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Abstract

We develop a general theory for the existence of extremal Kihler metrics of Poincaré
type in the sense of Auvray (J Reine Angew Math 722:1-64, 2017), defined on the
complement of a torus invariant divisor of a smooth compact toric variety. In the case
when the divisor is smooth, we obtain a list of necessary conditions which must be
satisfied for such a metric to exist. Using the explicit methods of Apostolov et al.
(Ann Sci Ecole Norm Supp (4) 48:1075-1112, 2015; J Reine Angew Math 721:109—
147,2016, https://doi.org/10.1515/crelle-2014-0060) together with the computational
approach of Sektnan (N 'Y J Math 24:317-354, 2018), we show that on a Hirzebruch
complex surface the necessary conditions are also sufficient. In particular, on such
a complex surface the complement of the infinity section admits an extremal Kihler
metric of Poincaré type, whereas the complement of a fibre fixed by the torus action
admits a complete ambitoric extremal Kihler metric which is not of Poincaré type.
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1 Introduction

In this article, we are interested in the study of (non-compact) complete extremal
Kéhler metrics, defined on the complement of a simple normal crossing divisor Z in
an n-dimensional Kéhler manifold X. Such metrics naturally appear (see e.g. [22]) in
attempts to apply continuity methods, or to study global properties of geometric flows,
aiming at producing extremal Kihler metrics on X in the framework of the general
problem of finding canonical Kéhler metrics formulated by Calabi [12].

The main conjecture regarding the Calabi problem is the Yau-Tian—Donaldson
conjecture which relates the existence of an extremal Kéhler metric in the first Chern
class c1 (L) of an ample line bundle L on X to an algebro-geometric notion of stability
of the polarized projective variety (X, L). In this context, a key point is to understand
what happens when an extremal Kéhler metric does not exist in ¢1(L). For toric
varieties, Donaldson conjectured [22, Conj. 7.2.3.] that there should be a splitting
of the corresponding Delzant polytope into sub-polytopes which are semistable when
attaching a 0 measure to the facets that are not from the original polytope; furthermore,
in the case when a semistable polytope in the splitting is stable, it is conjectured to
admit a symplectic potential inducing a (unique) complete extremal Kéhler metric
on the complement of the divisors corresponding to the facets with 0 measure. Such
extremal toric Kihler metrics have a finite volume, and we shall refer to them as
Donaldson metrics.

The main motivation for this paper is to study, in the toric case, the precise link
between the extremal Donaldson metrics and the class of complete Kihler metrics of
finite volume on X \ Z, called of Poincaré type, early used for instance in [18,47], and
studied by the second named author in [8].

Definition 1.1 Let Z C X be a simple normal crossing divisor in a compact complex
n-dimensional Kihler manifold (X, wp). A Kéhler metric w on X \ Z is said to be of
Poincaré type of class [wo] if

e On any open subset U C X with holomorphic coordinates (zy, . . ., z,) such that
ZNUisgivenby z1 --- zx = 0, w is quasi-isometric to the (1, 1)-form

k
Wmod = ‘/__1 Z

j=1

1

n

J=k+1

near Z, and

e w = wy + ddp where ¢ is a smooth function on X \ Z and we have that ¢ =
0( Z§=1 log(—log |z; |)) in the coordinates (z1, . . ., z,) as above, with dg having
bounded derivatives of any order with respect to the model metric wpyeq above.

General theory for extremal Poincaré type metrics on (X \ Z, [wo]) has been devel-
oped in [7-10]. In particular, a differential-geometric obstruction for the existence
of a constant scalar curvature Kihler (CSCK) metric of Poincaré type on X C Z,
reminiscent to the usual Futaki invariant, is introduced in [10]. Furthermore, in the
special case when the Kihler class [wg] = ¢1(L) is associated to a polarization L on
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X, an algebro-geometric notion of (relative) K-stability of (X, Z, L) is formulated by
Székelyhidi [45], who introduced a suitable version of the Donaldson—Futaki invariant
of a test configuration associated to the triple (X, Z, L). Székelyhidi also defined a
numerical constraint, which we shall refer to in this paper as Székelyhidi’s numeri-
cal constraint (see Definition 2.6), which is related to the deformation to the normal
cone of Z C X, and is designed to guarantee the existence of a Poincaré type metric
(and not a complete extremal Kihler metric with different asymptotics near Z). It was
later shown in [7] that Székelyhidi’s numerical constraint is a necessary condition
for the existence of a CSCK Poincaré type metric on X \ Z in the class c¢1(L). The
case when Z is smooth and admits a Kéhler metric of non-positive constant scalar
curvature has been also studied in [41-43], where it is conjectured that (X, Z, L) is
then K-semistable and admits a complete Kéhler metric of negative constant scalar
curvature.

Thus motivated, in Sect. 3 we turn to the case when (X, L) is a smooth toric variety,
and Z a divisor invariant under the torus action. Compared to the theory in [43], we
are dealing with the case when each component of Z is a toric variety, and therefore
can only admit a Kéhler metric of positive constant scalar curvature. In terms of the
corresponding momentum polytope A, Z is the pre-image by the moment map of
the union F = U; F; of facets F; of A. In this setting (and taking F to be a single
facet), we show that Székelyhidi’s numerical constraint takes a particularly simple
form (Lemma 3.2), and matches the necessary numerical condition for the existence
of an extremal Kihler metric of Poincaré type on X \ Z found in [10].

In Sect. 4, we develop the Abreu—Guillemin formalism of toric Kihler metrics of
Poincaré type, thus leading to a natural class of symplectic potentials (see Defini-
tion 4.16 and Theorem 4.18) which give rise to Poincaré type metrics in the sense of
Definition 1.1. While these conditions are sufficient, they are not necessary in general
(but are conjecturally sharp when adding the extremality condition). We show that
within this class of Poincaré type metrics on X \ Z, the extremal ones are unique.

Building on the recent results in [9] and a conjecture from [22] (see Conjecture 4.11),
we state a precise conjectural picture concerning the existence of an extremal Poincaré
type toric Kédhler metric on X \ Z. When Z is smooth, the conjecture says the following:

Conjecture 1.2 A smooth compact toric Kahler manifold (X, wg) with momentum
polytope A and a divisor Z C X corresponding to the pre-image of the union of
disjoint facets F = Fy U ---U Fy of A admits an extremal toric Kdihler metric of
Poincaré type in [wo] if and only if the following three conditions are satisfied:

(1) (A, F) is stable, and
(1) each facet F; C F is stable, and
(iii) if s(a,F) denotes the extremal affine function corresponding to (A, F) and, for
each facet F; C F, sf, is the extremal affine function corresponding to the
Delzant polytope Fj, then

s = (sa.m)), =¢i >0,
for a constant c;.
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1226 V. Apostolov et al.

See Conjecture 4.14 in the body of the paper for the full statement when F' is
allowed to have intersecting facets. This is much stronger than the original conjecture
made in [45], but we show that it is sharper too.

Theorem 1.3 (cf. Theorem 4.13) The conditions (i), (ii), (iii) of Conjecture 1.2 are
necessary for X \ Z to admit an extremal toric Kdahler metric of Poincaré type in [wo].

The precise notions of stability for the pair (A, F) and F in the above statements are
the ones corresponding to relative K-stability with respect to toric test configuration,
introduced by Donaldson [22] (see Definitions 3.1, 4.10 and 4.4), but in the light of
recent progress on the Yau—Tian—Donaldson conjecture in the compact toric case, we
expect that a yet stronger notion of uniform stability with respect to the L'-norm
should be considered. Section 4.4 has a detailed discussion on these issues, as well
as on some of the technical obstacles one would need to overcome in order to adapt
the arguments in the compact case for proving the necessity of uniform stability to the
Poincaré type setting.

In the last Sect. 5, we turn to explicit examples by using the methods of [5,6]. These
results together with [21] confirm a conjecture by Donaldson [22] (see Conjecture 4.11)
concerning the existence of acomplete extremal Kédhler metric, in the special case when
(A, F) is a stable quadrilateral with some of its facets with measure 0, also allowing
us to find the metric explicitly. Investigating the stability of such pairs is, on its own,
a problem of formidable complexity but using the method from [40], we obtain a
complete picture on the Hirzebruch complex surfaces.

Theorem 1.4 Let X = P(ODO(m)) — CP', m > 1, be the mth Hirzebruch surface,
considered as a toric complex surface under the action of a 2-dimensional torus T,
and [wo] be a Kdhler class on X. Then,

(a) If Z C X is the divisor consisting of either the zero section or the infinity section,
or the union of both, then the conditions (1)—(iii) of Conjecture 1.2 hold and X \ Z
admits a T-invariant extremal Poincaré type Kdhler metric in [wo], which is a
Donaldson metric of (X, Z, [wp]).

(b) If Z C X is the divisor consisting of a single fibre of X fixed by the T-action, (or
is the union of such a fibre with the zero or infinity section), then the conditions (i)
and (ii) of Conjecture 1.2 (resp. Conjecture 4.14) hold but the condition (iii) fails,
and X \ Z admits a complete T-invariant Donaldson extremal Kiihler metric in
[wo], which is not (and cannot be) of Poincaré type.

(c) If Z consists of the union of the two fibres fixed by the torus action (or contains
three curves fixed by the action), then the condition (i) of Conjecture 1.2 (resp.
Conjecture 4.14) fails, and there are no Donaldson complete metrics on X \ Z.

In particular, Conjectures 1.2 and 4.14 hold true when X is a Hirzebruch surface.

Similar results are obtained for the toric surfaces X = CP2 and CP! x CP!, see
Corollary 5.3 and Theorem 5.13.

We end the introduction by noticing that part (b) of Theorem 1.4 implies that
while for the X, Z and [wq] considered here, the relative stability of (X, Z, [wo]) does
imply the existence of a complete extremal Kihler metric on X \ Z, this metric is not in
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(I) Z = So

(i) Z =F

ZIN

(V) Z=F,UF,

(VI) Z=F,UFUS,

Fig.1 The rows illustrate cases (a), (b) and (c) of Theorem 1.4, where Sg, Soo stand for the zero and infinity
sections and F1, F> for the torus invariant fibres

general of Poincaré type, even though the Székelyhidi numerical constraint is satisfied.
Thus, in general, one will need more conditions to guarantee that the extremal metric
obtained for a relatively stable triple (X, Z, [wo]) is of Poincaré type. Conjecture 1.2
is designed to incorporate this extra requirement in the toric setting.

2 The Relative K-Stability of a Pair

2.1 Donaldson-Futaki Invariant of a Pair

We follow [45, §3.1.2].
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1228 V. Apostolov et al.

Let (X, L) be a smooth polarized variety of complex dimensionn and Z C X a
smooth divisor. We consider the embedding

H(X,LF © O(-2)) c HO(X, L¥)
via a section of O(Z) which vanishes along Z. Since L is ample,
H'(X,LF® O(~2)) =0 fork > 0,
and we have an exact sequence
0— H'X.L'® 0(-2)) — H'(X. L") — H(Zz. L{) — 0. (D)

Let di, d;, d be the dimensions of H(X, L*), HO(X, L* ® O(-2)), H°(Z, sz)),
respectively, and let dy be the average of dj and d;. By Riemann—Roch and (1),

di = cok" + c1k" N+ 0(k"7%); df = aok" ! + a1k" 2 + O (K" );

~  di+d; df n A0\, 1 n—2 @
dy = 5 —dk-;—cok +(c1—?)k 4+ OK" ™).

Suppose « is a C*-action on (X, L) which preserves Z. We denote also by « the
induced C* action on X and in what follows, we use the following convention for the
infinitesimal generator A* for the action of @ on the space I'(L) of smooth sections
of L:

(A%(5)) (x) = \/—_1%‘ (@™ (s@e ")), s eTL),x e M.
=0

Letting wg, wy, wkZ be the respective weights of the induced actions of « on
HOX, LK, HYX, L ® O(-2)), H(Z, Lf‘z)), respectively, and wy be the aver-
age of wy and wy, by the equivariant Riemann—Roch and (1) we have

wi(e) = agk" ™ + @ik + OK" ™ wi (@) = fok" + k"™ + O(K"2);

Z
wi () — aok" + (al _ @>k"+0(/€”—1)~

2
3)
Definition 2.1 The Donaldson—Futaki invariant ]T'X’ z.L(a) of o with respect to

(X, Z, L) is defined up to a sign as 4 times the residue at k = 0 of the Laurent
series of wy /(kdy) with respect to k, i.e.

wi (@) + wi(e)
2D

wi () —

wy (o) =

Bo e
1~ colar — —aplc; —
ZFX,Z,L(C()Z ( 2) 5 ( 2)
1 C(i B “®
app — €opo
=—.7:X,L(Ol)+—(—2 ),
4 2 o
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where Fx () = 4("‘"‘1642“0‘") is the convention for the Donaldson—Futaki invariant
0

in [22], so that it coincides, up to a multiplicative factor of W , with the differential-
geometric formula in [10] for the usual normalized Futaki invariant of «, expressed
in terms of the L2-product of a normalized Killing potential for the C*-action and
the scalar curvature with respect to an § invariant Kihler metric on X in 2mc; (L),
divided by the volume.

Following [45], one can also define a relative version of F x,z,1 (o) with respect
to another C*-action B in the group Aut(X, L, Z) of automorphisms of (X, L), pre-
serving Z. Recall that the inner product (o, B) is defined to be the coefficient of k"+2
of the expansion of Tr(Ay Br) — wi (@) wi(B)/dy, where A and By are generators of
the actions of « and § on H 0(X, L¥). This definition is consistent with the L? -norm
of normalized Killing potentials (the so-called Futaki-Mabuchi bilinear form [26]).

Definition 2.2 The f-relative Donaldson—Futaki invariant (of «, with respect to
(X,Z,L))is
(o, B)

(B, B)

The above definitions make sense for any rational multiples of & and g (by linearity).
We then consider a maximal complex torus T¢ = (C*)¢ in Aut(X, L, Z) and define
the extremal C*-action x of (X, L, Z) as the unique C* subgroup of T¢ such that
Fi z.0(@) =0.

'%Q,Z,L(a) = Fx.z.1(@) — Fx.z.L(B). (5)

2.2 Test Configurations and K-Stability of a Pair

The ingredients of the previous section yield Székelyhidi’s extension [45] of K-
stability to pairs.

Definition 2.3 The triple (X, Z, L) is called K-stable if for any test configuration
(X, L) of (X, L) with a flat C*-invariant Cartier divisor Z C X which restricts to Z
on the non-zero fibres, the modified Donaldson—Futaki invariant of the central fibre
satisfies ~

fX(),Z(),L()(a) = 0 (6)

with equality if and only if the test configuration is trivial in codimension 2 (see [44]
for a precise definition of triviality). Similarly, one can define relative K-stability of
(X, L, Z) by requiring _

’F})EO,ZO,LO(Q) >0, @)

with equality if and only if the test configuration is trivial in codimension 2. (Recall
x is the extremal C* -action defined algebraically in the previous section.)

Investigating a ruled complex surface X = P(O @ £) — X with Z being the
infinity section, Székelyhidi [45] noticed that for some polarizations L, there are
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complete finite volume extremal Kéhler metrics on X \ Z in c¢{ (L), which are not of
Poincaré type, but have instead the asymptotics of

dz|?
dz] = + smooth,

|z12( — log(lzD)?

where z is a (local) defining holomorphic function of Z. In order to exclude this
behaviour, Székelyhidi furthermore proposes to use the notion of slope stability intro-
duced by Ross—Thomas [39] for the triple (X, L, Z) as follows. Recall that for any
(X, L, Z) as above, and any rational number ¢ € (0, €(Z)) (where € (Z) is the Seshadri
constant of Z withrespectto (X, L)), one can associate a test configuration (X', L., Z),
called the degeneration to the normal cone of Z: X is the blow-up of X x C along
Z x {0}, L, = n*(L) ® O(—cP) where P is the exceptional divisor (naturally identi-
fied with the projective bundle P = P(O @ vz) — Z where vz is the normal bundle
of Z C X),and w : X — C is the projection. Note that the central fibre X of 7 is
isomorphic to X glued to P along the infinity section P(vz) = Z. However, consid-
ering the zero section Zg C P, one gets the proper transform Zof Z x C C X x C
on the blow-up X, so that 7 : Z — C is a trivial family. It follows from [39] that
(X, L¢, 2) defines a test configuration for the triple (X, L, Z). This motivates:

Definition 2.4 In the notation above, we let

F(c) = ‘%XO’E

X
Iy %0 (ae), Fy(c):= Fxo,zo,ﬁc\XO (ae)

be the corresponding modified Donaldson—Futaki invariant and relative modified
Donaldson—Futaki invariant associated to the degeneration of the normal cone to
ZC(X,L).

Then, Székelyhidi conjectures:

Conjecture 2.5 (Székelyhidi [45]) The triple (X, Z, L) admits a constant scalar cur-
vature (resp. an extremal) Kdhler metric of Poincaré type if and only if (X, Z, L) is
K -stable (resp. relative K -stable) and, additionally, F"(0) > 0 (resp. F)’(’ 0) > 0).

Definition 2.6 We shall refer to the conditions F”(0) > 0 (resp. F)’(’ (0) > 0) as the
Székelyhidi numerical constraint (resp. relative Székelyhidi numerical constraint).

The following observation is made in [45]:

Lemma2.7 F(c) = ‘%Xoﬁru( Z (ate) is a polynomial of degree < (n + 1) in ¢
o

satisfying F(0) = F'(0) = 0. It is positive for c € (0, €(Z)) if (X, L, Z) is K -stable.
Furthermore, the Székelyhidi numerical constraint F”(0) > 0 is equivalent to

aico > ao (c1 = ). ®)

where «;, c; are defined by (2).
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Proof The (usual) Donaldson—Futaki invariant of (X, L.) is computed in [39]:
1 C 0 0 C
—f(ac) = co [ ar(x)(x —c)dx — c———a ap(x)(x —o)dx |, ()
O 0 0

where cg, ¢ are the coefficients of k" and k" ~! of dj. as defined in the previous section
(with respect to (X, L, Z)), see (2), and

ap(x) = 1)‘/(CI(L)+XC1(O(Z))H b
(10)

1
(0 = 5 /Z 1T X) A (o1 (L) + xe1 (O(Z))'2.

By Riemann—Roch, «;(0) is the constant «; appearing in the previous section (first
line of (2)).

