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Abstract
We develop a general theory for the existence of extremal Kähler metrics of Poincaré
type in the sense of Auvray (J Reine Angew Math 722:1–64, 2017), defined on the
complement of a torus invariant divisor of a smooth compact toric variety. In the case
when the divisor is smooth, we obtain a list of necessary conditions which must be
satisfied for such a metric to exist. Using the explicit methods of Apostolov et al.
(Ann Sci Ecole Norm Supp (4) 48:1075–1112, 2015; J Reine Angew Math 721:109–
147, 2016, https://doi.org/10.1515/crelle-2014-0060) togetherwith the computational
approach of Sektnan (N Y J Math 24:317–354, 2018), we show that on a Hirzebruch
complex surface the necessary conditions are also sufficient. In particular, on such
a complex surface the complement of the infinity section admits an extremal Kähler
metric of Poincaré type, whereas the complement of a fibre fixed by the torus action
admits a complete ambitoric extremal Kähler metric which is not of Poincaré type.
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1 Introduction

In this article, we are interested in the study of (non-compact) complete extremal
Kähler metrics, defined on the complement of a simple normal crossing divisor Z in
an n-dimensional Kähler manifold X . Such metrics naturally appear (see e.g. [22]) in
attempts to apply continuity methods, or to study global properties of geometric flows,
aiming at producing extremal Kähler metrics on X in the framework of the general
problem of finding canonical Kähler metrics formulated by Calabi [12].

The main conjecture regarding the Calabi problem is the Yau–Tian–Donaldson
conjecture which relates the existence of an extremal Kähler metric in the first Chern
class c1(L) of an ample line bundle L on X to an algebro-geometric notion of stability
of the polarized projective variety (X , L). In this context, a key point is to understand
what happens when an extremal Kähler metric does not exist in c1(L). For toric
varieties, Donaldson conjectured [22, Conj. 7.2.3.] that there should be a splitting
of the corresponding Delzant polytope into sub-polytopes which are semistable when
attaching a 0measure to the facets that are not from the original polytope; furthermore,
in the case when a semistable polytope in the splitting is stable, it is conjectured to
admit a symplectic potential inducing a (unique) complete extremal Kähler metric
on the complement of the divisors corresponding to the facets with 0 measure. Such
extremal toric Kähler metrics have a finite volume, and we shall refer to them as
Donaldson metrics.

The main motivation for this paper is to study, in the toric case, the precise link
between the extremal Donaldson metrics and the class of complete Kähler metrics of
finite volume on X \ Z , called of Poincaré type, early used for instance in [18,47], and
studied by the second named author in [8].

Definition 1.1 Let Z ⊂ X be a simple normal crossing divisor in a compact complex
n-dimensional Kähler manifold (X , ω0). A Kähler metric ω on X \ Z is said to be of
Poincaré type of class [ω0] if
• On any open subset U ⊂ X with holomorphic coordinates (z1, . . . , zn) such that

Z ∩ U is given by z1 · · · zk = 0, ω is quasi-isometric to the (1, 1)-form

ωmod = √−1

⎛
⎝

k∑
j=1

1

|z j |2(log |z j |)2 dz j ∧ dz̄ j +
n∑

j=k+1

dz j ∧ dz̄ j

⎞
⎠

near Z , and
• ω = ω0 + ddcϕ where ϕ is a smooth function on X \ Z and we have that ϕ =

O
( ∑k

j=1 log(− log |z j |)
)
in the coordinates (z1, . . . , zn) as above, with dϕ having

bounded derivatives of any order with respect to the model metric ωmod above.

General theory for extremal Poincaré type metrics on (X \ Z , [ω0]) has been devel-
oped in [7–10]. In particular, a differential-geometric obstruction for the existence
of a constant scalar curvature Kähler (CSCK) metric of Poincaré type on X ⊂ Z ,
reminiscent to the usual Futaki invariant, is introduced in [10]. Furthermore, in the
special case when the Kähler class [ω0] = c1(L) is associated to a polarization L on
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Extremal Kähler Poincaré Type Metrics on Toric Varieties 1225

X , an algebro-geometric notion of (relative) K-stability of (X , Z , L) is formulated by
Székelyhidi [45], who introduced a suitable version of the Donaldson–Futaki invariant
of a test configuration associated to the triple (X , Z , L). Székelyhidi also defined a
numerical constraint, which we shall refer to in this paper as Székelyhidi’s numeri-
cal constraint (see Definition 2.6), which is related to the deformation to the normal
cone of Z ⊂ X , and is designed to guarantee the existence of a Poincaré type metric
(and not a complete extremal Kähler metric with different asymptotics near Z ). It was
later shown in [7] that Székelyhidi’s numerical constraint is a necessary condition
for the existence of a CSCK Poincaré type metric on X \ Z in the class c1(L). The
case when Z is smooth and admits a Kähler metric of non-positive constant scalar
curvature has been also studied in [41–43], where it is conjectured that (X , Z , L) is
then K -semistable and admits a complete Kähler metric of negative constant scalar
curvature.

Thus motivated, in Sect. 3 we turn to the case when (X , L) is a smooth toric variety,
and Z a divisor invariant under the torus action. Compared to the theory in [43], we
are dealing with the case when each component of Z is a toric variety, and therefore
can only admit a Kähler metric of positive constant scalar curvature. In terms of the
corresponding momentum polytope �, Z is the pre-image by the moment map of
the union F = ∪i Fi of facets Fi of �. In this setting (and taking F to be a single
facet), we show that Székelyhidi’s numerical constraint takes a particularly simple
form (Lemma 3.2), and matches the necessary numerical condition for the existence
of an extremal Kähler metric of Poincaré type on X \ Z found in [10].

In Sect. 4, we develop the Abreu–Guillemin formalism of toric Kähler metrics of
Poincaré type, thus leading to a natural class of symplectic potentials (see Defini-
tion 4.16 and Theorem 4.18) which give rise to Poincaré type metrics in the sense of
Definition 1.1. While these conditions are sufficient, they are not necessary in general
(but are conjecturally sharp when adding the extremality condition). We show that
within this class of Poincaré type metrics on X \ Z , the extremal ones are unique.

Buildingon the recent results in [9] and a conjecture from [22] (seeConjecture 4.11),
we state a precise conjectural picture concerning the existence of an extremal Poincaré
type toricKählermetric on X\Z .When Z is smooth, the conjecture says the following:

Conjecture 1.2 A smooth compact toric Kähler manifold (X , ω0) with momentum
polytope � and a divisor Z ⊂ X corresponding to the pre-image of the union of
disjoint facets F = F1 ∪ · · · ∪ Fk of � admits an extremal toric Kähler metric of
Poincaré type in [ω0] if and only if the following three conditions are satisfied:

(i) (�, F) is stable, and
(ii) each facet Fi ⊂ F is stable, and
(iii) if s(�,F) denotes the extremal affine function corresponding to (�, F) and, for

each facet Fi ⊂ F, sFi is the extremal affine function corresponding to the
Delzant polytope Fi , then

sFi − (
s(�,F)

)
|Fi

= ci > 0,

for a constant ci .
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1226 V. Apostolov et al.

See Conjecture 4.14 in the body of the paper for the full statement when F is
allowed to have intersecting facets. This is much stronger than the original conjecture
made in [45], but we show that it is sharper too.

Theorem 1.3 (cf. Theorem 4.13) The conditions (i), (ii), (iii) of Conjecture 1.2 are
necessary for X \ Z to admit an extremal toric Kähler metric of Poincaré type in [ω0].

The precise notions of stability for the pair (�, F) and F in the above statements are
the ones corresponding to relative K-stability with respect to toric test configuration,
introduced by Donaldson [22] (see Definitions 3.1, 4.10 and 4.4), but in the light of
recent progress on the Yau–Tian–Donaldson conjecture in the compact toric case, we
expect that a yet stronger notion of uniform stability with respect to the L1-norm
should be considered. Section 4.4 has a detailed discussion on these issues, as well
as on some of the technical obstacles one would need to overcome in order to adapt
the arguments in the compact case for proving the necessity of uniform stability to the
Poincaré type setting.

In the last Sect. 5, we turn to explicit examples by using the methods of [5,6]. These
results togetherwith [21] confirmaconjecture byDonaldson [22] (seeConjecture 4.11)
concerning the existence of a complete extremalKählermetric, in the special casewhen
(�, F) is a stable quadrilateral with some of its facets with measure 0, also allowing
us to find the metric explicitly. Investigating the stability of such pairs is, on its own,
a problem of formidable complexity but using the method from [40], we obtain a
complete picture on the Hirzebruch complex surfaces.

Theorem 1.4 Let X = P(O⊕O(m)) → CP1, m ≥ 1, be the mth Hirzebruch surface,
considered as a toric complex surface under the action of a 2-dimensional torus T,
and [ω0] be a Kähler class on X. Then,

(a) If Z ⊂ X is the divisor consisting of either the zero section or the infinity section,
or the union of both, then the conditions (i)–(iii) of Conjecture 1.2 hold and X \ Z
admits a T-invariant extremal Poincaré type Kähler metric in [ω0], which is a
Donaldson metric of (X , Z , [ω0]).

(b) If Z ⊂ X is the divisor consisting of a single fibre of X fixed by the T-action, (or
is the union of such a fibre with the zero or infinity section), then the conditions (i)
and (ii) of Conjecture 1.2 (resp. Conjecture 4.14) hold but the condition (iii) fails,
and X \ Z admits a complete T-invariant Donaldson extremal Kähler metric in
[ω0], which is not (and cannot be) of Poincaré type.

(c) If Z consists of the union of the two fibres fixed by the torus action (or contains
three curves fixed by the action), then the condition (i) of Conjecture 1.2 (resp.
Conjecture 4.14) fails, and there are no Donaldson complete metrics on X \ Z.

In particular, Conjectures 1.2 and 4.14 hold true when X is a Hirzebruch surface.

Similar results are obtained for the toric surfaces X = CP2 and CP1 × CP1, see
Corollary 5.3 and Theorem 5.13.

We end the introduction by noticing that part (b) of Theorem 1.4 implies that
while for the X , Z and [ω0] considered here, the relative stability of (X , Z , [ω0]) does
imply the existence of a complete extremal Kähler metric on X \ Z , this metric is not in

123



Extremal Kähler Poincaré Type Metrics on Toric Varieties 1227

Fig. 1 The rows illustrate cases (a), (b) and (c) of Theorem 1.4, where S0, S∞ stand for the zero and infinity
sections and F1, F2 for the torus invariant fibres

general of Poincaré type, even though the Székelyhidi numerical constraint is satisfied.
Thus, in general, one will need more conditions to guarantee that the extremal metric
obtained for a relatively stable triple (X , Z , [ω0]) is of Poincaré type. Conjecture 1.2
is designed to incorporate this extra requirement in the toric setting.

2 The Relative K-Stability of a Pair

2.1 Donaldson–Futaki Invariant of a Pair

We follow [45, §3.1.2].
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1228 V. Apostolov et al.

Let (X , L) be a smooth polarized variety of complex dimension n and Z ⊂ X a
smooth divisor. We consider the embedding

H0(X , Lk ⊗ O(−Z)) ⊂ H0(X , Lk)

via a section of O(Z) which vanishes along Z . Since L is ample,

H1(X , Lk ⊗ O(−Z)) = 0 for k � 0,

and we have an exact sequence

0 −→ H0(X , Lk ⊗ O(−Z)) −→ H0(X , Lk) −→ H0(Z , Lk|Z
) −→ 0. (1)

Let dk, d ′
k, d Z

k be the dimensions of H0(X , Lk), H0(X , Lk ⊗O(−Z)), H0(Z , Lk|Z
)),

respectively, and let d̃k be the average of dk and d ′
k . By Riemann–Roch and (1),

dk = c0kn + c1kn−1 + O(kn−2); d Z
k = α0kn−1 + α1kn−2 + O(kn−3);

d̃k = dk + d ′
k

2
= dk − d Z

k

2
= c0kn +

(
c1 − α0

2

)
kn−1 + O(kn−2).

(2)

Suppose α is a C
×-action on (X , L) which preserves Z . We denote also by α the

induced C
× action on X and in what follows, we use the following convention for the

infinitesimal generator Aα for the action of α on the space �(L) of smooth sections
of L:

(Aα(s))(x) := √−1
d

dt |t=0

(
α(e

√−1t )
(
s(α(e−√−1t )(x))

))
, s ∈ �(L), x ∈ M .

Letting wk, w
′
k, w

Z
k be the respective weights of the induced actions of α on

H0(X , Lk), H0(X , Lk ⊗ O(−Z)), H0(Z , Lk|Z
)), respectively, and w̃k be the aver-

age of wk and w′
k , by the equivariant Riemann–Roch and (1) we have

wk(α) = a0kn+1 + a1kn + O(kn−1); wZ
k (α) = β0kn + β1kn−1 + O(kn−2);

w̃k(α) = wk(α) + w′
k(α)

2
= wk(α)− wZ

k (α)

2
= a0kn+1 +

(
a1 − β0

2

)
kn +O(kn−1).

(3)

Definition 2.1 The Donaldson–Futaki invariant F̃X ,Z ,L(α) of α with respect to
(X , Z , L) is defined up to a sign as 4 times the residue at k = 0 of the Laurent
series of w̃k/(kd̃k) with respect to k, i.e.

1

4
F̃X ,Z ,L(α) = c0

(
a1 − β0

2

) − a0
(
c1 − α0

2

)

c20

= 1

4
FX ,L(α) + 1

2

(a0α0 − c0β0

c20

)
,

(4)
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where FX ,L(α) = 4( c0a1−a0c1
c20

) is the convention for the Donaldson–Futaki invariant

in [22], so that it coincides, up to a multiplicative factor of 1
4(2π)n , with the differential-

geometric formula in [10] for the usual normalized Futaki invariant of α, expressed
in terms of the L2-product of a normalized Killing potential for the C

×-action and
the scalar curvature with respect to an S1-invariant Kähler metric on X in 2πc1(L),
divided by the volume.

Following [45], one can also define a relative version of F̃X ,Z ,L(α) with respect
to another C

×-action β in the group Aut(X , L, Z) of automorphisms of (X , L), pre-
serving Z . Recall that the inner product 〈α, β〉 is defined to be the coefficient of kn+2

of the expansion of Tr(Ak Bk) − wk(α)wk(β)/dk , where Ak and Bk are generators of
the actions of α and β on H0(X , Lk). This definition is consistent with the L2 -norm
of normalized Killing potentials (the so-called Futaki–Mabuchi bilinear form [26]).

Definition 2.2 The β-relative Donaldson–Futaki invariant (of α, with respect to
(X , Z , L)) is

F̃β
X ,Z ,L(α) = F̃X ,Z ,L(α) − 〈α, β〉

〈β, β〉 F̃X ,Z ,L(β). (5)

The above definitionsmake sense for any rationalmultiples ofα andβ (by linearity).
We then consider a maximal complex torus T

c = (C×)	 in Aut(X , L, Z) and define
the extremal C

×-action χ of (X , L, Z) as the unique C
× subgroup of T

c such that
F̃χ

X ,Z ,L(α) = 0.

2.2 Test Configurations and K-Stability of a Pair

The ingredients of the previous section yield Székelyhidi’s extension [45] of K -
stability to pairs.

Definition 2.3 The triple (X , Z , L) is called K -stable if for any test configuration
(X ,L) of (X , L) with a flat C

×-invariant Cartier divisor Z ⊂ X which restricts to Z
on the non-zero fibres, the modified Donaldson–Futaki invariant of the central fibre
satisfies

F̃X0,Z0,L0(α) ≥ 0 (6)

with equality if and only if the test configuration is trivial in codimension 2 (see [44]
for a precise definition of triviality). Similarly, one can define relative K-stability of
(X , L, Z) by requiring

F̃χ
X0,Z0,L0

(α) ≥ 0, (7)

with equality if and only if the test configuration is trivial in codimension 2. (Recall
χ is the extremal C

×-action defined algebraically in the previous section.)

Investigating a ruled complex surface X = P(O ⊕ L) → � with Z being the
infinity section, Székelyhidi [45] noticed that for some polarizations L , there are
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1230 V. Apostolov et al.

complete finite volume extremal Kähler metrics on X \ Z in c1(L), which are not of
Poincaré type, but have instead the asymptotics of

|dz|2
|z|2( − log(|z|)) 3

2

+ smooth,

where z is a (local) defining holomorphic function of Z . In order to exclude this
behaviour, Székelyhidi furthermore proposes to use the notion of slope stability intro-
duced by Ross–Thomas [39] for the triple (X , L, Z) as follows. Recall that for any
(X , L, Z) as above, and any rational number c ∈ (0, ε(Z)) (where ε(Z) is the Seshadri
constant of Z with respect to (X , L)), one can associate a test configuration (X ,Lc,Z),
called the degeneration to the normal cone of Z : X is the blow-up of X × C along
Z ×{0}, Lc = π∗(L)⊗O(−cP) where P is the exceptional divisor (naturally identi-
fied with the projective bundle P = P(O ⊕ νZ ) → Z where νZ is the normal bundle
of Z ⊂ X ), and π : X → C is the projection. Note that the central fibre X0 of π is
isomorphic to X glued to P along the infinity section P(νZ ) ∼= Z . However, consid-
ering the zero section Z0 ⊂ P , one gets the proper transform Z of Z × C ⊂ X × C

on the blow-up X , so that π : Z → C is a trivial family. It follows from [39] that
(X ,Lc,Z) defines a test configuration for the triple (X , L, Z). This motivates:

Definition 2.4 In the notation above, we let

F(c) := F̃X0,Lc |X0
,Z0

(αc), Fχ (c) := F̃χ

X0,Z0,Lc |X0

(αc)

be the corresponding modified Donaldson–Futaki invariant and relative modified
Donaldson–Futaki invariant associated to the degeneration of the normal cone to
Z ⊂ (X , L).

Then, Székelyhidi conjectures:

Conjecture 2.5 (Székelyhidi [45]) The triple (X , Z , L) admits a constant scalar cur-
vature (resp. an extremal) Kähler metric of Poincaré type if and only if (X , Z , L) is
K -stable (resp. relative K -stable) and, additionally, F ′′(0) > 0 (resp. F ′′

χ (0) > 0).

Definition 2.6 We shall refer to the conditions F ′′(0) > 0 (resp. F ′′
χ (0) > 0) as the

Székelyhidi numerical constraint (resp. relative Székelyhidi numerical constraint).

The following observation is made in [45]:

Lemma 2.7 F(c) := F̃X0,Lc |X0
,Z0

(αc) is a polynomial of degree ≤ (n + 1) in c

satisfying F(0) = F ′(0) = 0. It is positive for c ∈ (0, ε(Z)) if (X , L, Z) is K -stable.
Furthermore, the Székelyhidi numerical constraint F ′′(0) > 0 is equivalent to

α1c0 > α0

(
c1 − α0

2

)
, (8)

where αi , ci are defined by (2).
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Proof The (usual) Donaldson–Futaki invariant of (X ,Lc) is computed in [39]:

1

4
F(αc) = 1

c20

[
c0

∫ c

0
α1(x)(x − c)dx − c

c0α0

2
− c1

∫ c

0
α0(x)(x − c)dx

]
, (9)

where c0, c1 are the coefficients of kn and kn−1 of dk as defined in the previous section
(with respect to (X , L, Z)), see (2), and

α0(x) = 1

(n − 1)!
∫

Z
(c1(L) + xc1(O(Z))n−1;

α1(x) = 1

2(n − 2)!
∫

Z
c1(T X) ∧ (c1(L) + xc1(O(Z))n−2.

(10)

By Riemann–Roch, αi (0) is the constant αi appearing in the previous section (first
line of (2)).

The main ingredient in order to carry out the above calculation in the modified
case is the weight space decomposition for the induced C

×-action αc on the space
H0(X0,Lc |X0

) (see [39, §4.2]):

H0(X0,Lc |X0
) = H0(X , Lk ⊗ O(kcZ)) ⊕

ck−1⊕
i=0

tck−i H0
(

Z , Lk|Z
⊗ (ν∗

Z )i
)

, (11)

where the weight of αc on the first factor is 0 and −(ck − i) on the components of
the second direct sum. Note that the factor tck H0(Z , Lk|Z

) in the above decomposition

corresponds to H0(Z0,L|Z0
) in (1). It follows that

d Z0
k = d Z

k = α0kn−1 + O(kn−2); w
Z0
k = ckd Z

k = cα0kn + O(kn−1) (12)

while the coefficients a0 and a1 of the weights induced on H0(X0,Lc |X0
) are given

by (see [39, Eqn. (4.6)]):

a0 =
∫ c

0
(x − c)α0(x)dx; a1 = −c

α0

2c0
+

∫ c

0
(x − c)α1(x)dx . (13)

We therefore compute the modified Donaldson–Futaki invariant given by (4)

1

4
F̃X0,Z0,Lc |X0

(αc) = 1

c20

[
c0

∫ c

0
(x−c)α1(x)dx−

(
c1− α0

2

) ∫ c

0
(x − c)α0(x)dx

]
.

