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Abstract
New integral formulas of Simons and Bochner type are found and then used to study
biharmonic and biconservative submanifolds in space forms. This leads to new rigidity
results and partial answers to conjectures on biharmonic submanifolds in spheres.
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1 Introduction

The rich history of using tensorial formulas to understand the geometry of hyper-
surfaces in Riemannian manifolds goes back to Simons’ 1968 seminal paper [39],
where, after finding the expression of the Laplacian of the squared norm of the second
fundamental form of a minimal submanifold, which in the (simpler) case of minimal
hypersurfaces in Sm+1 is
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1

2
�|A|2 = −|∇A|2 − |A|2(m − |A|2),

A being the shape operator, he proves a very important rigidity result for compact
minimal submanifolds of Euclidean spheres.

These results were generalized in 1969 to constant mean curvature (CMC) hyper-
surfaces in space forms by Nomizu and Smyth [33], and then by Erbacher [13] and
Smyth [40] to the evenmore general case of submanifoldswith parallelmean curvature
vector field (PMC) in space forms.

In 1977, Cheng and Yau [10] proved a general Simons type formula for Codazzi
tensors, i.e., symmetric (1, 1)-tensors S on an m-dimensional Riemannian manifold
M satisfying the classical Codazzi equation (∇X S)Y = (∇Y S)X :

1

2
�|S|2 = −|∇S|2 − 〈S,Hess(trace S)〉 − 1

2

m∑

i, j=1

Ri ji j (λi − λ j )
2, (1.1)

where λi are the eigenvalues of S and Ri jkl are the components of the Riemannian
curvature of M . Taking S = A, this equation recovers Nomizu and Smyth’s result as
well as Simons’ after rewriting the last term.

However, when S fails to satisfy the Codazzi condition, Formula (1.1) ceases to
work. For this case, a valuable tool is a non-linear Bochner type formula in a 1993
paper by Mok et al. [27]. More details on this formula can be found in Sect. 4 where
this technique is applied to study the geometry of biharmonic and biconservative
hypersurfaces in space forms, especially in the Euclidean sphere. For compact CMC
hypersurfaces in space forms this formula again leads to the Nomizu–Smyth equation
of [33], while, when working with biharmonic, or, more generally, biconservative
surfaces in a Riemannian manifold, and a non-Codazzi tensor, one recovers Theorem
6 in Ref. [23].

A biharmonic map φ : M → N between two Riemannian manifolds is a critical
point of the bienergy functional

E2 : C∞(M, N ) → R, E2(φ) = 1

2

∫

M
|τ(φ)|2 dv,

whereM is compact and τ(φ) = trace∇dφ is the tension field ofφ. The corresponding
Euler–Lagrange equation, also known as the biharmonic equation, was obtained by
Jiang [20] in 1986:

τ2(φ) = −�τ(φ) − trace RN (dφ, τ(φ))dφ = 0, (1.2)

where τ2(φ) is the bitension field of φ, � = − trace(∇φ)2 = − trace(∇φ∇φ − ∇φ
∇)

is the rough Laplacian defined on sections of φ−1(T N ), and RN is the curvature
tensor of T N , given by RN (X ,Y )Z = [∇̄X , ∇̄Y ]Z − ∇̄[X ,Y ]Z . Here, ∇φ denotes the
pull-back connection on φ−1(T N ), while∇ and ∇̄ are the Levi-Civita connections on
T M and T N , respectively. Henceforth, for the sake of simplicity, we will denote all
connections on various fiber bundles by∇, the difference being clear from the context.
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1734 D. Fetcu et al.

Since any harmonic map is biharmonic, the purpose is to study biharmonic non-
harmonic maps, which are called proper biharmonic. A biharmonic submanifold of N
is a biharmonic isometric immersion φ : M → N .

Biharmonic maps were introduced in 1964 by Eells and Sampson in Ref. [12] as a
generalization of harmonicmaps and nowadays this topic represents awell-established
and dynamic research direction in differential geometry. In Euclidean spaces, Chen
[8] proposed an alternative definition of biharmonic submanifolds. Chen’s definition
coincides with the previous one when the ambient space is En and he conjectured that
there are no proper biharmonic submanifolds in E

n .
When the ambient space has (constant) non-positive sectional curvature all known

results have suggested a similar conjecture called the generalized Chen conjecture (see
[5,25,31,35]).

A special attention has been paid to biharmonic submanifolds in spheres and articles
like [3,5,6,9] led to two conjectures.

Conjecture 1 [3] Proper biharmonic submanifolds of Sn are CMC.

Conjecture 2 [3] The only proper biharmonic hypersurfaces of Sm+1 are (open parts
of) either hyperspheres S

m(1/
√
2) or standard products of spheres S

m1(1/
√
2) ×

S
m2(1/

√
2), m1 + m2 = m, m1 �= m2.

The second conjecture remains difficult to prove even assuming that the hypersur-
face is also CMC and compact. This problem actually has a broader interest as any
CMC hypersurface Mm in S

m+1 is biharmonic if and only if the squared norm of its
shape operator is constant and equal tom (see [3,34]). Therefore, CMC hypersurfaces
with |A|2 = m are biharmonic and their classification is a natural goal after Chern et
al.’s classification of minimal hypersurfaces with |A|2 = m in Ref. [11] (see also [1]).

The most recent results to support these two conjectures were obtained by Maeta
and Luo in Ref. [24] and by Maeta and Ou in Ref. [26]. In this last article, the authors
prove that any compact proper biharmonic hypersurface of the Euclidean sphere with
constant scalar curvature has constant mean curvature. However, they cannot conclude
that it is necessarily on the list of Conjecture 2.

Fix a map φ : M → (N , h), where M is compact and h is a Riemannian metric on
N , and think of E2 as a functional on the set of all Riemannian metrics on M . Critical
points of this new functional are characterized by the vanishing of the stress-energy
tensor S2, and this tensor satisfies

div S2 = −〈τ2(φ), dφ〉.

A submanifold M in N with div S2 = 0 is called biconservative and it is characterized
by the fact that the tangent part of its bitension field vanishes. It follows easily that
any PMC submanifold in a space form is biconservative.

