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Abstract

In this paper we consider minimal Lagrangian submanifolds in n-dimensional com-
plex space forms. More precisely, we study such submanifolds which, endowed with
the induced metrics, write as a Riemannian product of two Riemannian manifolds,
each having constant sectional curvature. As the main result, we give a complete
classification of these submanifolds.
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1 Introduction

In this paper we study Lagrangian submanifolds of complex space forms. The complex
space forms are the easiest examples of Kdhler manifolds. These are almost Hermitian
manifolds for which the almost complex structure J is parallel with respect to the Levi-
Civita connection V of the Hermitian metric g. The standard models of complex space
forms are the complex projective space CP", the complex Euclidean space C" and
the complex hyperbolic space CH", according to whether the holomorphic sectional
curvature ¢ satisfies ¢ > 0,¢c =0orc¢ < 0.

There are two special classes of submanifolds of a Kéhler manifold depending on
the behavior of the complex structure J with respect to the submanifold.

A submanifold M of M is called almost complex if and only if J maps tangent
vectors to tangent vectors. On the other hand M is called totally real if the almost
complex structure J of M carries each tangent space of M into its corresponding nor-
mal space. The study of minimal totally real submanifolds originates with the work of
Chen and Ogiue (see [6]). A special case here happens when the real dimension of the
submanifold equals the complex dimension of the ambiant space. In that case J inter-
changes the tangent and the normal spaces. Such submanifolds are called Lagrangian
submanifolds. These can also be seen as submaniflds of the largest possible dimension
on which the symplectic form vanishes identically.

For the study of minimal Lagrangian immersions in complex space forms one may
find a short survey in [5], where some of the main results are mentioned (see for
example [2-4,6,7,9-11,13,14,16,19,22,23]).

The fundamental question in submanifold theory is then to determine to what extent
the geometry of the submanifold determines the immersion of the submanifold in
the ambiant space. In that respect, it was shown by Ejiri [11] that an n-dimensional
Lagrangian minimal submanifold of constant sectional curvature ¢ immersed in an
n-dimensional complex space form is either totally geodesic or flat (¢ = 0) (cf. also
[17] and [9]). More precisely in the latter case it must be congruent to a specific
Lagrangian tori in the complex projective space (see Main Theorem below). Note that
the condition that the immersion is minimal is unavoidable. From [21] and [8] one
can see that one cannot expect to obtain a general classification of all Lagrangian
submanifolds of real space forms in complex space forms.

In this paper we consider the logical next step. We will assume that our manifold
M 1is isometric with M{” (c1) x M;’ 2(cp), i.e. it is a product of two real space forms
of constant sectional curvature, respectively ¢ and c¢>. As the main result of the paper
we extend Ejiri’s result by proving

Main Theorem Let ¢ : M" — M"(4¢) be a minimal Lagrangian immersion into a
complex space form with induced metric (-, -). If M" = MI” (c1) X M;z (c2), where
n=ni+ny, MI” (c1) (resp. M?z (c2)) is an ny (resp. ny)-dimensional Riemannian
manifold of constant sectional curvature cy (resp. c2), then cicy = 0. Moreover,

(1) ifc1 = ¢3 =0, then M" is equivalent to either the totally geodesic immersion in
C" or the Lagrangian flat torus in CP" (4¢).
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1936 X.Cheng et al.

(2) ifcica =0and c% + c% # 0, without loss of generality, we may assume that ¢y = 0
%ﬁf‘lé > 0, say ¢ = 1, so the ambient space

is CP"(4), and the immersion is congruent with

and ¢ # 0. Then we have ¢y =

1 iu iu iu iu
et et aet ity ae iy, 1),

where
(1) (y1, Y2, - .-, Yno+1) describes the standard sphere S"? — R+l s Cr2tl

(i) a = nz2 +1,

(i) wy + -+ tp, + @’up, 41 =0.

Remark 1.1 The technique we use in the proof of the Main Theorem is based on two
steps. The first step is to take cyclic permutation of the covariant derivative of the
Codazzi equation. The second step is then expressing the second fundamental form
of the submanifold M" with respect to a conveniently chosen frame. To do so, we
proceed by induction (see [18]). One should notice that, eventually, our main result
follows directly from the theorems in [15].

2 Preliminaries

In this section, we will recall the basic formulas for Lagrangian submanifolds in
complex space forms. Let M"(4¢) be a complex space form of complex dimension
n and having constant holomorphic sectional curvature 4¢. Let M" be a minimal
Lagrangian submanifold in M” (4¢) given by the immersion ¥ : M" — M" (4¢) such
that

M" = M (c1) x MY (c2), 2.1)

where ny +ny =n, M ;” (c1) and M; 2(¢p) are manifolds of real dimensions n and
no and have constant sectional curvature ¢ and c;, respectively.

Let V and V be the Levi-Civita connections on M” and M" (4¢), respectively. The
formulas of Gauss and Weingarten write out as

VxY = VxY +h(X,Y), Vx&=—AsX + VyE, (2.2)

for X, Y tangent to M" and & normal to M", where h, A and V-1 are the second
fundamental form, the shape operator and the normal connection, respectively.

Notice that we will always identify M" with its immersed image in M" (4¢). As M"
is Lagrangian, we have that the almost complex structure J interchanges the tangent
and the normal spaces. Moreover, since J is parallel, we deduce that

VyJY = JVxY, A;xY =—Jh(X,Y)=A;vX. (2.3)
The last formula implies that the cubic form g(h (X, Y), J Z) is totally symmetric. The

minimality condition on M" means that trace h = 0, and one may notice that this is
equivalent to traceA; = 0.
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On Product Minimal Lagrangian Submanifolds 1937

A straightforward computation shows that the equations of Gauss, Codazzi and
Ricci are

R(X,Y)Z =¢({Y,Z)X — (X, Z)Y) + [Asx, Asy]Z, (2.4)
(VI)Y(X,Y,Z) = (VR)(Y, X, Z), 2.5)
RYX,Y)VJZ =¢(Y,Z)JX — (X, Z)JY) + J[Asx, Ajy1Z,  (2.6)

where X, Y, Z are tangent vector fields and the covariant derivative of 4 is given by
(Vh)(X,Y,Z) = V)%h(Y, Z)—h(VxY,Z)—h(Y,VxZ). 2.7
Moreover, the following Ricci identity holds:

(V2 (X,Y,Z, W) — (V2h)(Y, X, Z, W)
= JR(X,V)A;zW — h(R(X,Y)Z, W) — h(R(X, Y)W, Z), (2.8)

where X, Y, Z, W are tangent vector fields and

(VEh)(W, X, Y, Z) =Vis (VRY(X, Y, Z)) — (VR)(Vw X, Y, Z)

(2.9)
—(Vh)(X,VwY,Z) — (Vh)(X,Y,Vw Z).

In the following, we will prove an additional relation that is very useful in our
computations. To do so, we will make use of the technique introduced in [1], as the
Tsinghua Principle. First, take the covariant derivative in (2.5) with respect to W, and
use (2.9) and (2.5), to obtain straightforwardly that

(V2 (W, X,Y,Z)— (V?h)(W,Y, X, Z) =0. (2.10)

In the above equation we then cyclicly permute the first three vector fields and
express each time the left-hand side of the equations using the Ricci identity in (2.8).
It then follows that

0=R(W,X)Jh(Y,Z) — Jh(Y, R(W, X)Z)
+ R(X,Y)Jh(W,Z) — Jh(W, R(X,Y)Z) @2.11)
+ R(Y, W)Jh(X,Z) — Jh(X, R(Y, W)Z).

Furthermore, given [20, Corollary 58, p. 89], we know that

R(X,Y)Z = c1({Y1, Z1) X1 — (X1, Z1)Y1) + c2((Y2, Z2) X2 — (X2, Z2)Y2),
(2.12)
where X;, Y;, Z; are the projections of X, Y, Z on the TMl.”" component of T M", for
i =1, 2, respectively.

We recall the following useful definitions and theorems (see [15]).
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1938 X.Cheng et al.

