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Abstract
We study the index of the APS boundary value problem for a strongly Callias-type
operator D on a complete Riemannian manifold M . We show that this index is equal
to an index on a simpler manifold whose boundary is a disjoint union of two complete
manifolds N0 and N1. If the dimension of M is odd we show that the latter index
depends only on the restrictionsA0 andA1 ofD to N0 and N1 and thus is an invariant
of the boundary. We use this invariant to define the relative η-invariant η(A1,A0). We
show that even though in our situation the η-invariants of A1 and A0 are not defined,
the relative η-invariant behaves as if it were the difference η(A1) − η(A0).

Keywords Callias · Atiyah–Patodi–Singer · Index · Eta · Boundary value problem ·
Relative eta
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1 Introduction

A Callias-type operator on a complete Riemannian manifold is an operator of the
formD = D+ i� where D is a Dirac operator and � is a self-adjoint potential which
commutes with the Clifford multiplication and satisfies certain growth conditions at
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infinity, so that D is Fredholm. By the celebrated Callias-type index theorem, proven
in different generalities in [3,14,23,25,26], the index of a Callias-type operator on a
complete odd-dimensionalmanifold is equal to the index of a certain operator induced
by � on a compact hypersurface. Several generalizations and applications of the
Callias-type index theorem were obtained recently in [17,20,27,37,38,47].

Bär and Ballmann [6,7] showed that an elliptic boundary value problem for a
Callias-type operator on a complete manifold with compact boundary is Fredholm
and studied its index. Shi [44] proved a version of the Callias-type index theorem for
the Atiyah–Patodi–Singer (APS) boundary value problem for Callias-type operators
on a complete manifold with compact boundary.

The study of Callias-type operators on manifolds with non-compact boundary was
initiated by Fox and Haskell [29,30]. Under rather strong conditions on the manifold
and the operator D, they showed that the heat kernel of D∗D has a nice asymptotic
expansion and proved a version of the Atiyah–Patodi–Singer index theorem in this
situation.

The purpose of this paper is to study the index of the APS boundary value problem
on an arbitrary complete odd-dimensional manifold M with non-compact boundary
without introducing anyextra assumptions onmanifold (in particular,wedonot assume
that our manifold is of bounded geometry). Note that as for the Callias-type theorem
for manifolds without boundary, we consider odd-dimensional case so that a compact
hypersurface in M has even dimension.

We now briefly describe our main results.

1.1 Index of a Boundary Value Problem for Manifolds with Non-compact
Boundary

Let M be a complete Riemannian manifold with non-compact boundary ∂M and let
D = D+ i� be a Callias-type operator on M . We impose slightly stronger conditions
on the growth of the potential � and call the operators satisfying these conditions
strongly Callias-type. On manifolds without boundary, these conditions guarantee
that D has a discrete spectrum.

The restrictionA of a stronglyCallias-type operator to the boundary is a self-adjoint
strongly Callias-type operator on ∂M and, hence, has a discrete spectrum. In Sect. 3
we use the eigensections of A to define a scale of Sobolev spaces Hs

A(∂M, E∂M ) on
∂M (this scale does depend on the operator A). In Sect. 4 we use this scale to define
elliptic boundary conditions for D. This definition is completely analogous to the
classical construction [6], but depends more heavily on A, since the Sobolev spaces
depend on A. These parts are somewhat parallel to the corresponding sections in [6],
but we feel it is necessary to set them up here. This is not only for the completeness
of the paper but also because of the fact that some extra care should be taken to obtain
the results due to the non-compactness.

Our firstmain result, Theorem5.4, is that a stronglyCallias-type operatorwith ellip-
tic boundary condition is Fredholm. This generalizes a theorem of Bär and Ballmann
to manifolds with non-compact boundary. We also extend some standard properties
of the index of boundary value problems on compact manifolds to our non-compact
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APS index with non-compact boundary 3715

setting. In particular, we establish a Splitting Theorem 5.11: if M = M1∪N M2 where
N is a not necessarily compact hypersurface, then index on M is equal to the sum of
the indexes of a boundary value problem on M1 and the dual boundary value problem
on M2.

1.2 An Almost Compact Essential Support

In the theory of Callias-type operators on a manifold without boundary, the crucial
notion is that of the essential support – a compact set K ⊂ M such that the restriction of
D∗D to M\K is strictly positive. For manifolds with boundary, we want an analogous
subset, but the onewhichhas the sameboundary asM (so thatwecankeep theboundary
conditions). Such a set is necessarily non-compact. In Sect. 6, we introduce a class
of non-compact manifolds, called essentially cylindrical manifolds, which replaces
the class of compact manifolds in our study. An essentially cylindrical manifold is a
manifold which outside of a compact set looks like a cylinder [0, ε] × N ′, where N ′
is a non-compact manifold. The boundary of an essentially cylindrical manifold is a
disjoint union of two complete manifolds N0 and N1 which are isometric outside of a
compact set.

We say that an essentially cylindricalmanifoldM1, which contains ∂M , is an almost
compact essential support of D if the restriction of D∗D to M\M1 is strictly positive
and the restriction of D to the cylinder [0, ε] × N ′ is a product, cf. Definition 6.4. We
show that every strongly Callias-type operator on M which is a product near ∂M has
an almost compact essential support.

The main result of Sect. 6 is that the index of the APS boundary value problem for
a strongly Callias-type operator D on a complete odd-dimensional manifold M is
equal to the index of the APS boundary value problem of the restriction of D to its
almost compact essential support M1, cf. Theorem 6.10.

1.3 Index on an Essentially Cylindrical Manifold

In the previous section, we reduced the study of the index of the APS boundary value
problem on an arbitrary complete odd-dimensional manifold to index on an essentially
cylindrical manifold. A systematic study of the latter is done in Sect. 7.

Let M be an essentially cylindrical manifold and let D be a strongly Callias-type
operator on M , whose restriction to the cylinder [0, ε] × N ′ is a product. Suppose
∂M = N0 � N1 and denote the restrictions of D to N0 and N1 by A0 and −A1,
respectively (the sign convention means that we think of N0 as the “left boundary”
and of N1 as the “right boundary” of M).

Our main result here is that the index of the APS boundary value problem for D
depends only on the operators A0 and A1 and not on the interior of the manifold M
and the restriction of D to the interior of M , cf. Theorem 7.5. The odd-dimensionality
of M is essential, since the proof uses the Callias-type index theorem on complete
manifolds without boundary.
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1.4 The Relative�-Invariant

Suppose now that A0 and A1 are self-adjoint strongly Callias-type operators on
complete even-dimensional manifolds N0 and N1, respectively. An almost com-
pact cobordism between A0 and A1 is an essentially cylindrical manifold M with
∂M = N0 � N1 and a strongly Callias-type operator D on M , whose restriction to
the cylindrical part of M is a product and such that the restrictions of D to N0 and N1
are equal toA0 and −A1, respectively. We say thatA0 andA1 are cobordant if there
exists an almost compact cobordism between them. Note that this means, in particular,
that A0 and A1 are equal outside of a compact set.

Let D be an almost compact cobordism betweenA0 andA1. Let B0 and B1 be the
APS boundary conditions forD at N0 an N1, respectively. Let indDB0⊕B1 denote the
index of the APS boundary value problem for D. We define the relative η-invariant
by the formula

η(A1,A0) = 2 indDB0⊕B1 + dim kerA0 + dim kerA1.

It follows from the result of the previous section, that η(A1,A0) is independent of the
choice of an almost compact cobordism.

Notice the “shift of dimension” of the manifold compared to the theory of η-
invariants on compact manifolds. This is similar to the “shift of dimension” in the
Callias-type index theorem: on compact manifolds the index of elliptic operators
is interesting for even-dimensional manifolds, while for Callias-type operators it is
interesting for odd-dimensional manifolds. Similarly, the theory of η-invariants on
compact manifolds is more interesting on odd-dimensional manifolds, while our rel-
ative η-invariant is defined on even-dimensional non-compact manifolds.

If M is a compact odd-dimensional manifold, then the Atiayh–Patodi–Singer index
theorem [4] implies that η(A1,A0) = η(A1)−η(A0) (recall that since the dimension
of M is odd, the integral term in the index formula vanishes). In general, for non-
compact manifolds, the individual η-invariants η(A1) and η(A0)might not be defined.
However, we show that η(A1,A0) in many respects behaves like it was a difference
of two individual η-invariants. In particular, we show, cf. Propositions 8.11–8.12, that

η(A1,A0) = − η(A0,A1), η(A2,A0) = η(A2,A1) + η(A1,A0).

In [30], Fox and Haskell studied the index of a boundary value problem on mani-
folds of bounded geometry. They showed that under rather strong conditions on both
M and D (satisfied for natural operators on manifolds with conical or cylindrical
ends), the heat kernel e−t(DB )∗DB is of trace class and its trace has an asymptotic
expansion similar to the one on compact manifolds. In this case, the η-invariant can
be defined by the usual analytic continuation of the η-function. We prove, cf. Propo-
sition 8.8, that under the assumptions of Fox and Haskell, our relative η-invariant
satisfies η(A1,A0) = η(A1) − η(A0).

More generally, it is often the case that the individual η-functions η(s;A1) and
η(s;A0) are not defined, but their difference η(s;A1) − η(s;A0) is defined and
regular at 0. Bunke [24] studied the case of the undeformed Dirac operator A and gave
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geometric conditions under which Tr(A1e−t A2
1 − A0e−t A2

0) has a nice asymptotic
expansion. In this case, he defined the relative η-function using the usual formula, and
showed that it has a meromorphic extension to the whole plane, which is regular at 0.
He defined the relative η-invariant as the value of the relative η-function at 0. There
are also many examples of strongly Callias-type operators for which the difference of
heat kernels A1e−tA2

1 − A0e−tA2
0 is of trace class and the relative η-function can be

defined by the formula similar to [24]. We conjecture that in this situation our relative
η-invariant η(A1,A0) is equal to the value of the relative η-function at 0.

1.5 The Spectral Flow

Atiyah et al. [5] introduced a notion of spectral flow sf(A) of a smooth family A :=
{As}0≤s≤1 of self-adjoint differential operators on closed manifolds as the integer
that counts the net number of eigenvalues that change sign when s changes from 0
to 1. They showed that the spectral flow computes the variation of the η-invariant
η(A1) − η(A0).

In Sect. 9, we consider a family of self-adjoint strongly Callias-type operators
A = {As}0≤s≤1 on a complete even-dimensional Riemannian manifold. We assume
that there is a compact set K ⊂ M such that the restrictionofAs toM\K is independent
of s. Then all As are cobordant in the sense of Sect. 1.4. Since the spectrum of As is
discrete for all s, the spectral flow can be defined in more or less usual way. We show,
Theorem 9.13, that

η(A1,A0) = 2 sf(A).

Moreover, ifA0 is another self-adjoint strongly Callias-type operator which is cobor-
dant to A0 (and, hence, to all As), then

η(A1,A0) − η(A0,A0) = 2 sf(A).

1.6 Further Developments

After thefirst versionof this paperwas released, several applications and improvements
of these ideas have been developed. In [21] the case of even-dimensional manifolds
was considered. This case is quite different from the odd-dimensional case. The odd-
dimensional case should be viewed as a generalization of the Callias index theorem to
manifolds with boundary, while the even-dimensional case is rather a generalization
of the Atiyah–Patodi–Singer theorem to non-compact setting.

In [45], the description of the Cauchy data spaces for non-compact boundary was
given. This result was used in [22] to study the local boundary value problem for
Callias-type operators on manifolds with non-compact boundary. This generalizes an
index theorem of Freed [31] and gives a new insight on the Horava–Witten anomaly
[34].
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In [16] an APS-index formula on globally hyperbolic Lorentzian manifolds with
non-compact Cauchy hypersurface was obtained, generalizing the theory of Bär and
Strohmaier [8,9].

All these results relay on the techniques developed in the current paper.

2 Operators on aManifold with Non-compact Boundary

In this section, we discuss different domains for operators onmanifoldswith boundary.

2.1 Setting and Notations

Let M be a complete Riemannian manifold with (possibly non-compact) boundary
∂M . We denote the Riemannian metric on M by gM and its restriction to the boundary
by g∂M . Then (∂M, g∂M ) is also a complete Riemannian manifold. We denote by
dV the volume form on M and by dS the volume form on ∂M . The interior of M
is denoted by M̊ . For a vector bundle E over M , C∞(M, E) is the space of smooth
sections of E , C∞

c (M, E) is the space of smooth sections of E with compact support,
andC∞

cc (M, E) is the space of smooth sections of E with compact support in M̊ . Note
that

C∞
cc (M, E) ⊂ C∞

c (M, E) ⊂ C∞(M, E).

We denote by L2(M, E) the Hilbert space of square-integrable sections of E , which
is the completion of C∞

c (M, E) with respect to the norm induced by the L2-inner
product

(u1, u2)L2(M,E) :=
∫
M

〈u1, u2〉 dV ,

where 〈·, ·〉 denotes the fiberwise inner product. Similarly, we have spaces
C∞(∂M, E∂M ),C∞

c (∂M, E∂M ) and L2(∂M, E∂M ) on the boundary ∂M , where E∂M

denotes the restriction of the bundle E to ∂M . If u ∈ C∞(M, E), we denote by
u∂M ∈ C∞(∂M, E∂M ) the restriction of u to ∂M . For general sections on the bound-
ary ∂M , we use bold letters u, v, . . . to denote them.

Let E, F be two Hermitian vector bundles over M and D : C∞
c (M, E) →

C∞
c (M, F) be a first-order differential operator. The formal adjoint of D, denoted

by D∗, is defined by

∫
M

〈Du, v〉dV =
∫
M

〈 u, D∗v〉 dV , (2.1)

for all u, v ∈ C∞
cc (M, E). If E = F and D = D∗, then D is called formally self-

adjoint.
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2.2 Minimal andMaximal Extensions

We set Dcc := D|C∞
cc (M,E) and view it as an unbounded operator from L2(M, E) to

L2(M, F). Theminimal extension Dmin of D is the operator whose graph is the closure
of that of Dcc. Themaximal extension Dmax of D is defined to be Dmax = (

(D∗)cc
)ad,

where the superscript “ad” denotes the adjoint of the operator in the sense of functional
analysis. Both Dmin and Dmax are closed operators. Their domains, dom Dmin and
dom Dmax, become Hilbert spaces equipped with the graph norm ‖ · ‖D , which is the
norm associated with the inner product

(u1, u2)D :=
∫
M

(〈u1, u2〉 + 〈Du1, Du2〉
)
dV .

It’s easy to see from the following Green’s formula that C∞
c (M, E) ⊂ dom Dmax.

