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Abstract
We survey the work of Elias M. Stein in the field of analysis on the Heisenberg group
and other nilpotent Lie groups, together with its applications to complex analysis in
several variables and partial differential equations.
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1 Introduction

A substantial part of Elias M. Stein’s research, beginning around 1970 and continuing
through the rest of his life, had to do with analysis on the Heisenberg group and more
general noncommutative nilpotent Lie groups, as well as analysis on other manifolds
for which such groups provide model cases and analytic tools. The purpose of this
article is to offer a brief survey of this work.

In order to keep the scope within reasonable bounds, I adopted two general princi-
ples. First, the central focus is on the Heisenberg group. The level of detail provided
for results in more general settings is, so to speak, a decreasing function of the dis-
tance from the Heisenberg group, dropping to zero when the connection with nilpotent
groups becomes negligible or nonexistent. Second, although many other people have
contributed to the research in this area, I do not discuss any papers of which Stein
is not the author or co-author. The only exceptions to this rule are a few citations of
papers that provide some essential background material for Stein’s work.
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6682 G. B. Folland

Stein and his collaborators frequently announced their results via notes in the
Bulletin of the American Mathematical Society or the Proceedings of the National
Academy of Sciences before publishing a more complete account elsewhere. In this
survey I have generally cited only the fully detailed papers, passing over the research
announcements except in a few cases where there is a reason for mentioning them
specifically.

2 Background

In this section we review some concepts, terminology, and notation that will be needed
for the rest of the paper.

Let g be a real Lie algebra. Its lower central series is the descending sequence
{g(k)} of ideals defined by g(1) = g and g(k) = [g, g(k−1)] for k > 1. g is nilpotent of
step k if g(k) �= {0} = g(k+1). We shall be interested in the following nested family of
subclasses within the class of nilpotent Lie algebras:

homogeneous ⊃ graded ⊃ stratified ⊃ H-type ⊃ Heisenberg.

Here are the definitions: A homogeneous Lie algebra is a nilpotent Lie algebra g
equipped with a one-parameter family {δr : r > 0} of automorphisms of the form
δr = r A (= exp(A log r)) where A is a diagonalizable linear transformation of g with
positive eigenvalues; we shall call the automorphisms in such a family dilations. A
nilpotent Lie algebra g equipped with a vector space decomposition g = ⊕

k≥1 Vk
(with all but finitely many Vk equal to {0}) such that [Vj , Vk] ⊂ Vj+k is called graded.
The canonical family of dilations on a graded Lie algebra is given by δr

( ∑
vk

) =
∑

rkvk for vk ∈ Vk . A graded Lie algebra g is stratified if V1 generates g as a Lie
algebra. An H-type (or Heisenberg-type) Lie algebra is a 2-step graded Lie algebra
g = V1⊕V2 such that (i) V2 is the center of g and (ii) for each nonzero linear functional
λ on V2 the bilinear form (X ,Y ) �→ λ([X ,Y ]) on V1 is nondegenerate. Finally, for
n ≥ 1 the Heisenberg algebra hn is the (2n + 1)-dimensional Lie algebra whose
underlying vector space is Rn × R

n × R and whose Lie bracket is given by

[
(p, q, s),

(
p′, q ′, s′)] = (

0, 0, p · q ′ − q · p′). (1)

This is clearly H-type, with V1 = R
n × R

n × {0} and V2 = {0} × {0} × R, and its
dilations are given by δr (p, q, s) = (rp, rq, r2s).

If g is any nilpotent Lie algebra, the exponential map is a diffeomorphism from g
onto the corresponding simply connected groupG, so wemay identifyG with g as sets
with the group law determined from the Lie algebra law by the Campbell–Hausdorff
formula, and the terminology introduced above for gwill be taken to apply also to G.1

In particular, when g is homogeneous, the dilations δr are also group automorphisms
of G. Lebesgue measure dx on g is a bi-invariant Haar measure on G, and the number

1 In the literature of sub-Riemannian geometry, stratified groups are commonly called Carnot groups.
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Q such that d(δr x) = r Q dx (namely, the sum of the eigenvalues of A when δr = r A)
is called the homogeneous dimension of g or G.

Note: All nilpotent Lie groups in the sequel will be assumed to be simply connected
without explicit specification.

The Heisenberg group Hn is the simply connected group corresponding to the
Heisenberg algebra hn . Since for 2-step nilpotent algebras the Campbell–Hausdorff
formula is simply (exp X)(exp Y ) = exp

(
X + Y + 1

2 [X ,Y ]), the group law on Hn is

(p, q, s)
(
p′, q ′, s′) = (

p + p′, q + q ′, s + s′ + 1
2 (p · q ′ − q · p′)

)
. (2)

For our purposes, however, it will be convenient to describe Hn in a slightly different
way. Namely, if we identify R

n × R
n × R with Cn × R via the map

(p, q, s) �→ (z, t) ≡ (q + i p, 4s),

one can easily check that the group law (2) becomes

(z, t)(z′, t ′) = (
z + z′, t + t ′ + 2Imz · z′). (3)

(Here and below, z · w = ∑
z jw j .) Henceforth we think of Hn as Cn × R endowed

with the group law (3).
The group Hn acts as a group of biholomorphic transformations ofCn+1, as follows.