(14)
Form the above formula, the proof of Lemma 2.7 then follows easily. ��

Using Lemma 2.7, it is shown in [7]:

Theorem 2.8 [7] If there exists a CSCK metric of Poincaré type on X \ Z in the class
c1(L), then the Székelyhidi numerical constraint holds, i.e. (8) is satisfied.
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1232 V. Apostolov et al.

Remark 2.9 It is plausible to expect a similar numerical expression for the relative
Székelyhidi numerical constraint F ′′

χ (0) > 0 butwe failed to see a neat way to compute
Fχ (c) in a sufficient generality, especially if the extremal C

×-action is not trivial on
Z .

We shall next turn to the toric case as a model example for the above theory, and
where specific computations are manageable. We shall show (see in particular Corol-
lary 5.9) that there are examples of relatively K -stable triples (X , Z , L) satisfying
F ′′

χ (0) > 0, which cannot be of Poincaré type. We note, however, that these examples
do admit a complete extremal metric on X \ Z – it just cannot satisfy the Poincaré
type condition. We shall thus propose a strengthened version of Conjecture 2.5 for
when a relatively K-stable triple (X , Z , L) should admit an extremal Kähler metric of
Poincaré type in c1(L) in the toric setting (see Conjecture 4.14).

3 Extremal Poincaré Type Kähler Metrics on Toric Varieties

In this section we consider the case when (X , L) is a (smooth) polarized toric variety.
We denote by T the real n-dimensional torus and by T

c ∼= (C×)n its complexification.
The material follows [22].

3.1 Stability of Pairs and Toric Test Configurations

Switching from complex to symplectic point of view, Delzant’s theorem [20] describes
(X , L) in terms of a compact convex polytope � ⊂ t∗ (where t = Lie(T) is the Lie
algebra of T) such that � = {μ : L j (μ) = 〈e j , μ〉 + λ j ≥ 0, j = 1, . . . , d} with
e j belonging to the lattice � ⊂ t of circle subgroups of T. The fact that X is smooth
corresponds to requiring that at each vertex of v ∈ � the adjacent normals span the
same lattice � ⊂ t (see [20,38]), while the polarization L forces � to have its vertices
in the dual lattice �∗ ⊂ t∗. Taking any generators of � as a basis of t, one identifies
� with Z

n and we consider the Lebesgue measure dμ on t∗ ∼= R
n ; furthermore,

one defines a measure dν on ∂�, such that on each facet Fj ⊂ � (i.e. a face of
co-dimension one), we let

− dL j ∧ dνFj = −e j ∧ dνFj = dμ. (15)

A central fact in this theory (see e.g. [14, Sect. 6.6]) is the weight decomposition
of H0(X , Lk) with respect to the (linearized) torus action of T. It is isomorphic to
{μ ∈ k� ∩ Z

n} with the weights identified with corresponding elements of Z
n . On

the other hand, for any smooth function f on t∗, we have [32,48]:

∑
μ∈k�∩Zn

f (μ) = kn
∫

�

f dμ + kn−1

2

∫
∂�

f dν + O(kn−2), as k → ∞.
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If α is the C
×-action with Killing potential corresponding to an affine linear function

fα on t∗ normalized by fα(0) = 0, the above formula allows us to compute the
coefficients c0, c1, a0, a1 in (2) and (3) as follows:

c0 = Vol(�); c1 = Vol(∂�)

2
; a0 =

∫
�

fαdμ; a1 = 1

2

∫
∂�

fαdν, (16)

so that the Donaldson–Futaki invariant F(α) of α is

(2π)nVol(�)

2
F(α) =

∫
∂�

fαdν − s
2

∫
�

fαdμ, (17)

where s = 2Vol(∂�)/Vol(�) = 2n
( ∫

X c1(T X) ∧ c1(L)n−1/
∫

X c1(L)n
)
is the aver-

aged scalar curvature of any compatible Kähler metric.
Similarly, if Z ⊂ X is a divisor corresponding to the pre-image of the union F =

Fi1 ∪· · ·∪ Fik of some facets� by the momentummap, the coefficients α0, α1, β0, β1
in (2) and (3) are given by

α0 = Vol(F); α1 = 1

2
Vol(∂ F); β0 =

∫
F

fαdν; β1 =
∫

∂ F
fαdσF , (18)

where dσ∂ F is the induced measure on the boundary of each Fi ∈ F (viewed itself as
a Delzant polytope in R

n−1). The modified Futaki invariant F̃X ,L,Z (α) is then

(2π)nVol(�)

2
F̃X ,L,Z (α) =

∫
∂�\F

fαdν − s(�,F)

2

∫
�

fαdμ, (19)

with

s(�,F) = 2
Vol(∂� \ F)

Vol(�)

= 2n

(∫
X
(c1(T X) + c1(O(−Z)) ∧ c1(L)n−1

/ ∫
X

c1(L)n
)

.

(20)

The extremal C
×-action χ has Killing potential which is an affine linear function

s� determined by requiring

∫
∂�

f dν − 1

2

∫
�

f s�dμ = 0

for any affine function f (see e.g. [45]). Then, as shown in [22,45], the relative
Donaldson–Futaki invariant is given by

(2π)nVol(�)

2
Fχ (α) =

∫
∂�

fαdν − 1

2

∫
�

fαs�dμ (21)
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while its modified version is

(2π)nVol(�)

2
F̃χ

X ,L,Z (α) =
∫

∂�\F
fαdν − 1

2

∫
�

fαs(�,F)dμ (22)

where s(�,F) again is the unique affine function such that

∫
∂�\F

f dν − 1

2

∫
�

f s(�,F)dμ = 0

for any affine linear function f .
Donaldson generalizes the above expression forF(α) by considering convex piece-

wise affine linear functions fα with integer coefficients. He associates to such an fα
a test configuration (X ,L), called toric, and identifies the Donaldson–Futaki invari-
ant of the central fibre (X0, L0) with (17). Székelyhidi [45, § 4.1] shows that (21)
computes the relative Donaldson–Futaki invariant for such test configurations. These
computations generalize easily in the case of a pair (X , Z) where the divisor Z cor-
responds to the pre-image of a number of facets of � by the moment map. In this
case, the toric test configurations come equipped with a divisor Z which defines a flat
family for Z ; furthermore, (19) and (22) compute the modified Donaldson–Futaki and
relative Donaldson–Futaki invariant of toric test configurations, respectively. We are
thus led to the following:

Definition 3.1 Let (X , L) be a toric polarized variety and Z ⊂ X a divisor corre-
sponding to the pre-image under the moment map of the union F = Fi1 ∪ · · · ∪ Fik of
some facets of the momentum polytope �. We say that (X , Z , L) is relative K-stable
with respect to toric degenerations if

L(�,F)( f ) :=
∫

∂�\F
f dν − 1

2

∫
�

f s(�,F)dμ > 0 (23)

for any convex, piecewise affine linear function f which is not affine linear on�. Recall
that s(�,F) is by definition the unique affine linear function such that (23) vanishes
for any affine linear function f , and is called the extremal affine linear function of
(�, F). If (23) is satisfied, we shall refer to (�, F) as a stable pair.

Lemma 3.2 Let (X , L) be a toric polarized variety and Z ⊂ X a divisor corresponding
to the pre-image under the moment map of one facet F of the momentum polytope �.
Then, the relative Székelyhidi numerical constraint is equivalent to

F ′′
χ (0) = 1

2

∫
F
(sF − s(�,F))dνF > 0, (24)

where s(�,F) is the extremal affine linear function of (�, F) and sF is the extremal
affine linear function of the facet F (seen as a Delzant polytope of an (n − 1) dimen-
sional toric variety).
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Proof In the toric case, Ross–Thomas [39, § 4.3] link their construction of degener-
ations to the normal cone to toric test configurations: the degeneration to the normal
cone of Z ⊂ X corresponding to a facet F ⊂ � defined by the zero set of an
affine linear function L (with L ≥ 0 on �) is given by Donaldson’s construction with
fc = max(0, c−L). Therefore, the corresponding relativemodifiedDonaldson–Futaki
invariant (22) is

Fχ (c) =
∫

∂�\F
fcdν − 1

2

∫
�

fcs(�,F)dμ

=
∫

∂�\F
fcdν − 1

2

∫
�

fcs(�,F)dμ

− 1

2

∫
�

fc(s(�,F) − s(�,F))dμ.

(25)

Note that the sum on the second line is c0/4 times the function F(c) introduced in
Lemma 2.7 (and computed via (14)) and, for any affine function ξ ,

∂2

∂c2

(∫
�

fcξdμ

) ∣∣∣
c=0

=
∫

F
ξdνF ,

where, we recall, dνF is determined via the defining equation L = 0 for F by letting
−dL ∧ dνF = dμ. Using (16), (18), and (20) one then gets

F ′′
χ (0) = 2

(
α1 −

(
c1 − α0

2

)
α0

c0

)
− 1

2

∫
F
(s(�,F) − s(�,F))dνF

= Vol(∂ F) − 1

2

∫
F

s(�,F)dνF

+ Vol(∂� \ F)

Vol(�)
Vol(F) − Vol(∂� \ F)

Vol(�)
Vol(F)

=
∫

∂ F
dσF − 1

2

∫
F

s(�,F)dνF

= 1

2

∫
F
(sF − s(�,F))dνF ,

(26)

where sF denotes the extremal affine function corresponding to Z . ��
Lemma 3.3 Let (X , Z) be as in Lemma 3.2. If (�, F) is stable, then

∫
F
(sF − s(�,F))dνF ≥ 0.

Proof Using the expression Fχ (c) = c0
4 F(c) − 1

2

∫
�

fc(s(�,F) − s(�,F))dμ in (25)
and Lemma 2.7, one easily computes that Fχ (0) = F ′

χ (0) = 0. It thus follows from
(26) that for c sufficiently small, the piecewise affine linear convex function fc =
max(0, c − L) will destabilize (�, F), should

∫
F (sF − s(�,F))dνF = 2F ′′

χ (0) < 0. ��
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4 Labelled Polytopes and the Abreu–Guillemin Theory for Kähler
Metrics of Poincaré Type

4.1 DonaldsonMetrics on a Labelled Polytope

Following [22], the discussion in Sect. 3 can be put in a broader framework which
makes sense for any labelled convex compact simple polytope (�,L) in (Rn)∗.

Definition 4.1 Let� ⊂ (Rn)∗ = t∗ be a compact convex polytope defined by a system
of d linear inequalities

� = {x ∈ (Rn)∗ : L j (x) = 〈e j , x〉 + λ j ≥ 0, j = 1, . . . , d}

where L = {L1(x), . . . , Ld(x)} are affine linear functions on (Rn)∗ and dL j := e j ∈
R

n are inward normals to �. We suppose that � is simple in the sense that for each
vertex v, there are precisely n affine linear functions Lv,1, . . . , Lv,n in Lwhich vanish
at v and the corresponding inward normals {ev,1, . . . ev,n} form a basis of R

n . We
refer to such date (�,L) as a labelled (simple, compact, convex) polytope. Notice
that, by Delzant’s theorem [20], (�,L) is the momentum image of a compact smooth
toric variety if the labelling L satisfies the integrality condition that at each vertex
v, spanZ{uv,1, . . . , uv,n} is a fixed lattice � ⊂ R

n . We shall refer to such labelled
polytopes (�,L) as Delzant polytopes.

In the case when (�,L) is Delzant, the works [1,31] give an effective way to
parametrize T-invariant, ω-compatible Kähler metrics g on the toric symplectic man-
ifold (X , ω) classified by (�,L) in terms of strictly convex smooth functions u(x)

defined on the interior �0 of � ⊂ (Rn)∗ and satisfying certain boundary conditions
on ∂�. Specifically, the Kähler metric g is written on X0 = μ−1(�0) as

g =
n∑

i, j=1

(
u,i jdxi ⊗ dx j + u,i jdti ⊗ dt j

)
(27)

where (x1, . . . , xn) are the Euclidean coordinates on (Rn)∗, (u,i j ) = Hess(u) (and
we tacitly identify smooth functions and tensors on �0 with their pull-backs via μ

on X0) and (t1, . . . , tn) are angular (2π -periodic) coordinates obtained by fixing a
point p0 ∈ X0 and identifying X0 ∼= (C×)n with the principal orbit of p0 under the
complexified action T

c (with respect to the complex structure J determined by g and
ω). In this formalism, the symplectic form is

ω =
n∑

i=1

dxi ∧ dti .

A central fact in this theory (see [2,23]) is that (27) extends to a smooth Riemannian
metric on X if and only if u satisfies the following Guillemin boundary conditions:
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Definition 4.2 Let (�,L) be a labelled convex compact simple polytope in (Rn)∗ =
t∗. We say that a strictly convex smooth function u on �0 satisfies the Guillemin
boundary conditions if

• u − 1
2

∑d
k=1 Lk log Lk is smooth on �, and

• the restriction of u to the relative interior F0 of any face F ⊂ � is smooth and
strictly convex.

We denote by S(�,L) the space of such u.

An example of a function in S(�,L) is (see [31])

u0 := 1

2

d∑
k=1

Lk log Lk, (28)

which, in theDelzant case, characterizes the inducedKählermetric on X via theKähler
reduction of the flat metric on C

d .
The space S(�,L) can be equivalently characterized in terms of first-order bound-

ary conditions:

Proposition 4.3 [4] The space S(�,L) consists of all smooth functions u on �0 such
that Hu := (Hess(u))−1 satisfies

• [smoothness] Hu extends smoothly on � as an S2(t∗)-valued function;
• [boundary conditions] For any facet Fj ⊂ ∂� with normal e j = dL j , and x ∈ Fj

Hu
x (e j , ·) = 0; (dHu)x (e j , e j ) = 2e j ; (29)

• [positivity] Hu is positive definite on �0, as well as on the relative interior �0

of any face � ⊂ �, viewed there as a smooth function with values in S2(t/t�)∗
where t� denotes the subspace spanned by normals to facets containing �.

The extremality of the Kähler metric (27) with u ∈ S(�,L) reduces to solving the
Abreu equation [1]

−
n∑

i, j=1

∂2Hu
i j

∂xi∂x j
= s(�,L), (30)

for an affine linear function s(�,L) determined from the labelled polytope (�,L) by
the requirement that

L(�,L)( f ) := 2
∫

∂�

f dνL −
∫

�

s(�,L) f dμ = 0

for any affine linear function f , where dμ is a (fixed) Lebesguemeasure on t∗ = (Rn)∗
and dνL is obtained from dμ and L via (15). In this setting, we recall the following:

Definition 4.4 A labelled compact convex simple polytope (�,L) in a vector space
t∗ is called stable (or K-stable) if

L(�,L)( f ) ≥ 0,
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for any convex, piecewise affine linear function f , and the equality is achieved only
when f is affine linear.

Using the integration by parts formula established in [22, Lemma 3.3.5], Zhou and
Zhu have shown in [49] that the stability of (�,L) is a necessary condition for a
solution u ∈ S(�,L) of (30) to exist:

Proposition 4.5 [49] Suppose there exists a function u ∈ S(�,L) which solves the
Abreu equation (30). Then (�,L) is stable.

Furthermore, as observed in [22,28], any solution u ∈ S(�,L) of (30) must be, up
to the addition of affine linear functions, the unique critical point (= the minimum) of
the convex relative Mabuchi functional

M(�,L)(u) := L(�,L)(u) −
∫

�

log det(Hu)dμ, (31)

which is shown in [22] to take values in (0,∞].
It is observed in [22, p. 344] that most of the above theory extends to the case when

one takes F = F1 ∪ · · · ∪ Fk to be the union of facets of (�,L), and one modifies the
induced measure dνL to be zero on F . By (15), for each facet Fi ⊂ F , the modified
measure can be thought of as the limit limt→∞ dνt Li , i.e. the measure obtained as in
(15) when sending the corresponding label Li to infinity. There is a subtle point here,
however. It is not immediately clear how to extend the Guillemin boundary conditions
of Definition 4.2 over such limits. On the other hand, as observed in [5], the equivalent
first-order boundary conditions given by Proposition 4.3 extend naturally:

Definition 4.6 Let (�,L) be a labelled convex compact simple polytope in t∗ and
F = F1 ∪ · · · ∪ Fk the union of some of its facets. We denote by S(�,L, F) the
functional space of u ∈ C∞(�0) verifying the first-order boundary conditions

• [smoothness] Hu extends smoothly on �;
• [boundary conditions] for any facet Fi ⊂ F and any point x ∈ Fi ,

Hu
x (ei , e) = 0; (

dHu(ei , e)
)

x = 0, (32)

where ei = dLi is the inward normal to Fi defined by L and e ∈ t, and, for any
facet Fr which is not in F , and x ∈ Fr ,

Hu
x (er , e) = 0; (

dHu(er , er )
)

x = 2er . (33)

• [positivity] Hu is positive definite on �0, as well as on the interior of any face
� ⊂ �, viewed there as a smooth function with values in S2(t/t�)∗ where t�
denotes the subspace spanned by normals to facets containing �.

Remark 4.7 Manifestly, the conditions (32) are independent of the choice of labels Li

for the facets Fi ⊂ F , and are obtained from (33) by letting ei → ∞.
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Remark 4.8 Symplectic potentials satisfying Definition 4.6 do not necessarily cor-
respond to Poincaré type metrics. However, below we shall define subspaces
Sα,β(�,L, F) of S(�,L, F) depending on a positive parameter α and a real param-
eter β which do induce metrics of Poincaré type on X \ Z .

We are thus interested to find solutions of (30) in S(�,L, F), where, by the inte-
gration by parts argument of [22, Lemma 3.3.5] (see also (36) for a precise statement),
the right-hand side must be the unique affine linear function s(�,L,F), called extremal
affine function, satisfying

L(�,L,F)( f ) =
∫

∂�\F
f dνL − 1

2

∫
�

f s(�,L,F)dμ = 0 (34)

for any affine linear function f . We also have the following straightforward extension
of Proposition 4.5 to the case (�,L, F):

Proposition 4.9 Suppose there exists a function u ∈ S(�,L, F) which solves the
Abreu equation

−
n∑

i, j=1

∂2Hu
i j

∂xi∂x j
= s(�,L,F), (35)

where s(�,L,F) is the extremal affine linear function of (�,L, F). ThenL(�,L,F)( f ) ≥
0 for any convex, piecewise affine linear function f , with equality iff f is affine linear.

Definition 4.10 A labelled convex compact simple polytope (�,L) in (Rn)∗ with a
fixed subset F of facets satisfying the conclusion of Proposition 4.9 will be referred
to as stable triple (�,L, F). A Kähler metric on gD on �0 × T defined by a solution
u ∈ S(�,L, F) of (35) (if it exists) will be called a Donaldson metric on (�,L, F).

The geometric interest of studying Donaldson metrics as above comes from the
following:

Conjecture 4.11 (Donaldson [22]) Let (�,L) be the momentum polytope of a smooth
compact toric Kähler manifold (X , ω0) and Z the divisor in X corresponding to the
momentum pre-image of the union F of facets of �. If (�,L, F) is stable, then there
exists a complete extremal Kähler metric gD defined on X \ Z.

Remark 4.12 Notice that when (�,L) is aDelzant polytope corresponding to a smooth
compact toric manifold (X , ω0), the label L is uniquely determined from the Delzant
condition. Thus, in order to simplify the notation in this case, and when there is no
possible confusion, we shall skip the label L. This is the convention we have taken in
the previous Sect. 3.

We now use the results from [9,10] in order to establish the following:

Theorem 4.13 Let (X , ω0) be a smooth compact n-dimensional complex toric Kähler
manifold, and Z ⊂ X a smooth divisor corresponding to the pre-image under the
moment map of a single facet F of the momentum polytope �. If X \ Z admits a T-
invariant extremal Kähler metric of Poincaré type in [ω0], then (�, F) is stable and
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the relative Székelyhidi numerical constraint (24) holds. Furthermore, the Delzant
polytope F is stable and

sF − (s(�,F))|F = const > 0.

Proof The main point is to show that a T-invariant extremal Kähler metric (g, ω) of
Poincaré type on X \ Z gives rise to a Donaldson metric in a slightly weaker sense,
namely it corresponds to Hu ∈ C∞(�0, S2(t∗)) which extends smoothly on � \ F
and C0 on � and, moreover, the conditions (32) and (33) hold where the first-order
condition at F is taken in the sense of limit, i.e.

lim
x→F,x∈�\F

(
dHu(eF , ·))x = 0,

for eF ∈ t the inward normal to F . This will be enough in order to establish the
integration by parts formula (compare with [22, Lemma 3.3.5]):

∫
�

⎛
⎝

n∑
i, j=1

Hu
i j,i j

⎞
⎠ ϕdμ =

∫
�

⎛
⎝

n∑
i, j=1

Hu
i jϕ,i j

⎞
⎠ dμ − 2

∫
∂�\F

ϕdνL (36)

for any smooth function ϕ on �. The latter in turn implies that

(a) Scalg = s(�,F) and
(b) (�, F) is stable (compare with Proposition 4.9).