This paper deals mainly with Conjecture 2 under additional geometric hypotheses.
For example, beside being biharmonic or biconservative, some of our hypersurfaces
will have the same curvature properties as those studied by Cheng and Yau [10] in a
different context. It is worth mentioning that there are currently no results concerning
Conjecture 2 without pretty strong additional geometric hypotheses. We first present a
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Bochner–Simons Formulas 1735

general collection of known (with one new) results on biharmonic and biconservative
submanifolds and on the stress-energy tensor of the bienergy. In Sect. 3, we compute
the Laplacian of the squared norm of the tensor S2 for any hypersurface in a real space
form and deduce a classification result for compact biconservative hypersurfaces with
constant scalar curvature and non-negative sectional curvature (Theorem 3.9). It turns
out however that this situation is less rigid than the biharmonic case as we find more
examples than in Conjecture 2. Then, we give a positive answer to this conjecture,
with additional assumptions on the scalar and sectional curvatures (Corollary 3.12).
In the fourth section, we obtain a new general integral formula for tensors, apply
it to S2, and show that compact biconservative submanifolds with parallel normal-
ized mean curvature vector field (PNMC), dimension less than or equal to ten, and
non-negative sectional curvature in space forms must be PMC (Theorem 4.6). As a
consequence, for hypersurfaces with dimension less than or equal to ten, we obtain a
similar result to Corollary 3.12 replacing the constant scalar curvature condition with
nowhere vanishing mean curvature (Corollary 4.9).
ConventionsWe work in the smooth category and assume manifolds to be connected
and without boundary. On compact Riemannian manifolds, we consider the canonical
Riemannian measure.

2 Preliminaries

In this section, we briefly recall basic results on biharmonic and biconservative sub-
manifolds and a general formula for the Laplacian of the biharmonic stress-energy
tensor.

The stress-energy tensor associated to a variational problem, first described by
Hilbert in Ref. [17], is a symmetric 2-covariant or (1, 1)-tensor S conservative, i.e.,
divergence-free at critical points.

To study harmonic maps, Baird and Eells [2] (cf. also [38]) introduced the tensor

S = 1

2
|dφ|2g − φ∗h

for maps φ : (M, g) → (N , h) and showed that S satisfies the equation

div S = −〈τ(φ), dφ〉,

hence div S vanisheswhenφ is harmonic. For any isometric immersion, τ(φ) is normal
and therefore div S = 0.

The stress-energy tensor S2 of the bienergy, introduced in [20] and studied in Ref.
[7,14,15,22,28,29,32], is

S2(X ,Y ) =1

2
|τ(φ)|2〈X ,Y 〉 + 〈dφ,∇τ(φ)〉〈X ,Y 〉

− 〈dφ(X),∇Y τ(φ)〉 − 〈dφ(Y ),∇Xτ(φ)〉
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1736 D. Fetcu et al.

and duly satisfies

div S2 = −〈τ2(φ), dφ〉.

For isometric immersions, (div S2)� = −τ2(φ)
 and, unlike the harmonic case, div S2
does not necessarily vanish.

Definition 2.1 A submanifold φ : M → N of a Riemannian manifold N is called
biconservative if div S2 = 0, i.e., τ2(φ)
 = 0.

For hypersurfaces of space forms, the biharmonic stress-energy tensor is parallel
whenever the shape operator is so.

Proposition 2.2 Let φ : Mm → Nm+1(c) be a non-minimal hypersurface. Then
∇S2 = 0 if and only if ∇A = 0.

Proof First assume that ∇A = 0. It then easily follows that the mean curvature func-
tion f = (1/m) trace A is a non-zero constant. Let H = f η = (1/m)τ (φ) be the
mean curvature vector field of M , where η is the unit normal vector field. Since for
a hypersurface S2 = −(m2/2) f 2 I + 2m f A, one obtains ∇S2 = 0, where I denotes
the identity operator on T M .

Assumenow that∇S2 = 0.Denote byW the set of all points ofM where the number
of distinct principal curvatures is locally constant. This subset is open and dense in M .
On each connected component ofW , which is also open in M , the principal curvatures
are smooth functions and the shape operator A is (locally) diagonalizable.

We will work on such a connected componentW0 ofW and prove that f is constant
on W0. As W is open and dense this property will then hold throughout M , and
combined with ∇S2 = 0 yields ∇A = 0.

Assume that grad f does not vanish identically on W0. Take a connected and open
subset U of W0 where grad f �= 0 and f �= 0 at each point in U . Consider an
orthonormal frame field {Ei } on U such that AEi = λi Ei and, from the symmetry of
∇S2 and ∇A, we have

−m2 f (Ei f )E j + 2m(Ei f )λ j E j

= −m2 f (E j f )Ei + 2m(E j f )λi Ei , ∀i, j ∈ {1, . . . ,m}.

For i �= j , it follows that

(2λ j − m f )Ei f = 0,

so

(λi − λ j )(2λ j − m f )Ei f = 0, ∀i, j ∈ {1, . . . ,m}. (2.1)

Since grad f �= 0, we can assume that there exists i0 ∈ {1, . . . ,m} such that
Ei0 f �= 0 at any point in U . From (2.1), one obtains, on U ,

2λi0λ j − mλi0 f − 2λ2j + mλ j f = 0, ∀ j ∈ {1, . . . ,m}
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Bochner–Simons Formulas 1737

and, therefore,

(2 − m)m f λi0 − 2|A|2 + m2 f 2 = 0. (2.2)

The squared norms of A and S2 are related by

16m2 f 2|A|2 = 4|S2|2 − m4 f 4(m − 8),

and Eq. (2.2) shows that

(2 − m)m f λi0 = 4|S2|2 − m5 f 4

8m2 f 2
.

If m > 2, the above equation can be re-written as

2m f λi0 = 4|S2|2 − m5 f 4

4(2 − m)m2 f 2
. (2.3)

Since ∇S2 = 0, we have that |S2| is constant on M and the eigenvalues of S2 are also
constant functions on M :

−m2

2
f 2 + 2m f λi = ci = constant .

It follows, using (2.3), that on U , we have

−m2

2
f 2 + 4|S2|2 − m5 f 4

4(2 − m)m2 f 2
= ci0 ,

which gives a polynomial equation in f 2 with constant coefficients forcing f to be
constant on U and contradicting Ei0 f �= 0 at any point of U .

Ifm = 2, Eq. (2.2) gives |A|2 = 2 f 2, which leads to λ1 = λ2 onU . Therefore,U is
umbilical in N and f is constant onU . As we have already seen, this is a contradiction.

�
Remark 2.3 The case when m �= 4 had already been proved, by a different method, in
Ref. [22].

Remark 2.4 Hypersurfaces of space forms with∇A = 0 were studied in [21,36]. They
only admit one or two distinct principal curvatures which must be constant. If they
have two distinct principal curvatures they are intrinsically isometric to the product of
two space forms and, using either the Moore Lemma in Ref. [30] or the Fundamental
Theorem of hypersurfaces in space forms, one obtains a complete classification.

