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Abstract

We extend profound results in pluripotential theory on Kéhler manifolds (Darvas
in arXiv:1902.01982, 2019) to Sasaki setting via its transverse Kihler structure. As
in Kéhler case, these results form a very important piece to solve the existence of
Sasaki metrics with constant scalar curvature in terms of properness of K-energy,
considered by the first named author in He (arXiv:1802.03841, 2019). One main
result is to generalize Darvas’ theory on the geometric structure of the space of Kihler
potentials in Sasaki setting. Along the way we extend most of corresponding results
in pluripotential theory to Sasaki setting via its transverse Kihler structure.

Keywords Sasaki structure - Transverse Kihler potential - Orlicz—Finsler geometry -
Pythagorean formula

Mathematics Subject Classification 53C25 - 32U15

1 Introduction

Sasaki manifolds have gained their prominence in physics, algebraic geometry, and
Riemannian geometry [13]. There are tremendous work in the last two decades in
Sasaki geometry, in particular on Sasaki—Einstein manifolds, see [13,14,27,37,39,50,
54] and reference therein. On the other hand, Sasaki geometry is an odd- dimensional
analog of Kihler geometry and almost all results in Kidhler geometry have their coun-
terparts in Sasaki geometry. Calabi’s extremal metric [17,18] (and csck) has played
a very important role in Kédhler geometry and it has a direct adaption in Sasaki set-
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ting [16]. In 1997, Donaldson [34] proposed an extremely fruitful program to approach
existence of csck (extremal metrics) on a compact Kéhler manifold with a fixed Kihler
class. Donaldson’s program has also been extended to Sasaki setting, see [42,46] for
example.

A major problem in Kéhler geometry is to characterize exactly when a Kihler
class contains a csck (extremal). The analytic part for existence of csck is to solve
a fourth-order highly non-linear elliptic equation, the scalar curvature-type equation.
This problem is regarded as a very hard problem in the field. Recently Chen and
Cheng [22-24] have solved a major conjecture that existence of csck is equivalent
to well-studied conditions such as properness of Mabuchi’s K-energy, or geodesic
stability. The first named author [49] proved the following counterpart in Sasaki setting,

Theorem 1 [49] There exists a Sasaki metric with constant scalar curvature if and only
if the K-energy is reduced proper with respect to Autg(§, J), the identity component
of automorphism group which preserves the Reeb vector field and transverse complex
structure.

The proof of Theorem 1 is an adaption of recent breakthrough of Chen—Cheng [24]
on the existence of csck in Kihler setting to Sasaki setting. Technically, the arguments
consist of two major parts: a priori estimates of non-linear PDE and pluripotential
theory. Building up on previous development of pluripotential theory, Darvas [28,29]
has developed profound theory to study the geometric structure of space of Kihler
potentials. Among others, he introduced a Finsler metric d;, and proved very effective
estimates of distance function d; in terms of well-studied energy functionals such
as Aubin’s /-functional. Darvas’s results turn out to be very useful to understand
the geometric structure of space of Kéhler potentials, in particular in the study of
csck [6,24,32]. In this paper, we extend many results in pluripotential theory on Kihler
manifolds, notably in [28,29,44] to Sasaki setting. These results play an important role
in the proof of Theorem 1. To prove these results, we need to explore the geometric
structures of Sasaki manifolds, in particular the Kéhler cone structure and transverse
Kahler structure.

Let (M, g) be acompact Riemannian manifold of dimension 2n+ 1, with a Rieman-
nian metric g. Sasaki manifolds have very rich geometric structures and have many
equivalent descriptions. A probably most straightforward formulation is as follows:
its metric cone