For (z, t) ∈ Hn , we define T(z,t) : Cn+1 → C
n+1 by

T(z,t)(ω, ζ1, . . . , ζn) = (
ω + t + i |z|2 + 2i z · ζ, ζ1 + z1, . . . , ζn + zn

)
. (4)

The reader may easily verify that (i) the correspondence (z, t) �→ T(z,t) is a group
homomorphism; (ii) T(z,t) maps the domain

Dn+1 = {
(ω, ζ ) = (ω, ζ1, . . . , ζn) ∈ C

n+1 : Imω > |ζ |2} (5)

and its boundary2

bDn+1 = {
(ω, ζ ) : Imω = |ζ |2}

onto themselves; (iii) the map

(z, t) �→ T(z,t)(0, 0) = (t + i |z|2, z) (6)

is a bijection from Hn to bDn+1.

2 In complex geometry, boundaries of domains are denoted by b rather than ∂ to avoid confusion with the
holomorphic exterior derivative.
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6684 G. B. Folland

The domain Dn+1 is biholomorphically equivalent to the unit ball Bn+1 in C
n+1

via the “Cayley transform” C : Bn+1 → Dn+1 defined by

C(ω0, . . . , ωn) = 1

iω0 + 1
(ω0 + i, ω1, . . . , ωn). (7)

Thus Bn+1 and Dn+1 are the higher dimensional analogues of the unit disc B1 and
the upper half plane D1 in C

1, where the group “H0” is just R, acting by horizontal
translations. But the geometry for n > 0 is more complicated. On any smooth real
hypersurface M ⊂ C

n+1, the complexified tangent space at any point p splits into
the “holomorphic” and “antiholomorphic” spaces T1,0 and T0,1—that is, the spaces of
linear combinations of the ∂/∂z j ’s and the ∂/∂z j ’s, respectively, that are tangent to
M at p—together with an additional one-dimensional subspace. (In what follows we
shall call vectors in T1,0⊕T0,1 complex-tangential.)Whenwe identify bDn+1 with Hn

with coordinates (z, t) via (6), these subspaces become the spans of Z j (1 ≤ j ≤ n),
Z j (1 ≤ j ≤ n), and T , where

Z j = ∂

∂z j
+ i z j

∂

∂t
, Z j = ∂

∂z j
− i z j

∂

∂t
, T = ∂

∂t
. (8)

These are left-invariant vector fields on Hn , and their only nonzero commutators are
[Z j , Z j ] = −2iT (1 ≤ j ≤ n).

This noncommutativity is a reflection of a fundamental curvature property of Dn+1

known as strong pseudoconvexity, which is defined as the positive definiteness of a
certain Hermitian form known as the Levi form. Among several equivalent definitions
of the Levi form, the following one will be most relevant for our purposes. Suppose
� is an open set in C

n+1 with smooth boundary b�; let ι : b� → C
n+1 be the

inclusion map and let r be a defining function for �. (That is, r is a smooth real-
valued function onCn+1 such that dr �= 0 on b�, and � is the set where r < 0.) Then
τ = ι∗[(∂ − ∂)r ] is a one-form on b� that annihilates the complex-tangential space
at each point. The Levi form is the Hermitian form on T1,0-valued vector fields on b�
(defined up to a positive scalar-valued factor depending on the choice of r ) given by
L(V ,W ) = 〈τ, [V ,W ]〉; it measures how the complex-tangential space T1,0 ⊕ T0,1
fails to be closed under Lie brackets. (When � = Dn+1, with notation as in (5) we
take r = |ζ |2 − Imω; then it turns out that if V = ∑

a j Z j and W = ∑
b j Z j as in

(8), L(V ,W ) = 2
∑

a jb j .)

3 Complex Analysis and Differential Equations

Stein’s first contribution to analysis on nilpotent groups came in the late 1960s in
his joint work with Anthony Knapp, announced in [11] and presented in detail in
[12]. Suppose G is a homogeneous group of homogeneous dimension Q, and K is
a smooth function on G\{0} (0 = the origin in g = the identity element of G) that
is homogeneous of degree −Q and hence just on the edge of integrability at both
0 and infinity. Suppose also that K has “mean value zero,” or equivalently, that K
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The Heisenberg Group and Its Relatives in the Work of Elias M. Stein 6685

defines a distribution that is homogeneous of degree −Q as a distribution.3 The first
main theorem of [11] and [12] is that the operator S f = f ∗ K , initially defined for
f ∈ C∞

c (G), is bounded on L2(G). In the Abelian case (G = R
Q) this is easy, as the

Fourier transform of the distribution K is a bounded function, but non-commutative
convolutions necessitate an entirely different proof.

That proof represents the debut of the technique of almost orthogonal decompo-
sitions, which has become a standard tool in harmonic analysis. In more detail, one
writes K as a sum of pieces K j that are supported in compact subsets of G\{0} with
disjoint interiors and satisfy ‖K j‖1 ≤ C < ∞, in such a way that the corresponding
operators S j are “almost orthogonal” in a suitable sense and are uniformly bounded
on L2(G). One then invokes a theorem to the effect that whenever a sequence S j of
operators on a Hilbert space has these properties, the partial sums of the series

∑
S j

are uniformly bounded, and the series converges in the weak (and usually strong)
operator topology to a bounded operator. This theorem was proved independently by
Mischa Cotlar, but the elegant proof in [12] is the one now universally known.