The main ingredient in order to carry out the above calculation in the modified
case is the weight space decomposition for the induced C*-action o, on the space

H®(Xo, Lo ,) (see [39, §4.2]):
ck—1
HO(Xo, Lejy,) = H'(X, L* © O(keZ)) & P tCk_iH()(Z L, ® (v})’ ) (11)
i=0

where the weight of o, on the first factor is 0 and —(ck — i) on the components of
the second direct sum. Note that the factor 1* H9(Z, Ll“z) in the above decomposition

corresponds to HO(Z,, £|ZO) in (1). It follows that

df = df = aok™ ' + 0(K"2); w® = ckdf = capgk” + O™y (12)

while the coefficients ag and a; of the weights induced on H 0(Xo, £ clxg ) are given
by (see [39, Eqn. (4.6)]):
C OlO C
ag = / (x —)apg(x)dx; a; = —c— +f (x — ¢)ap(x)dx. (13)
0 2c0  Jo

We therefore compute the modified Donaldson—Futaki invariant given by (4)

1 ~
17 X0.Z0.Le (@) = [Co/ (x— C)al(x)dx_(cl_—)/ (x —C)ao(X)dX}

(14)
Form the above formula, the proof of Lemma 2.7 then follows easily. O

Using Lemma 2.7, it is shown in [7]:

Theorem 2.8 [7] If there exists a CSCK metric of Poincaré type on X \ Z in the class
c1(L), then the Székelyhidi numerical constraint holds, i.e. (8) is satisfied.
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1232 V. Apostolov et al.

Remark 2.9 1t is plausible to expect a similar numerical expression for the relative
Székelyhidi numerical constraint F’ )’(’(O) > ( but we failed to see a neat way to compute
Fy (c) in a sufficient generality, especially if the extremal C*-action is not trivial on
Z.

We shall next turn to the toric case as a model example for the above theory, and
where specific computations are manageable. We shall show (see in particular Corol-
lary 5.9) that there are examples of relatively K-stable triples (X, Z, L) satisfying
F )’(/ (0) > 0, which cannot be of Poincaré type. We note, however, that these examples
do admit a complete extremal metric on X \ Z — it just cannot satisfy the Poincaré
type condition. We shall thus propose a strengthened version of Conjecture 2.5 for
when a relatively K-stable triple (X, Z, L) should admit an extremal Kéhler metric of
Poincaré type in ¢ (L) in the toric setting (see Conjecture 4.14).

3 Extremal Poincaré Type Kahler Metrics on Toric Varieties

In this section we consider the case when (X, L) is a (smooth) polarized toric variety.
We denote by T the real n-dimensional torus and by T¢ = (C*)" its complexification.
The material follows [22].

3.1 Stability of Pairs and Toric Test Configurations

Switching from complex to symplectic point of view, Delzant’s theorem [20] describes
(X, L) in terms of a compact convex polytope A C t* (where t = Lie(T) is the Lie
algebra of T) such that A = {u : L;(n) = (ej, u) +1; = 0,j =1,...,d} with
e; belonging to the lattice A C t of circle subgroups of T. The fact that X is smooth
corresponds to requiring that at each vertex of v € A the adjacent normals span the
same lattice A C t (see [20,38]), while the polarization L forces A to have its vertices
in the dual lattice A* C t*. Taking any generators of A as a basis of t, one identifies
A with Z" and we consider the Lebesgue measure du on t* = R”; furthermore,
one defines a measure dv on dA, such that on each facet F; C A (i.e. a face of
co-dimension one), we let

—dL; A dvF_,. =—ej N dl)F_/ =du. (15)

A central fact in this theory (see e.g. [14, Sect. 6.6]) is the weight decomposition
of HO(X, L¥) with respect to the (linearized) torus action of T. It is isomorphic to
{n € kA N Z"} with the weights identified with corresponding elements of Z". On
the other hand, for any smooth function f on t*, we have [32,48]:

n—1

Z Fw) =k"/ fd,u+k / fdv+ OK"?), as k — oo.
2 Joa

ek ANZN a
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If « is the C*-action with Killing potential corresponding to an affine linear function
fo on t* normalized by f,(0) = 0, the above formula allows us to compute the
coefficients cq, c1, ag, a; in (2) and (3) as follows:

Vol(0 A 1
co = Vol(A); ¢1 = L); ap =/ Jodu; ar = —/ Sadv, (16)
2 A 2 Joa

so that the Donaldson—Futaki invariant F () of « is

27)"Vol(A) s
——F (o) =/ Sodv — —/ Sodu, (17
2 9A 2 Ja

where s = 2Vol(9A)/Vol(A) = 2n(fx cl(TX) Aer(LY"™Y/ [y (L)") is the aver-
aged scalar curvature of any compatible Kéhler metric.

Similarly, if Z C X is a divisor corresponding to the pre-image of the union F =
F;,U---UF;, of some facets A by the momentum map, the coefficients o, a1, Bo. 1
in (2) and (3) are given by

1

ag = Vol(F); o) = EVol(aF); ﬁo=/Ffadv; Bi =faF fodor, (18)

where do F is the induced measure on the boundary of each F; € F (viewed itself as
a Delzant polytope in R”~1). The modified Futaki invariant F x,1,7z(a) is then

R Fs@= [ a0 [ e a9
with
(20)

=2n ( [ @ax+aoczyrawr/ [ q(L)").
X X

The extremal C*-action x has Killing potential which is an affine linear function
sa determined by requiring

1
fdv——/ fsadu =0
2Ja

dA

for any affine function f (see e.g. [45]). Then, as shown in [22,45], the relative
Donaldson—Futaki invariant is given by

(27)"Vol(A)

Fl(a) = / fudv — & / Fusadu @1
2 IA 2 Ja
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1234 V. Apostolov et al.

while its modified version is

2m)"Vol(A)

B ‘%))(S,L,Z(a) = /

1
Sadv — 5_/ Jasa, mdu (22)
IA\F A

where s(a, ) again is the unique affine function such that

1
/ de—E/ fsa,pdu =0
IA\F A

for any affine linear function f.

Donaldson generalizes the above expression for F () by considering convex piece-
wise affine linear functions f, with integer coefficients. He associates to such an f
a test configuration (X, £), called roric, and identifies the Donaldson—Futaki invari-
ant of the central fibre (X, Lo) with (17). Székelyhidi [45, § 4.1] shows that (21)
computes the relative Donaldson—Futaki invariant for such test configurations. These
computations generalize easily in the case of a pair (X, Z) where the divisor Z cor-
responds to the pre-image of a number of facets of A by the moment map. In this
case, the toric test configurations come equipped with a divisor Z which defines a flat
family for Z; furthermore, (19) and (22) compute the modified Donaldson—Futaki and
relative Donaldson—Futaki invariant of toric test configurations, respectively. We are
thus led to the following:

Definition 3.1 Let (X, L) be a toric polarized variety and Z C X a divisor corre-
sponding to the pre-image under the moment map of the union F = F;; U---U F;, of
some facets of the momentum polytope A. We say that (X, Z, L) is relative K-stable
with respect to toric degenerations if

La,r(f) 1=/

fdl) — l/ fS(A’F)d[L >0 (23)
IA\F 2 Ja

for any convex, piecewise affine linear function f whichis not affine linear on A. Recall
that s(a, ) is by definition the unique affine linear function such that (23) vanishes
for any affine linear function f, and is called the extremal affine linear function of
(A, F). If (23) is satisfied, we shall refer to (A, F) as a stable pair.

Lemma 3.2 Let (X, L) beatoricpolarizedvarietyand Z C X adivisor corresponding

to the pre-image under the moment map of one facet F of the momentum polytope A.
Then, the relative Székelyhidi numerical constraint is equivalent to

1
Fj/(0) = 5 / (sF —s(a,r))dvr > 0, (24)
F

where s(a, ) is the extremal affine linear function of (A, F) and s is the extremal
affine linear function of the facet F (seen as a Delzant polytope of an (n — 1) dimen-
sional toric variety).
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Proof In the toric case, Ross—Thomas [39, § 4.3] link their construction of degener-
ations to the normal cone to toric test configurations: the degeneration to the normal
cone of Z C X corresponding to a facet F C A defined by the zero set of an
affine linear function L (with L > 0 on A) is given by Donaldson’s construction with
fe = max(0, c—L). Therefore, the corresponding relative modified Donaldson—Futaki
invariant (22) is

1
Fy(c) :/ Jedv — 5/ fcs(A,F)d/*L
IA\F A

1
=[ g3 [ Fswnin es)
IA\F A
1
- z/ Jfe(sa,ry — Sa, py))dut.
A

Note that the sum on the second line is c¢o/4 times the function F(c¢) introduced in
Lemma 2.7 (and computed via (14)) and, for any affine function &,

38—; ( /A fcédu> = /F £dvp,

where, we recall, dvr is determined via the defining equation L = O for F by letting
—dL A dvrp = du. Using (16), (18), and (20) one then gets

. oo\ oo 1
F,(0)=2 (011 - <6‘1 - 7)@) 3 fF(S(A,F) — S, F)dvp

1
= Vol(0F) — E/ sa, Fydvr
F

Vol(A \ F)Vol(F) _ Vol(@A\ F)
Vol(A) Vol(A)

1
:/ dGF_E/ S(A,F)dUF
oF F

1
= —/ (s — s(a,F))dvr,
2 JF

Vol(F) (26)

where sr denotes the extremal affine function corresponding to Z. O

Lemma 3.3 Let (X, Z) be as in Lemma 3.2. If (A, F) is stable, then
f (sF — s(a,F))dve > 0.
F

Proof Using the expression F (c) = %OF(C) — %fA fe(sa,Fy — Sca, Fy)du in (25)
and Lemma 2.7, one easily computes that F, (0) = F )’( (0) = 0. It thus follows from
(26) that for c sufficiently small, the piecewise affine linear convex function f, =
max (0, ¢ — L) will destabilize (A, F), should [, (sF —sa,r))dvr = 2F)/(’(0) < 0.0
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4 Labelled Polytopes and the Abreu-Guillemin Theory for Kahler
Metrics of Poincaré Type

4.1 Donaldson Metrics on a Labelled Polytope

Following [22], the discussion in Sect. 3 can be put in a broader framework which
makes sense for any labelled convex compact simple polytope (A, L) in (R™)*.

Definition 4.1 Let A C (R")* = t* be acompact convex polytope defined by a system
of d linear inequalities

A={xe®) :Ljx)=(ej,x)+4 >0, j=1,....d}

where L = {L(x), ..., Ly(x)} are affine linear functions on (R")* and dL; :=e; €
R" are inward normals to A. We suppose that A is simple in the sense that for each
vertex v, there are precisely # affine linear functions L, 1, ..., L, , in L which vanish
at v and the corresponding inward normals {e, 1, ...e, ,} form a basis of R". We
refer to such date (A, L) as a labelled (simple, compact, convex) polytope. Notice
that, by Delzant’s theorem [20], (A, L) is the momentum image of a compact smooth
toric variety if the labelling L satisfies the integrality condition that at each vertex
v, spany{uy 1, ..., Uy n} is a fixed lattice A C R". We shall refer to such labelled
polytopes (A, L) as Delzant polytopes.

In the case when (A, L) is Delzant, the works [1,31] give an effective way to
parametrize T-invariant, w-compatible Kihler metrics g on the toric symplectic man-
ifold (X, w) classified by (A, L) in terms of strictly convex smooth functions u(x)
defined on the interior A® of A C (R")* and satisfying certain boundary conditions
on dA. Specifically, the Kihler metric g is written on X = u~1(A%) as

n
g= Y. (u,,-,dxi ®dx; +u'dy ®dt.,~> (27)
i,j=1

where (x1, ..., x,) are the Euclidean coordinates on (R")*, (u;;) = Hess(u) (and
we tacitly identify smooth functions and tensors on A? with their pull-backs via
on X% and (11, ..., 1,) are angular (27-periodic) coordinates obtained by fixing a
point pg € X° and identifying X° = (C*)" with the principal orbit of py under the
complexified action T¢ (with respect to the complex structure J determined by g and
). In this formalism, the symplectic form is

n
w = dei Adi.
i=1

A central fact in this theory (see [2,23]) is that (27) extends to a smooth Riemannian
metric on X if and only if u satisfies the following Guillemin boundary conditions:
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Definition 4.2 Let (A, L) be a labelled convex compact simple polytope in (R")* =
t*. We say that a strictly convex smooth function u on A satisfies the Guillemin
boundary conditions if
o u— % Zgzl Ly log Ly is smooth on A, and
o the restriction of u to the relative interior F© of any face F C A is smooth and
strictly convex.

We denote by S(A, L) the space of such u.
An example of a function in S(A, L) is (see [31])

d
o ==Y Lilog Ly, (28)
k=1

N =

which, in the Delzant case, characterizes the induced Kihler metric on X via the Kéhler
reduction of the flat metric on C<.

The space S(A, L) can be equivalently characterized in terms of first-order bound-
ary conditions:

Proposition 4.3 [4] The space S(A, L) consists of all smooth functions u on A° such
that H* := (Hess(u))~! satisfies

e [smoothness] H* extends smoothly on A as an S*(t*)-valued function;
o [boundary conditions] For any facet Fj C d A withnormal ej = dL j, and x € F;

Hi(ej, ) =0; (@H")x(ej, ej) = 2e;; (29)

e [positivity] H* is positive definite on A°, as well as on the relative interior £°
of any face = C A, viewed there as a smooth function with values in S*(t/ts)*
where ty, denotes the subspace spanned by normals to facets containing X.

The extremality of the Kihler metric (27) with u € S(A, L) reduces to solving the
Abreu equation [1]
n 82H'-4~
ij

— - = s 30
Z orox; D (30)
i,j=l1

for an affine linear function s 1) determined from the labelled polytope (A, L) by
the requirement that

E(A’L)(f) = 2/ fd\)L — / S(A,L)fd,u =0
A A

for any affine linear function f, where du is a (fixed) Lebesgue measure on t* = (R")*
and dyy, is obtained from du and L via (15). In this setting, we recall the following:

Definition 4.4 A labelled compact convex simple polytope (A, L) in a vector space
t* is called stable (or K-stable) if

Lan(f) =0,
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for any convex, piecewise affine linear function f, and the equality is achieved only
when f is affine linear.

Using the integration by parts formula established in [22, Lemma 3.3.5], Zhou and
Zhu have shown in [49] that the stability of (A, L) is a necessary condition for a
solution u € S(A, L) of (30) to exist:

Proposition 4.5 [49] Suppose there exists a function u € S(A, L) which solves the
Abreu equation (30). Then (A, L) is stable.

Furthermore, as observed in [22,28], any solution u € S(A, L) of (30) must be, up
to the addition of affine linear functions, the unique critical point (= the minimum) of
the convex relative Mabuchi functional

Ma,LyWw) = La,L)u) —f log det(H")du, (€29
A

which is shown in [22] to take values in (0, o<].

It is observed in [22, p. 344] that most of the above theory extends to the case when
one takes F = F| U---U F} to be the union of facets of (A, L), and one modifies the
induced measure dvy, to be zero on F. By (15), for each facet F; C F, the modified
measure can be thought of as the limit lim;_, o, dvsz,;, i.€. the measure obtained as in
(15) when sending the corresponding label L; to infinity. There is a subtle point here,
however. It is not immediately clear how to extend the Guillemin boundary conditions
of Definition 4.2 over such limits. On the other hand, as observed in [5], the equivalent
first-order boundary conditions given by Proposition 4.3 extend naturally:

Definition 4.6 Let (A, L) be a labelled convex compact simple polytope in t* and
F = F; U---U F the union of some of its facets. We denote by S(A, L, F) the
functional space of u € C*°(A) verifying the first-order boundary conditions

e [smoothness] H* extends smoothly on A;
e [boundary conditions] for any facet F; C F and any point x € F;,

H{(ej,e) = 0; (dH"(e;, e))x =0, (32)

where ¢; = dL; is the inward normal to F; defined by LL and e € t, and, for any
facet F, whichis notin F, and x € F,,

H(er,e) =0; (dH” (er, er))x = 2e,. (33)

e [positivity] H* is positive definite on A°, as well as on the interior of any face
Y C A, viewed there as a smooth function with values in Sz(t/tz)* where ty
denotes the subspace spanned by normals to facets containing X.

Remark 4.7 Manifestly, the conditions (32) are independent of the choice of labels L;
for the facets F; C F, and are obtained from (33) by letting ¢; — oo.
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Remark 4.8 Symplectic potentials satisfying Definition 4.6 do not necessarily cor-
respond to Poincaré type metrics. However, below we shall define subspaces
Su,p(A, L, F) of S(A, L, F) depending on a positive parameter o and a real param-
eter 8 which do induce metrics of Poincaré type on X \ Z.

We are thus interested to find solutions of (30) in S(A, L, F), where, by the inte-
gration by parts argument of [22, Lemma 3.3.5] (see also (36) for a precise statement),
the right-hand side must be the unique affine linear function s(a 1, F), called extremal
affine function, satisfying

1
LavLr(f) = f Sfdvp — 5] fsaaLpndu=0 34
IA\F A

for any affine linear function f. We also have the following straightforward extension
of Proposition 4.5 to the case (A, L, F):

Proposition 4.9 Suppose there exists a function u € S(A, L, F) which solves the

Abreu equation
2
" 0°HY

1 axi 3)(.,'

= S(AL,F) (35)

L

where s(a L, F) is the extremal affine linear function of (A, L, F). Then Lo 1,F)(f) =
0 for any convex, piecewise affine linear function f, with equality iff f is affine linear.

Definition 4.10 A labelled convex compact simple polytope (A, L) in (R")* with a
fixed subset F' of facets satisfying the conclusion of Proposition 4.9 will be referred
to as stable triple (A, L, F). A Kéahler metric on gp on A% x T defined by a solution
u € S(A,L, F) of (35) (if it exists) will be called a Donaldson metric on (A, L, F).

The geometric interest of studying Donaldson metrics as above comes from the
following:

Conjecture 4.11 (Donaldson [22]) Let (A, L) be the momentum polytope of a smooth
compact toric Kdhler manifold (X, wg) and Z the divisor in X corresponding to the
momentum pre-image of the union F of facets of A. If (A, L, F) is stable, then there
exists a complete extremal Kdhler metric gp defined on X \ Z.

Remark 4.12 Notice that when (A, L) is a Delzant polytope corresponding to a smooth
compact toric manifold (X, wg), the label L is uniquely determined from the Delzant
condition. Thus, in order to simplify the notation in this case, and when there is no
possible confusion, we shall skip the label L. This is the convention we have taken in
the previous Sect. 3.

We now use the results from [9,10] in order to establish the following:

Theorem 4.13 Let (X, wq) be a smooth compact n-dimensional complex toric Kdhler
manifold, and Z C X a smooth divisor corresponding to the pre-image under the
moment map of a single facet F of the momentum polytope A. If X \ Z admits a T-
invariant extremal Kdhler metric of Poincaré type in [wo), then (A, F) is stable and
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the relative Székelyhidi numerical constraint (24) holds. Furthermore, the Delzant
polytope F is stable and

SF — (S(a,F)) | = const > 0.