2.3 Green’s Formula

Let τ ∈ T M |∂M be the unit inward normal vector field along ∂M . Using the Rieman-
nian metric, τ can be identified with its associated one-form. We have the following
formula (cf. [13, Proposition 3.4]).

Proposition 2.4 (Green’s formula) Let D be as above. Then for all u ∈ C∞
c (M, E)

and v ∈ C∞
c (M, F),

∫
M

〈Du, v〉 dV =
∫
M

〈u, D∗v〉 dV −
∫

∂M
〈σD(τ )u∂M , v∂M 〉 dS, (2.2)

where σD denotes the principal symbol of the operator D.

Remark 2.5 Amore general version of formula (2.2)will be presented in Theorem3.39
below.

2.6 Sobolev Spaces

Let ∇E be a Hermitian connection on E . For any u ∈ C∞(M, E), the covariant
derivative ∇Eu ∈ C∞(M, T ∗M ⊗ E). Applying the covariant derivative multiple
times we get (∇E )k ∈ C∞(M, T ∗M⊗k ⊗ E) for k ∈ Z+. We define kth Sobolev
space by

Hk(M, E) : = {
u ∈ L2(M, E) : (∇E ) j u ∈ L2(M, T ∗M⊗ j ⊗ E)

for all j = 1, . . . , k
}
,

123



3720 M. Braverman, P. Shi

where the covariant derivatives are understood in distributional sense. It is a Hilbert
space with Hk-norm

‖u‖2Hk (M,E)
: = ‖u‖2L2(M,E)

+ ‖∇Eu‖2L2(M,T ∗M⊗E)
+ · · ·

+‖(∇E )ku‖2L2(M,T ∗M⊗k⊗E)
.

Note that when M is compact, Hk(M, E) does not depend on the choices of ∇E and
the Riemannian metric, but when M is non-compact, it does.

We say u ∈ L2
loc(M, E) if the restrictions of u to compact subsets of M have

finite L2-norms. For k ∈ Z+, we say u ∈ Hk
loc(M, E), the kth local Sobolev space,

if u,∇Eu, (∇E )2u, . . . , (∇E )ku all lie in L2
loc. This Sobolev space is independent of

the preceding choices.
Similarly, we fix a Hermitian connection on F and define the spaces L2(M, F),

L2
loc(M, F), Hk(M, F), and Hk

loc(M, F). Again, definitions of these spaces apply
without change to ∂M .

2.7 Completeness

We recall the following definition of completeness and a lemma from [6].

Definition 2.8 We call D a complete operator if the subspace of compactly supported
sections in dom Dmax is dense in dom Dmax with respect to the graph norm of D.

Lemma 2.9 [6, Lemma 3.1] Let f : M → R be a Lipschitz function with compact
support and u ∈ dom Dmax. Then f u ∈ dom Dmax and

Dmax( f u) = σD(d f )u + f Dmaxu.

The next theorem, again from [6], is still true here with minor changes of the proof.

Theorem 2.10 Let D : C∞(M, E) → C∞(M, F) be a differential operator of first
order. Suppose that there exists a constant C > 0 such that

|σD(ξ)| ≤ C |ξ |

for all x ∈ M and ξ ∈ T ∗
x M. Then D and D∗ are complete.

Sketch of the proof Fix a base point x0 ∈ ∂M and let r : M → R be the distance
function from x0, r(x) = dist(x, x0). Then r is a Lipschitz function with Lipschitz
constant 1. Now the proof is exactly the same as that of [6, Theorem 3.3]. ��
Example 2.11 If D is a Dirac-type operator (cf. Sect. 3.1), then σD(ξ) = σD∗(ξ) =
c(ξ) is the Clifford multiplication. So one can choose C = 1 in Theorem 2.10 and
therefore D and D∗ are complete.
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3 Strongly Callias-Type Operators and Their Domains

In this section,we introduce ourmain object of study—stronglyCallias-type operators.
The main property of these operators is the discreteness of their spectra. We discuss
natural domains for a strongly Callias-type operator on a manifold with non-compact
boundary. We also introduce a scale of Sobolev spaces defined by a strongly Callias-
type operator.

3.1 A Dirac Operator

Let M be a complete Riemannian manifold and let E → M be a Hermitian vector
bundle over M . We use the Riemannian metric of M to identify the tangent and the
cotangent bundles, T ∗M � T M .

Definition 3.2 ([39], Definition II.5.2) The bundle E is called a Dirac bundle over M
if the following data is given

(i) a Clifford multiplication c : T M � T ∗M → End(E), such that c(ξ)2 = −|ξ |2
and c(ξ)∗ = −c(ξ) for every ξ ∈ T ∗M ;

(ii) a Hermitian connection ∇E on E which is compatible with the Clifford multipli-
cation in the sense that

∇E (
c(ξ) u

) = c(∇LCξ) u + c(ξ)∇Eu, u ∈ C∞(M, E).

Here ∇LC denotes the Levi-Civita connection on T ∗M .

If E is a Dirac bundle we consider the Dirac operator D : C∞(M, E) →
C∞(M, E) defined by

D =
n∑
j=1

c(e j )∇E
e j , (3.1)

where e1, . . . , en is an orthonormal basis of T M � T ∗M . One easily checks that D
is formally self-adjoint, D∗ = D.

3.3 Strongly Callias-Type Operators

Let � ∈ End(E) be a self-adjoint bundle map (called a Callias potential). Then

D := D + i� (3.2)

is a Dirac-type operator on E and

D∗D = D2 + �2 + i[D,�], DD∗ = D2 + �2 − i[D,�], (3.3)

where [D,�] := D� − �D is the commutator of the operators D and �.

Definition 3.4 We say that D is a strongly Callias-type operator if
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(i) [D,�] is a zeroth order differential operator, i.e., a bundle map;
(ii) for any R > 0, there exists a compact subset KR ⊂ M such that

�2(x) − ∣∣[D,�](x)∣∣ ≥ R (3.4)

for all x ∈ M \KR . Here
∣∣[D,�](x)∣∣ denotes the operator norm of the linear map

[D,�](x) : Ex → Ex . In this case, the compact set KR is called an R-essential
support of D.

A compact set K ⊂ M is called an essential support of D if there exists an R > 0
such that K is an R-essential support of D.

Remark 3.5 This is a stronger version of the Callias condition, [3, Definition 1.1].
Basically, we require that the Callias potential grows to infinity at the infinite ends of
the manifold. Note that D is a strongly Callias-type operator if and only if D∗ is.

Remark 3.6 Condition (i) of Definition 3.4 is equivalent to the condition that � com-
mutes with the Clifford multiplication

[
c(ξ),�

] = 0, for all ξ ∈ T ∗M . (3.5)

3.7 A Product Structure

We say that the Riemannian metric gM is product near the boundary if there exists a
neighborhood U ⊂ M of the boundary which is isometric to the cylinder

Zr := [0, r) × ∂M ⊂ M . (3.6)

In the following, we identify U with Zr and denote by t the coordinate along the axis
of Zr. Then the inward unit normal vector to the boundary is given by τ = dt .

Further, we assume that the Clifford multiplication c : T ∗M → End(E) and the
connection ∇E also have product structure on Zr. In this situation, we say that the
Dirac bundle E is product on Zr. We say that the Dirac bundle E is product near the
boundary if there exists r > 0, a neighborhood U of ∂M and an isometry U � Zr
such that E is product on Zr. In this situation, the restriction of the Dirac operator to
Zr takes the form

D = c(τ )
(
∂t + A

)
, (3.7)

where, by (3.1) (with τ = en),

A = −
n−1∑
j=1

c(τ )c(e j )∇E
e j .

The operator A is formally self-adjoint A∗ = A and anticommutes with c(τ )

A ◦ c(τ ) = −c(τ ) ◦ A. (3.8)
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Let D = D + i� : C∞(M, E) → C∞(M, E) be a strongly Callias-type operator.
Then the restriction of D to Zr is given by

D = c(τ )
(
∂t + A − ic(τ )�

) = c(τ )
(
∂t + A)

, (3.9)

where

A := A − ic(τ )� : C∞(∂M, E∂M ) → C∞(∂M, E∂M ). (3.10)

Definition 3.8 We say that a Callias-type operator D is product near the boundary
if the Dirac bundle E is product near the boundary and the restriction of the Callias
potential� to Zr does not depend on t . The operatorA of (3.10) is called the restriction
of D to the boundary.

3.9 The Restriction of the Adjoint to the Boundary

Recall that � is a self-adjoint bundle map, which, by Remark 3.6, commutes with the
Clifford multiplication. It follows from (3.9), that

D∗ = c(τ )
(
∂t + A# ) = c(τ )

(
∂t + A + ic(τ )�

)
, (3.11)

where
A# := A + ic(τ )�. (3.12)

Thus, D∗ is product near the boundary.
From (3.5) and (3.8), we obtain

A# = −c(τ ) ◦ A ◦ c(τ )−1. (3.13)

3.10 Self-adjoint Strongly Callias-Type oOperators

Notice thatA is a formally self-adjoint Dirac-type operator on ∂M and thus is an essen-
tially self-adjoint elliptic operator by [32, Theorem 1.17]. Since c(τ ) anticommutes
with A, we have

A2 = A2 + ic(τ )[A,�] + �2. (3.14)

It follows from Definition 3.4 and (3.10) that [A,�] is also a bundle map with the
same norm as [D,�]. Thus the last two terms on the right-hand side of (3.14) grow to
infinity at the infinite ends of ∂M . By [46, Lemma6.3], the spectrumofA is discrete. In
this sense,A is very similar to a strongly Callias-type operator, with the difference that
the potential c(τ )� is anti-self-adjoint and, as a resultA is self-adjoint. We formalize
the properties of A in the following.

Definition 3.11 Let A be a Dirac operator on ∂M . An operator A := A + 	, where
	 : E∂M → E∂M is a self-adjoint bundle map, is called a self-adjoint strongly
Callias-type operator if
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(i) the anticommutator [A, 	]+ := A ◦ 	 + 	 ◦ A is a zeroth order differential
operator, i.e., a bundle map;

(ii) for any R > 0, there exists a compact subset KR ⊂ ∂M such that

	2(x) − ∣∣[A, 	]+(x)
∣∣ ≥ R (3.15)

for all x ∈ ∂M \ KR . In this case, the compact set KR is called an R-essential
support of A.

Using this definition, we summarize the properties of A in the following.

Lemma 3.12 Let D be a strongly Callias-type operator on a complete Riemannian
manifold M and letA be the restriction of D to the boundary. ThenA is a self-adjoint
strongly Callias-type operator on ∂M. In particular, it has a discrete spectrum.

3.13 Sobolev Spaces on the Boundary

The operator id+A2 is positive. Hence, for any s ∈ R, its powers (id+A2)s/2 can be
defined using functional calculus.

Definition 3.14 Set

C∞
A (∂M, E∂M ) :=

{
u ∈ C∞(∂M, E∂M ) :

∥∥(id+A2)s/2u
∥∥2
L2(∂M,E∂M )

< +∞ for all s ∈ R

}
.

For all s ∈ R, we define the Sobolev Hs
A-norm on C∞

A (∂M, E∂M ) by

‖u‖2Hs
A(∂M,E∂M ) := ∥∥(id+A2)s/2u

∥∥2
L2(∂M,E∂M )

. (3.16)

The Sobolev space Hs
A(∂M, E∂M ) is defined to be the completion of C∞

A (∂M, E∂M )

with respect to this norm.

Remark 3.15 In general,

C∞
c (∂M, E∂M ) ⊂ C∞

A (∂M, E∂M ) ⊂ C∞(∂M, E∂M ).

When ∂M is compact, the above spaces are all equal and the space C∞
A (∂M, E∂M )

is independent of A. However, if ∂M is not compact, these spaces are different and
C∞
A (∂M, E∂M ) does depend on the operatorA. Consequently, if ∂M is not compact,

the Sobolev spaces Hs
A(∂M, E∂M ) depend on A.

Remark 3.16 Alternatively, one could define the s-Sobolev space to be the completion
of C∞

c (∂M, E∂M ) with respect to the Hs
A-norm. In general, this leads to a different

scale of Sobolev spaces, cf. [33, §3.1] for more details. We prefer our definition, since
the space Hfin(A), defined below in (3.18), which plays an important role in our
discussion, is a subspace of C∞

A (∂M, E∂M ) but is not a subspace of C∞
c (∂M, E∂M ).
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The rest of this section follows rather closely the exposition in Sections 5 and 6 of
[6] with some changes needed to accommodate the non-compactness of the boundary.

3.17 Eigenvalues and Eigensections ofA

Let
− ∞ ← · · · ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · → +∞ (3.17)

be the spectrum of A with each eigenvalue being repeated according to its (finite)
multiplicity. Fix a corresponding L2-orthonormal basis {u j } j∈Z of eigensections of
A. By definition, each element in C∞

A (∂M, E∂M ) is L2-integrable and thus can be
written as u = ∑∞

j=−∞ a ju j . Then

‖u‖2Hs
A(∂M,E∂M ) =

∞∑
j=−∞

|a j |2(1 + λ2j )
s .

On the other hand, let

Hfin(A) :=
{
u =

∑
j

a ju j : a j = 0 for all but finitely many j
}

(3.18)

be the space of finitely generated sections. Then Hfin(A) ⊂ C∞
A (∂M, E∂M ) and for

any s ∈ R, Hfin(A) is dense in Hs
A(∂M, E∂M ). We obtain an alternative description

of the Sobolev spaces

Hs
A(∂M, E∂M ) =

{
u =

∑
j

a ju j :
∑
j

|a j |2(1 + λ2j )
s < +∞

}
.

Remark 3.18 The following properties follow from our definition and preceding dis-
cussion.

(i) H0
A(∂M, E∂M ) = L2(∂M, E∂M ).

(ii) If s < t , then ‖u‖Hs
A(∂M,E∂M ) ≤ ‖u‖Ht

A(∂M,E∂M ). And we shall show shortly in
Theorem 3.19 that there is still a Rellich embedding theorem, i.e., the induced
embedding Ht

A(∂M, E∂M ) ↪→ Hs
A(∂M, E∂M ) is compact.

(iii)
⋂

s∈R Hs
A(∂M, E∂M ) = C∞

A (∂M, E∂M ).
(iv) For all s ∈ R, the pairing

Hs
A(∂M, E∂M ) × H−s

A (∂M, E∂M ) → C,
( ∑

j

a ju j ,
∑
j

b ju j

)
�→

∑
j

a j b j

is perfect. Therefore, Hs
A(∂M, E∂M ) and H−s

A (∂M, E∂M ) are pairwise dual.

