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Abstract
In this paper we consider minimal Lagrangian submanifolds in n-dimensional com-
plex space forms. More precisely, we study such submanifolds which, endowed with
the induced metrics, write as a Riemannian product of two Riemannian manifolds,
each having constant sectional curvature. As the main result, we give a complete
classification of these submanifolds.
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1 Introduction

In this paper we study Lagrangian submanifolds of complex space forms. The complex
space forms are the easiest examples of Kähler manifolds. These are almost Hermitian
manifolds for which the almost complex structure J is parallel with respect to the Levi-
Civita connection∇ of the Hermitian metric g. The standard models of complex space
forms are the complex projective space CP

n , the complex Euclidean space C
n and

the complex hyperbolic space CHn , according to whether the holomorphic sectional
curvature c̃ satisfies c̃ > 0, c̃ = 0 or c̃ < 0.

There are two special classes of submanifolds of a Kähler manifold depending on
the behavior of the complex structure J with respect to the submanifold.

A submanifold M of M̃ is called almost complex if and only if J maps tangent
vectors to tangent vectors. On the other hand M is called totally real if the almost
complex structure J of M̃ carries each tangent space of M into its corresponding nor-
mal space. The study of minimal totally real submanifolds originates with the work of
Chen and Ogiue (see [6]). A special case here happens when the real dimension of the
submanifold equals the complex dimension of the ambiant space. In that case J inter-
changes the tangent and the normal spaces. Such submanifolds are called Lagrangian
submanifolds. These can also be seen as submaniflds of the largest possible dimension
on which the symplectic form vanishes identically.

For the study of minimal Lagrangian immersions in complex space forms one may
find a short survey in [5], where some of the main results are mentioned (see for
example [2–4,6,7,9–11,13,14,16,19,22,23]).

The fundamental question in submanifold theory is then to determine to what extent
the geometry of the submanifold determines the immersion of the submanifold in
the ambiant space. In that respect, it was shown by Ejiri [11] that an n-dimensional
Lagrangian minimal submanifold of constant sectional curvature c immersed in an
n-dimensional complex space form is either totally geodesic or flat (c = 0) (cf. also
[17] and [9]). More precisely in the latter case it must be congruent to a specific
Lagrangian tori in the complex projective space (see Main Theorem below). Note that
the condition that the immersion is minimal is unavoidable. From [21] and [8] one
can see that one cannot expect to obtain a general classification of all Lagrangian
submanifolds of real space forms in complex space forms.

In this paper we consider the logical next step. We will assume that our manifold
M is isometric with Mn1

1 (c1) × Mn2
2 (c2), i.e. it is a product of two real space forms

of constant sectional curvature, respectively c1 and c2. As the main result of the paper
we extend Ejiri’s result by proving

Main Theorem Let ψ : Mn → M̃n(4c̃) be a minimal Lagrangian immersion into a
complex space form with induced metric 〈·, ·〉. If Mn = Mn1

1 (c1) × Mn2
2 (c2), where

n = n1 + n2, M
n1
1 (c1) (resp. M

n2
1 (c2)) is an n1 (resp. n2)-dimensional Riemannian

manifold of constant sectional curvature c1 (resp. c2), then c1c2 = 0. Moreover,

(1) if c1 = c2 = 0, then Mn is equivalent to either the totally geodesic immersion in
C
n or the Lagrangian flat torus in CPn(4c̃).
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1936 X. Cheng et al.

(2) if c1c2 = 0 and c21+c22 �= 0, without loss of generality, we may assume that c1 = 0
and c2 �= 0. Then we have c2 = n1+n2+1

n2+1 c̃ > 0, say c̃ = 1, so the ambient space
is CPn(4), and the immersion is congruent with

1
n+1 (e

iu1 , . . . , eiun1 , aeiun1+1 y1, . . . , ae
iun1+1 yn2+1),

where

(i) (y1, y2, . . . , yn2+1) describes the standard sphere Sn2 ↪→ R
n2+1 ↪→ C

n2+1,
(ii) a = √

n2 + 1,
(iii) u1 + · · · + un1 + a2un1+1 = 0.

Remark 1.1 The technique we use in the proof of the Main Theorem is based on two
steps. The first step is to take cyclic permutation of the covariant derivative of the
Codazzi equation. The second step is then expressing the second fundamental form
of the submanifold Mn with respect to a conveniently chosen frame. To do so, we
proceed by induction (see [18]). One should notice that, eventually, our main result
follows directly from the theorems in [15].

2 Preliminaries

In this section, we will recall the basic formulas for Lagrangian submanifolds in
complex space forms. Let M̃n(4c̃) be a complex space form of complex dimension
n and having constant holomorphic sectional curvature 4c̃. Let Mn be a minimal
Lagrangian submanifold in M̃n(4c̃) given by the immersion ψ : Mn → M̃n(4c̃) such
that

Mn = Mn1
1 (c1) × Mn2

2 (c2), (2.1)

where n1 + n2 = n, Mn1
1 (c1) and Mn2

2 (c2) are manifolds of real dimensions n1 and
n2 and have constant sectional curvature c1 and c2, respectively.

Let ∇ and ∇̃ be the Levi-Civita connections on Mn and M̃n(4c̃), respectively. The
formulas of Gauss and Weingarten write out as

∇̃XY = ∇XY + h(X ,Y ), ∇̃Xξ = −Aξ X + ∇⊥
X ξ, (2.2)

for X ,Y tangent to Mn and ξ normal to Mn , where h, A and ∇⊥ are the second
fundamental form, the shape operator and the normal connection, respectively.

Notice that we will always identify Mn with its immersed image in M̃n(4c̃). As Mn

is Lagrangian, we have that the almost complex structure J interchanges the tangent
and the normal spaces. Moreover, since J is parallel, we deduce that

∇⊥
X JY = J∇XY , AJ XY = −Jh(X ,Y ) = AJY X . (2.3)

The last formula implies that the cubic form g(h(X ,Y ), J Z) is totally symmetric. The
minimality condition on Mn means that trace h = 0, and one may notice that this is
equivalent to traceAJ = 0.
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On Product Minimal Lagrangian Submanifolds 1937

A straightforward computation shows that the equations of Gauss, Codazzi and
Ricci are

R(X ,Y )Z = c̃ (〈Y , Z〉X − 〈X , Z〉Y ) + [AJ X , AJY ]Z , (2.4)

(∇h)(X ,Y , Z) = (∇h)(Y , X , Z), (2.5)

R⊥(X ,Y )J Z = c̃(〈Y , Z〉J X − 〈X , Z〉JY ) + J [AJ X , AJY ]Z , (2.6)

where X ,Y , Z are tangent vector fields and the covariant derivative of h is given by

(∇h)(X ,Y , Z) = ∇⊥
X h(Y , Z) − h(∇XY , Z) − h(Y ,∇X Z). (2.7)

Moreover, the following Ricci identity holds:

(∇2h)(X , Y , Z ,W ) − (∇2h)(Y , X , Z ,W )

= J R(X ,Y )AJ ZW − h(R(X ,Y )Z ,W ) − h(R(X ,Y )W , Z), (2.8)

where X ,Y , Z ,W are tangent vector fields and

(∇2h)(W , X ,Y , Z) =∇⊥
W ((∇h)(X ,Y , Z)) − (∇h)(∇W X ,Y , Z)

− (∇h)(X ,∇WY , Z) − (∇h)(X ,Y ,∇W Z).
(2.9)

In the following, we will prove an additional relation that is very useful in our
computations. To do so, we will make use of the technique introduced in [1], as the
Tsinghua Principle. First, take the covariant derivative in (2.5) with respect toW , and
use (2.9) and (2.5), to obtain straightforwardly that

(∇2h)(W , X ,Y , Z) − (∇2h)(W ,Y , X , Z) = 0. (2.10)

In the above equation we then cyclicly permute the first three vector fields and
express each time the left-hand side of the equations using the Ricci identity in (2.8).
It then follows that

0 = R(W , X)Jh(Y , Z) − Jh(Y , R(W , X)Z)

+ R(X ,Y )Jh(W , Z) − Jh(W , R(X ,Y )Z)

+ R(Y ,W )Jh(X , Z) − Jh(X , R(Y ,W )Z).

(2.11)

Furthermore, given [20, Corollary 58, p. 89], we know that

R(X ,Y )Z = c1(〈Y1, Z1〉X1 − 〈X1, Z1〉Y1) + c2(〈Y2, Z2〉X2 − 〈X2, Z2〉Y2),
(2.12)

where Xi ,Yi , Zi are the projections of X ,Y , Z on the T Mni
i component of T Mn , for

i = 1, 2, respectively.
We recall the following useful definitions and theorems (see [15]).
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1938 X. Cheng et al.

Definition 1 Let ψi : (Mi , gi ) → CP
ni (4), i = 1, 2, be two Lagrangian immer-

sions and let γ̃ = (γ̃1, γ̃2) : I → S
3(1) ⊂ C

2 be a Legendre curve. Then
ψ = �(γ̃1ψ̃1; γ̃2ψ̃2) : I × M1 × M2 → CP

n(4) is a Lagrangian immersion, where
n = n1+n2+1, ψ̃i : Mi → S

2ni+1(1) are horizontal lifts ofψi , i = 1, 2, respectively,
and � is the Hopf fibration. We call ψ a warped product Lagrangian immersion of ψ1
and ψ2. When n1 (or n2) is zero, we call ψ a warped product Lagrangian immersion
of ψ2 (or ψ1) and a point.

Definition 2 In Definition 1, when

γ̃ (t) =
(
r1e

i
( r2
r1

at
)
, r2e

i
(
− r1
r2

at
))

, (2.13)

where r1, r2 and a are positive constants with r21 + r22 = 1, we call ψ a Calabi product
Lagrangian immersion of ψ1 and ψ2. When n1 (or n2) is zero, we call ψ a Calabi
product Lagrangian immersion of ψ2 (or ψ1) and a point.

