorem, there is a C2,α function b
such that |∇ρ|2 = 1 + bρ near the boundary.

Ric = −(n − 1)
D2ρ

ρ
+

[
n(|∇ρ|2 − 1)

ρ2 − �ρ

ρ

]

g + F

ρ
, (3.6)

S = −2n
�ρ

ρ
+ n(n + 1)

|∇ρ|2 − 1

ρ2 + tr F

ρ
, (3.7)

where F = ρ(Ricg+ + ng+) = ρRicg + (n − 1)D2ρ − (nb − �ρ)g ∈ C1,α(M).

Now we prove the following formulas:

R0i = −(g00)− 1
2
n − 1

n

∂H

∂xi
− g0 j

g00
Ri j + Q(F, DF, h, Dg, H),

R00 = 1

(g00)2

(

g0i g0 j Ri j + g00
(
1

2
(S − Sh) − n − 1

2n
H2

))

+ Q(F, DF, h, Dg, H),

Ri j=
n − 1

n − 2
(Rich)i j +

(
1

2n
S − 1

2(n − 2)
Sh

)

hi j + n − 1

2n2
H2hi j + Q(F, DF, h, Dg, H).

(3.8)

Here h=g|∂M , H is themean curvature, Q is a polynomial and Q(F, DF,h,Dg,H) =
0 if F = DF = 0 on ∂M . We will use three lemmas to prove (3.8).

First, there is a unique C2,α geodesic compactification of g+ with boundary metric
h and denote it by ḡ = r2g+. Let ḡ = u2g where u = r

ρ
satisfying that ≡ 1 on the

boundary and u ∈ C2,α. Then F̄ = r(Ricg+ + ng+) = uF is still C1,α(M). We will
calculate the boundary curvature of ḡ and notice that the second fundamental form of
ḡ at ∂M is not 0, but determined by the tensor F̄ .

Lemma 3.2 Suppose that ḡ = r2g+ is a C2 conformally compactification of manifold
(M, g+) with boundary metric h. Then on the boundary ∂M,

S̄ = n

n − 1
(Sh) + Q(F̄, DF̄), (3.9)
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R̄i j = n − 1

n − 2
(Rich)i j − 1

2(n − 1)(n − 2)
Shhi j + Q(F̄, DF̄, h, Dḡ). (3.10)

Here S̄ and R̄i j are the scalar curvature and Ricci curvature of ḡ. Q is a polynomial
satisfying Q(F̄, DF̄, h, Dḡ) = 0 if F̄ = DF̄ = 0.

Proof Let us choose the coordinates (r , y1, . . . , yn), near ∂M such that ḡ = dr2+gr ,
i.e.

gri = gri = 0, grr = grr = 1.

According to Gauss Codazzi equation,

R̄i j = ḡαβ R̄iαβ j

= ḡkl((Rh)ikl j + Āil Āk j − Āi j Ākl) + R̄irr j

= (Rh)i j + ḡkl Āil Āk j + H̄ Āi j + R̄irr j .

(3.11)

Taking trace with respect to i and j ,

R̄rr = 1

2
(S̄ − Sh + H̄2 − ḡi j ḡkl Āil Āk j ). (3.12)

Then

R̄irr j = ḡ(∇̄∂i ∇̄∂r ∂r , ∂ j ) − ḡ(∇̄∂r ∇̄∂i ∂r , ∂ j ) − ḡ(∇̄[∂r ,∂i ]∂r , ∂ j )

= −∂r ḡ(∇̄∂i ∂r , ∂ j ) + ḡ(∇̄∂i ∂r , ∇̄∂r ∂ j )

= −∂r Āi j + Ā2(∂i , ∂ j ).

(3.13)

From (3.6) and (3.7) ,we have:

R̄i j = −(n − 1)
Āi j

r
− �̄r

r
ḡi j + F̄i j

r
,

R̄ri = F̄ri
r

,

R̄rr = −�̄r

r
+ F̄rr

r
,

S̄ = −2n
�̄r

r
+ tr F̄

r
.