We have the following version of the Rellich Embedding Theorem:

Theorem 3.19 For s < t , the embedding Ht
A(∂M, E∂M ) ↪→ Hs

A(∂M, E∂M ) men-
tioned in Remark 3.18.(ii) is compact.
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To prove the theorem, we use the following result, cf., for example [11, Proposition
2.1].

Proposition 3.20 A closed bounded subset K in a Banach space X is compact if and
only if for every ε > 0, there exists a finite dimensional subspace Yε of X such that
every element x ∈ K is within distance ε from Yε.

Proof of Theorem 3.19 Let B be the unit ball in Ht
A(∂M, E∂M ). We use Propo-

sition 3.20 to show that the closure B̄ of B in Hs
A(∂M, E∂M ) is compact in

Hs
A(∂M, E∂M ).
For simplicity, suppose that λ0 is an eigenvalue of A with smallest absolute value

and for n > 0, set �n := min{λ2n, λ2−n}. Then {�n} is an increasing sequence by
(3.17). For every ε > 0, there exists an integer N > 0, such that (1+ �n)

s−t < ε2/4
for all n ≥ N .

Consider the finite-dimensional space

Yε := span{u j : −N ≤ j ≤ N } ⊂ Hs
A(∂M, E∂M ).

We claim that every element ū ∈ B̄ is within distance ε from Yε. Indeed, choose
u = ∑

j a ju j ∈ B, such that the Hs
A-distance between ū and u is less than ε/2. Then

u′ := ∑N
j=−N a ju j belongs to Yε and the Hs

A-distance

‖u − u′‖2Hs
A(∂M,E∂M ) =

∑
| j |>N

|a j |2(1 + λ2j )
s ≤

∑
| j |>N

|a j |2(1 + λ2j )
t · (1 + �N )s−t

≤ ‖u‖2Ht
A(∂M,E∂M )

· (1 + �N )s−t ≤ (1 + �N )s−t <
ε2

4
.

Hence u is within distance ε/2 of Yε, and therefore ū is within distance ε of Yε. The
theorem then follows from Proposition 3.20. ��

3.21 The Hybrid Soblev Spaces

For I ⊂ R, let
PA
I :

∑
j

a ju j �→
∑
λ j∈I

a ju j (3.19)

be the spectral projection. It’s easy to see that

Hs
I (A) := PA

I (Hs
A(∂M, E∂M )) ⊂ Hs

A(∂M, E∂M )

for all s ∈ R.

Definition 3.22 For a ∈ R, we define the hybrid Sobolev space

Ȟ(A) := H1/2
(−∞,a](A) ⊕ H−1/2

(a,∞)(A) ⊂ H−1/2
A (∂M, E∂M ) (3.20)
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with Ȟ -norm

‖u‖2
Ȟ(A)

:= ∥∥PA
(−∞,a]u

∥∥2
H1/2
A (∂M,E∂M )

+ ∥∥PA
(a,∞)u

∥∥2
H−1/2
A (∂M,E∂M )

.

The space Ȟ(A) is independent of the choice of a. Indeed, for a1 < a2, the
difference between the corresponding Ȟ -norms only occurs on the finite dimensional
space PA[a1,a2](L

2(∂M, E∂M )). Thus the norms defined using different values of a are
equivalent.

Similarly, we define

Ĥ(A) := H−1/2
(−∞,a](A) ⊕ H1/2

(a,∞)(A) (3.21)

with Ĥ -norm

‖u‖2
Ĥ(A)

:= ‖PA
(−∞,a]u‖2

H−1/2
A (∂M,E∂M )

+ ‖PA
(a,∞)u‖2

H1/2
A (∂M,E∂M )

.

Then

Ĥ(A) = Ȟ(−A).

The pairing of Remark 3.18.(iv) induces a perfect pairing

Ȟ(A) × Ĥ(A) → C.

3.23 The Hybrid Space of the Dual Operator

Recall, that the restrictionA# ofD∗ to the boundary can be computed by (3.13). Thus
the isomorphism c(τ ) : E∂M → E∂M sends each eigensection u j of A associated
with eigenvalue λ j to an eigensection of A# associated with eigenvalue −λ j . We
conclude that the set of eigenvalues ofA# is {−λ j } j∈Zwith associated L2-orthonormal
eigensections {c(τ )u j } j∈Z. For u = ∑

j a ju j ∈ Hs
A(∂M, E∂M ), we have

‖c(τ )u‖2Hs
A# (∂M,E∂M ) =

∑
j

|a j |2
(
1 + (−λ j )

2)s = ‖u‖2Hs
A(∂M,E∂M ).

So c(τ ) induces an isometry between Sobolev spaces Hs
A(∂M, E∂M ) and

Hs
A# (∂M, E∂M ) for any s ∈ R. Furthermore, it restricts to an isomorphism between

Hs
(−∞,a](A) and Hs

[−a,∞)(A#). Therefore we conclude that

Lemma 3.24 Over ∂M, the isomorphism c(τ ) : E∂M → E∂M induces an isomor-
phism Ĥ(A) → Ȟ(A#). In particular, the sesquilinear form

β : Ȟ(A) × Ȟ(A#) → C, β(u, v) := − (
u,−c(τ )v

) = − (
c(τ )u, v

)
,

is a perfect pairing of topological vector spaces.
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3.25 Sections in a Neighborhood of the Boundary

Recall from (3.6) that we identify a neighborhood of ∂M with the product Zr =
[0, r) × ∂M . The L2-sections over Zr can be written as

u(t, x) =
∑
j

a j (t)u j (x)

in terms of the L2-orthonormal basis {u j } on ∂M . We fix a smooth cut-off function
χ : R → R with

χ(t) =
{
1 for t ≤ r/3

0 for t ≥ 2r/3.
(3.22)

Recall that Hfin(A) is dense in Ȟ(A) and Ĥ(A). For u ∈ Hfin(A), we define a
smooth section E u over Zr by

(E u)(t) := χ(t) · exp(−t |A|)u. (3.23)

Thus, if u(x) = ∑
j a ju j (x), then

(E u)(t, x) = χ(t)
∑
j

a j · exp(−t |λ j |) · u j (x). (3.24)

It’s easy to see that E u is an L2-section over Zr. So we get a linear map

E : Hfin(A) → C∞(Zr, E) ∩ L2(Zr, E)

which we call the extension map.
As in Sect. 2.2 we denote by ‖ · ‖D the graph norm of D.

Lemma 3.26 For all u ∈ Hfin(A), the extended section E u over Zr belongs to
domDmax. And there exists a constant C = C(χ,A) > 0 such that

∥∥E u∥∥D ≤ C ‖u‖Ȟ(A)
and

∥∥c(τ )E u
∥∥D∗ ≤ C ‖u‖Ĥ(A)

.

Proof For the first claim, we only need to show that D(E u) is an L2-section over Zr.
Since

D(E u) = D(E PA
(−∞,0]u) + D(E PA

(0,∞)u),

it suffices to consider each summand separately. Recall thatD = c(τ )(∂t +A) on Zr.
By (3.23), we have

D(E PA
(0,∞)u) = c(τ ) χ ′ exp(−tA)PA

(0,∞)u,
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which is clearly an L2-section over Zr. On the other hand,

D(E PA
(−∞,0]u) = c(τ )

(
2χA + χ ′) exp(tA)PA

(−∞,0]u,

which is again an L2-section over Zr. Therefore E u ∈ domDmax.
The proof of the first inequality is exactly the same as that of [6, Lemma 5.5]. For

the second one, just notice that A# is the restriction to the boundary of D∗ and, by
Lemma 3.24, c(τ ) : Ȟ(A#) → Ĥ(A) is an isomorphism of Hilbert spaces. ��

The following lemma is an analogue of [6, Lemma 6.2] with exactly the same proof.

Lemma 3.27 There is a constant C > 0 such that for all u ∈ C∞
c (Zr, E),

‖u∂M‖Ȟ(A)
≤ C ‖u‖D.

3.28 A Natural Domain for Boundary Value Problems

For closed manifolds the ellipticity of D implies that dom(Dmax) ⊂ H1
loc(M, E).

However, if ∂M �= ∅, then near the boundary the sections in dom(Dmax) can behave
badly. That is why, if one wants to talk about boundary value of sections, one needs
to consider a smaller domain for D.

Definition 3.29 We define the norm

‖u‖2
H1
D(Zr,E)

:= ‖u‖2L2(Zr,E)
+ ‖∂t u‖2L2(Zr,E)

+ ‖Au‖2L2(Zr,E)
. (3.25)

and denote by H1
D(Zr, E) the completion of C∞

c (Zr, E) with respect to this norm.
We refer to (3.25) as the H1

D(Zr)-norm.
In general, for any integer k ≥ 1, let Hk

D(Zr, E) be the completion of C∞
c (Zr, E)

with respect to the Hk
D(Zr)-norm given by

‖u‖2
Hk
D(Zr,E)

:= ‖u‖2L2(Zr,E)
+ ‖(∂t )ku‖2L2(Zr,E)

+ ‖Aku‖2L2(Zr,E)
. (3.26)

Note that H1
D(Zr, E) ⊂ H1

loc(Zr, E)∩L2(Zr, E).Moreover, we have the following
analogue of the Rellich embedding theorem:

Lemma 3.30 The inclusion map H1
D(Zrr, E) ↪→ L2(Zr, E) is compact.

Proof Let B be the unit ball about the origin in H1
D(Zr, E) and let B̄ denote its closure

in L2(Zr, E). We need to prove that B̄ is compact. By Proposition 3.20 it is enough to
show that for every ε > 0 there exists a finite dimensional subspace Yε ∈ L2(Zr, E)

such that every u ∈ B̄ is within distance ε from Yε.
Let λ j and u j be as in Sect. 3.17. As in the proof of Theorem 3.19 we set �n :=

min{λ2n, λ2−n}. Choose N > 0 such that

1 + �n >
8

ε2
for all n ≥ N . (3.27)
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Let H1([0, r))denote theSobolev spaceof complex-valued functions on the interval
[0, r) with norm

‖a‖2H1([0,r)) := ‖a‖2L2([0,r)) + ‖a′‖2L2([0,r)).

Let B ′ ⊂ H1([0, r)) denote the unit ball about the origin in H1([0, r)) and let B̄ ′ be
its closure in L2([0, r)). By the classical Rellich embedding theorem B̄ ′ is compact in
L2([0, r)). Hence, for every ε > 0 there exists a finite set Xε such that every a ∈ B̄ ′
is within distance ε√

16N+8
from Xε.

We now define the finite dimensional space

Yε := { N∑
j=−N

a j (t)u j : a j (t) ∈ Xε

} ⊂ L2(Zr, E).

We claim that every u ∈ B̄ is within distance ε from Yε. Indeed, let ū ∈ B̄. We choose
u = ∑∞

j=−∞ b j (t)u j ∈ B such that

‖ū − u‖ <
ε

2
. (3.28)

Since {u j } is an orthonormal basis of L2(∂M, E∂M ), we conclude from (3.25) that

‖u‖2
H1
D(Zr,E)

=
∞∑

j=−∞

(
(1 + λ2j ) ‖b j‖2L2([0,r)) + ‖b′

j‖2L2([0,r))
)
.

Since ‖u‖2
H1
D(Zr,E)

≤ 1, for all j ∈ Z

(1 + λ2j ) ‖b j‖2L2([0,r)) + ‖b′
j‖2L2([0,r)) ≤ 1.

Hence,

‖b j‖2L2([0,r)) + ‖b′
j‖2L2([0,r)) ≤ 1 �⇒ b j ∈ B̄ ′, for all j ∈ Z; (3.29)

∑
| j |>N

‖b j‖2L2([0,r)) <
ε2

8
, (3.30)

where in the second inequality we use (3.27).
From (3.29) we conclude that for every j ∈ Z, there exists a j ∈ Xε such that

‖b j − a j‖L2([0,r)) ≤ ε√
16N + 8

.
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Hence,
N∑

j=−N

‖b j − a j‖2L2([0,r)) ≤ (2N + 1)
ε2

16N + 8
= ε2

8
. (3.31)

Set u′ := ∑N
j=−N a j (t)u j ∈ Yε. Then from (3.30) and (3.31) we obtain

‖u − u′‖2L2(Zr,E)
= ∥∥ ∑

| j |>N

b ju j +
N∑

j=−N

(b j − a j )u j
∥∥2
L2(Zr,E)

≤
∑

| j |>N

‖b j‖2L2([0,r)) +
N∑

j=−N

‖b j − a j‖2L2([0,r))

≤ ε2

8
+ ε2

8
= ε2

4
.

Combining this with (3.28) we obtain

‖ū − u′‖L2(Zr,E) ≤ ‖ū − u‖L2(Zr,E) + ‖u − u′‖L2(Zr,E) ≤ ε

2
+ ε

2
= ε,

i.e., ū is within distance ε from Yε. ��

Lemma 3.31 For all u ∈ C∞
c (Zr, E) with PA

(0,∞)(u∂M ) = 0, we have estimate

1√
2

‖u‖D ≤ ‖u‖H1
D(Zr,E) ≤ ‖u‖D. (3.32)

Proof Since D = c(τ )(∂t + A) on Zr, we obtain

‖u‖2D ≤ ‖u‖2L2(Zr,E)
+ 2

( ‖∂t u‖2L2(Zr,E)
+ ‖Au‖2L2(Zr,E)

) ≤ 2 ‖u‖2
H1
D(Zr,E)

,

for all u ∈ C∞
c (Zr, E). This proves the first inequality in (3.32).

Suppose that u ∈ C∞
c (Zr, E)with PA

(0,∞)(u∂M ) = 0.Wewant to show the converse
inequality.

We can write u = ∑
j a j (t)u j . Then a j (r) = 0 for all j and a j (0) = 0 for all j

such that λ j > 0. The latter condition means that

∑
j

λ j |a j (0)|2 ≤ 0.

123



3732 M. Braverman, P. Shi

Then

‖Du‖2L2(Zr,E)
=

∑
j

∫ r

0
|a′

j (t) + a j (t)λ j |2dt

=
∑
j

( ∫ r

0
|a′

j (t)|2dt + λ2j

∫ r

0
|a j (t)|2dt

+ λ j

∫ r

0
(a′

j (t)ā j (t) + a j (t)ā′
j (t))dt

)

=
∑
j

( ∫ r

0
|a′

j (t)|2dt + λ2j

∫ r

0
|a j (t)|2dt + λ j

∫ r

0

d

dt
|a j (t)|2dt

)

=
∑
j

( ∫ r

0
|a′

j (t)|2dt + λ2j

∫ r

0
|a j (t)|2dt + λ j (|a j (r)|2 − |a j (0)|2)

)

≥
∑
j

( ∫ r

0
|a′

j (t)|2dt + λ2j

∫ r

0
|a j (t)|2dt

)

= ‖∂t u‖2L2(Zr,E)
+ ‖Au‖2L2(Zr,E)

.

