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Abstract
Westudy the global solvability of a locally integrable structure of tube type and co-rank
1 by considering a linear partial differential operatorL associated to a general complex
smooth closed 1-form c defined on a smooth closed n-manifold. The main result
characterizes the global solvability of L when n = 2 in terms of geometric properties
of a primitive of a convenient exact pullback of the form Im(c) as well as in terms of
homological properties of Re(c) related to small divisors phenomena. Although the
full characterization is restricted to orientable surfaces, some partial results hold true
for compact manifolds of any dimension, in particular, the necessity of the conditions,
and the equivalence when Im(c) is exact. We also obtain informations on the global
hypoellipticity of L and the global solvability of Ln−1—the last non-trivial operator
of the complex when M is orientable.

Keywords Global solvability · Complex vector fields · Involutive systems · Liouville
numbers

Mathematics Subject Classification 35A01 · 35N10 · 58J10

1 Introduction

Suppose we are given a smooth closed (i.e., compact andwithout boundary) connected
n-dimensional manifold M (n > 1), equipped with a Riemannian metric, where a
smooth closed 1-form c is defined. In what follows, the real and imaginary parts of c
will be, respectively, denoted by a and b, and we will write c = a + ib.
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Tube Structures 2541

Consider the vector fields

L j = ∂

∂t j
+ ∂C

∂t j
(t)

∂

∂x
, j = 1, . . . , n,

where (t1, . . . , tn) are local coordinates on M , x belongs to the unit circle S
1, and

C is a local primitive of c. They are local generators of the bundle V .= (T ′)⊥ ⊂
C⊗ T (M ×S

1) where T ′ is the line sub-bundle of C⊗ T ∗(M ×S
1) generated by the

1-form dx − c (we refer to [11,20] for details).
Denote by �p,0, p = 0, . . . , n, the sub-bundle of �p(C ⊗ T ∗(M × S

1)) locally
generated by dtJ = dt j1 ∧ · · · ∧ dt jp , if J = { j1, . . . jp} and 1 � j1 < j2 < · · · <
jp � n.
The focus of this work is the associated differential operator L : C∞(M × S

1) →
C∞(M × S

1,�1,0) defined by

Lu = dtu + c(t) ∧ ∂xu, (1.1)

where dt : C∞(M × S
1,�p,0) → C∞(M × S

1,�p+1,0) is the exterior derivative on
M .

Any involutive structure defines in a natural way a complex of differential operators
which in the case of V is given by (1.1) when acting on functions. Thus, we have a
complex

C∞(M × S
1)

L−→ C∞(M × S
1,�1,0)

L
1−→

L
1−→ C∞(M × S

1,�2,0)
L
2−→ · · · L

n−1−→ C∞(M × S
1,�n,0)

L
n−→ 0

(1.2)

analogous to the de Rham complex.
Here we will study the smooth global solvability of the equation Lu = f , i.e., the

possibility of finding a globally defined solution u ∈ C∞(M ×S
1)when f is smooth.

Of course, if f is in the range of L it must satisfy two obvious conditions analogous
to the fact that an exact form is both closed and orthogonal to the closed cocycles: (i)
L
1 f = 0 (a consequence of the involutivity L1

L = 0), and (ii) f must be orthogonal
to the kernel of the dual operator L∗. They are usually referred to as compatibility
conditions for f and may be formulated in equivalent different ways that are chosen
to suit best the operator under consideration.

As in [16], we will consider the minimal covering space � : ˜M → M associated
with b: a covering space where the pullback �∗b is exact, and minimal with respect
to such property. A primitive ˜B of �∗b can be obtained in ˜M by integration from
a point t0 ∈ ˜M . Set �r .= {s ∈ ˜M : ˜B(s) > r} and �r

.= {s ∈ ˜M : ˜B(s) < r}
for the semilevel sets of ˜B. Denote by A the family of the connected components
O of regular semilevel sets—that is, the sets �r and �r when r is a regular value
of ˜B—such that ˜B is bounded on O. When b is exact we will have ˜M = M , and in
this case each component of a regular semilevel is in A and M itself is a connected
semilevel set for some value of r .
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2542 J. Hounie, G. Zugliani

We now state the main result of this work. Denote by H1(˜M,Z) the first homology
group of ˜M with coefficients in Z.We will associate to O ∈ A a vector I (O) ∈ R

m ,
with m = rank i∗(H1(O,Z)), where i∗ : H1(O,Z) → H1(˜M,Z) is the natural
homomorphism induced by the inclusion i : O ↪→ ˜M .

Theorem 1.1 Assume that M is a closed orientable surface and that the 1-form c =
a + ib is smooth and closed. The following statements are equivalent:

(I) L is globally solvable.
(II) One of the two conditions below is satisfied:

(II.1) A = ∅, or, for everyO ∈ A , I (O) is neither a rational nor a Liouville vector.
(II.2) The form b is exact and the semilevel sets {t ∈ M : ˜B(t) > r} and {t ∈ ˜M :

˜B(t) < r} are connected for every r ∈ R; in addition, a is rational, and if
q ∈ Z is such that q I (O) ∈ Z

m for O ∈ A , then qa is integral.

The precise definitions of ˜M , of rational and Liouville vectors and forms, and of
global solvability are present in [16,17] and are reviewed in Sect. 2 along with a script
of the proof.

When c is smooth and exact, the global solvability of the complex for a smooth
closed orientable manifold M was characterized in [12] (in the context of linear self-
adjoint operators in a Hilbert space). The consequence is that L is globally solvable
if and only if the semilevel sets {t ∈ M : ˜B > r} and {t ∈ M : ˜B < r} are connected
for every r ∈ R. When b is not exact, we point out that A = ∅ is equivalent to the
connectedness of the semilevel sets in ˜M [16].

As for systems of real vector fields, a characterization of the global solvability of
the complex is known when M = T

n ; see [3,13].
The global solvability of the system when c is real analytic was characterized

quite recently by Hounie and Zugliani in [17]. A similar complete characterization for
general M and smooth c is only known when b is a Morse form [16,17]. Conceptually,
the proof in the smooth set up and in the real analytic set up is almost identical and
the reason why the proof in the first situation is much harder and remains open for
higher dimensions n > 2 lies on a technical difficulty that can be described as follows.
Given a pair of points in a connected semilevel set one may join them by a curve and
wishes to estimate the minimal length of such a curve in terms of the distance from
the semilevel set boundary to the point of the pair which is closest to this boundary.
In the real analytic situation such boundaries are manageable sets (also in the smooth
Morse case), while in the general smooth case they can be quite wild. We return to
this matter in the Appendix.

The global solvability of systems defined by a smooth closed form has been exten-
sively studied forM = T

n , andwemention [2,6],where a characterization of the global
solvability is given when M = T

2 and a ≡ 0. Under particular special hypotheses,
other results can be found in [7,8,14]. Finally, examples of globally solvable systems
when M is a surface can be found in [9,10].

We point out that some of the results contained in Theorem 1.1 are valid for a
general closed manifold. In Sect. 7, we discuss this point further.
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Apart of this paperwaswrittenwhile the second authorwas visiting theDepartment
of Mathematics and Statistics at Florida International University. He would like to
thank its faculties and staff who provided all that was necessary during the period.

2 Definitions and Proof Strategy

We can construct a covering space ˜M of M with special properties, one of them being
that the pullback of b to ˜M is exact. More precisely, take the subgroup H of π1(M)
(basepoints omitted) equal to the kernel of the homomorphism T : π1(M) → R given
by

γ →
∫

γ

b.

There exists a covering space � : ˜M → M such that π1(˜M) is isomorphic to H and
for each pair of liftings of a point in M to ˜M there is a deck transformation mapping
one to the other. The covering ˜M is called a minimal covering. Moreover, the group
D of deck transformations of ˜M is π1(M)/H , which is finitely generated.

Thus we may write

˜B(σ (t)) = ˜B(t)+ bσ , t ∈ ˜M, σ ∈ D, (2.1)

where bσ is a constant that is 0 if and only if σ is the identity.
We denote by �r .= {s ∈ ˜M : ˜B(s) > r} and �r

.= {s ∈ ˜M : ˜B(s) < r} the
semilevel sets of ˜B.