Theorem 2.1 ([15]). Let ψ : M → CP
n(4) be a Lagrangian immersion. Then ψ is

locally a Calabi product Lagrangian immersion of an (n−1)-dimensional Lagrangian
immersion ψ1 : M1 → CP

n−1(4) and a point if and only if M admits two orthogo-
nal distributions D1 (of dimension 1, spanned by a unit vector field E1) and D2 (of
dimension n − 1, spanned by {E2, . . . , En}) and there exist two real constants λ1 and
λ2 such that

h(E1, E1) = λ1 J E1, h(E1, Ei ) = λ2 J Ei , i = 2, . . . , n,

λ1 �= 2λ2.
(2.14)

Moreover, a Lagrangian immersion ψ : M → CP
n(4), satisfying the above condi-

tions, has the following properties:

(1) ψ is Hamiltonian minimal if and only if ψ1 is Hamiltonian minimal;
(2) ψ is minimal if and only if λ2 = ± 1√

n
and ψ1 is minimal. In this case, up to a

reparametrization and a rigid motion of CPn, locally we have M = I × M1 and
ψ is given by ψ = � ◦ ψ̃ with

ψ̃(t, p) =
(√

n
n+1e

i 1
n+1 t ψ̃1(p),

√
1

n+1e
−i n

n+1 t
)

, (t, p) ∈ I × M1,

where � is the Hopf fibration and ψ̃1 : M1 → S2n−1(1) is the horizontal lift of
ψ1.

Theorem 2.2 ([15]). Let ψ : M → CP
n(4) be a Lagrangian immersion. If M admits

two orthogonal distributions D1 (of dimension 1, spanned by a unit vector field E1)
and D2 (of dimension n − 1, spanned by {E2, . . . , En}), and that there exist local
functions λ1, λ2 such that (2.14) holds, then M has parallel second fundamental form
if and only if ψ is locally a Calabi product Lagrangian immersion of a point and
an (n − 1)-dimensional Lagrangian immersion ψ1 : M1 → CP

n−1(4), which has
parallel second fundamental form.
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3 Proof of theMain Theorem

In this section, we study a minimal Lagrangian isometric immersion into a complex
space form: ψ : Mn → M̃n , where Mn = Mn1

1 (c1) × Mn2
2 (c2), n = n1 + n2

and Mn1
1 (c1) (resp. M

n2
1 (c2)) is n1 (resp. n2)-dimensional Riemannian manifold with

constant sectional curvature c1 (resp. c2). We will prove the Main Theorem stated in
introduction.

One should be aware that throughout the paper we will make the following iden-
tifications. As M = M1 × M2, we can write a tangent vector field Z(p, q) =
(X(p, q),Y (p, q)) where X(p, q) ∈ TpM1 and Y (p, q) ∈ TqM2. In general, the X
notation (as well as Xi , 1 ≤ i ≤ n1) will denote a vector tangent at (p, q) ∈ Mn , with
zero components on M2. We will also identify X(p, q) ∈ TpM1 with (X(p, q), 0) ∈
T(p,q)M1 × M2 (and similarly Y (p, q) ∈ TqM2 with (0,Y (p, q)) ∈ T(p,q)M1 × M2.
Notice that, apriori, it means that X , as a vector field depends on q as well, not only
on p. One should have in mind this meaning when reading X ∈ TpM1, respectively
Y ∈ TqM2.
Nonetheless, a complete understandingwill be acquiredwith the proofs of Lemmas 3.6
and 3.7 , when we will actually see that due to our particular choice of basis, X only
depends on p.

First of all, we consider the case c21 + c22 �= 0. We begin with the following result.

Lemma 3.1 If c21 + c22 �= 0, then the shape operator AJ vanishes nowhere.

Proof Assume that AJ vanishes at the point p ∈ M . From Eq. (2.4) it follows that
R(X ,Y )Z = c̃(〈Y , Z〉X − 〈X , Z〉Y ), which yields that M has constant sectional
curvature c̃ at p. Moreover, by taking X1, X2, X2 in (2.4) and (2.12), we obtain that
c1 = c̃ and then by taking X ,Y ,Y in (2.4) and (2.12), X ∈ TpM1, Y ∈ TpM2, we get
c̃ = 0. Similarly, taking Y1,Y2,Y2 ∈ TpM2 in (2.4) and (2.12), we get that c2 = 0.
Therefore, we get a contradiction with c21 + c22 �= 0. 
�

For c21 +c22 �= 0, if c1c2 = 0, without loss of generality, we may assume that c1 = 0
and c2 �= 0. Therefore, we are left to consider the following two cases:

Case (i) c1 = 0 and c2 �= 0; Case (ii) c1 �= 0 and c2 �= 0.
3.1

In this subsection, we will deal with Case (i) and prove the following result.

Theorem 3.1 Let ψ : Mn → M̃n(4c̃) be a minimal Lagrangian isometric immersion
into a complex space form such that (Mn, 〈·, ·〉) = Mn1

1 (c1) × Mn2
2 (c2) and Case (i)

occurs. Then we have c2 = n1+n2+1
n2+1 c̃ > 0, say c̃ = 1, so the ambient space is CPn(4)

and the immersion is congruent with

1
n+1 (e

iu1 , . . . , eiun1 , aeiun1+1 y1, . . . , ae
iun1+1 yn2+1),

where

(1) (y1, y2, . . . , yn2+1) describes the standard sphere Sn2 ↪→ R
n2+1 ↪→ C

n2+1,
(2) a = √

n2 + 1,
(3) u1 + · · · + un1 + a2un1+1 = 0.
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1940 X. Cheng et al.

The proof of Theorem 3.1 consists of several lemmas as following.

Lemma 3.2 Let {Xi }1≤i≤n1 and {Y j }1≤ j≤n2 be orthonormal bases of Mn1
1 (c1) and

Mn2
2 (c2), respectively. Then we have

〈AJ Xi X j ,Yk〉 = 0, (3.1)

and

〈AJ Xi Y j ,Yk〉 =
{
0, if j �= k,
μ(Xi ), if j = k,

(3.2)

where μ(Xi ) =: μi depends only on Xi for each i = 1, . . . , n1.

Proof Expressing (2.11) for X = Yk,Y = Yl , Z = Xi ,W = X j , k �= l, and using
(2.12), we see that there is only one term remaining in the right-hand side: 0 =
R(Yk,Yl)AJ Xi X j . Using (2.12) again, we get

0 = 〈Yl , AJ Xi X j 〉Yk − 〈Yk, AJ Xi X j 〉Yl . (3.3)

It follows immediately the assertion (3.1) that

〈Yl , AJ Xi X j 〉 = 0, 1 ≤ l ≤ n2, 1 ≤ i, j ≤ n2. (3.4)

For the second relation, we proceed similarly by choosing in (2.11): X = Ym ,
Y = Xi , Z = Yl , W = Yk , we obtain

0 = −c2(〈AJ Xi Yl ,Ym〉Yk − 〈AJ Xi Yl ,Yk〉Ym − δml AJ Xi Yk + δkl AJ Xi Ym). (3.5)

In (3.5), let k, l,m be distinct. Then we get

〈AJ Xi Yl ,Ym〉 = 0, 1 ≤ i ≤ n1, 1 ≤ l,m ≤ n2, l �= m. (3.6)

Again in (3.5), let assume that l = m �= k. Then we have

〈AJ Xi Yl ,Yl〉 = 〈AJ Xi Yk,Yk〉, 1 ≤ i ≤ n1, 1 ≤ l, k ≤ n2, l �= k. (3.7)

By (3.4), (3.6) and (3.7), we have μ(Xi ) depends only on Xi such that

AJ Xi Yl = μ(Xi )Yl , 1 ≤ i ≤ n1, 1 ≤ l ≤ n2.

Then the assertion (3.2) immediately follows. 
�
Lemma 3.3 Let {Xi }1≤i≤n1 be an orthonormal basis in the tangent space of M

n1
1 at a

point. Then it holds that

μ(X1)
2 + · · · + μ(Xn1)

2 = n1
n2+1 c̃. (3.8)
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On Product Minimal Lagrangian Submanifolds 1941

Proof We compute the sectional curvature K (π(Xi ,Y j )) of the plane π spanned by
Xi and Y j , for some fixed i = 1, . . . , n1 and some fixed j = 1, . . . , n2. We use on
the one hand (2.12) and on the other hand (2.4) together with (3.2) to obtain

0 = c̃ + 〈AJY j Y j , AJ Xi Xi 〉 − 〈AJ Xi Y j , AJY j Xi 〉
= c̃ − μ(Xi )

2 + 〈AJY j Y j , AJ Xi Xi 〉, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Taking summation over i = 1, . . . , n1, and using Lemma 3.2, we get

0 = n1c̃ −
n1∑
i=1

μ(Xi )
2 +

〈
AJY j Y j ,

n1∑
i=1

AJ Xi Xi

〉

= n1c̃ −
n1∑
i=1

μ(Xi )
2 +

n1∑
k=1

n1∑
i=1

〈AJ Xk Xi , Xi 〉μ(Xk).

(3.9)

However, the minimality condition implies that for each k = 1, . . . , n1 we have

0 =
n1∑
i=1

〈AJ Xk Xi , Xi 〉 +
n2∑
j=1

〈AJ XkY j ,Y j 〉 =
n1∑
i=1

〈AJ Xk Xi , Xi 〉 + n2μ(Xk).

(3.10)

Therefore, from (3.9) and (3.10), we obtain

μ(X1)
2 + · · · + μ(Xn1)

2 = n1
n2+1 c̃. (3.11)

This completes the proof of Lemma 3.3. 
�
Next, we will describe the construction of a local frame of vector fields for which

we can determine the values of the shape operator AJ . This is a crucial step and will
be stated in Lemma 3.5. Let us describe first a general method for choosing suitable
orthonormal vectors at a point on Mn , which will be used recurrently in the proof of
Lemma 3.5. The main idea originates from the very similar situation in studying affine
hyperspheres in [12,18].