With the conclusions (a) and (b) in place, the result follows easily from [9,10].
Indeed, (a) and Lemma 3.2 together with [10, Thm. 4 and Prop. 2.1] show that (24) is
a necessary condition for the existence of an extremal Kähler metric of Poincaré type
on X \Z . Furthermore, by [9, Thm. 4], Z must admit an extremal Kählermetric ǧ in the
Kähler class [ω0]|Z , so that F must be a stable Delzant polytope by Proposition 4.5. It
is also shown in [9, p.44] that the extremal vector fields JgradgScalg and JgradǧScalǧ
agree on Z , which in our case translates to say that sF − (s(�,F))|F = const . The
constant is positive because of (24).

We thus focus for the remainder of the proof to show that an extremal T-invariant
Poincaré type metric (g, ω) on X \ Z is (weakly) Donaldson. To this end, we fix a
T-invariant Kähler metric ω0 ∈ c1(L) on X and denote by (�,L) the corresponding
Delzant polytope.We shall write, for any basis {e1, . . . , en} of t, x0 = (x01 , . . . , x0n ) the
corresponding momenta, viewed as functions from X to t∗ defined by ıK j ω0 = −dx0j
where K j is the fundamental vector field of X corresponding to e j ∈ t; thus � =
Im(x0) and Z = (x0)−1(F) for a facet F ⊂ �. Let v ∈ � be a vertex of� and F , and
{e1, . . . , en} the basis of t formed by the inward normals to the facets containing v,
with eF = e1. By Delzant theory (see [20,38]) there exists a (C×)n equivariant chart
C

n
v of X (with respect to the complexified (C×)n-action of T on X and the standard

(C×)n-action on C
n
v = C

n) in which F is given by z1 = 0. Furthermore, in this chart,
|z j |2 = x0j eφ j (z) for smooth functionsφ j on X (see e.g. [22]) whereas the holomorphic

vector fields 1
2 (K j − √−1J K j ) become

√−1z j
∂

∂z j
.
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According to Definition 1.1, we can write ω = ω0 +ddcϕ for a smooth T-invariant
function ϕ on X \ Z , such that dϕ is bounded at any order with respect to the model
metric

ωmod = √−1

⎛
⎝ 1

|z1|2(log |z1|)2 dz1 ∧ dz̄1 +
n∑

j=2

dz j ∧ dz̄ j

⎞
⎠

defined on the chart C
n
v : in particular

dϕ(J K j ) = O(|z j |), j = 2, . . . , n, dϕ(J K1) = O

(
1

| log(|z1|2)|
)

. (37)

Writing
x j = x0j + dϕ(J K j ), j = 1, . . . n, (38)

for themomenta of (g, ω), we see that themap x0 → x sends�\F to itself, preserving
the faces. Furthermore, x1 : X \ Z → � \ F extends continuously as zero over Z .

We now let Hx (ei , e j ) = (gp(Ki , K j )) be the smooth S2(t∗)-valued function,
defined on �0 by using the extremal Kähler metric g and the momentum map x
(with x = x(p) for p ∈ X \ Z ). Clearly, H extends smoothly over � \ F . The
proof of Proposition 4.3 (given in [4]) uses local arguments around a point on a facet
Fr ⊂ � \ F , and thus shows thatH satisfies the boundary conditions (33) on each Fr .
We now focus on F . We use the chartCn

v as above, and denote by π1 : C
n
v → C

n−1 the
projection π1(z1, z2, . . . , zn) = (z2, . . . , zn). Then, [9, Thm. 4] tells that as z1 → 0,
ω is written as

ω = a1

(√−1(dz1 ∧ dz̄1)

|z1|2
(
log(|z1|2)2

)
+ π∗

1ω1 + O(| log |z1||−δ), (39)

where a1 and δ are positive reals, ω1 is an extremal Kähler metric on Z ∩ C
n
v =

{(0, z2, . . . , zn)}, and O(| log |z1||−δ) is understood at any order with respect to the
Kähler metric

a1

(√−1(dz1 ∧ dz̄1)

|z1|2
(
log(|z1|2)2

)
+ π∗

1ω1. (40)

We compute from (39), with respect to the vector fields 1
2 (K j − √−1J K j ) =√−1z j

∂
∂z j

,

H(e1, e1) = ω(K1, J K1) = 2a1(
log(|z1|2)

)2 + O
(| log |z1||−δ−2)

,

H(e1, e j ) = ω(K1, J K j ) = O
(|z j || log |z1||−δ−1)

,

H(ei , e j ) = ω(Ki , J K j ) = Ȟ1(ei , e j ) + O
(|zi z j || log |z1||−δ

)
, i, j ≥ 2,

(41)
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where Ȟ1(ei , e j ) = π∗ω1(Ki , J K j ) is the z1 independent smooth function computed
from ω1 with respect to the induced vector fields on Z . It follows that H extends
continuously on F , verifying Hx (e1, ·) = 0 on F .

Taking interior product with K1 and Ki , i ≥ 2, in (39) we obtain

dx1 = a1

(
d|z1|2

|z1|2(log |z1|2)2
)

+
n∑

j=1

f j (z)d|z j |2,

dxi = 2
n∑

j=2

Ȟ1(ei , e j )d|z j | +
n∑

j=1

fi j (z)d|z j |2 = π∗
1 dx1i +

n∑
j=1

fi j (z)d|z j |2,

where f1(z) = O
(

1
|z1|2(log |z1|2)2+δ

)
, f j (z) = O(| log |z1||−1−δ), j = 2, . . . , n, and

fi1(z) = O
( |zi |2

|z1|(log |z1|2)1+δ

)
, fi j (z) = O(|zi |2| log |z1||−δ), i, j = 2, . . . , n; here

dx1i = −ιKi ω1 for i = 2, . . . , n, and dx1i = ∑n
j=2 Ai jd|z j |2 for some invertible

matrix (Ai j ), locally uniformly bounded together with its inverse (Ai j ) on Z ∩ C
n
v .

Putting σ1 = d|z1|2
|z1|2| log(|z1|2)| and σi = d|zi |2, the relations above can be recapped as

⎛
⎜⎜⎜⎝

∣∣ log |z1|
∣∣dx1

dx2
...

dxn

⎞
⎟⎟⎟⎠ =

[ (
a1 0
0 (Ai j )

)
+ ε

] ⎛
⎜⎝

σ1
...

σn

⎞
⎟⎠ ,

with ε = O(| log |z1||−δ); solving this system provides

σ1 = | log |z1||
a1

dx1 +
n∑

j=1

η1 jdx j , σi = ηi1dx1 +
n∑

j=2

(Ai j + ηi j )dx j , i = 2, . . . , n,

with ηi1 = O(| log |z1||1−δ), i = 1, . . . , n, and ηi j = O(| log |z1||−δ), i =
1, . . . , n, j = 2, . . . , n. Differentiating the first two lines of (41) with respect to
z1 log |z1| ∂

∂z1
, the ∂

∂zi
’s (i ≥ 2), and their conjugates1 implies

dH(e1, e1) = − 4

log |z1|
(
(1 + ε11)dx1 +

n∑
j=2

ε1 jdx j

)
,

dH(e1, ei ) = εi1dx1 +
n∑

j=2

εi jdx j , i = 2, . . . , n,

1 Using that we can replace dzi and dzi by σi with help of the torus action, as in the estimates for f j and
fi j above.
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with εi1 = O(| log |z1||−δ), i = 1, . . . , n, and εi j = O(| log |z1||−δ−1), i =
1, . . . , n, j = 2, . . . , n. Hence in particular,

lim
x→F

(dH(e1, ei ))x = 0, i = 1, . . . , n,

as claimed. ��

4.2 Conjectural Picture for the Existence of Extremal Toric Metrics of Poincaré Type

Theorem 4.13 and Conjecture 4.11 motivate us to propose the following general con-
jectural picture in the toric case.

Conjecture 4.14 A smooth compact toric Kähler manifold (X , ω0) with momentum
polytope � and a divisor Z ⊂ X corresponding to the pre-image of the union F =
∪i Fi of some facets Fi of � admits an extremal toric Kähler metric of Poincaré type
in [ω0] if and only if the following three conditions are satisfied:

(i) (�, F) is stable in a suitable sense, and
(ii) for any facet Fi ⊂ F, the pair (Fi , Fi ∩ (∪ j �=i∈I Fj )) is stable in a suitable sense,

and
(iii) if s(Fi ,Fi ∩(∪ j �=i∈I Fj ) is the extremal affine function corresponding to (Fi , Fi ∩

(∪ j �=i∈I Fj )), then

s(Fi ,Fi ∩(∪ j �=i Fj )) − s(�,F) = ci > 0, (42)

where ci are real constants.

Remark 4.15 Theorem 4.13 readily generalizes to the case when Z is a smooth toric
submanifold of (X , ω0), i.e. Z is the pre-image under the moment map of the union
F of disjoint facets of �. Thus, in this case, we have established the necessity of
the conditions (i),(ii),(iii) of Conjecture 4.14 with respect to the notions of stability
introduced in Definitions 4.4 and 4.10. The situation is not so clear in general, when
Z has simple normal crossings. In this case we make the following remarks:

(1) In order to establish (i) we would need to show that any toric extremal Kähler
metric of Poincaré type on X \ Z belongs to the class S(�,L, F), at least in the
weaker sense as in the proof of Theorem 4.13.

(2) (ii) would follow from (i), noting that the extremal Poincaré typemetric on Zi \ Z ′
i

where Zi is the component of Z corresponding to Fi and Z ′
i is the divisor of Zi

induced by Z (which exists by virtue of [9, Thm. 4]) must be toric. Indeed, this
can be derived from [9] as follows:

• using toric-equivariant coordinates (z1, . . . , zn) ∈ C
n
v centred at a point in Zi

fixed by the torus action, and such that Zi ∩ C
n
v = {z1 = 0} and Z ∩ C

n
v =

{z1 · · · zs = 0}, the induced metric is a C∞
loc-limit of ω

ε j
v := ω|{z1=ε j }\Z (the

pull-back of ω to {z1 = ε j } \ Z by inclusion), with ε j → 0;
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• the metric ω and the hypersurfaces {z1 = ε j } \ Z are invariant by the action of
T/TFi ; therefore, the ω

ε j
v are invariant under this action, and their C∞

loc-limit is
thus toric.

(3) (iii) would follow by [10, Thm. 4 and Prop. 2.1], once we know that the scalar
curvature of the extremal Kähler Poincaré type metric coincides with s(�,F). This
in turn would be the case if we establish point (i) above.

Another interesting question is how (i) and (ii) interrelated.

4.3 A Class of Poincaré Type toric Kähler Metrics

To link Conjectures 4.11 and 4.14, one needs a criterion ensuring that a Donaldson
metric is of Poincaré type. We address this question in this section.

We start by introducing a class of toric metrics in the form (27) on (�0 × T) via
a certain type of Guillemin boundary conditions for the corresponding symplectic
potential u, depending on the data (�,L, F), and compare with Definition 4.6 in the
case F = ∅. For simplicity, we shall assume that (�,L) is Delzant and F = F1 is a
single facet defined by the label L F (x) := L1(x) = 0.

Definition 4.16 Let α > 0 and β ∈ R be fixed real numbers. The class Sα,β(�,L, F)

of symplectic potentials u is defined as the space of smooth and strictly convex func-
tions on �0, satisfying the following boundary conditions:

• u + (α + βL F ) log L F − 1
2

∑d
j=2 L j log L j is smooth on �;

• if f ⊂ F is a sub-face of F , then uf := u + (α + βL F ) log L F restricts to the
relative interior of f as a smooth strictly convex function;

• if � �⊂ F is regular face, then u restricts to the relative interior of � as a smooth
strictly convex function.

Remark 4.17 Just as cusps can be seen as limits of cone singularities with angle tending
to 0, one can observe that potentials of Sα,β(�,L, F) appear as limits of symplectic
potentials associated to cone singularities (as in [36, §6.3]). One elementary example
is

u = 1

2
(1 − x) log(1 − x) +

(1
2

x − 1

2

)
log x ∈ S 1

2 ,− 1
2
([0, 1],L, {0}), (43)

where L is the standard labelling of [0, 1]. This potential is the limit of the family
(ut )t≥1 as t → ∞, where ut = 1

2 (1 − x) log(1 − x) + t
2 x log x + vt , with vt smooth

on [0, 1] given by2

vt (x) =
⎧⎨
⎩
0, if t = 1,

1

2
(1 − t)

(
x + 1

t − 1

)
log

(
x + 1

t − 1

)
+

[1
2
log

( t

t − 1

) + t − 1

2t

]
, if t > 1.

2 For t > 1, the additive constant is chosen so as to ensure good convergence properties, both for t → 1
and t → ∞.
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With these notations, u1 is associated to the Fubini–Study metric on CP1, and ut ,
t ∈ (1,∞), to a “tear-drop” metric on CP1 with edge singularity at 0, of angle 2π

t .

Our first observation concerning the potentials of Sα,β(�,L, F) is the following
result, whose proof is given in Appendix A.

Theorem 4.18 Let (X , ω) be a smooth, compact symplectic toric manifold with
momentum Delzant polytope (�,L) and F be a single facet of �. Then, for any
u ∈ Sα,β(�,L, F), the metric (27) defines on X a T-invariant complex structure J
such that the momentum pre-image of F is a smooth divisor Z of (X , J ), and (27) is
a Kähler metric of Poincaré type on X \ Z.

Using arguments similar to those in [4] (see Appendix A for more details), one can
relate the spaces Sα,β(�,L, F) and S(�,L, F) as follows:

Proposition 4.19 The space Sα,β(�,L, F) is equivalently defined as the space of
smooth functions on �0 such that Hu = (Hess(u))−1 satisfies

• [smoothness] Hu extends smoothly on �;
• [boundary conditions on F] for any x ∈ F we have

Hu
x (eF , e) = 0; (dHu)x (eF , e) = 0,

(d2Hu)x (eF , eF ) = 2

α
eF ⊗ eF , (d3Hu)x (eF , eF ) = −6β

α2 e⊗3
F ,

where eF = dL F is the inward normal to F defined by L, e is any vector in t, and
for a smooth function f on t, dk f denotes the kth covariant derivative of f with
respect to the flat affine structure on t∗, so that (dk f )x ∈ Sk(t);

• [regular boundary conditions] for any facet Fr with inward normal er which is not
in F, and x ∈ Fr ,

Hu
x (er , e) = 0; (dHu)x (er , er ) = 2er ;

• [positivity] Hu is positive definite on �0, as well as on the relative interior of any
face � ⊂ �, viewed there as a smooth function with values in S2(t/t�)∗ where
t� denotes the subspace spanned by normals to facets containing �.

In particular, Sα,β(�,L, F) ⊂ S(�,L, F).

Our next result shows that the extremality assumption in fact determines uniquely
the space Sα,β(�,L, F).

Proposition 4.20 Suppose u ∈ Sα,β(�,L, F) is a solution of (35). Then the real
numbers α, β are determined from the data (�,L, F). Furthermore, the solution u is
unique modulo the addition of an affine linear function.

Proof The uniqueness part is standard as eachSα,β(�,L, F) is a linearly convex space
and, choosing a reference point u′ ∈ Sα,β(�,L, F), we can consider the following
modification of relative Mabuchi functional (31):

M(�,L,F)(u) := L(�,L,F)(u − u′) −
∫

�

log

(
det(Hu)

det(Hu′
)

)
dμ.
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The point is thatM(�,L,F)(u) is well defined with values in (−∞,∞), as u − u′ is a
smooth function over� and det(Hu)/ det(Hu′

) is smooth and positive on� (the latter
fact follows from the arguments in Appendix A.2). An argument from [22,28] shows
that M(�,L,F)(u) is convex and its minima, which are unique up to the addition of
affine linear function, are precisely the solutions of (35).

The fact that s(�,L,F) − s(F,LF ) = const follows from [9, p. 44] when it is shown
that the extremal vector of Z equals the vector field induced on Z by the extremal vector
field of X \ Z . In the toric case, this condition reads as d((s(�,L,F))|F − s(F,LF )) = 0.

It remains to determine (α, β) from (�,L, F), which will occupy the remainder
of the proof.
Step 1. Determining α. Let us choose a basis {e1, e2, . . . , en} of t (and {e∗

1, . . . , e∗
n}

denote the dual basis of t∗), by fixing a vertex v ∈ F of � and taking e j be the inward
normals to the facets meeting v with e1 = eF (and therefore e∗

i , i = 2, . . . , n are
tangent to F). We assume furthermore that v is at the origin (so that F ⊂ {x1 = 0})
and we write Hu = (Hi j ) in the chosen basis, where Hi j (x) are smooth functions on
�, see Proposition 4.19. As u is a solution of (35), we have

s(�,L,F) = −
n∑

i, j=1

Hi j,i j . (44)

We denote by Ȟu ∈ S2((t/tF )∗) the induced smooth positive definite bilinear form
on F . It is easily seen (by continuity) that Ȟu satisfies the boundary conditions of
Proposition 4.3 with respect to the labelling LF of F , see [4, Rem. 1]. It thus defines
an almost-Kähler metric ǧu on F (which can be shown to be Kähler). With respect to
our choice of basis of t, we can identify t/tF ∼= R

n−1 = spanR{e2, . . . , en}, so that
we have Ȟu = (Hi j )F , i, j = 2, . . . , n. It thus follows that on F we have

s(�,L,F) = −
n∑

i, j=1

Hi j,i j

= −H11,11 − 2
n∑

j=2

H1 j,1 j −
n∑

i, j=2

Hi j,i j

= − 2

α
−

n∑
i, j=2

Ȟu
i j,i j = − 2

α
+ Scal(ǧu),

(45)

where we have used the boundary conditions of Proposition 4.19 (or equivalently the
form (118) in our compatible coordinates) in order to see that H1 j,1 j = 0 on F for
j > 1. It thus follows that ǧu is an extremal almost-Kähler metric on F and

s(�,L,F) = s(F,LF ) − 2

α
(46)
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Integrating over F , we thus have

− 2

α
=

∫
F
(s(�,L,F) − s(F,LF ))dνF/Vol(F), (47)

which determines α.
Step 2: Determining β. In order to determine β, notice that (see (15)) at each point
p ∈ F , we have e1 ∧ dνF = −dμ where we recall that we have set e1 = dL F = eF .
Furthermore, with our choice of basis we have (e j ∧ dνF ) = 0 for j = 2, . . . , n. We
thus have, using (44),

(ds(�,L,F) ∧ dνF ) =
⎛
⎝

n∑
i, j=1

Hi j,i j1(p)

⎞
⎠ dμ = cdμ

for a real constant c = c(�,L, F) determined from the polytope (�,L, F). In other
words,

c =
⎛
⎝

n∑
i, j=1

Hi j,i j1

⎞
⎠

F

= (
H11,111

)
F + 2

⎛
⎝

n∑
j=1

H1 j,11 j

⎞
⎠

F

+
⎛
⎝

n∑
i, j=2

Hi j,1i j

⎞
⎠

F

= −6β

α2 + 2

⎛
⎝

n∑
j=2

H1 j,11 j

⎞
⎠

F

+
⎛
⎝

n∑
i, j=2

Hi j,1i j

⎞
⎠

F

,

(48)

where in the last line we have used (H11,111)F = − 6β
α2 , see Proposition 4.19. We are

going to integrate (48) over F , and to this end we are going to use the integration by
parts formula ∫

F

n∑
j=2

Vj, jdνF = −
∑

�⊂∂ F

∫
�

〈V , e�〉dσ�, (49)

where F belongs to the hyperplane x1 = 0 of t∗, a smooth function V on F is
seen as a smooth function of the variables (x2, . . . , xn), the sum is taken over the
facets � of F with inward normal e� ∈ t/tF ∼= R

n−1 = spanR{e2, . . . , en}, and
the induced measures dσ� are constructed from the label polytope (F,LF ) via (15).
Thus, integrating (48) and using (49) give

(
c + 6β

α2

)
Vol(F) = − 2

∑
�∈∂ F

∫
�

(
H(e1, e�)

)
,11dσ�

−
∑

�∈∂ F

∫
�

n∑
i=2

(
H(ei , e�)),1idσ�.

(50)
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We recall that in (50), α and c have been already defined in terms of (�,L, F), so in
order to define β it will be enough to show that each of the two sums at the right-hand
side of (50) can also be defined by (�,L, F).