The motivation for these results in [12] was the study of intertwining operators
for principal series representations of semisimple matrix groups. Indeed, if G is such
a group with Iwasawa decomposition K AN and dim(A) = 1, the action of A by
conjugation on N defines a family of dilations, and the intertwining operators can be
realized as convolution operators on N of the sort just described. But these noncom-
mutative singular integrals f �→ f ∗ K immediately started to take on a life of their
own. In particular, soon after the publication of [11], several people independently
realized that the Calderón–Zygmund theory—for which the standard reference is now
Stein’s classic book [39]—could be generalized to cover this situation and even more
general ones, so that these operators are bounded not only on L2(G) but on L p(G)

for 1 < p < ∞; moreover, the somewhat more elementary arguments that prove that
classical singular integrals preserve Hölder continuity also generalize (see Coifman–
Weiss [2] and Korányi–Vági [14]). Hence, the whole machinery of singular integral
operators on Euclidean space, with its manifold applications, was ripe to expand into
new areas where noncommutativity plays an essential role.

At around the same time, the study of boundary values of holomorphic functions on
domains in � ⊂ C

n+1 (or, more generally, in complex manifolds) was an active area
that attracted Stein’s attention. In [40] he showed that in this setting, the appropriate
analogue of the non-tangential convergence to boundary values that applies to holo-
morphic functions on domains inC (and for harmonic functions in higher dimensions)
is what he called “admissible convergence,” in which the complex-tangential direc-
tions along the boundary are weighted differently than the remaining real direction. He
continued this train of thought in the note [41], where he investigated some Lipschitz
classes on�with similar nonisotropic behavior on b� and showed that some recently
obtained integral formulas for solving ∂u = f on � (which become nonisotropic
singular integrals on b�) yield solutions in these classes.

These two lines of research joined together in a very fruitful way in the big paper
[5] that Stein and I wrote in 1972–1973 on the ∂b complex and the Heisenberg group.

3 More precisely, the mean-zero condition means that K acts on test functions by a principal-value integral,
〈K , φ〉 = p.v.

∫
Kφ, which satisfies 〈K , φ ◦ δr 〉 = 〈K , φ〉 for all r > 0.
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6686 G. B. Folland

Let us recall the setting: On any real manifold one has the exterior derivative d acting
on differential forms of various degrees to form the de Rham complex. On a complex
manifold one obtains the ∂ complex orDolbeault complex by replacing ∂/∂x j by ∂/∂z j
and dx j by dz j . Then, on the boundary b� of a domain � in a complex manifold, one
obtains the ∂b complex by throwing away the part of ∂ that is not tangent to b�. Just
as the Laplacian � = d∗d + dd∗ is used in the study of the de Rham complex, the
Kohn Laplacian

�b = ∂
∗
b∂b + ∂b∂

∗
b, (9)

first studied by Joseph Kohn [13], is an essential tool in the study of the ∂b complex.
Unlike �, �b is not elliptic, as it is genuinely second-order only in the complex-
tangential directions. However, Kohn showed that if � is strongly pseudoconvex and
0 < q < n where dimC(�) = n + 1, �b acting on q-forms satisfies L2 estimates that
are “half as strong” as elliptic estimates, and in particular it is hypoelliptic: that is, a
q-form u must be C∞ on any open set where �bu is C∞.

On the Heisenberg group Hn , identified with the boundary of the domain Dn+1 as
in (4) and (6), ∂b is simply given by

∂b

( ∑

J

f Jdz
J
)

=
∑

J

∑

j

(Z j f j )dz j ∧ dz J

(dz J denotes a wedge product of dz j ’s), and �b is given on q-forms by

�b

( ∑

|J |=q

f Jdz
J
)

=
∑

|J |=q

(Ln−2q f J )dz
J ,

where, for any α ∈ C,

Lα = −1

2

∑
(Z j Z j + Z j Z j ) + iαT . (10)

We therefore focus our attention on the operators Lα , which, like �b, are not elliptic.
The calculation that enables the analysis in [5] to proceed is that the function

φα(z, t) = (|z|2 − i t)−(n+α)/2(|z|2 + i t)−(n−α)/2

satisfies Lαφα = cαδ, where cα = 22−2nπn+1/�( 12 (n+α))�( 12 (n−α)) and δ is the
point mass at the origin. Thus, except in the “inadmissible” cases ±α = n, n+2, n+
4, . . . where cα = 0, c−1

α φα is a fundamental solution for Lα , so for any reasonable
f—say, continuous with compact support—the function u = f ∗ c−1

a φa satisfies
Lαu = f ; it follows easily that Lα is hypoelliptic.

But we can say more. Since φα is homogeneous of degree −2n with respect to the
dilations δr (z, t) = (r z, r2t), whereas the operators Z j , Z j , and T decrease degrees of
homogeneity by 1, 1, and 2, respectively, the distributions Z j Zkφα , Z j Zkφα , Z j Zkφα ,
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and Tφα are all homogeneous of degree −2n − 2, the homogeneous dimension of
Hn . They are therefore singular integral kernels in the sense discussed above, so the
convolution operators they define are bounded on L p for 1 < p < ∞. We therefore
obtain a sharp L p regularity theorem for the operators Lα that looks just like the
elliptic regularity theorem provided we replace “derivatives of order k” by “derivatives
of homogeneous degree k,” where the homogeneous degrees of Z j , Z j and T are 1, 1,
and 2, respectively. Towit, if α is admissible and Lα f has derivatives of homogeneous
degree ≤ k in L p on an open set U , then f has derivatives of homogeneous degrees
≤ k + 2 in L p on U . This improves the original results of Kohn [13] for �b in the
case p = 2 and is entirely new for other p. We also obtain sharp Lipschitz or Hölder
regularity for Lα by specifying moduli of continuity in terms of the homogeneous
“norm” |(z, t)| = (|z|4 + t2)1/4 instead of the Euclidean norm (|z|2 + t2)1/2.