The basic characterization of hypersurfaces in space forms in terms of S2 is given
by the following proposition.
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1738 D. Fetcu et al.

Proposition 2.5 [22] Let φ : Mm → Nm+1(c) be a hypersurface in a space form N
and S2 its biharmonic stress-energy tensor.

(1) If m �= 4, then S2 = 0 if and only if M is minimal;
(2) If m = 4, then S2 = 0 if and only if M is either minimal or umbilical;
(3) S2 = a〈, 〉, with a �= 0, if and only if m �= 4 and M is umbilical and non-minimal.

Essential to further computations are the following properties of the shape operator
A.

Lemma 2.6 Let φ : Mm → Nm+1(c) be a hypersurface in a space form with the
shape operator A. Then

(1) A is symmetric;
(2) ∇A is symmetric;
(3) 〈(∇A)(·, ·), ·〉 is totally symmetric;
(4) div A = trace∇A = m grad f .

The next result gives a general expression of the Laplacian of the biharmonic stress-
energy tensor and will be used to derive a Simons type equation for hypersurfaces of
space forms.

Theorem 2.7 [23] Let φ : M → N a smooth map between two Riemannianmanifolds.
Then the (rough) Laplacian of S2 is the symmetric (0, 2) tensor

(�S2)(X ,Y )

=
{
〈�τ(φ), τ (φ)〉 − 2|∇τ(φ)|2 − 2

∑
〈R(Xi , X j )dφ(Xi ),∇X j τ(φ)〉

− 2〈dφ(Ricci(·)),∇(·)τ (φ)〉 − 2〈∇dφ,∇2τ(φ)〉 + 〈dφ,∇(�τ(φ))〉
− 〈∇(trace RN (dφ(·), τ (φ))dφ(·)), dφ〉
− 〈trace RN (dφ(·), τ (φ))dφ(·), τ (φ)〉

}
〈X ,Y 〉

+ 2〈∇Xτ(φ),∇Y τ(φ)〉 +
∑

〈R(Xi , X)dφ(Xi ),∇Y τ(φ)〉
+

∑
〈R(Xi ,Y )dφ(Xi ),∇Xτ(φ)〉

+ 〈dφ(Ricci(X)),∇Y τ(φ)〉 + 〈dφ(Ricci(Y )),∇Xτ(φ)〉
+ 2

∑
〈∇dφ(Xi , X), (∇2τ(φ))(Xi ,Y )〉

+ 2
∑

〈∇dφ(Xi ,Y ), (∇2τ(φ))(Xi , X)〉
− 〈dφ(X),∇Y (�τ(φ))〉 − 〈dφ(Y ),∇X (�τ(φ))〉
+

∑
〈dφ(X), R(Xi ,Y )∇Xi τ(φ)〉

+
∑

〈dφ(Y ), R(Xi , X)∇Xi τ(φ)〉
+

∑
〈dφ(X), (∇R)(Xi , Xi ,Y , τ (φ)) + R(Xi ,Y )∇Xi τ(φ)〉
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Bochner–Simons Formulas 1739

+
∑

〈dφ(Y ), (∇R)(Xi , Xi , X , τ (φ)) + R(Xi , X)∇Xi τ(φ)〉
+ 〈dφ(X),∇Ricci(Y )τ (φ)〉 + 〈dφ(Y ),∇Ricci(X)τ (φ)〉, (2.4)

where {Xi } is a local orthonormal frame field.
Remark 2.8 In Eq. (2.4), we have

(∇2τ(φ))(X ,Y ) = ∇X∇Y τ(φ) − ∇∇XY τ(φ),

while R is the curvature tensor in φ−1(T N ) and

(∇R)(X ,Y , Z , σ ) = (∇X R)(Y , Z , σ )

= ∇X R(Y , Z)σ −R(∇XY , Z)σ − R(Y ,∇X Z)σ − R(Y , Z)∇Xσ.

Here, while RN denotes the curvature tensor on T N , for the curvature tensors on
φ−1(T N ) and T M we use the same notations, the difference between them being
made by the arguments.

Recall that the decomposition in normal and tangent parts of the biharmonic equa-
tion τ2(φ) = 0 for a hypersurface Mm in Nm+1 yields

� f + f |A|2 − f RicciN (η, η) = 0

and

2A(grad f ) + m f grad f − 2 f (RicciN (η))
 = 0,

where (RicciN (η))
 is the tangent component of the Ricci curvature of N in the
direction of η. It is easy to see that while any CMC hypersurface M in a space form
Nm+1(c) is biconservative, M is proper biharmonic if and only if |A|2 = cm, hence
c must be positive.

3 A Simons Type Formula for Hypersurfaces and Applications

In Ref. [26], assuming only compactness and constant scalar curvature and using the
Weitzenböck formula for the differential d f of the mean curvature function, proper
biharmonic hypersurfaces are proved to be CMC. Using a different approach, we work
with tensors to find the best tensorial formula possible to answer Conjecture 2.

The Laplacian of the squared norm of the biharmonic stress-energy tensor of
an immersed hypersurface can be computed and put to use to prove some rigidity
results.

Proposition 3.1 Let φ : Mm → Nm+1(c) be a hypersurface in a space form. We
have
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1

2
�|S2|2 = − |∇S2|2 + 4cm4 f 4 − 4m3 f 3(trace A3) − 4m2 f 2|A|2(cm − |A|2)

+ m4(m − 16) f 2| grad f |2 + 4m2|A|2| grad f |2 + 2m2|A|2� f 2

+ 4m2 f 〈grad s, grad f 〉 − 8m2 div( f Ricci(grad f ))

+ m5

8
� f 4 − 4cm2(m − 1)� f 2 − 10m2 f 〈τ


2 (φ), grad f 〉

− 4m2 f 2 div
(
τ

2 (φ)

)
− 2

∣∣∣τ

2 (φ)

∣∣∣
2 + 4m f 〈∇τ


2 (φ), A〉.

Proof This is just an application of Formula (2.4) of�S2 for an immersed hypersurface
Mm in a space form N (c). For the sake of simplicity, we consider a point p ∈ M and
a geodesic frame field around it, and compute all terms at p. First, since τ(φ) = mH ,
we have

〈�τ(φ), τ (φ)〉 = m2〈�H , H〉

and

−2|∇τ(φ)|2 = −2m2|∇H |2 = −2m2
∑

|∇Xi H |2

= −2m2
∑

| − f AXi + (Xi f )η|2
= −2m2 f 2|A|2 − 2m2| grad f |2.