We first deal with the term
∫
�

(
H(e1, e�)

)
,11dσ� . Notice that if � is a facet of

F which meets the chosen vertex (= the origin), i.e. if � belongs to {x1 = 0, x j =
0}, j > 1, then

(
(H1,e� ),11

)
|� = (H1 j,11){x1=0,x j =0} = 0 by the expansion (118) of

Hi j near�. For a general facet� of F , we let P ⊂ ∂� be the unique other facet of�,

such that � = F ∩ P and denote by eF , eP the corresponding inward normals. Thus,
t� = spanR{eF , eP } is the annihilator of Tp� ⊂ t∗ (where p in a interior point for
�), equipped with a natural basis {eF , eP }. For any two vectors e′, e′′ ∈ t, the function

Hu(e′, e′′) is smooth on� and we denote by Hess
(
Hu(e′, e′′)

)
p
its Hessian at p ∈ �,

computed with respect to the affine structure of t∗. Thus, Hess
(
Hu(e′, e′′)

)
p

∈ S2(t)

and with respect to the chosen basis we have

Hi j,kr (p) =
〈
e∗

k ⊗ e∗
r ,Hess

(
Hu(ei , e j )

)
p

〉
.

Using the boundary conditions of Proposition 4.19, we notice that for any e ∈ t,
dHu(eF , e) = 0 along F , and hence along �. It thus follows that for each interior

point p ∈ �, the symmetric bilinear form Hess
(
Hu(eF , e)

)
p
degenerates on Tp�, or

in other words, for each p ∈ �, Hess
(
Hu(eF , e)

)
p
has values in t� ⊗ t� . Using the

basis {eF , eP } of t� , we have a natural decomposition at each point of �:

Hess
(
Hu(eF , e)

)
= (

Hu(eF , e)
)
,eF eF

eF ⊗ eF

+ (
Hu(eF , e)

)
,eF eP

(eF ⊗ eP + eP ⊗ eF )

+ (
Hu(eF , e)

)
,eP eP

eP ⊗ eP

By choosing a vertex of � which belongs to � and a basis as above, and letting
e = ∑n

i=1 ai ei the coefficients above become

(
Hu(eF , e)

)
,eF eF

=
n∑

i=1

ai H1i,11,

(
Hu(eF , e)

)
,eF eP

=
n∑

i=1

ai H1i,1 j ,

(
Hu(eF , e)

)
,eP eP

=
n∑

i=1

ai H1i, j j ,

where the index j > 1 is determined by � ⊂ {x1 = 0, x j = 0}. Using the boundary
conditions of Proposition 4.19, which are equivalently expressed by the form (118) of
Hu near �, we obtain that on �
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Hess
(
Hu(eF , eF )

) = 2

α
eF ⊗ eF = 2

α
e1 ⊗ e1

Hess
(
Hu(eF , eP )

) = 0.
(51)

Similarly, using the constancy of dHu(eP , eP ) along � ⊂ P and (118) with respect
to a suitable basis, we also conclude that

Hess
(
Hu(eP , eP )

) = (
Hu(eP , eP )

)
,eP eP

eP ⊗ eP . (52)

Turning back to the term
∫
�

(
H(e1, e�)

)
,11dσ� , we notice that the definition of the

normal e� in the expression H1e�,11 uses the initial basis {e1, . . . , en}. Indeed, decom-
posing

eP =
n∑

i=1

ci ei ,

we have that e� = eP − c1e1 = eP − c1eF where c1 = c1(�) = −eP ∧ dνF/dμ is a
constant determined by the polytope (�,L, F) and the facet � of F . It thus follows
from (51) that on �

H(e1, e�),11 =
〈
e∗
1 ⊗ e∗

1,
(
Hu(eF , eP ) − c1Hu(eF , eF )

)〉

= −2c1
α

,

and therefore ∫
�

(
H(e1, e�)

)
,11dσ� = −2c1(�)

α
Vol(�). (53)

We have thus shown that the first sum in (50) only depends on (�, F,L).
We now deal with the terms

∫
�

∑n
i=2

(
H(ei , e�)),1idσ� in the second sum of (50).

First of all, notice that on F , the expression

n∑
i=2

(
H(ei , e�)),1i =

n∑
i=2

〈
e∗

i ⊗ e∗
1,Hess

(
Hu(ei , e�)

)〉

does not change if we replace the initial basis {e1 = eF , e2, . . . , en} of t with a
basis of the form {ē1 = eF , ē2, . . . , ēn} with ē j ∈ spanR{e2, . . . , en} = R

n−1 for
j = 2, . . . , n. We can thus assume that, on a given �, we have chosen the basis with
e2 = e� ∈ R

n−1, and use then the integration by parts formula (49) to write

∫
�

n∑
i=2

(
H(ei , e�)),1idσ� =

∫
�

(
H(e2, e2)),12dσ� −

∑
f∈∂�

∫
f

H(ef , e�),1dσf ,

(54)
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where the sum is over the facets f of � (taken to be zero if n = 2), ef is the induced
inward normal of f , seen as an affine hyperplane of the affine space supporting �, and
dσf is the corresponding induced measure on f ⊂ �. With these choices, we have

(
H(e2, e2)

)
,12 =

〈
e∗
1 ⊗ e∗

2,Hess
(
Hu(e�, e�)

)〉

=
〈
e∗
1 ⊗ e∗

2,Hess
(
Hu(eP − c1eF , eP − c1eF )

)〉

=
〈
e∗
1 ⊗ e∗

2,Hess
(
Hu(eP , eP )

)〉

= Hu(eP , eP ),eP ,eP

〈
e∗
1 ⊗ e∗

2, (c1e1 + e2) ⊗ (c1e1 + e2)
〉

= c1Hu(eP , eP ),eP eP ,

for the same constant c1 = c1(�) as above. In order to compute the (base independent)
quantity

∫
�
Hu(eP , eP ),eP ePdσ� , we are going to re-introduce a basis {e1 = eF , e2 =

eP , e3, . . . , en} with respect to a vertex of v ∈ �. In this basis, Hu(eP , eP ),eP eP =
H22,22. A computation along the lines of (45) yields

∫
�

s(F,LF )dσ� =
∫

�

−
( n∑

i, j=2

Hi j,i j

)
dσ�

=
∫

�

(
Scal

(
(gu)|�

) − H22,22 −
n∑

j=3

H2 j,2 j

)
dσ�

=
∫

�

(
s(�,L�) − H22,22

)
dσ� +

∑
f⊂∂�

∫
f

H(e2, ef ),2dσf ,

where Scal
(
(gu)|�

) := − ∑n
i, j=2 Hi j,i j is the scalar curvature of the almost-Kähler

metric (gu)|� induced viaHu on the pre-image of �, and for passing from the second
line to the third we have used that

∫
�
Scal

(
(gu)|�

)
dσ� = ∫

�
s(�,L�)dσ� (see [22,

Lem. 3.3.5]) and (49) applied to (�,L�). Note that in the last term (which is con-
sidered trivially 0 when n = 2), the sum is over the facets f of �, and ef denotes the
corresponding inward normal of f (when considered as an affine hyperplane of the
subspace {x1 = 0, x2 = 0}). We thus have

∫
�

Hu(eP , eP ),eP ePdσ� =
∫

�

(
s(�,L�) − s(F,LF )

)
dσ� +

∑
f⊂∂�

∫
f

H(ef , e2),2dσf ,

in an (F, �)-compatible basis with e1 = eF , e2 = eP . Notice that in any such a
basis, we have ef = eQ − c2eF − c3eP = eQ − c2e1 − c3e2, where eQ is the
normal of the unique facet Q ⊂ �, such that F ∩ P ∩ Q = f . Here, the constants
c2 = c2(�, f) = −eQ ∧ dνF/(dμ) and c3 = c3(�, f) = −(eQ ∧ dνP )/(dμ) are
determined in terms of (�,L). In particular, we have on f
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H(ef , e2),2 =
〈
e∗
2, dHu(eP , eQ − c2eF − c3eP )

〉

= −c3
〈
e∗
2, dHu(eP , eP )

〉

= −2c3〈e∗
2, eP 〉 = −2c3〈e∗

2, e − 2〉 = −2c3,

where we have used the first-order boundary conditions along f (see Proposition 4.19):

(
dHu(eF , e)

)
|f = 0, ∀e ∈ t,

(
dHu(eP , eQ)

)
|f = 0

(
dHu(eP , eP )

)
|f = 2eP ,

(
dHu(eQ, eQ)

)
|f = 2eQ .

(55)

To summarize, we have shown that

∫
�

(
H(e2, e2)

)
,12dσ� =c1(�)

(∫
�

(
s(�,L�) − s(F,LF )

)
dσ�

−2
∑
f⊂∂�

c3(�, f)Vol(f)

)
.

(56)

Finally, we deal with the terms
∫
f H(ef , e�),1dσf in (54) (where we recall f ⊂ � ⊂

F is sequence of co-dimension one sub-faces). Using (55) again, we have along f

H(ef , e�),1 =
〈
e∗
1, dH

u(eQ − c2eF − c3eP , eF − c1eP )
〉

= 2c1c3〈e∗
1, eP 〉

= 2c1c3〈e∗
1, e2 + c1e1〉 = 2c21c3,

where for passing from the second line to the third we have used that we choose in
(54) a base with e1 = eF , e2 = e� = eP − c1eF = eP − c1e1. It follows that

∑
f⊂∂�

H(ef , e�),1dσf = (
c1(�)

)2
(∑
f⊂�

c3(�, f)

)
. (57)

Substituting (56) and (57) back in (54), and (53), (54) and (47) back in (50), we obtain
an expression for β in terms of (�,L, F). ��
Remark 4.21 (1) Theorem 4.18 and Proposition 4.20 extend without difficulty to the

casewhen F = F1∪· · ·∪Fk is a union of non-intersecting facets, i.e. Z is a smooth
toric divisor. In general, it is natural to extend Definition 4.16 by introducing a
pair of real numbers (αi , βi ) for each facet Fi ⊂ F and, for each face f ⊂ F , one
should require the smoothness and convexity over the relative interior of f of the
function

uf := u +
∑

Fi ∈F :f⊂Fi

(αi + βi Li ) log Li .
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It will be interesting to see whether or not the above statements hold true for a
general toric divisor as above, with respect to such spaces of symplectic potentials
(compare with Conjecture 4.14).

(2) The explicit examples in the next section suggest that the complete Donaldson
metrics will have, more generally, symplectic potentials u such that

u = 1

2

⎛
⎝ ∑

Fk /∈F

Lk(x) log Lk(x) +
∑
Fi ∈F

fi (x) log Li (x)

⎞
⎠ + smooth terms,

where, for any facet Fi ∈ F , fi is some affine function.
(3) As we noticed in the course of the proof of Proposition 4.20, the situation sim-

plifies when n = 2. In fact, one can then explicitly determine (α, β) as follows:
suppose (without loss of generality) that (�,L, F) is such that � ⊂ {(x1, x2) :
x1 ≥ 0, x2 ≥ 0, 	 − x2 − λx1 ≥ 0}, F corresponds to the affine line x1 = 0,
whereas the two adjacent facets of � to F are defined by the affine lines x2 = 0
and 	 − x2 − λx1 = 0. Suppose, furthermore, that the extremal affine function
of (�,L, F) is s(�,L,F) = a0 + a1x1 + a2x2. Then the real parameters (α, β) of
Proposition 4.20 are given by

α = 2	

4 − a0	
, β = α2

6

(
a1 + 2λa0

	
− 12λ

	2

)
.

4.4 Uniform Stability

In the seminal work [22], Donaldson also introduces the notion of uniform stability
of a compact convex simple labelled polytope (�,L). This has been later extended in
[45] to the general (non-toric) context.

Following [22], let C(�) denote the set of continuous convex functions on � (con-
tinuity follows from convexity on the interior of �). The affine linear functions act on
C(�) by translation and let C̃(�) be the slice for this action consisting of f ∈ C(�)

such that f (x) ≥ f (x0) = 0 for a fixed reference point x0 ∈ �0. Then any f in C(�)

can be written uniquely as

f = π( f ) + g,

where g is affine linear and π( f ) ∈ C̃(�) for a linear projection π . Functions in C̃(�)

are said to be normalized.
Let || · || be a semi-norm on C(�) which indices a norm on C̃(�), which is tamed

in the sense that there exists C > 0 such that on C̃(�)

1

C
|| · ||1 ≤ || · || ≤ C || · ||∞,
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where || · ||1 := ∫
�

| · | dv is the L1-norm and || · ||∞ is the C0-norm on C(�). One can
take ||·|| to be the L p-norm for some p ≥ 1 as in [45], but Donaldson considers instead
the boundary norm || f ||b := ∫

∂�
f dσ (and shows it is tamed [22, Lemma 5.1.3]).

Definition 4.22 A labelled compact convex simple polytope (�,L) is called uniformly
stable with respect to the a tamed norm || · || if

L(�,L)( f ) ≥ λ||π( f )||, (58)

for all piecewise affine linear convex functions f , whereL(�,L) is the linear functional
introduced in Definition 4.4.

The uniform stability is, a priori, a stronger condition than the stability of (�,L)

introduced in Definition 4.4. In [16], Chen, Li and Sheng have strengthened Proposi-
tion 4.5.

Proposition 4.23 [16] If (�,L) is a labelled compact convex simple polytope such
that the Abreu equation (30) admits a solution in S(�,L), then (�,L) is uniformly
K-stable with respect to || · ||b.

We notice that the above result implies that (�,L) is also || · ||1-uniform stable as
|| · ||b is tamed. The 2-dimensional case appears to be special as Donaldson shows
in [22, Prop. 5.2.1 and 5.3.1] that if the corresponding extremal affine linear function
s(�,L) is strictly positive on �, then (�,L) is K-stable if and only if it is uniformly
K-stable with respect to || · ||b.

As the space of convex piecewise affine linear convex functions is dense in C(�)

for any tamed norm, it follows that for a uniformly stable labelled polytope (�,L) the
inequality (58) holds true for f ∈ C(�) and, in particular, for any symplectic potential
u ∈ S(�,L). Using this and an argument from [22], Zhou and Zhu have established
in [50] the following key result.

Proposition 4.24 [50] If (�,L) is uniformly stable with respect to || · ||, then there
exists δ > 0 and C such that

M(�,L)(u) ≥ δ||π(u)|| + C for all u ∈ S(�,L), (59)

where M(�,L) is the relative Mabuchi functional introduced in (31).

Remark 4.25 The above result is established in [50] for the norm || · ||b (the case δ = 0
is due to [22]). The extension to any tamed norm appears in [13].

The importance of the uniform stability discussed above has manifested recently in
connection with the notion of d1-relative properness of the (relative) Mabuchi energy
used by Chen–Cheng in their deep work [15], and in its extension to the extremal case
found by He [33], who show that the latter is a sufficient condition for the existence
of an extremal Kähler metric. More precisely, in the toric setting, it turns out that
on a Delzant polytope (�,L) the condition (59) with respect to the (weakest) tamed
norm || · ||1 yields that the relative d1-properness of the relative Mabuchi energy on
the corresponding smooth toric variety X (see e.g. [3, Sect. 7.1] or [37] for a detailed
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argument) which in turn leads to the following result, generalizing and extending the
results in [17,25] to arbitrary dimension:

Proposition 4.26 [15,17,25,33] Suppose (�,L) is a uniformly stable Delzant polytope
with respect to || · ||1. Then the (30) admits a solution in S(�,L).

In the light of Proposition 4.26, one might consider in Conjecture 4.14 the uniform
stability for the triple (�,L, F) and the corresponding facets in F (with respect to the
norm || · ||1) instead of the weaker notion of K-stability introduced in Definition 4.10.
As a matter of fact, when Z is a smooth toric divisor, the arguments in the proof of
Theorem 4.13 and Proposition 4.23 imply that the uniform stability of the Delzant
facets in F is a necessary condition for the existence of an extremal Poincaré type
metric on X \ Z . However, extending Proposition 4.23 to the triple (�,L, F) is not
obvious. Indeed, the arguments in [16] rely on the boundary norm || · ||b, which
is not longer tamed if we integrate over ∂� \ F . Another issue is the extension of
Proposition 4.24 as the space Sα,β(�,L) no longer embeds in C(�). Finally, it is not
clear whether the properness of the relative Mabuchi energy can be used to obtain a
solution in the non-compact context.

We end the discussion by noticing that the assumption that (�,L, F) is || · ||1-
uniformly stable is natural if one tries to approach the existence of an extremal Kähler
metric of Poincaré type on the corresponding toric variety X \ Z , via the continuity
method of [24]. Indeed, assuming that (�,L, F) is ||·||1-uniform stable implies that so
will be the labelled convex compact polytopes (�,Lt ) for t > 0, where the labelling
Lt is obtained from L by replacing Li with t Li for each defining function Li of a
facet Fi ⊂ F . The resulting polytope (�,Lt ) describes a toric variety X with an edge
singularity of angle 2π/t along the components of the divisor Z , see [36, Prop. 6.4]. If
Proposition 4.26 can be extended to toric varieties with such edge singularities, then
one could find a solution ut ∈ S(�,Lt ) of (30) for each t big enough, and try to show
that there exist affine linear functions gt such that ut + gt converges as t → ∞ to a
solution of (35) in the space Sα,β(�,L, F). It can be checked explicitly that such a
convergence does hold for some of the examples discussed in this section and the next
one. For instance, the potentials ut of Remark 4.17 actually give rise to edge singular
extremalmetrics onCP1 and converge, as the angle of the singularity 2π/t goes to 0, to
the symplectic potential u extremal of (43), itself associated to a Poincaré type metric
on CP1\{0}. Similarly, the Poincaré type extremal metric on CP2 \ CP1 described
in Theorem 5.13 was originally discovered in [2] as a smooth limit of Bochner-flat
metrics on weighted projective spaces. Another motivating example for this approach,
beyond the toric context consider in this paper, is the work of Guenancia [29] which
produces Poincaré type negative Kähler–Einstein metrics as limits of Kähler–Einstein
metrics with edge singularity.

5 Explicit DonaldsonMetrics on Quadrilaterals

We will show in this section, by using the explicit constructions of [5,6], that Conjec-
ture 4.11 is true for X = CP2, CP1 × CP1 or the mth Hirzebruch complex surface
Fm = P(O ⊕ O(m)) → CP1, m ≥ 1.
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By [5, Thm. 1 and Rem. 7], any stable compact convex quadrilateral (�,L, F) in
R
2 admits a Donaldson metric, which is explicit and ambitoric. Dixon [21] showed

that when (�,L, F) corresponds to a compact toric complex orbi-surface X with a
divisor Z , the metric is complete on X \ Z . In other words, Conjecture 4.11 holds
true for compact toric surfaces whose momentum polytope is a quadrilateral. On the
other hand, a detailed study of the stability of the triples (�,L, F) was carried out by
the third named author in [40]. In the next subsections we shall combine these results
in order to obtain a complete picture in the case when X = CP2, CP1 × CP1 or
P(O⊕O(k)) → CP1, i.e. (�,L) is a Delzant triangle, parallelogram or a trapezoid.

5.1 Ambitoric Structures

Here we briefly review the explicit construction of extremal toric metrics for n = 2
via the ambitoric ansatz of [6].

Definition 5.1 An ambikähler structure on a real 4-manifold or orbifold M consists
of a pair of Kähler metrics (g+, J+, ω+) and (g−, J−, ω−) such that

• g+ and g− induce the same conformal structure (i.e. g− = f 2g+ for a positive
function f on M);

• J+ and J− have opposite orientations (equivalently the volume elements 1
2ω+∧ω+

and 1
2ω− ∧ ω− on M have opposite signs).

The structure is said to be ambitoric if in addition

• there is a 2-dimensional subspace t of vector fields on M , linearly independent on
a dense open set, whose elements are hamiltonian and Poisson-commuting Killing
vector fields with respect to both (g+, ω+) and (g−, ω−).

Thus M has a pair of conformally equivalent but oppositely orientedKählermetrics,
invariant under a local 2-torus action, and both locally toric with respect to that action.
There are three classes of examples of ambitoric structures.