Definition 1 Let v; : (M;, gi) — CP"(4),i = 1,2, be two Lagrangian immer-
sions and let 7 = (71,2) : I — S°(1) C C? be a Legendre curve. Then
v = I(y 1//1, )/21/[2) I x My x My — CP"(4) is a Lagrangian immersion, where
n=n;+ny+1, wl M; — S?i*1(1) are horizontal lifts of ¥, i = 1,2, respectively,
and IT is the Hopf fibration. We call ¢ a warped product Lagrangian immersion of |
and ¥». When n; (or ny) is zero, we call ¥ a warped product Lagrangian immersion
of v, (or 1) and a point.

Definition 2 In Definition 1, when
(T2 Nt
7 = (ne’(n @) rae' (7 >) (2.13)

where r1, r; and a are positive constants with r12 + r22 = 1, we call ¥ a Calabi product
Lagrangian immersion of ¥y and ¥». When n; (or ny) is zero, we call ¥ a Calabi
product Lagrangian immersion of v, (or 1) and a point.

Theorem 2.1 ([15]). Let v : M — CP*(4) be a Lagrangian immersion. Then v is
locally a Calabi product Lagrangian immersion of an (n — 1)-dimensional Lagrangian
immersion Y| : My — CP"~'(4) and a point if and only if M admits two orthogo-
nal distributions Dy (of dimension 1, spanned by a unit vector field E1) and D> (of
dimension n — 1, spanned by {E3, . .., E,}) and there exist two real constants A1 and
Ao such that

h(Ey, E1) = MJEL, h(EL, Ej) =MJE;, i=2,...,n,

(2.14)
Al F£ 2N,
Moreover, a Lagrangian immersion v : M — CIP"(4), satisfying the above condi-
tions, has the following properties:

(1) ¥ is Hamiltonian minimal if and only if Y1 is Hamiltonian minimal;

(2) ¥ is minimal if and only if Ay = j:\/iﬁ and 1 is minimal. In this case, up to a
reparametrization and a rigid motion of CP", locally we have M = I x M and
Y is given by ¥ = Tl o Y with

Yt p) = (,/,,He Y (p), /e "1"), (t,p) e I x My,

where T1 is the Hopf fibration and ¥y : My — S¥'~1(1) is the horizontal lift of
vi.

Theorem 2.2 ([15]). Let v : M — CIP"(4) be a Lagrangian immersion. If M admits
two orthogonal distributions D1 (of dimension 1, spanned by a unit vector field E1)
and D; (of dimension n — 1, spanned by {E», ..., E,}), and that there exist local
functions A1, Ay such that (2.14) holds, then M has parallel second fundamental form
if and only if  is locally a Calabi product Lagrangian immersion of a point and
an (n — 1)-dimensional Lagrangian immersion ¥ : M, — CP"'(4), which has
parallel second fundamental form.

@ Springer



On Product Minimal Lagrangian Submanifolds 1939

3 Proof of the Main Theorem

In this section, we study a minimal Lagrangian isometric immersion into a complex
space form: ¥ : M" — M", where M" = M{'(c1) x M5*(c2), n = nj + ny
and M i” (c1) (resp. M 112 (c2)) is ny (resp. ny)-dimensional Riemannian manifold with
constant sectional curvature c| (resp. ¢2). We will prove the Main Theorem stated in
introduction.

One should be aware that throughout the paper we will make the following iden-

tifications. As M = M; x M,, we can write a tangent vector field Z(p,q) =
(X(p,q), Y(p,q)) where X(p,q) € TyMy and Y (p, q) € T, M>. In general, the X
notation (as well as X;, 1 <i < n) will denote a vector tangent at (p, g) € M", with
zero components on M,. We will also identify X (p, q) € T, M with (X(p, q),0) €
T(p,y) M1 x M> (and similarly Y (p, q) € T,M> with (0, Y(p, q)) € T(p ;s M1 x M>.
Notice that, apriori, it means that X, as a vector field depends on g as well, not only
on p. One should have in mind this meaning when reading X € T, M, respectively
Y € TyM>.
Nonetheless, a complete understanding will be acquired with the proofs of Lemmas 3.6
and 3.7 , when we will actually see that due to our particular choice of basis, X only
depends on p.

First of all, we consider the case c% + c% # 0. We begin with the following result.

Lemma3.1 If c% + c% = 0, then the shape operator A j vanishes nowhere.

Proof Assume that A; vanishes at the point p € M. From Eq. (2.4) it follows that
R(X,Y)Z = ¢c({Y,Z)X — (X, Z)Y), which yields that M has constant sectional
curvature ¢ at p. Moreover, by taking X1, X», X» in (2.4) and (2.12), we obtain that
c1 = ¢ and then by taking X, Y, Y in (2.4) and (2.12), X € T,M;,Y € T, M>, we get
¢ = 0. Similarly, taking Y1, Y2, Y> € T, M in (2.4) and (2.12), we get that c; = 0.
Therefore, we get a contradiction with ¢} + ¢3 # 0. a

For c% + C% # 0,1if cic2 = 0, without loss of generality, we may assume thatc; = 0
and ¢y # 0. Therefore, we are left to consider the following two cases:

Case (i) cy = 0 and ¢» # 0; Case (ii) c; # 0 and ¢» # 0.
3.1

In this subsection, we will deal with Case (i) and prove the following result.

Theorem 3.1 Let ¢ : M" — M"(4¢) be a minimal Lagrangian isometric immersion
into a complex space form such that (M", (-, -)) = M;” (c1) x M;z (c2) and Case (i)
occurs. Then we have ¢, = %ﬁrl& > 0, say ¢ = 1, so the ambient space is CP" (4)

and the immersion is congruent with

ﬁ(ei’“, LU aei””l+‘y1, e aei””l+‘yn2+1),
where
(1) (y1,¥2, .-+ Yny+1) describes the standard sphere S"> — Rt oy g2t
(2) a=+/ny+1,

() ui+ - 4 uny, +a*up, 41 =0.
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The proof of Theorem 3.1 consists of several lemmas as following.

Lemma3.2 Let {X;}1<i<n, and {Y;}1<j<n, be orthonormal bases of Mf”(cl) and
M; 2(c2), respectively. Then we have

(Ayx; X, Y) =0, 3.1
and
o itk
(Ayx. Y, Yi) = {M(Xi)» if =k, 3.2)

where w(X;) =: u; depends only on X; foreachi =1, ...,ny.
Proof Expressing (2.11) for X = Y, Y =Y;,Z = X;, W = X, k # [, and using
(2.12), we see that there is only one term remaining in the right-hand side: 0 =
R(Yy, Y))Ax; X ;. Using (2.12) again, we get

0=1(Y,, Asx; X)) Yie — Yk, Ayx, X ;) Y], (3.3)
It follows immediately the assertion (3.1) that

(Y1, Arx; Xj) =0, 1=<Il<mny 1<i, j=<na 3.4

For the second relation, we proceed similarly by choosing in (2.11): X = Y,
Y=X;,Z=Y;, W =Y, we obtain

0=—co({Asx; Y1, Yn)Yi — (Ayx, Y1, Yi) Yin — SmiAyx; Yk + 81 Ayx; Yim). (3.5)
In (3.5), let k, I, m be distinct. Then we get
(Ayx; Y1,Y) =0, 1<i=<n;, 1=<I,m=<ny [#m. 3.6)
Again in (3.5), let assume that [ = m # k. Then we have
(Ayx; Yi, V1) = (Ayx. Y, Vi), 1 =i<m, 1=l k=ny [#k (37
By (3.4), (3.6) and (3.7), we have 1 (X;) depends only on X; such that
Ayx, Yi=puX)Y, 1<i<n, 1=[=<n;.

Then the assertion (3.2) immediately follows. O

Lemma 3.3 Let {X;}1<i<n, be an orthonormal basis in the tangent space ofo1 ata
point. Then it holds that

PXD? + - (X)) = 28 (3.8)
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On Product Minimal Lagrangian Submanifolds 1941

Proof We compute the sectional curvature K (s (X;, Y;)) of the plane 7 spanned by
X; and Y}, for some fixedi = 1,...,ny and some fixed j = 1, ..., n2. We use on
the one hand (2.12) and on the other hand (2.4) together with (3.2) to obtain
0=c+ (A Y, Ayx, Xi) — (Asx; Yj, Ayy; Xi)
=¢—pn(X)?+ (Agy; Yj, Ay, Xi), 1 <i<ni, 1 <j<np.