(3.33)
Hence

‖u‖2D := ‖u‖2L2(Zr,E)
+ ‖Du‖2L2(Zr,E)

≥ ‖u‖2L2(Zr,E)
+ ‖∂t u‖2L2(Zr,E)

+ ‖Au‖2L2(Zr,E)
=: ‖u‖2

H1
D(Zr,E)

.

��
Remark 3.32 In particular, the two norms are equivalent on C∞

cc (Zr, E).

3.33 The Trace Theorem

The following “trace theorem” establishes the relationship between Hk
D(Zr, E) and

the Sobolev spaces on the boundary.

Theorem 3.34 (The trace theorem) For all k ≥ 1, the restriction map (or trace map)

R : C∞
c (Zr, E) → Ccc

∞(∂M, E∂M ), R(u) := u∂M

extends to a continuous linear map

R : Hk
D(Zr, E) → Hk−1/2

A (∂M, E∂M ).

Proof Let u(t, x) = ∑
j a j (t)u j (x) ∈ C∞

c (Zr, E). Then R(u) = u∂M (x) =∑
j a j (0)u j (x), and we want to show that

‖u∂M‖2
Hk−1/2
A (∂M,E∂M )

≤ C(k) ‖u‖2
Hk
D(Zr,E)

(3.34)
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for some constant C(k) > 0.
Applying inverse Fourier transform to a j (t) yields that

a j (t) =
∫
R

eit ·ξ â j (ξ) dξ,

where â j (ξ) is the Fourier transform of a j (t). (Here we use normalized measure to
avoid the coefficient 2π .) So

a j (0) =
∫
R

â j (ξ) dξ.

By Hölder’s inequality,

|a j (0)|2 =
( ∫

R

â j (ξ) dξ
)2 ≤

( ∫
R

|â j (ξ)| (1 + λ2j + ξ2)k/2 (1 + λ2j + ξ2)−k/2 dξ
)2

≤
∫
R

|â j (ξ)|2 (1 + λ2j + ξ2)kdξ ·
∫
R

(1 + λ2j + ξ2)−k dξ,

where λ j is the eigenvalue of A corresponding to index j . We do the substitution
ξ = (1 + λ2j )

1/2τ to get

∫
R

(1 + λ2j + ξ2)−kdξ = (1 + λ2j )
−k+1/2

∫
R

(1 + τ 2)−kdτ.

It’s easy to see that the integral on the right-hand side converges when k ≥ 1 and
depends only on k. Therefore

|a j (0)|2(1 + λ2j )
k−1/2 ≤ C1(k)

∫
R

|â j (ξ)|2(1 + λ2j + ξ2)kdξ

≤ C(k)
∫
R

|â j (ξ)|2(1 + λ2kj + ξ2k)dξ

≤ C(k)
( ∫

R

|a j (t)|2dt +
∫
R

|â j (ξ)|2ξ2kdξ +
∫
R

|a j (t)|2λ2kj dt
)
,

(3.35)
where we use Plancherel’s identity from line 2 to line 3. Recall the differentiation

property of Fourier transform ̂(∂t )ka j (t)(ξ) = â j (ξ)ξ k . So again by Plancherel’s
identity

∫
R

|â j (ξ)|2 ξ2k dξ =
∫
R

| ̂(∂t )k a j (t)(ξ)|2 dξ =
∫
R

|(∂t )k a j (t)|2 dt

Now summing inequality (3.35) over j gives (3.34) and the theorem is proved. ��
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3.35 The Space H1
D(M, E)

Recall that the cut-off function χ is defined in (3.22). By a slight abuse of notation we
also denote by χ the induced function on M . Define

H1
D(M, E) := domDmax ∩ {

u ∈ L2(M, E) : χu ∈ H1
D(Zr, E)

}
. (3.36)

It is a Hilbert space with the H1
D-norm

‖u‖2
H1
D(M,E)

:= ‖u‖2L2(M,E)
+ ‖Du‖2L2(M,E)

+ ‖χu‖2
H1
D(Zr,E)

.

As one can see from Remark 3.32, a different choice of the cut-off function χ leads
to an equivalent norm. The H1

D-norm is stronger than the graph norm of D in the
sense that it controls in addition the H1

D-regularity near the boundary. We call it H1
D-

regularity as it depends on our concrete choice of the norm (3.25), unlike the case in
[6], where the boundary is compact.

Lemma 3.31 and Theorem 3.34 extend from Zr to M . By the definition of
H1
D(M, E) and the fact that D is complete, we have

Lemma 3.36 (i) C∞
c (M, E) is dense in H1

D(M, E);
(ii) C∞

cc (M, E) is dense in {u ∈ H1
D(M, E) : u∂M = 0}.

The following statement is an immediate consequence of Remark 3.32 and Lemma
3.36. (ii).

Corollary 3.37 domDmin = {u ∈ H1
D(M, E) : u∂M = 0}.

3.38 Regularity of theMaximal Domain

We now state the main result of this section which extends Theorem 6.7 of [6] to
manifolds with non-compact boundary.

Theorem 3.39 Assume that D is a strongly Callias-type operator. Then

(i) C∞
c (M, E) is dense in domDmax with respect to the graph norm of D.

(ii) The trace mapR : C∞
c (M, E) → C∞

c (∂M, E∂M ) extends uniquely to a surjec-
tive bounded linear map R : domDmax → Ȟ(A).

(iii) H1
D(M, E) = {u ∈ domDmax : Ru ∈ H1/2

A (∂M, E∂M )}.
The corresponding statements hold for dom(D∗)max (withA replaced withA#). Fur-
thermore, for all sections u ∈ domDmax and v ∈ dom(D∗)max, we have

(Dmaxu, v
)
L2(M,E)

− (
u, (D∗)maxv

)
L2(M,E)

= − (
c(τ )Ru,Rv

)
L2(∂M,E∂M )

. (3.37)

Remark 3.40 In particular, (ii) of Theorem 3.39 says that C∞
c (∂M, E∂M ) is dense in

Ȟ(A).
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Proof The proof goes along the same line as the proof of Theorem 6.7 in [6] but some
extra care is needed because of non-compactness of the boundary.

(i) Let M̃ be the double of M formed by gluing two copies of M along their
boundaries. Then M̃ is a complete manifold without boundary. One can extend the
Riemannian metric gM , the Dirac bundle E and the Callias-type operatorD on M to a
Riemannian metric gM̃ , a Dirac bundle Ẽ and a Callias-type operator D̃ on M̃ . Notice
that now dom D̃max = dom D̃min by [32].

Lemma 3.41 If ũ ∈ dom D̃max, then u := ũ|M ∈ H1
D(M, E).

Proof Let Z(−r ,r) be the double of Zr in M̃ . Clearly, it suffices to consider the case
when the support of ũ is contained in Z(−r ,r). Since dom D̃max = dom D̃min, it suffices
to show that if a sequence ũn ∈ C∞

c (Z(−r ,r), Ẽ) converges to ũ in the graph norm of
D̃ then ũn|M converges in H1

D(M, E). This follows from the following estimate

∥∥ũ|M‖H1
D(M,E) ≤ ‖ũ‖D̃, ũ ∈ C∞

c (Z(−r ,r), Ẽ), (3.38)

which we prove below.
Since D is a product on Zr, we obtain from (3.9) that on Z(−r ,r)

D̃∗D̃ = −∂2t + A2.

Hence, on compactly supported sections ũ we have

∥∥D̃ũ‖2
L2(M̃,Ẽ)

= ( D̃∗D̃ũ, ũ
)
L2(M̃,Ẽ)

= ‖∂t ũ‖2
L2(M̃,Ẽ)

+ ‖Aũ‖2
L2(M̃,Ẽ)

.

We conclude that

‖ũ‖2D̃ := ‖ũ‖2
L2(M̃,Ẽ)

+ ‖D̃ũ‖2
L2(M̃,Ẽ)

= ‖ũ‖2
L2(M̃,Ẽ)

+ ‖∂t ũ‖2
L2(M̃,Ẽ)

+ ‖Aũ‖2
L2(M̃,Ẽ)

≥ ∥∥ũ|M‖2
H1
D(M,E)

.

��
Let Dc denote the operator D with domain C∞

c (M, E). Let (Dc)
ad denote the

adjoint of Dc in the sense of functional analysis. Note that (Dc)
ad ⊂ (D∗)max, where,

as usual, we denote by D∗ the formal adjoint of D.
Fix an arbitrary u ∈ dom(Dc)

ad and let ũ ∈ L2(M̃, Ẽ) and ṽ ∈ L2(M̃, Ẽ) denote
the sections whose restriction to M̃\M are equal to 0 and whose restriction to M are
equal to u and (Dc)

adu, respectively.
Let w̃ ∈ C∞

c (M̃, Ẽ). The restriction of w = w̃|M ∈ domDc. Since ũ|M̃\M =
ṽ|M̃\M = 0 we obtain

(D̃w̃, ũ)L2(M̃,Ẽ)
= (Dcw, u)L2(M,E) = (

w, (Dc)
adu

)
L2(M,E)

= (w̃, ṽ)L2(M̃,Ẽ)
.
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Hence, ũ is a weak solution of the equation D̃∗ũ = ṽ ∈ L2(M̃, Ẽ). By elliptic
regularity ũ ∈ H1

loc(M̃, Ẽ). It follows that ũ|∂M = u|∂M = 0. Also, by Lemma 3.41,
u ∈ H1

D∗(M, E). By Corollary 3.37, u is in the domain of the minimal extension
(D∗)min of (D∗)cc. Since u is an arbitrary section in dom(Dc)

ad, we conclude that
(Dc)

ad ⊂ (D∗)min. Hence the closure Dc of Dc satisfies

Dc ⊂ Dmax = (
(D∗)min

)ad ⊂ (
(Dc)

ad)ad = Dc.

Hence, Dc = Dmax as claimed in part (i) of the theorem.
(ii) By (i)C∞

c (M, E) is dense in domDmax.Hence, it follows fromLemma3.27 that
the extension exists and unique. To prove the surjectivity recall that the space Hfin(A),
defined in (3.18), is dense in Ȟ(A). Fix u ∈ Ȟ(A) and let ui → u be a sequence
of sections ui ∈ Hfin(A) which converges to u in Ȟ(A). Then, by Lemma 3.26, the
sequence E ui ∈ domDmax is a Cauchy sequence and, hence, converges to an element
v ∈ domDmax. Then Rv = u.

(iii) The inclusion

H1
D(M, E) ⊂ {u ∈ domDmax : Ru ∈ H1/2

A (∂M, E∂M )}

follows directly from (3.36) and the Trace Theorem 3.34.
To show the opposite inclusion, choose u ∈ domDmax withRu ∈ H1/2

A (∂M, E∂M )

and set v := PA
(0,∞)Ru. Then

u = E v + (u − E v).

Using (3.24) we readily see that E v ∈ H1
D(M, E). Since PA

(0,∞)R(u − E v) = 0 it

follows from (i) and Lemma 3.31, that u − E v ∈ H1
D(M, E). Thus u ∈ H1

D(M, E)

as required.
Finally, (3.37) holds for u, v ∈ C∞

c (M, E) by (2.2). Since, by (i), C∞
c (M, E)

is dense in both domDmax and dom(D∗)max, the equality for u ∈ domDmax and
v ∈ dom(D∗)max follows now from (i) and (ii) and Lemma 3.24. ��

4 Boundary Value Problems for Strongly Callias-Type Operators

Moving on from last section, we study boundary value problems of a strongly Callias-
type operator D whose restriction to the boundary is A. We introduce boundary
conditions and elliptic boundary conditions forD as certain closed subspaces of Ȟ (A).
In particular, we take a close look at an important elliptic boundary condition—the
Atiyah–Patodi–Singer boundary condition and obtain some results about it.

4.1 Boundary Conditions

Let D be a strongly Callias-type operator. If ∂M = ∅, then the minimal and maximal
extensions ofD coincide, i.e.,Dmin = Dmax. But when ∂M �= ∅ these two extensions
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are not equal. Indeed, the restrictions of elements ofDmin to the boundary vanish iden-
tically by Corollary 3.37, while the restrictions of elements of Dmax to the boundary
form the whole space Ȟ(A), cf. Theorem 3.39. The boundary value problems lead to
closed extensions lying between Dmin and Dmax.

Definition 4.2 A closed subspace B ⊂ Ȟ(A) is called a boundary condition for D.
Wewill use the notationsDB,max andDB for the operators with the following domains

dom(DB,max) = {u ∈ domDmax : Ru ∈ B},
domDB = {u ∈ H1

D(M, E) : Ru ∈ B}
= {u ∈ domDmax : Ru ∈ B ∩ H1/2

A (∂M, E∂M )}.

We remark that if B = Ȟ(A) then DB,max = Dmax. Also if B = 0 then DB,max =
DB = Dmin.

By Theorem 3.39.(ii), dom(DB,max) is a closed subspace of domDmax. Since the
trace map extends to a bounded linear map R : H1

D(M, E) → H1/2
A (∂M, E∂M ) and

H1/2
A (∂M, E∂M ) ↪→ Ȟ(A) is a continuous embedding, domDB is also a closed sub-

space of H1
D(M, E). We equip dom(DB,max) with the graph norm of D and domDB

the H1
D-norm.

In particular, DB,max is a closed extension of D. Moreover, it follows immediately
from Definition 4.2 that B ⊂ H1/2

A (∂M, E∂M ) if and only if DB = DB,max. Thus in
this case domDB = domDB,max is a complete Banach space with respect to both the
H1
D-norm and the graph norm. From [43, p. 71] we now obtain the following analogue

of [6, Lemma 7.3]:

Lemma 4.3 Let B be a boundary condition. Then B ⊂ H1/2
A (∂M, E∂M ) if and only

if DB = DB,max, and in this case, the H1
D-norm and graph norm of D are equivalent

on domDB.

4.4 Adjoint Boundary Conditions

For any boundary condition B, we haveDcc ⊂ DB,max.Hence the L2-adjoint operators
satisfy

(DB,max)
ad ⊂ (Dcc)

ad = (D∗)max.

From (3.37), we conclude that

dom(DB,max)
ad = {

v ∈ dom(D∗)max : (
c(τ )Ru,Rv

) = 0 for all u ∈ domDB,max
}
.