(3.14)

R̄ic and S̄ is continuous on M, so on ∂M (r = 0) we have:

Āi j = 1

n − 1
(F̄rr hi j − F̄i j ),

H̄ = �̄r = F̄rr = 1

2n
tr F̄ .

(3.15)
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Hence

R̄i j = −(n − 1)∂r Āi j − ∂r �̄r ḡi j − �̄r∂r ḡi j + ∂r F̄i j ,

R̄ri = ∂r F̄ri ,

R̄rr = −∂r �̄r + ∂r F̄rr ,

S̄ = −2n∂r �̄r + ∂r tr F̄ .

(3.16)

Combining all the formulas above, we get that

S̄ = n

n − 1

(

Sh − H̄2 + | Ā|2h − 1

n
∂r tr F̄

)

= n

n − 1

(

Sh − F̄2
rr + 1

(n − 1)2

(
nF̄2

rr + F̄rr trh F̄ + |F̄ |2h
)

− 1

n
∂r tr F̄

)(3.17)

which is (3.9).

R̄i j = n − 1

n − 2
((Rh)i j + ḡkl Āil Āk j + H̄ Āi j ) − F̄rr∂r ḡi j + ∂r F̄i j

+ 1

n − 2
( Ā2

i j − 1

2
(S̄ − Sh + H̄2 − |A|2) + ∂r F̄rr )hi j

(3.18)

Noticing that Āi j is totally determined by F̄ and h, hence (3.10) holds. 
�

Lemma 3.3 Let g = ρ2g+ be a C3,α conformally compact metric of (M, g+) and
ḡ = r2g+ be C2,α geodesic compactification with the same boundary metric g|∂M =
ḡ|∂M = h. Let r = uρ, A = D2ρ, then A|∂M = Ā − urh.

Proof In the local coordinates (r , y1, y2, . . . , yn) near ∂M, Āi j = −
̄r
i j . Then the

relationship between the connection ∇ of g and ∇̄ of ḡ is:


r
i j = 
̄r

i j − 1

u
(δrj ui + δri u j − gi j ur ) = 1

u
urhi j .

g = u−2 ḡ, gradg = u2gradḡ, then

Ai j = D2ρ(∂i , ∂ j ) = g(∇∂i∇ρ, ∂ j ) = −g(∇ρ,∇∂i ∂ j )

= −
r
i j g(∇ρ, ∂r ) = −
r

i j ḡ(∇̄ρ, ∂r )

= −
r
i j ḡ

(
∇̄(

r

u
), ∂r

)
= −
r

i j ḡ

(
u∇̄r − r∇̄u

u2
, ∂r

)

= −
r
i j ḡ

(∇̄r , ∇̄r
) = Āi j − urhi j

(3.19)


�
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Lemma 3.3 tells us that ur = H̄−H
n . Using the fact that u|∂M ≡ 1,

∇̄u = H̄ − H

n
∇̄r .

Lemma 3.4 Suppose that g, ḡ are defined as in Lemma 3.3, then on the boundary ∂M,

Rri = n − 1

n

∂(H̄ − H)

∂xi
+ Q(F̄, DF̄, H),

Rrr = 1

2
(S − Sh) − n − 1

2n
H2 + Q(F, DF, H),

Ri j = R̄i j +
(

1

2n
(S − S̄)

)

hi j + n − 1

2n2
H2hi j + Q(F̄, DF̄, H). (3.20)

Here Q(F̄, DF̄, H) = 0 if F = DF = 0.

Proof Let g = u−2 ḡ, then

Ric = R̄ic + (n − 1)
D̄2u

u
+

(
�̄u

u
+ n|∇̄u|2ḡ

u2

)

ḡ.