X:MX]R+,gX:dr2+r2g

is a Kédhler cone. Hence there exists a complex structure J on X such that (gx, J)
defines a Kéhler structure. We identify M with its natural embedding M — {r = 1} C
X. The 1-form 7 is given by n = J(r~'dr) and it defines a contact structure on M.
The vector field & := J (r9,) is a nowhere vanishing, holomorphic Killing vector field
and it is called the Reeb vector field when it is restricted on M. The integral curves of
& are geodesics, and give rise to a foliation on M, called the Reeb foliation. Then there
is a Kéhler structure on the local leaf space of the Reeb foliation, called the transverse
Kdihler structure. A standard example of a Sasaki manifold is the odd-dimensional
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round sphere S>"*!. The corresponding Kihler cone is C**1\ {0} with the flat metric
and its transverse Kihler structure descends to CIP" with the Fubini-Study metric.
We can also formulate Sasaki geometry, in particular the transverse Kihler structure
via its contact bundle D = Ker(n) C T M. The complex structure J on the cone
descends to the contact bundle via ® := J|p. The Sasaki metric can be written as
follows,
g=n®n+g’,

where g7 is the transverse Kihler metric, given by g7 := 27!1dn(® ® I). The trans-
verse Kihler form is denoted by w’ = 27!dz. We shall study the transverse Kihler
geometry of Sasaki metrics, with the Reeb vector field £ and transverse complex struc-
ture (equivalently the complex structure J on the cone) both fixed. This means that
we fix the basic Kihler class [o! ] with w! = 2_ldn and study the Sasaki structures
induced by the space of transverse Kéhler potentials,

H=1{pecCPM):wy=w"+dpdse >0},
where C3° (M) is the space of smooth basic functions. The main result in the paper is:

Theorem 2 (£,(M, &, o), dp) is a complete geodesic metric space for p € [1, 00),
which is the metric completion of (H,d,). For any u,v € £,(M, &, a)T), dp(u, v)
is realized by a unique finite-energy geodesic in £,(M, &, ') connecting u and v.
There exists a uniform constant C = C(n, p) > 1 such that

C My, v) < dp(u, v) < Cly(u, ),
where the energy functional I, is given by

Ip(u,v) = llu —vllpu+ llu—vlpo.

Moreover, we have

d, (u = ; v) < Cdy(u, v).

We refer to Sect. 3 for notions such as £,(M, &, a)T), dp. Theorem 2 is the coun-
terpart of main results in [28] in Sasaki setting. An important notion in the study of
csck is the convexity of K-energy along C L1 geodesics [3] (see also [25]), which was
generalized to Sasaki setting by [51,58]. Given the results above, one can then extend
KC-energy to &-class and keep its convexity along finite energy geodesics as in [7].
Moreover, this allows to define precisely the properness of [C-energy in terms of the
distance dj. One can then prove Theorem 1 using a priori estimates of scalar curvature-
type equation together with properness assumption, where the effective estimates of
dy in Theorem 2 play an important role; for details, see [49].

Along the way to prove Theorem 2, it is necessary to extend results as in [30,44] to
Sasaki setting. Certainly the essential ideas lie in results in Kéhler setting and many
results are rather straightforward extensions from Kahler setting; we refer to Darvas’
lecture notes [30] for an excellent reference. However, we should also emphasize thatin
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Sasaki setting, there are several substantial new difficulties when the Reeb foliation is
irregular. To overcome these difficulties, the Sasaki structure (the Kéhler cone structure
and transverse Kihler structure) plays an essential role. Lemma 3.1 is an extension of
Blocki—Kolodziej’s approximation of plurisubharmonic functions by smooth decreas-
ing sequence. For this proof we construct explicit holomorphic charts on the Kéhler
cone out of its transverse Kihler structure, see Lemma 2.1. This very explicit relation
between the holomorphic charts and foliation charts of transverse Kéhler structure
seems to appear in literature for the first time, to the authors’ knowledge. This explicit
construction of holomorphic charts builds a very straightforward relation between
plurisubharmonic functions on cone and (transverse) plurisubharmonic functions via
transverse Kihler structure. Lemmas 3.2 and 3.3 give Darvas’ volume partition for-
mula for rooftop construction. This decomposition is a very important technical result
for Darvas’ theory and the proof in Kéhler setting does not carry over for irregular
Sasaki structures. We overcome this difficulty using Type-I deformation (see Theorem
6.1, Lemmas 6.1 and 6.2). (Of course there are many other places that there are sub-
stantial new difficulties; for example, the geodesic equation solved by Guan—Zhang
is harder.) For completeness we include the details of almost all arguments, even in
the case when the proof follows rather straightforwardly from the Kihler setting. The
pluripotential theory in Sasaki setting has few references (see [51,58] for example)
and we hope that our presentation is helpful.