These results give sharp regularity theorems for �b on q-forms on bDn+1 with
0 < q < n. Moreover, those theorems can be transferred to the boundary b� of
any smoothly bounded strongly pseudoconvex domain � by locally approximating
b� by the Heisenberg group in a sufficiently careful way. This procedure yields an
integral kernel K (x, y) on b� × b� that gives an approximate inverse or parametrix
for �b on q-forms on b� and qualitatively resembles the kernels c−1

α φα(y−1x) that
give the exact inverse ofLα on Hn . The sharp L p and Lipschitz estimates follow since
appropriate derivatives of K give singular integral kernels as before.

On q-forms with q = 0 or q = dimC(�)−1 (which correspond to the inadmissible
values α = ±n for the Heisenberg group), �b is not hypoelliptic. For 0-forms (i.e.,
functions) this is clear from the fact that �b annihilates functions u on b� that are
boundary values of holomorphic functions on � and hence satisfy ∂bu = 04; such
functions need not be smooth. Nonetheless, Peter Greiner, Kohn, and Stein [8] showed
that on theHeisenberg group themethods described above yield interesting results here
too.

First, by differentiating the equation Lαφα = cαδ with respect to α at α = n, one
finds that the function

ψ(z, t) = 2n−2�(n)

πn+1 (|z|2 − i t)−n log

( |z|2 − i t

|z|2 + i t

)

is a “relative fundamental solution” for Ln = �b in the following sense: denoting
by R the operator R f = f ∗ ψ and by P the orthogonal projection of L2(Hn) onto
N = { f ∈ L2(Hn) : ∂b f = 0} (the space of boundary values of functions in
H2(Dn+1)), one has

R�b = �bR = I − P. (11)

Since P is given by convolution with the so-called Cauchy–Szegő kernel, which is
another singular integral kernel of the sort discussed above, this yields regularity for
the solution of �bu = f in N⊥ when f itself is in N⊥. It also yields a striking local
solvability result: if f ∈ L2(Hn), the equation �bu = f has a solution on an open

4 The second term in (9) is absent when q = 0.
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6688 G. B. Folland

set U if and only if P f is real-analytic on U . As a corollary, in the case n = 1 where
�b = Z Z with Z = ∂/∂z + i z∂/∂t , the equation Zu = f (which, up to a simple
change of variable, is Hans Lewy’s original example of a non-locally-solvable linear
differential equation [15]) is solvable on U if and only if P f is real-analytic on U .

There is onemore chapter to this story. It follows rather easily from (11) that for any
λ �= 0 the operator �b + λI on functions on Hn is locally solvable and hypoelliptic.
It takes more delicate and precise estimates, however, to show that �b + λI is also
analytic–hypoelliptic (i.e., u must be real-analytic on any open set where �bu + λu
is). Stein performed that analysis in [42].

The results and techniques of [5] immediately suggested several lines of further
research in which Stein played a central role. We shall discuss these in roughly
chronological order, but first we need to mention one more piece of background.
In 1967 Lars Hörmander [10] studied differential operators of the form L = ∑

X2
j

where X1, . . . , Xm are real vector fields on amanifold M . (Note that the operator−L0
defined by (10) is of this form, with X j = (Z j + Z j )/2 and X j+n = (Z j − Z j )/2i
for 1 ≤ j ≤ n.) He showed that L is hypoelliptic provided that at each point p ∈ M ,
the vector fields X j and their iterated commutators [Xi , X j ], [Xh, [Xi , X j ]], . . ., up
to some order k span the tangent space TpM . (This hypothesis on the X j ’s quickly
became known as the Hörmander condition of step k.) Here, as with �b, the operator
L is not elliptic (unless the X j ’s already span the tangent space at each point), and the
regularity depends on the fact that the “missing directions” can be controlled by the
X j ’s through their commutators.

Just as the essential model cases for elliptic operators are the constant-coefficient
operators, the essential model cases for vector fields satisfying the Hörmander condi-
tion are provided by left-invariant vector fields on nilpotent Lie groups.More precisely,
we take G to be a stratified group, with Lie algebra g = ⊕k

1 Vj , and take X1, . . . , Xn

to be a basis for V1; the operator L = −∑
X2

j is then called a sub-Laplacian for the

groupG.5 In [4] I showed thatL has a fundamental solution with qualitative properties
like those of the operators Lα (in particular, the sub-Laplacian L0) on the Heisenberg
group and, by arguments similar to those in [5], derived sharp regularity properties of
L in terms of non-isotropic Sobolev and Lipschitz norms.

In a major paper, Linda Rothschild and Stein [37] showed how to generalize these
results to sums of squares of general vector fields X j on a manifold M satisfying the
Hörmander condition of step k. This requires a more complicated technique than the
approximation procedure in [5], because the minimal Lie algebra whose structure can
reflect the essential commutators of the X j ’s may vary from point to point and will
in general be of higher dimension than M . For example, on R

2 let X1 = ∂/∂x and
X2 = x∂/∂ y. Away from the y-axis the operator X2

1 + X2
2 is already elliptic, but on

the y-axis the commutator [X1, X2] = ∂/∂ y is needed to span the tangent space, and
the Lie algebra spanned by X1, X2, and [X1, X2] (an isomorph of h1) is 3-dimensional
although the X j ’s act on R

2. Rothschild and Stein’s solution to this problem was to
employ a stratified group G, the “free nilpotent group of step k,” with a sufficiently
rich commutator structure to reflect the essential commutation relations of the X j ’s

5 The inclusion of the minus sign is a matter of taste. It has the advantage of making L a positive operator
in the sense of Hilbert space theory.
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The Heisenberg Group and Its Relatives in the Work of Elias M. Stein 6689

at every point, and to lift the X j ’s to vector fields X̃ j on a manifold M̃ of the same
dimension as G in such a way that −∑

X̃2
j can be approximated near each point by

the sub-Laplacian onG. This gives sharp regularity results for
∑

X̃2
j on M̃ , which can

then be projected back down to M to yield the regularity results for
∑

X2
j . Rothschild

and Stein also obtain similar results for other related classes of second-order operators,
including the Kohn Laplacians for domains satisfying more general pseudoconvexity
conditions.