We also know that

�̄u = div∇̄u = div

(
H̄ − H

n
∇̄r

)

= H̄ − H

n
�̄r + ∂r (H̄ − H)

n
,

D̄2u(∂i , ∂ j ) = ḡ(∇̄∂i ∇̄u, ∂ j ) = H̄ − H

n
Āi j ,

D̄2u(∂i , ∂r ) = uir = 1

n

∂(H̄ − H)

∂xi
,

D̄2u(∂r , ∂r ) = ∂r (H̄ − H)

n
= �̄u − H̄ − H

n
�̄r .

Then on ∂M, we conclude that

Rri = R̄ri + n − 1

n

∂(H̄ − H)

∂xi
= ∂r F̄ri + n − 1

n

∂(H̄ − H)

∂xi
,

Rrr = R̄rr + n�̄u − (n − 1)(H̄ − H)

n
�̄r + (H̄ − H)2

n
,

Ri j = R̄i j +
(

�̄u + (H̄ − H)2

n

)

hi j + (n − 1)
H̄ − H

n
Āi j . (3.21)

Taking trace with respect to i and j,

S = S̄ + 2n�̄u + n + 1

n
(H̄ − H)2 − (n − 1)(H̄ − H)

n
�̄r + n − 1

n
(H̄ − H)H̄ .
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Then

�̄u = 1

2n

(

S − S̄ − n + 1

n
(H̄ − H)2 + (n − 1)(H̄ − H)

n
�̄r − n − 1

n
(H̄ − H)H̄

)

.

(3.22)

The result follows from (3.21) and (3.22). 
�
In the end, Lemmas 3.2 and 3.4 imply (3.8).

With the preparation above, let’s consider aC2 conformally compactEinsteinmetric
g = ρ2g+ on (M, y). We can choose a sequence of C3,α metric gk which converge
to g in C2(M) norm. Let ρk = ρ

|∇gk ρ|gk , so ρk ∈ C3,α(M) and |∇gkρk |gk ≡ 1 on ∂M .

Let g+
k = (ρk)

−2gk, then gk is a C3,α conformally compactification of (M, g+
k ) with

defining function ρk . Defining Fk = ρk(Ricg+
k

+ ng+
k ) as above, then the formula of

Ricgk on ∂M is like (3.10) and Fk converge to 0 in C1(∂M) norm.
Finally, as the Ricci curvature of gk converge to that of g uniformly, we conclude

that (3.7), (3.19) and (3.20) hold.

3.1 Other Boundary Conditions

We see that if the metric g in Lemma 3.3 is conformally Einstein, then Ā = 0 on ∂M
and the boundary is umbilic. This conclusion is also true even if g is C2 compact and
in this case the geodesic compactification is at least C1. Then we have

Ai j = H

n
hi j .

Taking the derivative of the equation above along ∂M,

∂k Ai j = ∂k H

n
hi j + H

n
∂khi j .

Combining it with (3.3), we get that

∂k Ai j = − 1

n − 1
(g00)

1
2

(

R0k + g0 j

g00
Ri j

)

(3.23)

Technically, this is not a boundary condition because both sides are of the second
derivative of g. However, this plays an important role in proving the regularity and we
will use the condition later.

If we choose harmonic coordinates, we also have the following boundary condition:

gηβ∂η

(

gαβ − 1

2
∂αgηβ

)

= 0 (3.24)

This is just the local expression of �gxα = 0.
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4 Proof of theMain Theorem

We prove the main theorem in this section with the Bach equation in harmonic
coordinates and some boundary conditions in last section. Firstly, let’s recall some
intermediate Schauder theory of elliptic PDE in [12,22], i.e. Cα and C1,α estimate.

4.1 Intermediate Schauder Estimate

Suppose  is a bounded convex domain in Rn and a is a positive number satisfying
a = k + β (k ∈ N, β ∈ (0, 1]) Defining

|u|a =
∑

|α|≤k

|Dαu|0 +
∑

|α|=k

sup
x,y∈

|Dαu(x) − Dαu(u)|
|x − y|β .