Next, using the expression of the curvature of a space form

RN (X ,Y )Z = c{〈Y , Z〉X − 〈X , Z〉Y }, (3.1)

one obtains

−2
∑

〈R(Xi , X j )dφ(Xi ),∇X j τ(φ)〉 = − 2
∑

〈RN (dφ(Xi ), dφ(X j ))dφ(Xi ),

− m f AX j + m∇⊥
X j

H〉
=2cm f (1 − m)(trace A) = 2cm2 f 2 − 2cm3 f 2.

In the same way, we get

−2〈dφ(Ricci(·)),∇(·)τ (φ)〉 = 2m f 〈Ricci, A〉

and then, since Ricci = c(m − 1)I + m f A − A2,

−2〈dφ(Ricci(·)),∇(·)τ (φ)〉 = 2c(m − 1)m2 f 2 + 2m2 f 2|A|2 − 2m f (trace A3).

Since in the case of immersions we have (∇dφ)(Xi , X j ) = B(Xi , X j ), a direct
computation using the Weingarten equation shows that
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Bochner–Simons Formulas 1741

−2〈∇dφ,∇2τ(φ)〉 = 2m f (trace A3) − 2m〈A,Hess f 〉.

Furthermore, for any hypersurface, we have

〈A,Hess f 〉 =
∑

〈AXi ,∇Xi grad f 〉 =
∑

〈Xi , A(∇Xi grad f )〉
=

∑
〈Xi ,∇Xi A(grad f ) − (∇Xi A)(grad f )〉

= div(A(grad f )) − m| grad f |2

and, therefore,

−2〈∇dφ,∇2τ(φ)〉 = 2m f (trace A3) − 2m div(A(grad f )) + 2m2| grad f |2.

The next term in the formula of �S2 is

〈dφ,∇(�τ(φ))〉 = m〈dφ,∇(�H)〉 = m
∑

〈dφ(Xi ),∇Xi (�H)〉
= m

∑
{Xi 〈dφ(Xi ),�H〉 − 〈(∇dφ)(Xi , Xi ),�H〉}

= − div τ

2 (φ) − m2〈H ,�H〉.

Again using Eq. (3.1), one obtains

− 〈∇(trace RN (dφ(·), τ (φ))dφ(·)), dφ〉
= cm2〈∇H , dφ(·)〉 = cm2

∑
〈− f AXi , dφ(Xi )〉

= −cm3 f 2

and

−〈trace RN (dφ(·), τ (φ))dφ(·)), τ (φ)〉 = cm3 f 2.

The expressions of the following terms can be obtained by some direct computation
and also using Lemma 2.6, in the same way as above,

2〈∇Xτ(φ),∇Y τ(φ)〉 = 2m2 f 2〈AX , AY 〉 + 2m2(X f )(Y f ),
∑

〈R(Xi , X)dφ(Xi ),∇Y τ(φ)〉 =
∑

〈R(Xi , Y )dφ(Xi ),∇Xτ(φ)〉
= cm(m − 1) f 〈AX , Y 〉,

〈dφ(Ricci(X)),∇Y τ(φ)〉 = −m f 〈Ricci(X), AY 〉,
2

∑
〈∇dφ(Xi , X), (∇2τ(φ))(Xi , Y )〉 = −2m f 〈A2Y , AX〉 + 2m(Hess f )(AX , Y ),

2
∑

〈∇dφ(Xi , Y ), (∇2τ(φ))(Xi , X)〉 = −2m f 〈A2X , AY 〉 + 2m(Hess f )(AY , X),
∑

〈dφ(X), R(Xi , Y )∇Xi τ(φ)〉 = −cm f 〈AX , Y 〉 + cm2 f 2〈X , Y 〉,
∑

〈dφ(Y ), R(Xi , X)∇Xi τ(φ)〉 = −cm f 〈AX , Y 〉 + cm2 f 2〈X , Y 〉,
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1742 D. Fetcu et al.

〈dφ(X), (∇R)(Xi , Xi , Y , τ (φ)) + R(Xi , Y )∇Xi τ(φ)〉 = 0,

〈dφ(Y ), (∇R)(Xi , Xi , X , τ (φ)) + R(Xi , X)∇Xi τ(φ)〉 = 0,

〈dφ(X),∇Ricci(Y )τ (φ)〉 = −m f 〈AX ,Ricci(Y )〉,
〈dφ(Y ),∇Ricci(X)τ (φ)〉 = −m f 〈AY ,Ricci(X)〉.

Finally, for the remaining terms, we have

−〈dφ(X),∇Y (�τ(φ))〉 = −m〈dφ(X),∇Y (�H)〉
= −mY (〈dφ(X),�H〉 + m〈∇Y dφ(X),�H〉
= Y (〈τ


2 (φ), X〉) + m〈B(X ,Y ),�H〉 − 〈∇XY , τ

2 (φ)〉

and

−〈dφ(Y ),∇X (�τ(φ))〉 = X(〈τ

2 (φ),Y 〉) + m〈B(X ,Y ),�H〉 − 〈∇Y X , τ


2 (φ)〉.

Assembling all these terms and taking into account that

τ

2 (φ) = −2mA(grad f ) − m2

2
grad f 2,

one obtains

(�S2)(X ,Y ) =
(
2cm2 f 2 − m2

2
� f 2

)
〈X ,Y 〉

+ 2m2 f 2〈AX , AY 〉 + 2m2(X f )(Y f ) + 2cm(m − 2) f 〈AX ,Y 〉
− 2m f 〈Ricci(X), AY 〉 − 2m f 〈Ricci(Y ), AX〉 − 4m f 〈A2X , AY 〉
+ 2m(Hess f )(AX ,Y ) + 2m(Hess f )(AY , X)

+ 〈∇Y τ

2 (φ), X〉 + 〈∇Xτ


2 (φ),Y 〉 + 2m〈B(X ,Y ),�H〉.

Now, using that, in the case of hypersurfaces, S2 = −(m2 f 2/2)I +2m f A and also

〈Hess f , A2〉 =〈Hess f , c(m − 1)I + m f A − Ricci〉

= − c(m − 1)� f − f

2
div

(
τ

2 (φ)

)
+ m2 f

4
� f 2

− m2 f | grad f |2 − div(Ricci(grad f )) + 1

2
〈grad s, grad f 〉

and

〈H ,�H〉 = 1

2
� f 2 + f 2|A|2 + | grad f |2,

a long but straightforward computation leads to the conclusion. �
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Remark 3.2 Let Mm be a hypersurface in a space form Nm+1(c) and consider the
operator T on M given by

T (X) = − trace(RA)(·, X , ·),

where

RA(X ,Y , Z) = R(X ,Y )AZ − A(R(X ,Y )Z), ∀X ,Y , Z ∈ C(T M).