5.2 Toric Products

Let (�1, g1, J1, ω1) and (�2, g2, J2, ω2) be (locally) toric Kähler manifolds or orb-
ifolds of real dimension 2, with hamiltonian Killing vector fields K1 and K2. Then
M = �1 ×�2 is ambitoric, with g± = g1 ⊕ g2, J± = J1 ⊕ (±J2), ω± = ω1 ⊕ (±ω2)

and t spanned by K1 and K2. Themetric g+ is extremal (resp. CSCK) iff g− is extremal
(resp. CSCK) iff both g1 and g2 are extremal (resp. CSCK). Writing (�1, g1) and
(�2, g2) as toric Riemann surfaces

g1 = dx2

A(x)
+ A(x)dt21 ; g2 = dy2

B(y)
+ B(y)dt22 ,

for positive functions A, B of one variable, and momentum/angular coordinates

x1 = x, x2 = y, t1, t2,
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the extremal metrics are given by taking A and B to be polynomials of degrees≤ 3. In
this case,weobtain solutions toAbreu’s equation on labelled parallelograms (�,L, F)

(which are affine equivalent to a square) by taking

HA,B = diag(A(x), B(y)) (60)

for A and B polynomials of degree ≤ 3 and noting that the positivity and boundary
conditions of Definition 4.6 reduce to A > 0 on (α0, α∞), B > 0 on (β0, β∞) and

A(αk) = 0 = B(βk) = 0, A′(αk) = −2rα,k, B ′(βk) = 2rβ,k (k = 0,∞),

(61)
where rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞ are determined by the choice of inward
normals eα,k = 1

rα,k
(−1, 0) (resp. eβ,k = 1

rβ,k
(0, 1)) if the facet Fα,k (resp. Fβ,k)

defined by x = αk (resp. y = βk) does not belong to F , and rα,k = 0 (resp. rβ,k = 0)
otherwise. The above boundary conditions can be solved for polynomials of degree
3, A(x) and B(y), if and only if |rα,0| + |rα,∞| > 0 and |rβ,0| + |rβ,∞| > 0, i.e.
iff no two opposite sides of � belong to F : in this case, the positivity of A and B
automatically follows from the boundary conditions. On the other hand, when two
opposite sides of � belong to F there is no solution to (35) verifying the positivity
condition. Indeed, if rα,0 = rα,∞ = 0 say, thenHA,B = diag(A(x), B(y))with A ≡ 0
and B(y) a polynomial of degree ≤ 3 determined from (61). This provides a formal
solution of (35). The latter can be used (by using integration by parts, as in [5,35]) to
compute that L�,u,F ( fα) = 0 for any simple crease function fα with crease at x = α

(α ∈ (α0, α∞)), showing that (�,L, F) is not stable in this case.
Whenever it exists, the solution u A,B is determined from (60) by the formula

u A,B =
∫ x (∫ s dt

A(t)

)
ds +

∫ y (∫ s dt

B(t)

)
ds,

which leads to the intrinsic expression

u A,B = 1

2

⎛
⎝ ∑

Fj ∈∂�

L j log L j −
∑
Fk∈F

ak log Lc
k

⎞
⎠ . (62)

where, for each facet Fj ∈ ∂� \ F , L j (x) = 〈e j , x〉 + λ j is the corresponding label
from L and, for each Fk ∈ F , we define the label Lc

k(x) := 〈ek, x〉 + λk by requiring
that ek := −ek̃ = −dLk̃ where Lk̃ is the label form L of the opposite side Fk̃ to Fk

(by the discussion above, Fk̃ ∈ ∂� \ F) and let ak := Lk + Lk̃ > 0 be a real constant.
We notice that when the solution exists, the degree≤ 3 polynomials A(x) and B(y)

must satisfy A′′(x) = A′′(αk) > 0 (resp. B ′′(y) = B ′′(βk) > 0) on facets in F . The
formula for the scalar curvature

s+ = −(A′′(x) + B ′′(y))

then confirms that s(�,L,F) − s
(F,LF ,F̌)

restricts to F as a negative constant.
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We conclude that

Proposition 5.2 Let (�,L, F) be a labelled parallelogram in R
2. Then the Abreu

equation (35) admits a solution in S(�,L, F) iff F does not contain opposite sides.
In this case, there exists a solution explicitly given by (62).

Turning to the compact smooth case, there exists only one compact complex toric
surface whose Delzant polytopes are parallelograms, namely X = CP1 × CP1.
The result above trivially produces products of a cusp metric on CP1 \ {pt} with a
Fubini–Study metric on another copy of CP1, or the product of two cusp metrics on
(CP1 \ {pt}) × (CP1 \ {pt}), according to whether Z ⊂ CP1 × CP1 is a copy of
CP1 (i.e. F is a one facet) or is the union of two copies of CP1 (i.e. F consists of two
adjacent facets). We thus can conclude that

Corollary 5.3 Let X = CP1 × CP1 endowed with the product of circle actions on
each factor, and Z be either CP1 × {p2} or (CP1 × {p2}) ∪ ({p1} × CP1) where p1
and p2 are fixed points for the S1 actions on each factor. Then, in each Kähler class of
CP1 × CP1, there exists a complete extremal Donaldson metric on CP1 × CP1 \ Z
which is of Poincaré type.

If Z contains (CP1 × {p′
2}) ∪ (CP1 × {p′′

2}) where p′
2 and p′′

2 are the two distinct
fixed points for the S1 action, then (X , Z) is K -unstable, and admits no extremal
Donaldson metric at all.

5.3 Toric Calabi TypeMetrics

The construction in this section is not new, see e.g. [34]. For the sake of completeness,
and to make the link with toric geometry more explicit, we follow the formalism from
[6].

Let (�, g, J , ω) be a toric real 2-dimensional Kähler manifold with hamiltonian
Killing vector field V (with momentum y). Let π : P → � be a circle bundle with
connection θ and curvature dθ = π∗ω� , and A(x) be a positive function defined on
an open interval I ⊂ R

+. Then M = P × I is ambitoric, with

g± = x±1
(

g� + dx2

A(x)
+ A(x)

x2
θ2

)
, dθ = ω�,

ω± = x±1(
ω� ± x−1dx ∧ θ

)
, J±(xdx) = ±A(x)θ,

and the local torus action spanned by the generator K of the circle action on P and
the lift Ṽ = V H + yK of the hamiltonian Killing field of (�, g�,ω�) to M . Here,
x : M → R

+ is the projection onto I ⊂ R
+. It is easily seen that g+ is extremal

(resp. CSCK) iff g− is extremal iff (�, g) has constant Gauss curvature κ and A(x)

is a polynomial of degree ≤ 4 with coefficient of x2 equal to κ . Because of this
equivalence, we shall focus on (g+, ω+), say.

Writing the toric metric (g�,ω�) in momentum/angle coordinates as

g� = dy2

B(y)
+ B(y)dt22 , ω� = dy ∧ dt2, (63)
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for a positive function B(y), the Kähler metric (g+, ω+) becomes (see [35])

g+ = x
dx2

A(x)
+ x

dy2

B(y)
+ A(x)

x
(dt1 + ydt2)

2 + x B(y)dt22 ,

ω+ = dx ∧ dt1 + d(xy) ∧ dt2 = dx1 ∧ dt1 + dx2 ∧ dt2,

(64)

with
(x1, x2) = (x, xy) (65)

being themomentum coordinates and (t1, t2) the angular coordinates. The correspond-
ing symplectic potential is then

u A,B(x, y) = x
∫ y (∫ s dt

B(t)

)
ds +

∫ x (∫ s tdt

A(t)

)
ds. (66)

In order to obtain functions in S(�,L, F) for some compact convex labelled poly-
tope (�,L, F), we fix the data of real numbers

0 ≤ β0 < β∞, 0 < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞ (67)

and impose the following positivity and boundary conditions on the smooth functions
of one variable A(x) and B(y)

A(x) > 0 on (α0, α∞) and B(y) > 0 on (β0, β∞), (68)

A(αk) = 0, A′(αk) = −2rα,k, B(βk) = 0, B ′(βk) = −2rβ,k, (k = 0,∞). (69)

Note that the line {x = α} transforms in the (x1, x2)-coordinates (65) to the affine line
	α = {(α, x2)} with normal pα = (α, 0) and y = β (β > 0) to the affine line 	β =
{(x1, βx1)} with normal pβ = (−β, 1). Thus, the image of D = [α0, α∞]× [β0, β∞]
under (65) is a trapezoid � with facets Fα,k, Fβ,k determined by the lines 	αk , 	βk ,
and the inverse Hessian HA,B of u A,B is given by

HA,B = 1

x

(
A(x) y A(x)

y A(x) x2B(y) + y2A(x)

)
. (70)

We write for the normals eα,k = pαk /rα,k, eβ,k = pβk /rβ,k . Then, HA,B satisfies the
smoothness, positivity and boundary conditions (32)–(33) iff rα,k = 0 (resp. rβ,k = 0)
on a facet Fα,k ∈ F (resp. Fβ,k ∈ F).

Conversely, by [35, Lem. 4.7], if (�,L, F) is a labelled trapezoid, there exist real
numbers αk, rα,k, κ (k = 0,∞), subject to the inequalities (67), such that� the image
of D = [α0, α∞]×[β0, β∞] under (μ1, μ2), and rα,k are determined from the normals
L and F as explained above. It is easily seen [35, Prop. 4.12] that (70) satisfies (35) if
and only if A(x) is a polynomial of degree ≤ 4, and B(y) is a polynomial of degree
≤ 2, which satisfy

A′′(0) + B ′′(0) = 0. (71)
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For such polynomials to satisfy (69), one must have rβ,0 = −rβ,∞ = r ≥ 0. This
is also a sufficient condition to determine the polynomials A(x) and B(y) from (69),
subject to the relation (71). In particular, B(y) = r

(β2−β1)
(y − β1)(β∞ − y), showing

that the positivity conditions (68) imply r > 0, i.e. rβ,k �= 0. This also implies
positivity for A(x) on (α0, α∞): otherwise A(x) will have all of its roots between
[α0, α∞] and, by the boundary conditions (69), it must satisfy limx→∞ A(x) = −∞.
The latter contradicts A′′(0) = −B ′′(0) > 0. The corresponding Kähler metric has
scalar curvature

s+ = − A′′(x) + B ′′(y)

x
, (72)

showing that the extremal affine function s(�,L,F) determines an affine line parallel
to Fα,0 and Fα,∞. Conversely, the proofs of [35, Lem. 4.2, Thm. 1.4] show that if
(�,L, F) is a labelled trapezoid (�,L, F) which is not a parallelogram, and the
extremal affine function s(�,L,F) is constant on each of the pair of parallel facets of�,
then one can associate to (�,L, F) data (67) satisfying the relation rβ,0 = −rβ,∞ =
r ≥ 0. The case r = 0 (i.e. when two opposite non-parallel facets of � belong to F)
implies B(y) ≡ 0. As observed in [45], and similarly to the case of a parallelogram,
this contradicts the stability of (�,L, F). Indeed, substituting in (70), we still obtain a
smoothmatrixHA,B on� verifying (35) and the boundary conditions ofDefinition 4.6.
This can be used to compute L(�,u,F)( fα) for a simple crease function fα with crease
on the line 	α = {x = α}: integration by parts reduces to an integral over the crease
of the quantity HA,0(pα, pα) = 0, showing that L(�,L,F)( fα) = 0, i.e. (�,L, F) is
not stable. We summarize the discussion in the following:

Proposition 5.4 [35,45] Let (�,L, F) be a labelled trapezoid in R
2 which is not a

parallelogram. Suppose that the corresponding extremal affine function s(�,L,F) is
constant on each of the pair of parallel facets of �. Then (�,L, F) admits a solution
to (35) in S(�,L, F) if and only if (�, F) is stable, if and only if F is one or the
union of 2 of the parallel facets of �. In these cases, the solution is of Calabi type, i.e.
given by (66) for polynomials A(x) and B(y) as described above.

In order to derive further geometric applications, we use [35, Cor. 1.6] which iden-
tifies the choice of labels L of a given trapezoid � for which s(�,L,F) is constant on
each of the pair of parallel facets with one single linear constraint on the pair of inward
normals to non-parallel facets. Up to an overall positive rescaling of L, this fixes the
choice of these normals, but leaves no constraint on the pair of normals corresponding
to the parallel opposite facets. In our notation, this corresponds to fixing the boundary
condition for B(y) and allowing rα,0 ≤ 0 ≤ rα,∞ to be arbitrary real numbers. It thus
follows that if (�,L) is a labelled trapezoid for which the corresponding extremal
affine function s(�,L) is parallel to the pair of parallel facets, then, by taking F to be
either one or two of the parallel facets of�, the extremal affine function s(�,L,F) must
also be parallel to the pair of parallel facets. We now apply this observation to Delzant
trapezoids (�,L).

The compact toric complex surfaces X for which the Delzant polytopes are trape-
zoids (but not parallelograms) are the Hirzebruch surfaces Fm = P(O ⊕ O(m)) →
CP1, m ≥ 1. Calabi [12] has shown that these surfaces admit extremal Kähler metric
of Calabi type in each Kähler class. In particular, the extremal affine functions are
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always constant on the pair of parallel facets of the corresponding Delzant polytopes.
Thus, Proposition 5.4 yields the following natural extension of Calabi’s result.

Corollary 5.5 Let X ∼= Fm = P(O ⊕ O(m)) → CP1 be the mth Hirzebruch surface
and Z ⊂ X the divisor consisting of either the zero section S0, the infinity section
S∞ or the union of both. Then X \ Z admits a complete extremal Donaldson–Kähler
metric in each Kähler class of Fm. Furthermore, this metric is of Poincaré type.

Proof The only additional clarification we need to supply is whether the explicit
extremal Calabi type metrics are of Poincaré type. This follows from the expression
(70), noting that the only the facets Fα,k are in F , and on such a facet (hav-
ing normal vector (αk, 0)), the boundary conditions of Proposition 4.19 reduce to
A(αk) = A′(αk) = 0 and A′′′(αk) �= 0. If these hold, the extremal Kähler metric of
Calabi type is manifestly in some class Sα,β(�,L, F), and thus is of Poincaré type
according to Theorem 4.18. The vanishing conditions are always satisfied. The only
condition we need to verify is A′′′(αk) �= 0. To this end, we describe the solutions
explicitly.

Letting
α0 = 1, α∞ = a > 1, rα,k = 0,

β0 = 0, β∞ = m, rβ,0 = −rβ,∞ = 1,
(73)

we obtain in the case Z = S0 ∪ S∞ an extremal Kähler metric on X \ Z given by (64)
with

B(y) = − 2

m
y(y − m), A(x) = − 2

m(a2 + 4a + 1)
(x − 1)2(x − a)2 (74)

where a > 1 parametrizes (up to a scale) the Kähler cone of Fm . This is a complete
extremal Kähler metric defined on the total space of the principal C

×-bundle over
CP1 classified by c1(O(m)) ∈ H2(CP1, Z), with cusp singularities at 0 and ∞. The
conditions A′′′(1) �= 0 �= A′′′(a) obviously hold.

Similarly, when Z = S0 say, for the same choice of αk, βk the extremal solution is
given by (64) with

B(y) = − 2

m
y(y − m), A(x) = −(px + q)(x − 1)2(x − a), (75)

where the constants p, q are given by

p =
2

(
rα,∞(a+2)

(a−1)2
− 1

m

)

(a2 + 4a + 1)
,

q =
2

(
rα,∞(2a+1)

(a−1)2
+ a

m

)

(a2 + 4a + 1)
.

(76)

Such a metric compactifies smoothly at S∞ precisely when the real parameter rα,∞ =
1, which gives the complete extremal Kähler metrics in Corollary 5.5; for other values
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of rα,∞ > 0, one gets a complete metric on X \ S0 with a cone singularity of angle
2πrα,∞ along S∞. Now, the condition A′′′(1) = 0 is equivalent to p = −q. With
rα,∞ = 1, this reads as

3m(a + 1) + (a − 1)3 = 0,

which is impossible for a > 1.
The case of Z = S∞ can be treated similarly. ��

Remark 5.6 As a special case of the ansatz (75), one can construct CSCK metrics

by putting rα,∞ = (a−1)2

m(a+2) (i.e. setting the coefficient p in (76) to be zero). For
each m ≥ 1, this defines a CSCK metric on Fm \ S0, in each Kähler class of Fm

(parametrized by a > 1) with a cusp singularity along S0 and a cone singularity of

angle 2π
(

(a−1)2

ma(a+2)

)
< 2π along S∞.

5.4 Regular Ambitoric Structures

Let q(z) = q0z2 + 2q1z +q2 be a quadratic polynomial, M a 4-dimensional manifold
with real-valued functions (x, y, τ0, τ1, τ2), such that x > y, 2q1τ1 = q0τ2 + q2τ0,
and at each point of M , the 1-forms dx, dy, dτ0, dτ1, dτ2 span the cotangent space. Let
t be the 2-dimensional space of vector fields K on M satisfying dx(K ) = 0 = dy(K )

and dτ j (K ) constant. Then, for any smooth and positive functions of one variable,
A(x) and B(y), defined on the images of x and y in R, respectively, M is ambitoric
with respect to t and the Kähler structures

g± =
(

x − y

q(x, y)

)±1(
dx2

A(x)
+ dy2

B(y)
+ A(x)

( y2dτ0 + 2ydτ1 + dτ2
(x − y)q(x, y)

)2

+ B(y)
( x2dτ0 + 2xdτ1 + dτ2

(x − y)q(x, y)

)2
)

, (77)

ω± =
(

x − y

q(x, y)

)±1 dx ∧ (y2dτ0 + 2ydτ1 + dτ2) ± dy ∧ (x2dτ0 + 2xdτ1 + dτ2)

(x − y)q(x, y)
,

J±dx = A(x)
y2dτ0+2ydτ1+dτ2

(x − y)q(x, y)
, J±dy = ±B(y)

x2dτ0 + 2xdτ1 + dτ2
(x − y)q(x, y)

,

(78)

where q(x, y) = q0xy + q1(x + y)+ q2. The metric g+ is extremal iff g− is extremal
iff

A(z) = q(z)π(z) + P(z),

B(z) = q(z)π(z) − P(z),
(79)

where π(z) = π0z2 + 2π1z + π2 is a polynomial of degree at most two satisfying
2π1q1 − (q2π0 + q0π2) = 0, and P(z) is polynomial of degree at most four.

The space of Killing fields of g± for the torus is naturally isomorphic to the space
of S2

0,q of polynomials p(z) of degree ≤ 2 which are orthogonal to q with respect
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to the inner product 〈·, ·〉 defined by the discriminant, i.e. p(z) = p0z2 + 2p1z + p2
satisfying

〈p, q〉 = 2p1q1 − (q2 p0 + q0 p2) = 0.

The space S2
0,q is in turn isomorphic to the quotient space S2/〈q〉 of all polynomials of

degree ≤ 2 by the subspace generated by q, by using 1
2adq with respect to the Poisson

bracket

adq(w) = {q, w} = q ′w − w′q

on S2. Thus, if {p1, p2} is a basis of S2
q,0 and {w1, w2} the corresponding basis of

S2/〈q〉 (with pi = 1
2 {q, wi }) momentum/angular coordinates for g± are given by

x+
i = wi (x, y)/q(x, y), ti , (i = 1, 2)

x−
i = pi (x, y)/(x − y), ti , (i = 1, 2).

(80)

It follows that the lines x = α (resp. y = β) transform to lines 	+
α = (x−α)(y−α)

q(x,y)
= 0

(resp. 	+
β = (x−β)(y−β)

q(x,y)
) in the (x+

1 , x+
2 )plane,which are tangent to the non-degenerate

conic C∗+ ⊂ t∗ corresponding to
(

x−y
q(x,y)

)2 = 0; similarly, 	−
α = (x−α)q(y,α)

(x−y)
(resp.

	−
β = (y−β)q(x,β)

x−y ) are lines in the (x−
1 , x−

2 )-plane (corresponding to x = α and y = β

in the (x, y)-plane) which are tangent to the (possibly degenerate) conic C∗− ⊂ t∗

defined by
(

q(x,y)
x−y

)2 = 0. In both cases, the corresponding normals are

pα(z) = q(α, z)(z − α); pβ(z) = q(z, β)(z − β), (81)

viewed as elements of S2
0,q .

It is straightforward to compute the matrix HA,B
± of g±:

HA,B
− (pi , p j ) = A(x)pi (y)p j (y) + B(y)pi (x)p j (x)

(x − y)3 q(x, y)
,

HA,B
+ (pi , p j ) = A(x)pi (y)p j (y) + B(y)pi (x)p j (x)

(x − y) q(x, y)3
,

(82)

whose inverses are the Hessians in momenta of the symplectic potentials

u+
A,B(x, y) = −

∫ x (t − x)(t − y)dt

q(x, y)A(t)
+

∫ y 2(t − x)(t − y)dt

q(x, y)B(t)
,

u−
A,B(x, y) =

∫ x 2(x − t)q(y, t)dt

(x − y)A(t)
+

∫ y 2(y − t)q(x, t)dt

(x − y)B(t)
.

(83)
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In order for u±
A,B be in S(�,L, F) for some labelled compact convex quadrilateral

(�,L, F), one has to choose real numbers αk, βk, rα,k, rβ,k (k = 0,∞) satisfying the
inequalities

β0 < β∞ < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞,

and such that q(x, y) > 0 on D = [α0, α∞] × [β0, β∞], and then impose on the
smooth functions A(x), B(y) the positivity conditions

A(x) > 0 on (α0, α∞) and B(y) > 0 on (β0, β∞), (84)

and the boundary conditions

A(αk) = 0 = B(βk), A′(αk) = −2rα,k, B ′(βk) = 2rβ,k (k = 0,∞). (85)

ConsideringHA,B
+ for simplicity (and dropping the+ script), the data as above give

rise to a convex compact quadrilateral � (determined by the affine lines 	αk and 	βk

introduced above via (80)) which is endowed with the canonical set {pαk , pβk , k =
0,∞} of normals (81). We take F be the union of all facets 	αk = 0 and 	β,k = 0 for
which rα,k = 0 and rβ,k = 0, and normalize the remaining normals by

eα,k := pαk /rα,k, eβ,k := pβk /rβ,k .