Let (p, q) ∈ Mn andUpM
n1
1 = {u ∈ TpM

n1
1 |〈u, u〉 = 1}. As the metric on Mn1

1 is
positive definite, we have thatUpM

n1
1 is compact. We define on this set the functions

f(p,q)(u) = 〈AJuu, u〉, u ∈ UpM
n1
1 . (3.12)

We know that there exists e1 ∈ UpM
n1
1 for which f(p,q) attains an absolute maximum:

f(p,q)(e1) = 〈AJe1e1, e1〉 =: λ1. Let u ∈ UpM
n1
1 such that 〈u, e1〉 = 0 and define

g(t) = f(p,q)(cos(t)e1 + sin(t)u). One may check that

g′(0) = 3〈AJe1e1, u〉, (3.13)

g′′(0) = 6〈AJe1u, u〉 − 3 f(p,q)(e1). (3.14)
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1942 X. Cheng et al.

Since g attains an absolute maximum for t = 0, we have that g′(0) = 0 and
g′′(0) ≤ 0, i.e.

{
〈AJe1e1, u〉 = 0,

〈AJe1e1, e1〉 ≥ 2〈AJe1u, u〉, u ⊥ e1, 〈u, u〉 = 1.
(3.15)

Therefore, e1 is an eigenvector of AJe1 with λ1 the corresponding eigenvalue. Since
AJe1 is self-adjoint, we can further choose orthonormal vectors e2, . . . , en1 , which are
eigenvectors of AJe1 , with respectively the eigenvalues λ2, . . . , λn1 . To sum up, we
have

AJe1ei = λi ei , i = 1, . . . , n1; λ1 ≥ 2λi for i ≥ 2. (3.16)

Lemma 3.4 Let (p, q) ∈ Mn1
1 × Mn2

2 and {Xi }1≤i≤n1 and {Y j }1≤ j≤n2 be arbitrary
orthonormal bases of TpM

n1
1 and TqM

n2
2 , respectively. Then

AJY j Yk = (μ1X1 + · · · + μn1Xn1)δ jk, 1 ≤ j, k ≤ n2, (3.17)

where μi := μ(Xi ) with μ defined as before. Moreover, we have c2 = n1+n2+1
n2+1 c̃.

Proof From Lemma 3.2 we know that

AJY j Yk = (μ1X1 + · · · + μn1Xn1)δ jk +
n2∑
l=1

α
jk
l Yl ,

for real numbers α
jk
1 , . . . , α

jk
n2 .

Now, we claim that α jk
l = 0 for all possible indexes, or equivalently,

〈AJY j Yk,Yl〉 = 0 for any Y j ,Yk,Yl ∈ TqM2. (3.18)

We will verify the claim by contradiction.
In fact, if it did not hold, then we could choose a unit vector Y1(p, q) ∈ UqM

n2
2

such that α1 := 〈AJY1Y1,Y1〉 > 0 is the maximum of the function f(p,q) defined on
TqM

n2
2 .

Define an operator A on TqM
n2
2 by

A(Y ) = AJY1Y − 〈AJY1Y , X1〉X1 − · · · − 〈AJY1Y , Xn1〉Xn1 .

It is easy to show that A is self-adjoint and Y1 is one of its eigenvectors. We can
choose orthonormal vectors Y2, . . . ,Yn2 ∈ UqM

n2
2 orthogonal to Y1, which are the

remaining eigenvectors of the operator A, associated to the eigenvalues α2, . . . , αn2
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On Product Minimal Lagrangian Submanifolds 1943

(notice that we have changed the notation for the corresponding α
jk
l for more simplic-

ity). Therefore, we have

{
AJY1Y1 = μ1X1 + · · · + μn1Xn1 + α1Y1,

AJY1Yi = αi Yi , 1 < i ≤ n2.
(3.19)

Taking in (2.4) X = Z = Y1,Y = Yi , 1 < i ≤ n2, using (3.19) and Lemmas 3.2
and 3.3 , we can obtain

α2
i − α1αi − n1+n2+1

n2+1 c̃ + c2 = 0. (3.20)

It follows that there exists an integer n2,1, 0 ≤ n2,1 ≤ n2 − 1, if necessary after
renumbering the basis, such that

⎧⎪⎨
⎪⎩

α2 = · · · = αn2,1+1 = 1
2

(
α1 +

√
α2
1 + 4( n1+n2+1

n2+1 c̃ − c2)
)
,

αn2,1+2 = · · · = αn2 = 1
2

(
α1 −

√
α2
1 + 4( n1+n2+1

n2+1 c̃ − c2)
)
.

(3.21)

Using Lemma 3.2, (3.19), (3.21) and trace AJY1 = 0, we have

α1 =
√√√√ 4( n1+n2+1

n2+1 c̃−c2)( n2+1
n2−2n2,1−1

)2−1
. (3.22)

Therefore, if there exists a unit vector field V ∈ T Mn2
2 such that AJV V = λV +

μ1X1 + · · · + μn1Xn1 , then we see that

λ ∈
⎧⎨
⎩

√√√√ 4
(
n1+n2+1
n2+1 c̃−c2

)
( n2+1
n2−2n2,1−1

)2−1

⎫⎬
⎭

0≤n2,1≤n2−1

. (3.23)

Moreover, α1 is the absolute maximum of f(p,q) if and only if

α1 =
√√√√ 4

( n1+n2+1
n2+1 c̃−c2

)
( n2+1
n2−1

)2−1
, corresponding to n2,1 = 0. (3.24)

Next, we show that if f(p,q) attains an absolute maximum in Y1, we can extend Y1
differentiably to a unit vector field which is also denoted by Y1 on a neighbourhoodU
of (p, q) such that, at every point (p′, q ′) ∈ U , f(p′,q ′) attains an absolute maximum
in Y1(p′, q ′).

In order to achieve that purpose, let {E1, . . . , En2} be an arbitrary differentiable
orthonormal basis defined on a neighbourhood U ′ of (p, q) such that E1(p, q) = Y1.
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Then, we define a function γ by

γ : Rn2 ×U ′ → R
n2 : (a1, . . . , an2 , (p

′, q ′)) �→ (b1, . . . , bn2),

bk =
n1∑

i, j=1

aia j 〈AJ Ei E j , Ek〉 − α1ak, 1 ≤ k ≤ n2.

Using the fact that f(p,q) attains an absolute maximum in E1(p, q), we then obtain
that

∂bk
∂am

(1, 0, . . . , 0, (p, q)) = 2〈(AJ E1(p,q)Em(p, q), Ek(p, q)〉 − α1δkm

=
⎧
⎨
⎩
0, if k �= m,

α1, if k = m = 1,
2αk − α1, if k = m > 1.

Since α1 > 0 and given (3.21), we have 2αk −α1 �= 0 for k ≥ 2. Hence the implicit
function theorem shows that there exist differentiable functions a1, . . . , an2 , defined
on a neighbourhood U of (p, q), such that

a1(p, q) = 1, a2(p, q) = 0, . . . , an2(p, q) = 0.

Define the local vector field V by

V = a1E1 + · · · + an1En1 .

Thenwe have V (p, q) = Y1 and AJV V = α1V +μ1〈V , V 〉X1+· · ·+μn1〈V , V 〉Xn1 .
Hence

A
J V√〈V ,V 〉

V√〈V ,V 〉 = α1√〈V ,V 〉
V√〈V ,V 〉 + μ1X1 + · · · + μn1Xn1 .

By (3.23), the continuity of α1√〈V ,V 〉 and 〈V , V 〉(q) = 1, we can derive that 〈V , V 〉 = 1

identically. Therefore, for any point (p′, q ′) ∈ U , f(′ p,q ′) attains an absolutemaximum
at V (p′, q ′). Let Y1 = V and take orthonormal vector fields Y2, . . . ,Yn2 orthogonal
to Y1. Then {Y1, . . . ,Yn1} is a local basis satisfying

{
AJY1Y1 = μ1X1 + · · · + μn1Xn1 + α1Y1,

AJY1Yi = αi Yi , 1 < i ≤ n2,
(3.25)

where α1 is defined by (3.24), and

α2 = · · · = αn2 = 1
2

(
α1 −

√
α2
1 + 4( n1+n2+1

n2+1 c̃ − c2)
)
. (3.26)

We recall that on the product manifold Mn we know that 〈∇Yi Y j , X〉 = 0 for
i, j = 1, . . . , n2 and X tangent to M1. Applying (2.5), and (3.24)–(3.26), we have
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that

∇Yi Y1 = 0, 1 ≤ i ≤ n2. (3.27)

Hence, we have R(Y1,Y2)Y1 = 0, a contradiction to the fact that c2 �= 0. This
verifies the claim and thus (3.17) follows.

Moreover, using (2.4), (2.12) and (3.17), we easily get the relation c2 = n1+n2+1
n2+1 c̃.


�
Lemma 3.5 InCase (i), we have c̃ > 0.Moreover, there exist local orthonormal frames
of vector fields {Xi }1≤i≤n1 of M

n1
1 and {Y j }1≤ j≤n2 of M

n2
2 , respectively, such that the

operator AJ takes the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AJ X1X1 = λ1,1X1,

AJ Xi Xi = μ1X1 + · · · + μi−1Xi−1 + λi,i Xi , 1 < i ≤ n1,

AJ Xi X j = μi X j , 1 ≤ i < j,

AJ Xi Y j = μi Y j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,

(3.28)

where λi,i , μi are constants and satisfy

λi,i + (n − i)μi = 0, 1 ≤ i ≤ n1. (3.29)

Proof Wewill give the proof by induction on the index i of AJ Xi . According to general
principles, this consists of two steps as below.