Proof The main point is to show that a T-invariant extremal Kéahler metric (g, w) of
Poincaré type on X \ Z gives rise to a Donaldson metric in a slightly weaker sense,
namely it corresponds to H* € C °°(A0, 52 (t*)) which extends smoothly on A \ F
and C° on A and, moreover, the conditions (32) and (33) hold where the first-order
condition at F is taken in the sense of limit, i.e.

lim (dH" (eF, ~))x =0,

x—F xeA\F

for er € t the inward normal to F. This will be enough in order to establish the
integration by parts formula (compare with [22, Lemma 3.3.5]):

n n
/A Z H i wdu=/A Z Hig.ij du—Z/a pdv,  (36)

i,j=1 i,j=l1 A\F

for any smooth function ¢ on A. The latter in turn implies that

(a) Scalg = s, F) and
(b) (A, F) is stable (compare with Proposition 4.9).

With the conclusions (a) and (b) in place, the result follows easily from [9,10].
Indeed, (a) and Lemma 3.2 together with [10, Thm. 4 and Prop. 2.1] show that (24) is
a necessary condition for the existence of an extremal Kihler metric of Poincaré type
on X \ Z. Furthermore, by [9, Thm. 4], Z must admit an extremal Kéhler metric g in the
Kihler class [awp]|,, so that F' must be a stable Delzant polytope by Proposition 4.5. It
is also shown in [9, p.44] that the extremal vector fields Jgrad,Scalg and J gradzScalg
agree on Z, which in our case translates to say that sy — (s(a,F))|, = const. The
constant is positive because of (24).

We thus focus for the remainder of the proof to show that an extremal T-invariant
Poincaré type metric (g, w) on X \ Z is (weakly) Donaldson. To this end, we fix a
T-invariant Kéhler metric wy € ¢1(L) on X and denote by (A, L) the corresponding
Delzant polytope. We shall write, for any basis {eq, ..., e, } of t, xY = (x?, e, x,?) the
corresponding momenta, viewed as functions from X to t* defined by : K;00 = —dx
where K; is the fundamental vector field of X corresponding to e; € t; thus A =
Im(x%) and Z = (x9)~!(F) forafacet F C A.Letv € A bea vertex of A and F, and
{e1, ..., en} the basis of t formed by the inward normals to the facets containing v,
with er = e;. By Delzant theory (see [20,38]) there exists a (C*)" equivariant chart
C? of X (with respect to the complexified (C*)"-action of T on X and the standard
(C*)"-action on C; = C") in which F is given by z; = 0. Furthermore, in this chart,
|z; |2 = x?e‘p-f @ for smooth functions ¢ on X (seee.g. [22]) whereas the holomorphic

vector fields %(Kj — +/=1JK) become v/ _111‘%'
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According to Definition 1.1, we can write w = wg + dd‘ ¢ for a smooth T-invariant
function ¢ on X \ Z, such that dg is bounded at any order with respect to the model
metric

1

Omod = V=1 | —+———
e |z112(log |z1)?

n
dzy AdZ+ ) dzj AdZ;
j=2

defined on the chart C: in particular

1
9K =0(zjD.j=2.....n, dg(JK1) O<|log(lz1|2)|> o0

Writing
xj=x4+dp(JK)), j=1....n, (38)

for the momenta of (g, w), we see that the map x — x sends A\ F to itself, preserving
the faces. Furthermore, x; : X \ Z — A\ F extends continuously as zero over Z.

We now let Hy (e, ej) = (g,(K;, K;)) be the smooth S2(+*)-valued function,
defined on A? by using the extremal Kihler metric ¢ and the momentum map x
(with x = x(p) for p € X \ Z). Clearly, H extends smoothly over A \ F. The
proof of Proposition 4.3 (given in [4]) uses local arguments around a point on a facet
F,. C A\ F, and thus shows that H satisfies the boundary conditions (33) on each F,..
We now focus on F. We use the chart C” as above, and denote by 77y : C! — C"~! the
projection 71 (z1, 22, - - - » Zn) = (22, ..., 2Zy). Then, [9, Thm. 4] tells that as z; — O,
 is written as

(ﬁ(dzl Adz))
w=da —_—

|Zl|2(10g(|Z1|2)2> e+ O loglzull™). (39)

where a; and § are positive reals, w; is an extremal Kéhler metric on Z N C) =
{(0,22,...,z2)}, and O(|log|z1||~?) is understood at any order with respect to the

Kihler metric
~—1(dz; AdZ
a1<—2 (dzy ;g) + i w;. (40)
2112 (log(lz1/%)

We compute from (39), with respect to the vector fields %(K i — ~=1JKj) =
2% _IZ] %}_7

2ay

H(ei,e1) = w (K1, JK1) = 5 +0(|10g|Z1||_‘S_2),

(log(Iz11%)
H(e1.e)) = o (K1, JKj) = O(lzjIllog 211 7°7"),
H(ei,ej) = w(Ki, JKj) = H'(er, ¢)) + O(lzizjlllog|z1 1170, i, ) =2,

(41)
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where H! (e, ej) = m*wi(K;, JK ) is the z; independent smooth function computed
from w; with respect to the induced vector fields on Z. It follows that H extends
continuously on F, verifying Hy(e;,-) =0on F.

Taking interior product with K; and K;, i > 2, in (39) we obtain

d|Zl|2 > - 2
an = ar (it )+ 2 fieas
212 (log|21%)? ;f’ !

n n n
dx; =2 H'(er ep)dlzyl + Y fij@dlzj1* = mfdx! + ) fij(2)dlzj

j=2 j=1 j=1

where f1(z) = 0<—‘Z1|2(10g1|11|2)2+5)7 fi@ = 0(loglz1||'=%), j =2,....n and
2 .
fir(@) = O(IZMMEW)’ fij@ = O0(zi*[logl|z1lI%), i, j = 2,...,n; here

1 . 1 n 2 . .
dx; = —ig;wy fori = 2,...,n, and dx; = ijz Ajjd|z;|* for some invertible

matrix (A;;), locally uniformly bounded together with its inverse (Ayon Z N Cr.

Putting 01 = m and o; = d|z; |2, the relations above can be recapped as
|log |z1]|dx -
0 = a 0 + ¢ :
: —L\O0 (Aip) N
dx, n

with ¢ = O(|log |z1]|~?); solving this system provides

| log |z1]| - "o _
o] = i—dxl +Zn1jde, o; = ni1dx) +Z(A” +mij)dxj, i =2,...,n,
1 X N
j=1 j=2

with ;1 = O(llog|zi]|'™®), i = 1,....n, and n;; = O(loglz1||™), i =
1,...,n, j = 2, N Differentiating the first two lines of (41) with respect to
z1log|zy |%, the 3‘)7’5 (i > 2), and their conjugates' implies

dH(ey, e1) = —

n
((1 +er)dxy + Zéljdxj),

log |z P

n
dH(ey. ¢;) = enidx + Y _edxj, i=2,....n,
j=2

1 Using that we can replace dz; and dz; by o; with help of the torus action, as in the estimates for f; and
Jfij above.
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with €1 = O(llogl|zi||™), i = 1,...,n, and ¢; = O(llog|zi[|7*7), i =
1,...,n, j =2,...,n. Hence in particular,

lim (dH(e1,¢;))y =0, i=1,...,n,
x—F
as claimed. O

4.2 Conjectural Picture for the Existence of Extremal Toric Metrics of Poincaré Type

Theorem 4.13 and Conjecture 4.11 motivate us to propose the following general con-
jectural picture in the toric case.

Conjecture 4.14 A smooth compact toric Kihler manifold (X, wo) with momentum
polytope A and a divisor Z C X corresponding to the pre-image of the union F =
U; F; of some facets F; of A admits an extremal toric Kdhler metric of Poincaré type
in [wo] if and only if the following three conditions are satisfied:

(1) (A, F) is stable in a suitable sense, and
(ii) forany facet F; C F, the pair (F;, F; N\ (Uj+icr F})) is stable in a suitable sense,
and
(iii) if S(F,, Fin(U;zie Fy) IS the extremal affine function corresponding to (Fi, Fi N
Uj+ier F})), then

S(Fi, Fin(Uj % Fj) — S(a,F) = ¢i >0, (42)
where c; are real constants.

Remark 4.15 Theorem 4.13 readily generalizes to the case when Z is a smooth toric
submanifold of (X, wp), i.e. Z is the pre-image under the moment map of the union
F of disjoint facets of A. Thus, in this case, we have established the necessity of
the conditions (i),(ii),(iii) of Conjecture 4.14 with respect to the notions of stability
introduced in Definitions 4.4 and 4.10. The situation is not so clear in general, when
Z has simple normal crossings. In this case we make the following remarks:

(1) In order to establish (i) we would need to show that any toric extremal Kéhler
metric of Poincaré type on X \ Z belongs to the class S(A, L, F), at least in the
weaker sense as in the proof of Theorem 4.13.

(2) (ii) would follow from (i), noting that the extremal Poincaré type metricon Z; \ Z l’
where Z; is the component of Z corresponding to F; and Z! is the divisor of Z;
induced by Z (which exists by virtue of [9, Thm. 4]) must be foric. Indeed, this
can be derived from [9] as follows:

e using toric-equivariant coordinates (z1, ..., z,) € C! centred at a point in Z;
fixed by the torus action, and such that Z; N C? = {z; = 0} and Z N C? =
{z1---zs = 0}, the induced metric is a Cfo";—limit of w;j = Oz (the

pull-back of w to {z1 = €} \ Z by inclusion), with €; — 0;

@ Springer



1244 V. Apostolov et al.

o the metric w and the hypersurfaces {z1 = €;} \ Z are invariant by the action of

T/TF,; therefore, the a)i" are invariant under this action, and their Cfo'%-limit is
thus toric.

(3) (iii) would follow by [10, Thm. 4 and Prop. 2.1], once we know that the scalar
curvature of the extremal Kihler Poincaré type metric coincides with s(a ry. This
in turn would be the case if we establish point (i) above.

Another interesting question is how (i) and (ii) interrelated.

4.3 A Class of Poincaré Type toric Kahler Metrics

To link Conjectures 4.11 and 4.14, one needs a criterion ensuring that a Donaldson
metric is of Poincaré type. We address this question in this section.

We start by introducing a class of toric metrics in the form (27) on (A% x T) via
a certain type of Guillemin boundary conditions for the corresponding symplectic
potential u, depending on the data (A, L, F'), and compare with Definition 4.6 in the
case F = @&. For simplicity, we shall assume that (A, L) is Delzant and F = Fj is a
single facet defined by the label Ly (x) := L1(x) = 0.

Definition 4.16 Let« > 0 and B € R be fixed real numbers. The class Sy g (A, L, F)
of symplectic potentials u is defined as the space of smooth and strictly convex func-
tions on AY, satisfying the following boundary conditions:

e u+(ax+pBLp)logLp — % Z?:z LjlogL; is smooth on A;

e if f C F is a sub-face of F, then u¢ := u + (¢ + SLF)log L restricts to the
relative interior of f as a smooth strictly convex function;

e if ¥ ¢ F isregular face, then u restricts to the relative interior of ¥ as a smooth
strictly convex function.

Remark 4.17 Just as cusps can be seen as limits of cone singularities with angle tending
to 0, one can observe that potentials of Sy g(A, L, F) appear as limits of symplectic
potentials associated to cone singularities (as in [36, §6.3]). One elementary example
is

1 1 1
u= (= x)log(l —x) + (Ex - E) logx €8y 1 ([0, 1LL, {0},  (43)
where L is the standard labelling of [0, 1]. This potential is the limit of the family
(us)r>1 ast — oo, where u; = %(1 —x)log(l —x) + %x log x + v, with v; smooth
on [0, 1] given by2

0, if t =1,
t

1 1 1 1 t—1 .
E(l_t)(x+ﬁ)bg(x—i_i)—i_[il()g(ﬁ)—i_T]’ if > 1.

v (x) =

2 For ¢ > 1, the additive constant is chosen so as to ensure good convergence properties, both for t — 1
and t — oo.
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With these notations, # is associated to the Fubini—Study metric on CP!, and Uy,
t € (1, 00), to a “tear-drop” metric on CP! with edge singularity at 0, of angle 27”

Our first observation concerning the potentials of Sy g(A, L, F) is the following
result, whose proof is given in Appendix A.

Theorem 4.18 Let (X, w) be a smooth, compact symplectic toric manifold with
momentum Delzant polytope (A, L) and F be a single facet of A. Then, for any
u € Sq (A, L, F), the metric (27) defines on X a T-invariant complex structure J
such that the momentum pre-image of F is a smooth divisor Z of (X, J), and (27) is
a Kdhler metric of Poincaré type on X \ Z.

Using arguments similar to those in [4] (see Appendix A for more details), one can
relate the spaces Sy (A, L, F) and S(A, L, F) as follows:

Proposition 4.19 The space Sy (A, L, F) is equivalently defined as the space of
smooth functions on A such that H* = (Hess(u)) ™! satisfies

o [smoothness] H* extends smoothly on A;
e [boundary conditions on F] for any x € F we have

Hi(er,e) = 0; (dH")x(eF,e) =0,
68 o3

2gyU _ E 3yyu _
(d"H")x(ep,er) = —ep Qep, (d"H")y(ep,ep) =——er”,
o a?

where ep = dLF is the inward normal to F defined by L, e is any vector in t, and
for a smooth function f ont, d* f denotes the kth covariant derivative of f with
respect to the flat affine structure on t¥, so that (d* fx € Sk(b);

e [regular boundary conditions] for any facet F, with inward normal e, which is not
in F, and x € F,,

H)’ﬁ(e,, e) =0; (dH")y(er,er) = 2e;

e [positivity] H” is positive definite on A, as well as on the relative interior of any
face X C A, viewed there as a smooth function with values in S (t/tz)* where
ty denotes the subspace spanned by normals to facets containing .
In particular, Sy g(A,L, F) C S(A,L, F).

Our next result shows that the extremality assumption in fact determines uniquely
the space Sy, g(A, L, F).

Proposition 4.20 Suppose u € Sy (A, L, F) is a solution of (35). Then the real
numbers «, B are determined from the data (A, L, F). Furthermore, the solution u is
unique modulo the addition of an affine linear function.

Proof The uniqueness partis standard aseach S, g(A, L, F) is alinearly convex space
and, choosing a reference point u’ € S, (A, L, F), we can consider the following
modification of relative Mabuchi functional (31):

det(H")
=L —uy— |1 —F |dpu.
Ma,L,p ) (aLF) (U —u) /A Og(det(H"’)) s
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The point is that Ma 1 F)(u) is well defined with values in (—oo, 00), asu —u’ is a
smooth function over A and det(H")/ det(H”/) is smooth and positive on A (the latter
fact follows from the arguments in Appendix A.2). An argument from [22,28] shows
that Ma 1, F)(u) is convex and its minima, which are unique up to the addition of
affine linear function, are precisely the solutions of (35).

The fact that s(a 1., F) — S(F,Lr) = const follows from [9, p. 44] when it is shown
that the extremal vector of Z equals the vector field induced on Z by the extremal vector
field of X \ Z. In the toric case, this condition reads as d ((s(a,L,F)) |z — S(F,Lr)) = 0.

It remains to determine (¢, 8) from (A, L, F), which will occupy the remainder
of the proof.

Step 1. Determining «. Let us choose a basis {ey, ez, ..., e,} of t (and {e], ..., e}
denote the dual basis of t*), by fixing a vertex v € F of A and taking e be the inward
normals to the facets meeting v with e; = ep (and therefore e;k, i =2,...,n are

tangent to F'). We assume furthermore that v is at the origin (so that F C {x; = 0})
and we write H" = (H;;) in the chosen basis, where H;;(x) are smooth functions on
A, see Proposition 4.19. As u is a solution of (35), we have

n
S(AL.F) = — Z Hij ij. (44)
ij=1

We denote by H" S2((t/tF)*) the induced smooth positive definite bilinear form
on F. It is easily seen (by continuity) that H" satisfies the boundary conditions of
Proposition 4.3 with respect to the labelling Lz of F, see [4, Rem. 1]. It thus defines
an almost-Kihler metric g, on F (which can be shown to be Kihler). With respect to

our choice of basis of t, we can identify t/tp = Rl = spangfea, ..., e,}, so that
we have H" = (H;j)F,i, j =2, ..., n. It thus follows that on F* we have
n
S(ALF) = — Z Hi; i
i j=1
n n
=—Hyn—-2Y Hjuij— Y Hji (45)
j=2 ij=2

n
2 > HY ——%+Scal(v )
= ijij = T4 8u)>
o ij=2

where we have used the boundary conditions of Proposition 4.19 (or equivalently the

form (118) in our compatible coordinates) in order to see that Hy; 1; = 0 on F for
J > 1. Tt thus follows that g, is an extremal almost-Kéhler metric on F' and

2

SALF) = S(FLp) ~ (46)
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Integrating over F, we thus have

2
- 2= / (SALF) — S5 .Lpy)dvE /VOI(F), 47)
F

which determines «.

Step 2: Determining S. In order to determine §, notice that (see (15)) at each point
p € F, we have e; A dvp = —du where we recall that we have set ¢y = dLf = eF.
Furthermore, with our choice of basis we have (e; A dvp) =0for j =2,...,n. We
thus have, using (44),

n
(dsa,L,Fy Ndvp) = Z Hijiji(p) | du = cdp
Q=1

for a real constant ¢ = c(A, L, F) determined from the polytope (A, L, F). In other
words,

n
Y Hijiji

C =
ij=1 F
n n
= (Hian)p+2 (D Hiyug |+ D Hijai (48)
6ﬂ n n
=- +2 ZHlj,llj + Z Hij1ij |
j= F L,j=2 F
where in the last line we have used (Hi1,111)F = —2—’2, see Proposition 4.19. We are

going to integrate (48) over F, and to this end we are going to use the integration by

parts formula
n
/ Z Vj.jdvr = — Z / (V,ex)dos, (49)
Fi5 b

TCF
where F belongs to the hyperplane x; = 0 of t*, a smooth function V on F is
seen as a smooth function of the variables (x», ..., x;), the sum is taken over the
facets ¥ of F with inward normal ey € t/tp = R = spangfea, ..., e,}, and
the induced measures doy;, are constructed from the label polytope (F, Lr) via (15).
Thus, integrating (48) and using (49) give

68
(c+p>Vol(F):_2 > /2(1'7’(61792)),11‘1"E

YedF

N Z /):Z(H(eivez)),udaz.
i—2

YedF

(50)
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We recall that in (50), o and ¢ have been already defined in terms of (A, L, F), so in
order to define f it will be enough to show that each of the two sums at the right-hand
side of (50) can also be defined by (A, L, F).