The parametrices for differential operators and the associated singular integrals in
[5] and [37] are all described in terms of integral kernels. In the classical theory of
elliptic differential equations, it has been very useful to have an alternative description
of these operators as Fourier integrals, which yields a “symbolic calculus”: the calculus
of pseudodifferential operators. The standard symbol classes Sm1,0 for pseudodifferen-
tial operators have been extended in several ways to encompass the operators needed
for various purposes. In [28], Alexander Nagel and Stein introduced a new class of
symbols that is adapted to the problemswe have just discussed and studied the resulting
class of pseudodifferential operators in relation to those problems.

The detailed analysis of the phenomena studied in [37] requires a study of the
geometry associated to a family of vector fields X j on a manifold M that satisfy
the Hörmander condition. More precisely, such a family gives rise to a nonisotropic
notion of “distance,” or rather a collection of equivalent notions of distance. Here
is one: if p, q ∈ M , we say that ρ(p, q) < δ if there is a curve φ : [0, 1] → M
with φ(0) = p and φ(1) = q, whose tangent vector φ′(t) at each point has the form
∑

a(1)
j X j + ∑

a(2)
jk [X j , Xk] + · · · , where the coefficients a(l)∗ at level l are bounded

by δl . In the announcement [31] and the paper [32] Nagel, Stein, and StephenWainger
made a detailed study of the balls associated to these distance functions and derived
estimates for the parametrices and related kernels of Rothschild–Stein. (Incidentally,
the promised Part II of [32], dealing with generalizations of results in [40] to certain
weakly pseudoconvex domains, never appeared; the authors have let the statements
and sketches of proofs in the announcement [31] stand on their own.)

To return to complex analysis: the methods and results of [5] have a bearing on the
study not only of the operator�b but on several related operators arising from complex
analysis on a strongly pseudoconvex domain �. The first of these is the solution of
the ∂-Neumann problem, a boundary value problem of central importance for the
Laplacian � = ∂

∗
∂ + ∂∂

∗
for the Dolbeault complex on �. (In brief, the problem is

to solve�u = f on q-forms, subject to boundary conditions that guarantee that u and
∂u are in the domain of the Hilbert space adjoint of ∂ on the space of L2 forms on M .
These conditions are “non-coercive,” which implies that one cannot expect regularity
properties of the solution as strong as the estimates for more classical boundary value
problems such as the Dirichlet problem.) The original solution of the ∂-Neumann
problembyKohnwas obtainedbyHilbert spacemethods and L2 estimates,without any
explicit formulas. In [9], Greiner and Stein applied the technology of [5] to construct an
explicit parametrix that yields sharp L p and Lipschitz estimates; it involves a mixture
of operators that possess non-isotropic regularity properties as in [5] and operators of
a more classical sort. Many years later, Stein and his collaborators embedded such
“mixed” operators into a more general theory that we shall describe in Sect. 5.
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6690 G. B. Folland

Two other operators of primary interest in complex analysis on a strongly pseu-
doconvex domain � are the Bergman projection PB (the orthogonal projection from
L2(�) to the subspace of L2 holomorphic functions) and the Szegő projection PS
(the orthogonal projection from L2(b�) to the subspace of boundary values of H2

holomorphic functions). Using the ideas of [5] together with the known asymptotic
formulas for the integral kernels of PB and PS , Duong Hong Phong and Stein [33]
showed that PB and PS are not only bounded on the appropriate Sobolev and Lip-
schitz spaces but actually bounded from these spaces to the corresponding nonisotropic
spaces with greater regularity in the complex-tangential directions.

With all of these results in hand, a natural next stepwas to extend them to appropriate
classes of smoothly bounded weakly pseudoconvex domains—in particular, domains
of “finite type” where the extra real direction on the boundary is obtained from higher-
order commutators of complex-tangential vector fields. These matters are rather far
removed from our principal focus, so we shall just give a brief list of the relevant
papers and their topics. For domains of finite type in C

2, the regularity properties
of the Bergman and Szegő kernels, the ∂-Neumann problem, and the heat equation
for �b have been investigated by Nagel, Jean-Pierre Rosay, Stein, and Wainger [27],
Der-Chen Chang, Nagel, and Stein [1], and Nagel and Stein [29], respectively. In
higher dimensions (where geometric complications are an obstacle to the complete
extension of the results in C2 to arbitrary domains of finite type), Jeffrey McNeal and
Stein [16,17] have investigated the properties of the Bergman and Szegő kernels for
convex domains of finite type, and Nagel and Stein [29] have studied the ∂b complex
on a class of model domains which they call “decoupled.” Nagel and Stein [30] have
also studied the L p regularity of �b and the Szegő projection on a class of model CR
submanifolds of Cn of higher codimension. These last two works involve the use of
singular integrals of amore general typewhose kernels have singularities on subspaces
rather than single points, which we shall discuss in Sect. 5.

4 More Neo-classical Analysis on Groups

The research described in the preceding section has roots in classical harmonic analysis
onRn and its applications to differential equations. In this sectionwe discuss fourmore
works of Stein and his collaborators that fall into this general category.