By Theorem 3.39.(ii), for any u ∈ B there exists u ∈ dom(DB,max) withRu = u.
Therefore

(DB,max)
ad = (D∗)Bad,max
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with
Bad := {

v ∈ Ȟ(A#) : (
c(τ )u, v

) = 0 for all u ∈ B
}
. (4.1)

By Lemma 3.24, Bad is a closed subspace of Ȟ(A#), thus is a boundary condition for
D∗.

Definition 4.5 The space Bad, defined by (4.1), is called the adjoint boundary condi-
tion to B.

4.6 Elliptic Boundary Conditions

We adopt the same definition of elliptic boundary conditions as in [6] for the case of
non-compact boundary:

Definition 4.7 A boundary condition B is said to be elliptic if B ⊂ H1/2
A (∂M, E∂M )

and Bad ⊂ H1/2
A# (∂M, E∂M ).

Remark 4.8 One can see from Lemma 4.3 that when B is an elliptic boundary
condition, DB,max = DB , (D∗)Bad,max = D∗

Bad and the two norms are equiva-

lent. Definition 4.7 is also equivalent to saying that domDB ⊂ H1
D(M, E) and

domD∗
Bad ⊂ H1

D∗(M, E).

The following two examples of elliptic boundary condition are the most important
to our study (compare with Examples 7.27, 7.28 of [6]).

Example 4.9 (Generalized Atiyah–Patodi–Singer boundary conditions) For any a ∈
R, let

B = B(a) := H1/2
(−∞,a)(A). (4.2)

This is a closed subspace of Ȟ(A). In order to show that B is an elliptic boundary
condition, we only need to check that Bad ⊂ H1/2

A# (∂M, E∂M ). By Lemma 3.24, c(τ )

maps H1/2
(−∞,a)(A) to the subspace H1/2

(−a,∞)(A#) of Ĥ(A#). Since there is a perfect

pairing between Ȟ(A#) and Ĥ(A#), we see that

Bad = H1/2
(−∞,−a](A#). (4.3)

Therefore B is an elliptic boundary condition. It is called the the generalized Atiyah–
Patodi–Singer boundary conditions (or generalized APS boundary conditions for
abbreviation). In particular, B = H1/2

(−∞,0)(A)will be called the Atiyah–Patodi–Singer

boundary condition and B = H1/2
(−∞,0](A) will be called the dual Atiyah–Patodi–

Singer boundary condition.

Remark 4.10 One can see from (4.3) that the adjoint of the APS boundary condition
for D is the dual APS boundary condition for D∗.
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Example 4.11 (Transmission conditions) Let M be a complete manifold. For simplic-
ity, first assume that ∂M = ∅. Let N ⊂ M be a hypersurface such that cutting M along
N we obtain a manifold M ′ (connected or not) with two copies of N as boundary. So
we can write M ′ = (M \ N ) � N1 � N2.

Let E → M be a Dirac bundle over M and D : C∞(M, E) → C∞(M, E) be
a strongly Callias-type operator. They induce Dirac bundle E ′ → M ′ and strongly
Callias-type operator D′ : C∞(M ′, E ′) → C∞(M ′, E ′) on M ′. We assume that all
structures are product near N1 and N2. LetA be the restriction ofD′ to N1. Then −A
is the restriction of D′ to N2 and, thus, the restriction of D′ to ∂M ′ is A′ = A⊕ −A.

For u ∈ H1
D(M, E) one gets u′ ∈ H1

D′(M ′, E ′) (by Lemma 3.41) such that u′|N1 =
u′|N2 . We use this as a boundary condition for D′ on M ′ and set

B := {
(u,u) ∈ H1/2

A (N1, EN1) ⊕ H1/2
−A(N2, EN2)

}
. (4.4)

Lemma 4.12 The subspace (4.4) is an elliptic boundary condition, called the trans-
mission boundary condition.

Proof First, we show that B is a boundary condition, i.e., is a closed subspace of
Ȟ(A′). Clearly B is a closed subspace of H1/2

A′ (∂M ′, E∂M ′). Thus, it suffices to show

that the H1/2
A′ -norm and Ȟ(A′)-norm are equivalent on B. Since any two norms are

equivalent on the finite-dimensional eigenspace of A′ associated with eigenvalue 0,
we may assume that 0 is not in the spectrum of A′. Write

u = PA
(−∞,0)u + PA

(0,∞)u =: u− + u+.

Notice that PA′
I = PA

I ⊕ P−A
I = PA

I ⊕ PA−I for any subset I ⊂ R. We have

PA′
(−∞,0)(u,u) = (u−,u+), PA′

(0,∞)(u,u) = (u+,u−).

Notice also that

‖u+‖
H±1/2
A (N1)

= ‖u+‖
H±1/2

−A (N2)

and similar equality holds for u−. It follows that

‖(u,u)‖2
H±1/2
A′ (∂M ′)

= 2 ‖u‖2
H±1/2
A (N1)

= 2 ‖u‖2
H±1/2

−A (N2)
.
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Using the above equations, we get

‖(u,u)‖2
Ȟ (A′) = ‖(u−,u+)‖2

H1/2
A′ (∂M ′)

+ ‖(u+,u−)‖2
H−1/2
A′ (∂M ′)

= ‖u−‖2
H1/2
A (N1)

+ ‖u+‖2
H1/2

−A(N2)
+ ‖u+‖2

H−1/2
A (N1)

+ ‖u−‖2
H−1/2

−A (N2)

= ‖u‖2
H1/2
A (N1)

+ ‖u‖2
H−1/2
A (N1)

= 1

2

(
‖(u,u)‖2

H1/2
A′ (∂M ′)

+ ‖(u,u)‖2
H−1/2
A′ (∂M ′)

)

≥ 1

2
‖(u,u)‖2

H1/2
A′ (∂M ′)

.

The other direction of inequality is trivial. So B is also closed in Ȟ(A′) and hence is
a boundary condition.

In order to show that B is an elliptic boundary condition, we need to prove that
Bad ⊂ H1/2

A′# (∂M
′, E∂M ′). Let τ ′ be the inward unit normal vector to the boundary of

M ′. Then τ ′ = τ ⊕ (−τ), where τ is the inward unit normal vector to the boundary
component N1. It is easy to see that

Bad = {
(v, v) ∈ H−1/2

A# (N1, EN1) ⊕ H−1/2
−A# (N2, EN2)

} ∩ Ȟ(A′#).

Again by decomposing v in terms of v− and v+ like above, one can get that v ∈
H1/2
A# (N1, EN1). Therefore

Bad = {
(v, v) ∈ H1/2

A# (N1, EN1) ⊕ H1/2
−A# (N2, EN2)

} ⊂ H1/2
A′# (∂M

′, E∂M ′).
(4.5)

Therefore, B is an elliptic boundary condition. In addition, ifD = D∗, then B = Bad

and D′
B is a self-adjoint operator. ��

If M has nonempty boundary and N is disjoint from ∂M , we assume that an elliptic
boundary condition is posed for ∂M . Then one can apply the same arguments as above
to pose the transmission condition for N1 � N2 and keep the original condition for
∂M .

5 Index Theory for Strongly Callias-Type Operators

In this section, we show that an elliptic boundary value problem for a strongly
Callias-type operator is Fredholm. As two typical examples, the indexes of APS and
transmission boundary value problems are interesting and are used to prove the split-
ting theorem, which allows to compute the index by cutting and pasting.
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5.1 Fredholmness

Let D : C∞(M, E) → C∞(M, E) be a strongly Callias-type operator. The growth
assumption of the Callias potential guarantees that D is invertible at infinity.

Lemma 5.2 A strongly Callias-type operatorD : C∞(M, E) → C∞(M, E) is invert-
ible at infinity (or coercive at infinity). Namely, there exist a constant C > 0 and a
compact set K ⊂ M such that

‖Du‖L2(M,E) ≥ C ‖u‖L2(M,E), (5.1)

for all u ∈ C∞
cc (M, E) with supp(u) ∩ K = ∅.

Remark 5.3 Note that this property is independent of the boundary condition of D.

Proof By Definition 3.4, for a fixed R > 0, one can find an R-essential support
KR ⊂ M for D, so that

‖Du‖2L2(M,E)
= (Du,Du)L2(M,E) = (D∗Du, u)L2(M,E)

= (D2u, u)L2(M,E) + (
(�2 + i[D,�])u, u

)
L2(M,E)

≥ ‖Du‖2L2(M,E)
+ R ‖u‖2L2(M,E)

≥ R ‖u‖2L2(M,E)

for all u ∈ C∞
cc (M, E) with support outside KR . ��

Recall that, for ∂M = ∅, a first-order essentially self-adjoint elliptic operator which
is invertible at infinity is Fredholm (cf. [2, Theorem 2.1]). If ∂M �= ∅ is compact,
an analogous result (with elliptic boundary condition) is proven in [6, Theorem 8.5,
Corollary 8.6].Wenowgeneralize the result of [6] to the case of non-compact boundary

Theorem 5.4 Let DB : domDB → L2(M, E) be a strongly Callias-type operator
with elliptic boundary condition. Then DB is a Fredholm operator.

Proof A bounded linear operator T : X → Y between two Banach spaces has
finite-dimensional kernel and closed image if and only if every bounded sequence
{xn} in X such that {T xn} converges in Y has a convergent subsequence in X , cf.
[35, Proposition 19.1.3]. We show below that both, D : domDB → L2(M, E) and
(D∗)Bad : dom(D∗)Bad → L2(M, E) satisfy this property.

We let {un} be a bounded sequence in domDB such that Dun → v ∈ L2(M, E)

and want to show that {un} has a convergent subsequence in domDB .
Recall that we assume that there is a neighborhood Zr = [0, r) × ∂M ⊂ M of

the boundary such that the restriction of D to Zr is product. For (t, y) ∈ Zr, we set
χ1(t, y) = χ(t) where χ is the cut-off function defined in (3.22). We set χ1(x) ≡ 0
for x /∈ Zr. Then χ1 is supported on Z2r/3 and identically equal to 1 on Zr/3. We also
note that dχ1 is uniformly bounded and supported in Z2r/3.

Let the compact set K ⊂ M and a constant C > 0 be as in Lemma 5.2. We choose
two more smooth cut-off functions χ2, χ3 : M → [0, 1] such that

123



3742 M. Braverman, P. Shi

• K ′ := supp(χ2) is compact and χ1 + χ2 ≡ 1 on K ;
• χ1 + χ2 + χ3 ≡ 1 on M .

As a consequence, dχ3 is uniformly bounded and supp(dχ3) ⊂ Z2r/3∪K ′. We denote

κ = sup |dχ3|. (5.2)

Lemma 3.30 and the classical Rellich Embedding Theorem imply that, passing
to a subsequence, we can assume that the restrictions of un to Z2r/3 and to K ′ are
L2-convergent. Then in the inequality

‖un − um‖L2(M,E)

≤ ‖χ1(un − um)‖L2(M,E) + ‖χ2(un − um)‖L2(M,E) + ‖χ3(un − um)‖L2(M,E)

≤ ‖un − um‖L2(Z2r/3,E) + ‖un − um‖L2(K ′,E) + ‖χ3(un − um)‖L2(M,E) (5.3)

the first two terms on the right-hand side converge to 0 as n,m → ∞. To show that
{un} is a Cauchy sequence it remains to prove that the last summand converges to 0
as well. We use Lemma 5.2 to get

‖χ3(un − um)‖L2(M,E) ≤ C−1 ‖Dχ3(un − um)‖L2(M,E)

≤ C−1 ‖c(dχ3)(un − um)‖L2(M,E) + C−1‖χ3(Dun − Dum)‖L2(M,E)

≤ κ C−1 ( ‖un − um‖L2(Z2r/3,E) + ‖un − um‖L2(K ′,E)

)
+ C−1 ‖Dun − Dum‖L2(M,E),

where in the last inequality we used (5.2). Since Dun , un|Z2r/3 and un|K ′ are all
convergent, χ3(un −um) → 0 in L2(M, E) asm, n → ∞. Combining with (5.3), we
conclude that {un} is a Cauchy sequence and, hence, converges in L2(M, E).

Now both {un} and {Dun} are convergent in L2(M, E). Hence {un} converges in
the graph norm of D. Since B is an elliptic boundary condition, by Lemma 4.3, the
H1
D-norm and graph norm of D are equivalent on domDB . So we proved that {un} is

convergent in domDB . ThereforeDB has finite-dimensional kernel and closed image.
Since D∗ is also a strongly Callias-type operator, exactly the same arguments apply
to (D∗)Bad and we get that DB is Fredholm. ��
Definition 5.5 Let D be a strongly Callias-type operator on a complete Riemannian
manifold M which is product near the boundary. Let B ⊂ H1/2

A (∂M, E∂M ) be an
elliptic boundary condition for D. The integer

indDB := dim kerDB − dim ker(D∗)Bad ∈ Z (5.4)

is called the index of the boundary value problem DB .

It follows directly from (5.4) that

ind (D∗)Bad = − indDB . (5.5)
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5.6 Dependence of the Index on the Boundary Conditions

We say that two closed subspaces X1, X2 of a Hilbert space H are finite rank pertur-
bations of each other if there exists a finite dimensional subspace Y ⊂ H such that
X2 ⊂ X1 ⊕ Y and the quotient space (X1 ⊕ Y )/X2 has finite dimension. We define
the relative index of X1 and X2 by

[X1, X2] := dim (X1 ⊕ Y )/X2 − dim Y . (5.6)

One easily sees that the relative index is independent of the choice of Y . We also
note that if X1 and X2 are finite rank perturbations of each other, then X1 and the
orthogonal complement X⊥

2 of X2 form a Fredholm pair in the sense of [36, §IV.4.1]
and the relative index [X1, X2] is equal to extension of M by a cylinder

The following lemma follows immediately from the definition of the relative index.

Lemma 5.7 [X2, X1] = [X⊥
1 , X⊥

2 ] = − [X1, X2].
Proposition 5.8 Let D be a strongly Callias-type operator on M and let B1 and B2

be elliptic boundary conditions for D. If B1, B2 ∈ H1/2
A (∂M, E∂M ) are finite rank

perturbations of each other, then

indDB1 − indDB2 = [B1, B2]. (5.7)

The proof of the proposition is a verbatim repetition of the proof of Theorem 8.14 of
[6].

As an immediate consequence of Proposition 5.8, we obtain the following

Corollary 5.9 Let A be the restriction of D to ∂M and let B0 = H1/2
(−∞,0)(A) and

B1 = H1/2
(−∞,0](A) be the APS and the dual APS boundary conditions, respectively,

cf. Example 4.9. Then

indDB1 = indDB0 + dim kerA. (5.8)

More generally, let B(a) = H1/2
(−∞,a)(A) and B(b) = H1/2

(−∞,b)(A) be two generalized
APS boundary conditions with a < b. Then

indDB(b) = indDB(a) + dim L2
[a,b)(A).