We first deal with the term fz (H(el, 62))’11(10'2. Notice that if ¥ is a facet of
F which meets the chosen vertex (= the origin), i.e. if X belongs to {x; = 0,x; =
0}, j > 1, then ((Hlyez),ll)m = (Hlj,ll){xlzo,xj:O} =0 by the expansion (118) of
H;j near X. For a general facet X of F, welet P C 0 A be the unique other facet of A,
such that ¥ = F N P and denote by ef, ep the corresponding inward normals. Thus,
ty = spang{er, ep} is the annihilator of 7,% C t* (where p in a interior point for
%), equipped with a natural basis {eF, ep}. For any two vectors ¢/, ¢ € t, the function

H"(¢', ¢) is smooth on A and we denote by Hess(H” (¢, e”)) its Hessian at p € A,
P

computed with respect to the affine structure of t*. Thus, Hess (H“ (e, e )) e S
p

and with respect to the chosen basis we have
Hij i (p) = <e,’§ ® ey, Hess(H" (e;, ej))p>-

Using the boundary conditions of Proposition 4.19, we notice that for any e € ¢,
dH"(er, e) = 0 along F, and hence along X. It thus follows that for each interior

point p € X, the symmetric bilinear form Hess(H” (er, e)) degenerates on T, X, or
p

in other words, for each p € X, Hess(H” (er, e)) has values in ty ® ty. Using the
P
basis {ef, ep} of tx, we have a natural decomposition at each point of X:
Hess(H”(eF, e)) = (H"(er, e)) epep €F ®€F
+ (H"(er, ¢)) (er ®ep +ep®er)

+ (H"(er, ¢))

,erep

eeeP@eP

By choosing a vertex of A which belongs to X and a basis as above, and letting
e =), aje; the coefficients above become

(H'(er, 0) . _Z“'Hl' 11

n

(H" (er, ) erep ZaiHli,lj,

i=1

(H"(er, e)) epep Zath Jis

where the index j > 1 is determined by ¥ C {x; = 0, x; = 0}. Using the boundary
conditions of Proposition 4.19, which are equivalently expressed by the form (118) of
H" near X, we obtain that on X
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2 2
Hess(H" (¢er, er)) = Ser®er=_e1®el

Hess(H" (e, ep)) = 0.

(S

Similarly, using the constancy of dH" (ep, ep) along ¥ C P and (118) with respect
to a suitable basis, we also conclude that

Hess(H“(ep, ep)) = (Hu(ep, ep)) epRep. (52)

.epep

Turning back to the term [y, (H(e1, ex)) |,dos, we notice that the definition of the
normal ey, in the expression Hj,.y 11 uses the initial basis {ey, ..., e, }. Indeed, decom-
posing

n
ep = E ciei,
i=1

we have thatexy, = ep —cje] = ep —crep where c; = ¢1(X) = —ep Advp/duisa
constant determined by the polytope (A, L, F) and the facet X of F. It thus follows
from (51) that on X

H(ej,ex) 11 = <€T ® e}, (H" (e, ep) — ciH" (ep, eF))>
. 2c

’
o

and therefore
2c1(2)

(H(el, 62)) 11d0’2 = — Vol(%). (53)
s ,
We have thus shown that the first sum in (50) only depends on (A, F, L).

We now deal with the terms fz Yo, (H(ei, ex)) 1;doy in the second sum of (50).
First of all, notice that on F', the expression

n n

Z (H(ei,ex)) i = Z(e;k ® e}, Hess(H" (¢;, 62))>

i=2 i=2

does not change if we replace the initial basis {e; = efr,ea, ..., e,} of t with a
basis of the form {e; = eF, ez, ..., e,} with ¢; € spang{ez,...,e,} = R for
Jj =2,...,n. We can thus assume that, on a given X, we have chosen the basis with
e> = ex € R""!, and use then the integration by parts formula (49) to write

/ZZ(Hw,-,ez)),udoz =/):(H(62,62)),12d02 - /fH(ef,ez>,1dof,
i=2

fedx
(54)
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where the sum is over the facets f of X (taken to be zero if n = 2), ¢ is the induced
inward normal of f, seen as an affine hyperplane of the affine space supporting X, and
doy is the corresponding induced measure on f C ¥. With these choices, we have

(H (e2, ez) <e1 ® €5, Hess(H" (ex, e):))>
<€] ®€2,H6SS H (ep — crep,ep — cleF))>

= <e1 ® €5, Hess(H" (ep, ep))>
=H"(ep, ep).cp.eplef ®e3, (cre1 + €2) ® (cre1 + €2))

=ciH"(ep, ep) epep

for the same constant ¢; = ¢ (X) as above. In order to compute the (base independent)
quantity fz H"(ep, ep), ¢pepdos, we are going to re-introduce a basis {e; = ep, e2 =
ep,e3,...,e,} with respect to a vertex of v € A. In this basis, H*(ep, ep) cpep =
Hj3 22. A computation along the lines of (45) yields

/ S(F,Lp)dos Z/ ( Z Hij, lj)dUE
D)

i,j=2

n
= /z (Scal((gu)z) — Hyp o — Z 1‘12/,2./>daZ

j=3

=/ (S(E Ly) — H2 22>d02 + > /H(ez,ef) 2do,
z

fcox

where Scal((gu)|g) = — Zf =2 H;j ;j is the scalar curvature of the almost-Kéhler
metric (g,)|s induced via H* on the pre-image of ¥, and for passing from the second
line to the third we have used that [y Scal((g,)|z)dos = [5 s(z.Ly)dos (see [22,
Lem. 3.3.5]) and (49) applied to (¥, Ly). Note that in the last term (which is con-
sidered trivially O when n = 2), the sum is over the facets f of X, and ef denotes the
corresponding inward normal of f (when considered as an affine hyperplane of the
subspace {x; = 0, xo = 0}). We thus have

/ H"(ep, ep).epepdos —/ (Sz.Ly) — S(F,Lp))dos + Z /H(ef,ez) 2dot,
)

fcox

in an (F, ¥)-compatible basis with e; = ef,e> = ep. Notice that in any such a
basis, we have et = ep — creF — czep = eg — c2e1 — c3ez, where eg is the
normal of the unique facet O C A, such that F N P N Q = f. Here, the constants
2 = (X, f) = —ep Advp/(du) and 3 = 3(Z,f) = —(eg A dvp)/(dp) are
determined in terms of (A, L). In particular, we have on f
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Her,e2) 2 = <€§, dH"(ep,eg — crer — C3€P)>

= —cs(es, dB"(ep, ep)

= —2c3(e5, ep) = —2c3(e5, e — 2) = —2c3,
where we have used the first-order boundary conditions along f (see Proposition 4.19):

(dH”(eF, e))‘f =0, Ve et, (dH“(ep, eQ))‘f =0

" " (55)
(dH (ep, ep))‘f = 26}), (dH (eQ, eQ))lf = 2eQ.
To summarize, we have shown that
/ (H(EZa 92)) lzdo'z :C](Z) <f (S(E,L):) - S(F‘LF))do—2

b)) ’ )

(56)
23" C3(E,f)Vol(f)>.
fcox

Finally, we deal with the terms ff H (et, ex) 1dot in (54) (where werecallf C ¥ C
F is sequence of co-dimension one sub-faces). Using (55) again, we have along f

H (e, ex) 1 = <e’f, dH"(eg — c2er — c3ep, ep — 01ep)>
= 2cic3(ey, ep)
=2cic3{e], e2 +crer) = 26‘%6‘3,

where for passing from the second line to the third we have used that we choose in
(54) abase withe; = ep,er = ey = ep — clep = ep — cyej. It follows that

Y Hier, ex).1doy = (c1(2)) (ch(x f)) (57)

fcox fcx

Substituting (56) and (57) back in (54), and (53), (54) and (47) back in (50), we obtain
an expression for 8 in terms of (A, L, F). O

Remark 4.21 (1) Theorem 4.18 and Proposition 4.20 extend without difficulty to the
case when F = F{U- - -UFy is aunion of non-intersecting facets, i.e. Z is a smooth
toric divisor. In general, it is natural to extend Definition 4.16 by introducing a
pair of real numbers (¢;, §;) for each facet F; C F and, for each face f C F, one
should require the smoothness and convexity over the relative interior of f of the
function

uf == u + Z (o; + BiLi)logL;.
F,eFACF;
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It will be interesting to see whether or not the above statements hold true for a
general toric divisor as above, with respect to such spaces of symplectic potentials
(compare with Conjecture 4.14).

(2) The explicit examples in the next section suggest that the complete Donaldson
metrics will have, more generally, symplectic potentials u# such that

1
=3 Z Li(x)log Ly (x) + Z fi(x)log Lj(x) | 4+ smooth terms,
Fi¢F F;eF

where, for any facet F; € F, f; is some affine function.

(3) As we noticed in the course of the proof of Proposition 4.20, the situation sim-
plifies when n = 2. In fact, one can then explicitly determine (c, 8) as follows:
suppose (without loss of generality) that (A, L, F) is such that A C {(x1, x2) :
x1 > 0,x2 >0, £ —x2 — Ax; > 0}, F corresponds to the affine line x; = 0,
whereas the two adjacent facets of A to F are defined by the affine lines xp = 0
and £ — xp — Ax; = 0. Suppose, furthermore, that the extremal affine function
of (A,L, F)is s(aL,F) = ao + a1x1 + axx2. Then the real parameters («, 8) of
Proposition 4.20 are given by

20 p a? N 2hap 12
o= —, =—\a — = —].
4—al 6 \''T Ty 2

4.4 Uniform Stability

In the seminal work [22], Donaldson also introduces the notion of uniform stability
of a compact convex simple labelled polytope (A, L). This has been later extended in
[45] to the general (non-toric) context.

Following [22], let C(A) denote the set of continuous convex functions on A (con-
tinuity follows from convexity on the interior of A). The affine linear functions act on
C(A) by translation and let 4 (A) be the slice for this action consisting of f € C(A)
such that f(x) > f(xo) = O for a fixed reference point xo € A Then any f in C(A)
can be written uniquely as

f=n(f)+¢g.

where g is affine linear and 7 (f) € 4 (A) for a linear projection 7. Functions in c (A)
are said to be normalized.

Let || - || be a semi-norm on C(A) which indices a norm on C(A), which is tamed
in the sense that there exists C > 0 such that on C (A)

1
1] - <.l <Cl||- ,
C” ||1_|| ||_ || ||oo
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where || - || := fA || dvis the L'-norm and || - || is the C°-norm on C(A). One can
take ||-|| to be the L”-norm for some p > 1 asin [45], but Donaldson considers instead
the boundary norm || f||p := faA fdo (and shows it is tamed [22, Lemma 5.1.3]).

Definition 4.22 A labelled compact convex simple polytope (A, L) is called uniformly
stable with respect to the a tamed norm || - || if

Liany(f) = M (HIL (58)

for all piecewise affine linear convex functions f, where £ 1) is the linear functional
introduced in Definition 4.4.

The uniform stability is, a priori, a stronger condition than the stability of (A, L)
introduced in Definition 4.4. In [16], Chen, Li and Sheng have strengthened Proposi-
tion 4.5.

Proposition 4.23 [16] If (A, L) is a labelled compact convex simple polytope such
that the Abreu equation (30) admits a solution in S(A, L), then (A, L) is uniformly
K-stable with respect to || - ||p.

We notice that the above result implies that (A, L) is also || - ||;-uniform stable as
[| - ||p is tamed. The 2-dimensional case appears to be special as Donaldson shows
in [22, Prop. 5.2.1 and 5.3.1] that if the corresponding extremal affine linear function
s(a,L) 1s strictly positive on A, then (A, L) is K-stable if and only if it is uniformly
K-stable with respect to || - ||.

As the space of convex piecewise affine linear convex functions is dense in C(A)
for any tamed norm, it follows that for a uniformly stable labelled polytope (A, L) the
inequality (58) holds true for f € C(A) and, in particular, for any symplectic potential
u € S(A, L). Using this and an argument from [22], Zhou and Zhu have established
in [50] the following key result.

Proposition 4.24 [50] If (A, L) is uniformly stable with respect to || - ||, then there
exists § > 0 and C such that

M) = 8||lmr@)|| + C forallu € S(A, L), (59)

where M a L) is the relative Mabuchi functional introduced in (31).

Remark 4.25 The above result is established in [50] for the norm || - ||, (the case § = 0
is due to [22]). The extension to any tamed norm appears in [13].

The importance of the uniform stability discussed above has manifested recently in
connection with the notion of d; -relative properness of the (relative) Mabuchi energy
used by Chen—Cheng in their deep work [15], and in its extension to the extremal case
found by He [33], who show that the latter is a sufficient condition for the existence
of an extremal Kéhler metric. More precisely, in the toric setting, it turns out that
on a Delzant polytope (A, L) the condition (59) with respect to the (weakest) tamed
norm || - ||1 yields that the relative di-properness of the relative Mabuchi energy on
the corresponding smooth toric variety X (see e.g. [3, Sect. 7.1] or [37] for a detailed
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argument) which in turn leads to the following result, generalizing and extending the
results in [17,25] to arbitrary dimension:

Proposition 4.26 [15,17,25,33] Suppose (A, L) is a uniformly stable Delzant polytope
with respect to || - ||1. Then the (30) admits a solution in S(A, L).

In the light of Proposition 4.26, one might consider in Conjecture 4.14 the uniform
stability for the triple (A, L, F') and the corresponding facets in F (with respect to the
norm || - ||1) instead of the weaker notion of K-stability introduced in Definition 4.10.
As a matter of fact, when Z is a smooth toric divisor, the arguments in the proof of
Theorem 4.13 and Proposition 4.23 imply that the uniform stability of the Delzant
facets in F is a necessary condition for the existence of an extremal Poincaré type
metric on X \ Z. However, extending Proposition 4.23 to the triple (A, L, F) is not
obvious. Indeed, the arguments in [16] rely on the boundary norm || - ||, which
is not longer tamed if we integrate over dA \ F. Another issue is the extension of
Proposition 4.24 as the space Sy, (A, L) no longer embeds in C(A). Finally, it is not
clear whether the properness of the relative Mabuchi energy can be used to obtain a
solution in the non-compact context.

We end the discussion by noticing that the assumption that (A, L, F) is || - ||1-
uniformly stable is natural if one tries to approach the existence of an extremal Kihler
metric of Poincaré type on the corresponding toric variety X \ Z, via the continuity
method of [24]. Indeed, assuming that (A, L, F) is ||| -uniform stable implies that so
will be the labelled convex compact polytopes (A, L;) for ¢+ > 0, where the labelling
L, is obtained from L by replacing L; with ¢L; for each defining function L; of a
facet F; C F. The resulting polytope (A, L;) describes a toric variety X with an edge
singularity of angle 2 /t along the components of the divisor Z, see [36, Prop. 6.4]. If
Proposition 4.26 can be extended to toric varieties with such edge singularities, then
one could find a solution u#; € S(A, L;) of (30) for each ¢ big enough, and try to show
that there exist affine linear functions g; such that u, + g, converges as t — oo to a
solution of (35) in the space Sy (A, L, F). It can be checked explicitly that such a
convergence does hold for some of the examples discussed in this section and the next
one. For instance, the potentials u, of Remark 4.17 actually give rise to edge singular
extremal metrics on C P! and converge, as the angle of the singularity 277 /¢ goes to 0, to
the symplectic potential # extremal of (43), itself associated to a Poincaré type metric
on CP'\{0}. Similarly, the Poincaré type extremal metric on CP> \ CP! described
in Theorem 5.13 was originally discovered in [2] as a smooth limit of Bochner-flat
metrics on weighted projective spaces. Another motivating example for this approach,
beyond the toric context consider in this paper, is the work of Guenancia [29] which
produces Poincaré type negative Kihler—Einstein metrics as limits of Kdhler—Einstein
metrics with edge singularity.

5 Explicit Donaldson Metrics on Quadrilaterals

We will show in this section, by using the explicit constructions of [5,6], that Conjec-
ture 4.11 is true for X = CP?, CP! x CP! or the mth Hirzebruch complex surface
Fy =P(O ® O(m)) - CP',m > 1.
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By [5, Thm. 1 and Rem. 7], any stable compact convex quadrilateral (A, L, F) in
R2 admits a Donaldson metric, which is explicit and ambitoric. Dixon [21] showed
that when (A, L, F) corresponds to a compact toric complex orbi-surface X with a
divisor Z, the metric is complete on X \ Z. In other words, Conjecture 4.11 holds
true for compact toric surfaces whose momentum polytope is a quadrilateral. On the
other hand, a detailed study of the stability of the triples (A, L, F) was carried out by
the third named author in [40]. In the next subsections we shall combine these results
in order to obtain a complete picture in the case when X = CP?, CP! x CP! or
PO & Ok)) — CPL, ie. (A, L) isaDelzant triangle, parallelogram or a trapezoid.

5.1 Ambitoric Structures

Here we briefly review the explicit construction of extremal toric metrics for n = 2
via the ambitoric ansatz of [6].

Definition 5.1 An ambikiihler structure on a real 4-manifold or orbifold M consists
of a pair of Kéhler metrics (g4, J4, wy) and (g—, J—, w_) such that

e g and g_ induce the same conformal structure (i.e. g_ = f2g, for a positive
function f on M);
e J. and J_ have opposite orientations (equivalently the volume elements %w+ Ao

and %a), A w_ on M have opposite signs).
The structure is said to be ambitoric if in addition

e there is a 2-dimensional subspace t of vector fields on M, linearly independent on
a dense open set, whose elements are hamiltonian and Poisson-commuting Killing
vector fields with respect to both (g4, w4) and (g—, w_).

Thus M has a pair of conformally equivalent but oppositely oriented Kihler metrics,
invariant under a local 2-torus action, and both locally toric with respect to that action.
There are three classes of examples of ambitoric structures.

5.2 Toric Products

Let (X1, g1, J1, w1) and (22, g2, J2, wp) be (locally) toric Kdhler manifolds or orb-
ifolds of real dimension 2, with hamiltonian Killing vector fields K and K>. Then
M = X x ¥, is ambitoric, with g+ = g1 D g2, J+ = J1 B (£/2), v+ = w1 D (Lwy)
and tspanned by K and K»>. The metric g is extremal (resp. CSCK) iff g_ is extremal
(resp. CSCK) iff both g and g» are extremal (resp. CSCK). Writing (X1, g1) and
(X2, g2) as toric Riemann surfaces

2 2

d
+ AR g = —>— + B(y)di2,

817 A B(y)

for positive functions A, B of one variable, and momentum/angular coordinates
X1 =x, xp=Yy, 11, 7,
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the extremal metrics are given by taking A and B to be polynomials of degrees < 3. In
this case, we obtain solutions to Abreu’s equation on labelled parallelograms (A, L, F)
(which are affine equivalent to a square) by taking

HA8 = diag(A(x), B(y)) (60)

for A and B polynomials of degree < 3 and noting that the positivity and boundary
conditions of Definition 4.6 reduce to A > 0 on (g, ¢x), B > 0 on (B, o) and

Alw) =0=B(Br) =0, A'() = —2rak, B'(Br) =2rpx (k=0,00),
(61)

where 140 < 0 < 74,00, 78,0 = 0 > 74 o0 are determined by the choice of inward
normals ey = ﬁ(—l, 0) (resp. egx = rﬂLk(O, 1)) if the facet Fy (resp. Fg k)
defined by x = oy (resp. y = Bx) does not beléng to F,and ry x = 0 (resp. rg x = 0)
otherwise. The above boundary conditions can be solved for polynomials of degree
3, A(x) and B(y), if and only if |ry 0l + [re,c0ol > 0 and [rgol + |7g,c0l > 0, ie.
iff no two opposite sides of A belong to F': in this case, the positivity of A and B
automatically follows from the boundary conditions. On the other hand, when two
opposite sides of A belong to F there is no solution to (35) verifying the positivity
condition. Indeed, if 74,0 = ro, 00 = 0 say, then HA S = diag(A(x), B(y))withA =0
and B(y) a polynomial of degree < 3 determined from (61). This provides a formal
solution of (35). The latter can be used (by using integration by parts, as in [5,35]) to
compute that La , r(f) = 0 for any simple crease function f, with crease at x = «
(o € (ap, aoo)), showing that (A, L, F) is not stable in this case.