(1) The theory of Hardy spaces H p (0 < p < ∞) was originally part of complex
analysis in one variable, but in the 1960s and 1970s it spawned a real-variable
theory of Hardy spaces H p on R

n : these are spaces of distributions that possess
suitable maximal functions in L p, which can also be characterized for p ≤ 1 in
terms of “atomic decompositions.” (For p > 1, H p is simply L p.) Stein played a
big part in the growth of this theory, first through joint work first with GuidoWeiss
[43] and thenwithCharles Fefferman [3]. In [6] Stein and I developed the theory of
real-variable H p spaces on homogeneous groups: their characterization in terms
of various maximal functions, square functions, and atomic decompositions; their
dual spaces; boundedness of singular and fractional integrals; and connections
with Poisson integrals on symmetric spaces. To some extent the Euclidean theory

123



The Heisenberg Group and Its Relatives in the Work of Elias M. Stein 6691

could be easily generalized, but in many places there were technical obstacles to
be overcome, and occasionally some novel techniques were needed.

(2) Nagel, Fulvio Ricci, and Stein [23] (see also [22] for a summary of the results)
investigated the properties of fundamental solutions for a class of hypoelliptic
left-invariant differential operatorsL on arbitrary (not necessarily homogeneous)
nilpotent groups G. (The following may be taken as a model case: L = −∑

X2
j

where X1, . . . , Xn are any left-invariant vector fields that generate g as a Lie
algebra; however, the authors’ class of operators also includes higher-order ones.)
They show that there are two homogeneous groups G0 and G∞, built on the same
underlying vector space as G, such that the corresponding operators L0 and L∞
on G0 and G∞ are homogeneous with respect to the dilations on these groups
and possess homogeneous fundamental solutions K0 and K∞. Their main result is
that the original operatorL has a fundamental solution that resembles K0 near the
origin and resembles K∞ near infinity, fromwhich they derive some L p estimates.

(3) Let G be a stratified group with sub-LaplacianL = −∑
X2

j . Ifm is any bounded

Borel function on (0,∞), one can define the bounded operator m(L) on L2(G)

by the spectral functional calculus, and it is of interest to know when m(L) is
also bounded on other L p spaces. (When G = R

n , this is subsumed in the more
general problem of the boundedness of Fourier multipliers, the principal results
on which are associated with the names of Marcinkiewicz and Hörmander. See
Stein’s book [39] and the references given there.) Through the work of several
people, it was established that a sufficient condition for m(L) to be bounded on
L p (1 < p < ∞) and weak type (1.1) is that ‖m‖(α) < ∞ for some α > Q/2,
where Q is the homogeneous dimension of G and ‖ · ‖(α) is a localized, scale-
invariant version of the L2 Sobolev norm of order α on (0,∞). But in [20],
Detlef Müller and Stein showed that for groups related to the Heisenberg groups
the hypothesis α > Q/2 could be improved to α > d/2, where d is the Euclidean
dimension of G; this condition is sharp when G is a Heisenberg group or a
Euclidean group. (Their precise hypotheses are that G = ∏K

1 Gk where each Gk

is either a Heisenberg group or a Euclidean group, and L = ∑K
1 Lk where Lk

is a sub-Laplacian on Gk .) The crux of the proof is a weighted L2 estimate for
the distribution kernel of m(L) on the Heisenberg group that is actually stronger
than the corresponding Euclidean estimate.

(4) For the standard wave equation ∂2t u − �u = 0 on R
n , it is easy to see that there

can be a loss of about n/2 continuous derivatives in passing from the initial data
u|t=0 and ∂t u|t=0 to the solution u|t = t0 for any t0 > 0, but that there is no loss
of L2 derivatives. This suggests that for other values of p there should be an L p

estimate involving a loss of an intermediate number of derivatives, and this is
indeed the case; the basic result is that the operator eit

√−�(1−�)−α is bounded
on L p if α ≥ (n−1)|1/p−1/2|. Müller and Stein [21] established an analogous
but slightly weaker result for the wave equation ∂2t u+L0u = 0 on the Heisenberg

group Hn [whereL0 is defined by (10)]: the operator eit
√
L0(1+L0)

−a is bounded
on L p if α > (2n)|1/p − 1/2|. The proof is substantially more difficult than in
the Euclidean case because of the nonellipticity of L0.
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5 Strongly Singular Integrals on Groups

Much of Stein’s work in the latter part of his career has to do with integral operators
that are “more singular” than Calderón–Zygmund operators: convolution operators
whose kernels have singularities on submanifolds rather than single points, or whose
kernels are supported on submanifolds, or which are “twisted” by oscillatory factors,
as well as more general operators for which such convolutions are model cases. In
particular, he and his collaborators produced an important series of papers on such
operators in the context of the Heisenberg group and other nilpotent groups.

The greater generality in some of these situations necessitates additional techni-
calities in the statements of the results, with which it would be tedious to burden the
readers of this survey paper. We shall therefore let the following brief indications
suffice. The setting is a homogeneous group G, and the operators to be studied are
convolutions with distributions K that are C∞ away from a lower-dimensional sin-
gular set S; we may be imprecise in distinguishing between the distribution K and
the function K̃ = K |(G \ S). In the classical case, S = {0} and K is obtained from
K̃ a principal-value integral, which exists since K̃ is required to satisfy a suitable
mean-zero condition. As we indicated briefly in Sect. 2, this condition is equivalent
to the condition that 〈K , φ ◦ δr 〉 is independent of r > 0 for any test function φ.
In the general setting we do not specify exactly how K is determined from K̃ , and
it is most convenient to replace the mean-zero condition by suitable hypotheses on
the uniform boundedness of the action of K on test functions composed with dila-
tions. Without trying to state these hypotheses precisely, we shall refer to them as
“appropriate cancellation conditions.”