Taking summation overi = 1, ..., n1, and using Lemma 3.2, we get
ni ni
0=mé= pnX)?+ <A1y_,.Yj, ZAJX,-Xi>
i=1 i=l
o 0o 3.9
=m&— Y w(X)?+ Y > (Arx X, Xi)(Xy).
i=1 k=1i=1
However, the minimality condition implies that for each k = 1, ..., n; we have
ni na ni
0= (Asx,Xi. Xi) + Y (AsxYj.Yj) =Y (Ayx,Xi. Xi) + nap(Xp).
i=1 j=1 i=1
(3.10)
Therefore, from (3.9) and (3.10), we obtain
ROXD? 4o (X)) = e 3.11)
This completes the proof of Lemma 3.3. O

Next, we will describe the construction of a local frame of vector fields for which
we can determine the values of the shape operator A ;. This is a crucial step and will
be stated in Lemma 3.5. Let us describe first a general method for choosing suitable
orthonormal vectors at a point on M", which will be used recurrently in the proof of
Lemma 3.5. The main idea originates from the very similar situation in studying affine
hyperspheres in [12,18].

Let (p,q) € M" and U,M{" = {u € T,M}" |(u, u) = 1}. As the metric on M} is
positive definite, we have that U, M {“ is compact. We define on this set the functions

@) = (Apu,u), ueU,M{". (3.12)

We know that there exists e; € U, M| for which f(, 4) attains an absolute maximum:

fop.per) = (Ajeer,er) =: Ay Letu e U[,MI’1 such that (u, e;) = 0 and define
g(t) = f(p.q)(cos(t)ey + sin(¢)u). One may check that

g'(0) =3(Aye e1.u). (3.13)

g//(()) = 6<Ajelu7 M> - 3f(p,q)(el)- (314)
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1942 X.Cheng et al.

Since g attains an absolute maximum for ¢t = 0, we have that g’(0) = 0 and
g"(0) <0,ie.

! (Ajeer,u) =0, (3.15)

(Ajeer,e1) = 2(Ajeu,u), ul ey, (u,u)=1.

Therefore, e is an eigenvector of A ., with A the corresponding eigenvalue. Since

A je, 1s self-adjoint, we can further choose orthonormal vectors e, .. ., e,,, which are
eigenvectors of Aj,.,, with respectively the eigenvalues A;, ..., A,,. To sum up, we
have

Aje]eizkiei, i=1,...,n1; A =>2A; for i>2. (3.16)

Lemma3.4 Let (p,q) € M{' x My* and {X;}1<i<n, and {Y;}i<j<n, be arbitrary
orthonormal bases of T, M i“ and T, M;’ 2, respectively. Then

Ary Yo = (miXo+ -+ Xn)ojk, 1 =< j,k <na, (3.17)

n1+n2+15.

where w; = u(X;) with i defined as before. Moreover, we have c; = i

Proof From Lemma 3.2 we know that

ny

ik
Ary Y = (WXt 4+ i Xn)8ji + Y o ¥,
=1

ik ik
for real numbers a{ el a‘,’lz.

Now, we claim that alj k_ 0 for all possible indexes, or equivalently,
(Ayy; Y, Y1) =0 forany Y;, Yi, Y; € T, M. (3.18)

We will verify the claim by contradiction.
In fact, if it did not hold, then we could choose a unit vector Y1(p, q) € Uy M;’ 2
such that a1 := (Ayy, Y1, Y1) > 0 is the maximum of the function f(, 4) defined on
n
T,M5>.
Define an operator A on T, Mg 2 by

AXY) =AY — (A Y, X)) X1 — - = (Ayn Y, X)) Xy

It is easy to show that A is self-adjoint and Y7 is one of its eigenvectors. We can
choose orthonormal vectors Y»,...,Y,, € U, Mgz orthogonal to Yj, which are the
remaining eigenvectors of the operator A, associated to the eigenvalues as, ..., oy,
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(notice that we have changed the notation for the corresponding o ZJ ¥ for more simplic-
ity). Therefore, we have

Ajv, Yi = X1+ -+ Xn, +o1Y7,
i FASRS! M1 Mni &ny 111 (319)

AJYIY:' =w;Y;, 1 <i<njp.

Takingin 24) X =Z =Y,Y =Y;, 1 <i < ny, using (3.19) and Lemmas 3.2
and 3.3 , we can obtain

2 +n+1 ~
of — e — "lnz’fﬁl c+cr=0. (3.20)

It follows that there exists an integer n2,1, 0 < na; < np — 1, if necessary after
renumbering the basis, such that

0 = =0y g+l = l(011 + o +4("],;r2"+2fr] cz))
3.21)
Ony 42 =00 = 0Omy = %(al B \/“ +A e Cz))
Using Lemma 3.2, (3.19), (3.21) and trace A jy, = 0, we have
4 nptnp+l ~
o= | (3.22)

ACnfr )
(=) -

Therefore, if there exists a unit vector field V € TM; 2suchthat AjyV = AV +
u1X1+ -+ + W, Xn,, then we see that

1~
4(nl+n2+ C—C2)

ny+1
ny—2np1—1 0<ny <na—1
Moreover, a is the absolute maximum of f(, 4 if and only if
4 ni+ny+1 ey
%, corresponding to ny,; = 0. (3.24)
no—1/ —

Next, we show that if f(,, ) attains an absolute maximum in Y1, we can extend Y}
differentiably to a unit vector field which is also denoted by Y; on a neighbourhood U
of (p, ¢) such that, at every point (p’, ¢') € U, f(,» 4 attains an absolute maximum
inY1(p',q).

In order to achieve that purpose, let {E, ..., E,,} be an arbitrary differentiable
orthonormal basis defined on a neighbourhood U’ of (p, ¢) such that Ej(p, q¢) = Y.
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1944 X.Cheng et al.

Then, we define a function y by

YR xU — R :(a1,...,an, (p',q)) > (b1,...,by,),
ni
by = Z aiaj{Ajg Ej, Ex) —ajax, 1 <k <ns.
ij=1

Using the fact that f, ) attains an absolute maximum in E1(p, ¢), we then obtain
that

3"" =(1,0,...,0,(p.9) = 2((AsE (p.) Em(P. @) Ex(p, q)) — 218km
0, if kK #m,
=1 ay, ifk=m=1,
2p —ap, ifk=m > 1.
Since @1 > 0 and given (3.21), we have 2ay — a1 # 0 for k > 2. Hence the implicit

function theorem shows that there exist differentiable functions ay, ..., a,,, defined
on a neighbourhood U of (p, g), such that

ai(p,q) =1, axp,q) =0, ..., an(p,q)=0.
Define the local vector field V by
V=aEi+ - +ayEp

Thenwehave V(p,q) =Yiand Ay V = o V+ui(V, Vi X1+ 4 (V. V) Xy,
Hence

V = = V P
A/ (“,/ ) VIV T VY VLY + X+ e Xy

By (3.23), the continuity of ——=— \/7 and (V, V)(¢q) = 1, wecanderive that (V, V) = 1

identically. Therefore, for any point (p’, ¢") € U, f(p,4) attains an absolute maximum
at V(p', ¢). Let Y1 = V and take orthonormal vector fields Y2, ..., ¥,, orthogonal

to Y1. Then {Y1, ..., Y,,} is a local basis satisfying
Ajpy Yi=m X1 +---+ X, + a7y,
Jyr = (X . Hny X 117 (3.25)
A Yi =a;Y;, 1 <i=<ny,
where o is defined by (3.24), and
==y, = %(Oll — \/al +4(71|’;|;l$1+1 cz)) (3.26)

We recall that on the product manifold M" we know that (Vy,Y;, X) = 0 for
i,j =1,...,n and X tangent to M. Applying (2.5), and (3.24)—(3.26), we have
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On Product Minimal Lagrangian Submanifolds 1945

that
Vy, Y1 =0, 1 <i<ny. (3.27)

Hence, we have R(Y1, Y2)Y; = 0, a contradiction to the fact that ¢; # 0. This
verifies the claim and thus (3.17) follows.