5.10 The Splitting Theorem

We use the notation of Example 4.11.

Theorem 5.11 Suppose M,D, M ′,D′ are as in Example 4.11. Let B0 be an ellip-
tic boundary condition on ∂M. Let B1 = H1/2

(−∞,0)(A) and B2 = H1/2
[0,∞)(A) =
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H1/2
(−∞,0](−A) be the APS and the dual APS boundary conditions along N1 and N2,

respectively. Then D′
B0⊕B1⊕B2

is a Fredholm operator and

indDB0 = indD′
B0⊕B1⊕B2 .

Proof We assume that ∂M = ∅. The proof of the general case is exactly the same,
but the notation is more cumbersome. Since B1 ⊕ B2 is an elliptic boundary condition
for D′, the boundary value problem D′

B1⊕B2
is Fredholm. We need to show the index

identity, which now is
indD = indD′

B1⊕B2 . (5.9)

Let B denote the transmission condition on ∂M ′. Then, using the canonical pull-
back of sections from E to E ′, we have

domD = {u ∈ H1
D′(M ′, E ′) : Ru ∈ B} = domD′

B

and
indD = indD′

B . (5.10)

We now proceed as in the proof of Theorem 8.17 of [6] with minor changes. The
main idea is to construct a deformation of the transmission boundary condition B into
the APS boundary condition B1 ⊕ B2 and thus to show that indD′

B = indD′
B1⊕B2

.
Recall that in Example 4.11, we express any element (u,u) of B as (u− +u+,u+ +

u−), where u− = PA
(−∞,0)u and u+ = PA

[0,∞)u. Note that u
− ∈ B1 and u+ ∈ B2. For

0 ≤ s ≤ 1, we define a family of boundary conditions

B1,s := {
u− + (1 − s)u+ : u ∈ H1/2

A (N1, EN1)
};

B2,s := {
u+ + (1 − s)u− : u ∈ H1/2

−A(N2, EN2) � H1/2
A (N1, EN1)

}
,

and a family of isomorphisms

ks : B → B1,s ⊕ B2,s, ks(u,u) := (u− + (1 − s)u+,u+ + (1 − s)u−).

Here k0 = id and k1 is an isomorphism from B to B1 ⊕ B2. One can follow the
arguments of Lemma 4.12 to check that for each s ∈ [0, 1],

Bad
1,s ⊕ Bad

2,s

= {
(v− + (1 − s)v+, v+ + (1 − s)v−) ∈ H1/2

A# (N1, EN1) ⊕ H1/2
−A# (N2, EN2)

}
,

where v− ∈ H1/2
(−∞,0](A#) and v+ ∈ H1/2

(0,∞)(A#). Thus B1,s ⊕ B2,s is an elliptic
boundary condition for all s ∈ [0, 1] and we get a family of Fredholm operators
{D′

B1,s⊕B2,s
}0≤s≤1.

By definition,

(ks1 − ks2)(u,u) = (s2 − s1)(u+,u−).
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Notice that ‖(u+,u−)‖
H1/2
A′ (∂M ′,E ′) ≤ ‖(u,u)‖

H1/2
A′ (∂M ′,E ′). Hence, for s1, s2 ∈ [0, 1]

with |s1 − s2| < ε, the operator

ks1 − ks2 : B → H1/2
A′ (∂M ′, E ′)

has a norm not greater than ε. This implies that {ks} is a continuous family of isomor-
phisms from B to H1/2

A′ (∂M ′, E ′). The following steps are basically from [6, Lemma
8.11, Theorem 8.12]. Roughly speaking, one can construct a continuous family of
isomorphisms

Ks : domD′
B → domD′

B1,s⊕B2,s .

Then by composingD′
B1,s⊕B2,s

and Ks , one gets a continuous family of Fredholm oper-

ators on the fixed domain domD′
B . The index is constant. Since K1 is an isomorphism,

we have
indD′

B = indD′
B1⊕B2 . (5.11)

At last, (5.9) follows from (5.10) and (5.11). This completes the proof. ��

5.12 AVanishing Theorem

As a first application of the splitting theorem 5.11, we prove the following vanishing
result.

Corollary 5.13 Suppose that there exists R > 0 such that D has an empty R-essential
support. Let B0 = H1/2

(−∞,0)(A) be the APS boundary condition, cf. Example 4.9. Then

indDB0 = 0. (5.12)

Proof Since all our structures are product near ∂M and the R-essential support of D
is empty, the R-essential support of the restriction A := A − ic(τ )� of D to ∂M is
also empty. In particular, the operatorA2 is strictly positive. It follows that 0 is not in
the spectrum of A.

First consider the case when M = [0,∞) × N is a cylinder and (3.9) holds every-
where on M . In particular, this means that �(t, y) = �(0, y) for all t ∈ [0,∞)

and all y ∈ N = ∂M . To distinguish this case from the general case, we denote the
Callias-type operator on the cylinder by D′. Any u ∈ dom(D′

B0
) can be written as

u =
∞∑
j=1

a j (t)u j ,

where u j is a unit eigensection of A with eigenvalue λ j < 0. If D′u = 0 then
a j (t) = c j e−λ j t for all j . It follows that u /∈ L2(M, E). In other words, there are no
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L2-sections in the kernel of D′
B0
. Similarly, one proves that the kernel of (D′∗)Bad

0
is

trivial. Thus
indD′

B0 = 0. (5.13)

Let us return to the case of a general manifold M . Let

M̃ := (
(−∞, 0] × ∂M

) ∪∂M M

be the extension ofM by a cylinder. Then M̃ is a complete manifold without boundary.
Since all our structures are product near ∂M they extend naturally to M̃ . Let D̃ be
the induced strongly Callias-type operator on M̃ . It has an empty R-essential support.
Hence, D̃∗D̃ > 0 and D̃D̃∗ > 0. It follows that

ind D̃ = 0. (5.14)

Notice that the restriction of D̃ to the cylinder is the operator D′ whose R-essential
support is empty and whose restriction to the boundary is −A. Let

B ′
0 := H1/2

(−∞,0)(−A) = H1/2
(0,∞)(A)

denote the APS boundary condition for D′. Since A is invertible, B ′
0 coincides with

the dual APS boundary condition for D′. Hence, by the splitting theorem 5.11

ind D̃ = indDB0 + indD′
B′
0
. (5.15)

The second summand on the right-hand side of (5.15) vanishes by (5.13). The corollary
follows now from (5.14). ��

6 Reduction to an Essentially Cylindrical Manifold

In this section, we reduce the computation of the index of an APS boundary value
problem to a computation on a simpler manifold which we call essentially cylindrical.

Definition 6.1 An essentially cylindricalmanifold M is a complete Riemannian man-
ifold whose boundary is a disjoint union of two components, ∂M = N0 � N1, such
that

(i) there exists a compact set K ⊂ M , an open manifold N , and an isometry M\K �
[0, ε] × N ;

(ii) under the above isometry N0\K = {0} × N and N1\K = {ε} × N .

Remark 6.2 Essentially cylindrical manifolds should not be confused with manifolds
with cylindrical ends. In a manifold M with cylindrical ends there is a compact set
K such that M\K = [0,∞) × N is a cylinder with infinite axis [0,∞) and compact
base N . As opposed to it, in an essentially cylindrical manifold, M\K is a cylinder
with compact axis [0, ε] and non-compact base N .
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6.3 Almost Compact Essential Support

We now return to the setting of Sect. 3. In particular, M is a complete Riemannian
manifold with non-compact boundary ∂M and there is a fixed isometry between a
neighborhood of ∂M and the product Zr = [0, r) × ∂M , cf. (3.6); D = D + i� is a
strongly Callias-type operator (cf. Definition 3.4) whose restriction to Zr is a product
(3.9).

Definition 6.4 An almost compact essential support of D is a smooth submanifold
M1 ⊂ M with smooth boundary, which contains ∂M and such that

(i) M1 contains an essential support for D, cf. Definition 3.4;
(ii) there exists a compact set K ⊂ M and ε ∈ (0, r) such that

M1\K = (∂M\K ) × [0, ε] ⊂ Zr. (6.1)

Note that any almost compact essential support is an essentially cylindrical mani-
fold, one component of whose boundary is ∂M andA has an empty essential support
on the other component of the boundary. Also the restriction of D to the subset (6.1)
is given by (3.9).

Lemma 6.5 For every strongly Callias-type operator which is product on Zr there
exists an almost compact essential support.

Proof Fix R > 0 and let KR be a compact essential support for D. The union

M ′ := ([0, r/2] × ∂M
) ∪ KR

satisfies all the properties of an almost compact essential support, except that its
boundary is not necessarily smooth.

To find a similar set with a smooth boundary, let us fix an open cover of M by
three open sets M = V1 ∪ V2 ∪ V3 where V1 ⊃ KR has compact closure, V2 ⊂
([0, r) × ∂M) \ KR , and V3 ⊂ M \ (

([0, 5r/6) × ∂M) ∪ KR
)
. Fix a partition of unity

{φ1, φ2, φ3} (φ1 + φ2 + φ3 ≡ 1) subordinate to this cover, so that suppφ j ∈ Vj . Let
ρ : M → [0,∞) be a smooth function on M such that

ρ(x) − dist(x, M ′) <
r

6
, for all x ∈ M .

Let t : Zr � [0, r) × ∂M → [0, r) be the natural projection.
Without loss of generality, we can assume that r < 1. Define a smooth function on

M by

f := ρφ1 + tφ2 + φ3

Let δ ∈ ( 2r3 , 5r
6 ) be a regular value of f .

Mδ := f −1([0, δ])
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contains M ′, has smooth boundary ∂Mδ = f −1(δ), and there exists a compact set
K ′ ⊃ KR such that Mδ = ([0, δ] × ∂M

) ∪ K ′. Hence, Mδ is an almost compact
essential support for D. ��

6.6 The Index on an Almost Compact Essential Support

Suppose M1 ⊂ M is an almost compact essential support for D and let N1 ⊂ M be
such that ∂M1 = ∂M � N1. The restriction ofD to a neighborhood of N1 need not be
product. Since in this paper we only consider boundary value problems for operators
which are product near the boundary, we first deform D to a product form. Note that
if K is as in Definition 6.4 then D is product in a neighborhood of N1\K . It follows
that we only need to deformD in a relatively compact neighborhood of N1 ∩K . More
precisely let ε be as in (6.1). We choose δ ∈ (0, ε) and a tubular neighborhoodU ⊂ M
of N1 such that

U\K = (ε − δ, ε + δ) × (N1\K ) ⊂ Zr. (6.2)

We now identify U with the product (ε − δ, ε + δ) × N1 in a way compatible with
(6.2). The next lemma shows that one can find a strongly Callias-type operator D′
which is a product near N1 and differs from D only on a compact set.

Definition 6.7 Fix a new Riemannian metric on M and a new Hermitian metric on
E which differ from the original metrics only on a compact set K ′ ⊂ M . Let c′ :
T ∗M → End(E) and let ∇E ′

be a Clifford multiplication and a Clifford connection
compatible with the new metrics, which also differ from c and ∇E only on K ′. Let D′
be the Dirac operator defined by c′ and∇E ′

. Finally, let�′ ∈ End(E) be a new Callias
potential which is equal to � on M\K ′. In this situation we say that the operator
D′ := D′ + i�′ is a compact perturbation of D.

Clearly, if D′ is a compact perturbation of D which is equal to D near ∂M , then
every elliptic boundary condition B for D is also elliptic for D′. Then the stability of
the index implies that

indDB = indD′
B . (6.3)

Lemma 6.8 In the situation of Sect. 6.6, there exists a compact perturbation D′ of D
which is product near ∂M1 and such that there is a compact essential support of D′
contained in M1.

Proof By Proposition 5.4 of [18], there exists a smooth deformation (ct ,∇E
t ) of the

Clifford multiplication and the Clifford connection such that

(i) for t = 0 it is equal to (c,∇E );
(ii) for t > 0 it is a product near N1;
(iii) for all t its restriction to M\U is independent of t (and, hence, coincides with

(c,∇E )).

Moreover, since all our structures are product near N1\K , the construction of this
deformation in Appendix A of [18] provides a deformation which is independent of
t on M\(U ∩ K ). Thus, for all t > 0, the Dirac operator Dt defined by (ct ,∇E

t ) is a
compact perturbation of D.
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Let �t (x) be a smooth deformation of �(x) which coincides with � at t = 0,
is independent of t for x /∈ U ∩ K , and is product near N1 for all t > 0. Then
Dt := Dt + i�t is a compact perturbation of D for all t ≥ 0.

Fix R > 0 such that there is an R-essential support of D which is contained in
M1. Then there exists a compact set KR ⊂ M1 such that outside of KR the estimate
(3.4) holds. Since all our deformations are smooth and compactly supported�2

t (x) −
|[Dt ,�t ](x)| ≥ R/2 for all small enough t > 0. The assertion of the lemma holds
now with R′ = R/2 and D′ = Dt with t > 0 small. ��

6.9 Reduction of the Index Problem to an Almost Compact Essential Support

Let M1 ⊂ M be an almost compact essential support ofD. LetD′ be as in the previous
subsection. Let A be the restriction of D to ∂M . It is also the restriction of D′ (since
D′ = D near ∂M). We denote by −A1 the restriction of D′ to N1. Thus near N1 the
operator D′ has the form c(τ )(∂t − A1). The sign convention is related to the fact
that it is often convenient to view N0 = ∂M as the “left” boundary of M1 and N1
as the “right” boundary. Then one identifies a neighborhood of N1 in M1 with the
product (−r , 0] × N1. With respect to this identification the restriction of D′ to this
neighborhood becomes c(dt)(∂t + A1). In particular, on the cylindrical part M1\K
we have A1 = A.

Theorem 6.10 Suppose M1 ⊂ M is an almost compact essential support of D and let
∂M1 = ∂M � N1. Let D′ be a compact perturbation of D which is product near N1
and such that there is a compact essential support for D′ which is contained in M1.
Let B0 be any elliptic boundary condition for D and let

B1 = H1/2
(−∞,0)(−A1) = H1/2

(0,∞)(A1)

be the APS boundary condition for the restriction of D′ to a neighborhood of N1.
Then B0 ⊕ B1 is an elliptic boundary condition for the restrictionD′′ := D′|M1 of D′
to M1 and

indDB0 = indD′′
B0⊕B1 . (6.4)

Proof Let D′′′ denote the restriction of D′ to M\M1. This is a strongly Callias-type
operator with an empty essential support. Notice that its restriction to N1 is equal to
A1. Thus the APS boundary condition for D′′′ is B2 = H1/2

(−∞,0)(A1). Since A1 is
invertible, B2 coincides with the dual APS boundary condition for D′. Hence, by the
Splitting Theorem 5.11,

indD′
B0 = indD′′

B0⊕B1 + indD′′′
B2 .