Stein’s work on strongly singular integrals on groups began with a paper with
Daryl Geller [7] on convolution operators on the Heisenberg group Hn with kernels
of the form K (z, t) = L(z)δ(t) where L is a Calderón–Zygmund kernel on C

n and
δ is the Dirac distribution on R: their main result is that such operators are bounded
on L p, 1 < p < ∞. For ordinary (Euclidean) convolution on R

2n+1 this would
immediately reduce to the classical theory for convolution with L on C

n , but the
noncommutative convolution on Hn displays unexpected new features. For example,
although convolution on R

2n+1 with the distribution D(z, t) = (∂nt δ)(t) is far from
being a bounded operator on any common function space, it is not hard to see that
Heisenberg convolution with D is unitary on L2 up to a scalar factor. With this in
mind, Geller and Stein showed that there is an analytic family of distributions Kγ

with K0 = K , becoming more strongly singular in t as Re γ decreases, such that
Heisenberg convolution with Kγ is bounded on L2 for Re γ = −n and bounded on all
L p for Re γ > 0. The boundedness for γ = 0 then follows from Stein’s interpolation
theorem [38] for analytic families — one of his earliest contributions to analysis and
one of his favorite tools ever since.

A couple of years later, Ricci and Stein [34,35] embedded this result into a more
general L p theory of singular integral operators on a homogeneous group G, of
the following two types: (1) T f (x) = ∫

Ge
i P(x,y)K (xy−1) f (y) dy, where K is

a kernel of Calderón–Zygmund type and P is a real polynomial; (2) S f (x) =∫
V f (xy−1)K (y)dσ(y), where V is a smooth submanifold of G that is invariant

under dilations, σ is surface measure on V , and K is a kernel such that the distribution
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K dσ has the appropriate critical homogeneity and satisfies the appropriate cancel-
lation conditions. (These two types of operators are closely related, via Euclidean
Fourier analysis on the center of G.) Moreover, they extended these results to the
situation where the homogeneity of the kernels is with respect to a one-parameter
family of maps that satisfy the properties of dilations except that they need not be
automorphisms of G (so G need not even be homogeneous). The idea is that in this
case, G can be realized as a quotient of a larger homogeneous group G̃ in such a way
that its “dilations” come from the automorphic dilations of G̃; the results on G̃ can
then be transferred to G. Finally, in a third paper [36], Ricci and Stein extended this
study to “fractional integrals”: operators of the above two types where the kernel is
homogeneous of some degree higher than the critical one.

At this point another line of investigation comes into the picture: singular integrals
and spectral multipliers associated to amulti-parameter dilation structure, which may
or may not consist of automorphisms of the group in question. The most straight-
forward situation is a product G = G1 × G2 where G1 and G2 are stratified
groups, each carrying its own family of dilations δ1r , δ2r and its own sub-Laplacian
L1 = −∑

X2
j , L2 = −∑

Y 2
j . G is then endowed with the two-parameter fam-

ily of dilations δ(r ,s)(x, y) = (
δ1r x, δ

2
s y

)
, and one can consider (1) convolution with

“product-type” singular integral kernels K (x, y) that satisfy estimates of the form

∣
∣X I Y J K (x, y)

∣
∣ ≤ CI J |x |−Q1−|I ||y|−Q2−|J | (12)

(where Q j is the homogeneous dimension of G j ) as well as appropriate cancellation
conditions; and (2) multiplier operators m(L1,L2) defined by the spectral functional
calculus (which applies sinceL1 andL2 commute), wherem is a function on (0,∞)×
(0,∞) that satisfies the Marcinkiewicz-type conditions

∣
∣(ξ∂ξ )

α(η∂η)
βm(ξ, η)

∣
∣ ≤ Cα,β (13)

for sufficiently many α, β. It is not too hard to show, based on older results, that such
convolution and multiplier operators are bounded on L p, 1 < p < ∞.

These results appear in the 1995 paper [18] of Müller, Ricci, and Stein but they
are preliminary to the main purpose of the paper: the study of multiplier operators
m(L0, iT ) on the Heisenberg group where L0 is the sub-Laplacian (10) and T is the
derivative in the central variable, and m satisfies the conditions (13). (Such operators
arise, for example, in the solution of the ∂-Neumann problem on the domain (5),
as worked out in Greiner–Stein [9].) The essential point is that these conditions are
invariant under independent rescalings of L0 and T , as opposed to the joint rescaling
that comes from the natural dilations on Hn . Nonetheless, the authors show that if (13)
is satisfied for sufficiently many α and β, m(L0, T ) is bounded on L p. The method is
to relate m(L0, T ) on Hn to m(L0, iU ) on Hn × R, where U is the derivative along
theR factor, to which the product theory described in the preceding paragraph applies.
Moreover, they show that the integral kernels for these operators satisfy estimates of
the form

∣
∣∂ I

z ∂
j
t K (z, t)

∣
∣ ≤ CI j |z|−2n−|I |(|z|2 + |t |)−1− j (14)
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together with appropriate cancellation conditions.
The argument employed in [18], however, does not give the optimal smoothness

hypotheses on m. In [19], Müller, Ricci, and Stein give a different, more compli-
cated argument to sharpen and generalize the boundedness theorem of [18]. Instead
of working on Hn , they work on an arbitrary H-type group G and consider multiplier
operators of the form M = m(L, iT1, . . . , iTn) where L is the sub-Laplacian on G
and T1, . . . , Tn are a basis for the center of g. The precise conditions on m needed to
ensure L p boundedness of M are a bit too technical to state here, but they essentially
require control of derivatives up to order d/2+ ε where (as in [20]) d is the Euclidean
dimension of G.