We know that if ˜B is bounded on a component O of a semilevel set, then the
restriction of� toO is injective (see [16]). Denote byA the family of all the connected
componentsO of some regular semilevel set—that is, a component of�r or�r , where
r is some regular value of ˜B—such that ˜B is bounded on O.

We define a continuous functional Ta on the space 
(˜M) consisting of smooth
closed curves in ˜M .

Given γ ∈ 
(˜M), define

Ta(γ ) =
∫

γ

�∗a.

Notice that

• Ta(γ ) depends only on the homotopy class of γ.
• By the Hurewicz Theorem, Ta induces a homomorphism on the first homology
group H1(˜M,Z) (the class of γ in H1(˜M,Z) will be denoted by [γ ]).
Suppose that O ∈ A . Consider the natural homomorphism i∗ : H1(O,Z) →

H1(˜M,Z) induced by the inclusion i : O ↪→ ˜M . As i∗(H1(O),Z)) is a subgroup of
H1(˜M,Z), it is finitely generated, andwefixa linearly independent set {[ν1], . . . , [νm]}
generating its free part F .

We will denote by I (O) the vector (2π)−1(Ta([ν1]), . . . , Ta([νm])).
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2544 J. Hounie, G. Zugliani

Definition 2.1 We say that I (O) is

• integral if I (O) ∈ Z
m ;

• rational if I (O) ∈ Q
m ;

• Liouville if it is not rational and there exist Pj ∈ Z
m , q j ∈ Z

+, with q j > 1, and
C > 0 satisfying

∣

∣

∣

∣

I (O)− Pj

q j

∣

∣

∣

∣

<
C

q j
j

for every j ∈ Z
+.

It is plain that this definition does not depend on the choice of the generators.
Denote by E the group of deck transformations associated with the universal cov-

ering �0 : U → M . This group is isomorphic to π1(M).
If C = A + i B, where A and B are, respectively, the primitives of the pulled back

forms �∗
0a and �∗

0b, we may write

C(σ (t̃)) = C(t̃)+ cσ , t ∈ U , σ ∈ E, (2.2)

where cσ is a constant.
The space of plausible right-hand sides for the equation Lu = f will be denoted

by E. Set F
.= �∗

0 f and denote by {̂F(t, ξ)}ξ∈Z the Fourier coefficients of F with
respect to x ∈ S

1.

Definition 2.2 (Compatibility conditions) We say that a 1-form f ∈ C∞(M ×
S
1,�1,0) belongs to E if:

• for each ξ ∈ Z and each smooth curve γ connecting t to σ(t) in U with iξcσ ∈
2π iZ,

∫

γ

eiξC(s)̂F(s, ξ) = 0, and

• dt (eiξC(t)̂F(t, ξ)) = 0 for each ξ ∈ Z.

To avoid heavy notation, we will keep writing f to denote the pullback of f to ˜M
or U , except when doing so might lead to confusion.

Definition 2.3 We say that the operator (1.1) is globally solvable if given any 1-form
f ∈ E there exists u ∈ D ′(M × S

1) such that Lu = f . If the solution u can be taken
in C∞(M × S

1) we say that L is globally solvable in C∞. We say that the operator
(1.1) is globally hypoelliptic if u ∈ C∞(M×S

1)wheneverLu ∈ C∞(M×S
1,�1,0).

We start by noticing that Z � ξ → ̂f (t, ξ) is rapidly decreasing, i.e., for every
N ∈ Z

+, there is a constant C(N ) > 0 such that
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Tube Structures 2545

| ̂f (t, ξ)| � C(N )

(1 + |ξ |)N (2.3)

(and similar estimates hold for the derivatives of f ).
We will find the Fourier coefficients û(t, ξ) of a presumed solution to the system

and prove that they satisfy similar convenient bounds. Once this is done, they will
determine the smooth function u(x, t) that has these Fourier coefficients proving that
L is globally solvable in C∞. Indeed, since the coefficients of a candidate solution to
the system satisfy the equation

dt û(·, ξ)+ iξc(·)̂u(·, ξ) = ̂f (·, ξ) (2.4)

in any local chart of M , these coefficients determine initially a continuous function
that satisfies the equation Lu = f in the weak sense, and to conclude the proof it will
remain to be shown that u(t, x) is smooth. This will follow by proving the appropriate
decay for the derivatives of the coefficients, which involves an induction argument on
the order of the derivatives. This was the approach followed in [16], and we will refer
the reader to this paper for details on the computations.

If we integrate the pullback to U of (2.4) from t̃0 ∈ U to t̃ ∈ U for each ξ ∈ Z,
we obtain, with some abuse of notation,

û(t̃, ξ) =
∫ t̃

t̃0
υ + Ke−iξC(t̃),

where υ(s, ξ) = eiξ [C(s)−C(t̃)]
̂f (s, ξ) and K is a constant.

In order to find a solution on M we need that û(σ (t̃), ξ) = û(t̃, ξ), σ ∈ E, which
uniquely determines the coefficients of the sought-after solution, when iξcσ /∈ 2π iZ,
as

û(t̃, ξ) = 1

eiξcσ − 1

∫ σ(t̃)

t̃
υ, (2.5)

and

K = 1

eiξcσ − 1

∫ σ(t̃0)

t̃0
eiξC(s) ̂f (s, ξ) = eiξC(t̃0)û(t̃0, ξ).

Sometimes we rewrite (2.5) as

û(t̃, ξ) =
∫ t̃

t̃0
υ + eiξ [C(t̃0)−C(t̃)]û(t̃0, ξ). (2.6)

In fact, for each t̃ ∈ U and ξ ∈ Z, we are free to choose t̃0 and the paths used in
(2.5) and (2.6), so the idea is to select them carefully and the choice will vary according
to t and ξ.
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2546 J. Hounie, G. Zugliani

Also, in order to prove the estimates, it will be convenient to choose a specific σ ∈ E
that might depend on t̃ ∈ U and ξ ∈ Z \ {0}. As proved in [17], the definition of the
coefficients (2.5) is independent of σ ∈ E.

Lemma 2.4 Let φ, σ ∈ E. If f ∈ E and iξcσ , iξcφ /∈ 2π iZ, then for each t ∈ U ,

1

eiξcσ − 1

∫ σ(t̃)

t̃
υ = 1

eiξcφ − 1

∫ φ(t̃)

t̃
υ.

Another lemma we import from [17] is

Lemma 2.5 Suppose that I (O) is neither rational nor Liouville. Then, for every ξ ∈ Z

with ξ �= 0, there exists l ∈ {1, . . . ,m} such that

∣

∣

∣eiξTa([νl ]) − 1
∣

∣

∣ � K

|ξ |s

for some K > 0 and s ∈ Z
+.

In the next section, we will start the proof of (II) �⇒ (I). The approach will
depend on b: in Sects. 3 and 4 we deal with the case in which b is not exact, while in
Sect. 5 we assume that b is an exact form.

For the first case, consider the division of the pairs (t, ξ) ∈ ˜M ×Z
− in two classes.

The class (A) consists of the pairs (t, ξ) for which there is σ ∈ D with bσ < 0 such
that

t and σ(t) are in the same component of �
˜B(t)+ 1

1+|ξ |
.

As for the pairs in the class (B), for each σ ∈ D with bσ < 0,

t and σ(t) are in different components of �
˜B(t)+ 1

1+|ξ |
.

3 Estimates for the Class (A)

Here it is crucial to work under the assumption that M is a closed orientable surface
of genus g > 0, shortly Sg—on which a non-exact 1-form b is defined. Since Sg is a
connected sum of g tori Tk , we can suppose that the set of smooth closed curves rep-
resenting the canonical generators of H1(Sg,Z) is {θ1, φ1, . . . , θg, φg}, where θk, φk
represent the canonical generators of H1(Tk,Z).

We will say that M† ⊂ R
3 is a surface with boundary if for every point p ∈ M†,

there are a ball B � p in R
3 and a diffeomorphism between M† ∩ B and an open

set ofQ
.= {(x, y) : x, y � 0}. The interior points of M† is the set of points mapped

to intQ. The set of points that are mapped to Q \ intQ is called the boundary of
M† (denoted by ∂M†). Note that we depart slightly from the standard definition of
boundary since we allow a finite number of corners similar to the vertices of a polygon.