Whenever it exists, the solution u 4 p is determined from (60) by the formula

_/x fs dr d /y /S dr d

which leads to the intrinsic expression

1
MA'BZE Z LjlogL;— ZaklogL,i . (62)
FjedA FreF

where, for each facet F; € dA\ F, L;(x) = (ej, x) + A; is the corresponding label
from L and, for each F; € F, we define the label L{ (x) := (ex, x) + Ax by requiring
that ex := —ep = —dLj where Lj is the label form L of the opposite side F; to Fy
(by the discussion above, F; € 0A\ F)and letay := Ly + L; > 0 be areal constant.

We notice that when the solution exists, the degree < 3 polynomials A(x) and B(y)
must satisfy A”(x) = A”(ax) > 0 (resp. B”(y) = B”(Br) > 0) on facets in F. The
formula for the scalar curvature

s+ =—(A"(x) + B"(y)

then confirms that s(a 1, F) — S(F.Lp.F) restricts to F as a negative constant.
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We conclude that

Proposition 5.2 Let (A, L, F) be a labelled parallelogram in R%. Then the Abreu
equation (35) admits a solution in S(A, L, F) iff F does not contain opposite sides.
In this case, there exists a solution explicitly given by (62).

Turning to the compact smooth case, there exists only one compact complex toric
surface whose Delzant polytopes are parallelograms, namely X = CP! x CP!.
The result above trivially produces products of a cusp metric on CP! \ {pt} with a
Fubini-Study metric on another copy of CP!, or the product of two cusp metrics on
(CP\ {pt}) x (CP'\ {pt}), according to whether Z ¢ CP' x CP! is a copy of
CP! (i.e. F is a one facet) or is the union of two copies of CP! (i.e. F consists of two
adjacent facets). We thus can conclude that

Corollary 5.3 Let X = CP! x CP! endowed with the product of circle actions on
each factor, and Z be either CP! x {p2} or (CP! x {p2}) U ({p1} x CP') where p;
and p; are fixed points for the S' actions on each factor. Then, in each Kihler class of
CP! x CP!, there exists a complete extremal Donaldson metric on CP' x CP'\ Z
which is of Poincaré type.

If Z contains (CP! x {phhHu (CP!' x {P5}) where p)y and p} are the two distinct
fixed points for the S U action, then (X, Z) is K-unstable, and admits no extremal
Donaldson metric at all.

5.3 Toric Calabi Type Metrics

The construction in this section is not new, see e.g. [34]. For the sake of completeness,
and to make the link with toric geometry more explicit, we follow the formalism from
[6].

Let (%, g, J, w) be a toric real 2-dimensional Kéhler manifold with hamiltonian
Killing vector field V (with momentum y). Let 7: P — X be a circle bundle with
connection 6 and curvature d0 = 7*wy, and A(x) be a positive function defined on
an open interval I C R™. Then M = P x I is ambitoric, with

wr =x(wx £x7Mdx A 0),  Ji(xdy) = £A(X)6,

and the local torus action spanned by the generator K of the circle action on P and
the lift V. = v + yK of the hamiltonian Killing field of (¥, gx, wx) to M. Here,
x: M — RT is the projection onto I C R™. It is easily seen that g is extremal
(resp. CSCK) iff g_ is extremal iff (X, g) has constant Gauss curvature « and A(x)
is a polynomial of degree < 4 with coefficient of x> equal to «. Because of this
equivalence, we shall focus on (g4, w4 ), say.

Writing the toric metric (gy, wx) in momentum/angle coordinates as

dy? 2
s = —— + B(y)di}, wyx =dy Adn, (63)
T R ’
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for a positive function B(y), the Kihler metric (g4, w4 ) becomes (see [35])

dx? dy?  A(x)

= dt dn)? + xB(y)dz?,
g+ xA(x)+xB(y)+ . (dty + ydr2)” + xB(y)dt; 64)
w4 =dx Adty +d(xy) Adfp = dx; Adeyp 4+ dxp A dip,
with
(x1, x2) = (x, xy) (65)

being the momentum coordinates and (¢, #2) the angular coordinates. The correspond-
ing symplectic potential is then

y N d X s d
MA,B(st):x/ (/ th))ds—i—/ </ %)ds. (66)

In order to obtain functions in S(A, L, F) for some compact convex labelled poly-
tope (A, L, F), we fix the data of real numbers

0=<B0<PBoo 0<0p <o, 70,0 <0 <7400, 78,0 >0 >7g00 (67)

and impose the following positivity and boundary conditions on the smooth functions
of one variable A(x) and B(y)

A(x) > 0on (x, o) and B(y) > 0 on (By, Boo), (68)

Aag) =0, A'(ax) = —2rqk, B(Bx) =0, B'(Bx) = —2rgk, (k=0,00). (69)

Note that the line {x = «} transforms in the (x|, x3)-coordinates (65) to the affine line
Ly = {(a, x2)} with normal p, = (,0) and y = B (B > 0) to the affine line {5 =
{(x1, Bx1)} with normal pg = (=g, 1). Thus, the image of D = [ap, cto] X [Bo, Bool
under (65) is a trapezoid A with facets Fy x, Fg  determined by the lines £, , £g,,
and the inverse Hessian HA2 of u 4 p is given by

A _ 1 [AKX)  yAx)
H ‘§<yA<x) x2B<y>+y2A<x))' (70

We write for the normals ey x = po; /Tak, €k = Pp./78.k- Then, HA-B satisfies the
smoothness, positivity and boundary conditions (32)—(33) iff 7o x = O (resp. rg x = 0)
on a facet Fy i € F (resp. Fgx € F).

Conversely, by [35, Lem. 4.7], if (A, L, F) is a labelled trapezoid, there exist real
numbers o, ok, k (k = 0, 00), subject to the inequalities (67), such that A the image
of D = [ap, ttoc] X [Bo, Bool under (111, (2), and r i are determined from the normals
L and F as explained above. It is easily seen [35, Prop. 4.12] that (70) satisfies (35) if
and only if A(x) is a polynomial of degree < 4, and B(y) is a polynomial of degree
< 2, which satisfy

A"(0) + B"(0) = 0. (71)
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For such polynomials to satisfy (69), one must have 750 = —7g,00c = r > 0. This
is also a sufficient condition to determine the polynomials A(x) and B(y) from (69),
subject to the relation (71). In particular, B(y) = M( y — B1)(Boo — ), showing
that the positivity conditions (68) imply r > 0, i.e. rgx # 0. This also implies
positivity for A(x) on (g, @xo): otherwise A(x) will have all of its roots between
[eo, aoo] and, by the boundary conditions (69), it must satisfy lim,_, oo A(x) = —00.
The latter contradicts A”(0) = —B”(0) > 0. The corresponding Kéhler metric has
scalar curvature
A"(x) + B"(y)
S ,
showing that the extremal affine function s(a 1, r) determines an affine line parallel
to Fy,0 and Fy . Conversely, the proofs of [35, Lem. 4.2, Thm. 1.4] show that if
(A, L, F) is a labelled trapezoid (A, L, F) which is not a parallelogram, and the
extremal affine function s(a 1, ) is constant on each of the pair of parallel facets of A,
then one can associate to (A, L, F) data (67) satisfying the relation rg.0 = —rg,c0 =
r > 0. The case r = 0 (i.e. when two opposite non-parallel facets of A belong to F')
implies B(y) = 0. As observed in [45], and similarly to the case of a parallelogram,
this contradicts the stability of (A, L, F)). Indeed, substituting in (70), we still obtain a
smooth matrix H4'Z on A verifying (35) and the boundary conditions of Definition 4.6.
This can be used to compute La 4, ) ( fo) for a simple crease function f, with crease
on the line £, = {x = «}: integration by parts reduces to an integral over the crease
of the quantity HA’O(pa, Do) = 0, showing that LA L. F)(fa) = 0,1.e. (A, L, F) is
not stable. We summarize the discussion in the following:

Proposition 5.4 [35,45] Let (A, L, F) be a labelled trapezoid in R2 which is not a
parallelogram. Suppose that the corresponding extremal affine function s L, F) is
constant on each of the pair of parallel facets of A. Then (A, L, F) admits a solution
to (35) in S(A, L, F) if and only if (A, F) is stable, if and only if F is one or the
union of 2 of the parallel facets of A. In these cases, the solution is of Calabi type, i.e.
given by (66) for polynomials A(x) and B(y) as described above.

In order to derive further geometric applications, we use [35, Cor. 1.6] which iden-
tifies the choice of labels L of a given trapezoid A for which sa 1, F) is constant on
each of the pair of parallel facets with one single linear constraint on the pair of inward
normals to non-parallel facets. Up to an overall positive rescaling of L, this fixes the
choice of these normals, but leaves no constraint on the pair of normals corresponding
to the parallel opposite facets. In our notation, this corresponds to fixing the boundary
condition for B(y) and allowing ro.0 < 0 < ry ~ to be arbitrary real numbers. It thus
follows that if (A, L) is a labelled trapezoid for which the corresponding extremal
affine function sa 1) is parallel to the pair of parallel facets, then, by taking F' to be
either one or two of the parallel facets of A, the extremal affine function s(a 1, r) must
also be parallel to the pair of parallel facets. We now apply this observation to Delzant
trapezoids (A, L).

The compact toric complex surfaces X for which the Delzant polytopes are trape-
zoids (but not parallelograms) are the Hirzebruch surfaces F,, = P(O & O(m)) —
CP!, m > 1. Calabi [12] has shown that these surfaces admit extremal Kihler metric
of Calabi type in each Kihler class. In particular, the extremal affine functions are
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always constant on the pair of parallel facets of the corresponding Delzant polytopes.
Thus, Proposition 5.4 yields the following natural extension of Calabi’s result.

Corollary 5.5 Let X = F,, = P(O & O(m)) — CP! be the mth Hirzebruch surface
and Z C X the divisor consisting of either the zero section Sy, the infinity section
Soo or the union of both. Then X \ Z admits a complete extremal Donaldson—Kdhler
metric in each Kdhler class of Fy,. Furthermore, this metric is of Poincaré type.

Proof The only additional clarification we need to supply is whether the explicit
extremal Calabi type metrics are of Poincaré type. This follows from the expression
(70), noting that the only the facets F,  are in F, and on such a facet (hav-
ing normal vector (o, 0)), the boundary conditions of Proposition 4.19 reduce to
Aag) = A'(ax) = 0 and A" (o) # 0. If these hold, the extremal Kéhler metric of
Calabi type is manifestly in some class Sy, (A, L, F), and thus is of Poincaré type
according to Theorem 4.18. The vanishing conditions are always satisfied. The only
condition we need to verify is A" (ax) # 0. To this end, we describe the solutions
explicitly.

Letting

ap=1l, 000 =a> 1,744 =0,

(73)
Bo=0,Boc =m,1g0=—Tp 00 =1,
we obtain in the case Z = Sp U S, an extremal Kédhler metric on X \ Z given by (64)
with

2
B(y) = ——y(y =m), Ax) = — x—D*x—a)? (74

m(a? +4a +1)

where a > 1 parametrizes (up to a scale) the Kihler cone of F,,. This is a complete
extremal Kéhler metric defined on the total space of the principal C*-bundle over
CP! classified by c1(O(m)) € H*(CP', Z), with cusp singularities at 0 and co. The
conditions A”(1) # 0 # A"’ (a) obviously hold.

Similarly, when Z = Sy say, for the same choice of ay, Bx the extremal solution is
given by (64) with

2
B(y) = ——y(y=m), Ax) = —(px +q)(x = D’(x —a), (75)
where the constants p, g are given by

2 (ra,oc(a"rz) _ l)

@12 m

(@ +4a+1)

Ta,00(2a+1)
2 (255" + 1)

@ +4a+1)

p =
(76)

q:

Such a metric compactifies smoothly at S, precisely when the real parameter ry 00 =
1, which gives the complete extremal Kihler metrics in Corollary 5.5; for other values
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of ry,00 > 0, one gets a complete metric on X \ Sp with a cone singularity of angle
27 Fy,00 along Seo. Now, the condition A” (1) = 0 is equivalent to p = —q. With
Ta,0o = 1, this reads as

3ma+ 1)+ @—17°=0,

which is impossible for a > 1.
The case of Z = S can be treated similarly. O

Remark 5.6 As a special case of the ansatz (75), one can construct CSCK metrics

2
by putting ry.00 = m"(;lr)z) (i.e. setting the coefficient p in (76) to be zero). For
each m > 1, this defines a CSCK metric on F,, \ Sp, in each Kéhler class of [,

(parametrized by @ > 1) with a cusp singularity along Sp and a cone singularity of
angle 27r< (a—1)* ) < 27 along Seo.

ma(a+2)

5.4 Regular Ambitoric Structures

Let ¢(z) = qoz> +2q1z + g2 be a quadratic polynomial, M a 4-dimensional manifold
with real-valued functions (x, y, 79, 71, T2), such that x > y, 2q171 = qoT2 + ¢270,
and at each point of M, the 1-forms dx, dy, dto, dr1, drp span the cotangent space. Let
t be the 2-dimensional space of vector fields K on M satisfying dx(K) = 0 = dy(K)
and dt;(K) constant. Then, for any smooth and positive functions of one variable,
A(x) and B(y), defined on the images of x and y in R, respectively, M is ambitoric
with respect to t and the Kihler structures

+1 2 2 2
X — dx d dtg + 2ydr; +d1m\2
eom (A2 ) (2 92 (P et i

+
q(x,y) A(x)  B(y) (x = y)g(x,y)
2
x“dtg + 2xdr; + dm\2
+Bo)( ) ) )
(x =¥»qx,y)
s = < x—y )il dx A (y2d1p + 2ydr) + dr) £ dy A (x2d1 + 2xd1) + do)
q(x,y) (x = y)q(x, y) '
2 2
dro+2ydr; +d dro + 2xdr; +d
Jedy = Ay oroteydntdn g g gyl exdn +dn
(x —y)q(x,y) (x =¥»q(x,y)
(78)

where g (x, ¥) = qoxy + ¢q1(x + y) + ¢q>. The metric g is extremal iff g_ is extremal
iff
A(2) = q@)7(z) + P(2),

B(z) = q(@)n(z) — P(2),

where 7(z) = moz? 4+ 2m1z + 7 is a polynomial of degree at most two satisfying
2191 — (@210 + goma) = 0, and P(z) is polynomial of degree at most four.

The space of Killing fields of g+ for the torus is naturally isomorphic to the space
of Sé, q of polynomials p(z) of degree < 2 which are orthogonal to g with respect

(79
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to the inner product (-, -) defined by the discriminant, i.e. p(z) = poz2 +2p1z+ p2
satisfying

(p.q) =2p1q1 — (q2p0 + qop2) = 0.
The space Sg’ q is in turn isomorphic to the quotient space S%/{(g) of all polynomials of
degree < 2 by the subspace generated by ¢, by using %adq with respect to the Poisson
bracket

adg(w) = {g, w} =q'w —w'g

on S2. Thus, if {p1, p2} is a basis of S;,o and {wq, wy} the corresponding basis of
$2 /{q) (with p; = %{q, w; }) momentum/angular coordinates for g+ are given by

x5 =wix, »)/q(x.y), 4, (i =1,2)

_ . (80)
x; =pilx, )/ (x =y, ti, (i =1,2).
It follows that the lines x = « (resp. y = ) transform to lines ¢ = % =0
resp. = —E2 " inthe (x|, x ane, which are tangent to the non-degenerate
(resp. £ = S0P yinthe (x]", x; ) pl hich g he non-deg
G—a)g(y,@)

2
conic C} C t* corresponding to (q’zx)'; )> = 0; similarly, £, = ) (resp.

Elg = %q)(xﬂ)) are lines in the (x, , x, )-plane (correspondingtox = ¢ and y =
in the (x, y) plane) which are tangent to the (possibly degenerate) conic C* C t*

defined by ( glx.y )> = 0. In both cases, the corresponding normals are

Pa(2) = q(a, 2)(z —a); pp(z) =q(z, f)(z = p), 1)

viewed as elements of Sg .

It is straightforward to compute the matrix Hi’B of g4:

AX)piYp;(y) + B(y)pi(x)pjx)

HAE (o pi) = ’
R (= a0, ) @)
HYB (i p) = AX)pi(Mpj(y) + BY)pi(x)p;(x)
o (@ = y)q(x.y)? ’
whose inverses are the Hessians in momenta of the symplectic potentials
i (t—x)(t— y)dt /‘ 2(t — x)(t — y)dt
) + —
“Apth )= [ Ca@ AN 4(x. )B(®) 3
- / 2(x — gy, dr /y 2(y — 1)g(x, dt
u X = _—_— . ——
A (x = AW (= »BW®
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In order for ui g bein S(A, L, F) for some labelled compact convex quadrilateral
(A, L, F), one has to choose real numbers oy, B, 7ok, 7g,x (k =0, 00) satisfying the
inequalities

Bo < Boo < a0 < o, ra,0 <0 <rgoc0, 780 >02>rp 00,

and such that g(x,y) > 0O on D = [ap, ®x] X [Bo, Bsol, and then impose on the
smooth functions A(x), B(y) the positivity conditions

A(x) > 0on (xg, @) and B(y) > 0 on (Bo, o), (84)
and the boundary conditions
Ala) = 0= B(Br), A'() = —2rak, B'(Br) =2rpx (k =0, 00). (85)

Considering Hﬁ’B for simplicity (and dropping the + script), the data as above give
rise to a convex compact quadrilateral A (determined by the affine lines £y, and £g,
introduced above via (80)) which is endowed with the canonical set {py,, pg.. k =
0, oo} of normals (81). We take F be the union of all facets £,, = 0 and {4, = 0 for
which ry x = 0 and rg ; = 0, and normalize the remaining normals by

€ak = Pay/Ta ks €k ‘= Dp/TBk-

One can easily check that these become inward normals to A and that HA-8 verifies the
boundary conditions (32)—(33) on (A, L, F) if and only if (85) holds. Furthermore,
as it is shown in [6], HAZ gives rise to a solution of the Abreu equation (35) on
(A, L, F)iff A, B are polynomials of degree < 4 which satisfy (79) and the positivity
and boundary conditions (84)—(85).