Moreover, using (2.4), (2.12) and (3.17), we easily get the relation ¢, = "2tz

il C

Lemma 3.5 In Case (i), we have ¢ > 0. Moreover, there exist local orthonormal frames
of vector fields {X; }1<i<n, ofMi“ and {Yi}i<j<n, of M52, respectively, such that the
operator A takes the following form:

Asx, X1 = 21Xy,
Ay, Xi = X1+ +pi1Xi-1 + A X, 1 <i <ny,

. . (3.28)
Ay, Xj=uiXj, 1 <i <,
Ay, Yj =piYj, 1 <i<ny, 1 <j<mny,
where X; i, [Li are constants and satisfy
Aii+m—0Dpui =0, 1=<i=<n. (3.29)

Proof We will give the proof by induction on the index i of A x,. According to general
principles, this consists of two steps as below.

The First Step of Induction

In this step, we should verify the assertion fori = 1. To do so, we have to show that,
around any given (p,q) € M {” X M;’ 2, there exist an orthonormal frame of vector
fields {X;}1<i<n, of TM{", {Y;}1<i<n, of TM5?, and smooth functions A; | and p1,
so that we have

Ay X1 =21X1, Ayx Y; =wY;, 1<j<ny,
Ay, Xi =1 X;, 2<i=<ny,
A1+ —1Dp =0.

The proof of the above conclusion will be divided into four claims as below.

Claim I-(1) Given (p,q) € M{"' x M5?, there exist orthonormal bases {X;}1<i<n,
oprMf”, {Yih<i<n oquM"Z, and real numbers A1 1 > 0, A2 = -+ = A1, and
W1, such that the following relations hold:

Ay, X1 =21X1, Ay Xi =M, X, 2<i <ny,
Ay, Yj=mY;, 1 <j<np

Moreover, A1 is the maximum of f(p.q) defined on UPM{”. In particular, ¢ > 0.
Proof of Claim I-(1)
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First, if for an orthonormal basis {X;}1<;<,, and for any i, j,k = 1,...,ny,
(Ayx;Xj, Xx) = 0 holds, then by the fact traceA;x; = 0 and Lemma 3.2, we
get w; = 0. This further implies by Lemma 3.3 that ¢ = 0. From this, using (2.4),
(2.12) and Lemma 3.4, we can compute the sectional curvature of the section spanned
by Y and Y> to obtain that ¢ = 0, which is a contradiction.

Accordingly, following the idea described right before Lemma 3.4, we can choose a
vector X1 € U, M]" suchthat f(, 4 on U, M;" attains its absolute maximum A1 > 0
at X 1. Then we can choose an orthonormal basis {X; }1<j<u, of T, M i” and an arbitrary
orthonormal basis {Y;}1<j<u, of TqM;2 suchthatfor2 <k <njy, Ajx, X = A1 x Xk
and A1 > 21 . Moreover, by Lemma 3.2, A;x,Y; = u1Y; for1 < j < n».

Next, we will show that Aj» = --- = Ay ,,, and that A1 1, A1 2 and p; are all
constants independent of (p, g).

Taking in (2.4) that X = Z = X and Y = Xj for k > 2, and using (2.12), we
obtain

W= Ak —E=0, 2<k<n. (3.30)

As¢>0by (3.11)and A1 1 > 2Xy 4 for 2 < k < ny, then (3.30) implies that

1 -
Moo= =Ain =§<,\1,1 — /32, +4c). (3.31)

Similarly, taking X = Z = Xj; and ¥ € Uqu2 in (2.4) and using (2.12) and
Lemma 3.2, we get

ui— i —E=0. (3.32)

Thus we obtain

1 2 ~
ty = E(Al,l +slm), g1 = %1 (3.33)

Then, applying trace Ajx, = 0, we get

1 1 Z
E(n—i—1))»1’1+E(elnz—n1+1),/k%’l+4c=0. (3.34)
It follows that e;n, —n; + 1 # 0 and
n +1 2 2 ~
S L 1]x — 4G, 335
[(81n2—n1+1> L1 ¢ ( )

Moreover, (3.35) shows that ¢ > 0, and that

=2 [ (3.36)
1

einy—ni+
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This, together with (3.33), implies that A1 1, A2 = - -+ = Ay ,, and u| are all constants
independent of (p, q). O
ClaimI-2) A2 ==Xy, =prand A1+ @0 — g =0.

Proof of Claim I-(2)

From (3.31) and (3.33), the first assertion is equivalent to showing that &y = —1.

Suppose on the contrary that ¢; = 1. Then we have
HiA12 = —C. (3.37)
Corresponding to the case ¢y # 0 we have ny > 2, then (3.49) implies that
ny>ny+1>3. (3.38)
We rechoose a vector X, € UPMI”, which is orthogonal to X and such that A2 » =
(Ayx,X2, X2) is the maximum of f(, 4 on {u € U,M{" |u L X1}.

Define A on {u € T,M{"'|u L Xi} by AX) = A;x,X — (A;x, X, X1)X1.
It is easy to show that A is self-adjoint and X, is one of its eigenvectors. We can

choose an orthonormal basis {X3, ..., X,,} for {u € Tpr' lu L X1,u L X5} so
that they are the remaining eigenvectors of the operator .4, associated to eigenvalues
A2.3, ..., A2,,. In this way, we have obtained

Ayx, Xo = h2X1+222X2, Ayx, Xk =2 Xy, 3<k=<n;. (339

Taking X = Z = X,,Y = Xj in (2.4) and using (3.39) together with (2.12), we
obtain

)‘%,k — A2k —C — )\.%’2 =0, 3<k=<n. (3.40)

Given that A5 » > 24, j, this implies that

Aoy = %(m - \/xg,z +4(c+23,)). 3=k=n. (341)

Similarly, taking X = Z = X, and Y € U, Mgz in (2.4) and using (3.39) and (2.12),
we get

po* — poran — & — i 2 = 0. (3.42)
Combining (3.37) with (3.42) we get
15 — paka = 0. (3.43)
Therefore, we have

1
M2 = 5()»2,2 +ek22), & ==l (3.44)
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By using (3.39), (3.41), (3.44) and trace Ajx, = 0, we have

1 - 1
Ao+ 5(”1 -2) (Kz,z - \/)»5,2 +4(c+ )»%,2)) + 5”2(12,2 +&A22) =0.

(3.45)
Hence we have
hop =2 |—— 2 3.46
22 = [T (3.46)
nyp—2
Note that for 1 = 1, (3.36) gives
_ ¢
A1 =2 —(n|+n2+1)271' (3.47)
ni—ny—1
Using (3.38), we have
nitna+l _ nitnoteons  nitno+l  ni42np
ni—npy—1 ni—2 —ni—no—1 ni—2
_ni—ny—14+2(ma+1)  n3—242nr42
- ny—ny—1 n;—2
_ _2(m+D(ma—1)
=m-m-nm-> > 0-
It follows that A2 » > A1 1. This is a contradiction.
We have proved that 61 = —l and thus A1 2 = -+ - = Ay, = [1.
Finally, from trace Ajx, = 0 we get 11,1 + (n — 1)1 = 0 as claimed. O

Claim I-(3) If there exists a unit vector V € T,M {” such that AyjyV = AV, then A
has only a finite number of possible values.

Proof of Claim I-(3)

Assume that there exists aunit vector V € T, M i” suchthat A;yV = AV.Let X =V
and 11,1 = A. Then we may complete X to obtain an orthonormal basis {X; }1<;<s, of
T,M ;” such that, for each 2 < k < nj, Xy is the eigenvector of A ;yx, with eigenvalue
A k-

Then we have (3.30) from which we know the existence of an integerny 1,0 < ny <
n1 — 1 such that, if necessary after renumbering the basis, we have

1 -
AMa=-= Ao +1 = 5(?»1,1 +yM +4C>v
1 .
Alni42 = Aip = E(M,l - \/?»%,1 +4C)-

Similarly, we have (3.33). By (3.48), (3.33) and the fact that trace A ;x, = 0, we have

(3.48)

1 1 .
5(nl +no+ Dapg + 5(2”“ —ni+14en) /AT +46=0. (349
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This immediately implies that A1 | has only finite possibilities. O

Claim I-(4) The aforementioned tangent vector X1 at (p, q) can be extended differen-
tiably to a unit vector field, still denoted by X1, in a neighbourhood U of (p, q), such
that for each (p',q') € U, f,. 4 defined on U,y M{'" attains the absolute maximum

atX1(p'. q").