A loop, that is, a smooth simple closed curve α in the interior of a surface M† (with
or without boundary components) will be called non-trivial if M† \ α is connected.

We would like to join t ∈ ˜M to t0 satisfying the following rules:
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(i) the term −ξ [˜B(s) − ˜B(t)] will remain bounded on each path by a constant
independent of ξ ;
(ii) the length of the path will have polynomial growth with respect to |ξ |; and
(iii) the previous bounds do not depend on t .

Condition (i) will be consequence of the connectedness of the semilevel sets in ˜M .
Let us say a few words about condition (ii). The approach in [12]—where b is

exact—is to consider a triangulation of a manifold M and the path consists of sides of
triangles (recall that ˜M = M in [12], and the solution is given by the integral in (2.6)).

In [2,6], when M = T
2, the approach to obtain the required estimates is to find

a compact set in ˜M (which in this case can be R2 or R × S
1), within which t and a

convenient translate of t can be joined by a curve contained in semilevel set.
Here the approach involves a combination of the two cases mentioned above as

we describe below. The idea is to find a special compact surface M� with boundary
where an exact form b� is defined. The 1-form b� will be related to b and the surface
M can be obtained from M� after appropriate identifications. A convenient path will
then be produced in M� and this will grant the required estimates in ˜M . This approach
is reminiscent of the method used in [16,17] for real analytic b where the estimates
were obtained first inside a ball centered at t , albeit in the smooth case one must also
invoke the technique introduced in [19] that uses triangulations in order to deform the
original integration path into one of controllable length. A key technical point is that
the boundary ∂M� should not contain singular points of b�. In [2,16], the topological
results in [1] play an important role and the crucial point is a lemma of Arnold’s that
shows the existence of a non-trivial loop in the torus that does not meet the singular
set of b. Here we must extend these results to orientable surfaces (see Lemma 3.3).

One decisive tool in the original proof ofArnold’s loop lemma for the torus is a result
[1, Lemma 4] that was stated without a complete proof. For the sake of completeness,
we offer in the Appendix a more detailed proof of that result for surfaces.

Several times in the sequel wewill need a particular construction of covering spaces
that we describe now. Suppose that M is the connected sum of a torus T = S

1 × S
1

and a surface S through disks D and D′ in the interior of T and S, respectively.
Consider the covering �• : R2 → T such that Q .= [0, 2π ] × [0, 2π ] is a funda-

mental domain, the y-axis is projected onto θ1, the x-axis is projected onto φ1, and
�•(∂Q)∩ D = ∅.We will then deal with the covering space�1 : R → M , which is
obtained by carrying out, through each pre-image of D, connected sums with copies
of S.

In Fig. 1, we illustrate the case when S is another torus.

3.1 The Case of Genus 2

Let us describe how to obtain the surface with boundaryM� fromM (cf. the comments
made above about M�) when M is a bitorus.We consider a non-exact 1-form b defined
on a bitorus M and denote by �(b) the singular set of b, i.e., the set of zeros of b.

Lemma 3.1 If a non-exact 1-form b is defined on M, there is a non-trivial loop γ in
M \�(b).
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2548 J. Hounie, G. Zugliani

Fig. 1 The covering R

In the proof of this lemma we adapt some ideas from [1] where the analogue result
for the case M = T

2 was proved.

Proof We can assume that
∫

θ1
b �= 0. Construct the coveringR as in Fig. 1. Choose a

componentO ofR \�(�∗
1b) intersecting the y-axis. This is possible since

∫

θ1
b �= 0.

We can assume that O does not intersect any of its translates O + (2πr , 2πs, 0) with
r , s ∈ Z (otherwise, we would already have the desired curve). Call Cm

.= {m} × R,
m ∈ Z, andRm the closure of region ofR between Cm and Cm+1.Write {Ok

m}k∈Z for
the components of O ∩ Rm .

According to LemmaA.1 (seeAppendix), we have
∫

Ok
m∩Cm

�∗
1b = ∫

Ok
m∩Cm+1

�∗
1b.

This implies that

∫

O∩Cm

�∗
1b =

∫

O∩Cm+1

�∗
1b. (3.1)

There are two possibilities: either there is n ∈ Z such that O ∩ Cn = ∅ or O
intersects Cm for every m ∈ Z. Notice that a non-empty intersection between Ok

m and
Cm (and Cm+1) consists of sets diffeomorphic to open intervals. Also, the projections
on θ1 of every such interval are pairwise disjoint for every k,m ∈ Z.

Hence in both cases, due to (3.1), it must be that
∫

θ1∩�1(O)
b = 0. Reasoning in

the same manner for every component O of R \ �(�∗
1b) intersecting the y-axis, the

result is that
∫

θ1
b = 0, a contradiction.

We conclude that there exists such a component O intersecting one of its translates
and then wemay choose a smooth curve γ̃ inO joining a point Q ∈ O and its translate
Q + (2πr , 2πs, 0). By construction, the projection γ = �1 ◦ γ̃ is non-trivial and
does not meet �(b). ��

We now can move on to obtain our surface with boundary.
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Fig. 2 Curves γ , δ, and the tubular neighborhoods

Step 1 There are two possibilities for the loop γ obtained above.
Case 1 Suppose first that

∫

γ
b = 0.

Since γ is non-trivial, we can take a loop δ on M having intersection number 1 with
γ.We call V the union of tubular neighborhoods of γ and δ in M , whose closure is a
torus with one boundary component. Notice that V is diffeomorphic to the union of
tubular neighborhoods of the canonical generators θ1 and φ1 of a torus T1 (Figure 2).

Hence there is a diffeomorphism ϕ between M and the connected sum between T1
and another torus, taking θ1 to γ and φ1 to δ.

Consider the covering space R and set again Rm for closure of the region of R
between Cm and Cm+1.Notice thatRm covers a surface M2 with boundary consisting
of two smooth curves and having genus 1 (first picture in Figure 3).We can then define
a smooth closed 1-form b2 as the pushforward to M2 of the form (ϕ ◦�1)

∗b defined
on Rm .

Case 2 Here
∫

γ
b is not 0.

Claim Under this condition, there is a loop δ on M \�(b) whose intersection number
with γ is 1.

In fact, we can consider the surface M2 obtained above, which has two smooth
curves η1 and η2 in the boundary.WriteO for the component ofM2\�(b2) containing
η1.

Ifη2 were not contained inO , we could applyLemmaA.1 forO andwould conclude
that

∫

O∩∂M2
b2 = ∫

γ
b = 0. Thus η2 ⊂ O , and our claim is proved. ��

In this framework, we construct again the covering space R, by means of γ and
the above δ, and now M2 will denote the closure of the region ofR inside Q (second
picture in Fig. 3). Further, b2 will denote the restriction of the pullback (ϕ ◦�1)

∗b to
M2.

Step 2 The result after Step 1 is that we have a closed 1-form b2 defined on a surface
M2 of genus 1 and with boundary consisting of piecewise smooth curves. Moreover,
notice that

the integral of b2 along the boundary components is zero. (�)

If b2 is exact, the proof is complete. Otherwise, we have to apply the following
version of Lemma 3.1 for M2 and b2:

123



2550 J. Hounie, G. Zugliani

Fig. 3 Surfaces M2 that can be obtained after Step 1

Fig. 4 Surfaces that can be obtained after Step 2

Lemma 3.2 If b2 is not exact, then there is a non-trivial loop γ2 in the interior of M2
not intersecting �(b2).

Indeed, we can assume that M2 is the connected sum of a torus T2 with a surface
S0, of genus 0 and with boundary components, and that the integral of b2 along the
generator θ2 is not 0. The covering R in this step is constructed after considering
again R

2, but with the y-axis projecting onto θ2, the x-axis is projected onto φ2, and
by carrying out, in each fundamental domain, a connected sum with copies of S0.
Now, one can follow the proof of Lemma 3.1. The key point is that Eq. (3.1) remains
true for b2, in view of (�).

We then can repeat Step 1, obtaining a closed 1-form b� defined on a surface of
genus 0 and with boundary consisting of piecewise smooth curves. As (�) will hold
for b�, it is necessarily an exact form. The possible resulting surfaces are depicted in
Fig. 4.