Conversely, the following is established in [5].

Proposition 5.7 [5] Let (A, L) be a compact convex labelled quadrilateral in R2, and
F the union of some of its facets. Suppose that A is neither a parallelogram nor a
trapezoid whose extremal affine function s(a 1, ) is constant on the parallel facets A.
Then there exist real numbers oy, By, ro.k, 7g,k (k = 0, 00), subject to the inequalities

Bo < Boo <) < oo,  Tg,0 <0 =<rgoo, 7,0=02>7p00,

and a quadratic q(z) satisfying g(x,y) > 0on D = [, @eo] X [Bo, Bool, such that

o A is the image of D either under (x?', x;) or (x|, x, ) in (80);

o For each facet Fy i of A obtained as the image of x = oy under (80) (resp. Fg
obtained as the image of y = Pi), which does not belong to F, ry i # 0 (resp.
rg.x 7 0) and the corresponding inward normal is ey ) = % (resp. eg i = ii’;),
where py, and pg, are the the normals defined by (81); ’ 1

e for each facet Fy i of A (resp. Fg ) which belongs to F, the corresponding
Fak = 0 (resp. rg x = 0);
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o There exist polynomials P(z) of degree < 4 and 1 (z) of degree < 2, satisfying
(g, ) = 0, such that the A(z) and B(z) defined by (79) satisfy the boundary
conditions (85) (but not necessarily the positivity condition (84)).

Furthermore, the corresponding Hf;’B or HAB defined by (82) satisfies (35) and
defines a solution ua g € S(A, L, F) if and only if (A, L, F) is stable. The latter
condition is equivalent to (84).

As an illustration of the theory, let us again take (A, L) to be a trapezoid but not a
parallelogram, and F' to be either a facet which is not parallel to another facet or the
union of two adjacent facets. We have shown in Sect. 5.3 that in this case the extremal
affine linear function s(a 1, ) is not constant on the parallel facets of A and, therefore,
the solution of (35) (if it exists) must be given by Proposition 5.7. On the other hand,
we have the following:

Proposition 5.8 Let (A, L) be a labelled trapezoid corresponding to a Hirzebruch
surface, and F be one facet, or the union of 2 adjacent facets. Then (A, L, F) is
stable.

Putting Propositions 5.7 and 5.8 together, we obtain

Corollary 5.9 Let X = F,, be the mth Hirzebruch surface and Z be the divisor con-
sisting of a single fibre fixed by the T action, or the union of such a fibre with either the
zero section or the infinity section. Then, X \ Z admits a complete extremal Donaldson
metric in each Kdhler class of X, which is not of Poincaré type.

The proofs of Proposition 5.8 and Corollary 5.9 are presented in Appendix B.

Example 5.10 In the light of Corollary 5.9, we use the explicit description of the
extremal Donaldson metrics in order to determine their asymptotic behaviour in normal
direction to Z.

The parametrization of a regular ambitoric metric by the data

akv ﬂk? rO(,k’ r,B,k’ C](Z)y A(Z)a B(Z)

as above is not effective: there is a natural SL(2, R) action on the space of degree
2 polynomials g(z), as well as a homothety freedom for the metric. This can be
normalized by taking ¢ (z) to be either 1, 2z or 722+ 1 (see [6, Sect. 5.4]), thus referring
to the corresponding ambitoric metric as being of parabolic, hyperbolic or elliptic type,
respectively. Moreover, it is observed in [5, Sect. 5.4] that the solution corresponding
to a trapezoid is given by a (positive) hyperbolic ambitoric metric, i.e.

(x —y)( dx? N dy? )
S+ \A®) B
2 2 2 2
GG (A(x)(dt1 + y2dn)? + B(y)(dry + x%dn) ) (86)
_dx A(d + y2dn) | dy A (d + x2ds)
T (x4 y)2 (x+y)?

@

s
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T

2

:("' 3 (%)k =1+4z129 =0

y

Fig. 2 The Delzant polytope of a Hirzebruch surfaces (in blue) obtained by the hyperbolic ambitoric
construction (Color figure online)

for (x, y) € [ao, atoo] X [Bo, Bool With

Bo < Boo < 0 < Qoo, Po+ oo >0

4

4
i—o biz™™

and polynomials A(z) = Z?:o aiz*7"and Bz) =Y satisfying

ap+byo=ary+by=as+ by =0, 87)

and the positivity and boundary conditions (84)—(85). The momentum coordinates of

(86) then become
1 Xy

- , X2 =
X+y X+y

X = (88)

so that the image of the interval [«g, @] X [Bo, Bo] under (88) is a quadrilateral A
determined by the affine lines

box = —aixi +x2 —ap =0, g =—Pxi +x2— P =0, k=0, 00,
whose normals are py x = (—a,%, 1) and pgy = (—,3,%, 1), respectively. It follows
that A is a trapezoid iff Boo = —Bo = b > 0, see Figure 2.

As observed in [21], each Hirzebruch surface IF,, can be obtained from a labelled
trapezoid (A, L) as above, by taking inward normals ey x = pe,/Tak and egi =
DB /7g.k satisfying

€8,0 = —€B,00s €a,00 T MeEBO = —€q0-
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Equivalently, the labelling L = {Lax = Lok, Lpx = rﬁ%eﬂ,k, k = 0, 0o} satisfies
2 2 2 2
r oy — r (o —

- _ — 0, = (2 "), —_[(Ze__"0) (g9

PO = Thoo =1 = T Ta0 = (ago - b2) T = ( a2 — 2 ®

The positive constant r is just a scale factor for the Kihler class and can be takenr = 1.
Thus, by considering the lattice generated by ey , eg « as above, the corresponding
labelled trapezoid corresponds to a toric Hirzebruch surface F,,.

We now take Fy o (defined by €4 o0 = 0) be the facet of A corresponding to a
fibre of I, fixed by the torus action. We are thus looking for extremal metrics given
by (86) for polynomials

A(x) = —c(x —a0)(x —a0)*(x —a3), B(Y) = c(y—b)(y+b)(y*+py+4) (90)

where 0 < b < op < a0 and @3, ¢, p, g are real parameters (which we are going to
express as functions of (b, p, @x)).
The extremality conditions (87) then read as

@320 + @) + a2 + 200000 = g — b*

on
wsaan = —qb?
from which we get
b? + a%, + 200000
C{3 =" 0[2 [e%)) ’
2000 + g + 0132
92)
g= (xgo(xo b+ ocgo + 200000
b? Qe + g + ag;;eo
From the boundary condition (85) at g we obtain
2 (a2 —o?
Al(ap) = —c(ag — @3) (@) — @oo)® = —2rg0 = — <3°—3>
m\a;, —b
so that we determine
= _E < (@00 + ap) )
m \ (ap — @3)(etoo — ) (@2, — b?)
2 93
2 (oo +20) Qoo + t9 + “352) ©9)
m

2.2
(F + @2, + darpaee + b2 + 052 ) (oo — ap) (@, — b?)
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Consider first the case when F' = F, o consists of only one facet. The boundary
conditions (85) at +b read as

B'(b) = 2¢b(b* + pb +q) = 2rp 00 = =2, B'(=b) = —2cb(b* — pb+q) = 2rg = 2.

We then have p = 0 and the additional relation —1 = ¢b(b? + ¢) which can be
used in order to express o as a function of (v, b). This last step, however, is not
obvious (and is implicit) as ¢ appears to be a real root of a polynomial of degree 4,
which also needs to satisfy 0 < b < @y < a~. The existence of such a root is thus
guaranteed by Propositions 5.7 and 5.8, so we shall not develop this step any further.
We also notice that homotheties in (x, y) preserve the form (86) (but change A and B
by scale) so we can assume b = 1. Thus, on a fixed Hirzebruch surface F,, we obtain
a one-dimensional family of complete extremal Kéhler metrics (defined on [, \ Z)
parametrized by a = o > 1, which is precisely the dimension of the Kihler cone of
F,, modulo scales.

Notice that, by (92), the third root o3 of A is negative, and thus o, has always
multiplicity 2. Using (83) with ¢(x, y) = x + y and A, B given by (90), we observe
that up to smooth terms on A, the symplectic potential is of the form

u:(Aaaoo—(Hy))

1
BL log L — Ly ilogL LgilogL
Gty + Du,oo) 0g Ly,c0 + 3 Z ak 108 Lok + Lk log Lgk

k=0,00

1
= (A(—2000x1 — 1) + BLg 00) 10g Ly 0 + 3 > LaxlogLa+ LpglogLpk
k=0,00

for some real constants A # 0, B. As aso > 0, the affine function (A(—Zaooxl —
1) + BLD,,OO) is not constant when restricted to the facet F, o (on this facet x = aog
and y € [Bo, Boo])-

Similarly, when F' = Fy oo U Fg o say, we must have y2+py+q = (y=b)(y—p83),
so that g = bB3 and p = —(b + B3), and from (92) we determine

By = otgoao b2+ 0‘<2>o + 2000000
- 3
b 20000 + g +

otgool()
b2

The above formula together with the inequalities 0 < b < g < axo show that 83 > b,
and thus b is double root of B(y). Similarly to the previous case, the symplectic
potential of the extremal metric then takes the form

1
U= fo00108 Looo + f8,0010g2 Lg oo + 5 (La,O log Ly0 + Lg,olog Lﬂ,o) + smooth

where fi o0 and fg o are affine functions in momenta which are not constant on the
corresponding facets in F'. One can also check that in this case too the condition (42)
fails.

We notice also

@ Springer



1268 V. Apostolov et al.

Proposition 5.11 Let X be a Hirzebruch surface IF,, or CP' x CP1, viewed as a toric
variety endowed with a Kdhler class [w] corresponding to a Delzant polytope (A, L).
Let Z C X be the toric divisor corresponding to the union F of 3 facets of A. Then
(A, F) is unstable and X \ Z admits neither a Donaldson extremal Kdhler metric nor
an extremal Kdhler metric of Poincaré type in [w].

Proof The proof of instability of (A, F) follows from the arguments in Appendix
B, see in particular Remark A.6. Thus (A, F) cannot admit a Donaldson metric by
Proposition 4.9.

To rule out the existence of a (non-toric) complete extremal metric of Poincaré
type, we can use [9, Thm. 5] which asserts that each rational curve corresponding to
the pre-image of a facet in F' must admit a complete Poincaré type extremal Kéhler
metric. Taking the CP! corresponding to the facet in F which intersects the other two
facets in F, we conclude that CP! \ ({p} U {g}) admits a complete extremal metric
of Poincaré type. But if it did, it would have to be scalar-flat, as the Poincaré—Futaki
invariant vanishes and the average scalar curvature is 0. This would then violate the
numerical constraint in [7, Thm. 1.2] for Poincaré type metrics of constant scalar
curvature. So no such metric can exist. O

Corollary 5.12 Conjecture 4.14, with respect to the stability of pairs introduced in
Definition 4.10, holds true on the Hirzebruch surface F,, and on CP' x CP".

Proof Using Corollaries 5.3, 5.5 and 5.9 together with Proposition 4.9 at one hand,
and Propositions 5.4 and 5.11 at the other hand, we conclude that the conditions (i)
and (ii) of Conjecture 4.14 limit the possibilities as follows:

(@) X = CP! x CP! and Z is the union of the pre-image of one or two adjacent
facets;

(b) X =T, and Z consist of either the zero section, the infinity section, or the the
union of both;

(¢) X =T, and Z consist of a single fibre or the union of such a fibre and either the
zero section or the infinity section.

In the cases (a) and (b), there exists an explicit extremal Poincaré type metric by the
Corollaries 5.3 and 5.5. In the case (c), there exists a Donaldson complete extremal
metric which is not of Poincaré type, but in this case the condition (iii) of Conjec-
ture 4.14 fails, as shown in Example 5.10. O

5.5 Triangles as a Limiting Case

This case is already treated in [11] (see also [2]), but it can also be viewed as a
limiting case of the ambitoric ansatz with 7 = 0 (i.e. A = —B). The corresponding
extremal metrics (g4, J4+, wy) provide solutions of (35) on labelled triangles, and
compactify on weighted projective planes as extremal Bochner—flat (i.e. self-dual)
orbifold metrics, see [2,11].

Indeed, putting ¥ = 0 and P(z) = —H;zo(z — Bj) with y < B1 < B < B3
in (77) and (78), the degree 4 polynomial B(y) = —P(y) is positive on (81, B2)
while A(x) = P(x) on (B2, B3). When By < B, the Kéhler metric (g4, w4 ) defines
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an extremal Bochner-flat Kéhler metric on a labelled simplex (A, L), while taking
Bo = P1 gives rise to a solution to the Abreu equation (35) on a labelled simplex
minus one facet (corresponding to the image of y = f; under the momentum map
(80)). One can always take the two normals to form a basis of a lattice, so that the
metric extends smoothly over the corresponding faces and has a complete end towards
the third, see [21]. We get, in fact, one of the complete Bochner-flat metrics described
in [11, Thm. 4.2.7] (see also [19]).

To see this explicitly, let us identify (by an affine map) the simplex A with the
standard simplex of R2 (with vertices at (0, 0), (1, 0) and (0, 1)) and assume (without
loss) that F' corresponds to the facet defined by the equation L3(x) = a3(1—x;—x2) =
0 whereas the other labels are L(x) = a;x; and Lo(x) = apxp with a; > 0. The
Bryant complete extremal Bochner-flat metric has symplectic potential in S(A, L, F),
given by

1
up = 5(611)61 log(x1) + azx2log(xp) — (a1x; + axxz)log(l — x1 — x2)>. o4

If we take (A, L) be a labelled simplex and F' = F] U F; the union of two facets,
then by identifying A with the standard simplex of R? and F; with the affine line
x; = 0,1 = 1,2, respectively, one sees that the reflection along the line x; = x»
is a symmetry of (A, L, F)). By uniqueness, s(a L, F) must be invariant under this
reflection, i.e. s(a,L,r) = 7(x1 + x2) + ¢ for some real numbers r, c. Using the
definition (3.1) with f = 1 — (x1 + x2) (which vanishes on F3), one gets r = —2c¢
for a real number ¢ (which must be inverse proportional to the normal e3). It follows
that s(a L, r) vanishes at the affine line parallel to F3 and passing though the midpoint
m = (1/4,1/4) of its median d. Let f; be a simple crease function with crease along
d and non-zero on the sub-triangle A’ C A (cut from A by d). Two of the facets of A’
inherit the measures of the facets of A and we put measure zero to the facet along d.
Thus, (A’, dvyar) and (A, dvya) are equivalent under an affine transformation of R2.
From the affine characterization of s(a 1, r), it follows that the extremal affine linear
function of A" is a multiple of s(a L, ); it is not hard to see (e.g. by using the definition
(3.1) with f = 1 — (x; +x2) and f = 1) that the extremal affine linear function of A’
equals to s(a L, F)- Thus, LA L, F)(fa) also computes the Donaldson—Futaki invariant
of the affine linear function f,; over A’, and hence is zero. It follows that (A, L, F) is
unstable. We thus conclude

Theorem 5.13 Let (A, L, F) be a labelled simplex in R2. Then (A, L, F) is stable if
and only if F consist of a single facet. In this case (35) admits an explicit solution up
in S(A, L, F) given by

1
ug =5 (LilogLi+LalogLy — (Li + Lo)log Ls ). (95)

where L3 vanishes on F. The corresponding metric (27) extends to the complete
Bochner-flat metric on C? found in [11. In particular, CP>\ CP" admits a complete
extremal Donaldson metric, which is of Poincaré type (and conformal to the Taub-NUT
metric).

@ Springer



1270 V. Apostolov et al.

Appendix A: Proof of Theorem 4.18 and Proposition 4.19
Appendix A.1: Proof of Theorem 4.18

We follow the notation of Sects. 3 and 4. Thus, X is a smooth compact toric variety
classified by the labelled Delzant polytope (A, ). We fix once and for all a T-invariant
Kihler metric wp on X with momentum map po : X — A C t*. To simplify the
discussion, we can take wq to be the Kéhler quotient metric on X obtained from the
flat Kihler structure on C? via the Delzant construction, see Eq. (28). We denote by
X° =y 1(A%) the pre-image of the interior of A, which is also the subspace of regular
points for the action of T. Complexifying the T-action, we obtain a holomorphic action
of the complex n-torus T¢ = (C*)" with X° being the principal orbit for the T¢-action.
Choosing (once for all) areference point z° € X°, for each fixed point for the T-action,
corresponding to a vertex v € A, we introduce a (C*)"-equivariant chart C!! = C" as
follows. Using a basis of t obtained by the inward normals of the facets of A meeting
at v, we identify T¢ with (C*)" and consider the equivariant map &, : (C*)" — X°

@, (rleﬁtl, R rne‘/?lt”> = (rlex/jlfl’ ﬁtn)

o
14 27,

where r,-eﬁti € C* stand for the polar coordinates on each factor. It follows by

the holomorphic slice theorem that ®, : X° — (C*)" extends equivariantly to a
holomorphic embedding of C} to X, thus defining an equivariant atlas of affine charts
C? of X (where v runs among the vertices of A).

The theory of toric varieties (see e.g. [30]) yields that in such a chart, the (smooth)
divisor Z corresponding to the pre-image under (¢ of a facet F' meeting v has the equa-
tion z; = 0 where (z1, ..., 2,) = (rleﬁ”, e rneﬁ’") are the affine coordinates
on C’. In what follows, we will suppose without loss that

ZNCl={(z1,...,z20) € C": 7y = 0}. (96)

To connect with the description (27) of the Kéhler metric wg, one needs to apply the
Legendre transform to the strictly convex smooth function ug on A%, given by (28).
More precisely, if x° = 10(z°) € A? and u € S(A, L) is any symplectic potential,
we let

y(x) o= du(x) — du(x®) = (1 (x), ..., un(x)) = @0, . u,(x0)

and define a smooth function ¢, (y) by
n
Qu(y) +ulx) =Y yixi. 97)
i=1

We notice the following elementary:

@ Springer



Extremal Kéhler Poincaré Type Metrics on Toric Varieties 1271

Lemma A.1 Let 2 be a non-empty bounded convex open subset of a finite-dimensional
affine space t*, and u : Q@ — R a smooth strictly convex function such that |du| tends
to oo near 0X2, where | - | is any Euclidean norm on t. Then du is a diffeomorphism
Jfrom Q onto t.

Proof Clearly, du(x) = (u,1 x),..., u,,,(x)) is a local diffeomorphism as its differ-
ential at x (represented by the matrix (u ;;(x)) is invertible for all x € € by the strict
convexity assumption.

Moreover du is injective by using the convexity of 2 and the fact that du(p(?)) is
strictly monotone in ¢ on each linear segment p(#) € €2 (which again follows from the
strict convexity of u).