Proof of Claim I-(4)

Let{Ey, ..., E,,} be an arbitrary differentiable orthonormal basis defined on a neigh-
bourhood U’ of (p, q) such that E;(p,q) = Xi. Then, from the fact A;x, X; =
A1,1X1 at (p, q), we define a function y by

y: R" x U — R",
(@t.....an. (p'.q") > (b1, ....by),
where by = br(ay, ..., an,) = Z:”j:l aiaj{Ajg Ej, Ex) — Aqa, for 1 <k <nj.

Using the fact that f, ) attains an absolute maximum in E;(p, ¢), and that, by
ClaimI-(1), Ay, Ex = M Ex at (p, q) for 2 < k < n1, we have the calculation that

b (1,0,...,0, (P, @) = 2(A1E,(p.g) Em(P, )5 Ex (P, @) — *1.18km

day,
0, if k # m,
=1 A1, ifk=m=1,
20k — i, ifk=m>2.

Given the fact that ¢ > 0, by (3.31) we have that 2A; x —A1,1 # O fork > 2. Hence the
implicit function theorem shows that there exist differentiable functions ay, ..., a,,,
defined on a neighbourhood U of (p, ¢g) and satisfying

ai(p.g) =1, ax(p,g) =0, ..., an(p.q) =0,
such that
bi(a1(p', g, - an (p', ), (P'.4)) =0,
buy(ar(p'sq)s - an (P’ ). (P, 4') = 0.
Therefore, the local vector field V defined by
V=aEy+--+an Ey,
satisfies V(p,q) = X1 and AyjyV = A1, V. Hence

V. _ M v
AJ (\‘// V) VY)Y T VIV VY)Y (3.50)
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According to Claim I-(3), there is a finite number of possible values that the function
J% can take. On the other hand, since J% is continuous and (V, V)(p) = 1,
it must be that (V, V) = 1 identically. Define on U a vector field X := V. By Claim

I-(1) and its proof we know that for any point (p’, ¢") € U, f,r 4 attains an absolute

maximum at X (p’, ¢’). This verifies the assertion of Claim I-(4). O
Finally, having determined the unit vector field X as in Claim I-(4), we further
choose vector fields X, ..., X, (which are orthogonal to X ) such that {X;}1<;j<,, 1S

a local orthonormal frame of 7M. Then combining with Lemma 3.2, we complete
immediately the proof for the first step of induction.

The Second Step of Induction

In this step, we first assume the assertion of Lemma 3.5 for all i < k, where
k €{2,...,n;—1}isafixed integer. Therefore, there exists a local orthonormal frame
of vector fields {X; }1<i<n, of M i” such that the operator A ; takes the following form:

Ayx, X1 = A11X1,
Ay, Xi=m X1+ -+ piaXio1 + A4 X, 1 <i <k,

. . . (3.51)
Ay, Xj=uiXj, 1 <i <k, i<j=<ni,
Ajx, Y =Y, 1 <i <k, Y e TM)?,
where p; and A; ; for 1 <i < k are constants that satisfy the relations:
Aii+m—Dp; =0, 1=<ic<k. (3.52)

Moreover, for 1 <i < k and p’ around p, A; ; is the maximum of f(p'.q) defined on
lueTyM! | (wu)y=1,uL X, ....,Xi—1}.
Then as a purpose of the second step, we should verify the assertion of Lemma 3.5

fori =k + 1. To~do so, we have to show that there exists a local orthonormal frame
of vector fields {X;}i<j<n, of TM]" given by

ny
Xi=X1,....X = Xp; X = Z T/X:, k+1<1=<n,
t=k+1

such that T = (T[t)k+l <I.1<n, 1s an orthogonal matrix, and the operator A, takes the
following form:

' (3.53)

A
Ajg Xi=wXi+ o +pia X+ 2, X, 2<i <k+1,
A f(j=ui5(j, l<i<k4+1,i+1<j<n,

A, ;Y

=wY, 1<i<k+1,YeTM?,
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where p; and A; ; for 1 <i < k 4 1 are constants and satisfy the relations
Aiit+m—ip; =0, 1<i<k+1. (3.54)

Moreover, for I <i < k+1and (p’, q’) around (p, ¢), A; ; is the maximum of f(,/ 4
defined on

{ueTyM | (w,u)=1uL Xy,....u L X;}.

Similarly to the first step, the proof of the above conclusion will also be divided
into the verification of four claims.

C!aim II-(1) For any (p,q) € M{” X M;z, there exists an orthonormal basis
{Xih<i<n, of T,,Mf1 and real numbers A1 k+1 > 0, Akg1442 = -+ = Akt
and i1, such that the following relations hold:

Az A

A”_( )_(’ = X1+ o X+ hii X, 2<i <k 41
Asgen Xi = Mer1iXis i = k+2,

Ajge Y = w1, Y € T My

Proof of Claim II-(1)
By the induction assumption, we have an orthonormal basis { X; }1 <j <n, suchthat (3.51)
and (3.52) hold. We first take X1 = X1(p, q), ..., Xk = Xx(p, q). Then putting

Vi={ueT,M" |ul Xy, ...,ul Xy},

we will show that, restricting on U, M{" N Vj, the function f{, 4) # 0.

Indeed, suppose on the contrary that f(, ) [v, = 0. Then letting {u;}x+1<i<n, be
an orthonormal basis of Vi, we have (A, uj,ux) =0,k +1 <1, j, k < n;. Taking
in (2.4) that X = uy42,Y = Z = uj+1, by assumption of induction and Lemma 3.2,
we obtain /L% + -+ ,u% + ¢ = 0. This is a contradiction to the fact ¢ > 0.

Now, we can choose X k+1 such that f(, ,, restricted on U, M f” N Vy, attains its
maximum with value

Mkt = (A g, Xist, Xp1) > 0.
Consider the self-adjoint operator A : Vi — Vj defined by

k
AX) = Az, X — Z(A”-(HIX, X)) X;.
i=1
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Itis easy to see that A(}_( k+1) = Ak+1,k+1 X x+1- Hence, by the assumption of induction,
we have

k

Mot k+1 X k41 ZAJ;‘(H,)_(/CH - Z(A,,-(k+l)_(k+1, X)) X;
i=1
k

=A Ry Xkl — Z(AJ)}, Xie+1, Xe41) Xi

i=1
k

=A% Xkt1 — Zuixi-
i=1

Next, we choose )_(k+2’ ..., Xp, as the remaining unit eigenvectors of A, with
corresponding eigenvalues Ak41 k42, - - -, Ak+1,n;, t€Spectively. Thus, by Lemma 3.2
we have 41, and the following relations:

A]X’kﬂ)_(kJrl = w1 X1+ -+ e Xe 4 M1k Xir 1,
Ajgen Xi = h1iXis k+2<i<n, (3.55)
Ajge Y = i1, Y € TyMy?,

Now, taking in (2.4) that X = Z = X;41 and Y = X with j > k + 2, combining
with (2.12), we can obtain

Mgt = Mkt hkt — = (ud 4+ ) = 0. (3.56)
It follows that

M1 h+2 =+ = Akt

1 -
- E(xkﬂ,kﬂ — iR HACH B+ D)),
(3.57)

On the other hand, taking in (2.4) that X = Z = )_(k+], and Y € Tqu2 be a unit
vector, combining with (2.12), we can obtain

MRy = MLk ikt — 6 — (U] + -+ ud) = 0. (3.58)

Hence

1 -
K41 = 5(>»k+1,k+1 + 8k+1\/)\]%+1’k+1 +4@+put 4+ M;%)) (3.59)
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where x| = %1. Then, using that trace AJf(m =0,wegetn; —nyep+1—k—1>0
and

_ o | _Chmitetg i
M1 k+1 = 2\/( P )z_l- (3.60)
n1—naek+1—k—1

By the assumption that i1, ..., i are constants we see that, as claimed, Ayt x42 =
-+ = Ak41,n, and pg41 are also constants. |
Claim II-(2) Agy1 k42 = -+ - = Akt1,ny = Micrt and Ay jp1 +(—k—Dpgrp = 0.
Proof of Claim II-(2)
From (3.57) and (3.59), the first assertion is equivalent to showing that gx+1 = —1.