The last summand on the right-hand side of this equality vanishes by Corollary 5.13.
The theorem follows now from (6.3). ��
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7 The Index of Operators on Essentially Cylindrical Manifolds

In the previous section, we reduced the computation of the index ofD to a computation
of the index of the restriction ofD to its almost compact essential support (which is an
essentially cylindrical manifold). In this section, we consider a strongly Callias-type
operator D on an essentially cylindrical manifold M (these data might or might not
come as a restriction of another operator to its almost compact essential support. In
particular, we don’t assume that the restriction of D to N1 is invertible). From this
point, we assume that the dimension of M is odd.

LetA0 and−A1 be the restrictions ofD to N0 and N1, respectively. Themain result
of this section is that the index of the APS boundary value problem for D depends
only on A0 and A1. Thus, it is an invariant of the boundary. In the next section, we
will discuss the properties of this invariant.

7.1 Compatible Essentially Cylindrical Manifolds

Let M be an essentially cylindrical manifold and let ∂M = N0 � N1. As usual, we
identify a tubular neighborhood of ∂M with the product

Zr := (
N0 × [0, r) ) � (

N1 × [0, r) ) ⊂ M .

Definition 7.2 We say that another essentially cylindrical manifold M ′ is compatible
with M if there is a fixed isometry between Zr and a neighborhood Z ′

r ⊂ M ′ of the
boundary of M ′.

Note that if M and M ′ are compatible then their boundaries are isometric.

7.3 Compatible Strongly Callias-Type Operators

Let M and M ′ be compatible essentially cylindrical manifolds and let Zr and Z ′
r be as

above. Let E → M be a Dirac bundle over M and let D : C∞(M, E) → C∞(M, E)

be a strongly Callias-type operator whose restriction to Zr is product and such that M
is an almost compact essential support of D. This means that there is a compact set
K ⊂ M such thatM\K = [0, ε]×N and the restriction ofD toM\K is product (i.e., is
given by (3.9)). Let E ′ → M ′ be a Dirac bundle over M ′ and letD′ : C∞(M ′, E ′) →
C∞(M ′, E ′) be a strongly Callias-type operator, whose restriction to Z ′

r is product
and such that M ′ is an almost compact essential support of D′.

Definition 7.4 In the situation discussed above, we say that D and D′ are compatible
if there is an isomorphism E |Zr � E ′|Z ′

r
which identifies the restriction of D to Zr

with the restriction of D′ to Z ′
r.

Let A0 and −A1 be the restrictions of D to N0 and N1, respectively. Let B0 =
H1/2

(−∞,0)(A0) and B1 = H1/2
(−∞,0)(−A1) = H1/2

(0,∞)(A1) be the APS boundary condi-
tions for D at N0 and N1, respectively. Since D and D′ are equal near the boundary,
B0 and B1 are also elliptic boundary conditions for D′.
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Theorem 7.5 SupposeD is a strongly Callias-type operator on an essentially cylindri-
cal odd-dimensional manifold M such that M is an almost compact essential support
of D. Suppose that the operator D′ is compatible with D. Let ∂M = N0 � N1 and let
B0 = H1/2

(−∞,0)(A0) and B1 = H1/2
(−∞,0)(−A1) = H1/2

(0,∞)(A1) be the APS boundary
conditions for D (and, hence, for D′) at N0 and N1, respectively. Then

indDB0⊕B1 = indD′
B0⊕B1 . (7.1)

The proof of this theorem occupies Sects. 7.6–7.10.

7.6 Gluing TogetherM andM′

Let −M ′ denote another copy of manifold M ′. Even though we don’t assume that our
manifolds are oriented, it is useful to think of −M ′ as manifold M with the opposite
orientation. We identify the boundary of −M ′ with the product

−Z ′
r := (

N0 × (−r , 0] ) � (
N1 × (−r , 0] )

and consider the union

M̃ := M ∪N0�N1 (−M ′).

Then Z(−r ,r) := Zr ∪ (−Z ′
r) is a subset of M̃ identified with the product

(
N0 × (−r , r)

) � (
N1 × (−r , r)

)
.

We note that M̃ is a complete Riemannian manifold without boundary.

7.7 Gluing TogetherD and (D′)∗

Let E∂M denote the restriction of E to ∂M . The product structure on E |Zr gives
an isomorphism ψ : E |Zr → [0, r) × E∂M . Recall that we identified Zr with Z ′

r
and fixed an isomorphism between the restrictions of E to Zr and E ′ to Z ′

r. By a
slight abuse of notation we use this isomorphism to view ψ also as an isomorphism
E ′|Z ′

r
→ [0, r) × E∂M .

Let Ẽ → M̃ be the vector bundle over M̃ obtained by gluing E and E ′ using the
isomorphism c(τ ) : E |∂M → E ′|∂M ′ . This means that we fix isomorphisms

φ : Ẽ |M → E, φ′ : Ẽ |M ′ → E ′, (7.2)

so that

ψ ◦ φ ◦ ψ−1 = id : [0, r) × E∂M → [0, r) × E∂M ,

ψ ◦ φ′ ◦ ψ−1 = 1 × c(τ ) : [0, r) × E∂M → [0, r) × E∂M .
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We denote by c′ : T ∗M ′ → End(E ′) the Clifford multiplication on E ′ and set
c′′(ξ) := −c′(ξ). We think of c′′ as the Clifford multiplication of T ∗(−M ′) on E ′
(since the dimension of M ′ is odd, changing the sign of the Clifford multiplication
corresponds to changing the orientation on M ′). Then Ẽ is a Dirac bundle over M̃
with the Clifford multiplication

c̃(ξ) :=
{

c(ξ), ξ ∈ T ∗M;
c′′(ξ) = −c′(ξ), ξ ∈ T ∗M ′.

(7.3)

One readily checks that (7.3) defines a smooth Clifford multiplication on Ẽ . Let
D̃ : C∞(M̃, Ẽ) → C∞(M̃, Ẽ) be the Dirac operator. Then the isomorphism φ of
(7.2) identifies the restriction of D̃with D, the isomorphismφ′ identifies the restriction
of D̃ with −D′, and isomorphism ψ ◦ φ′ ◦ ψ−1 identifies the restriction of D̃ to −Z ′

r
with

D̃|Z ′
r

= −c′(τ ) ◦ D′
Z ′
r
◦ c′(τ )−1. (7.4)

Let �′ denote the Callias potential of D′, so that D′ = D′ + i�′. Consider the
bundle map �̃ ∈ End(Ẽ) whose restriction to M is equal to � and whose restriction
to M ′ is equal to �′. We summarize the constructions presented in this subsection in
the following

Lemma 7.8 The operator D̃ := D̃ + i�̃ is a strongly Callias-type operator on M̃,
whose restriction to M is equal to D and whose restriction to M ′ is equal to −D′ +
i�′ = −(D′)∗.

The operator D̃ is a strongly Callias-type operator on a complete Riemannian man-
ifold without boundary. Hence, [1], it is Fredholm.

Lemma 7.9 ind D̃ = 0.

Proof Since M̃ is a union of two essentially cylindrical manifolds, there exists a
compact essential support K̃ ⊂ M̃ of D̃ such that M̃\K̃ is of the form S1 × N . We
can choose K̃ to be large enough so that the restriction of D̃ to S1 × N is a product.
We can also assume that K̃ has a smooth boundary � = S1 × L . Then the Callias
index theorem [3, Theorem 1.5] states that the index of D̃ is equal to the index of a
certain operator ∂ on �. Since all our structures are product on M̃\K̃ , the operator ∂

is also a product on � = S1 × L . Thus it has a form

∂ = γ
(
∂t + Ã

)
,

where Ã is an operator on L . The kernel and cokernel of ∂ can be computed by
separation of variables and both are easily seen to be isomorphic to the kernel of Ã.
Thus the kernel and the cokernel are isomorphic and ind ∂ = 0. ��

123



APS index with non-compact boundary 3753

7.10 Proof of Theorem 7.5

Recall that we denote by B0 and B1 the APS boundary conditions for D = D̃|M . Let
D′′ denote the restriction of D̃ to −M ′ = M̃\M and let B ′

0 and B ′
1 be the dual APS

boundary conditions forD′′ at N0 and N1, respectively. By the Splitting Theorem 5.11

ind D̃ = indDB0⊕B1 + indD′′
B′
0⊕B′

1
.

Since, by Lemma 7.9, ind D̃ = 0, we obtain

indDB0⊕B1 = − indD′′
B′
0⊕B′

1
. (7.5)

By Lemma 7.8, D′′ = −(D′)∗. Thus, by Remark 4.10, B ′
0 ⊕ B ′

1 is equal to the
adjoint boundary conditions for −D′. Hence, by (5.5),

indD′′
B′
0⊕B′

1
= ind(−D′)∗B′

0⊕B′
1

= − indD′
B0⊕B1 .

Combining this equality with (7.5) we obtain (7.1). ��

8 The Relative �-Invariant

In the previous section, we proved that the index of the APS boundary value prob-
lem DB0⊕B1 for a strongly Callias-type operator on an odd-dimensional essentially
cylindrical manifold depends only on the restriction of D to the boundary, i.e., on
the operators A0 and −A1. In this section we use this index to define the relative
η-invariant η(A1,A0) and show that it has properties similar to the difference of
η-invariants η(A1) − η(A0) of operators on compact manifolds. For special cases,
[30], when the index can be computed using heat kernel asymptotics, we show that
η(A1,A0) is indeed equal to the difference of the η-invariants ofA1 andA0. In the next
section, we discuss the connection between the relative η-invariant and the spectral
flow.

8.1 Almost Compact Cobordisms

Let N0 and N1 be two complete even-dimensional Riemannian manifolds and let A0
andA1 be self-adjoint strongly Callias-type operators on N0 and N1, respectively, cf.
Definition 3.11.

Definition 8.2 An almost compact cobordism between A0 and A1 is given by an
essentially cylindrical manifold M with ∂M = N0 � N1 and a strongly Callias-type
operator D on M such that

(i) M is an almost compact essential support of D;
(ii) D is product near ∂M ;
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(iii) The restriction of D to N0 is equal to A0 and the restriction of D to N1 is equal
to −A1.

If there exists an almost compact cobordism betweenA0 andA1, we say that operator
A0 is cobordant to operator A1.

Lemma 8.3 If A0 is cobordant to A1 then A1 is cobordant to A0.

Proof Let −M denote the manifold M with the opposite orientation and let M̃ :=
M ∪∂M (−M) denote the double of M . Let D be an almost compact cobordism
between A0 and A1. Using the construction of Sect. 7.7 (with D′ = D), we obtain a
strongly Callias-type operator D̃ on M̃ whose restriction to M is isometric to D. Let
D′′ denote the restriction of D̃ to −M = M̃\M . Then the restriction of D′′ to N1 is
equal to A1 and the restriction of D′′ to N0 is equal to −A0. Hence, D′′ is an almost
compact cobordism between A1 and A0. ��

Lemma 8.4 Let A0,A1 and A2 be self-adjoint strongly Callias-type operators on
even-dimensional complete Riemannian manifolds N0, N1 and N2, respectively. Sup-
pose A0 is cobordant to A1 and A1 is cobordant to A2. Then A0 is cobordant to
A2.

Proof Let M1 and M2 be essentially cylindrical manifolds such that ∂M1 = N0 � N1
and ∂M2 = N1 � N2. Let D1 be an operator on M1 which is an almost compact
cobordism between A0 and A1. Let D2 be an operator on M2 which is an almost
compact cobordism betweenA1 andA2. Then the operatorD3 on M1 ∪N1 M2 whose
restriction to Mj ( j = 1, 2) is equal to D j is an almost compact cobordism between
A0 and A2. ��

If follows from Lemmas 8.3 and 8.4 that cobordism is an equivalence relation on
the set of self-adjoint strongly Callias-type operators.

Definition 8.5 Suppose A0 and A1 are cobordant self-adjoint strongly Callias-type
operators and let D be an almost compact cobordism between them. Let B0 =
H1/2

(−∞,0)(A0) and B1 = H1/2
(−∞,0)(−A1) be the APS boundary conditions for D. The

relative η-invariant is defined as

η(A1,A0) = 2 indDB0⊕B1 + dim kerA0 + dim kerA1. (8.1)

Theorem 7.5 implies that η(A1,A0) is independent of the choice of the cobordismD.

Remark 8.6 Sometimes, it is convenient to use the dual APS boundary conditions
B̄0 = H1/2

(−∞,0](A0) and B̄2 = H1/2
(−∞,0](−A1) instead of B0 and B1. It follows from

Corollary 5.9 that the relative η-invariant can be written as

η(A1,A0) = 2 indDB̄0⊕B̄1 − dim kerA0 − dim kerA1. (8.2)
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8.7 The CaseWhen the Heat Kernel has an Asymtotic Expansion

In [30], Fox and Haskell studied the index of a boundary value problem on manifolds
of bounded geometry. They showed that under certain conditions (satisfied for natural
operators on manifolds with conical or cylindrical ends) on M and D, the heat kernel
e−t(DB )∗DB is of trace class and its trace has an asymptotic expansion similar to the
one on compact manifolds. In this case, the η-function, defined by a usual formula

η(s;A) :=
∑

λ∈spec(A)

sign(λ) |λ|s, Re s $ 0,

is an analytic function of s, which has a meromorphic continuation to the whole
complex plane and is regular at 0. So one can define the η-invariant of A by η(A) =
η(0;A).

Proposition 8.8 Suppose now thatD is an operator on an essentially cylindrical man-
ifold M which satisfies the conditions of [30]. We also assume that D is product near
∂M = N0 � N1 and that M is an almost compact essential support forD. LetA0 and
−A1 be the restrictions of D to N0 and N1, respectively. Let η(A j ) ( j = 0, 1) be the
η-invariant of A j . Then

η(A1,A0) = η(A1) − η(A0). (8.3)

Proof Theorem 9.6 of [30] establishes an index theorem for the APS boundary value
problem satisfying conditions discussed above. This theorem is completely analogous
to the classical APS index theorem [4]. In [30] only the case of even-dimensional
manifolds is discussed. However, exactly the same (but somewhat simpler) arguments
give an index theorem on odd-dimensional manifolds as well. In the odd-dimensional
case the integral term in the index formula vanishes identically. Thus, applied to our
situation, Theorem 9.6 of [30] gives

indDB0⊕B1 = − dim kerA0 + η(A0)

2
− dim kerA1 + η(−A1)

2
.