At a point p ∈ M , consider an orthonormal basis {ei } of TpM such that Aei = λi ei .
Using the operator T we can write (see [33])

4cm4 f 4 − 4m3 f 3(trace A3) − 4m2 f 2|A|2
(
cm − |A|2

)

= 4m2 f 2〈T , A〉
= −2m2 f 2

∑
(λi − λ j )

2Ri ji j . (3.2)

The next result, which is obtained by a straightforward computation, comes to
further improve the above formula of the Laplacian of |S2|2.
Lemma 3.3 Let Mm be a hypersurface in a space form Nm+1(c) and AH its shape
operator in the direction of H, i.e., AH = f A. Then

|∇S2|2 = (m − 8)m4 f 2| grad f |2 + 4m2|∇AH |2

and, furthermore,

|∇S2|2 =(m − 8)m4 f 2| grad f |2 + 4m2|A|2| grad f |2 + 4m2 f 2|∇A|2

+ 2m2 div
(
|A|2 grad f 2

)
+ 2m2|A|2� f 2.

From Proposition 3.1 and the second equation in Lemma 3.3, we obtain a further
formula for the Laplacian of |S2|2.
Theorem 3.4 Let φ : Mm → Nm+1(c) be a hypersurface in a space form. Then

1

2
�|S2|2 =4cm4 f 4 − 4m3 f 3(trace A3) − 4m2 f 2|A|2(cm − |A|2)

− 8m4 f 2| grad f |2 − 4m2 f 2|∇A|2
+ 4m2 f 〈grad s, grad f 〉
− 8m2 div( f Ricci(grad f )) − 2m2 div

(
|A|2 grad f 2

)

+ m5

8
� f 4 − 4cm2(m − 1)� f 2 − 10m2 f 〈τ


2 (φ), grad f 〉

− 4m2 f 2 div
(
τ

2 (φ)

)
− 2

∣∣∣τ

2 (φ)

∣∣∣
2 + 4m f 〈∇τ


2 (φ), A〉. (3.3)
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Remark 3.5 RewritingEq. (3.3) in terms of the shape operator A yields a generalization
of the well-known formula for CMC hypersurfaces in Ref. [33].

Theorem 3.4 leads to the next two results.

Theorem 3.6 Let φ : Mm → Nm+1(c) be a constant scalar curvature biconservative
hypersurface in a space form. Then

3m2

2
� f 4 = 4 f 2

{
cm2 f 2 − m f (trace A3) − |A|2(cm − |A|2)

− 2m2| grad f |2 − |∇A|2}. (3.4)

Corollary 3.7 Letφ : Mm → S
m+1 be a biharmonic hypersurfacewith constant scalar

curvature. Then the following system holds

⎧
⎪⎨

⎪⎩

3m2

2 � f 4 = 4 f 2
{
m2 f 2 − m f (trace A3) − |A|2(m − |A|2)

−2m2| grad f |2 − |∇A|2}
� f = f (m − |A|2).

(3.5)

Remark 3.8 Since � f 4 = 4 f 3� f − 12 f 2| grad f |2, a consequence of the last corol-
lary is that a biharmonic hypersurface in the Euclidean sphere with constant scalar
curvature satisfies

⎧
⎪⎨

⎪⎩

3m2

2 � f 4 = 4 f 2
{
m2 f 2 − m f (trace A3) − |A|2(m − |A|2)

−2m2| grad f |2 − |∇A|2}
� f 4 = 4 f 4(m − |A|2) − 12 f 2| grad f |2.

The next rigidity result is a direct application of the Simons type formula (3.4).

Theorem 3.9 Let φ : Mm → Nm+1(c) be a compact biconservative hypersurface in
a space form Nm+1(c), with c ∈ {−1, 0, 1}. If M is not minimal, has constant scalar
curvature, and RiemM ≥ 0, then M is either

(1) S
m(r), r > 0, if c ∈ {−1, 0}, i.e., N is either the hyperbolic space Hm+1 or the

Euclidean space Em+1; or
(2) S

m(r), r ∈ (0, 1), or the productSm1(r1)×S
m2(r2), where r21+r22 = 1, m1+m2 =

m, and r1 �= √
m1/m, if c = 1, i.e., N is the Euclidean sphere Sm+1.

Proof Integrating Eq. (3.4) over M , we have

∫

M

{
4cm2 f 4 − 4m f 3(trace A3) − 4 f 2|A|2

(
cm − |A|2

)}
=

∫

M

{
8m2 f 2| grad f |2

+ 4 f 2|∇A|2} ≥ 0.
(3.6)

Since RiemM ≥ 0, Eqs. (3.2) and (3.6) forces f 2| grad f |2 = 0 and ∇A = 0,
which implies T = 0. Therefore, M is a CMC hypersurface with ∇A = 0 and we
conclude using the classification of such hypersurfaces in [21,36,37]. �
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The following two results are partial answers to Conjecture 2.

Proposition 3.10 Let φ : Mm → S
m+1 be a compact proper biharmonic hypersurface

in the Euclidean sphere. If the scalar curvature s of M is constant, and

m f 2 ≤ f (trace A3),

then M is either Sm(1/
√
2) or the product Sm1(1/

√
2) × S

m2(1/
√
2), m1 +m2 = m,

m1 �= m2.

Proof Since M is a compact proper biharmonic hypersurface with constant scalar
curvature, we have, using Eq. (3.6) and [26, Theorem 2.3],

m
∫

M

{
m f 2 − f (trace A3)

}
=

∫

M
|∇A|2.

It follows that ∇A = 0 and we conclude using [5,19], where all proper biharmonic
hypersurfaces satisfying ∇A = 0 were determined. �
Remark 3.11 Consider the eigenvalue functions λi , i ∈ {1, . . . ,m}, of the shape oper-
ator A. The hypotheses of Proposition 3.10 can be re-written as

∑
λi = α,

∑
λ2i = m,

∑
λi ≤

∑
λ3i ,

where α ∈ (0,m] is a real constant. At a fixed point p ∈ M the above relations are
numerical and it is easy to find real numbers satisfying them with strict inequality.
However, Proposition 3.10 shows that such numbers cannot be the values at p of the
eigenvalue functions.

It is easy to see that, for a CMC biharmonic hypersurface of the Euclidean sphere,
RiemM ≥ 0 implies m f 2 ≤ f (trace A3).