Suppose, on the contrary, that e,+1 = 1. Then we have
Pk Mt = —@C+pd+- 4+ pud), i =k+2. (3.61)

Similarly to obtaining (3.60), now we have

n—np—k—1>0 (3.62)
and
. _ o | tuitetig (3.63)
k+1,k+1 = —(nl+n2_k+1)2 . .
ny—ny—k—1) —
Put

Vil ={u € TPMTI |uJ_)_(1,...,uJ_)_(k+1}.

Then, a similar argument as in the proof of Claim II-(1) shows that, restricting on
U,M{"' N Vi1, the function f(p 4) # 0.

Now, by a totally similar process as in the proof of Claim II-(1), we can choose
another orthonormal basis {X/}1<i<n, of T,M|" with X; = )_('j forl < j<k+1
such that f(, 4, restricting on U, M ;” N Vi1, attains its maximum Ag42 442 > 0 at
X]/{+2 so that Ag42 k42 = h(AJX]:+2X,/€+2, XI/{JFZ).

As before, we define a self-adjoint operator A : Vi1 — V4 by

k+1
AX) = Ay, X - Z(AJXLHX, X)) X].

i=1
Then we have A(X,/(H) = )»k+2,k+2X]/(+2~ As before we will choose X,’(+3, e X,/11

as the remaining unit eigenvectors of A, with corresponding eigenvalues Agi2 k+3,
... Ak42,n,, Tespectively. In this way, we can prove that
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AJXI’(+2X//¢+2 = X] 4+ Xy F Mt k2 X+ Ag2k2 X0,

AJX]’(”X/' = M+2,i X}, k+3<i<n.

i i’

(3.64)

Taking X = Z = X}, and ¥ = X; fork +3 <i < nj in (2.4) and using (2.12), we
obtain

)‘%+2,i — M2 ka2 hkg2i —E— (W pd 4 )»%H,i) =0, k+3<i=<n.
(3.65)

Noting that for k + 3 < i < n; we have Ag42.14+2 > 2Ak42,, it follows from (3.65)
that

1 -
Aet2,i = §<)»k+2,k+2 - \/)‘i+2,k+2 +4C+pI + - pud + X%H,i) )

i>k+3. (3.66)

Similarly, let X = Z = X;_, and Y € T, M5? be a unit vector in (2.4). Using (2.12)
we get

Ko — Hkroht2,k42 — € — (U5 + - 4 Wi + hegt,iptkd1) = 0, i > k + 2.

(3.67)
Combining (3.61) and (3.67) we obtain
iy — Mit2his2.h42 =0, (3.68)
and therefore it holds that
1
k42 = 5(/\1(+2,k+2 + eppori+2.k+2)s Ek2 = £ (3.69)
Then, using trace A]X;c+2 =0,wecangetn; —k —2 > 0and
Gt ui Al .
Met2.k+2 = 2\/(n1+nlz—k+skli¢—2nlzﬁ)—12’ 1 iz k+2. (3.70)
ni—k—2 -

Given (3.62), we have the following calculations:

ny+n—k+1 ny +ny 4 egqono —k ny+n—k+1 ny+2ny; —k
n—ny—k—1 n—k—2 n—ny—k—1 n—k—2
B 2y +D(n2 — 1)
T m—m—k—Dm —k=2)"
(3.71)
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Then, by (3.63) and (3.70), we get Ak42 k+2 > Ak+1.k+1, Which is a contradiction.
Therefore, ex41 = —1 and Ajy1 k42 = -+ = k41,0 = Mk+1, as claimed.
Finally, from trace A T = 0, we get

Atk + (m—k — Dpgyr = 0.

This completes the verification of Claim II-(2). O

Claim II-(3) Let {X; }1<i<n, be the local orthonormal vector fields of M which form a
basis for the first component as in the assumption of induction. If a unit vector field V
ofTMi“ \span{X1, ..., X} has the propertythat AyjyV = AV +u1 X1+ - -+ i Xz,
then the function A takes values of only finite possibilities.

Proof of Claim II-(3)
We first carry the discussion at an arbitrary fixed point (p, g) Let X} =V, X 1=
X1, ..., X]/( = Xk, Me+1,k+1 1= A.

Put Vi =f{u € T,M}" |u L X1,...,u L Xi}. Define A: Vi — Vi by

k
AX) = AjvX =Y (AjvX, Xi)Xi.

i=1

It is easily seen that A is a self-adjoint transformation and that A(V) = AV. Thus,
we can choose an orthonormal basis {X!}x11<i<n, Of Vi, such that A(X)) = A; ; X]
for k +2 < i < ny. Then, as before we see that (3.56) holds, and thus there exists an
integer 111 k41, 0 < ny x4+1 < n1 — (k + 1) such that, if necessary after renumbering
the basis, we have

A1 k42 =+ = Mt Lng g +h+1
1 2 ~ 2 2 2
= §<)‘k+1,k+1 + )‘k+],k+1 +a4c+pur+---+ My + lik)>’
(3.72)
MLy gg1+h+2 =+ ° = A+l
1 2 ~ 2 2 2
= §<kk+1,k+1 —VMprhp TACF o+ Mk))~
Then, using trace A X, = 0, we can show that
B Fudtni Hud
M1 k41 = 2\/( PR )2 ; (3.73)
2n1 j1—n1+naegr1+k+1/)
Finally, noticing that by assumption i1, ..., ug are constants, and that the set

{niis1(p) | p € MY}
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consists of finite numbers, we get the assertion that A = Ax41 k41 takes values of only
finite possibilities. O

Claim II-(4) Let {X;}1<i<n, be the local vector fields on M as in the assumption of
iyduction, Vi ={u € TI,,M;I1 | (u,uy = 1, u L Xy,...,u L Xi}. The unit vector
Xk+1 € T,,Mi“ determined in Claim II-(1) can be extended differentiably to be a unit

vector field, denoted by f(k+ 1, in a neighbourhood U of (p, q), such that for each
(p'.q") € U, f(p.q) defined on Vi attains the absolute maximum at Xi1(p'. q).
Proof of Claim II-(4)

Let{E+1, ..., En, ) bearbitrary differentiable orthonormal vector fields of V defined
on a neighbourhood U’ of (p, ¢) such that E;1(p,q) = Xs41. Then, we define a
function y by

y: Ri* 5y’ — RMK,
(ak+19 ceey anls (plv 61/)) = (bk-l-ls ceey bnl)v

where by = Zl k1 aia i(AJEEj, El) — M1 k+1ai, [ =k +1 <1 < ny. Using
the fact that f(, 4) attains an absolute maximum in Ei+1(p, q) so that

(ATEc EL EDl(pg) = Mer1 g, L2 k+ 1,
we then obtain that

FEL(1,0, ..., 0, (P, ) = 2(A 1B 1 (p.) Em (P2 @) E1(P, @) = M1 ke 181m

0, i1 % m,
= 1 Ak+1.k+1s fl=m=k+1,
20410 — Mt k1, i l=m>k+2.