One can easily check that these become inward normals to� and thatHA,B verifies the
boundary conditions (32)–(33) on (�,L, F) if and only if (85) holds. Furthermore,
as it is shown in [6], HA,B gives rise to a solution of the Abreu equation (35) on
(�,L, F) iff A, B are polynomials of degree≤ 4 which satisfy (79) and the positivity
and boundary conditions (84)–(85).

Conversely, the following is established in [5].

Proposition 5.7 [5] Let (�,L) be a compact convex labelled quadrilateral in R
2, and

F the union of some of its facets. Suppose that � is neither a parallelogram nor a
trapezoid whose extremal affine function s(�,L,F) is constant on the parallel facets �.
Then there exist real numbers αk, βk, rα,k, rβ,k (k = 0,∞), subject to the inequalities

β0 < β∞ < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞,

and a quadratic q(z) satisfying q(x, y) > 0 on D = [α0, α∞] × [β0, β∞], such that

• � is the image of D either under (x+
1 , x+

2 ) or (x−
1 , x−

2 ) in (80);
• For each facet Fα,k of � obtained as the image of x = αk under (80) (resp. Fβ,k

obtained as the image of y = βk), which does not belong to F, rα,k �= 0 (resp.
rβ,k �= 0) and the corresponding inward normal is eα,k = pαk

rα,k
(resp. eβ,k = pβk

rα,k
),

where pαk and pβk are the the normals defined by (81);
• For each facet Fα,k of � (resp. Fβ,k) which belongs to F, the corresponding

rα,k = 0 (resp. rβ,k = 0);
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• There exist polynomials P(z) of degree ≤ 4 and π(z) of degree ≤ 2, satisfying
〈q, π〉 = 0, such that the A(z) and B(z) defined by (79) satisfy the boundary
conditions (85) (but not necessarily the positivity condition (84)).

Furthermore, the corresponding HA,B
+ or HA,B

− defined by (82) satisfies (35) and
defines a solution u A,B ∈ S(�,L, F) if and only if (�,L, F) is stable. The latter
condition is equivalent to (84).

As an illustration of the theory, let us again take (�,L) to be a trapezoid but not a
parallelogram, and F to be either a facet which is not parallel to another facet or the
union of two adjacent facets. We have shown in Sect. 5.3 that in this case the extremal
affine linear function s(�,L,F) is not constant on the parallel facets of� and, therefore,
the solution of (35) (if it exists) must be given by Proposition 5.7. On the other hand,
we have the following:

Proposition 5.8 Let (�,L) be a labelled trapezoid corresponding to a Hirzebruch
surface, and F be one facet, or the union of 2 adjacent facets. Then (�,L, F) is
stable.

Putting Propositions 5.7 and 5.8 together, we obtain

Corollary 5.9 Let X = Fm be the mth Hirzebruch surface and Z be the divisor con-
sisting of a single fibre fixed by the T action, or the union of such a fibre with either the
zero section or the infinity section. Then, X \ Z admits a complete extremal Donaldson
metric in each Kähler class of X , which is not of Poincaré type.

The proofs of Proposition 5.8 and Corollary 5.9 are presented in Appendix B.

Example 5.10 In the light of Corollary 5.9, we use the explicit description of the
extremalDonaldsonmetrics in order to determine their asymptotic behaviour in normal
direction to Z .

The parametrization of a regular ambitoric metric by the data

αk, βk, rα,k, rβ,k, q(z), A(z), B(z)

as above is not effective: there is a natural SL(2, R) action on the space of degree
2 polynomials q(z), as well as a homothety freedom for the metric. This can be
normalized by taking q(z) to be either 1, 2z or z2+1 (see [6, Sect. 5.4]), thus referring
to the corresponding ambitoricmetric as being of parabolic, hyperbolic or elliptic type,
respectively. Moreover, it is observed in [5, Sect. 5.4] that the solution corresponding
to a trapezoid is given by a (positive) hyperbolic ambitoric metric, i.e.

g = (x − y)

(x + y)

(
dx2

A(x)
+ dy2

B(y)

)

+ 1

(x − y)(x + y)3

(
A(x)(dt1 + y2dt2)

2 + B(y)(dt1 + x2dt2)
2
)

,

ω =dx ∧ (dt1 + y2dt2)

(x + y)2
+ dy ∧ (dt1 + x2dt2)

(x + y)2
,

(86)
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Fig. 2 The Delzant polytope of a Hirzebruch surfaces (in blue) obtained by the hyperbolic ambitoric
construction (Color figure online)

for (x, y) ∈ [α0, α∞] × [β0, β∞] with

β0 < β∞ < α0 < α∞, β0 + α0 > 0

and polynomials A(z) = ∑4
i=0 ai z4−i and B(z) = ∑4

i=0 bi z4−i satisfying

a0 + b0 = a2 + b2 = a4 + b4 = 0, (87)

and the positivity and boundary conditions (84)–(85). The momentum coordinates of
(86) then become

x1 = − 1

x + y
, x2 = xy

x + y
(88)

so that the image of the interval [α0, α∞] × [β0, β∞] under (88) is a quadrilateral �

determined by the affine lines

	α,k = −α2
k x1 + x2 − αk = 0, 	β,k = −β2

k x1 + x2 − βk = 0, k = 0,∞,

whose normals are pα,k = (−α2
k , 1) and pβ,k = (−β2

k , 1), respectively. It follows
that � is a trapezoid iff β∞ = −β0 = b > 0, see Figure 2.

As observed in [21], each Hirzebruch surface Fm can be obtained from a labelled
trapezoid (�,L) as above, by taking inward normals eα,k = pαk /rα,k and eβ,k =
pβk /rβ,k satisfying

eβ,0 = −eβ,∞, eα,∞ + meβ,0 = −eα,0.
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Equivalently, the labellingL = {Lα,k = 1
rα,k

	α,k, Lβ,k = 1
rβ,k

	β,k, k = 0,∞} satisfies

rβ,0 = −rβ,∞ = r > 0, rα,0 = r

m

(
α2
0 − α2∞

α2∞ − b2

)
, rα,∞ = r

m

(
α2∞ − α2

0

α2
0 − b2

)
. (89)

The positive constant r is just a scale factor for the Kähler class and can be taken r = 1.
Thus, by considering the lattice generated by eα,k, eβ,k as above, the corresponding
labelled trapezoid corresponds to a toric Hirzebruch surface Fm .

We now take Fα,∞ (defined by 	α,∞ = 0) be the facet of � corresponding to a
fibre of Fm fixed by the torus action. We are thus looking for extremal metrics given
by (86) for polynomials

A(x) = −c(x −α0)(x −α∞)2(x −α3), B(y) = c(y −b)(y +b)(y2+ py +q) (90)

where 0 < b < α0 < α∞ and α3, c, p, q are real parameters (which we are going to
express as functions of (b, α0, α∞)).

The extremality conditions (87) then read as

α3(2α∞ + α0) + α2∞ + 2α0α∞ = q − b2

α3α
2∞α0 = −qb2

(91)

from which we get

α3 = −
⎛
⎝b2 + α2∞ + 2α0α∞

2α∞ + α0 + α2∞α0
b2

⎞
⎠ ,

q = α2∞α0

b2

⎛
⎝b2 + α2∞ + 2α0α∞

2α∞ + α0 + α2∞α0
b2

⎞
⎠ .

(92)

From the boundary condition (85) at α0 we obtain

A′(α0) = −c(α0 − α3)(α0 − α∞)2 = −2rα,0 = 2

m

(
α2∞ − α2

0

α2∞ − b2

)

so that we determine

c = − 2

m

(
(α∞ + α0)

(α0 − α3)(α∞ − α0)(α2∞ − b2)

)

= − 2

m

⎛
⎝ (α∞ + α0)(2α∞ + α0 + α2∞α0

b2
)

(
α2
0 + α2∞ + 4α0α∞ + b2 + α2

0α
2∞

b2
)
(α∞ − α0)(α2∞ − b2)

⎞
⎠ .

(93)
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Consider first the case when F = Fα,∞ consists of only one facet. The boundary
conditions (85) at ±b read as

B ′(b) = 2cb(b2 + pb + q) = 2rβ,∞ = −2, B ′(−b) = −2cb(b2 − pb + q) = 2rβ,0 = 2.

We then have p = 0 and the additional relation −1 = cb(b2 + q) which can be
used in order to express α0 as a function of (α∞, b). This last step, however, is not
obvious (and is implicit) as α0 appears to be a real root of a polynomial of degree 4,
which also needs to satisfy 0 < b < α0 < α∞. The existence of such a root is thus
guaranteed by Propositions 5.7 and 5.8, so we shall not develop this step any further.
We also notice that homotheties in (x, y) preserve the form (86) (but change A and B
by scale) so we can assume b = 1. Thus, on a fixed Hirzebruch surface Fm we obtain
a one-dimensional family of complete extremal Kähler metrics (defined on Fm \ Z )
parametrized by a = α∞ > 1, which is precisely the dimension of the Kähler cone of
Fm modulo scales.

Notice that, by (92), the third root α3 of A is negative, and thus α∞ has always
multiplicity 2. Using (83) with q(x, y) = x + y and A, B given by (90), we observe
that up to smooth terms on �, the symplectic potential is of the form

u =
(

A
(2α∞ − (x + y))

(x + y)
+ BLα,∞

)
log Lα,∞ + 1

2

∑
k=0,∞

Lα,k log Lα,k + Lβ,k log Lβ,k

= (
A(−2α∞x1 − 1) + BLα,∞

)
log Lα,∞ + 1

2

∑
k=0,∞

Lα,k log Lα,k + Lβ,k log Lβ,k

for some real constants A �= 0, B. As α∞ > 0, the affine function
(

A(−2α∞x1 −
1) + BLα,∞

)
is not constant when restricted to the facet Fα,∞ (on this facet x = α∞

and y ∈ [β0, β∞]).
Similarly, when F = Fα,∞∪Fβ,∞ say,wemust have y2+ py+q = (y−b)(y−β3),

so that q = bβ3 and p = −(b + β3), and from (92) we determine

β3 = α2∞α0

b3

⎛
⎝b2 + α2∞ + 2α0α∞

2α∞ + α0 + α2∞α0
b2

⎞
⎠ .

The above formula together with the inequalities 0 < b < α0 < α∞ show that β3 > b,
and thus b is double root of B(y). Similarly to the previous case, the symplectic
potential of the extremal metric then takes the form

u = fα,∞ log Lα,∞ + fβ,∞ log Lβ,∞ + 1

2

(
Lα,0 log Lα,0 + Lβ,0 log Lβ,0

)
+ smooth

where fα,∞ and fβ,∞ are affine functions in momenta which are not constant on the
corresponding facets in F . One can also check that in this case too the condition (42)
fails.

We notice also
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Proposition 5.11 Let X be a Hirzebruch surface Fm or CP1 ×CP1, viewed as a toric
variety endowed with a Kähler class [ω] corresponding to a Delzant polytope (�,L).
Let Z ⊂ X be the toric divisor corresponding to the union F of 3 facets of �. Then
(�, F) is unstable and X \ Z admits neither a Donaldson extremal Kähler metric nor
an extremal Kähler metric of Poincaré type in [ω].
Proof The proof of instability of (�, F) follows from the arguments in Appendix
B, see in particular Remark A.6. Thus (�, F) cannot admit a Donaldson metric by
Proposition 4.9.

To rule out the existence of a (non-toric) complete extremal metric of Poincaré
type, we can use [9, Thm. 5] which asserts that each rational curve corresponding to
the pre-image of a facet in F must admit a complete Poincaré type extremal Kähler
metric. Taking the CP1 corresponding to the facet in F which intersects the other two
facets in F , we conclude that CP1 \ ({p} ∪ {q}) admits a complete extremal metric
of Poincaré type. But if it did, it would have to be scalar-flat, as the Poincaré–Futaki
invariant vanishes and the average scalar curvature is 0. This would then violate the
numerical constraint in [7, Thm. 1.2] for Poincaré type metrics of constant scalar
curvature. So no such metric can exist. ��
Corollary 5.12 Conjecture 4.14, with respect to the stability of pairs introduced in
Definition 4.10, holds true on the Hirzebruch surface Fm and on CP1 × CP1.

Proof Using Corollaries 5.3, 5.5 and 5.9 together with Proposition 4.9 at one hand,
and Propositions 5.4 and 5.11 at the other hand, we conclude that the conditions (i)
and (ii) of Conjecture 4.14 limit the possibilities as follows:

(a) X = CP1 × CP1 and Z is the union of the pre-image of one or two adjacent
facets;

(b) X = Fm and Z consist of either the zero section, the infinity section, or the the
union of both;

(c) X = Fm and Z consist of a single fibre or the union of such a fibre and either the
zero section or the infinity section.

In the cases (a) and (b), there exists an explicit extremal Poincaré type metric by the
Corollaries 5.3 and 5.5. In the case (c), there exists a Donaldson complete extremal
metric which is not of Poincaré type, but in this case the condition (iii) of Conjec-
ture 4.14 fails, as shown in Example 5.10. ��

5.5 Triangles as a Limiting Case

This case is already treated in [11] (see also [2]), but it can also be viewed as a
limiting case of the ambitoric ansatz with π = 0 (i.e. A = −B). The corresponding
extremal metrics (g+, J+, ω+) provide solutions of (35) on labelled triangles, and
compactify on weighted projective planes as extremal Bochner–flat (i.e. self-dual)
orbifold metrics, see [2,11].

Indeed, putting π = 0 and P(z) = − ∏3
j=0(z − β j ) with β0 ≤ β1 < β2 < β3

in (77) and (78), the degree 4 polynomial B(y) = −P(y) is positive on (β1, β2)

while A(x) = P(x) on (β2, β3). When β0 < β1, the Kähler metric (g+, ω+) defines
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an extremal Bochner-flat Kähler metric on a labelled simplex (�,L), while taking
β0 = β1 gives rise to a solution to the Abreu equation (35) on a labelled simplex
minus one facet (corresponding to the image of y = β1 under the momentum map
(80)). One can always take the two normals to form a basis of a lattice, so that the
metric extends smoothly over the corresponding faces and has a complete end towards
the third, see [21]. We get, in fact, one of the complete Bochner-flat metrics described
in [11, Thm. 4.2.7] (see also [19]).

To see this explicitly, let us identify (by an affine map) the simplex � with the
standard simplex of R

2 (with vertices at (0, 0), (1, 0) and (0, 1)) and assume (without
loss) that F corresponds to the facet defined by the equation L3(x) = a3(1−x1−x2) =
0 whereas the other labels are L1(x) = a1x1 and L2(x) = a2x2 with ai > 0. The
Bryant complete extremal Bochner-flat metric has symplectic potential inS(�,L, F),
given by

u B = 1

2

(
a1x1 log(x1) + a2x2 log(x2) − (a1x1 + a2x2) log(1 − x1 − x2)

)
. (94)

If we take (�,L) be a labelled simplex and F = F1 ∪ F2 the union of two facets,
then by identifying � with the standard simplex of R

2 and Fi with the affine line
xi = 0, i = 1, 2, respectively, one sees that the reflection along the line x1 = x2
is a symmetry of (�,L, F). By uniqueness, s(�,L,F) must be invariant under this
reflection, i.e. s(�,L,F) = r(x1 + x2) + c for some real numbers r , c. Using the
definition (3.1) with f = 1 − (x1 + x2) (which vanishes on F3), one gets r = −2c
for a real number c (which must be inverse proportional to the normal e3). It follows
that s(�,L,F) vanishes at the affine line parallel to F3 and passing though the midpoint
m = (1/4, 1/4) of its median d. Let fd be a simple crease function with crease along
d and non-zero on the sub-triangle �′ ⊂ � (cut from � by d). Two of the facets of �′
inherit the measures of the facets of � and we put measure zero to the facet along d.
Thus, (�′, dν∂�′) and (�, dν∂�) are equivalent under an affine transformation of R

2.
From the affine characterization of s(�,L,F), it follows that the extremal affine linear
function of�′ is a multiple of s(�,L,F); it is not hard to see (e.g. by using the definition
(3.1) with f = 1− (x1 + x2) and f ≡ 1) that the extremal affine linear function of �′
equals to s(�,L,F). Thus, L(�,L,F)( fd) also computes the Donaldson–Futaki invariant
of the affine linear function fd over �′, and hence is zero. It follows that (�,L, F) is
unstable. We thus conclude

Theorem 5.13 Let (�,L, F) be a labelled simplex in R
2. Then (�,L, F) is stable if

and only if F consist of a single facet. In this case (35) admits an explicit solution u B

in S(�,L, F) given by

u B = 1

2

(
L1 log L1 + L2 log L2 − (L1 + L2) log L3

)
, (95)

where L3 vanishes on F. The corresponding metric (27) extends to the complete
Bochner-flat metric on C

2 found in [11]. In particular, CP2 \ CP1 admits a complete
extremal Donaldson metric, which is of Poincaré type (and conformal to the Taub-NUT
metric).
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Appendix A: Proof of Theorem 4.18 and Proposition 4.19

Appendix A.1: Proof of Theorem 4.18

We follow the notation of Sects. 3 and 4. Thus, X is a smooth compact toric variety
classified by the labelledDelzant polytope (�,L).We fix once and for all aT-invariant
Kähler metric ω0 on X with momentum map μ0 : X → � ⊂ t∗. To simplify the
discussion, we can take ω0 to be the Kähler quotient metric on X obtained from the
flat Kähler structure on C

d via the Delzant construction, see Eq. (28). We denote by
X◦ = μ−1

0 (�0) the pre-image of the interior of�, which is also the subspace of regular
points for the action ofT. Complexifying theT-action, we obtain a holomorphic action
of the complex n-torusT

c = (C×)n with X◦ being the principal orbit for theT
c-action.

Choosing (once for all) a reference point z◦ ∈ X◦, for each fixed point for theT-action,
corresponding to a vertex v ∈ �, we introduce a (C×)n-equivariant chart Cn

v
∼= C

n as
follows. Using a basis of t obtained by the inward normals of the facets of � meeting
at v, we identify T

c with (C×)n and consider the equivariant map �v : (C×)n → X◦

�v

(
r1e

√−1t1 , . . . , rne
√−1tn

)
:=

(
r1e

√−1t1, . . . , rne
√−1tn

)
· z◦,

where ri e
√−1ti ∈ C

× stand for the polar coordinates on each factor. It follows by
the holomorphic slice theorem that �v : X◦ → (C×)n extends equivariantly to a
holomorphic embedding of C

n
v to X , thus defining an equivariant atlas of affine charts

C
n
v of X (where v runs among the vertices of �).
The theory of toric varieties (see e.g. [30]) yields that in such a chart, the (smooth)

divisor Z corresponding to the pre-image underμ0 of a facet F meeting v has the equa-
tion z j = 0 where (z1, . . . , zn) = (r1e

√−1t1 , . . . , rne
√−1tn ) are the affine coordinates

on C
n
v . In what follows, we will suppose without loss that

Z ∩ C
n
v = {(z1, . . . , zn) ∈ C

n : z1 = 0}. (96)

To connect with the description (27) of the Kähler metricω0, one needs to apply the
Legendre transform to the strictly convex smooth function u0 on �0, given by (28).
More precisely, if x0 = μ0(z◦) ∈ �0 and u ∈ S(�,L) is any symplectic potential,
we let

y(x) := du(x) − du(x0) = (u,1(x), . . . , u,n(x)) − (u,1(x0), . . . , u,n(x0))

and define a smooth function ϕu(y) by

ϕu(y) + u(x) =
n∑

i=1

yi xi . (97)

We notice the following elementary:
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Lemma A.1 Let � be a non-empty bounded convex open subset of a finite-dimensional
affine space t∗, and u : � → R a smooth strictly convex function such that |du| tends
to ∞ near ∂�, where | · | is any Euclidean norm on t. Then du is a diffeomorphism
from � onto t.

Proof Clearly, du(x) = (
u,1(x), . . . , u,n(x)

)
is a local diffeomorphism as its differ-

ential at x (represented by the matrix (u,i j (x)) is invertible for all x ∈ � by the strict
convexity assumption.

Moreover du is injective by using the convexity of � and the fact that du(p(t)) is
strictly monotone in t on each linear segment p(t) ∈ � (which again follows from the
strict convexity of u).

Finally, du is surjective: This can be proven by checking that du(�) is closed,
and hence coincides with R

n as it is also non-empty and open. Indeed, let (qk) be a
sequence in R

n ∼= t, with limit q, such that qk = du(pk) for pk ∈ � for all k ≥ 0.
There is a subsequence, still denoted by (pk), converging to some p ∈ �. Now if
p ∈ ∂�, then by assumption, |qk | = |du(pk)| → ∞, a contradiction, and thus p ∈ �,
and q = du(p). ��

It follows that for each u ∈ S(�,L), we have a T
c-equivariant biholomorphism

�u : (�0 × T, Ju) → (C×)n
v

∼= X◦, given by

�u(x1, . . . , xn, t1, . . . , tn) := (ey1+
√−1t1 , . . . , eyn+√−1tn ), (98)

where, we recall, y(x) = du(x) − du(x0) is a diffeomorphism from �0 to R
n by

virtue of Lemma A.1, and Ju is the T-invariant ω0-compatible complex structure
corresponding to u ∈ S(�,L). The central fact in this theory is the following identity
on (C×)n

v (see [30]):

ωu := (�−1
u )∗(ω0) = ddc

((
ϕu(log |z1|, . . . , log |zn|)

))
, (99)

where (z1, . . . , zn) are the complex coordinates associated to the chart C
n
v, and dc

is taken with respect to the standard complex structure. The fact that u ∈ S(�,L)

guarantees the smooth extension of the right-hand side to a positive definite (1, 1)-form
on C

n
v .