Finally, du is surjective: This can be proven by checking that du(£2) is closed,
and hence coincides with R" as it is also non-empty and open. Indeed, let (gx) be a
sequence in R"” = t, with limit ¢, such that gy = du(py) for pr € Q forall £ > 0.
There is a subsequence, still denoted by (p), converging to some p € Q. Now if
p € 0L, then by assumption, |gx| = |du(pr)| — o0, a contradiction, and thus p € €2,
and g = du(p). O

It follows that for each u € S(A, L), we have a T“-equivariant biholomorphism
@, : (A" x T, J,) — (C*)r = X°, given by

Oy (X1, X, 11, 1) = (VHYTI Lty (98)

where, we recall, y(x) = du(x) — du(x?) is a diffeomorphism from AY to R” by

virtue of Lemma A.l, and J, is the T-invariant wg-compatible complex structure

corresponding to u € S(A, L). The central fact in this theory is the following identity
on (C*)? (see [30]):

o, = (@) (@0) = da*((@ulloglzal. ... log |zuD) ). ©9)

where (z1, ..., z,) are the complex coordinates associated to the chart C7, and d¢
is taken with respect to the standard complex structure. The fact that u € S(A, L)
guarantees the smooth extension of the right-hand side to a positive definite (1, 1)-form
on C7.

Let us now suppose u € Sq (A, L, F) (instead of being in S(A, L)). It is easily
checked that such a u still verifies the condition that |du| tends to oo near d A, so that,
by using Lemma A.1, (98) and (99), we obtain a Kéhler metric w, on (C*)}, which
can be written as

Wy, = wy+dde, (100)

where wy is the (globally defined on C}}) Kihler metric corresponding to (28) and
0215 -5 zn) = (Qu — @up)oglzil, ..., logza|) (101)
is a smooth function on (C*)? C C!. We notice that through this identification (which

depends upon u!), Z N C? still corresponds to a hyperplane in the C affine chart, as
it follows from the following:
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LemmaA.2 Let ug be the symplectic potential in S(A, L) given by (28) and let u €
Su.p(A, L, F). Then,
(dug) ' odu: A" — A°

extends continuously to a homeomorphism of A, inducing a diffeomorphism on every
open face of the polytope A and preserving its vertices.

Proof The proof is elementary. Let p € A, and consider some sequence (py) in A°
converging to p. We want to see that

(@) limy_s oo ((dug) ™1 o du)(py) lies in the same open facet as p (or equals p if p is
a vertex of A);
(b) this limit does not depend on the sequence (py).

The claimed regularity of (dug)~! o du will follow from the proof (a) and (b) above.
Let us assume that p € £ := (F;; N--- N F)\(Fj,,, U--- N Fy), £ < n, where
i1 <---<igand{iy,...,iq} = {1,...,d} and also that F;; N---N F;, is not empty.
As already noticed, (du(pk)) tends to oo in t; thus, as duo is a diffeomorphism
A — t whose norm tends to oo near 0 A,

(Pr) = ((duo)™" o du(py))

tends to dA. We now prove that any limit point of (pi) must belong to f.
For this, observe that if (p;) tends to dA, then (p;) tends to f if and only if
u0,1(py)s - - - uo,e(py) tend to —oo while ug ¢+1(Py), - - -, uo,n(Py) remain bounded
(we have set ug ; (x) = 3“0 (x)) We thus want to prove that as k — oo,

u0,1(pk), - -, uo,e(pk) —> —00,
u0,e4+1(pk), - -, uo,n(pr) = O(1),
or equivalently

(102)
U1 (Pk)s -+ un(pr) = O(1).

Since u € Sy, g(A, L, F), up to a smooth t-valued function near p we have

{ u1(pk)s ..., ue(pr) —> —00,

(== +plogLy) if j=1,
L,

u,j= 1
zlong if j > 2,

which yield the estimates (102) and concludes the point (a) of our proof.

We now address (b). Let px — p and px — p. Our task is to prove that p does not
depend on (py); if p is a vertex, this already follows from (a), so we assume that f is
an open face of A. Letting uo ¢ := (uo), uf := (u +alogLy), iff C F = Fy and
ur = uy, if f ¢ F, the definitions of the spaces S(A, L) and Sy g(A, L, F) ensure
that uo ¢ and uy are strictly convex on f. With the notations above, observe that the
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ug,j, j =4£+1,...,n,are smooth in a neighbourhood of f, and ug ; = (uo ), ; along
f; similarly, the u ; are smooth around f and u ; = (u¢); along f. In this way, letting
k — o0 in the equality duo(gk) = du(py), we obtain

(dug,f)(p) = (dug)(p).

Using the strict convexity of ug ¢ and us on f, and that the norms of their differentials
tend to oo near 9f, we conclude that dug ¢ and duy are diffeomorphisms £ — (t/¢)*
(see Lemma A.1 above), and thus,

p = (dug)"" o dug(p)

does not depend on (py).
This completes the proof of Lemma A.2. O

The general theory [30] (which uses local arguments around the pre-image of each
face) ensures that ¢(z) extends smoothly over CJ \ (C} N Z), and that w,, defines a
Kéhler metric on X \ Z. We shall thus focus our analysis on C} in order to understand
the behaviour of w, near Z N C7, see (96).

Let p € Z N C?. We shall consider the following limiting cases:

(@) p=1(0,...,0) corresponds to the vertex v of A;
(b) wo(p) belongs to the relative interior of F', i.e. in the chart C!}, p has coordinates
0,z2,...,zx) withz; #0,j=2,...,n.

The case when 1o (p) belongs to an £-codimensional face of F with1 < £ <n — 1
can be dealt with by combining the arguments for the cases (a) and (b). We shall also
assume at first that 8 = 0.

Case (a): p = (0, ..., 0). We can assume without loss that the vertex puo(p) = v of A

is at the origin of t* = R",i.e. Lj(x) =x;, j = 1,...,n. We thus have, near 0 € A,
1 m
u(x) = —aloglx) + 5 ij log(xj) — x; | +w(x) (103)
j=2

with w(x) smooth on R”. We can further modify u by adding an affine linear function
(which does not change neither the induced Kéhler metric nor the belonging of u to
Sa,p(A, L, F)) so that du (x9) = 0. It then follows that in the chart C? the functions
yj =u, j =log|z;| are given by

o
yi =loglzi| = —— +w1(x),
X1
1
yvj =loglzj| = Elong +wi(x), j=2,...,n,
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or equivalently,

1
- = fikx) ,
log |z1] (104)
lz;1* = fi(x) forj=2,...,n,
with f1(x) = m and f;j(x) = xjezw'f(x), j=2,...,n. Wewantto use (104)
in order to express the momentum coordinates x = (x1, ..., x,) of w, in terms of
|zj|’s. To this end, we notice that f(x) = (f1(x), ..., fu(x)) extends smoothly near

the origin v = 0 € A. (Similarly, the LHS of (104) extends continuously on C’} by
letting Téll be 0 along z; = 0.) Computing the Jacobian of f(x) at 0, we conclude
that the local inverse 4 (¢) of f(x) is defined on a small neighbourhood of 0 € R” and

has the form

h(¢) = (c1h1(§), ha(©), ..\ taln (D)), (105)

with /1 @,..., fz,,(;) smooth and non-vanishing near 0. It thus follows from (104)
that

—o ~ -1
xi = (i (o 2Pl
log |z1] log |z1]
xXj= |Zj|2/5;(

By (97), and using that y; = log |z;| together with (106), we find that

(106)

?|Z2|2?'7|Zm|2) fOI'j=2,...,n.
log |z1]

1 n
vu(2) =5 ) _log(lz; ) — u(x)
j=1 (107)

=—ualog ( — log |Z1|) + W(log—lzll’ |z2|2, e |z,,|2>

where

m
W) o= alog [ahi ()] — a1 (6) — 5 | Y6/ @) (loghs @) — 1) | ~ wlhee)]
j=2
(108)
for w(x) defined in (103). Thus, W (¢) is a smooth function near 0.
A similar (and well-established) argument using u¢ instead of u shows that ¢, can
be viewed as a smooth function 1 (z) on C, so that the relative potential ¢(z) in
(101) is written as

¢(z) = —alog (—log|z1]) + Yo(z) + W (—
log |z1]

2 2
7|Z2| 7"'?|Zl’l|>

and thus has the required behaviour of a Poincaré type potential near Z = {z; = 0},
see Definition 1.1.
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We now examine the asymptotic behaviour of the Kdhler form w, = dd‘¢, near
the origin 0 € Z N C}}. Using (107), we find that

~—1dz; Adzy
Wy =ddg, =20 Y _LEL o0 (109)

2112 log?(z1]%)

where Q + n = ddC[W(log?ﬁ, 2212, ..., lza|?)] are given by

Q= L 2) V=1dz; A dzj
Z <log(|z| |z2] |Zn|) zj A dz;

+ ( zal ., |z )z zkv/—1dz; A dzg,
Z 1Og(|21|) m J

2 |2) V—=1dz; Adzy
"z 2 log?(Iz1])
zia/—1dzy Adz;  Zja/—1dz; AdzT
+Z Wi (ol al) (R S E S S,
10g(|z D’ z1 log(|z1]) Z1 log(|z1])

.....

_W( -1
" Nlog(lz1)”

(110)
and we have put

N e

319 )@” 4“1( )(4“) Wj(;)z(
2 82

°w
Wij(©) = =61 (550 )© 22 W) = (

;)

w .
%—BQ)(C), Jok=>2.

Since Wi(¢), Wy, (¢) are smooth, ||V¥n|| = (log(|z D) near Z for all s > 0, where
V is the Levi-Civita connection of the model Poincaré type metric

V=1dzy Adz] & _
Wmod = ;4‘2\/—1(}1/ /\de

1P log*(ln1?) 5

on C?\Z, and the norms are computed with the help of wmoq-

It follows from (109)—(110) that w,, has the Poincaré type behaviour in the normal
z1-direction, as well as in the (z1, z;)-directions for j > 2.

We are thus left to examine the metric over the hyperplane z; = 0. Letting Wj )
and ij({) be the smooth functions determined near O by

Wi(€) = Wi(0,82, ..., &) + O W;(2); Wik(Q) = Wik(0, &, ..., &) + 1 Wik (2),
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one has the decomposition 2 = ¢ + &, where

n
Qo= W0, |zl ... |z/* vV=1dz; A dZ;
j=2

n
+ Y Wik(0, |22l .., [zl Ziza/—1dz; A dzx,

k=2
s—_—IZn:W(_—l 2.z |2) V=1dz; A dzj
= ] LRI ) n
log(|z1]) 4= ™/ \log(lz1]) S
S . Z Wk(_—l 22l - J2nl?) Tz~ 1dz; A A
’ 9 EERIEIEIE n g g K
log(lz1)) 4=, " Mog(lz11) ’ !
(111)
We notice that 2 is smooth around the origin, whereas ¢ satisfies, for all s > 0,
[IVSel| = O (m) near Z (with covariant derivatives and norms taken with respect

to the model Poincaré metric wmeq). Computing the value of Qg at z = 0, we get

(Q0)._y = »_ Wj(0)v/=1dz; A dzj.

j=2
Using (108), we have
aw
Wi = (5.)©
- - oh; 1
= —31i;(0) log (i5;(0)) - (a—{j)(O)(w,j(O) = 5) (112)

1. - - 1
= —zhj(O) log (1j(0)) — hj(O)(u),j(O) - E)

By the definition (105) (and inverting the diagonal Jacobian of f at 0) we have that
forany j =2,...,n,h;(0) = e where c; = 2w ;(0). Substituting back to (112),
we conclude

—¢;

. 1 ci—1 e
W0 = e (= S(=ep) = L5—) = 5= > 0,

thus showing the positivity of w, in the directions parallel to Z.
Case2: p=(0,z2,...,z) withz; #0for j =2,...,n. Now

u(x) = —alogx; + w(x)
with w(x) smooth in a neighbourhood of x, = u(p) € F 0, By assumption, u is

strictly convex on A% and up = w|, is strictly convex on F 0. The relations (104)
now become
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log(z1) A1), (113)

|zj1* = fi(x) forj=2,...,n,

with fi(x) = —2*L—— and fix) = e2“’<i(x),j = 2,...,n. Using the strict con-

a—xjw,1(x)’
vexity of w along FO = {x1 =0} N A, we see that f(x) = (fi(x),..., fn(x)) is
smooth and locally invertible around x, = (0, b2, ..., b,). We denote by A({) =
(h1(¢), ..., hn(2)) the local inverse of f around x,, which must be of the form

h(&) = (at1hi(§), ha(©), ..., ha(0))

with /1 (0) > 0. Thus,

-1
x=h< ’|Z2|2"‘°7|Zn|2)7
log |z1]

(which extends along z; = 0 near p). We obtain again

¢u(Z)=—a10g(—10gIZ1|)+W< ,|zz|2,...,|zm|2), (114)

—1
log |zi]|

with W smooth and given by

- - 1 o -
W(&) =alog (ahi(0) = ahi (&) + 5 Y hj@)log¢; — w[h(@)],
j=2

(notice that ¢;(p) = |z;(p)|*> > O for j = 2,...,n). Thus,

—1
9(2) = 0u(2) —@u,(2) = —alog(—log |z1)) — ¥ (2) + W ( zal? |zn|2> ,
log|z1]

with ¢ and W are smooth near p. Consequently, ¢ has the right asymptotics near p.
We now address the positivity of w, near p. Writing

204/—1dz1 Adz1

w, =ddoy = ———F——+Q+n, (115)
! i Plogi ()

with Q + 7 = ddf(w(ﬁgll, |221%, ..., |za|?)) given by (110), we have that
n = O(mgﬁ) at any order; it is thus enough to show the positivity of 2 in (115).
Decomposing Q2 = Qo + ¢ with ¢ = O(W) as in (111), we need to establish
the positivity of (). By its very definition, 20| — dd"(W(O, 1222, ..., |zn|2)>.
A careful examination of the definition of W reveals that, up to additive plurihar-
monic terms log |z; |2, w(o, |z2|2, ey lzn |2), seen as a function on the hypersurface
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{z1 = 0}, coincides with the Kihler potential corresponding to the Legendre transform
(97) of the strictly convex function u r(x) = o log x| + u(x) = w(x) restricted to the
relative interior of F. Thus, (£29), > 0.

We finally comment on the case when u € Sy g(A, L, F) with § # 0. The main
difficulty is that the equations (104) hold with

X1

i) = a — Bxrlogx; —x1(B+ w.1(x))

(116)

which is no longer smooth (nor even C?) around x; = 0.
One way to bypass this difficulty is to use a suitable change of variables. We detail
below the case n = 1, for the general case is treated similarly by considering the

change of variables with respect to |z |2 and leaving the variables |z 2,j=2....n
unchanged.
We set
-1
5= . 11 :=log(—log|z1]),
log x1

so that the first equation in (104) becomes

1 )

no = f(s). 117
1 1+S10g (a+.3€_1/S/S+€_1/S(ﬂ+w’1(e_1/s))) f( ) ( )
As w1 is smooth in a neighbourhood of 0 and the functions
0 ifs <0, 0 ifs <0,
s 1 . and s+ 11 .
e Vs ifs >0, Ze s ifs >0,
N

are smooth on R, we can extend f(s) as a smooth function in a neighbourhood of 0
by letting f(s) = m fors < 0.

As 05 f(0) = 1, we get that s = h(%) for some h smooth around 0, satisfying
h(0) = 0, ”/(0) = 1. Thus, s = l(1 + % + fz(%)) for some constant y, and / a

1
smooth function vanishing at order 2 at 0. In fact, one must have y = log «, and thus

1 1
- =1t —loga + H(—),
s n
with H a smooth function vanishing at order (at least) 1 at 0. We can be more precise,
and rewrite (117) as
1 1 . 1
— = , le. — =1t —loga — P(s)
H 1/s +loga + P(s) s

with P(s) = log (14 (B/a)e /5 /s +e7 /S (B+w,1(e"'/%))/a). Replacing 1/s with
t1 —loga+H (%) in the explicit expression of P(s), we see by induction that H (%),
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as well as its derivatives with respect to 1 at any order, are O (fje™ ') when t; — +o0.
Therefore,

x=e¢ S =exp(—1t1 +loga + P(s)) = og [o1]

(14 0@e™),

at any order with respect to differentiation in #;. In particular, x = log_ﬁ +O(r1e7%)

|dz |2

(instead of O (e~2) in the case 8 = 0) at any order with respect to T log (e
1 1

thus get for the relative potential (101)
¢ = —log(—loglzi|) + loga + O(r1e™ ™),

and recover the asymptotic behaviour w, near Z with arguments identical with the
ones in the case B = 0. This ends the proof of Theorem 4.18.

Appendix A.2: Proof of Proposition 4.19

The arguments are local, near a point p € dA, and not materially different from ones
in [4, §1.3]. In fact, we need to only consider the case when p € F = F; (otherwise
the result follows from [4]). To this end, we fix a vertex v € F of A, which without
loss can be taken to be at the origin of t*, and consider a basis of t corresponding to
the inward normals of the n facets Fi, ..., F,, meeting at v. We can also assume that
F = F} is defined by the equation x; = 0, i.e. p = (0, x2, ..., x,) with x; > 0, and
Lj(x) = x;.

In one direction, we want to show that if u € Sy g(A, L, F) then u satisfies the
four conditions of Proposition 4.19.

Let us define the mutually inverse matrices

a+px) 2
1 . .
Gg,ﬁ: 0 E . . and Haﬂ— () 2x2
: e T 0 : 0
1
0 0 o 0 0 2x,

Given u € Sy (A, L, F1), we first prove that G* = Hess(«) and its inverse H"
satisfy the property that G* — G0 B and G0 H“G0 B —G0 B extend smoothly through
(FiU---UF)\(Fy41 U---U Fy)in the reglon {a + Bx1 > 0}, see Figure 3. Then
we will show that if G — G0 p and G sHu G0 G0 p extend smoothly, then the
conditions of Proposition 4. 19 must be satlsﬁed

We notice that G0 wp = = Hess(u° o ﬂ) with

1 n
0
Uy g = —(o — Bx1)logx; + 3 E ij log x;.
Jj=
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x
2 Fn+1

.-

A
F

Fy 1

Oz+;[)):T1:0

Fig.3 The polytope A and the domain near the face F (grey)

Thus, G* — Gg, 8 is the Hessian of a smooth function through the wall (F; U --- U

F)\(Fy1 U+ U Fg). Writing u = —(e — Bx1) logxi + 5 Y1_, xj log xj + w(x),
with w smooth, we get

2 2
X (1)
otx1+/3w 11 ax;+p W, in
0 2xzw,21 s 2X2w’2n
Ha,ﬁGu =1In+ .
2x, W 2n ce 2xy W 2n

which clearly extends smoothly (with positive determinant over the origin). Moreover,
onf:=(FiN---NF)I)\(Fp+1 U---UFy), forsome ¢ € {1,...,n}

0 0
0 0 Iy 0
H® .G*=1,+ =
p T 2w et o 2% 1w (e ym <* H?Guf>
2xpn W 2n te 2xpn W 2n
where H? = diag(2x¢+1, ..., 2x,) and, we recall, us := (u + (a — Bx1) log x1));-

Hence det[H0 G“] =2m" exg+ 1+ xp det[G"] > 0 along f, as G** is positive defi-
nite by assumptlon Since this holds for allf and on the vertex F1N- - -NF,, we conclude
that H0 G“ admits a smooth inverse, i.e. H”Gg g = (Ha! G*)~! can be extended
smoothly through the wall too. Therefore, (Gg, —-G*)H* Gg, g = Ggy sH" Gg’ 8 —Ggy 8
extends smoothly as well.