Let Ha() denote the Hölder space of functions with finite norm |u|a on , i.e.
Ha() = Ck,β(). Setting

δ = {x ∈ |dist(x, ∂) > δ}

Let b be a number satisfying a + b ≥ 0 and define

|u|(b)a, = sup
δ>0

δa+b|u|a,δ

Let H (b)
a () denote the space of functions u in Ha(δ), (∀δ > 0) such that |u|(b)a, is

finite. Let H (b−0)
a () be the space of functions u in H (b)

a () such that if δ → 0, then
δa+b|u|a,δ → 0.

Basic properties: (the following constant C depends on a, b,.)

1. H (−a)
a () = Ha() = Ck,β(). Noticing that if a is positive integer, Ha() =

Ca−1,1();
2. If b ≥ b′, then |u|(b)a, ≤ C |u|(b′)

a,;
3. If 0 ≤ a′ ≤ a, a′ + b ≥ 0 and b is not a non-positive integer, then |u|(b)a′, ≤

C |u|(b)a,;
4. If 0 ≤ c j ≤ a + b, a ≥ 0, j = 1, 2, then

|uv|(b)a ≤ C(|u|(b−c1)
a |v|(c1)0 + |u|(c2)0 |v|(b−c2)

a )

Specially, if u and v are continuous functions (bounded), then |uv|(b)a ≤ C(|u|(b)a +
|v|(b)a ).

With the preparation above,we could state the intermediateSchauder theory.Assuming
that  is a bounded Cγ domain where γ ≥ 1 and a, b are not integer satisfying

0 < b ≤ a, a > 2, b ≤ γ
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Let

P =
∑

|α|≤2

pα(x)Dα

be the elliptic differential operator of second order on  where

pα ∈ H (2−b)
a−2 (), if |α| ≤ 2

pα ∈ H0(), if |α| = 2

pα ∈ H (2−|α|−0)
a−2 (), if b < |α|.

Then we have:

Lemma 4.1 [12, Theorem 6.1] Let P, a, b be defined as above. If p0 ≤ 0 and the
principal part of P is positive, then the Dirichlet problem

Pu = f in , u = u0 on ∂

has a unique solution u ∈ H (−b)
a () for every f ∈ H (2−b)

a−2 () and u0 ∈ Hb(∂, and
we have

u(−b)
a () ≤ C(|u|b,∂ + | f |(2−b)

a−2 ())

We also have the following regularity result:

Lemma 4.2 [12, Theorem 6.3] Let , P, a, b satisfy the hypotheses in Lemma 4.1,
and let u ∈ C0() ∩ C2(), u|∂ ∈ Hb(∂), Pu ∈ H (2−b)

a−2 (). Then it follows that

u ∈ H (−b)
a ().

For the boundary oblique derivative conditions, we have the following lemma:

Lemma 4.3 [22, Theorem 3] Let a, b be non-integer and 1 < b ≤ a, a > 2 and
 ⊂ Rn be bounded domain with Hb boundary. Let

P =
∑

|α|≤2

pα(x)Dα in , M =
∑

|α|≤1

mα(x)Dα on ∂.

Here

∑

|α|=2

pαξα ≥ c|ξ |2 ∀ξ ∈ Rn,
∑

|α|=1

mαvα > 0

where c is a positive number. We also let

pα ∈ H (2−b)
a−2 (), if |α| ≤ 2; mα ∈ Hb−1(∂) if |α| ≤ 1,

pα ∈ H (0−0)
a−2 if |α| = 2 and b < 2.
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(a) If p0 ≤ 0, m0 < 0, then the oblique derivative problem

Pu = f in , Mu = g on ∂ (4.1)

has a unique solution u ∈ H (−b)
a () for every f ∈ H (2−b)

a−2 () and g ∈
Hb−1(∂). Moreover,

u(−b)
a () ≤ C(|g|b−1,∂ + | f |(2−b)

a−2 ()).