Let us now suppose u ∈ Sα,β(�,L, F) (instead of being in S(�,L)). It is easily
checked that such a u still verifies the condition that |du| tends to ∞ near ∂�, so that,
by using Lemma A.1, (98) and (99), we obtain a Kähler metric ωu on (C×)n

v, which
can be written as

ωu = ω0 + ddcϕ, (100)

where ω0 is the (globally defined on C
n
v) Kähler metric corresponding to (28) and

ϕ(z1, . . . , zn) := (ϕu − ϕu0)(log |z1|, . . . , log |zn|) (101)

is a smooth function on (C×)n
v ⊂ C

n
v . We notice that through this identification (which

depends upon u!), Z ∩ C
n
v still corresponds to a hyperplane in the C

n
v affine chart, as

it follows from the following:
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Lemma A.2 Let u0 be the symplectic potential in S(�,L) given by (28) and let u ∈
Sα,β(�,L, F). Then,

(du0)
−1 ◦ du : �0 −→ �0

extends continuously to a homeomorphism of �, inducing a diffeomorphism on every
open face of the polytope � and preserving its vertices.

Proof The proof is elementary. Let p ∈ ∂�, and consider some sequence (pk) in �0

converging to p. We want to see that

(a) limk→∞((du0)
−1 ◦ du)(pk) lies in the same open facet as p (or equals p if p is

a vertex of �);
(b) this limit does not depend on the sequence (pk).

The claimed regularity of (du0)
−1 ◦ du will follow from the proof (a) and (b) above.

Let us assume that p ∈ f := (Fi1 ∩ · · · ∩ Fi	 )\(Fi	+1 ∪ · · · ∩ Fid ), 	 ≤ n, where
i1 < · · · < i	 and {i1, . . . , id} = {1, . . . , d}, and also that Fi1 ∩ · · · ∩ Fin is not empty.

As already noticed,
(
du(pk)

)
tends to ∞ in t; thus, as du0 is a diffeomorphism

� → t whose norm tends to ∞ near ∂�,

(pk) := (
(du0)

−1 ◦ du(pk)
)

tends to ∂�. We now prove that any limit point of (pk) must belong to f .
For this, observe that if (pk) tends to ∂�, then (pk) tends to f if and only if
u0,1(pk), . . . , u0,	(pk) tend to −∞ while u0,	+1(pk), . . . , u0,n(pk) remain bounded
(we have set u0,i (x) = ∂u0

∂xi
(x)). We thus want to prove that, as k → ∞,

{
u0,1(pk), . . . , u0,	(pk) −→ −∞,

u0,	+1(pk), . . . , u0,n(pk) = O(1),

or equivalently {
u,1(pk), . . . , u,	(pk) −→ −∞,

u,	+1(pk), . . . , u,n(pk) = O(1).
(102)

Since u ∈ Sα,β(�,L, F), up to a smooth t-valued function near p we have

u, j =

⎧⎪⎨
⎪⎩

(
− α

L1
+ β log L1

)
if j = 1,

1

2
log L j if j ≥ 2,

which yield the estimates (102) and concludes the point (a) of our proof.
We now address (b). Let pk → p and pk → p. Our task is to prove that p does not

depend on (pk); if p is a vertex, this already follows from (a), so we assume that f is
an open face of �. Letting u0,f := (u0)|f , uf := (u + α log L1)|f if f ⊂ F = F1 and
uf = u|f if f �⊂ F , the definitions of the spaces S(�,L) and Sα,β(�,L, F) ensure
that u0,f and uf are strictly convex on f . With the notations above, observe that the

123



Extremal Kähler Poincaré Type Metrics on Toric Varieties 1273

u0, j , j = 	+1, . . . , n, are smooth in a neighbourhood of f , and u0, j = (u0,f ), j along
f ; similarly, the u, j are smooth around f and u, j = (uf ) j along f . In this way, letting
k → ∞ in the equality du0(pk) = du(pk), we obtain

(du0,f )(p) = (duf )(p).

Using the strict convexity of u0,f and uf on f , and that the norms of their differentials
tend to ∞ near ∂f , we conclude that du0,f and duf are diffeomorphisms f → (t/tf )

∗
(see Lemma A.1 above), and thus,

p = (du0,f )
−1 ◦ duf (p)

does not depend on (pk).
This completes the proof of Lemma A.2. ��

The general theory [30] (which uses local arguments around the pre-image of each
face) ensures that ϕ(z) extends smoothly over C

n
v \ (Cn

v ∩ Z), and that ωu defines a
Kähler metric on X \ Z . We shall thus focus our analysis on C

n
v in order to understand

the behaviour of ωu near Z ∩ C
n
v , see (96).

Let p ∈ Z ∩ C
n
v . We shall consider the following limiting cases:

(a) p = (0, . . . , 0) corresponds to the vertex v of �;
(b) μ0(p) belongs to the relative interior of F , i.e. in the chart C

n
v , p has coordinates

(0, z2, . . . , zn) with z j �= 0, j = 2, . . . , n.

The case when μ0(p) belongs to an 	-codimensional face of F with 1 ≤ 	 ≤ n − 1
can be dealt with by combining the arguments for the cases (a) and (b). We shall also
assume at first that β = 0.
Case (a): p = (0, . . . , 0). We can assume without loss that the vertex μ0(p) = v of �

is at the origin of t∗ ∼= R
n , i.e. L j (x) = x j , j = 1, . . . , n. We thus have, near 0 ∈ �,

u(x) = −α log(x1) + 1

2

⎛
⎝

m∑
j=2

x j log(x j ) − x j

⎞
⎠ + w(x) (103)

with w(x) smooth on R
n . We can further modify u by adding an affine linear function

(which does not change neither the induced Kähler metric nor the belonging of u to
Sα,β(�,L, F)) so that du(x0) = 0. It then follows that in the chart C

n
v the functions

y j = u, j = log |z j | are given by

y1 = log |z1| = − α

x1
+ w,1(x),

y j = log |z j | = 1

2
log x j + w, j (x), j = 2, . . . , n,
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or equivalently, ⎧⎨
⎩

− 1

log |z1| = f1(x) ,

|z j |2 = f j (x) for j = 2, . . . , n,

(104)

with f1(x) = x1
α−x1w,1(x)

and f j (x) = x j e2w, j (x), j = 2, . . . , n. We want to use (104)
in order to express the momentum coordinates x = (x1, . . . , xn) of ωu in terms of
|z j |′s. To this end, we notice that f (x) = ( f1(x), . . . , fn(x)) extends smoothly near
the origin v = 0 ∈ �. (Similarly, the LHS of (104) extends continuously on C

n
v by

letting −1
log |z1| be 0 along z1 = 0.) Computing the Jacobian of f (x) at 0, we conclude

that the local inverse h(ζ ) of f (x) is defined on a small neighbourhood of 0 ∈ R
n and

has the form
h(ζ ) = (

αζ1h̃1(ζ ), ζ2h̃2(ζ ), . . . , ζnh̃n(ζ )
)
, (105)

with h̃1(ζ ), . . . , h̃n(ζ ) smooth and non-vanishing near 0. It thus follows from (104)
that

⎧⎪⎪⎨
⎪⎪⎩

x1 =
( −α

log |z1|
)

h̃1

( −1

log |z1| , |z2|
2, . . . , |zn|2

)
,

x j = |z j |2h̃ j

( −1

log |z1| , |z2|
2, . . . , |zm |2

)
for j = 2, . . . , n.

(106)

By (97), and using that y j = log |z j | together with (106), we find that

ϕu(z) =1

2

n∑
j=1

log(|z j |2)x j − u(x)

= − α log
( − log |z1|

) + W
( −1

log |z1| , |z2|
2, . . . , |zn|2

) (107)

where

W (ζ ) := α log
[
αh̃1(ζ )

] − αh̃1(ζ ) − 1

2

⎛
⎝

m∑
j=2

ζ j h̃ j (ζ )
(
log h̃ j (ζ ) − 1

)
⎞
⎠ − w

[
h(ζ )

]

(108)
for w(x) defined in (103). Thus, W (ζ ) is a smooth function near 0.

A similar (and well-established) argument using u0 instead of u shows that ϕu0 can
be viewed as a smooth function ψ0(z) on C

n
v , so that the relative potential ϕ(z) in

(101) is written as

ϕ(z) = −α log
( − log |z1|

) + ψ0(z) + W

( −1

log |z1| , |z2|
2, . . . , |zn|2

)

and thus has the required behaviour of a Poincaré type potential near Z = {z1 = 0},
see Definition 1.1.

123



Extremal Kähler Poincaré Type Metrics on Toric Varieties 1275

We now examine the asymptotic behaviour of the Kähler form ωu = ddcϕu near
the origin 0 ∈ Z ∩ C

n
v . Using (107), we find that

ωu = ddcϕu = 2α

√−1dz1 ∧ dz1
|z1|2 log2(|z1|2)

+ � + η, (109)

where � + η = ddc
[
W

( −1
log(|z1|) , |z2|2, . . . , |zn|2)]

are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� =
n∑

j=2

W j

( −1

log(|z1| , |z2|
2, . . . , |zn |2

) √−1dz j ∧ dz j

+
n∑

j,k=2

W jk

( −1

log(|z1|) , |z2|2, . . . , |zn |2
)

z j zk
√−1dz j ∧ dzk ,

η =W1

( −1

log(|z1|) , |z2|2, . . . , |zn |2
)√−1dz1 ∧ dz1

|z1|2 log2(|z1|)

+
n∑

j=2

W1 j

( −1

log(|z1|) , |z2|2, . . . , |zn |2
)( z j

√−1dz1 ∧ dz j

z1 log(|z1|) + z j
√−1dz j ∧ dz1
z1 log(|z1|)

)
,

(110)
and we have put

W1(ζ ) = ζ 2
1

( ∂2W

∂ζ1∂ζ1

)
(ζ ) + 1

2
ζ1

(∂W

∂ζ1

)
(ζ ), W j (ζ ) =

(∂W

∂ζ j

)
(ζ ), j ≥ 2;

W1 j (ζ ) = −ζ1

( ∂2W

∂ζ1∂ζ j

)
(ζ ), j ≥ 2; W jk(ζ ) =

( ∂2W

∂ζ j∂ζk

)
(ζ ), j, k ≥ 2.

Since Wk(ζ ), Wpq(ζ ) are smooth, ||∇sη|| = O
( 1
log(|z1|)

)
near Z for all s ≥ 0, where

∇ is the Levi-Civita connection of the model Poincaré type metric

ωmod =
√−1dz1 ∧ dz1
|z1|2 log2(|z1|2)

+
n∑

j=2

√−1dz j ∧ dz j

on C
n
v\Z , and the norms are computed with the help of ωmod.

It follows from (109)–(110) that ωu has the Poincaré type behaviour in the normal
z1-direction, as well as in the (z1, z j )-directions for j ≥ 2.

We are thus left to examine the metric over the hyperplane z1 = 0. Letting W̃ j (ζ )

and W̃ jk(ζ ) be the smooth functions determined near 0 by

W j (ζ ) = W j (0, ζ2, . . . , ζn) + ζ1W̃ j (ζ ); W jk(ζ ) = W jk(0, ζ2, . . . , ζn) + ζ1W̃ jk(ζ ),
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one has the decomposition � = �0 + ε, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0 =
n∑

j=2

W j (0, |z2|2, . . . , |zn|2)√−1dz j ∧ dz j

+
n∑

j,k=2

W jk(0, |z2|2, . . . , |zn|2) z j zk
√−1dz j ∧ dzk,

ε = −1

log(|z1|)
n∑

j=2

W̃ j

( −1

log(|z1|) , |z2|
2, . . . , |zn|2

) √−1dz j ∧ dz j

− 1

log(|z1|)
n∑

j,k=2

W̃ jk

( −1

log(|z1|) , |z2|
2, . . . , |zn|2

)
z j zk

√−1dz j ∧ dzk .

(111)
We notice that �0 is smooth around the origin, whereas ε satisfies, for all s ≥ 0,
||∇sε|| = O

( 1
log(|z1|)

)
near Z (with covariant derivatives and norms taken with respect

to the model Poincaré metric ωmod). Computing the value of �0 at z = 0, we get

(�0)|z=0 =
m∑

j=2

W j (0)
√−1dz j ∧ dz j .

Using (108), we have

W j (0) =
(∂W

∂ζ j

)
(0)

= −1

2
h̃ j (0) log

(
h̃ j (0)

) −
(∂h j

∂ζ j

)
(0)

(
w, j (0) − 1

2

)

= −1

2
h̃ j (0) log

(
h̃ j (0)

) − h̃ j (0)
(
w, j (0) − 1

2

)
.

(112)

By the definition (105) (and inverting the diagonal Jacobian of f at 0) we have that
for any j = 2, . . . , n, h̃ j (0) = e−c j where c j = 2w, j (0). Substituting back to (112),
we conclude

W j (0) = e−c j
(

− 1

2
(−c j ) − c j − 1

2

)
= e−c j

2
> 0,

thus showing the positivity of ωu in the directions parallel to Z .
Case 2: p = (0, z2, . . . , zn) with z j �= 0 for j = 2, . . . , n. Now

u(x) = −α log x1 + w(x)

with w(x) smooth in a neighbourhood of x p = μ(p) ∈ F0. By assumption, u is
strictly convex on �0, and uF = w|F is strictly convex on F0. The relations (104)
now become
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⎧⎨
⎩

−1

log(|z1|) = f1(x),

|z j |2 = f j (x) for j = 2, . . . , n,

(113)

with f1(x) = x1
α−x1w,1(x)

, and f j (x) = e2w, j (x), j = 2, . . . , n. Using the strict con-

vexity of w along F0 = {x1 = 0} ∩ �, we see that f (x) = ( f1(x), . . . , fn(x)) is
smooth and locally invertible around x p = (0, b2, . . . , bn). We denote by h(ζ ) =
(h1(ζ ), . . . , hn(ζ )) the local inverse of f around x p, which must be of the form

h(ζ ) = (
αζ1h̃1(ζ ), h̃2(ζ ), . . . , h̃n(ζ )

)

with h̃1(0) > 0. Thus,

x = h

( −1

log |z1| , |z2|
2, . . . , |zn|2

)
,

(which extends along z1 = 0 near p). We obtain again

ϕu(z) = −α log
( − log |z1|

) + W

( −1

log |z1| , |z2|
2, . . . , |zm |2

)
, (114)

with W smooth and given by

W (ζ ) =α log
(
αh̃1(ζ )

) − αh̃1(ζ ) + 1

2

m∑
j=2

h̃ j (ζ ) log ζ j − w
[
h(ζ )

]
,

(notice that ζ j (p) = |z j (p)|2 > 0 for j = 2, . . . , n). Thus,

ϕ(z) = ϕu(z)−ϕu0(z) = −α log(− log |z1|)−ψ(z)+W

( −1

log |z1| , |z2|
2, . . . , |zn|2

)
,

with ψ and W are smooth near p. Consequently, ϕ has the right asymptotics near p.
We now address the positivity of ωu near p. Writing

ωu = ddcϕu = 2α
√−1dz1 ∧ dz1

|z1|2 log2(|z1|2)
+ � + η, (115)

with � + η = ddc
(
W

( −1
log |z1| , |z2|2, . . . , |zn|2))

given by (110), we have that

η = O
( 1
log |z1|

)
at any order; it is thus enough to show the positivity of � in (115).

Decomposing � = �0 + ε with ε = O
( 1
log |z1|

)
as in (111), we need to establish

the positivity of (�0)p. By its very definition, �0|Z = ddc
(

W (0, |z2|2, . . . , |zn|2)
)
.

A careful examination of the definition of W reveals that, up to additive plurihar-
monic terms log |z j |2, W (0, |z2|2, . . . , |zn|2), seen as a function on the hypersurface
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{z1 = 0}, coincides with the Kähler potential corresponding to the Legendre transform
(97) of the strictly convex function uF (x) = α log x1 + u(x) = w(x) restricted to the
relative interior of F . Thus, (�0)p > 0.

We finally comment on the case when u ∈ Sα,β(�,L, F) with β �= 0. The main
difficulty is that the equations (104) hold with

f1(x) = x1
α − βx1 log x1 − x1(β + w,1(x))

(116)

which is no longer smooth (nor even C2) around x1 = 0.
One way to bypass this difficulty is to use a suitable change of variables. We detail

below the case n = 1, for the general case is treated similarly by considering the
change of variables with respect to |z1|2 and leaving the variables |z j |2, j = 2, . . . , n
unchanged.

We set

s := −1

log x1
, t1 := log(− log |z1|),

so that the first equation in (104) becomes

1

t1
= s

1 + s log
(
α + βe−1/s/s + e−1/s(β + w,1(e−1/s))

) =: f (s). (117)

As w,1 is smooth in a neighbourhood of 0 and the functions

s �−→
{
0 if s ≤ 0,

e−1/s if s > 0,
and s �−→

⎧⎨
⎩
0 if s ≤ 0,

1

s
e−1/s if s > 0,

are smooth on R, we can extend f (s) as a smooth function in a neighbourhood of 0
by letting f (s) = s

1−s logα
for s ≤ 0.

As ∂s f (0) = 1, we get that s = h( 1
t1

) for some h smooth around 0, satisfying

h(0) = 0, h′(0) = 1. Thus, s = 1
t1

(
1 + γ

t1
+ h̃( 1

t1
)
)
for some constant γ , and h̃ a

smooth function vanishing at order 2 at 0. In fact, one must have γ = logα, and thus

1

s
= t1 − logα + H

( 1

t1

)
,

with H a smooth function vanishing at order (at least) 1 at 0. We can be more precise,
and rewrite (117) as

1

t1
= 1

1/s + logα + P(s)
, i.e.

1

s
= t1 − logα − P(s)

with P(s) = log
(
1+ (β/α)e−1/s/s + e−1/s(β +w,1(e−1/s))/α

)
. Replacing 1/s with

t1 − logα + H
( 1

t1

)
in the explicit expression of P(s), we see by induction that H( 1

t1
),
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as well as its derivatives with respect to t1 at any order, are O(t1e−t1)when t1 → +∞.
Therefore,

x = e−1/s = exp
( − t1 + logα + P(s)

) = −α

log |z1|
(
1 + O(t1e−t1)

)
,

at any order with respect to differentiation in t1. In particular, x = −α
log |z1| + O(t1e−2t1)

(instead of O(e−2t1) in the case β = 0) at any order with respect to |dz1|2
|z1|2 log2(|z1|2) . We

thus get for the relative potential (101)

ϕ = − log
( − log |z1|

) + logα + O(t1e−t1),

and recover the asymptotic behaviour ωu near Z with arguments identical with the
ones in the case β = 0. This ends the proof of Theorem 4.18.

Appendix A.2: Proof of Proposition 4.19

The arguments are local, near a point p ∈ ∂�, and not materially different from ones
in [4, §1.3]. In fact, we need to only consider the case when p ∈ F = F1 (otherwise
the result follows from [4]). To this end, we fix a vertex v ∈ F of �, which without
loss can be taken to be at the origin of t∗, and consider a basis of t corresponding to
the inward normals of the n facets F1, . . . , Fn meeting at v. We can also assume that
F = F1 is defined by the equation x1 = 0, i.e. p = (0, x2, . . . , xn) with x j ≥ 0, and
L j (x) = x j .

In one direction, we want to show that if u ∈ Sα,β(�,L, F) then u satisfies the
four conditions of Proposition 4.19.

Let us define the mutually inverse matrices

G0
α,β =

⎛
⎜⎜⎜⎜⎜⎝

α+βx1
x21

0 · · · 0

0 1
2x2

. . .
...

...
. . .

. . . 0
0 · · · 0 1

2xn

⎞
⎟⎟⎟⎟⎟⎠

and H0
α,β =

⎛
⎜⎜⎜⎜⎜⎝

(x1)2

α+βx1
0 · · · 0

0 2x2
. . .

...
...

. . .
. . . 0

0 · · · 0 2xn

⎞
⎟⎟⎟⎟⎟⎠

.