The conclusion is that we can always find an exact form b� defined on a surface
M� with boundary, and such that �(b�) ∩ ∂M� = ∅.
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3.2 General Case

Let us turn our attention again for the case when M is a connected sum of g tori Tk .
Motivated by the previous section, a special surface with boundary will be obtained
after inductively performing appropriate cuts, reducing the genus until reaching a
surface with boundary where an exact form is defined.

Goal To obtain, from M and b, a surface M� with boundary consisting of piecewise
smooth curves such that

• an exact 1-form b� is defined on M�;
• ∂M� does not intersect the singular set of b�.

First we state an auxiliary result, analogous to Lemma 3.2.

Lemma 3.3 Suppose that a 1-form b† is defined on a surface M† (possibly with bound-
ary components). Assume that the boundary consists of piecewise smooth curves not
in the singular set of b†, and that the integral of b† along them is zero. If b† is not
exact, then there exists a non-trivial loop γ in M† \�(b†).

Indeed, we can assume that M† is the connected sum of a torus Tk with a surface
S†, of genus k − 1 and with boundary components, and that the integral of b† along
the generator θk is not 0. A coveringR is constructed after considering again R2, but
with the y-axis projecting onto θk , the x-axis is projected onto φk , and by carrying
out, in each fundamental domain, a connected sum with copies of S†. As in Lemma
3.2, one follows the proof of Lemma 3.1 and obtains the result.

The goal now can be achieved by induction on the genus. When M = Sg , we
proceed as in Sect. 3.1 - Step 1.

Supposewe have obtained a surfaceMk of genus 0 < k < g, with boundary consist-
ing of piecewise smooth curves, on which a closed 1-form bk is defined. Furthermore,
suppose that the elements of ∂Mk do not intersect the singular set of bk .

If bk is not exact, we will apply Lemma 3.3 for Mk , obtaining γk on Mk \�(bk).
Case 1 Suppose first that

∫

γk
bk = 0.

Since γk is non-trivial, we can take a loop δk in the interior ofMk having intersection
number 1 with γk .We call V the union of tubular neighborhoods of γk and δk in Mk ,
whose closure is a torus with one boundary component. Notice that V is diffeomorphic
to the union of tubular neighborhoods of the canonical generators θk and φk of a torus
Tk .

Hence there is a diffeomorphism ϕ between Mk and the connected sum between
Tk and a surface S†, of genus k − 1 and with boundary components, taking θk to γk
and φk to δk .

As above, construct the covering �k : R → Mk and set again Rm for the closure
of region of R between Cm and Cm+1. Notice that Rm covers a surface Mk−1 with
boundary consisting of two smooth curves and having genus k−1.We can then define
a smooth closed 1-form bk−1 as the pushforward of (ϕ ◦�k)

∗bk to Mk−1.

Case 2 As for the case when
∫

γk
bk �= 0, we have, as before:

Claim There is a loop δk on Mk \�(bk) whose intersection number with γk is 1.
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Thus we construct again the covering space R, by means of γk and the above δk ,
and now Mk−1 will denote the closure of the region ofR insideQ. Further, bk−1 will
denote the restriction of (ϕ ◦�k)

∗b to Mk−1.

In any case, we then have a closed 1-form bk−1 defined on a surface Mk−1 of genus
k − 1 and with boundary not intersecting �(bk−1). The integral of bk−1 along the
boundary components is zero.

If bk−1 is exact, the proof is complete. Otherwise, we apply Lemma 3.3 for Mk−1
and bk−1 and, therefore, repeat the process. As the genus of the surface with boundary
keeps decreasing each iteration, this process will eventually stop. ��
Remark 3.4 After the latter proof, we call B� a primitive of b� defined on M�. As
in [1], we can assume that the restriction B� �∂M� has finitely many singular points,
which will be indexed by J .

3.3 Obtaining the Estimates

Recall that we have obtained in the previous section a surface with boundary M�,
where an exact form b� is defined, and a smooth map from M� to M , which we will
call �.

Step 1. Suppose that bσ0 < 0. By hypothesis, for every ξ < 0, there is a curve
γ (t, ξ) connecting t to σ0(t) inside the sublevel set �

˜B(t)+ 1
1+|ξ |

. The projection of

such a curve on M is a closed curve denoted by λ. If we follow the path�−1(λ) from
the pre-image t ′ of �(t), there will be a first point p that will intercept the boundary
of M� (otherwise, b� would not be exact).

By the construction of�, we can connect p, through a path τ in ∂M�, to a singular
point p j , j ∈ J , of the restriction B� �∂M� such that B� is strictly decreasing on τ.

Moreover, calling γ0(t, ξ) the resulting curve connecting t ′ to p j , if s ∈ γ0(t, ξ),
then

B�(s) � B�(t ′)+ 1

1 + |ξ | . (3.2)

Step 2.

Definition 3.5 By a smooth triangulation of a surface M†, we mean that there is a
complex K and a homeomorphism h : |K| → M† such that h �K is of class C∞
for each simplex K of K.We also require that dh(q) be injective in the union of the
simplices containing q.

Due to [18], M� has a smooth triangulation extending a smooth triangulation of its
boundary.

Put T0
.= {(x, y) ∈ R

2 : x + y � 1, x, y � 0}. Assuming that the two-
dimensional simplices are Kn , n = 1, . . . ,m, we have that h induces smooth maps
hn : T0 → h(Kn). Set C̃

.= maxn ‖dhn‖∞ and c̃
.= minn ‖dhn‖∞ �= 0.

For each j > 0, we subdivide T0 into the triangles T k
0 with vertices ( r

2 j ,
s
2 j ),

where r , s are integers in [0, 2 j ]. Therefore, M� is the union of N images hn(T k
0 ) of
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sub-triangles, where

N � vol(M�)22 j

2c̃
. (3.3)

Replace now γ0(t, ξ) with γ1(t, ξ) as follows. First, choose j such that

2 j−1 � (1 + |ξ |)‖b�‖∞ � 2 j . (3.4)

If T is the image hn(T k
0 ) of a sub-triangle and T ∩ γ0(t, ξ) �= ∅, we connect the

first and the last point of γ0(t, ξ) in T through the image of a segment.
The length of the resulting piecewise smooth curve γ1(t, ξ) connecting t to p j will

then satisfy

|γ1(t, ξ)| � C̃2− j
√
2N � C ′(1 + |ξ |). (3.5)

Moreover, (3.2) and the right-hand side inequality of (3.4) allow us to conclude
that, if s ∈ γ1(t, ξ) and s′ ∈ T ∩ γ0(t, ξ),

B�(s) � |B�(s)− B�(s′)| + B�(s′) � B�(t ′)+ C ′′

1 + |ξ | . (3.6)

Step 3. The image of γ1(t, ξ) through � on M can be lifted to U . Notice that this
path will connect t to a point in {σ(t j ) : σ ∈ E, j ∈ J }—where �(t j ) = �(p j ).

Plugging it in (2.6) and making use of (3.5) and (3.6) yield the estimate

|̂u(t, ξ)| � K (1 + |ξ |) supM | ̂f (·, ξ)| + |̂u(σ (t j ), ξ)|.

As σ(t j ) can in turn be connected to σ0σ(t j ) in �˜B(σ (t j ))+ 1
1+|ξ |

, by using (2.5) we

have

|̂u(σ (t j ), ξ)| � Kσ, j supM | ̂f (·, ξ)|.

Since u is periodic and J is finite, we have the desired decay for ξ < 0.
The proof follows analogously for ξ > 0. ��

Remark 3.6 It should be noticed that � is a diffeomorphism between M� \ ∂M� and
the open subset M \X of M , where X is a finite collection of loops inM . The plan here
was inspired in [16,17] in the sense that essentially the role of a ball centered at t is
played now by a componentF of the lift of M \ X to ˜M .Hence, we can connect each
of the points in the compact setF (which plays the role of a fundamental domain) to
a finite subset of its, through the path above constructed yielding the estimates for the
decay of the coefficients.