(b) If u ∈ C0() ∩C2() is a solution of (4.1) with f ∈ H (2−b)
a−2 (),g ∈ Hb−1(∂)

and the directional derivative
∑

|α|=1mα exists at each point of ∂, then u ∈
H (−b)
a ().

4.2 The C1,� Regularity of Ricci Curvature

For a C2 conformally compact Einstein metric g = ρ2g+, ρ ∈ C2,σ , we know that
Ric ∈ C0(M) in the initial smooth y-coordinates. We observe that from (2.2)

ρRic = −(n − 1)D2ρ +
[
n(|∇ρ|2 − 1)

ρ
− �ρ

]

g = Q(∂g, ∂2ρ) ∈ Cσ (M, {y}).

Now we compute the metric and curvature in harmonic coordinates {xβ}3β=0. As g is

C2, x ∈ C2,λ(y),∀λ ∈ (0, 1). Then in x-coordinates, we have that

Ric

(
∂

∂xα
,

∂

∂xβ

)

= ∂ yγ

∂xα

∂ yτ

∂xα
Ric

(
∂

∂ yγ
,

∂

∂ yτ

)

∈ C0(M, {x}) (4.2)

ρRic

(
∂

∂xα
,

∂

∂xβ

)

= ρ
∂ yγ

∂xα

∂ yτ

∂xα
Ric

(
∂

∂ yγ
,

∂

∂ yτ

)

∈ Cσ (M, {x}) (4.3)

By lemma 4.4 below, we conclude that Ric ∈ H (1−σ)
σ (M).

Lemma 4.4 Suppose that f is a continuous function on M and ρ f ∈ Cσ (M), then
f ∈ H (1−σ)

σ (M).

Proof As |∇ρ| ≡ 1 on ∂M, we can assume that 1
2 ≤ |∇ρ| ≤ 2 on ∂M × [0, ε) for a

small ε > 0. Let

δ = {x ∈ M |dist(x, ∂M > δ}, Mδ = {x ∈ M |ρ(x) > δ}.

A direct calculation shows that

δ ⊂ M δ
2

⊂ δ
4
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So we don’t distinguish δ and Mδ when studying the definition of |u|(b)a,. Since

ρ f ∈ Cσ (M), for any x, y ∈ Mδ,

|ρ(x) f (x) − ρ(y) f (y)|
dσ (x, y)

≤ C .

Then

C ≥ |ρ(x) f (x) − ρ(x) f (y) + ρ(x) f (y) − ρ(y) f (y)|
dσ (x, y)

≥ ρ(x)
| f (x) − f (y)|

dσ (x, y)
− | f (y)| |ρ(x) − ρ(y)|

dσ (x, y)
,

which means

ρ(x)
| f (x) − f (y)|

dσ (x, y)
≤ C + | f |0,Mδ |ρ|δ.

By assumption, f is continuous, in particular, f is bounded. As a consequence,
δ| f |σ,Mδ < C ′ for any δ > 0. This proves the lemma. 
�

Lemma 4.5 In harmonic coordinates, g ∈ H (−1−σ)
2+σ (M).

Proof In harmonic charts,

�gαβ = −2Rαβ + Q(g, ∂g)

Let a = 2 + σ, b = 1 + σ, then according to Lemma 4.2, gαβ ∈ H (−1−σ)
2+σ (M). 
�

Now we have that g ∈ H (−1−σ)
2+σ (M), so the curvature Rm ∈ H (1−σ)

σ (M). By linear
transformation of tensor in coordinate system [similar to (4.2)], Rm is still continuous
in x-coordinates. Recall that Q in (2.6) is the quadratic term of curvature, then Q ∈
H (1−σ)

σ (M) from the basic property 4 in Sect. 4.1.
As g ∈ C2(M, y), 3.2), (3.3) hold in y-coordinates on ∂M . In the harmonic coor-

dinates {xβ}3β=0,

∂xα

∂ yi
|∂M = ∂xα|∂M

∂ yi
= δα

i .