Given u ∈ Sα,β(�,L, F1), we first prove that Gu = Hess(u) and its inverse Hu

satisfy the property thatGu −G0
α,β andG0

α,βH
uG0

α,β −G0
α,β extend smoothly through

(F1 ∪ · · · ∪ Fn)\(Fn+1 ∪ · · · ∪ Fd) in the region {α + βx1 > 0}, see Figure 3. Then
we will show that if Gu − G0

α,β and G0
α,βHuG0

α,β − G0
α,β extend smoothly, then the

conditions of Proposition 4.19 must be satisfied.
We notice that G0

α,β = Hess(u0
α,β) with

u0
α,β = −(α − βx1) log x1 + 1

2

n∑
j=2

x j log x j .
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x1

x2

F1

F2

Fn+1

α + βx1 = 0

Δ

Fig. 3 The polytope � and the domain near the face F1 (grey)

Thus, Gu − G0
α,β is the Hessian of a smooth function through the wall (F1 ∪ · · · ∪

Fn)\(Fm+1 ∪ · · · ∪ Fd). Writing u = −(α − βx1) log x1 + 1
2

∑n
j=2 x j log x j + w(x),

with w smooth, we get

H0
α,βG

u = In +

⎛
⎜⎜⎜⎜⎝

x21
αx1+β

w,11 · · · (x1)2

αx1+β
w,1n

2x2w,21 · · · 2x2w,2n
...

...

2xnw,2n · · · 2xnw,2n

⎞
⎟⎟⎟⎟⎠

which clearly extends smoothly (with positive determinant over the origin). Moreover,
on f := (F1 ∩ · · · ∩ F	)\(F	+1 ∪ · · · ∪ Fm), for some 	 ∈ {1, . . . , n}

H0
α,βG

u = In +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...

0 · · · 0
2x	+1w,(	+1)1 · · · 2x	+1w,(	+1)m

...
...

2xnw,2n · · · 2xnw,2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

I	 0
∗ H0

f Guf

)

where H0
f = diag(2x	+1, . . . , 2xn) and, we recall, uf := (

u + (α − βx1) log x1)|f .
Hence det[H0

α,βG
u] = 2m−	x	+1 · · · xn det[Guf ] > 0 along f , as Guf is positive defi-

nite by assumption. Since this holds for all f and on the vertex F1∩· · ·∩Fn , we conclude
that H0

α,βG
u admits a smooth inverse, i.e. HuG0

α,β = (H0
α,βG

u)−1 can be extended

smoothly through thewall too. Therefore, (G0
α,β−Gu)HuG0

α,β = G0
α,βH

uG0
α,β−G0

α,β

extends smoothly as well.
Set Qu := G0

α,βH
uG0

α,β − G0
α,β . It follows that H

u = H0
α,βQ

uH0
α,β + H0

α,β , and
hence Hu is smooth through the wall. In fact, a direct computation tells us that
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Hu − H0
α,β =

⎛
⎜⎜⎜⎜⎜⎜⎝

x41 f11 x21 x2 f12 · · · · · · x21 xn f1n

x21 x2 f21 x22 f22 x2x3 f23 · · · x2xn f2m
... x2x3 f32

...
...

... xn−1xn f2n

x21 xn fn1 x2xn fn2 · · · xn−1xn f2n x2n fnn

⎞
⎟⎟⎟⎟⎟⎟⎠

(118)

with smooth fab, which allows us to see that all the boundary conditions of Hu are
satisfied along a face f ⊂ F1.

It remains to check the positivity assertion on the faces f ⊂ F1; as above, sup-
pose f = (F1 ∩ · · · ∩ F	)\(F	+1 ∪ · · · ∪ Fd). Along f , H0

α,βG
u can be written

as
( I	 0

∗ H0
f G

uf

)
. It thus follows that along f (H0

α,βG
u)−1 has the shape

( I	 0
∗ Huf G0

f

)
,

with G0
f = (H0

f )
−1 = diag( 1

2x	+1
, . . . , 1

2xn
), where Huf = (Guf )−1. Thus, along

f , Hu = (H0
α,βG

u)−1H0
α,β = (

0 0∗ Huf

)
(since H0

α,β = ( 0 0
0 H0

f

)
along f). The desired

positivity now readily follows from that of Huf along f , which in turn is a direct
consequence of the convexity assumption of uf .

We now deal with the converse direction of Proposition 4.19, i.e. given a strictly
convex u ∈ C∞(�0) such that the associated Hu verifies the conditions of Propo-
sition 4.19, we have to show that u ∈ Sα,β(�,L, F1). Again, as this is local and
already known far from the Poincaré face F1, we focus on the same region as above.
Arguments analogous to those in [4, pp. 290–291] allow one to show that the bound-
ary conditions for Hu yield that Gu − G0

α,β and HuG0
α,β extend smoothly through

(F1 ∪ · · · ∪ Fn)\(Fn+1 ∪ · · · ∪ Fd), the latter having positive determinant on F1; the
smooth extension of Gu − G0

α,β ensures that u can be written as

−(α − βL1) log L1 + 1

2

d∑
j=2

L j log L j + w(x)

for some w ∈ C∞(
�, R

)
.

The boundary conditions for Hu also tell us that Hu = H0
α,β + Ru , with Ru a

smooth matrix of shape given by (118) (the third-order boundary condition on the
Poincaré face gives precisely the O

(
x41

)
estimate for the upper left coefficient of Ru).

Hence, HuG0
α,β = In + RuG0

α,β with

RuG0
α,β =

⎛
⎜⎜⎜⎜⎜⎜⎝

(x1)2g11 (x1)2g12 · · · · · · (x1)2g1n

x2g21 x2g22 x2g23 · · · x2g2n
...

...
...

...
... xn−1g(n−1)n

xngn1 xngn2 · · · xngn,(n−1) xngnn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (119)

for smooth gab. It follows that along f = (F1∩· · ·∩F	)\(F	+1∪· · ·∪Fd) (1 ≤ 	 ≤ n),

H0
α,βG

u = (HuG0
α,β)−1 = ( I	 0

∗ H0
f G

uf

)
. As HuG0

α,β extends as a smooth and positive
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definite matrix over f , we conclude that Guf > 0, i.e. uf is strictly convex in the
relative interior of f .

Appendix B: Proof of Proposition 5.8 and Corollary 5.9

For the proof of Proposition 5.8 andCorollary 5.9,wewill change point of view slightly
and use explicit computations for quadrilaterals inR

2 with the standard latticeZ
2. The

moment polytope corresponding to aHirzebruch surface has at least one pair of parallel
edges. Therefore after possibly scaling the polytope, we can take it to be given as the
intersection ∩4

i=1L−1
i ([0,∞)) of

L1(x, y) = y,

L2(x, y) = (1 − x),

L3(x, y) = (q − k)x − y + k,

L4(x, y) = x, (120)

for some positive real numbers q and k. This will then correspond to a Hirzebruch
surface exactly when q − k ∈ Z.

We begin with the proof of Proposition 5.8 in the case of two edges, and then show
that the case of one edge is a corollary of this, using the convexity of the set of stable
weights. We end by proving Corollary 5.9.

Appendix B.1: The Case of Two Edges

For this we will use a criterion for stability found in [40] which used the ambitoric
framework of [5,6] described above. We begin by recalling this result.

For a pair of edges F1, F2 of a general 2-dimensional convex polytope �, one can
parametrize the lines that meet both F1 and F2 by [0, 1] × [0, 1]. Let the vertices of
F1 be v0 and v1 and let the vertices of F2 be w0 and w1. Then let vs = (1− s)v0 + sv1
and wt = (1− t)w0 + tw1. Picking an affine linear function hs,t whose zero set is the
line containing vs and wt , one then obtains a corresponding simple piecewise linear
function fs,t = max{0, hs,t }. We can parametrize the Donaldson–Futaki invariant of
these functions as a map

φ : [0, 1] × [0, 1] −→ R,

(s, t) �−→ L(�,L,F)( fs,t ).

Thepositivity of this is independent of the scaling of hs,t chosen. Since all linesmeeting
F1 and F2 are traced out as (s, t) takes all values in [0, 1] × [0, 1], it suffices to check
the positivity of φ in order to check whether or not there are any simple piecewise
linear functions with crease meeting F1 and F2 violating stability. By choosing an
appropriate scaling of hs,t , φ can be taken to be polynomial in (s, t) of bidegree (3, 3).
This was essentially shown in [22], see also [40, Lemma 2.10].
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If F1 and F2 are adjacent to a common edge F̃ , then each of the Fi has a vertex
lying on F̃ . Thus, up to reordering vi and wi , we have that v0 and w0 lie on F̃ . In the
domain [0, 1]×[0, 1] of φ the point (0, 0)will then correspond to the simple piecewise
linear function f0,0 whose crease is F̃ ; f0,0 is then actually affine linear on P and so
φ

(
(0, 0)

) = 0. Moreover, if F̃ is one of the components of F , the facets along which
we let the boundary measure vanish, then the point will be a critical point of φ.

In the case when � = Q is a quadrilateral, there are exactly two pairs of such
edges that have common adjacent edges, namely the two pairs of opposite edges. As
above, we then have functions φ1, φ2 parametrizing the Donaldson–Futaki invariant
of simple piecewise linear functions meeting opposite edges of Q. In the case when F
consists of two edges of Q, there will then be exactly two critical points corresponding
to two of the vertices of φ1 and/or φ2.

Proposition A.3 Let Q be a quadrilateral and pick two edges F1, F2 of Q. Then
(Q,L, F1 ∪ F2) is stable if and only if the determinant of the Hessian of the functions
φ1, φ2 at the points corresponding to an affine linear function is

• non-negative if F1, F2 are adjacent,
• positive if F1, F2 are opposite.

Moreover, the positivity of the determinant implies that the relative Székelyhidi numer-
ical constraint is satisfied.

Note that the converse of the final statement is not true. If the determinant vanishes,
the Hessian is positive semi-definite but not positive definite at the critical point of φi .
Thismeans that there is a family fc of simple piecewise linear functions, with f0 corre-
sponding to the critical point of the domain ofφi , such that d2

dc2

∣∣
c=0

(L(Q,L,F)( fc)
) = 0.

However, it is not necessarily the case that the crease of this family can be taken to be
parallel to relevant edge of Q. This would have to be the case if the positivity of the
determinant was equivalent to the relative Székelyhidi numerical constraint.

For Q being the moment polytope of a Hirzebruch surface given by Eq. (120) and
L the canonical scaling of the normals to Q, one can then compute the functions φ1
and φ2 of Proposition A.3 and hence their determinants directly in terms of q and k.
The result of this computation is given in Lemmas A.4 and A.5.

Lemma A.4 Suppose F consists of two adjacent edges, which without loss of gener-
ality can be assumed to be the two edges not lying on the coordinate axes. Then the
determinants of the Hessians of φ1, φ2 at the two critical points are up to a positive
constant given by

k4 + 2k2q2 + q4 − k3 + 3k2q + 3kq2 − q3 (121)

and

3k6q + 3k5q2 + 6k4q3 + 6k3q4 + 3k2q5 + 3kq6 + 2k6 + 2k5q + 6k4q2

+ 4k3q3 + 6k2q4 + 2kq5 + 2q6 − 2k5 − 2k4q + 4k3q2 + 4k2q3 − 2q4k − 2q5.

(122)
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Thus to complete the proof of Proposition 5.8 in the case when F consists of two
adjacent edges, we have to show that both these numbers are always positive. This is
not true for arbitrary positive q and k, but we will use that q − k ∈ Z. In fact, having
|q − k| ≥ 1 ensures that both (121) and (122) are positive. Note that we do not have
to consider the case q = k as this corresponds to a product.

So assume first that q > k, so that q ≥ k + 1. We then use the substitution
q = k + 1 + λ, where λ ≥ 0 by assumption. The expression (121) is then given by

λ4 + 4kλ3 + 8k2λ2 + 8k3λ + 4k4 + 3λ3 + 12kλ2

+ 22k2λ + 12k3 + 3λ2 + 12kλ + 14k2 + λ + 4k.

Since k > 0 and λ ≥ 0, it therefore follows that the term in Eq. (121) is always
positive.

Similarly, using the substitution k = q + 1 + λ instead, one can show that (121)
is always positive when q < k. The same technique also works to show that (122) is
positive whenever q − k ∈ Z. This completes the proof of Proposition 5.8 for the case
of adjacent edges.

Though we have already proved this by different means, the above technique also
works when F consists of two opposite edges. Székelyhidi showed in [46, Prop. 15]
that if the two edges that are not in F are parallel, then (Q,L, F) is always strictly
semistable. It can also be verified directly that the determinant of the Hessian as in
Proposition A.3 vanishes in this situation. With Q determined by positive numbers
k, q as above, we can therefore assume that F consists of the two edges of Q contained
in L2 = 0 and L4 = 0, respectively, since the edges lying in L1 = 0 and L3 = 0 are
the only opposite edges that may not be parallel.

In the case of opposite edges, the two determinant conditions turn out to be equiva-
lent. Thus we need to determine that this single number is non-negative and vanishes
precisely if q = k. This is a consequence of the lemma below.

Lemma A.5 Suppose F consists of the two opposite edges lying on L2 = 0 and L4 = 0.
Then the determinant of the Hessian of the function corresponding to the Donaldson–
Futaki invariant of simple piecewise linear functions with crease meeting L1 = 0 and
L3 = 0 at the critical point corresponding to L2 = 0 is given by

(k − q)2(k + q)2k2

2(k2 + 4kq + q2)2
.

The determinant is thus always non-negative and since k and q are positive it vanishes
if and only if k = q, i.e. if and only if Q is a rectangle, as expected.

Remark A.6 The determinant condition Proposition A.3 holds regardless of the nor-
mals we use for the remaining two edges in F . In particular, it applies when we have
a third facet in F . In this case similar formulae to the ones given above show that the
determinant condition is violated, and so (Q, F) is always unstable when F consists
of three edges of Q.
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Appendix B.2: The Case of One Edge

To prove that (Q,L, F) is stable when Q corresponds to a Hirzebruch surface and F
is a single edge of Q, we will use the notion of weighted stability and the convexity
of the set of stable weights. In general, for a Delzant polytope �, we let ri ∈ R≥0 be
the reciprocal of the scaling of the i th defining function of � given by the data L if
this facet is not in F and ri = 0 if it is. Then we can identify the triple with (�,L, F)

with (�, r) where r ∈ R
d≥0 is the weight of (�,L, F). The weight r is stable if the

corresponding triple (�,L, F) is.
For us the key property of weighted stability is that the set of non-zero stable

weights, thought of as a subset of R
d≥0 \ {0}, is a convex cone. Thus a positive linear

combination of semistable weights is semistable, and moreover, if at least one of the
weights is stable, then the linear combination is stable too.

Going back to the case when � = Q corresponds to a Hirzebruch surface, the
notion of the stability of (Q,L, F) where F is a single edge of Q is exactly the same
as the stability of the weight (0, 1, 1, 1), where F1 is the edge in F and F2, F3, F4 are
the remaining three edges of P .

We now note that this weight can be written as

(0, 1, 1, 1) = 1

2
(0, 0, 1, 1) + 1

2
(0, 1, 0, 1) + 1

2
(0, 1, 1, 0).

The stability of the weights (0, 0, 1, 1), (0, 1, 0, 1) and (0, 1, 1, 0) each correspond to
the stability of some (Q,L, F ′) where F ′ consists of exactly two edges of Q. Thus
(0, 1, 1, 1) is a positive combination of semistable weights, and hence is semistable.
Moreover, at least two of the weights are then in fact stable, since two of these weights
corresponds to the case when F ′ consists of two adjacent sides. Hence (0, 1, 1, 1)
must be stable as well. This means that (Q,L, F) where Q is a Hirzebruch surface,
L are the canonical defining functions of Q and F is a single edge of Q, is always
stable, and this completes the proof of Proposition 5.8.

Appendix B.3: The Proof of Corollary 5.9

The missing component in the proof is to show that the extremal metrics obtained
cannot be of Poincaré type. For this we will show that in the above situation, the
necessary condition in Eq. (42) for the existence of a toric extremal metric of Poincaré
type is violated. In the Hirzebruch surface cases we are interested in, this condition
becomes the following:

Lemma A.7 Let Q be the moment polytope of a Hirzebruch surface X and Kähler
class � given by the data in equations (120). If X admits an extremal Poincaré type
metric on the complement of a divisor Z corresponding to the a union F of facets of
Q, then the associated affine linear function A satisfies that

• A is constant along F, and so in particular at its vertices, if F is a single edge,
• A is constant along the line with vertices (0, k) and ( 1k , 0), if F consists of the two

edges lying in the x and y-axes.
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Proof The only part that needs clarification is the last statement regarding the case of
two adjacent edges. Let A be the associated affine linear function to Q given by the
equations (120). We are taking the edges in F to be F1 and F4.

Recall that for the moment polytope I = [0, λ] with coordinate z and F being the
end-point 0, the associated affine linear function is

Bλ(z) = 6

λ2
z − 2

λ
.

Since F is F1 ∪ F4 for Q, the condition of Eq. (42) then becomes that

A|y=0 = B1(x) + c1
A|x=0 = Bk(y) + c2,

where the ci are constants. Thus if A = ax + by + c, we have that

a = 6

b = 6

k2
.

Thus A(0, k) = c + 6
k and A( 1k , 0) = c + 6

k , too. ��
We will change our parametrization of Q slightly from the beginning of this

Appendix and the above proof, and instead take Q to have vertices

v1 = (−d, 0),

v2 = (k, 0),

v3 = (0, 1),

v4 = (−d, 1).

Here d > 0 and k ∈ Z≥0. We can always take Q to be of this form up to scaling. We
will let F1 be the edge connecting v1 and v4, F2 to be the edge connecting v1 and v2,
F3 to be edge connecting v2 and v3 and F4 to be the edge connecting v3 and v4.

First, we let Ai be the associated affine linear function the case when F consists of
all edges but Fi . Then

A1 = − 12

2d2 + 2dk + k2
x − 24kd(k + d)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

− 6(4d3 − 2d2k − 6k2d − k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

A2 = − 12(3d2 + 4dk + k2)

6d2 + 6dk + k2
y − 6(4d2 + 5dk + k2)

6d2 + 6dk + k2
,

A3 = 12

2d2 + 2dk + k2
x + 12k(4d2 + 4dk + k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y
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+ 6(8d3 + 2d2k − 4k2d − k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

A4 = − 12(3d + 2k)

6d2 + 6dk + k2
y − 6d(k + 2d)

6d2 + 6dk + k2
.

Since the associated linear functions depend linearly on the inverse normals, the
associated linear function Bi to when F consists of a single edge Fi is therefore given
by Bi = ∑

j �=i Ai , which is

B1 = 12

2d2 + 2dk + k2
x − 12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

+ 6(4d4 + 12d3k + 12d2k2 + 6dk3 + k4 + 8d3 + 2d2k − 4dk2 − k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

B2 =12(3d2 + 2dk + k)

6d2 + 6dk + k2
y − 6d(2d + k − 2)

6d2 + 6dk + k2
,

B3 = − 12

2d2 + 2dk + k2
x − 12k(4d3 + 6d2k + 4dk2 + k3 + 2d2 + 2dk)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

+ 6(4d4 + 12d3k + 12d2k2 + 6dk3 + k4 − 4d3 + 2d2k + 6dk2 + k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

B4 = − 12(3d2 + 4dk + k2 − k)

6d2 + 6dk + k2
y + 6(4d2 + 5dk + k2 + 2d)

6d2 + 6dk + k2
.

Using Lemma A.7, it suffices to verify whether or not the linear part of Bi is equal
at the two vertices of Fi . Let Ki be the difference of these two numbers. Then

K1 = 12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

K2 = 0,

K3 = −12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

K4 = 0.

The cases of K2 and K4 are the cases when Z is the zero or infinity section in X .
This is already treated in Corollary 5.5 where we know that there exists Poincaré type
extremal metrics. The above computations then confirm that the condition of equa-
tion (42) holds, which we also know by general theory regarding extremal Poincaré
type metrics.

To prove Corollary 5.9 in the case when F consists of a single edge using
Lemma A.7, we need to show that K1 and K3 can never be 0 if d > 0 and k ≥ 1. The
requirement k ≥ 1 comes from the fact that if k = 0, then X = CP

1 × CP
1, which is

the case we are not considering.
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First note that denominator of K1 is always positive, so it will have the same sign
as

4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2

which equals

4d3 + 2d2k + 4dk(k − 1) + k2(k − 1) + 4d2(k − 1).

This is always positive as d > 0 and k ≥ 1. For K3, note that it equals −K1, and
hence is always negative.

The remaining case is that of when F consists of two adjacent edges of Q, which
we take to be F1 and F2. The associated affine linear function A is then A3 + A4 and
by Lemma A.7 we need to verify that K = A(k, 0) − A(−d, 1

k+d ) can never be 0. A
computation shows that this quantity is given by

K = 12(6d4 + 18d3k + 19d2k2 + 8dk3 + k4 + 6d3 + 6d2k + 3dk2 + k3)

(k + d)(2d2 + 2dk + k2)(6d2 + 6dk + k2)

which is clearly positive. In particular, it can never be 0.
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