Corollary 3.12 Let φ : Mm → S
m+1 be a compact proper biharmonic hypersurface

with constant scalar curvature and RiemM ≥ 0. Then M is either Sm(1/
√
2) or the

product Sm1(1/
√
2) × S

m2(1/
√
2), m1 + m2 = m, m1 �= m2.

Remark 3.13 Note that ifMm is a constant scalar curvature compact proper biharmonic
hypersurface in Sm+1, then we have the following constraint (see [34])

s ∈ (m(m − 2), 2m(m − 1)] .

In Ref. [10], compact hypersurfaces Mm in Sm+1 with RiemM ≥ 0 and constant scalar
curvature s ≥ m(m−1)were classified. Observe that the hypotheses of Corollary 3.12
do not necessarily imply that s ≥ m(m − 1), but only s > m(m − 2). Moreover, when
M is only biconservative, as in Theorem 3.9, there is no restriction on the scalar
curvature.

Remark 3.14 In the non-compact case, a constant scalar curvature proper biharmonic
hypersurface of the Euclidean sphere with at most six distinct principal curvatures
must be CMC [16].
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4 A Bochner Type Formula and Applications

Results on Conjecture 2 obtained in the previous section rely heavily on the constant
scalar curvature hypothesis. To circumvent this condition, we will prove a proposition
inspired by a non-linear Bochner type formula in Ref. [27], involving the 4-tensor
defined on a Riemannian manifold M :

Q(X ,Y , Z ,W ) = 〈Y , Z〉〈X ,W 〉 − 〈X , Z〉〈Y ,W 〉,

the map

σ24(X ,Y , Z ,W ) = (X ,W , Z ,Y ),

which permutes the second and fourth variables, and, given a symmetric (1, 1)-tensor
S, the 1-form θ defined as the contraction C((Q ◦ σ24) ⊗ g∗,∇S ⊗ S)), where g
denotes the metric tensor on M and g∗ is its dual.

The next formula cannot be considered of Simons type as we do not compute a
Laplacian and the shape operator is not involved. Moreover, this formula extends
beyond Codazzi tensors as it involves the antisymmetric part of ∇S.

Proposition 4.1 On a Riemannian manifold M with curvature tensor R we have

div θ = 〈T , S〉 + | div S|2 − |∇S|2 + 1

2
|W |2, (4.1)

where T (X) = − trace(RS)(·, X , ·) and W (X ,Y ) = (∇X S)Y − (∇Y S)X.

Proof Since we work with tensor products, it seems easier to use local coordinates.
This way one can write

(Q ◦ σ24) ⊗ g∗ = Qilk j g
abdxi ⊗ dx j ⊗ dxk ⊗ dxl ⊗ ∂

∂xa
⊗ ∂

∂xb
,

(∇S) ⊗ S = (∇αS
σ
β )Sδ

γ dx
α ⊗ dxβ ⊗ dxγ ⊗ ∂

∂xσ
⊗ ∂

∂xδ
,

and

(∇S) ⊗ (∇S) = (∇αS
σ
β )(∇γ S

δ
ω)dxα ⊗ dxβ ⊗ dxγ ⊗ dxω ⊗ ∂

∂xσ
⊗ ∂

∂xδ
.

Therefore, we have

θi = Q j kl
i (∇ j S

a
l )Sbk gab

and then

θ i = Q jikl(∇ j S
a
l )Sak .
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Using this expression and the commutation formula for ∇2S, a straightforward com-
putation leads to

div θ = Q jikl {(∇i∇ j S
a
l )Sak + (∇ j S

a
l )(∇i Sak)

}

= Q jikl {(∇i∇ j S
a
l )Sak + (∇ j S

a
l )(∇k Sia) + (∇ j S

a
l )(∇i Ska − ∇k Sia)

}

=1

2
Q jikl{(Sbl Ra

bi j − Sab R
b
li j )Sak + 2(∇ j S

a
l )(∇k Sia)

+ 2(∇ j S
a
l )(∇i Ska − ∇k Sia)}

=1

2
Q jikl{(RS(∂i , ∂ j , ∂l))

a Sak + 2(∇ j S
a
l )(∇k Sia)

+ 2(∇ j S
a
l )((∇i Ska − ∇k Sia))}.

Since Q jikl = gikg jl − g jkgil , we get that

div θ = 1

2
gikg jl(RS(∂i , ∂ j , ∂l))

a Sak + 1

2
〈T , S〉 + | div S|2 − |∇S|2 + 1

2
|W |2.

Next, let us consider a point p ∈ M and {e1, . . . , em} a basis at p such that Sei =
λi ei . Then one obtains

gikg jl(RS(∂i , ∂ j , ∂l))
a Sak =(g jl Sbl R

a
bi j − g jl Sab R

b
li j )S

i
a

=
∑

i,k

〈R(ek, ei )Sei − S(R(ek, ei )ei ), Sek〉

= − 1

2

∑

i,k

(λi − λk)
2R(ek, ei , ek, ei )

=〈T , S〉

and replacing in the expression of div θ we conclude. �

When M is a compact CMC hypersurface in a space form, taking A instead of S
in Eq. (4.1), one obtains a classic formula from [33]. If M is a biconservative surface,
taking S to be S2, we recover [23, Theorem 6] as well as [32, Proposition 5.1]. Still
with S equals S2, but for biharmonic hypersurfaces in Euclidean spheres, we get the
following result.

Proposition 4.2 Let φ : Mm → S
m+1 be a compact proper biharmonic hypersurface

with RiemM ≥ 0, such that

f 2|∇A|2 − |A|2| grad f |2 + |A|2(m − |A|2) f 2 ≥ 0.

Then M is either Sm(1/
√
2) or the product Sm1(1/

√
2)×S

m2(1/
√
2), m1 +m2 = m,

m1 �= m2.
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Proof Recall that the biharmonic stress-energy tensor S2 of a hypersurface is given
by

S2 = −m2 f 2

2
I + 2m f A,

and a straightforward computation leads to

|W |2 =
∑

i, j

|W (Xi , X j )|2 = 2m5 f 2| grad f |2 + 8m2|A|2| grad f |2 − 10m4 f 2| grad f |2

+ 8m3 f 〈grad f , A grad f 〉 − 8m2|A grad f |2,

where {Xi } is a geodesic frame around a point p ∈ M .
From this formula and Lemma 3.3 it follows that

1

2
|W |2 − |∇S2|2 = − 4m2 f 2|∇A|2 − 2m2〈grad f 2, grad |A|2〉

= − 4m2 f 2|∇A|2 − 2m2 div(|A|2 grad f 2) − 2m2|A|2� f 2

= − 4m2
{
f 2|∇A|2 − |A|2| grad f |2 + |A|2(m − |A|2) f 2

}

− 2m2 div(|A|2 grad f 2).