Since η(−A1) = −η(A1) equation (8.3) follows now from the definition (8.1) of the
relative η-invariant. ��

More generally, Bunke [24] considered the situation when A j e
−tA2

j ( j = 0, 1)

are not of trace class but their difference A1e−tA2
1 − A0e−tA2

0 is of trace class and
its trace has a nice asymptotic expansion. In this situation one can define the relative
η-function by the usual formula

η(s;A1,A0) := 1

�
(
(s + 1)/2

)
∫ ∞

0
t
s−1
2 Tr

(A1e
−tA2

1 − A0e
−tA2

0
)
dt . (8.4)

(See [41] for even more general situation when the relative η-function can be defined.)
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Bunke only considered the undeformed Dirac operator A and gave a geometric
condition under which Tr(A1e−t A2

1 − A0e−t A2
0) has a nice asymptotic expansion and

the above integral gives a meromorphic function regular at 0. One can also con-
sider the cases when the heat kernels of the Callias-type operators A j are such that

Tr(A1e−tA2
1 −A0e−tA2

0) has a nice asymptotic expansion and the relative η-function
can be defined using (8.4).

Conjecture 8.9 If the relative η-function (8.4) is defined, analytic and regular at 0,
then

η(A1,A0) = η(0;A1,A0). (8.5)

8.10 Basic Properties of the Relative�-Invariant

Proposition 8.8 shows that under certain conditions the η-invariants ofA0 andA1 are
defined and η(A1,A0) is their difference. We now show that in general case, when
η(A0) and η(A1) do not necessarily exist, η(A1,A0) behaves like it was a difference
of an invariant of N1 and an invariant of N0.

Proposition 8.11 (Antisymmetry) Suppose A0 and A1 are cobordant self-adjoint
strongly Callias-type operators. Then

η(A0,A1) = − η(A1,A0). (8.6)

Proof Let D be an almost compact cobordism between A0 and A1 and let D̃ and D′′
be as in the proof of Lemma 8.3. Then D̃ is a strongly Callias-type operator on a
complete Riemannian manifold M̃ without boundary and D′′ is an almost compact
cobordism between A1 and A0.

Let

B ′
0 = H1/2

[0,∞)(A0) = H1/2
(−∞,0](−A0);

B ′
1 = H1/2

[0,∞)(−A1) = H1/2
(−∞,0](A1).

be the dual APS boundary conditions for D′′. It is shown in Sect. 7.10 that B ′
0 ⊕ B ′

1
is an elliptic boundary condition for D′′ and, by (7.5),

indD′′
B′
0⊕B′

1
= − indDB0⊕B1 . (8.7)

Since D′′ is an almost compact cobordism between A1 and A0, we conclude from
(8.2) that

η(A0,A1) = 2 indD′′
B′
0⊕B′

1
− dim kerA0 − dim kerA1. (8.8)

Combining (8.8) and (8.7), we obtain (8.6). ��
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Note that (8.6) implies that
η(A,A) = 0 (8.9)

for every self-adjoint strongly Callias-type operator A.

Proposition 8.12 (The cocycle condition) LetA0,A1 andA2 be self-adjoint strongly
Callias-type operators which are cobordant to each other. Then

η(A2,A0) = η(A2,A1) + η(A1,A0). (8.10)

Proof The lemma follows from the Splitting Theorem 5.11 applied to the operatorD3
constructed in the proof of Lemma 8.4. ��

9 The Spectral Flow

Atiyah et al. [5] introduced a notion of spectral flow sf(A) of a continuous family
A := {As}0≤s≤1 of self-adjoint differential operators on a closed manifold. They
showed that the spectral flow computes the variation of the η-invariant η(A1)−η(A0).
In this section, we consider a family of self-adjoint strongly Callias-type operators
A = {As}0≤s≤1 on a complete even-dimensional Riemannian manifold and show that
for any operator A0 cobordant to A0 we have η(A1,A0) − η(A0,A0) = 2 sf(A).

9.1 A Family of Boundary Operators

Let EN → N be a Dirac bundle over a complete even-dimensional Riemannian
manifold N . Let A = {As}0≤s≤1 be a family of self-adjoint strongly Callias-type
operators

As = As + i 	s : C∞(N , EN ) → C∞(N , EN ).

Definition 9.2 The family A = {As}0≤s≤1 is called almost constant if there exists a
compact set K ⊂ N such that the restriction of As to N\K is independent of s.

Since dim N = 2p is even, there is a natural grading operator � : EN → EN , with
�2 = 1, cf. [10, Lemma 3.17]. If e1, . . . , e2p is an orthonormal basis of T N � T ∗N ,
then

� := i p c(e1) · · · c(e2p).

Remark 9.3 The operators As anticommute with �. Condition (i) of Definition 3.11
implies that 	 anticommutes with c(e j ) ( j = 1, . . . , 2p) and, hence, commutes with
�. So the operatorsAs neither commute nor anticommute with �. This explains why,
even though the dimension of N is even, the spectrum of the operators As is not
symmetric about the origin and the spectral flow of the family A is, in general, not
trivial.

123



3758 M. Braverman, P. Shi

We set M := [0, 1] × N , E := [0, 1] × EN and denote by t the coordinate along
[0, 1]. Then E → M is naturally a Dirac bundle over M with c(dt) := i�.

Definition 9.4 The family A = {As}0≤s≤1 is called smooth if

D := c(dt)
(
∂t + At ) : C∞(M, E) → C∞(M, E)

is a smooth differential operator on M .

Fix a smooth non-decreasing function κ : [0, 1] → [0, 1] such that κ(t) = 0 for
t ≤ 1/3 and κ(t) = 1 for t ≥ 2/3 and consider the operator

D := c(dt)
(
∂t + Aκ(t) ) : C∞(M, E) → C∞(M, E). (9.1)

Then D is product near ∂M . If A is a smooth almost constant family of self-adjoint
strongly Callias-type operators then (9.1) is a strongly Callias-type operator for which
M is an almost compact essential support. Hence, it is a non-compact cobordism (cf.
Definition 8.2) between A0 and A1.

9.5 The Spectral Section

If A = {As}0≤s≤1 is a smooth almost constant family of self-adjoint strongly Callias-
type operators then it satisfies the conditions of the Kato Selection Theorem [36,
Theorems II.5.4 and II.6.8], [42, Theorem 3.2]. Thus there is a family of eigenvalues
λ j (s) ( j ∈ Z) which depend continuously on s. We order the eigenvalues so that
λ j (0) ≤ λ j+1(0) for all j ∈ Z and λ j (0) ≤ 0 for j ≤ 0 while λ j (0) > 0 for j > 0.

Atiyah et al. [5] defined the spectral flow sf(A) for a family of operators satisfying
the conditions of the Kato Selection Theorem as an integer that counts the net number
of eigenvalues that change sign when s changes from 0 to 1. Several other equivalent
definitions of the spectral flow based on different assumptions on the family A exist in
the literature. For our purposes, the most convenient is the Dai and Zhang’s definition
[28] which is based on the notion of spectral section introduced byMelrose and Piazza
[40].

Definition 9.6 A spectral section forA is a continuous family P = {Ps}0≤s≤1 of self-
adjoint projections such that there exists a constant R > 0 such that for all 0 ≤ s ≤ 1,
if Asu = λu then

Psu =
{
0, if λ < −R;
u, if λ > R.

If A satisfies the conditions of the Kato Selection Theorem, then the arguments of
the proof of [40, Proposition 1] show that A admits a spectral section.

Remark 9.7 Booss-Bavnbek et al. [12] defined the spectral flow for a family of
unbounded operators in an abstract Hilbert space. Their conditions on the family are
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muchweaker than those of theKato Selection Theorem. In particular, they showed that
a family of elliptic differential operators on a closed manifold satisfies their conditions
if all the coefficients of the differential operators depend continuously on s. It would
be interesting to find a good practical condition under which a family of self-adjoint
strongly Callias-type operators satisfies the conditions of [12].

9.8 The Spectral Flow

Let P = {Ps} be a spectral section for A. Set Bs := ker Ps . Let Bs
0 := H1/2

(−∞,0)(As)

denote the APS boundary condition defined by the boundary operatorAs . Recall that
the relative index of subspaces was defined in Sect. 5.6. Since the spectrum of As

is discrete, it follows immediately from the definition of the spectral section that for
every s ∈ [0, 1], the space Bs is a finite rank perturbation of Bs

0. We are interested
in the relative index [Bs, Bs

0]. Following Dai and Zhang [28], we give the following
definition.

Definition 9.9 Let A = {As}0≤s≤1 be a smooth almost constant family of self-adjoint
strongly Callias-type operators which admits a spectral section P = {Ps}0≤s≤1.
Assume that the operators A0 and A1 are invertible. Let Bs := ker Ps and Bs

0 :=
H1/2

(−∞,0)(As). The spectral flow sf(A) of the family A is defined by the formula

sf(A) := [B1, B1
0 ] − [B0, B0

0 ]. (9.2)

By Theorem 1.4 of [28], the spectral flow is independent of the choice of the spectral
sectionP and computes the net number of eigenvalues that change signwhen s changes
from 0 to 1.

Remark 9.10 The relative index [Bs, Bs
0] can also be computed in terms of the orthog-

onal projections Ps and Ps
0 with kernels Bs and Bs

0, respectively. Then Ps
0 defines

a Fredholm operator Ps
0 : im Ps → im Ps

0 . Dai and Zhang denote the index of this
operator by [Ps

0 − Ps] and use it in their formula for spectral flow. One easily checks
that [Ps

0 − Ps] = [Bs, Bs
0].

Lemma 9.11 Let −A denote the family {−As}0≤s≤1. Then

sf(−A) = − sf(A). (9.3)

Proof The lemma is an immediate consequence of Lemma 5.7. ��

9.12 Deformation of the Relative�-Invariant

Let A = {As}0≤s≤1 be a smooth almost constant family of self-adjoint strongly
Callias-type operators on a complete even-dimensional Riemannian manifold N1. Let
A0 be another self-adjoint strongly Callias-type operator, which is cobordant to A0.
In Sect. 9.1 we showed that A0 is cobordant to As for all s ∈ [0, 1]. Hence, by
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Lemma 8.4, A0 is cobordant to A1. In this situation, we say the A0 is cobordant to
the family A. The following theorem is the main result of this section.

Theorem 9.13 Suppose A = {As : C∞(N1, E1) → C∞(N1, E1)
}
0≤s≤1 is a smooth

almost constant family of self-adjoint strongly Callias-type operators on a complete
Riemannian manifold N1 such that A0 and A1 are invertible. Then

η(A1,A0) = 2 sf(A). (9.4)

IfA0 : C∞(N0, E0) → C∞(N0, E0) is an invertible self-adjoint strongly Callias-
type operator on a complete even-dimensional Riemannian manifold N0 which is
cobordant to the family A then

η(A1,A0) − η(A0,A0) = 2 sf(A). (9.5)

Proof First, we prove (9.5). LetM be an essentially cylindricalmanifoldwhose bound-
ary is the disjoint union of N0 and N1. LetD : C∞(M, E) → C∞(M, E) be an almost
compact cobordism between A0 and A0.

Consider the “extension of M by a cylinder”

M ′ := M ∪N1

([0, 1] × N1
)
.

and let E ′ → M ′ be the bundle over M ′ whose restriction to M is equal to E and
whose restriction to the cylinder [0, 1] × N1 is equal to [0, 1] × E1.

We fix a smooth function ρ : [0, 1] × [0, 1] → [0, 1] such that for each r ∈ [0, 1]
• the function s �→ ρ(r , s) is non-decreasing.
• ρ(r , s) = 0 for s ≤ 1/3 and ρ(r , s) = r for s ≥ 2/3.

Consider the family of strongly Callias-type operators Dr : C∞(M ′, E ′) →
C∞(M ′, E ′) whose restriction to M is equal toD and whose restriction to [0, 1]× N1
is given by

Dr := c(dt)
(
∂t + Aρ(r ,t) )

.

Then Dr is an almost compact cobordism between A0 and Ar . In particular, the
restriction of Dr to N1 is equal to −Ar .

Recall that we denote by −A the family {−As}0≤s≤1. Let P = {Ps} be a spectral
section for−A. Then for each r ∈ [0, 1] the space Br := ker Pr is an elliptic boundary
condition forDr at {1}× N1. Let B0 := H1/2

(−∞,0)(A0) be the APS boundary condition
for Dr at N0. Then B0 ⊕ Br is an elliptic boundary condition for Dr .

Recall that the domain domDr
B0⊕Br consists of sections u whose restriction to

∂M ′ = N0 � N1 lies in B0 ⊕ Br .

Lemma 9.14 indDr
B0⊕Br = indD1

B0⊕B1 for all r ∈ [0, 1].
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Proof For r0, r ∈ [0, 1], let πr0r : Br0 → Br denote the orthogonal projection. Then
for every r0 ∈ [0, 1] there exists ε > 0 such that if |r − r0| < ε then πr0r is an
isomorphism. As in the proof of Theorem 5.11, it induces an isomorphism

�r0r : domDr0
B0⊕Br0 → domDr

B0⊕Br .

Hence
ind

(Dr
B0⊕Br ◦ �r0r

) = indDr
B0⊕Br . (9.6)

Since for |r − r0| < ε

Dr
B0⊕Br ◦ �r0r : domDr0

B0⊕Br0 → L2(M ′, E ′)

is a continuous family of bounded operators, ind(Dr
B0⊕Br ◦�r0r ) is independent of r .

The lemma follows now from (9.6). ��
The space Br

0 := H1/2
(−∞,0)(−Ar ) is theAPSboundary conditions forDr at {1}×N1.

By definition, η(A1,A0) = 2 indD1
B0⊕B1

0
. To finish the proof of Theorem 9.13 we

note that by Proposition 5.8

indDr
B0⊕Br = indDr

B0⊕Br
0

+ [Br , Br
0].

Hence,

η(A1,A0) − η(A0,A0)
)

2
= indD1

B0⊕B1
0

− indD0
B0⊕B0

0

=
(
indD1

B0⊕B1 − [B1, B1
0 ]

)
−

(
indD0

B0⊕B0 − [B0, B0
0 ]

)

Lemma 9.14= −[B1, B1
0 ] + [B0, B0

0 ]
= − sf(−A)

Lemma 9.11= sf(A).

This proves (9.5). Now, by Proposition 8.12,

η(A1,A0) = η(A1,A0) − η(A0,A0) = 2 sf(A).

��
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