As ¢ > 0, thenfrom (3.57) we obtain that 2A; 41 —Ag+1,4+1 7 0. Hence, similar to the
proof of Claim I-(4), the implicit function theorem shows that there exist differentiable
functions ay41, ..., a,,, defined on a neighbourhood U of (p, ¢), such that the local
vector field V, defined by

V = akt1Ex+1 + -+ an Eny,
has the property V (p, g) = Xi+1 and satisfies that

AjvV =M1,V A i (V, VIXp -+ up(V, V) X

Hence
1% _ Mktlk+l
AJ <‘\// - NOAERENAL) J(V 7 4+ X1+ A+ e X (3.74)
According to Claim II-(3), the function Akzr‘l/—k;;; can take a finite number of values. On
the other hand, ):7"/7“/*; is continuous and (V, V)(p, g) = 1. Thus (V, V) = 1 holds
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identically. Let X541 := V. Then (3.74) and (V, V) = 1 imply that for any (p’, ¢’) €
U, f(p' 4 defined on Vi (p’, ¢) attains an absolute maximum at Xie1(p', q). O
Finally, we choose vector fields )~(1 =Xi,..., )~(k = X and )~(k+2, el an such
that { X 1 X 2y, X n, } are orthonormal vector fields of M which together span a basis
for the first component of the tangent space. Then, combining with Lemma 3.2, we
immediately fulfil the second step of induction.
Accordingly, we have completed the proof of Lemma 3.5. O

In the following part, we aim at giving the explicit parametrization of ¥ : M" —
M™(4¢). For this we will use Theorems 2.1 and 2.2 from [15].

Firstly, we will prove that the submanifold M" has parallel second fundamen-
tal form. We will do this by direct computations: for the local orthonormal frame
{Xiti<i<n, of M i” as determined in Lemma 3.5, we will use the Codazzi equation in
(2.5) to show that, for each 1 < i < nj, X; is a parallel vector field. Then we will
further prove that ¢ : M" — M"(4¢) has parallel second fundamental form.

Lemma3.6 Let {X1, ..., X,,} be the local orthonormal frame of M, as determined
in Lemma 3.5 and let {Y1, . .., Y, } be a local vector fields on M which form a basis
for the second component. Of course as the vector fields Y; can be freely chosen, we
pick them in such a way that Y;(p',q") = Y;(p,q’), i.e. the Y; depend only on the
second component. Then

VX; =0, 1<i<n.
Proof We will proceed by induction on the subscript of X; and prove separately that
VxX,‘ = 0, X e T]W;11 and Vyx,' = 0, Y e Tan, where 1 <i< ni.
Let us check first that Vx X; =0, X € TM|".
Fori > 2, by using (2.3) and (3.28), we have

J(Vh)(X;, X1, X1) = Qu1 — A1,1) Vx,; X1,
J(Vh)(X1, X;, X1) = =1 Vx, Xi + Ayx, (Vx, Xi) + Ayx,; (Vx, X1).

Then the Codazzi equations J(Vh)(X;, X1, X1) = J(Vh)(X1, X;, X1) give that
QCui —A,DVx, X1 = -V, Xi + Ayx, (Vx, Xi) + Ayx, (Vx, X1). (3.75)

Taking the component in the direction of X; in (3.75) we can get Vy, X1 = 0.
Substituting Vy, X1 = 0 into (3.75), and then taking the component in the direction
of X;, we get (Vx, X1, X)) =0for2 <i,k <nj.

The above facts immediately verify for the first step of induction that

VxX1 =0, XeTM]".
Next, assume by induction that for a fixed j > 2 it holds

VX =0, XeTM', k=1,..., j—1 (3.76)
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We claim that VX ; = 0. The proof of the claim will be given in four cases.
(1) From the induction assumption and the fact that (X;, X;) = ;;, we get

(Vx; Xj, Xi) = —(Vx; X, Xj) =0, 1<i=<n, k=<j.
(2) For i < j — 1, by the induction assumption we have

J(VR)(Xi, X}, X)) = —Vx, Arx, X + 247x,Vx, X
= 3}, Vx,X; — 24, V%, X;
=) = 2up)Vx, X3

J(VR)(Xj, Xi, Xj) = =Vx;Ayx, Xj + Asx; Vx; Xi + Ayx; Vx,; X
=—niVx; Xj+Asx;Vx; Xi + Ayx; Vx; X
=—uiVx;X; +Asx,Vx,; X;.

Then, by J(Vh)(X;, Xj, X;) = J(Vh)(X, X;, X ), we immediately get
(Vx; Xj, Xj) =0, i<j—1, j+1=<jo=<n.
(3) For j + 1 < jo < ny, similar and direct calculations give that

TV (Xjy. Xj. Xj) = =V, Arx, X; +2Asx, Vi, X;
=4j.VxjXj =245, Vx;, X
=, —2n))Vx, X;;

J(Vh)(Xj, Xjo. Xj) = =Vx;Ayx; Xj + Asx; Vx; Xjo + Asx; Vx; X
=—ujVx; Xjo+ Asx;Vx; Xjo + Asx; Vx; X

By J(Vh)(X;, Xy, X;) = J(Vh)(X, Xy, X ;) and taking the component in the
direction of X ;, we obtain that

(Vx; Xj, Xj) =0, j+1=<jo=<ni
(4) For i > j + 1, by similar calculations for both sides of
J(Vh)(X;, X;, Xj) = J(Vh)(X;, X;, X ),
and taking the component in the direction of X j; for jo > j + 1, we can get
(Vx; Xj, Xjo) =0, i>j+1, jo=j+1
Summing up the above four cases, we finally get the assertion
VxX;=0, X e TM}".
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Finally, we must prove that VyX; = 0, Y € TM;Z, 1 < i < ny. The proof
follows the same steps as before. For instance, we start with the Codazzi equation
J(Vh)(X;, Y1, X1) = J(Vh)(Y1, X;, X1),i > 1. Multiplying once by X and once
by Y;, j < ni, we get that Vy, X1 = 0. Then, Vy_le =0, j > 1 follows similarly
from J(Vh)(Y;, X1, X1) = J(Vh)(Xy,Y;, X1), i > 1. We then complete the proof
of this part by following the same steps as for VxX; =0, X € TM}".

By induction we have completed the proof of Lemma 3.6. O

Lemma 3.7 Under the condition of Theorem 3.1, the submanifold y : M" — M" (4¢)
has parallel second fundamental form: Vh = Q.

Proof We have that M" = M{"(c1) x My*(c2) forc; =0, ¢, > 0and ¢ = 1. Let

{Xi}1<i<n, and {Y}1<j<n, be the local orthonormal frames of vector fields of M f”

and M;’ 2, respectively, as described in Lemma 3.5. Consider arbitrarily X € TM i”
and Y € TM;’Z. We will make use of the Codazzi equation (2.5), Egs. (3.17), (3.28)
and the factthat VX; = 0, 1 <i < ny. We need, additionally, to know that Vx,Y = 0,
fori < ny. For every Y; chosen in the basis of T, M. "2 we take its horizontal lift on
T(p.yM}" x M5?, which we still denote by Y. Our setting corresponds now to [20,
Proposition 56, p. 89]. Hence, VxY = 0.
Given the symmetries of Vi, itis enough to evaluate Vi (Xy, Y;, Y;), VA(Y;, Xy, Y}),

Vh(X, X;, X;), Vh(Y,Y;,Y;), Vh(Y, X;, X;). By direct calculations we obtain
Vh =0. O

Completion of the Proof of Theorem 3.1

Let {X;}1<i<n, and {¥;}1<<n, be the local orthonormal frames of vector fields of M{”
and Mg 2, respectively, as described in Lemma 3.5. Now, we consider the two distribu-
tions D spanned by X1, and D, spanned by {X», ..., X,,, Y1, ..., Yy,,}. Given the
formof A x, in (3.28), we may apply Theorem 2.1 and obtain that ¢ : M" — CP"(4)
is locally a Calabi product Lagrangian immersion of an (n—1)-dimensional Lagrangian
immersion V| : M?’Tl — CP"'(4) and a point, i.e., M" = I} x M?’Tl, I C R. As
Y is minimal in our case, we may further apply Theorem 2.1 (2). Therefore, we get
that

1
(1 = =——= and ¥ is minimal,

NG

and ¥ = I o ¢ for

- L L )
v, p) = (\/%el"“tlﬁl(l?),\/ge 'n+lt>, (t,p) € I x M{"ll,

where IT : S*"*1(1) — CP"(4) is the Hopf fibration and v/; : Mf;l — $2-1(1) is
the horizontal lift of ;.
Consider next the immersion ¥y : M ’ﬁl — cp! (4). From (3.28) we may see

that the restriction A } of the shape operator Aj on {X2, ..., Xp,, Y1, ..., ¥y, } (Which
spans T M {’51) is defined as
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Ay, X2 = M2 Xo,

Abx,-Xi =mXo+ -+ uwiaXic1 + 2, X, 3<i <ny,

Ay Xj=wiX;, 2<i<j—1, (3.77)
AjgYj=wYj, 2<i<n;, 1<j<n,

Aljy,. Yi =68j(maXo+ -+ phny Xny).