Remark 3.7 We see from this section that the fact stated in Remark 3.4 is crucial.
Although its proof is not elaborated, another way to reach the estimates is to cover
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the boundary of M� with a finite number of closed balls B j . It is not difficult to
extend b� to these balls and assume that it has no singular point on them. Call now
q j = minB j

B�.We then construct the path γ0(t, ξ) in Step 1 by connecting t ′ to p

and p to q j , if p ∈ B j .

3.4 The Sufficient Part forT2

We assume here that a ≡ 0, that is, c = ib. A consequence of the computation
obtained above is

Theorem 3.8 Assume that M is a closed orientable surface and that the 1-form b is
smooth and closed. The following statements are equivalent:

(1) L
� .= dt + ib(t)∂x is globally solvable.

(2) The semilevel sets �r .= {t ∈ M : ˜B > r} and �r
.= {t ∈ M : ˜B < r} are

connected for every r ∈ R.

In fact, the necessity of (2) for the global solvability of L� was already proved in
[16] for a closed manifold so we would be only concerned with (2) �⇒ (1).

Also, the implication (1) �⇒ (2) was proved in [2,6]. However, since the method
of obtaining a special surface with boundary is relatively simple for a torusM , it seems
worth to give an alternative proof along these lines.

Suppose that b is not exact. By [1], if follows that there is a non-trivial loop γ on M
not intersecting the singular set of b.We can find a loop δ whose intersection number
with γ is 1.

There is a diffeomorphism ϕ between M and a torus T1 taking θ1 to γ and φ1 to
δ. Consider here the covering space R as R2 and set again Rm = [m,m + 1] × R.

Notice that Rm covers a cylinder C .= [0, 2π ] × S
1. We can then define a smooth

closed 1-form b2 on C as the pushforward of (ϕ ◦�1)
∗b to C (here �1 = �•).

When
∫

γ
b = 0, b2 is exact and nothing else remains to be performed.

When
∫

γ
b �= 0, b2 is not exact. As previously, due to Lemma A.1, we are able to

find a loop δ on M \ �(b) whose intersection number with γ is 1. In this case, we
construct again the covering space R, by means of γ and the above δ, and define a
1-form on the square Q by the restriction of (ϕ ◦�1)

∗b to Q, which is exact.
Either way, we have an exact form b� defined on a surface M� with boundary, and

�(b�) ∩ ∂M� = ∅. Now the computations in the previous section can be applied for
M� and b� in the same way.

4 Estimates for the Class (B)

The choice of the path connecting t̃ to a translate σ(t̃) in (2.5) will obey an additional
rule to those considered at the beginning of Sect. 3: the term (eiξcσ − 1)−1 must have
polynomial growth with respect to |ξ |, which will be the contribution of the real part
a of the form c.

We can assume that ˜B is bounded on the component of t for pairs in the class
(B)—such a component is denoted by O′. Consider a component O of �r inside O′,
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with r being a regular value of ˜B and ˜B(t) < r < ˜B(t)+ 1
2(1+|ξ |) .Our aim is to prove

the following

Proposition 4.1 For each pair (t, ξ) in the class (B), there is a piecewise smooth closed
curve γ (t, ξ) in ˜M based on t such that

(i) γ (t, ξ) is contained in �
˜B(t)+ 1

1+|ξ |
;

(ii) |γ (t, ξ)| � C0(1 + |ξ |);
(iii) (eiξTa(γ (t,ξ)) − 1)−1 � K

|ξ |s for K > 0.

Proof Consider a smooth triangulation K for M . Put T0
.= {(x, y) ∈ R

2 : x +
y � 1, x, y � 0}. Assuming that the two-dimensional simplices are Kn , n =
1, . . . ,m, we have smooth maps hn : T0 → h(Kn). Set C̃

.= maxn ‖dhn‖∞ and
c̃
.= minn ‖dhn‖∞ �= 0.
For each j > 0, we subdivide T0 into the triangles T k

0 with vertices ( r
2 j ,

s
2 j ),

where r , s are integers in [0, 2 j ]. Therefore, M is the union of N images hn(T k
0 ) of

sub-triangles, where

N � vol(M)22 j

2c̃
. (4.1)

Choose j such that

2 j−1 � C̃(1 + |ξ |)‖b‖∞ � 2 j . (4.2)

Notice that a smooth triangulationK for M induces one for ˜M . Consider the union
of “triangles” T in ˜M intersecting O. Notice that such triangles are in O′. In fact,
suppose that s′ ∈ T and T ∈ T . If s ∈ O, then

˜B(s′) < ˜B(s)+ C̃2− j
√
2‖b‖∞ < ˜B(t)+ 1

1 + |ξ | .

BecauseO′ can be projected injectively on M , the number of triangles in T is less
or equal to N .

Now notice that the edges and the vertices of the triangles in T define a graph �.
The fundamental group of � is generated by a finite set of piecewise smooth closed
curves, called C , such that each edge of its appears at most once in every curve [15].
By subdividing a triangle, if necessary, we can assume that t ∈ �.

For each generator [νl ] of i∗(H1(O),Z)), we have that Ta([νl ]) is an integer com-
bination of some Ta(μr ) with μr ∈ C . This implies that the vector with entries
(2π)−1Ta(μr ) is neither a rational nor a Liouville vector. Hence, an adaptation of
Lemma 2.5 gives us a closed curve denoted by γ (t, ξ) such that

(eiξTa(γ (t,ξ)) − 1)−1 � K

|ξ |s for K > 0.
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Notice that the length of γ (t, ξ) satisfies

|γ (t, ξ)| � 3NC̃2− j
√
2, (4.3)

and then by (4.1) and the left-hand side of (4.2) the proposition is proved. ��
The curve γ (t, ξ) can be lifted toU and then plugged in (2.5) in order to yield the

desired decay for the Fourier coefficients.
The conclusion after Sections 3 and 4 is the decay for ξ < 0. In order to obtain

the decay for ξ > 0, we carry out the same proof by using �
˜B(t)− 1

1+|ξ | and �r with
˜B(t)− 1

2(1+|ξ |) < r < ˜B(t).

5 Proof of (II) �⇒ (I)—CaseWhen b is Exact

When (II.1) holds, we will reason likewise when b is not exact.
Set t0

.= mins∈M ˜B(s). We divide the pairs (t, ξ) ∈ ˜M × Z
− in two classes. The

class (A) consists of the pairs (t, ξ) for which

t and t0 are in the same component of �
˜B(t)+ 1

1+|ξ |
.

As for the pairs in the class (B),

t and t0 are in different components of �
˜B(t)+ 1

1+|ξ |
.

For the pairs in the class (A), we make use of the path γ0(t, ξ), obtained in [12],
that connects t0 to t and satisfies

• γ0(t, ξ) is contained in �
˜B(t)+ 1

1+|ξ |
;

• |γ0(t, ξ)| � C0(1 + |ξ |)d .
The decay follows then from plugging the lift of γ0(t, ξ) in (2.6).
As for pairs in the class (B), call O′ the component of �

˜B(t)+ 1
1+|ξ |

containing t .

Consider a component O of �r inside O′, with r being a regular value of ˜B and
˜B(t) < r < ˜B(t)+ 1

2(1+|ξ |) .

By a proof similar to Proposition 4.1, if (II.1) holds, we have:

Proposition 5.1 For each pair (t, ξ) in the class (B), there is a piecewise smooth closed
curve γ (t, ξ) in ˜M based on t such that

(i) γ (t, ξ) is contained in �
˜B(t)+ 1

1+|ξ |
;

(ii) |γ (t, ξ)| � C0(1 + |ξ |)d;
(iii) (eiξTa(γ (t,ξ)) − 1)−1 � K

|ξ |s for K > 0.

The curve γ (t, ξ) can be lifted toU and then plugged in (2.5) in order to yield the
desired decay for (t, ξ) ∈ (B).
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The conclusion is the decay for ξ < 0. In order to obtain the decay for ξ > 0, we

carry out the same proof by using�
˜B(t)− 1

1+|ξ | and�r , with ˜B(t)− 1
2(1+|ξ |) < r < ˜B(t).

This finishes the proof of (II.1) implies (I) when b is exact.
If (II.2) holds, we can define the Fourier coefficients of a candidate to the global

solution of the system and prove that they satisfy the required estimates. Denote by q
is the smallest positive integer such that qa is integral and set J

.= qZ−.
First we will define the candidate û(p, ξ) for p ∈ M and ξ ∈ J .DefineD ′

J
.= {u ∈

D ′(M × S
1) : u(t, x) = ∑

ξ∈J û(t, ξ)e
iξ x }.