Set Q" := G 4JH"G) 4, — G 4. It follows that H* = HY) ;,Q"HJ ;, + HJ ;, and
hence H" is smooth through the wall In fact, a direct computatlon tells us that
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il xixafiz X3 X fin
xXixafar X3fn xx3fn e X2Xn fom
0 : :
H' —H),; = : Xox3 fan : (118)
. . Xn—1Xn fon
xlzxnfnl X2Xn fu2 Xn—1Xn f2n x,%fnn

with smooth f,;, which allows us to see that all the boundary conditions of H” are
satisfied along a face f C F7.

It remains to check the positivity assertion on the faces f C Fy; as above, sup-
pose f = (F1 NN F)O\(Fey1 U --- U Fy). Along f, H0 G“ can be written

as (Ie HOG“f) It thus follows that along f (HO G”) ! has the shape ( f H“?GO)
with GO = (H?) - dlag(m, . 2x ), where H = (G“)~!. Thus, along

f, H" = (Hg,ﬁG“)_ng,ﬁ = (94 ) (since Ha’ﬁ = (gH?) along f). The desired
positivity now readily follows from that of H*f along f, which in turn is a direct
consequence of the convexity assumption of us.

We now deal with the converse direction of Proposition 4.19, i.e. given a strictly
convex u € C®(A%) such that the associated H* verifies the conditions of Propo-
sition 4.19, we have to show that u € S, g(A, L, Fy). Again, as this is local and
already known far from the Poincaré face Fj, we focus on the same region as above.
Arguments analogous to those in [4, pp. 290-291] allow one to show that the bound-
ary conditions for H" yield that G* — G0 «,p and H“G0 extend smoothly through
(F1U---UF)\(Fyq1 U---U Fy), the latter having pos1t1ve determinant on F\; the
smooth extension of G* — Gg, p ensures that « can be written as

d
1
—(o — BLy)log L1 + EZleong + w(x)
j=2

for some w € C*°(A, R).

The boundary conditions for H” also tell us that H* = H0 wp T R*, with R* a
smooth matrix of shape given by (118) (the third-order boundary condition on the
Poincaré face gives precisely the O( ) estimate for the upper left coefficient of R¥).
Hence, H“G) ; = I, + R“G]) 4 with

(eD’gn (x)%g2 - or (x1)*g1n
X2821 X2822 X2823 te X282n
R'G) 4 = : : : . (119)
: . Xn—18(m—1n
Xn8nl Xng&n2 tet Xn&n,(n—1) Xn8nn

for smooth g, It follows that along f = (F1N- - -NF)\(Fer1U---UFy) (1 <€ < n),

Hg’ﬂG“ = (H”Gg’ﬁ)—1 = ({f H?(()}uf ). As H”Gg’/3 extends as a smooth and positive
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definite matrix over f, we conclude that G*f > 0, i.e. uy is strictly convex in the
relative interior of f.

Appendix B: Proof of Proposition 5.8 and Corollary 5.9

For the proof of Proposition 5.8 and Corollary 5.9, we will change point of view slightly
and use explicit computations for quadrilaterals in R? with the standard lattice Z2. The
moment polytope corresponding to a Hirzebruch surface has at least one pair of parallel
edges. Therefore after possibly scaling the polytope, we can take it to be given as the
intersection ﬂ?:] Li—l ([0, 00)) of

Li(x,y) =y,

La(x,y) = (1 —x),

L3(x,y) =(q —k)x —y+k,

La(x,y) = x, (120)

for some positive real numbers g and k. This will then correspond to a Hirzebruch
surface exactly when g — k € Z.

We begin with the proof of Proposition 5.8 in the case of two edges, and then show
that the case of one edge is a corollary of this, using the convexity of the set of stable
weights. We end by proving Corollary 5.9.

Appendix B.1: The Case of Two Edges

For this we will use a criterion for stability found in [40] which used the ambitoric
framework of [5,6] described above. We begin by recalling this result.

For a pair of edges Fy, F> of a general 2-dimensional convex polytope A, one can
parametrize the lines that meet both F; and F> by [0, 1] x [0, 1]. Let the vertices of
F be vg and v; and let the vertices of F> be wg and w;. Then let vy = (1 —s)vg + sv;
and w;, = (1 —t)wp + twj. Picking an affine linear function %, ; whose zero set is the
line containing vy and w;, one then obtains a corresponding simple piecewise linear
function f; ; = max{0, A ,}. We can parametrize the Donaldson—Futaki invariant of
these functions as a map

¢ :[0,1] x [0, 1] — R,
(s,t) > LaLr(fsr)

The positivity of this is independent of the scaling of 415 ; chosen. Since all lines meeting
Fi and F> are traced out as (s, ¢) takes all values in [0, 1] x [0, 1], it suffices to check
the positivity of ¢ in order to check whether or not there are any simple piecewise
linear functions with crease meeting F; and F, violating stability. By choosing an
appropriate scaling of 4 ;, ¢ can be taken to be polynomial in (s, ¢) of bidegree (3, 3).
This was essentially shown in [22], see also [40, Lemma 2.10].
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If Fi and F, are adjacent to a common edge F, then each of the F; has a vertex
lying on F. Thus, up to reordering v; and w;, we have that vy and w lie on F.1In the
domain [0, 1] x [0, 1] of ¢ the point (0, 0) will then correspond to the simple piecewise
linear function fj ¢ whose crease is F ; fo.0 1s then actually affine linear on P and so
q)((O, 0)) = 0. Moreover, if F is one of the components of F, the facets along which
we let the boundary measure vanish, then the point will be a critical point of ¢.

In the case when A = Q is a quadrilateral, there are exactly two pairs of such
edges that have common adjacent edges, namely the two pairs of opposite edges. As
above, we then have functions ¢, ¢, parametrizing the Donaldson—Futaki invariant
of simple piecewise linear functions meeting opposite edges of Q. In the case when F
consists of two edges of Q, there will then be exactly two critical points corresponding
to two of the vertices of ¢; and/or ¢,.

Proposition A.3 Let Q be a quadrilateral and pick two edges Fi, F> of Q. Then
(Q, L, F1 U F,) is stable if and only if the determinant of the Hessian of the functions
b1, P2 at the points corresponding to an affine linear function is

e non-negative if Fy, F» are adjacent,
e positive if Fy, F, are opposite.

Moreover, the positivity of the determinant implies that the relative Székelyhidi numer-
ical constraint is satisfied.

Note that the converse of the final statement is not true. If the determinant vanishes,
the Hessian is positive semi-definite but not positive definite at the critical point of ¢;.
This means that there is a family f.. of simple piecewise linear functions, with fj corre-
sponding to the critical point of the domain of ¢;, such that % ’c:O (E(Q,L, F)( fc)) =0.
However, it is not necessarily the case that the crease of this family can be taken to be
parallel to relevant edge of Q. This would have to be the case if the positivity of the
determinant was equivalent to the relative Székelyhidi numerical constraint.

For Q being the moment polytope of a Hirzebruch surface given by Eq. (120) and
L the canonical scaling of the normals to Q, one can then compute the functions ¢
and ¢, of Proposition A.3 and hence their determinants directly in terms of ¢ and k.
The result of this computation is given in Lemmas A.4 and A.5.

Lemma A.4 Suppose F consists of two adjacent edges, which without loss of gener-
ality can be assumed to be the two edges not lying on the coordinate axes. Then the
determinants of the Hessians of ¢1, ¢o at the two critical points are up to a positive
constant given by

K+ 2k%q% + ¢* — K+ 3k%q + 3kq® — ¢° (121)
and

3k8q + 3k7g% + 6k* ¢ + 6k3q* + 3k%q° + 3kq® + 2kS + 2k g + 6k* 4>

+45¢° + 6k%q* +2kq +2¢° = 26° = 2k%q + 4% + 4K — 27k - 2¢°.
(122)
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Thus to complete the proof of Proposition 5.8 in the case when F consists of two
adjacent edges, we have to show that both these numbers are always positive. This is
not true for arbitrary positive ¢ and k, but we will use that g — k € Z. In fact, having
lg — k| = 1 ensures that both (121) and (122) are positive. Note that we do not have
to consider the case ¢ = k as this corresponds to a product.

So assume first that ¢ > k, so that ¢ > k + 1. We then use the substitution
q =k + 1+ X, where A > 0 by assumption. The expression (121) is then given by

AY 4+ 4ka3 4+ 8K2A2 4+ 8K + 4kt + 303 + 12402
+ 22k + 12k + 302 + 12k + 14k% + A + 4k.

Since k > 0 and A > 0, it therefore follows that the term in Eq. (121) is always
positive.

Similarly, using the substitution k = ¢ + 1 + A instead, one can show that (121)
is always positive when ¢ < k. The same technique also works to show that (122) is
positive whenever g — k € Z. This completes the proof of Proposition 5.8 for the case
of adjacent edges.

Though we have already proved this by different means, the above technique also
works when F consists of two opposite edges. Székelyhidi showed in [46, Prop. 15]
that if the two edges that are not in F are parallel, then (Q, L, F') is always strictly
semistable. It can also be verified directly that the determinant of the Hessian as in
Proposition A.3 vanishes in this situation. With Q determined by positive numbers
k, g as above, we can therefore assume that F' consists of the two edges of Q contained
in Ly = 0 and L4 = 0, respectively, since the edges lyingin L1 = 0 and L3 = 0 are
the only opposite edges that may not be parallel.

In the case of opposite edges, the two determinant conditions turn out to be equiva-
lent. Thus we need to determine that this single number is non-negative and vanishes
precisely if ¢ = k. This is a consequence of the lemma below.

Lemma A.5 Suppose F consists of the two opposite edges lyingon Ly = Oand L4 = 0.
Then the determinant of the Hessian of the function corresponding to the Donaldson—
Futaki invariant of simple piecewise linear functions with crease meeting L1 = 0 and
L3 = 0 at the critical point corresponding to Lo, = 0 is given by

(k — @)% (k + q)°k?
2(k% + 4kq + g*)2 "

The determinant is thus always non-negative and since k and ¢ are positive it vanishes
if and only if k = ¢, i.e. if and only if Q is a rectangle, as expected.

Remark A.6 The determinant condition Proposition A.3 holds regardless of the nor-
mals we use for the remaining two edges in F. In particular, it applies when we have
a third facet in F. In this case similar formulae to the ones given above show that the
determinant condition is violated, and so (Q, F) is always unstable when F' consists
of three edges of Q.
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Appendix B.2: The Case of One Edge

To prove that (Q, L, F) is stable when Q corresponds to a Hirzebruch surface and F
is a single edge of Q, we will use the notion of weighted stability and the convexity
of the set of stable weights. In general, for a Delzant polytope A, we let r; € R>( be
the reciprocal of the scaling of the i defining function of A given by the data L if
this facet is not in F and r; = 0 if it is. Then we can identify the triple with (A, L, F)
with (A, r) where r € R‘io is the weight of (A, L, F). The weight r is stable if the
corresponding triple (A, L, F) is.

For us the key property of weighted stability is that the set of non-zero stable
weights, thought of as a subset of R‘i \ {0}, is a convex cone. Thus a positive linear
combination of semistable weights is semistable, and moreover, if at least one of the
weights is stable, then the linear combination is stable too.

Going back to the case when A = Q corresponds to a Hirzebruch surface, the
notion of the stability of (Q, L, F)) where F is a single edge of Q is exactly the same
as the stability of the weight (0, 1, 1, 1), where Fj is the edge in F and F», F3, F4 are
the remaining three edges of P.

We now note that this weight can be written as

1 1 1
0,1,1,1) = 5(0, 0,1,1) + E(O’ 1,0,1) + 5(0’ 1,1, 0).

The stability of the weights (0, 0, 1, 1), (0, 1,0, 1) and (0, 1, 1, 0) each correspond to
the stability of some (Q, L, F’) where F’ consists of exactly two edges of Q. Thus
(0,1, 1, 1) is a positive combination of semistable weights, and hence is semistable.
Moreover, at least two of the weights are then in fact stable, since two of these weights
corresponds to the case when F’ consists of two adjacent sides. Hence (0, 1, 1, 1)
must be stable as well. This means that (Q, L., F') where Q is a Hirzebruch surface,
L are the canonical defining functions of Q and F is a single edge of Q, is always
stable, and this completes the proof of Proposition 5.8.

Appendix B.3: The Proof of Corollary 5.9

The missing component in the proof is to show that the extremal metrics obtained
cannot be of Poincaré type. For this we will show that in the above situation, the
necessary condition in Eq. (42) for the existence of a toric extremal metric of Poincaré
type is violated. In the Hirzebruch surface cases we are interested in, this condition
becomes the following:

LemmaA.7 Let Q be the moment polytope of a Hirzebruch surface X and Kdhler
class Q given by the data in equations (120). If X admits an extremal Poincaré type
metric on the complement of a divisor Z corresponding to the a union F of facets of
Q, then the associated affine linear function A satisfies that

e A is constant along F, and so in particular at its vertices, if F is a single edge,
e A is constant along the line with vertices (0, k) and (%, 0), if F consists of the two
edges lying in the x and y-axes.
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Proof The only part that needs clarification is the last statement regarding the case of
two adjacent edges. Let A be the associated affine linear function to Q given by the
equations (120). We are taking the edges in F to be F; and Fjy.

Recall that for the moment polytope I = [0, A] with coordinate z and F being the
end-point 0, the associated affine linear function is

6 2
B(z) = 2T

Since F' is F1 U F4 for Q, the condition of Eq. (42) then becomes that

Ajy=0 = B1(x) + 1
Apx=0 = Bi(y) + c2,

where the ¢; are constants. Thus if A = ax + by + ¢, we have that

a=06
6
b= 5.
Thus A0, k) = ¢ + £ and A({, 0) = ¢ + £, too. O

We will change our parametrization of Q slightly from the beginning of this
Appendix and the above proof, and instead take Q to have vertices

v = (—=d,0),
vy = (k,0),
vz = (0, 1),
vg = (—d., 1).

Here d > 0 and k € Z~(. We can always take Q to be of this form up to scaling. We
will let F| be the edge connecting v| and v4, F> to be the edge connecting v and v,
F3 to be edge connecting v, and v3 and F4 to be the edge connecting v3 and v4.

First, we let A; be the associated affine linear function the case when F consists of
all edges but F;. Then

Ao 12 . 24kd (k + d) y
2d? 4+ 2dk + k27 (2d? + 2dk + k2)(6d> + 6dk + k2)
6(4d3 — 2d%k — 6k*d — k)
" (2d% + 2dk + k2)(6d? + 6dk + k2)’
12(3d? + 4dk + k%)  6(4d* + 5dk + k?)
2T T T e 1 6dk + k2 T T6dZ +6dk + k2
Ay 12 12k (4d? + 4dk + k?)

=2 odk+ 12 T @ T2k v 1) 62 + 6dk + 1)
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6(8d3 + 2d%k — 4k*d — k3)
(2d? + 2dk + k2)(6d? + 6dk + k2)’
12(3d + 2k) 6d (k + 2d)
6d% + 6dk + k2° ~ 6d> + 6dk + k2

Ay =—

Since the associated linear functions depend linearly on the inverse normals, the
associated linear function B; to when F consists of a single edge F; is therefore given
by Bi = Zj;éi Ai, which is

12 12k(4d3 + 6d°k + 4dk* + k3 — 4d* — 4dk — k?)
T2y 2dk + k2 (2d? + 2dk + k2)(6d2 + 6dk + k2)
6(4d4 + 12d%k + 12d%k> + 6dk> + k* 4 8d> + 2d%k — 4dk*> — k)
(2d? + 2dk + k2)(6d? + 6dk + k?)
12(3d* + 2dk + k)  6d(2d +k —2)
6d% + 6dk + k2 > 6d% + 6dk + K2’
12 12k(4d3 + 6d°k + 4dk? + k3 + 2d? + 2dk)
T2 2dk+ k2T T (2d% + 2dk + K2)(6d2 + 6dk + K2)
6(4d4 + 12d%k + 12d%k* + 6dk> + k* — 4d3 + 2d%k + 6dk> + k3)
(2d? + 2dk + k2)(6d? + 6dk + k?)
12(3d% + 4dk + k* — k)  6(4d* + 5dk + k* + 2d)
6d% + 6dk + k2 ° 6d% + 6dk + k2

B

)

2 =

’

By =—

Using Lemma A.7, it suffices to verify whether or not the linear part of B; is equal
at the two vertices of F;. Let K; be the difference of these two numbers. Then

 12k(4d® 4 6d°k + 4dk* + k> — 4d* — Adk — k?)

K (2d? + 2dk + k2)(6d2 + 6dk + k2) ’
K, =0,
_ 12k(4d? + 6d%k + 4dk? + kP — 4d? — 4dk — k)
3T (2d2 + 2dk + k2)(6d2 + 6dk + k2) ’
K4 =0.

The cases of K> and K4 are the cases when Z is the zero or infinity section in X.
This is already treated in Corollary 5.5 where we know that there exists Poincaré type
extremal metrics. The above computations then confirm that the condition of equa-
tion (42) holds, which we also know by general theory regarding extremal Poincaré
type metrics.

To prove Corollary 5.9 in the case when F consists of a single edge using
Lemma A.7, we need to show that K; and K3 can never be Qifd > Oand k > 1. The
requirement k > 1 comes from the fact that if k = 0, then X = CP! x CP', which is
the case we are not considering.
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First note that denominator of K is always positive, so it will have the same sign
as

4d® + 6d%k + 4dk> + k> — 4d* — 4dk — k?
which equals
A4d3 +2d%k + 4dk(k — 1) + k> (k — 1) + 4d*>(k — 1).

This is always positive as d > 0 and k > 1. For K3, note that it equals — K, and
hence is always negative.

The remaining case is that of when F consists of two adjacent edges of Q, which
we take to be F| and F5. The associated affine linear function A is then A3 + A4 and
by Lemma A.7 we need to verify that K = A(k, 0) — A(—d, ﬁ) can never be 0. A
computation shows that this quantity is given by

_12(6d* + 18d°k + 19d°k* + 8dk> + k* 4 6d° 4 6d°k 4 3dk* 4+ k°)

K
(k + d)(2d? + 2dk + k?)(6d? + 6dk + k?)

which is clearly positive. In particular, it can never be 0.
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