The techniques used in [18], as well as other situations where the analysis involves
quotients of products of stratified groups, led Nagel, Ricci, and Stein [24] to develop
a theory of singular integrals with “flag kernels.” These are integral operators whose
kernels are of product type and so satisfy estimates like (12), but also satisfy stronger
estimates that generalize (14) (where the product-type estimate would have |t | in place
of |z|2 + |t |).

We briefly describe their general setup. A flag inRN is an increasing family of linear
subspaces, {0} = V0 ⊂ V1 ⊂ · · · Vn = R

N . We assume that RN is endowed with a
family of dilations under which each Vj is invariant, and that Wj is a complementary
subspace to Vj−1 in Vj that is also invariant under the dilations. Then RN = ⊕n

1 Wj ,
and if x ∈ R

N we write x = (x1, . . . , xn) with x j ∈ Wj . A flag kernel relative to the
flag {Vj } is a distribution K on R

N that is C∞ away from the subspace xn = 0 and
satisfies estimates of the form

∣
∣∂α1

x1 · · · ∂αn
xn K (x)

∣
∣ ≤ Cα

n∏

k=1

(|xk | + · · · + |xn|)−Qk−|αk |, (15)

where each α j is a multi-index of length dimWj , and |x j |, |α j | and Q j denote
(respectively) a homogeneous norm on Wj , the homogeneous degree of α j , and the
homogeneous dimension of Wj with respect to the given family of dilations. The dis-
tribution K must also satisfy appropriate cancellation conditions defined by induction
on the length n of the flag.

Nagel, Ricci, and Stein showed that if K is a flag kernel, Euclidean convolution
with K is bounded on L p for 1 < p < ∞; moreover, the set of all these convolution
operators, for a fixed flag, forms an algebra. They showed, moreover, that these results
still hold if RN , with the given dilations, is the underlying space for a homogeneous
group G and Euclidean convolution is replaced by convolution on G—but only under
some rather strong restrictions on the group structure and its relation to the dilations.
This is sufficient for the applications to the study of the ∂b complex that is the second
objective of [24] (as we mentioned in Sect. 3), but it remained desirable to develop
the theory in greater generality. This was accomplished by Nagel, Ricci, Stein, and
Wainger [25], where the main theorems above—L p boundedness and closure under
composition—are proved (by considerably more involved arguments) for convolution
with flag kernels on a homogeneous groupG, assumingmerely that the spacesWj ⊂ g
are eigenspaces for the dilations.
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Since the set of singularities of a flag kernel is, in general, a linear subspace of posi-
tive dimension rather than just the origin, the corresponding convolution operator is not
pseudolocal (i.e., does not preserve local smoothness). However, flag kernels provide
a framework for studying collections of convolution operators that are pseudolocal but
whose kernels have a structure related to more complicated families of dilations than
the one-parameter groups that define the homogeneity of Calderón–Zygmund kernels.
For example, one would like to study operators that are compositions of two or more
Calderón–Zygmund operators, each associated to a different one-parameter group of
dilations. This situation arises, for example, in the solution of the ∂-Neumann prob-
lem in [9], which involves compositions of Heisenberg-type singular integrals with
standard pseudodifferential operators. In [25], a sequel was promised that would deal
with such matters.

The promised sequel, although not entitled as such, is Nagel, Ricci, Stein, and
Wainger [26]. In it the authors study kernels on R

N that satisfy differential inequal-
ities adapted to an n-parameter family of dilations (n ≤ N ) specified by an n × n
matrix E of positive numbers (essentially, the exponents for the dilations), as well as
appropriate cancellation conditions; the collection of such kernels is denoted P(E).
Here R

N may be taken as an Abelian group or as the underlying space for a non-
Abelian homogeneous group G; in the latter case the n-parameter family of dilations
must be compatible with the homogenous structure on G in a suitable sense. This
general framework includes kernels arising from composition of Calderón–Zygmund
operators with different homogeneity as described above, as well as “two-flag ker-
nels”: kernels that are adapted to a flag Vj as well as its dual flag Ṽ j = ⊕n

j W j .
The theorems at the heart of the paper, again, are that the convolution operators with
kernels in P(E) are bounded on L p and form an algebra. The authors also extend the
results to suitable “variable-coefficient” operators.

6 Conclusion

Our story ends here, on a rather high level of generality and abstraction, but with direct
connections back to the problems in complex analysis with which it all began. Much
more could be said, as research encapsulated in this article has direct connections to
work by many other people as well as many resonances with results in other areas of
analysis.

I wish to add only a few final comments about a striking feature of the thirty-seven
papers and monographs of Stein cited here: all but five of them are joint work with
sixteen collaborators, individually and in various combinations. Stein’s enthusiasm
for working with other people is a major factor in the central role he played in the
development of harmonic analysis over his 65-year career; it enlarged the scope of
his own work by incorporating the expertise of others, brought forth some of the best
work of his collaborators, and fostered the development of the sort of mathematical
community to which it has been a pleasure to belong. All mathematicians in the field
of harmonic analysis, and especially those of us who have had the privilege of working
with and learning from Eli Stein, have many reasons to be grateful.
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