Notice that for ξ ∈ J the function s → e−iξ A(s) is the lifting of a function defined
on M because qa is integral. Consider the isomorphism T of D ′

J given by

T

⎛

⎝

∑

ξ∈J

û(t, ξ)eiξ x

⎞

⎠ =
∑

ξ∈J

û(t, ξ)e−iξ A(t)eiξ x .

Hence,we have T−1
LT = L

� = dt+ib(t)∂x .Since the semilevel sets of a primitive
˜B of b are connected, due to the above estimates from [12], it is possible to define
the Fourier coefficients of a candidate to the global solution to L

�w = g—provided
g satisfies the respective compatibility conditions—and prove their uniformly rapid
decay. Notice that if f ∈ E, then g = T−1 f is such that e−iξ˜B(·)ĝ(·, ξ) is exact for
every ξ ∈ J .We then define û(p, ξ)

.= ̂Tw(p, ξ) for ξ ∈ J .
Notice that J = Z

− if a is integral (or, equivalently, if q = 1).
The coefficients û(t, ξ) for ξ ∈ Z

− \ J , in turn, will be defined by (2.5), since when
ξ /∈ J there exists σ ∈ E such that iξcσ = iξaσ /∈ 2π iZ.

In fact, first, given t ∈ M and ξ < 0, setO ∈ A for the component of�r containing
t , with ˜B(t) < r < ˜B(t)+ 1

2(1+|ξ |) . Notice that I (O) behaves as both a non-rational
and a non-Liouville vector with respect to the denominators that are not in J since
|I (O)− P

q | � 1
|q| for every P ∈ Z

m and q /∈ J .Now apply Proposition 5.1 for ξ /∈ J .
We finish plugging the lift of γ (t, ξ) to U in (2.5).

The proof for ξ > 0 is analogous.

6 Proof of (I) Implies (II)

In this section, the following lemma will be important (see [17]).

Lemma 6.1 Suppose that I (O) is a Liouville vector. Then there exist a sequence of
real smooth closed 1-forms {Pj } j∈Z+ such that

TPj (γ
′) ∈ 2πZ for every γ ′ ∈ 
(O);

a sequence of integer q j with q j > 1; and C > 0 satisfying

∥

∥

∥

∥

a − 1

q j
· Pj

∥

∥

∥

∥∞
<

C

q j
j

.
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Now we move on to the proof of the necessity in Theorem 1.1. Assume that neither
(II.1) nor (II.2) holds. Hence, we will be in one of the three situations described below
that will be labeled as (A), (B) and (C).

(A) There is O ∈ A such that I (O) is a Liouville vector.
First we will suppose that b �≡ 0. Assuming that O is a component of a superlevel

set, that is, O ⊂ �r , consider levels r1 and r2 both smaller than the maximum K of
˜B on O with r < r1 < r2. Set 
s .= {t ∈ O : ˜B(t) > s}.We have 
r2 ⊂ 
r1 ⊂ O.

Let χ : M → {0, 1} be the characteristic function of the open set�(O) ⊂ M :

χ(t) =
{

1, t ∈ �(O),
0, t /∈ �(O).

Next let ψ : R → [0, 1] be a smooth non-negative function on R satisfying

• ψ−1({1}) = [r2,∞);
• ψ−1({0}) = (−∞, r1];
As O can be projected injectively on M , we can define B◦ .= ˜B ◦�−1 on �(O).
We then set, for t ∈ M ,

F(t) = χ(t)ψ(B◦(t)).

Fact 1 • F : M → [0, 1] is smooth;
• F has support contained in�(
r1).

• B◦(t) � r2, ∀t ∈ supp(dt F).

Proof In order to prove the first assertion, we only have to check that F is smooth at a
point p ∈ M such that there is a sequence {pn}n∈Z+ converging to p with F(pn) �= 0
and F(p) = 0.

Choose then p̃n ∈ 
r1 with �( p̃n) = pn . Consider a sufficiently small connected
neighborhood N of p evenly covered by� such that, if x̃ and ỹ belong to a component
of �−1(N ) (thus isometric to N ), then |˜B (̃x)− ˜B(ỹ)| < r1 − r . This shows that the
components of�−1(N ) which intercept { p̃n}n∈Z+ are inO. Hence F is smooth at p.

The remaining items are immediate from the construction of F . ��
When I (O) is a Liouville vector, Lemma 6.1 asserts that there exist a sequence of

closed forms {Pj }, j ∈ Z
+, and integers q j > 1 such that {q j

j (a− Pj/q j )} is bounded
(the sequence {q j } can be assumed to go to the infinity).

Also, it says that TPj (γ ) ∈ 2πZ for every closed curve γ ∈ C∞([0, 1],O). If
we denote by A j a primitive of Pj/q j on U , this allows us to define the functions
e−iq j A j (·) ∈ C∞(�(O)). Finally we set

v(t, q j )
.= β j e

−iq j A j (t)eq j B◦(t)F(t),

and we have

dtv(t, q j )+ iq j c(t)v(t, q j ) = f (t, q j ), (6.1)
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where

f (t, q j ) = β j e
−iq j A j (t)eq j B◦(t)[iq j

(

a − Pj

q j

)

F(t)+ dt F(t)].

The sequence {β j }will be chosen in such a way that {v(t, q j )} does not have tempered
growth although the f (t, q j ) given by (6.1) will be the Fourier coefficients of a smooth
1-form f on M after setting the remaining frequencies (ξ �= q j ) equal to zero.

In order to do this, define, for each j ∈ Z
+, β j

.= min{eq j
ε
2 e−q j K , q

j
2
j e

−q j K },
where ε

.= K − r2 > 0.
There is a point t∗ ∈ �(O) such that B◦(t∗) = K (see [16]). Therefore, we have

|v(t∗, q j )| = min{eq j
ε
2 , q

j
2
j }. Using that I (O) is Liouville and Fact 1, we derive that

| f (t, q j )| � Cβ j

⎛

⎝

eq j K

q j−1
j

+ eq j (K−ε)
⎞

⎠ � C

⎛

⎜

⎝

1

q
j
2−1
j

+ e−q j
ε
2

⎞

⎟

⎠
, (6.2)

as desired.
Equations (6.1) and (6.2) also reveal that f ∈ E. Moreover, since there is σ ∈ E

such that cσ /∈ 2πQ, by (2.5) the unique solution defined on M to the homogeneous
version of the differential equation in (6.1) is null for every Fourier frequency. Hence,
any candidate to solve Lu = f must have the Fourier coefficients given by v(t, q j )

in these respective frequencies. The conclusion is that we cannot have a distribution
solving the system.

If b ≡ 0, thenO is the whole manifold. The above computations can be carried out
by defining F ≡ 1 on M in this case.

(B) There exist O ∈ A and q ∈ Z such that q I (O) ∈ Z
m . Further, b is not exact

or qa is not integral.
In this case, b �≡ 0, and we define F as above once again. Lemma 6.1 says that

qTa(γ ) ∈ 2πZ for every closed curve γ ∈ C∞([0, 1],O). This allows us to define
the functions e−i jq A(·) ∈ C∞(�(O)).We again set

v(t, jq)
.= β j e

−i jq A(t)e jqB
◦(t)F(t).

Thus

dtv(t, jq)+ i jqc(t)v(t, jq) = f (t, jq),

where

f (t, jq) = β j e
−i jq A(t)e jqB

◦(t)dt F(t).

We also set β j
.= e jq

ε
2− jqK . As before, {v(t, jq)} does not have tempered growth

and
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| f (t, jq)| � Cβ j e
jq(K−ε) � Ce− jq ε2 ,

which indeed defines an element of E (setting zero for the remaining Fourier frequen-
cies).

As either b is not exact or qa is not integral, there is σ ∈ E such that qcσ /∈ 2πZ.
Hence, the unique solution defined onM to the homogeneous version of the differential
equation is null for each frequency multiple of q, and a candidate to solve Lu = f
must have the Fourier coefficients given by v(t, jq) in these respective frequencies.
Therefore, again we do not have a distribution solving the system.