We then apply Theorem 2.1 on M {'Tl by identifying Dy with span{X;} and D,
with span{X3,..., Xn,, Y1, ..., Yy,}, and obtain that ¥ : Mﬁl — (CIP’"_l(4) is
locally a Calabi product Lagrangian immersion of an (n — 2)-dimensional Lagrangian
immersion ¥ : M?Ez — CP"%(4) and a point, thus Mﬁl =1 x M{’Ez and
M" =1y x I x M{,*, I, CR.

As ¥, is minimal, we further apply Theorem 2.1 (2), and we get

1
Jn—1

Uy = =+ Y is minimal,

and ¥, = I1; o ¥ for

~ L~ _jn=l _
1) = (Y50 o) LT ) € box My,

where IT; : §2"~1(1) — CP"~!(4) is the Hopf fibration, and v/ : M!'5? — S?'=3(1)
is the horizontal lift of ;.
In this way, we can apply Theorem 2.1 for the (n; — 1)" time because, inductively,

we have that ¥, : M?;l(ri‘{ Y CP"™~2(4) is a Lagrangian immersion and
the restriction A'}ﬁz of the shape operator Ay on {X,,—1, X»,, Y1, ..., Ys,} (Which

spans T M f;]('i'{ 2y is defined as

ny—2

AJan_Ian—l = Anl—l,nl—lxnl—l’
n1—2 _

A]anlenl = tn—1Xn,,

ni—2 (378)
AJIXn.—IY/ = tn—1Yj, 1 =j <na,

ni—2 o PR
Ay, Yy =3dijpn—1Xn -1, 1 =i, <na.

Applying therefore Theorem 2.2 by identifying D; with span{X,,—1} and D,
with span{X,,,Y1,...,Y,,}, we obtain that M; ,,—> is locally a Calabi product
Lagrangian immersion of an (n — (n; — 1))-dimensional Lagrangian immersion
Yu—1 : M1 — (C]P’n_(nl_l)(4) and a point. Thus My ;2 = I;—1 X My -1
and M" =11 x Ip X -+ X I, -1 X M1 =1, In,—1 CR.
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As ;> is minimal, we further apply Theorem 2.1 (2) to see that

Yy —1 1s minimal,

1
=+ :
A= =D +1

and 1/jnl—2 = Hn1—2 o 1ﬁnl—Z for

. 1
7 —(n1—2 = —+1t .7
Yn (1, p) =(v e T (),
1 i n—(ny—2)
1/ me = (1 =2)+1 ), (t,p) € Inl_l X M]’nl_l.

Here, 1,5 : S*'~2"1+5(1) — CP"~™~2(4) is the Hopf fibration, and ¥, | :
My p,—1 — SP"=2m+3(1) is the horizontal lift of Y, 1.

We want to apply Theorem 2.1 for the n time, for the Lagranglan immersion

Vn -1 : fnl('i‘l D', ¢cP~(=D(4), given that the restriction A" | ! of the shape

operator Ay on {X,,, Y1, ..., Y,,} (which spans T My ,,_1) is defined as

-1
Azlxnlxnl = Anyny Xni»
A Y = Yy, 1< j <n, (3.79)
Anl 1Y = 81]#}11
Applying therefore Theorem 2.2 by identifying D with span{X,,}, and D, with
span{Yi, ..., Yy}, we obtain that ¥, 1 : My ,,—1 — cP'—m—b4) is locally a
Calabi product Lagrangian immersion of an (n — n1)-dimensional Lagrangian immer-
sion ¥, : My, — CP"7"1(4) and a point. Thus M| ,,—1 = I, X M| ,, and
M" =1, X Iy x - x Iy, X My, I, CR. (3.80)

As Yy, —1 1s minimal, we further apply Theorem 2.1 (2) and we get

1
S
Hm Jn—np+1

Yy, 1s minimal,

and Iﬁnl—l = Hnl—l o ‘&nl—l for

. 1
~ . 71 oo t~
P10 ) = () Gt e T W (),
1 . n—(n=1)
Vool RRCEE ) (t, p) € In; X My,

where T, : S~21+3(1) — CP""*1(4) is the Hopf fibration and v,
Min — §?=2m+1(1) is the horizontal lift of Y, -
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Notice that the restriction A'}' of the shape operator A; on {Y1,...,Y,,} is
A'}'Yi Y; = 0. Therefore, we eventually have that M" is locally a Calabi product
Lagrangian immersion of n| points and an n;-dimensional Lagrangian immersion

Y, Mgz — CP"™"1(4),
for Mg =M 1,n; Which has vanishing second fundamental form. Moreover,
M'=1 xIhx-x I, xMy*, I ....I, CR.

Finally, for ¢ € M5? the parametrization of ¥ : M" — CP"(4) is given by:

’nl—l n

. ! 1
W) = (e G S it g, )
AR 9 n b

s y ’11171 n—(ny—1)
L (m+7+“'+n7(n172)+1 T TRy t’ll)

vn+1 ’
A n 7n172 n—(ny—2)
1 el(m+7+m+n7(nlf3)+l7n7(11172)+1t”1_])
vn+l ’

(AL 2 n=2 | n—1
1 e’(n+1+n (n_z>+1’3),;e’(m—7’2)

Vn+1 Vn+1 ’
«/ane—i,,%tl)’
which, writing 1/7,11 (@) =t (1, -+, Yno+1), i equivalent to

_ 1 iug 1 iunl
I/f(tl""’tnl’q)_<_me 7.."«/me ’

(3.81)
[na+1 iuy,
%ezu 1+1 (yl’ V2 ens y,,2+1)),
where {u;}1<;i<n,+1 are defined by
— _t 5 Iny -1 n—(n;—1)
uny = i1 + 0 Tt i~ asen=nei e
t t th—1 tn
Unj+1 = ﬁ Rt nf(n1172)+1 + nf(nlll)Jrl’
and they satisfy u; +us + - -+ uy, + (n2 + Duyy+1 = 0.
This completes the proof of Theorem 3.1. O

3.2

Now, we deal with Case (ii), that is, we treat the case when c¢; # 0 and ¢ # 0.
We begin with the following result whose proof is similar to that of (3.4).
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Lemma 3.8 If Case (ii) occurs, then we have
Y, Ayx; Xj) =(Xi, AyyYm) =0, 1<i,j<n;, 1=<Il,m=<ny (3.82)

Then as a main result of this subsection we can prove the following lemma.
Lemma 3.9 Case (ii) does not occur.

Proof Suppose on the contrary that Case (ii) does occur. From Lemma 3.1 we know
that A; vanishes nowhere. We may assume that there exist X € T,M;" such that
Ajx # 0 at the point p. Given Lemma 3.8, similarly to the proof of Lemma 3.5, we
can show that there exists a local orthonormal frame {Xy, ..., X,,} € TM ;” on a
neighbourhood of p such that the shape operator satisfies

Arx, X1 =MX1, Aix,Xi =xX;, 2<i<n, (3.83)

where A1 and XA, are constants. Then, similarly to the proof of (3.27), we can show
that Vx X = 0 for any X € TM{". This implies that R(X, X2)X| = 0, which is a
contradiction to ¢z # O. O

Completion of the Proof of the Main Theorem
If c; = ¢ = 0, it follows from (2.12) that (M", (-, -)) is flat. According to the result
of [11,17] and [6] (see the Gauss equation (3.5) in [6]), we get point (1) of the Main
Theorem.

If c% + c% = 0, we have two cases: Case (i) and Case (ii).

For Case (i), by Theorem 3.1, we obtain the minimal Lagrangian submanifold as
stated in point (2) of the Main Theorem.

Case (ii), by Lemma 3.9, does not occur.

Hence, we have completed the proof of the Main Theorem. O
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