Then on ∂M,

Ric

(
∂

∂ yi
,

∂

∂ y j

)

= ∂xγ

∂ yi
∂xτ

∂ y j
Ric

(
∂

∂xγ
,

∂

∂xτ

)

= δ
γ

i δτ
j

Ric

(
∂

∂xγ
,

∂

∂xτ

)

= Ric

(
∂

∂xi
,

∂

∂x j

)

,
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Ric

(
∂

∂x0
,

∂

∂xα

)

= ∂ yγ

∂x0
∂ yτ

∂xα
Ric

(
∂

∂ yγ
,

∂

∂ yτ

)

.

For any p ∈ ∂M, consider the C2,λ harmonic chart (V , {xθ }3θ=0) around p. Let
D = V ∩ ∂M be the boundary portion. Then the Bach equation (2.6) could be written
as

�Ricαβ = ∂

∂ yθ
f θ
αβ + Q. (4.4)

Here f θ
αβ = 
 ∗ Ric ∈ H (1−σ)

σ (M) , θ = 0, 1, 2, 3. We will firstly deal with the Ri j

term where 1 ≤ i, j ≤ 3. Consider the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u0i j = f 0i j in V
∂

∂ y0
u0i j = 0 on D

�uki j = f ki j in V
uki j = 0 on D

(4.5)

where k = 1, 2, 3. By Lemmas 4.1 and 4.3, the 4 equations above have solutions in
H (−1−σ)
2+σ (V ). Let R̃i j = Ri j − ∂θuθ

i j , then

�R̃ici j = Q + Q(g, ∂g, ∂2g, ∂u, ∂2u) ∈ H (1−σ)
σ (V )

FromLemma4.2 and the boundary conditions of Ri j ,wehave that R̃i j ∈ H (−1−σ)
2+σ (V ),

which means that R̃i j ∈ C1,σ (V ) and Ri j ∈ Cσ (V ). We could also prove that R̃00 ∈
C1,σ (V ) and R00 ∈ Cσ (V ) in the same way.

To study the regularity of R0i , i = 1, 2, 3, we need to consider the following 12
equations:

{
�uθ

0i = f θ
0i in V

N (uθ
0i ) = −(g00)− 1

2 g jθ R ji + Pθ
i (∂g) on D

(4.6)

Here θ = 0, 1, 2, 3 and Pθ
i (∂g) is a polynomial of g and g−1 to be determined, hence in

Cσ (D).Lemma 4.3 tells us that these 12 equations have solutions uθ
0i ∈ H (−1−σ)

2+σ, (M).

Now let R̃0i = R0i − ∂θuθ
0i ,then

�R̃ic0i = Q + Q(g, ∂g, ∂2g, ∂u, ∂2u) ∈ H (1−σ)
σ (V ).

We recall the Neumann boundary condition (3.5):

N (R0i ) = (g00)−
1
2 (−g jβ∂β R ji + gηβ
τ

iβ Rητ ).
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Then

N (R̃0i ) = N (R0i − ∂θu
θ
0i ) = N (R0i ) − N (∂θu

θ
0i )

= (g00)−
1
2 (−g jβ∂β R ji + gηβ
τ

iβ Rητ ) + ∂θ ((g
00)−

1
2 g jθ R ji

− Pθ
i (∂g)) + Q(∂g, ∂u)

= (g00)−
1
2 gηβ
τ

iβ Rητ − ∂θ P
θ
i (∂g) + Q(∂g, ∂u, Ri j ).

So if we select some good polynomial Pθ
i (∂g), we could make that there is no second

derivative of metric g in (g00)− 1
2 gηβ
τ

iβ Rητ − ∂θ Pθ
i (∂g). In other words,

N (R̃0i ) = Q(∂g, ∂u, Ri j ) ∈ Cσ (D)

We again use Lemma 4.3 to conclude that R̃0i ∈ H (−1−σ)
2+σ (V ). So R̃0i ∈ C1,σ (V ) and

R0i ∈ Cσ (V ).