Next, by integrating (4.1) on M , from the hypotheses, it easily follows that

f 2|∇A|2 − |A|2| grad f |2 + |A|2(m − |A|2) f 2 = 0

and

∑

i, j

f 2(λi − λ j )
2(1 + λiλ j ) = 0, (4.2)

where λi are the principal curvatures of M .
Now, from (4.2) it follows that, on a connected component of U = {p ∈

M | f 2(p) > 0}, there are at most two distinct principal curvatures, not necessarily
constant, and then, since M is biharmonic, we have that grad f = 0, and so � f = 0,
on that component and therefore on U (see [3]). Let q ∈ M be a point such that
f (q) = 0. From the normal part of the biharmonic equation (1.2), it can be easily seen
that (� f )(q) = 0, which means that � f = 0 on M . Therefore, f is constant on M ,
i.e., M is a CMC hypersurface with at most two distinct principal curvatures, which
implies |A|2 = m and ∇A = 0. This concludes the proof. �

In Ref. [9] it is proved that, for a biharmonic hypersurface Mm in Sm+1, we have

|∇A|2 ≥ m2(m + 26)

4(m − 1)
| grad f |2. (4.3)
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Using this inequality, one obtains the following corollary of Proposition 4.2.

Corollary 4.3 Let φ : Mm → S
m+1 be a compact proper biharmonic hypersurface

with RiemM ≥ 0, such that

(
m2(m + 26)

4(m − 1)
f 2 − |A|2

)
| grad f |2 + |A|2(m − |A|2) f 2 ≥ 0.

Then M is either Sm(1/
√
2) or the product Sm1(1/

√
2)×S

m2(1/
√
2), m1 +m2 = m,

m1 �= m2.

In this last part, we will use Eq. (4.1) to study biconservative submanifolds with
parallel normalized mean curvature vector field in space forms.

A non-minimal submanifold in a Riemannian manifold with the mean curvature
vector field parallel in the normal bundle is called a PMC submanifold.

Let φ : Mm → Nn be a submanifold with mean curvature vector field H such that
H �= 0 at any point in M . Henceforth, we will denote by h = |H | > 0 the mean
curvature of M and by η0 = H/|H | a unit normal vector field with the same direction
as H . If η0 is parallel in the normal bundle, i.e., ∇⊥η0 = 0, the submanifold M is said
to have parallel normalized mean curvature vector field and it is then called a PNMC
submanifold. It is easy to see that a PNMC submanifold is PMC if and only if it also
is CMC.

Now, let us denote A0 = Aη0 the shape operator of M in the direction η0. We have
the following straightforward properties of A0.

Lemma 4.4 Let φ : Mm → Nn(c) be a PNMC submanifold in a space form. Then,
the following hold:
(1) A0 is symmetric;
(2) ∇A0 is symmetric;
(3) 〈(∇A0)(·, ·), ·〉 is totally symmetric;
(4) trace A0 = mh;
(5) div A0 = trace(∇A0) = m grad h.

We will need the following lemma, that provides an inequality similar to (4.3), for
the last main result.

Lemma 4.5 Let φ : Mm → Nn(c) be a PNMC biconservative submanifold. Then

|∇A0|2 ≥ m2(m + 26)

4(m − 1)
| grad h|2. (4.4)

Proof Since M is biconservative, we have div S2 = 0, which is equivalent to

trace(∇AH ) = m

4
grad h2.
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We can rewrite this relation as follows. Consider a geodesic frame {Xi } around a point
p ∈ M . Then, at p, one obtains

∑

i

(∇(hA0))(Xi , Xi ) = m

4
grad h2

and then

∑

i

(
(Xih)A0 + h∇Xi A0

)
(Xi ) = m

4
grad h2,

that is

A0 grad h + h div A0 = m

4
grad h2.

From the last property in Lemma 4.4, it follows that

A0 grad h = −m

2
h grad h. (4.5)

Next, consider a point p0 ∈ M . If grad h vanishes at p0, Inequality (4.4) obviously
holds. Assume that (grad h)(p0) �= 0 and then grad h does not vanish throughout an
open neighborhood of p0. In this neighborhood, consider an orthonormal frame field
{E1 = grad h/| grad h|, E2, . . . , Em}. Then, from (4.5), we have

A0E1 = −m

2
hE1. (4.6)

Now, using Eq. (4.6) and the fact that A0 is symmetric, one obtains

〈(∇A0)(E1, E1), E1〉 =〈∇E1 A0E1 − A0(∇E1E1), E1〉
=

〈
−m

2
∇E1(hE1) − A0(∇E1E1), E1

〉

=
〈
−m

2
| grad h|E1 − m

2
h∇E1E1 − A0(∇E1E1), E1

〉

= − m

2
| grad h| (4.7)

and then, from the last property in Lemma 4.4, we have

m∑

i=2

〈(∇A0)(Ei , Ei ), E1〉 =
m∑

i=1

〈(∇A0)(Ei , Ei ), E1〉 − 〈(∇A0)(E1, E1), E1〉

=〈div A0, E1〉 + m

2
| grad h|

=3m

2
| grad h|. (4.8)
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Finally, using (4.7), (4.8), and the third property in Lemma 4.4, it follows that

|∇A0|2 =
m∑

i, j=1

|(∇A0)(Ei , E j )|2 =
m∑

i, j,k=1

〈(∇A0)(Ei , E j ), Ek〉2

≥〈(∇A0)(E1, E1), E1〉2 +
m∑

i=2

〈(∇A0)(E1, Ei ), Ei 〉2

+
m∑

i=2

〈(∇A0)(Ei , E1), Ei 〉2 +
m∑

i=2

〈(∇A0)(Ei , Ei ), E1〉2

=m2

4
| grad h|2 + 3

m∑

i=2

〈(∇A0)(Ei , Ei ), E1〉2

≥m2

4
| grad h|2 + 3

m − 1

(
m∑

i=2

〈(∇A0)(Ei , Ei ), E1〉
)2

=m2(m + 26)

4(m − 1)
| grad h|2

and we are finished. �
We are now ready to prove the main result of this section.

Theorem 4.6 Let φ : Mm → Nn(c) be a compact PNMC biconservative submanifold
in a space form with RiemM ≥ 0 and m ≤ 10. Then M is a PMC submanifold and
∇AH = 0.