(C) The 1-forms a and b are, respectively, rational and exact, and there is a dis-
connected semilevel set of the primitive ˜B of b on M .

Firstwe state a variation of a celebrated lemmaofHörmander’s on a priori estimates.
The version presented here is quite similar to the standard one in [19] and need not be
proved.

Lemma 6.2 If E is closed linear subspace of C∞(M × S
1,�1,0) and L is globally

solvable, then there exist constants C > 0 and m ∈ Z
+ such that, for all f ∈ E and

g ∈ C∞(M × S
1,�1,0),

∣

∣

∣

∣

∫

M×S1
〈 f , g〉

∣

∣

∣

∣

� C‖ f ‖m‖L∗g‖m,

where L∗ is the adjoint operator of L.

Here ‖v‖m = supM×S1
∑

|β|�m |∂βv(t, x)|, where |β| denotes the order of a multi-
index β.

If there is a disconnected semilevel set of ˜B on M , the operatorL� = dt + ib(t)∂x is
not globally solvable since (see [12]) there exist 1-forms f0, g0 on M , f0 exact, such
that, by setting f �j (t, x)

.= e j˜B(t)+i x j f0(t) and g�j (t, x)e
− j˜B(t)−i x j g0(t), we have

I0
.=

∫

M×S1
〈 f �j , g�j 〉 �= 0, and

‖ f �j ‖m‖(L�)∗(g�j )‖m → 0 when j → ∞.

Notice that if qa is integral, the function s → e−i jq A(s) can be projected on the
whole manifold M .

We then consider the smooth 1-forms f j , g j on M having jq-Fourier coefficients

equal to e jq˜B(t)−i jq A(t) f0(t) and e− jq˜B(t)+i jq A(t)g0(t), respectively, and equal to zero
for the remaining frequencies.

Clearly f j ∈ E and f j , g j jointly violate Lemma 6.2 for the operator L = dt +
c(t)∂x .

Remark 6.3 Despite the general result of [12] assumes that M is orientable, at the first
level of the complex the inequalities in Lemma 6.2 can be violated in an orientable
neighborhood of a certain path (as in [16], for instance), and then the orientability
need not be assumed here.
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7 Comments

The result in Theorem 1.1 completely characterizes the global solvability at the first
level of the complex for tube structures of co-rank 1, with forms defined on orientable
surfaces. It completes, for instance, the problem of the global solvability when M =
T
2, where there were some subclasses (with a �≡ 0) for which it still remained open.
Furthermore, we have seen that some arguments in Theorem 1.1 hold when M is a

closed manifold of dimension n. Here we discuss some of the consequences of it.
In fact, the hypotheses on the dimension was essential only in Sect. 3, when proving

estimates involving the paths used in the formulae of the solution, for points that can
be connected to some of its translates inside a semilevel set. In particular, we can state
the next two corollaries.

Corollary 7.1 Assume that M is a closed manifold and that the 1-form c is smooth and
closed. If L is globally solvable, then one of the two conditions below is satisfied:

(1) A = ∅, or, for every O ∈ A , I (O) is neither a rational nor a Liouville vector.
(2) The form b is exact ( ˜M = M) and the semilevel sets {t ∈ M : ˜B(t) > r} and

{t ∈ M : ˜B(t) < r} are connected for every r ∈ R; in addition, a is rational,
and if q ∈ Z is such that q I (O) ∈ Z

m for O ∈ A , then qa is integral.

Corollary 7.1 was proved in [16] for the case when a ≡ 0.
When b is exact, we have here made use of the estimates obtained in [12], so we

have a proof of

Corollary 7.2 Assume that M is a closed manifold and that the 1-form c = a + ib is
smooth and closed with b exact. The following statements are equivalent:

(I) L is globally solvable.

(II.1) For every O ∈ A , I (O) is neither a rational nor a Liouville vector.
(II.2) The semilevel sets {t ∈ M : ˜B(t) > r} and {t ∈ M : ˜B(t) < r} are connected

for every r ∈ R; in addition, a is rational, and if q ∈ Z is such that q I (O) ∈ Z
m

for O ∈ A , then qa is integral.

Notice that Corollary 7.2 retrieves [12] when a is exact.
Now, denote by rank(b) the maximal number of elements in {∫

δ
b : δ ∈ H1(M,Z)}

which are linearly independent over Z (for instance, when b is exact, r = 0). In [9],
such estimates were proved for the case when rank(b) = 1, so we also can state:

Corollary 7.3 Assume that M is a closed surface and that the 1-form c = a + ib is
smooth and closed with rank(b) = 1. The following statements are equivalent:

(1) L is globally solvable.
(2) A = ∅, or, for every O ∈ A , I (O) is neither a rational nor a Liouville vector.

One thenmight conjectureTheorem1.1 for a general closedmanifold. It is, however,
fair to have the impression that, given the nature of the topological tools for dimension
2 used in the proof of the estimates involving the paths, the corresponding proof for
higher dimensions is much more involved. In Appendix we raise a question related to
it.

We also furnish a result for a special class of examples.
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Corollary 7.4 Assume that M is a closed manifold and b has only isolate singular
points. The following statements are equivalent:

(I) L is globally solvable.
(II) One of the two conditions below is satisfied:

(II.1) The local primitives of b are open at any singular point.
(II.2) The form b is exact, the semilevel sets {t ∈ M : ˜B(t) > r} and {t ∈ M :

˜B(t) < r} are connected for every r ∈ R, and a is integral.

When b is exact, the result is already proved. Otherwise, one can follow the line of
the proof of (II.1) �⇒ (1). In fact, here it is not necessary to obtain a compact set
like M�, since the approach of finding a path that grants the estimates can be carried
out by means of a small ball centered at a singular point and having no singular points
at its boundary.

As a remark, Theorem 1.1 and the above corollaries furnish another proof of the
result obtained in [17], in the real analytic setup. Indeed, although in the literature this
is the first appearance of a vector I (O) defined for a component of a regular semilevel
set, it is the natural generalization of the vector I (�) for a component� of the singular
set (on which b is not open at any of its points), as properties of a on a neighborhood
of � were analyzed in [17]. Moreover, the mentioned techniques introduced in [19]
were so far only applied under the hypothesis of the connectedness of the semilevel
sets, and this definition becomes useful to broaden its usage.

Despite that, the estimates for the Fourier coefficients obtained in [17] rely on
properties of real analytic functions and, because of it, are more refined.

7.1 Global Hypoellitpticity ofL and Global Solvability ofLn−1

Likewise in [17], we can summarize a global regularity result for the operator (1.1) as
a consequence of the proof of Theorem 1.1, namely

Theorem 7.5 Assume that M is a closed orientable surface and that the 1-form c is
smooth and closed. The following statements are equivalent:

(1) L is globally hypoelliptic, in the sense of Definition 2.3;
(2) A = ∅, or for every O ∈ A , I (O) is neither a rational nor a Liouville vector.

Indeed, when (2) holds it follows that Ker L � C. If Lu = f , then f ∈ E, and by
Theorem 1.1 there exists a smooth solution u′ to the system. Hence u− u′ is constant,
and one implication is proved. By assuming that (2) does not hold, we are in the
situations (A) and (B) described in Sect. 6. It is enough then to take β j = 1 there in
order to obtain u ∈ D ′(M × S

1) not smooth at (t∗, x) ∈ �(b) × S
1 and such that

Lu = f ∈ C∞(M × S
1,�1,0).

Concerning the global solvability of Ln−1, we can state:

Theorem 7.6 Assume that M is a closed orientable surface and that the 1-form c is
smooth and closed. The following statements are equivalent:

(1) L is globally solvable, in the sense of Definition 2.3.
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(2) For every f ∈ C∞(M × S
1,�2,0) orthogonal to the kernel of L there exists

u ∈ D ′(M × S
1,�1,0) satisfying L

1u = f .

As noticed in [17], one implication can be achieved by following [5], since the
technique there consists of violating a priori estimates and it bears on the fact that it is
possible to define certain functions in a neighborhood of a component of the singular
set (see [5, Lemma 3.2]). Such functions can be replaced by the functions used in
Sect. 6. The other implication follows from a general result of functional analysis
after proving the global hypoellipticity of L, which holds now in view of the above
comment.