Now we have proved that Rαβ ∈ Cσ (V ) for all 0 ≤ α, β ≤ 3, so f θ
αβ = 
 ∗ Ric ∈

Cσ (V ). Then the solutions of Eqs. 4.5 and 4.6 uθ
αβ are in C2,σ (V ). Finally, we get

that Rαβ ∈ C1,σ (V ) by the same method above.
Thus we have finished the first step of the proof, i.e. Ric ∈ C1,σ (M) in harmonic

charts.

4.3 The Cm,˛ Regularity of Metric in Harmonic Charts

We have already shown that gαβ ∈ C1,λ for any λ ∈ (0, 1) in harmonic charts, then

�gαβ = −2Rαβ + Q(g, ∂g) (4.7)

If 1 ≤ i, j ≤ 3, we have the boundary conditions

gi j = hi j ,

So gi j ∈ C2,λ.

Let Ai j be the second fundamental form,

Ai j = 1

2
(g00)

1
2 g0β(∂βgi j − ∂i gβ j − ∂ j gβi ).

Since Ric ∈ C1,σ (M), according to (3.23), Ai j ∈ C2,σ (∂M). Combining it with that
gi j ∈ C2,λ(M),

∂ j gi0 + ∂i g j0 ∈ C2,σ (∂M) (4.8)
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Recall the boundary condition (3.24)

gηβ∂η

(

gαβ − 1

2
∂αgηβ

)

= 0.

Let α = 0, and with (4.8) we conclude that

(

g j0∂ j + 1

2
g00∂0

)

g00 ∈ C2,σ (∂M) (4.9)

So g00 ∈ C2,λ(M).

Let α = i in (3.24), and with (4.8) we get that

(

g j0∂ j + 1

2
g00∂0

)

gi0 ∈ C2,σ (∂M) (4.10)

So gi0 ∈ C2,λ(M). Now we have proved that g is C2,λ in harmonic charts. Hence
{xθ }3θ=0 form a C3,λ differential structure of M . Repeat the steps above, we could
improve the regularity of metric g gradually, and finally g ∈ Cm,α(M, x). Hence
{xθ }3θ=0 form a Cm+1,α differential structure of M .

4.4 Regularity of the Defining Function

We already show that ρ ∈ C2,σ (M) and ρ is smooth in interior. Then the only thing
is to study the boundary regularity of the defining function. For any p ∈ ∂M, take
the harmonic chart (V , x) of p and let D = V ∩ ∂M, We could also assume that
gαα = 1, gi j = g02 = g03 = · · · = g0n = 0(i �= j), g01 = −δ at p where δ ∈ (0, 1)
is sufficiently close to 1. according to (2.2) and (2.3)

Ric − Sg

n + 1
= −(n − 1)

D2ρ

ρ
+ n − 1

n + 1

�ρ

ρ
g.

Locally, when acting on ( ∂
∂x0

, ∂
∂x1

),

�ρ − (n + 1) · g−1
01 · D2ρ

(
∂

∂x0
,

∂

∂x1

)

= n + 1

n − 1
· g−1

01 · ρ

(

Ric01 − Sg01
n + 1

)

(4.11)

If 1 − δ is small enough, then the left side of the formula above is a elliptic operator
around p. Since ρ|D ≡ 0, ρ ∈ Cm,α(x).
In order to improve the Cm+1,α regularity of ρ, we need that ρ(Ric01) in (4.11) is at
least Cm−1,α. Actually,

�(ρRic) = ρ�(Ric) + Ric�ρ + 2g(∇ρ,∇Ric)
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The right side of this formula isCm−3,α with the help of Bach equation. ρRic|∂M ≡ 0,
so ρ(Ric01) ∈ Cm−1,α, and the defining function ρ is Cm+1,α.
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