Proof First take S = A0 in Proposition 4.1 and, since A0 is a Codazzi tensor, by
integrating over M and using Lemma 4.4, one obtains

∫

M

{
−〈T , A0〉 + |∇A0|2

}
= m2

∫

M
| grad h|2. (4.9)

Next, using Inequality (4.4), we can see that

∫

M
〈T , A0〉 ≥ 3m2(10 − m)

4(m − 1)

∫

M
| grad h|2. (4.10)

But 〈T , A0〉 = −(1/2)
∑

i, j (λi − λ j )
2R(ei , e j , ei , e j ) ≤ 0 at any point p ∈ M ,

where {e1, . . . , em} is a basis at p such that A0ei = λi ei , and then, from (4.10), it
follows that, if m ≤ 9, then grad h = 0, i.e., h is constant and 〈T , A0〉 = 0. Using
again (4.9) we have that ∇A0 = 0 and therefore ∇AH = 0.

When m = 10, we can see from (4.10) that 〈T , A0〉 = 0 and then, from (4.9), that

∫

M
|∇A0|2 = 100

∫

M
| grad h|2,
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which implies equality in (4.4).
Consider the open set U = {p ∈ M |(grad h)(p) �= 0} and an arbitrary point

p0 ∈ U . We will show that �h2 = 0 at p0, and therefore on U .
First, on an open neighborhood of p0, we consider an orthonormal frame field

{E1 = grad h/| grad h|, E2, . . . , E10} and, since A0E1 = −5hE1, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∇A0)(E1, E1) = −5| grad h|E1

(∇A0)(Ei , E j ) = 0, ∀i, j ∈ {2, . . . , 10}, i �= j

(∇A0)(E1, Ei ) = 5
3 | grad h|Ei , ∀i ∈ {2, . . . , 10}

(∇A0)(Ei , Ei ) = 5
3 | grad h|E1, ∀i ∈ {2, . . . , 10}.

(4.11)

From the commutation formula

(∇2A0)(X ,Y , Z) − (∇2A0)(Y , X , Z) = RA0(X ,Y , Z),

one obtains

10∑

i=1

{
(∇2A0)(Ei ,Y , Ei ) − (∇2A0)(Y , Ei , Ei )

}
= −T (Y ).

Since 〈T , A0〉 = 0, we have

10∑

i, j=1

{
〈(∇2A0)(Ei , E j , Ei ), A0E j 〉 − 〈(∇2A0)(E j , Ei , Ei ), A0E j 〉

}
= 0.

(4.12)

After some long but otherwise simple computations, using Eqs. (4.11) and A0E1 =
−5hE1, we get the expressions of (∇2A0)(E1, E1, E1), (∇2A0)(Ei , E1, Ei ), (∇2A0)

(E1, E j , E1), (∇2A0)(E j , E j , E j ), and (∇2A0)(Ei , E j , Ei ), with i, j �= 1 and i �=
j , and then

10∑

i, j=1

〈
(∇2A0)(Ei , E j , Ei ), A0E j

〉 = 50h(E1| grad h|) + 200

3
h(div E1)| grad h|

+ 10

3
| grad h|

10∑

i=2

〈∇Ei E1, A0Ei 〉

and

10∑

i, j=1

〈
(∇2A0)(E j , Ei , Ei ), A0E j

〉 = −50h(E1| grad h|) + 10| grad h|
10∑

i=2

〈∇Ei E1, A0Ei 〉.
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Replacing in Eq. (4.12), one obtains

15h(E1| grad h|) + 10h(div E1)| grad h| − | grad h|
10∑

i=2

〈∇Ei E1, A0Ei 〉 = 0.

(4.13)

We also have

10∑

i=2

〈∇Ei E1, A0Ei 〉 = −
10∑

i=2

〈E1, (∇A0)(Ei , Ei ) + A0(∇Ei Ei )〉

= − 〈E1, 15 grad h〉 −
10∑

i=2

〈A0E1,∇Ei Ei 〉

= − 15| grad h| − 5h
10∑

i=2

〈∇Ei E1, Ei 〉

= − 15| grad h| − 5h div E1

and Eq. (4.13) becomes

h(E1| grad h|) + h(div E1)| grad h| + | grad h|2 = 0. (4.14)

Now, we obtain E1| grad h| = (Hess h)(E1, E1) and

div E1 = − (Hess h)(E1, E1) + �h

| grad h|
and then, from (4.14), it follows that

−h�h + | grad h|2 = 0,

which is nothing but �h2 = 0.
Next, on int(M \U ) we have grad h = 0 and therefore �h2 = 0. By continuity, it

follows that �h2 = 0 throughout M , which means that h is constant, i.e., M is PMC.
This also implies that ∇A0 = 0 and, therefore, that ∇AH = 0, which concludes the
proof. �
Remark 4.7 The (compact) PMC submanifolds in N (c), c ∈ {0, 1}, with AH parallel
were classified in Refs. [40,41], and then such submanifolds which are also proper
biharmonic were described in [4, Theorem 3.16].

Corollary 4.8 Let φ : Mm → Nm+1(c) be a compact biconservative hypersurface in
a space form such that its mean curvature does not vanish at any point, RiemM ≥ 0,
and m ≤ 10. Then M is one of the hypersurfaces in Theorem 3.9.
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From the last corollary, we find another partial answer to Conjecture 2, which is a
weaker result than that of Chen [9].

Corollary 4.9 Let φ : Mm → S
m+1 be a compact proper biharmonic hypersurface

such that its mean curvature does not vanish at any point, RiemM ≥ 0, and m ≤ 10.
Then M is either Sm(1/

√
2) or the product Sm1(1/

√
2)×S

m2(1/
√
2), m1 +m2 = m,

m1 �= m2.

Open Problems

Our results concerning compact biconservative hypersurfaces in space forms satisfying
certain additional geometric conditions raise the following natural question.

Is any compact biconservative hypersurface in a space form CMC?
Another open problem is the following (possible) partial answer to Conjecture 2
The only non-minimal solutions to Eqs. (3.5) are the hypersurfaces given by Con-

jecture 2.

Acknowledgements Thanks are due to the referees for valuable comments and suggestions.

References

1. Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math.
Soc. 120, 1223–1229 (1994)

2. Baird, P., Eells, J.: A Conservation Law for Harmonic Maps, Geometry Symposium Utrecht 1980.
Lecture Notes in Mathematics, vol. 894, pp. 1–25. Springer, Berlin/New York (1981)
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