The First Step of Induction
In this step, we should verify the assertion for i = 1. To do so, we have to show that,

around any given (p, q) ∈ Mn1
1 × Mn2

2 , there exist an orthonormal frame of vector
fields {Xi }1≤i≤n1 of T Mn1

1 , {Y j }1≤i≤n2 of T Mn2
2 , and smooth functions λ1,1 and μ1,

so that we have
⎧
⎪⎨
⎪⎩

AJ X1X1 = λ1,1X1, AJ X1Y j = μ1Y j , 1 ≤ j ≤ n2,

AJ X1Xi = μ1Xi , 2 ≤ i ≤ n1,

λ1,1 + (n − 1)μ1 = 0.

The proof of the above conclusion will be divided into four claims as below.

Claim I-(1) Given (p, q) ∈ Mn1
1 × Mn2

2 , there exist orthonormal bases {Xi }1≤i≤n1
of TpM

n1
1 , {Y j }1≤i≤n2 of TqM

n2
2 , and real numbers λ1,1 > 0, λ1,2 = · · · = λ1,n1 and

μ1, such that the following relations hold:

{
AJ X1X1 = λ1,1X1, AJ X1Xi = λ1,i Xi , 2 ≤ i ≤ n1,

AJ X1Y j = μ1Y j , 1 ≤ j ≤ n2.

Moreover, λ1,1 is the maximum of f(p,q) defined on UpM
n1
1 . In particular, c̃ > 0.

Proof of Claim I-(1)
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First, if for an orthonormal basis {Xi }1≤i≤n1 and for any i, j, k = 1, . . . , n1,
〈AJ Xi X j , Xk〉 = 0 holds, then by the fact traceAJ Xi = 0 and Lemma 3.2, we
get μi = 0. This further implies by Lemma 3.3 that c̃ = 0. From this, using (2.4),
(2.12) and Lemma 3.4, we can compute the sectional curvature of the section spanned
by Y1 and Y2 to obtain that c2 = 0, which is a contradiction.

Accordingly, following the idea described right before Lemma 3.4, we can choose a
vector X1 ∈ UpM

n1
1 such that f(p,q) onUpM

n1
1 attains its absolutemaximum λ1,1 > 0

at X1. Thenwe can choose an orthonormal basis {Xi }1≤i≤n1 of TpM
n1
1 and an arbitrary

orthonormal basis {Y j }1≤i≤n2 of TqM
n2
2 such that for 2 ≤ k ≤ n1, AJ X1Xk = λ1,k Xk

and λ1,1 ≥ 2λ1,k . Moreover, by Lemma 3.2, AJ X1Y j = μ1Y j for 1 ≤ j ≤ n2.
Next, we will show that λ1,2 = · · · = λ1,n1 , and that λ1,1, λ1,2 and μ1 are all

constants independent of (p, q).
Taking in (2.4) that X = Z = X1 and Y = Xk for k ≥ 2, and using (2.12), we

obtain

λ21,k − λ1,1λ1,k − c̃ = 0, 2 ≤ k ≤ n1. (3.30)

As c̃ ≥ 0 by (3.11) and λ1,1 ≥ 2λ1,k for 2 ≤ k ≤ n1, then (3.30) implies that

λ1,2 = · · · = λ1,n1 = 1

2

(
λ1,1 −

√
λ21,1 + 4c̃

)
. (3.31)

Similarly, taking X = Z = X1 and Y ∈ UqM
n2
2 in (2.4) and using (2.12) and

Lemma 3.2, we get

μ2
1 − μ1λ1,1 − c̃ = 0. (3.32)

Thus we obtain

μ1 = 1

2

(
λ1,1 + ε1

√
λ21,1 + 4c̃

)
, ε1 = ±1. (3.33)

Then, applying trace AJ X1 = 0, we get

1

2
(n + 1)λ1,1 + 1

2
(ε1n2 − n1 + 1)

√
λ21,1 + 4c̃ = 0. (3.34)

It follows that ε1n2 − n1 + 1 �= 0 and

[( n + 1

ε1n2 − n1 + 1

)2 − 1
]
λ21,1 = 4c̃. (3.35)

Moreover, (3.35) shows that c̃ > 0, and that

λ1,1 = 2
√

c̃

(
n+1

ε1n2−n1+1 )2−1
. (3.36)
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This, togetherwith (3.33), implies thatλ1,1,λ1,2 = · · · = λ1,n1 andμ1 are all constants
independent of (p, q). 
�
Claim I-(2) λ1,2 = · · · = λ1,n1 = μ1 and λ1,1 + (n − 1)μ1 = 0.
Proof of Claim I-(2)
From (3.31) and (3.33), the first assertion is equivalent to showing that ε1 = −1.
Suppose on the contrary that ε1 = 1. Then we have

μ1λ1,2 = −c̃. (3.37)

Corresponding to the case c2 �= 0 we have n2 ≥ 2, then (3.49) implies that

n1 > n2 + 1 ≥ 3. (3.38)

We rechoose a vector X2 ∈ UpM
n1
1 , which is orthogonal to X1 and such that λ2,2 =

〈AJ X2X2, X2〉 is the maximum of f(p,q) on {u ∈ UpM
n1
1 | u ⊥ X1}.

Define A on {u ∈ TpM
n1
1 | u ⊥ X1} by A(X) = AJ X2X − 〈AJ X2X , X1〉X1.

It is easy to show that A is self-adjoint and X2 is one of its eigenvectors. We can
choose an orthonormal basis {X3, . . . , Xn1} for {u ∈ TpM

n1
1 | u ⊥ X1, u ⊥ X2} so

that they are the remaining eigenvectors of the operator A, associated to eigenvalues
λ2,3, . . . , λ2,n1 . In this way, we have obtained

AJ X2X2 = λ1,2X1 + λ2,2X2, AJ X2Xk = λ2,k Xk, 3 ≤ k ≤ n1. (3.39)

Taking X = Z = X2,Y = Xk in (2.4) and using (3.39) together with (2.12), we
obtain

λ22,k − λ2,2λ2,k − c̃ − λ21,2 = 0, 3 ≤ k ≤ n1. (3.40)

Given that λ2,2 ≥ 2λ2,k , this implies that

λ2,k = 1

2

(
λ2,2 −

√
λ22,2 + 4

(
c̃ + λ21,2

))
, 3 ≤ k ≤ n1. (3.41)

Similarly, taking X = Z = X2 and Y ∈ UqM
n2
2 in (2.4) and using (3.39) and (2.12),

we get

μ2
2 − μ2λ2,2 − c̃ − μ1λ1,2 = 0. (3.42)

Combining (3.37) with (3.42) we get

μ2
2 − μ2λ2,2 = 0. (3.43)

Therefore, we have

μ2 = 1

2
(λ2,2 + ε2λ2,2), ε2 = ±1. (3.44)
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By using (3.39), (3.41), (3.44) and trace AJ X2 = 0, we have

λ2,2 + 1

2
(n1 − 2)

(
λ2,2 −

√
λ22,2 + 4(c̃ + λ21,2)

)
+ 1

2
n2(λ2,2 + ε2λ2,2) = 0.

(3.45)

Hence we have

λ2,2 = 2

√
c̃+λ21,2( n1+n2+ε2n2

n1−2

)2−1
. (3.46)

Note that for ε1 = 1, (3.36) gives

λ1,1 = 2
√

c̃( n1+n2+1
n1−n2−1

)2−1
. (3.47)

Using (3.38), we have

n1+n2+1
n1−n2−1 − n1+n2+ε2n2

n1−2 ≥ n1+n2+1
n1−n2−1 − n1+2n2

n1−2

= n1−n2−1+2(n2+1)
n1−n2−1 − n1−2+2n2+2

n1−2

= 2(n2+1)(n2−1)
(n1−n2−1)(n1−2) > 0.

It follows that λ2,2 > λ1,1. This is a contradiction.
We have proved that ε1 = −1 and thus λ1,2 = · · · = λ1,n1 = μ1.
Finally, from trace AJ X1 = 0 we get λ1,1 + (n − 1)μ1 = 0 as claimed. 
�
Claim I-(3) If there exists a unit vector V ∈ TpM

n1
1 such that AJV V = λV , then λ

has only a finite number of possible values.

Proof of Claim I-(3)
Assume that there exists a unit vector V ∈ TpM

n1
1 such that AJV V = λV . Let X1 = V

and λ1,1 = λ. Then wemay complete X1 to obtain an orthonormal basis {Xi }1≤i≤n1 of
TpM

n1
1 such that, for each 2 ≤ k ≤ n1, Xk is the eigenvector of AJ X1 with eigenvalue

λ1,k .
Then we have (3.30) from which we know the existence of an integer n1,1, 0 ≤ n1,1 ≤
n1 − 1 such that, if necessary after renumbering the basis, we have

⎧
⎪⎨
⎪⎩

λ1,2 = · · · = λ1,n1,1+1 = 1

2

(
λ1,1 +

√
λ21,1 + 4c̃

)
,

λ1,n1,1+2 = λ1,n1 = 1

2

(
λ1,1 −

√
λ21,1 + 4c̃

)
.

(3.48)

Similarly, we have (3.33). By (3.48), (3.33) and the fact that trace AJ X1 = 0, we have

1

2
(n1 + n2 + 1)λ1,1 + 1

2
(2n1,1 − n1 + 1 + ε1n2)

√
λ21,1 + 4c̃ = 0. (3.49)
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This immediately implies that λ1,1 has only finite possibilities. 
�
Claim I-(4) The aforementioned tangent vector X1 at (p, q) can be extended differen-
tiably to a unit vector field, still denoted by X1, in a neighbourhood U of (p, q), such
that for each (p′, q ′) ∈ U , f(p′,q ′) defined on Up′Mn1

1 attains the absolute maximum
at X1(p′, q ′).

Proof of Claim I-(4)
Let {E1, . . . , En1} be an arbitrary differentiable orthonormal basis defined on a neigh-
bourhood U ′ of (p, q) such that E1(p, q) = X1. Then, from the fact AJ X1X1 =
λ1,1X1 at (p, q), we define a function γ by

γ : R
n1 ×U ′ → R

n1 ,

(a1, . . . , an1 , (p
′, q ′)) �→ (b1, . . . , bn1),

where bk = bk(a1, . . . , an1) := ∑n1
i, j=1 aia j 〈AJ Ei E j , Ek〉 − λ1,1ak for 1 ≤ k ≤ n1.