Analogue versions of these results hold under the conditions of Corollaries 7.2, 7.3,
and 7.4.
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Appendix

A Proof of Arnold’s Lemma

Let M† be a surface (possibly with a non-empty boundary made up of piecewise
smooth curves) on which the closed 1-form b† is defined. Lemma 4 in [1] implies:

Lemma A.1 Let G be a connected component of M† \�(b†). Then
∫

G∩∂M†
b† = 0. (♣)

In order to make the text as self-contained as possible, we offer a more detailed
proof of the version for surfaces that we need.

Our strategy is to apply Stokes’ Theorem to a convenient set whose boundary
consists of piecewise smooth curves and is sufficiently close to G. As before, we will
consider a smooth triangulation h of M† extending a smooth triangulation h0 of its
boundary, that is, h−1 ◦ h0 is a homeomorphism carrying simplices linearly. Given
j ∈ Z

+, we will again subdivide hn(T0) into “triangles” of side length smaller than
2− j .

Set �0 for the subset of �(b†) of points where b† vanishes to order greater than or
equal to 2, that is, writing locally

b† = ∂1B
†(x, y) dx + ∂2B

†(x, y) dy,

a point p = (x0, y0) ∈ �(b†) belongs to �0 if and only if

∂11B
†(x0, y0) = ∂12B

†(x0, y0) = ∂22B
†(x0, y0) = 0.
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Consider q ∈ G \ G that is not in �0. We can assume that ∂11B†(q) �= 0. In a
sufficiently small triangle� containing q,� ∩�(b†) = �∩ (�(b†) \�0) ⊂ � \ 
,
where 
 is the graph of a smooth function by the implicit function theorem. Note that
�\
 divides� into two components. There are two possibilities: (i) both components
are contained in G; (ii) one of them does not intersect G.

Let�1 be the set of points for which (i) holds. Denote by T 1 the family of triangles
that either contain these points or intersect �0.

We say that q ∈ �2 if (ii) holds, and denote by T 2 the family of triangles that
contain a point q of this type.

Also, denote by T 0 the set of triangles intersecting G ∩ ∂M†.

Now define

G† .=
⋃

T∈T 0∪T 1

T ∪
⋃

T∈T 2

G ∩ T .

Therefore, for j big enough we can distinguish three subsets of ∂G†. The subset
X0 = ∂M† ∩G† will be a finite union of closed intervals, which are union of sides of
triangles in T 0.

The subset X1, in turn, consists of sides of some triangles in T 1 intersecting �0.

Finally, the subset X2 is locally represented by a smooth curve 
, containing �2,
on which b† vanishes.

We conclude that G† has a piecewise smooth boundary and, by applying Stokes’
Theorem, we obtain

0 =
∫

G†
db† =

∫

∂G†
b† =

2
∑

k=0

∫

Xk

b†.

Writing Jk
.= ∫

Xk
b†, k = 0, 1, 2, and observing that J2 = 0, we see that in order

to prove (♣) we need to show that

J0 →
∫

∂M†∩G
b† and J1 → 0 as j → ∞.

For the first limit, notice that we can estimate the difference
∫

∂M†∩G b† − J0 by
considering the integral of |b†| on sides of triangles T ∈ T 0 in ∂M† containing points
of �(b†). On such a triangle, Taylor’s Theorem asserts that ‖b†‖∞ � C02− j . If � is
any side of T , then

∫

�

|b†| � C02
−2 j .

Since the number of such sides is bounded by vol(∂M†)2 j/c̃, the difference goes to
0.
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Now, consider T ∈ T 1. Such a triangle contains a point on which b† vanishes to
order 2, and thus ‖b†‖∞ � C12−2 j on T . If � is any side of T , then

∣

∣

∣

∣

∫

�

b†
∣

∣

∣

∣

� C12
−3 j .

The number of sides of triangles in T 1 is bounded by C ′
12

2 j , as in (3.3), and then we
have

∫

X1

b† → 0, j → ∞,

which finishes the proof. ��

On a Technical Property of Semilevel Sets

Let ˜M be a surface and ˜B a real smooth function defined on ˜M . Suppose that

the sublevel sets �r = {x ∈ ˜M : ˜B(x) < r} are connected for every r ∈ R.

If p, q ∈ ˜M with ˜B(q) < ˜B(p)
.= a for every 0 < ε < 1, p, q ∈ �a+ε and there is a

smooth curve γε contained in�a+ε joining p and q. The following technical question
is relevant to this paper:

Question Is it possible to choose γ = γε such that its length satisfies |γε| � Cε−k ,
where C > 0 and k ∈ Z

+ do not depend on ε?

The answer is known to be true when ˜M is compact. The following example shows
that this is not the case in general when ˜M is not compact.

Example A.2 Set ˜B(x, y)
.= f (x)g(y), (x, y) ∈ R

2 , where

f (x) =
(

x2

3
− 1

)

x + 2

3
, (7.1)

1

g(y)
= − ln

(

1

2 + y2

)

. (7.2)

The polynomial f has a double root at x = 1, which is also a local minimum. The
other critical point occurs at x = − 1, which is a local maximum ( f (− 1) = 4/3). In
particular, f is strictly increasing on (−∞,− 1) and on (1,∞), and strictly decreasing
on (− 1, 1).

The sublevel sets ωr of f satisfy the following rules:

• If r � f (− 1) = 4/3, ωr is an interval of the type (−∞, s).
• If r � 0,ωr is an interval of the type (−∞, s)with s < − 2 (note that f (− 2) = 0).
• If 0 < r < 4/3, ωr is the union of two intervals I1 = (−∞, s), s < − 1,

I2 = (α, β), − 1 < α < β < ∞.
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Hence, in the latter case,ωr will not be connected. Now, we claim that for every r ∈ R,
�r is connected. In fact, the critical set of ˜B is {(− 1, 0)} ∪ ({1} ×R), and (− 1, 0) is
a local maximum. Notice that the maximum value of ˜B on the strip {− 2 < x < 1}
is attained at (− 1, 0) (˜B converges uniformly to 0 on the strip when |y| → ∞, or
x → 1, or x → − 2).

The function f is strictly increasing on the half-plane {x > 1}, so it is foliated by the
level curves of ˜B, which are graphs of x = f −1(c/g(y)), c > 0, converging to the level
curve {x = 1} when c → 0+. A similar analysis holds for the half-plane {x < − 2}
and the level curves x = f −1(c/g(y)), c < 0. The vertical strip {− 2 < x < 1} is
foliated by closed curves around (− 1, 0) and given by the equation f (x) = c/g(y),
0 < c < 4g(0)/3 = ˜B(− 1, 0). When c → 0+, such curves converge to the pair
{x = − 2} ∪ {x = 1}.

When r > ˜B(− 1, 0), the sets �r are of the type x < h(y) where x = h(y) is a
level curve in the half-plane {x > 1} (an analogous situation happens when r � 0).
For the values of 0 < r � ˜B(− 1, 0), the sets �r are path-connected but not simply
connected and to join a pair of points in �r one has to go around the hole.

We turn now to the above question. Take p = (1, 0) and q = (− 2, 0) (˜B(p) =
˜B(q) = 0), and given ε > 0, we have that p, q ∈ �ε. Nonetheless, a path γ joining
p = γ (0) and q = γ (1) must circumvent the closed curve ˜B(x, y) = ε in the strip
{− 2 < x < 1}. Therefore, for a parameter s = s0, we have γ (s0) = (− 1, y(s0))with
˜B(− 1, y(s0)) = (4/3)g(γ (s0)) < ε, which implies that

2 + y(s0)
2 � exp[4/(3ε)].

As the length |γ | satisfies |γ |2 > y(s0)2 + 1, its growth is not tempered when ε → 0.

Remark A.3 The arguments in this paper show that the answer to the question is positive
in the special case in which ˜M is the minimal covering associated with a real closed
form b, and ˜B is a primitive of the pullback of b to ˜M .

Remark A.4 Notice that in this example the sublevel sets of ˜B are all connected but
some of the superlevel sets are not. It is possible, however, to produce a ˜B with
connected semilevel sets by defining a more elaborated function g.
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