Using the fact that f(p,q) attains an absolute maximum in E1(p, q), and that, by
Claim I-(1), AJ E1Ek = λ1,k Ek at (p, q) for 2 ≤ k ≤ n1, we have the calculation that

∂bk
∂am

(1, 0, . . . , 0, (p, q)) = 2〈AJ E1(p,q)Em(p, q), Ek(p, q)〉 − λ1,1δkm

=
⎧
⎨
⎩
0, if k �= m,

λ1,1, if k = m = 1,
2λ1,k − λ1,1, if k = m ≥ 2.

Given the fact that c̃ > 0, by (3.31) we have that 2λ1,k −λ1,1 �= 0 for k ≥ 2. Hence the
implicit function theorem shows that there exist differentiable functions a1, . . . , an1 ,
defined on a neighbourhood U of (p, q) and satisfying

a1(p, q) = 1, a2(p, q) = 0, . . . , an2(p, q) = 0,

such that

⎧
⎪⎨
⎪⎩

b1(a1(p
′, q ′), . . . , an1(p′, q ′), (p′, q ′)) ≡ 0,

· · ·
bn1(a1(p

′, q ′), . . . , an1(p′, q ′), (p′, q ′)) ≡ 0.

Therefore, the local vector field V defined by

V = a1E1 + · · · + an1En1

satisfies V (p, q) = X1 and AJV V = λ1,1V . Hence

A
J V√〈V ,V 〉

V√〈V ,V 〉 = λ1,1√〈V ,V 〉
V√〈V ,V 〉 . (3.50)
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According to Claim I-(3), there is a finite number of possible values that the function
λ1,1√〈V ,V 〉 can take. On the other hand, since λ1,1√〈V ,V 〉 is continuous and 〈V , V 〉(p) = 1,

it must be that 〈V , V 〉 = 1 identically. Define onU a vector field X1 := V . By Claim
I-(1) and its proof we know that for any point (p′, q ′) ∈ U , f(p′,q ′) attains an absolute
maximum at X1(p′, q ′). This verifies the assertion of Claim I-(4). 
�

Finally, having determined the unit vector field X1 as in Claim I-(4), we further
choose vector fields X2, . . . , Xn1 (which are orthogonal to X1) such that {Xi }1≤i≤n1 is
a local orthonormal frame of T Mn1

1 . Then combining with Lemma 3.2, we complete
immediately the proof for the first step of induction.

The Second Step of Induction
In this step, we first assume the assertion of Lemma 3.5 for all i ≤ k, where

k ∈ {2, . . . , n1−1} is a fixed integer. Therefore, there exists a local orthonormal frame
of vector fields {Xi }1≤i≤n1 of M

n1
1 such that the operator AJ takes the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AJ X1X1 = λ1,1X1,

AJ Xi Xi = μ1X1 + · · · + μi−1Xi−1 + λi,i Xi , 1 < i ≤ k,

AJ Xi X j = μi X j , 1 ≤ i ≤ k, i < j ≤ n1,

AJ Xi Y = μi Y , 1 ≤ i ≤ k, Y ∈ T Mn2
2 ,

(3.51)

where μi and λi,i for 1 ≤ i ≤ k are constants that satisfy the relations:

λi,i + (n − i)μi = 0, 1 ≤ i ≤ k. (3.52)

Moreover, for 1 ≤ i ≤ k and p′ around p, λi,i is the maximum of f(p′,q ′) defined on

{
u ∈ Tp′Mn1

1 | 〈u, u〉 = 1, u ⊥ X1, . . . , Xi−1
}
.

Then as a purpose of the second step, we should verify the assertion of Lemma 3.5
for i = k + 1. To do so, we have to show that there exists a local orthonormal frame
of vector fields {X̃i }1≤i≤n1 of T Mn1

1 given by

X̃1 = X1, . . . , X̃k = Xk; X̃l =
n1∑

t=k+1

T t
l Xt , k + 1 ≤ l ≤ n1,

such that T = (T t
l )k+1≤l,t≤n1 is an orthogonal matrix, and the operator AJ takes the

following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AJ X̃1
X̃1 = λ1,1 X̃1,

AJ X̃i
X̃i = μ1 X̃1 + · · · + μi−1 X̃i−1 + λi,i X̃i , 2 ≤ i ≤ k + 1,

AJ X̃i
X̃ j = μi X̃ j , 1 ≤ i ≤ k + 1, i + 1 ≤ j ≤ n1,

AJ X̃i
Y = μi Y , 1 ≤ i ≤ k + 1, Y ∈ T Mn2

2 ,

(3.53)
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where μi and λi,i for 1 ≤ i ≤ k + 1 are constants and satisfy the relations

λi,i + (n − i)μi = 0, 1 ≤ i ≤ k + 1. (3.54)

Moreover, for 1 ≤ i ≤ k+1 and (p′, q ′) around (p, q), λi,i is the maximum of f(p′,q ′)
defined on

{u ∈ Tp′Mn1
1 | 〈u, u〉 = 1, u ⊥ X̃1, . . . , u ⊥ X̃i }.

Similarly to the first step, the proof of the above conclusion will also be divided
into the verification of four claims.

Claim II-(1) For any (p, q) ∈ Mn1
1 × Mn2

2 , there exists an orthonormal basis
{X̄i }1≤i≤n1 of TpM

n1
1 and real numbers λk+1,k+1 > 0, λk+1,k+2 = · · · = λk+1,n1

and μk+1, such that the following relations hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AJ X̄1
X̄1 = λ1,1 X̄1,

AJ X̄i
X̄i = μ1 X̄1 + · · · + μi−1 X̄i−1 + λi,i Xi , 2 ≤ i ≤ k + 1,

AJ X̄k+1
X̄i = λk+1,i X̄i , i ≥ k + 2,

AJ X̄k+1
Y = μk+1Y , Y ∈ TqM

n2
2 .

Proof of Claim II-(1)
By the induction assumption,wehave anorthonormal basis {Xi }1≤i≤n1 such that (3.51)
and (3.52) hold. We first take X̄1 = X1(p, q), . . . , X̄k = Xk(p, q). Then putting

Vk = {u ∈ TpM
n1
1 | u ⊥ X̄1, . . . , u ⊥ X̄k},

we will show that, restricting on UpM
n1
1 ∩ Vk , the function f(p,q) �= 0.

Indeed, suppose on the contrary that f(p,q) |Vk = 0. Then letting {ui }k+1≤i≤n1 be
an orthonormal basis of Vk , we have 〈AJui u j , uk〉 = 0, k + 1 ≤ i, j, k ≤ n1. Taking
in (2.4) that X = uk+2,Y = Z = uk+1, by assumption of induction and Lemma 3.2,
we obtain μ2

1 + · · · + μ2
k + c̃ = 0. This is a contradiction to the fact c̃ > 0.

Now, we can choose X̄k+1 such that f(p,q), restricted on UpM
n1
1 ∩ Vk , attains its

maximum with value

λk+1,k+1 := 〈AJ X̄k+1
X̄k+1, X̄k+1〉 > 0.

Consider the self-adjoint operator A : Vk → Vk defined by

A(X) = AJ X̄k+1
X −

k∑
i=1

〈AJ X̄k+1
X , X̄i 〉X̄i .
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It is easy to see thatA(X̄k+1) = λk+1,k+1 X̄k+1.Hence, by the assumption of induction,
we have

λk+1,k+1 X̄k+1 =AJ X̄k+1
X̄k+1 −

k∑
i=1

〈AJ X̄k+1
X̄k+1, X̄i 〉X̄i

=AJ X̄k+1
X̄k+1 −

k∑
i=1

〈AJ X̄i
X̄k+1, X̄k+1〉X̄i

=AJ X̄k+1
X̄k+1 −

k∑
i=1

μi X̄i .

Next, we choose X̄k+2, . . . , X̄n1 as the remaining unit eigenvectors of A, with
corresponding eigenvalues λk+1,k+2, . . ., λk+1,n1 , respectively. Thus, by Lemma 3.2
we have μk+1, and the following relations:

⎧⎪⎪⎨
⎪⎪⎩

AJ X̄k+1
X̄k+1 = μ1 X̄1 + · · · + μk X̄k + λk+1,k+1 X̄k+1,

AJ X̄k+1
X̄i = λk+1,i X̄i , k + 2 ≤ i ≤ n1,

AJ X̄k+1
Y = μk+1Y , Y ∈ TqM

n2
2 .

(3.55)

Now, taking in (2.4) that X = Z = X̄k+1 and Y = X̄ j with j ≥ k + 2, combining
with (2.12), we can obtain

λ2k+1, j − λk+1,k+1λk+1, j − c̃ − (μ2
1 + · · · + μ2

k) = 0. (3.56)

It follows that

λk+1,k+2 = · · · = λk+1,n1

= 1

2

(
λk+1,k+1 −

√
λ2k+1,k+1 + 4(c̃ + μ2

1 + · · · + μ2
k−1 + μ2

k)
)
.

(3.57)

On the other hand, taking in (2.4) that X = Z = X̄k+1, and Y ∈ TqM
n2
2 be a unit

vector, combining with (2.12), we can obtain

μ2
k+1 − λk+1,k+1μk+1 − c̃ − (μ2

1 + · · · + μ2
k) = 0. (3.58)

Hence

μk+1 = 1

2

(
λk+1,k+1 + εk+1

√
λ2k+1,k+1 + 4(c̃ + μ2

1 + · · · + μ2
k)

)
, (3.59)
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where εk+1 = ±1. Then, using that trace AJ X̄k+1
= 0, we get n1−n2εk+1−k−1 > 0

and

λk+1,k+1 = 2

√
c̃+μ2

1+···+μ2
k−1+μ2

k( n1+n2−k+1
n1−n2εk+1−k−1

)2−1
. (3.60)

By the assumption that μ1, . . . , μk are constants we see that, as claimed, λk+1,k+2 =
· · · = λk+1,n1 and μk+1 are also constants. 
�
Claim II-(2) λk+1,k+2 = · · · = λk+1,n1 = μk+1 and λk+1,k+1+(n−k−1)μk+1 = 0.
Proof of Claim II-(2)
From (3.57) and (3.59), the first assertion is equivalent to showing that εk+1 = −1.
Suppose, on the contrary, that εk+1 = 1. Then we have

μk+1λk+1,i = −(c̃ + μ2
1 + · · · + μ2

k), i ≥ k + 2. (3.61)

Similarly to obtaining (3.60), now we have

n1 − n2 − k − 1 > 0 (3.62)

and

λk+1,k+1 = 2

√
c̃+μ2

1+···+μ2
k( n1+n2−k+1

n1−n2−k−1

)2−1
. (3.63)

Put

Vk+1 = {u ∈ TpM
n1
1 | u ⊥ X̄1, . . . , u ⊥ X̄k+1}.

Then, a similar argument as in the proof of Claim II-(1) shows that, restricting on
UpM

n1
1 ∩ Vk+1, the function f(p,q) �= 0.

Now, by a totally similar process as in the proof of Claim II-(1), we can choose
another orthonormal basis {X ′

i }1≤i≤n1 of TpM
n1
1 with X ′

j = X̄ j for 1 ≤ j ≤ k + 1

such that f(p,q), restricting on UpM
n1
1 ∩ Vk+1, attains its maximum λk+2,k+2 > 0 at

X ′
k+2 so that λk+2,k+2 = h(AJ X ′

k+2
X ′
k+2, X

′
k+2).

As before, we define a self-adjoint operator A : Vk+1 → Vk+1 by

A(X) = AJ X ′
k+2

X −
k+1∑
i=1

〈AJ X ′
k+2

X , X ′
i 〉X ′

i .

Then we have A(X ′
k+2) = λk+2,k+2X ′

k+2. As before we will choose X ′
k+3, . . . , X

′
n1

as the remaining unit eigenvectors of A, with corresponding eigenvalues λk+2,k+3,
. . ., λk+2,n1 , respectively. In this way, we can prove that
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{
AJ X ′

k+2
X ′
k+2 = μ1X

′
1 + · · · + μk X

′
k + λk+1,k+2X

′
k+1 + λk+2,k+2X

′
k+2,

AJ X ′
k+2

X ′
i = λk+2,i X

′
i , k + 3 ≤ i ≤ n1.

(3.64)

Taking X = Z = X ′
k+2 and Y = X ′

i for k + 3 ≤ i ≤ n1 in (2.4) and using (2.12), we
obtain

λ2k+2,i − λk+2,k+2λk+2,i − c̃ − (μ2
1 + · · · + μ2

k + λ2k+1,i ) = 0, k + 3 ≤ i ≤ n1.

(3.65)

Noting that for k + 3 ≤ i ≤ n1 we have λk+2,k+2 ≥ 2λk+2,i , it follows from (3.65)
that

λk+2,i = 1

2

(
λk+2,k+2 −

√
λ2k+2,k+2 + 4(c̃ + μ2

1 + · · · + μ2
k + λ2k+1,i )

)
,

i ≥ k + 3. (3.66)

Similarly, let X = Z = X ′
k+2 and Y ∈ TqM

n2
2 be a unit vector in (2.4). Using (2.12)

we get

μ2
k+2 − μk+2λk+2,k+2 − c̃ − (μ2

1 + · · · + μ2
k + λk+1,iμk+1) = 0, i ≥ k + 2.

(3.67)

Combining (3.61) and (3.67) we obtain

μ2
k+2 − μk+2λk+2,k+2 = 0, (3.68)

and therefore it holds that

μk+2 = 1

2
(λk+2,k+2 + εk+2λk+2,k+2), εk+2 = ±1. (3.69)

Then, using trace AJ X ′
k+2

= 0, we can get n1 − k − 2 > 0 and

λk+2,k+2 = 2

√
c̃+μ2

1+···+μ2
k+λ2k+1,i( n1+n2−k+εk+2n2

n1−k−2

)2−1
, i ≥ k + 2. (3.70)

Given (3.62), we have the following calculations:

n1 + n2 − k + 1

n1 − n2 − k − 1
− n1 + n2 + εk+2n2 − k

n1 − k − 2
>

n1 + n2 − k + 1

n1 − n2 − k − 1
− n1 + 2n2 − k

n1 − k − 2

= 2(n2 + 1)(n2 − 1)

(n1 − n2 − k − 1)(n1 − k − 2)
.

(3.71)
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Then, by (3.63) and (3.70), we get λk+2,k+2 > λk+1,k+1, which is a contradiction.
Therefore, εk+1 = −1 and λk+1,k+2 = · · · = λk+1,n1 = μk+1, as claimed.

Finally, from trace AJ X̄k+1
= 0, we get

λk+1,k+1 + (n − k − 1)μk+1 = 0.

This completes the verification of Claim II-(2). 
�
Claim II-(3) Let {Xi }1≤i≤n1 be the local orthonormal vector fields of M which form a
basis for the first component as in the assumption of induction. If a unit vector field V
of T Mn1

1 \span{X1, . . . , Xk} has the property that AJV V = λV +μ1X1+· · ·+μk Xk,
then the function λ takes values of only finite possibilities.

Proof of Claim II-(3)
We first carry the discussion at an arbitrary fixed point (p, q) Let X ′

k+1 := V , X ′
1 =

X1, . . . , X ′
k = Xk , λk+1,k+1 := λ.

Put Vk = {u ∈ TpM
n1
1 | u ⊥ X1, . . . , u ⊥ Xk}. Define A : Vk → Vk by

A(X) = AJV X −
k∑

i=1

〈AJV X , Xi 〉Xi .

It is easily seen thatA is a self-adjoint transformation and thatA(V ) = λV . Thus,
we can choose an orthonormal basis {X ′

i }k+1≤i≤n1 of Vk , such that A(X ′
i ) = λi,i X ′

i
for k + 2 ≤ i ≤ n1. Then, as before we see that (3.56) holds, and thus there exists an
integer n1,k+1, 0 ≤ n1,k+1 ≤ n1 − (k + 1) such that, if necessary after renumbering
the basis, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λk+1,k+2 = · · · = λk+1,n1,k+1+k+1

= 1

2

(
λk+1,k+1 +

√
λ2k+1,k+1 + 4(c̃ + μ2

1 + · · · + μ2
k−1 + μ2

k)
)
,

λk+1,n1,k+1+k+2 = · · · = λk+1,n1

= 1

2

(
λk+1,k+1 −

√
λ2k+1,k+1 + 4(c̃ + μ2

1 + · · · + μ2
k−1 + μ2

k)
)
.

(3.72)

Then, using trace AJ X ′
k+1

= 0, we can show that

λk+1,k+1 = 2

√
c̃+μ2

1+···+μ2
k−1+μ2

k( n1+n2−k+1
2n1,k+1−n1+n2εk+1+k+1

)2−1
. (3.73)

Finally, noticing that by assumption μ1, . . . , μk are constants, and that the set

{
n1,k+1(p) | p ∈ Mn1

1

}
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consists of finite numbers, we get the assertion that λ = λk+1,k+1 takes values of only
finite possibilities. 
�
Claim II-(4) Let {Xi }1≤i≤n1 be the local vector fields on M as in the assumption of
induction, Vk = {u ∈ TpM

n1
1 | 〈u, u〉 = 1, u ⊥ X1, . . . , u ⊥ Xk}. The unit vector

X̄k+1 ∈ TpM
n1
1 determined in Claim II-(1) can be extended differentiably to be a unit

vector field, denoted by X̃k+1, in a neighbourhood U of (p, q), such that for each
(p′, q ′) ∈ U , f(p′,q ′) defined on Vk attains the absolute maximum at X̃k+1(p′, q ′).
Proof of Claim II-(4)
Let {Ek+1, . . . , En1} be arbitrary differentiable orthonormal vector fields of Vk defined
on a neighbourhood U ′ of (p, q) such that Ek+1(p, q) = X̄k+1. Then, we define a
function γ by

γ : R
n1−k ×U ′ → R

n1−k,

(ak+1, . . . , an1 , (p
′, q ′)) �→ (bk+1, . . . , bn1),

where bl = ∑n1
i, j=k+1 aia j 〈AJ Ei E j , El〉 − λk+1,k+1al , l = k + 1 ≤ l ≤ n1. Using

the fact that f(p,q) attains an absolute maximum in Ek+1(p, q) so that

〈AJ Ek+1El , El〉|(p,q) = λk+1,l , l ≥ k + 1,

we then obtain that

∂bl
∂am

(1, 0, . . . , 0, (p, q)) = 2〈AJ Ek+1(p,q)Em(p, q), El(p, q) − λk+1,k+1δlm

=
⎧⎨
⎩
0, if l �= m,

λk+1,k+1, if l = m = k + 1,
2λk+1,l − λk+1,k+1, if l = m ≥ k + 2.

As c̃ > 0, then from (3.57)we obtain that 2λk+1,l−λk+1,k+1 �= 0.Hence, similar to the
proof of Claim I-(4), the implicit function theorem shows that there exist differentiable
functions ak+1, . . . , an1 , defined on a neighbourhood U of (p, q), such that the local
vector field V , defined by

V = ak+1Ek+1 + · · · + an1En1,

has the property V (p, q) = Xk+1 and satisfies that

AJV V = λk+1,k+1V + μ1〈V , V 〉X1 + · · · + μk〈V , V 〉Xk .

Hence

A
J V√〈V ,V 〉

V√〈V ,V 〉 = λk+1,k+1√〈V ,V 〉
V√〈V ,V 〉 + μ1X1 + · · · + μk Xk . (3.74)

According to Claim II-(3), the function λk+1,k+1√〈V ,V 〉 can take a finite number of values. On

the other hand, λk+1,k+1√〈V ,V 〉 is continuous and 〈V , V 〉(p, q) = 1. Thus 〈V , V 〉 = 1 holds
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identically. Let X̃k+1 := V . Then (3.74) and 〈V , V 〉 = 1 imply that for any (p′, q ′) ∈
U , f(p′,q ′) defined on Vk(p′, q ′) attains an absolute maximum at X̃k+1(p′, q ′). 
�

Finally, we choose vector fields X̃1 = X1, . . . , X̃k = Xk and X̃k+2, . . . , X̃n1 such
that {X̃1, X̃2, . . . , X̃n1} are orthonormal vector fields of M which together span a basis
for the first component of the tangent space. Then, combining with Lemma 3.2, we
immediately fulfil the second step of induction.

Accordingly, we have completed the proof of Lemma 3.5. 
�
In the following part, we aim at giving the explicit parametrization of ψ : Mn →

M̃n(4c̃). For this we will use Theorems 2.1 and 2.2 from [15].
Firstly, we will prove that the submanifold Mn has parallel second fundamen-

tal form. We will do this by direct computations: for the local orthonormal frame
{Xi }1≤i≤n1 of M

n1
1 as determined in Lemma 3.5, we will use the Codazzi equation in

(2.5) to show that, for each 1 ≤ i ≤ n1, Xi is a parallel vector field. Then we will
further prove that ψ : Mn → M̃n(4c̃) has parallel second fundamental form.

Lemma 3.6 Let {X1, . . . , Xn1} be the local orthonormal frame of M, as determined
in Lemma 3.5 and let {Y1, . . . ,Yn2} be a local vector fields on M which form a basis
for the second component. Of course as the vector fields Yi can be freely chosen, we
pick them in such a way that Yi (p′, q ′) = Yi (p, q ′), i.e. the Yi depend only on the
second component. Then

∇Xi = 0, 1 ≤ i ≤ n1.

Proof We will proceed by induction on the subscript of Xi and prove separately that
∇X Xi = 0, X ∈ T Mn1

1 and ∇Y Xi = 0, Y ∈ T Mn2
2 , where 1 ≤ i ≤ n1.

Let us check first that ∇X Xi = 0, X ∈ T Mn1
1 .

For i ≥ 2, by using (2.3) and (3.28), we have

{
J (∇h)(Xi , X1, X1) = (2μ1 − λ1,1)∇Xi X1,

J (∇h)(X1, Xi , X1) = −μ1∇X1Xi + AJ X1(∇X1Xi ) + AJ Xi (∇X1X1).

Then the Codazzi equations J (∇h)(Xi , X1, X1) = J (∇h)(X1, Xi , X1) give that

(2μ1 − λ1,1)∇Xi X1 = −μ1∇X1Xi + AJ X1(∇X1Xi ) + AJ Xi (∇X1X1). (3.75)

Taking the component in the direction of X1 in (3.75) we can get ∇X1X1 = 0.
Substituting ∇X1X1 = 0 into (3.75), and then taking the component in the direction
of Xi , we get 〈∇Xi X1, Xk〉 = 0 for 2 ≤ i, k ≤ n1.

The above facts immediately verify for the first step of induction that

∇X X1 = 0, X ∈ T Mn1
1 .

Next, assume by induction that for a fixed j ≥ 2 it holds

∇X Xk = 0, X ∈ T Mn1
1 , k = 1, . . . , j − 1. (3.76)
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We claim that ∇X j = 0. The proof of the claim will be given in four cases.
(1) From the induction assumption and the fact that 〈Xi , Xl〉 = δil , we get

〈∇Xi X j , Xk〉 = −〈∇Xi Xk, X j 〉 = 0, 1 ≤ i ≤ n1, k ≤ j .

(2) For i ≤ j − 1, by the induction assumption we have

J (∇h)(Xi , X j , X j ) = −∇Xi AJ X j X j + 2AJ X j ∇Xi X j

= λ j, j∇Xi X j − 2AJ X j ∇Xi X j

= (λ j, j − 2μ j )∇Xi X j ;
J (∇h)(X j , Xi , X j ) = −∇X j AJ Xi X j + AJ X j ∇X j Xi + AJ Xi ∇X j X j

= −μi∇X j X j + AJ X j ∇X j Xi + AJ Xi ∇X j X j

= −μi∇X j X j + AJ Xi ∇X j X j .

Then, by J (∇h)(Xi , X j , X j ) = J (∇h)(X j , Xi , X j ), we immediately get

〈∇Xi X j , X j0〉 = 0, i ≤ j − 1, j + 1 ≤ j0 ≤ n1.

(3) For j + 1 ≤ j0 ≤ n1, similar and direct calculations give that

J (∇h)(X j0 , X j , X j ) = −∇X j0
AJ X j X j + 2AJ X j ∇X j0

X j

= λ j, j∇X j0
X j − 2AJ X j ∇X j0

X j

= (λ j, j − 2μ j )∇X j0
X j ;

J (∇h)(X j , X j0 , X j ) = −∇X j AJ X j0
X j + AJ X j ∇X j X j0 + AJ X j0

∇X j X j

= −μ j∇X j X j0 + AJ X j ∇X j X j0 + AJ X j0
∇X j X j .

By J (∇h)(X j , X j0 , X j ) = J (∇h)(X j , X j0 , X j ) and taking the component in the
direction of X j , we obtain that

〈∇X j X j , X j0〉 = 0, j + 1 ≤ j0 ≤ n1.

(4) For i ≥ j + 1, by similar calculations for both sides of

J (∇h)(Xi , X j , X j ) = J (∇h)(X j , Xi , X j ),

and taking the component in the direction of X j0 for j0 ≥ j + 1, we can get

〈∇Xi X j , X j0〉 = 0, i ≥ j + 1, j0 ≥ j + 1.

Summing up the above four cases, we finally get the assertion

∇X X j = 0, X ∈ T Mn1
1 .
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Finally, we must prove that ∇Y Xi = 0, Y ∈ T Mn2
2 , 1 ≤ i ≤ n1. The proof

follows the same steps as before. For instance, we start with the Codazzi equation
J (∇h)(Xi ,Y1, X1) = J (∇h)(Y1, Xi , X1), i > 1. Multiplying once by X1 and once
by Y j , j ≤ n1, we get that ∇Y1X1 = 0. Then, ∇Y j X1 = 0, j > 1 follows similarly
from J (∇h)(Yi , X1, X1) = J (∇h)(X1,Yi , X1), i > 1. We then complete the proof
of this part by following the same steps as for ∇X Xi = 0, X ∈ T Mn1

1 .

By induction we have completed the proof of Lemma 3.6. 
�
Lemma 3.7 Under the condition of Theorem 3.1, the submanifoldψ : Mn → M̃n(4c̃)
has parallel second fundamental form: ∇h = 0.

Proof We have that Mn = Mn1
1 (c1) × Mn2

2 (c2) for c1 = 0, c2 > 0 and c̃ = 1. Let
{Xi }1≤i≤n1 and {Y j }1≤ j≤n2 be the local orthonormal frames of vector fields of Mn1

1
and Mn2

2 , respectively, as described in Lemma 3.5. Consider arbitrarily X ∈ T Mn1
1

and Y ∈ T Mn2
2 . We will make use of the Codazzi equation (2.5), Eqs. (3.17), (3.28)

and the fact that∇Xi = 0, 1 ≤ i ≤ n1.We need, additionally, to know that∇Xi Y = 0,
for i < n1. For every Y j chosen in the basis of TqM

n2
2 , we take its horizontal lift on

T(p,q)M
n1
1 × Mn2

2 , which we still denote by Y j . Our setting corresponds now to [20,
Proposition 56, p. 89]. Hence, ∇XY = 0.

Given the symmetries of∇h, it is enough to evaluate∇h(Xk ,Yi ,Y j ),∇h(Yi , Xk,Y j ),
∇h(X , Xi , X j ), ∇h(Y ,Yi ,Y j ), ∇h(Y , Xi , X j ). By direct calculations we obtain
∇h = 0. 
�
Completion of the Proof of Theorem 3.1
Let {Xi }1≤i≤n1 and {Y j }1≤ j≤n2 be the local orthonormal frames of vector fields ofMn1

1
and Mn2

2 , respectively, as described in Lemma 3.5. Now, we consider the two distribu-
tions D1 spanned by X1, and D2 spanned by {X2, . . . , Xn1 ,Y1, . . . ,Yn2}. Given the
form of AJ X1 in (3.28), wemay apply Theorem 2.1 and obtain thatψ : Mn → CP

n(4)
is locally aCalabi productLagrangian immersionof an (n−1)-dimensionalLagrangian
immersion ψ1 : Mn−1

1,1 → CP
n−1(4) and a point, i.e., Mn = I1 × Mn−1

1,1 , I1 ⊂ R. As
ψ is minimal in our case, we may further apply Theorem 2.1 (2). Therefore, we get
that

μ1 = ± 1√
n

and ψ1 is minimal,

and ψ = � ◦ ψ̃ for

ψ̃(t, p) =
(√

n
n+1e

i 1
n+1 t ψ̃1(p),

√
1

n+1e
−i n

n+1 t
)
, (t, p) ∈ I1 × Mn−1

1,1 ,

where � : S2n+1(1) → CP
n(4) is the Hopf fibration and ψ̃1 : Mn−1

1,1 → S
2n−1(1) is

the horizontal lift of ψ1.
Consider next the immersion ψ1 : Mn−1

1,1 → CP
n−1(4). From (3.28) we may see

that the restriction A1
J of the shape operator AJ on {X2, . . . , Xn1 ,Y1, . . . ,Yn2} (which

spans T Mn−1
1,1 ) is defined as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1
J X2

X2 = λ2,2X2,

A1
J Xi

Xi = μ2X2 + · · · + μi−1Xi−1 + λi,i Xi , 3 ≤ i ≤ n1,

A1
J Xi

X j = μi X j , 2 ≤ i ≤ j − 1,

A1
J Xi

Y j = μi Y j , 2 ≤ i ≤ n1, 1 ≤ j ≤ n2,

A1
JYi Y j = δi j (μ2X2 + · · · + μn1Xn1).

(3.77)

We then apply Theorem 2.1 on Mn−1
1,1 by identifying D1 with span{X2} and D2

with span{X3, . . . , Xn1 ,Y1, . . . ,Yn2}, and obtain that ψ1 : Mn−1
1,1 → CP

n−1(4) is
locally a Calabi product Lagrangian immersion of an (n−2)-dimensional Lagrangian
immersion ψ2 : Mn−2

1,2 → CP
n−2(4) and a point, thus Mn−1

1,1 = I2 × Mn−2
1,2 and

Mn = I1 × I2 × Mn−2
1,2 , I2 ⊂ R.

As ψ2 is minimal, we further apply Theorem 2.1 (2), and we get

μ2 = ± 1√
n − 1

, ψ2 is minimal,

and ψ1 = �1 ◦ ψ̃1 for

ψ̃1(t, p) =
(√

n−1
n ei

1
n t ψ̃2(p),

√
1
n e

−i n−1
n t

)
, (t, p) ∈ I2 × Mn−2

1,2 ,

where�1 : S2n−1(1) → CP
n−1(4) is the Hopf fibration, and ψ̃2 : Mn−2

1,2 → S
2n−3(1)

is the horizontal lift of ψ2.
In this way, we can apply Theorem 2.1 for the (n1 −1)th time because, inductively,

we have that ψn1−2 : Mn−(n1−2)
1,n1−2 → CP

n−(n1−2)(4) is a Lagrangian immersion and

the restriction An1−2
J of the shape operator AJ on {Xn1−1, Xn1 ,Y1, . . . ,Yn2} (which

spans T Mn−(n1−2)
1,n1−2 ) is defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

An1−2
J Xn1−1

Xn1−1 = λn1−1,n1−1Xn1−1,

An1−2
J Xn1−1

Xn1 = μn1−1Xn1 ,

An1−2
J Xn1−1

Y j = μn1−1Y j , 1 ≤ j ≤ n2,

An1−2
JYi

Y j = δi jμn1−1Xn1−1, 1 ≤ i, j ≤ n2.

(3.78)

Applying therefore Theorem 2.2 by identifying D1 with span{Xn1−1} and D2
with span{Xn1 ,Y1, . . . ,Yn2}, we obtain that M1,n1−2 is locally a Calabi product
Lagrangian immersion of an (n − (n1 − 1))-dimensional Lagrangian immersion
ψn1−1 : M1,n1−1 → CP

n−(n1−1)(4) and a point. Thus M1,n1−2 = In1−1 × M1,n1−1
and Mn = I1 × I2 × · · · × In1−1 × M1,n1−1, In1−1 ⊂ R.
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As ψn1−2 is minimal, we further apply Theorem 2.1 (2) to see that

μn1−1 = ± 1√
n − (n1 − 1) + 1

, ψn1−1 is minimal,

and ψn1−2 = �n1−2 ◦ ψ̃n1−2 for

ψ̃n1−2(t, p) =
(√

n−(n1−2)
(n−(n1−2))+1e

i 1
n−(n1−2)+1 t ψ̃n1−1(p),

√
1

n−(n1−2)+1e
−i

n−(n1−2)
n−(n1−2)+1 t

)
, (t, p) ∈ In1−1 × M1,n1−1.

Here, �n1−2 : S
2n−2n1+5(1) → CP

n−(n1−2)(4) is the Hopf fibration, and ψ̃n1−1 :
M1,n1−1 → S

2n−2n1+3(1) is the horizontal lift of ψn1−1.
We want to apply Theorem 2.1 for the nth1 time, for the Lagrangian immersion

ψn1−1 : Mn−(n1−1)
1,n1−1 → CP

n−(n1−1)(4), given that the restriction An1−1
J of the shape

operator AJ on {Xn1 ,Y1, . . . ,Yn2} (which spans T M1,n1−1) is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

An1−1
J Xn1

Xn1 = λn1,n1Xn1,

An1−1
J Xn1

Y j = μn1Y j , 1 ≤ j ≤ n2,

An1−1
JYi

Y j = δi jμn1Xn1 .

(3.79)

Applying therefore Theorem 2.2 by identifying D1 with span{Xn1}, and D2 with
span{Y1, . . . ,Yn2}, we obtain that ψn1−1 : M1,n1−1 → CP

n−(n1−1)(4) is locally a
Calabi product Lagrangian immersion of an (n−n1)-dimensional Lagrangian immer-
sion ψn1 : M1,n1 → CP

n−n1(4) and a point. Thus M1,n1−1 = In1 × M1,n1 and

Mn = I1 × I2 × · · · × In1 × M1,n1 , In1 ⊂ R. (3.80)

As ψn1−1 is minimal, we further apply Theorem 2.1 (2) and we get

μn1 = ± 1√
n − n1 + 1

, ψn1 is minimal,

and ψn1−1 = �n1−1 ◦ ψ̃n1−1 for

ψ̃n1−1(t, p) =
(√

n−(n1−1)
(n−(n1−1))+1e

i 1
n−(n1−1)+1 t ψ̃n1(p),

√
1

n−(n1−1)+1e
−i

n−(n1−1)
n−(n1−1)+1 t

)
, (t, p) ∈ In1 × M1,n1,

where �n1−1 : S
2n−2n1+3(1) → CP

n−n1+1(4) is the Hopf fibration and ψ̃n1 :
M1,n1 → S

2n−2n1+1(1) is the horizontal lift of ψn1 .
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Notice that the restriction An1
J of the shape operator AJ on {Y1, . . . ,Yn2} is

An1
JYi

Y j = 0. Therefore, we eventually have that Mn is locally a Calabi product
Lagrangian immersion of n1 points and an n2-dimensional Lagrangian immersion

ψn1 : Mn2
2 → CP

n−n1(4),

for Mn2
2 := M1,n1 which has vanishing second fundamental form. Moreover,

Mn = I1 × I2 × · · · × In1 × Mn2
2 , I1, . . . , In1 ⊂ R.

Finally, for q ∈ Mn2
2 the parametrization of ψ : Mn → CP

n(4) is given by:

ψ(t1, . . . , tn1 , q) =
(√

n−(n1−1)
n+1 e

i
(

t1
n+1+ t2

n +···+ tn1−1
n−(n1−2)+1+ tn1

n−(n1−1)+1

)
ψ̃n1(q),

1√
n+1

e
i
(

t1
n+1+ t2

n +···+ tn1−1
n−(n1−2)+1− n−(n1−1)

n−(n1−1)+1 tn1

)
,

1√
n+1

e
i
(

t1
n+1+ t2

n +···+ tn1−2
n−(n1−3)+1− n−(n1−2)

n−(n1−2)+1 tn1−1

)
,

. . .

1√
n+1

ei
(

t1
n+1+ t2

n − n−2
(n−2)+1 t3), 1√

n+1
ei(

t1
n+1− n−1

n t2
)
,

1√
n+1

e−i n
n+1 t1

)
,

which, writing ψ̃n1(q) =: (y1, . . . , yn2+1), is equivalent to

ψ(t1, . . . , tn1 , q) =
(

1√
n+1

eiu1 , . . . , 1√
n+1

eiun1 ,
√

n2+1
n+1 e

iun1+1
(
y1, y2, . . . , yn2+1

))
,

(3.81)

where {ui }1≤i≤n1+1 are defined by

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1 = − n
n+1 t1,

. . .

un1 = t1
n+1 + t2

n + · · · + tn1−1

n−(n1−2)+1 − n−(n1−1)
n−(n1−1)+1 tn1,

un1+1 = t1
n+1 + t2

n + · · · + tn1−1

n−(n1−2)+1 + tn1
n−(n1−1)+1 ,

and they satisfy u1 + u2 + · · · + un1 + (n2 + 1)un1+1 = 0.
This completes the proof of Theorem 3.1. 
�

3.2

Now, we deal with Case (ii), that is, we treat the case when c1 �= 0 and c2 �= 0.
We begin with the following result whose proof is similar to that of (3.4).
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Lemma 3.8 If Case (ii) occurs, then we have

〈Yl , AJ Xi X j 〉 = 〈Xi , AJYl Ym〉 = 0, 1 ≤ i, j ≤ n1, 1 ≤ l,m ≤ n2. (3.82)

Then as a main result of this subsection we can prove the following lemma.

Lemma 3.9 Case (ii) does not occur.

Proof Suppose on the contrary that Case (ii) does occur. From Lemma 3.1 we know
that AJ vanishes nowhere. We may assume that there exist X ∈ TpM

n1
1 such that

AJ X �= 0 at the point p. Given Lemma 3.8, similarly to the proof of Lemma 3.5, we
can show that there exists a local orthonormal frame {X1, . . . , Xn1} ∈ T Mn1

1 on a
neighbourhood of p such that the shape operator satisfies

AJ X1X1 = λ1X1, AJ X1Xi = λ2Xi , 2 ≤ i ≤ n1, (3.83)

where λ1 and λ2 are constants. Then, similarly to the proof of (3.27), we can show
that ∇X X1 = 0 for any X ∈ T Mn1

1 . This implies that R(X1, X2)X1 = 0, which is a
contradiction to c1c2 �= 0. 
�
Completion of the Proof of the Main Theorem
If c1 = c2 = 0, it follows from (2.12) that (Mn, 〈·, ·〉) is flat. According to the result
of [11,17] and [6] (see the Gauss equation (3.5) in [6]), we get point (1) of the Main
Theorem.

If c21 + c22 �= 0, we have two cases: Case (i) and Case (ii).
For Case (i), by Theorem 3.1, we obtain the minimal Lagrangian submanifold as

stated in point (2) of the Main Theorem.
Case (ii), by Lemma 3.9, does not occur.
Hence, we have completed the proof of the Main Theorem. 
�
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