We organize the paper as follows. In Sect. 2 we introduce basic notations and
concepts of Sasaki geometry. We study the geometric structure of the space of trans-
verse Kahler potentials using geodesic equation and pluripotential theory in Sect. 3. In
Sect. 4 we prove the main theorem. We include a brief discussion of Sasaki-extremal
metric in Sect. 5. Appendix contains various topics in pluripotential theory, including
complex Monge—Ampere operator and various energy functionals on £; we prove
various results which are stated in [49, Section 2.2].

2 Preliminary on Sasaki Geometry
A good reference on Sasaki geometry can be found in the monograph [13] by Boyer—
Galicki. Let M be a compact differentiable manifold of dimension 2n + 1(n > 1). A
Sasaki structure on M is defined to be a Kéhler cone structure on X = M x R4, i.e.,
a Kihler metric (gx, J) on X of the form
gx =dr’ +rg,
where » > 0 is a coordinate on Ry, and g is a Riemannian metric on M. We call
(X, gx, J) the Kdhler cone of M. We also identify M with the link {r = 1} in X if

there is no ambiguity. Because of the cone structure, the Kihler form on X can be
expressed as

1 — |
wx = 5\/—1aar2 = Edd‘rz.
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Geometric Pluripotential Theory on Sasaki Manifolds 1097

We denote by 9, the homothetic vector field on the cone, which is easily seen to be a
real holomorphic vector field. A tensor o on X is said to be of homothetic degree k if

Lo o = ka.

In particular, w and g have homothetic degree two, while J and r9, has homothetic
degree zero. We define the Reeb vector field

§=J(roy).

Then £ is a holomorphic Killing field on X with homothetic degree zero. Let 1 be the
dual one-form to &:

n() =r2gx(&, ) =2d%ogr = v/—1(3 — d) logr .

We also use (&, n) to denote the restriction of them on (M, g). Then we have

e 1 is a contact form on M, and £ is a Killing vector field on M which we also call
the Reeb vector field;

e () =1,1dn()=dn(, ) =0;

e the integral curves of £ are geodesics.

The Reeb vector field & defines a foliation Fz of M by geodesics. There is a
classification of Sasaki structures according to the global property of the leaves. If all
the leaves are compact, then £ generates a circle action on M, and the Sasaki structure
is called quasiregular. In general, this action is only locally free, and we get a polarized
orbifold structure on the leaf space. If the circle action is globally free, then the Sasaki
structure is called regular, and the leaf space is a polarized Kédhler manifold. If £ has
a non-compact leaf, the Sasaki structure is called irregular.

One can also understand Sasaki structure through contact metric structure. There
is an orthogonal decomposition of the tangent bundle

TM=LE®D,

where L¢ is the trivial bundle generated by &, and D = Ker(n). The metric g and the
contact form n determine a (1, 1) tensor field ® on M by

1
8, 72) = Edﬁ(Y, ©Z2),Y,Z eT'(D)
® restricts to an almost complex structure on D:

P’ =-T+n®E.

Since both g and 7 are invariant under &, there is a well-defined Kihler structure
(gT, w", JT) on the local leaf space of the Reeb foliation. We call this a transverse
Kdihler structure. In the quasiregular case, this is the same as the Kihler structure on
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the quotient. Clearly, ” = 2~'dn. The upper script T is used to denote both the
transverse geometric quantity, and the corresponding quantity on the bundle D. For
example, we have on M

g=n®n+g’.

From the above discussion it is not hard to see that there is an intrinsic formulation of a
Sasaki structure as a compatible integrable pair (1, ®), where 7 is a contact one-form
and @ is an almost CR structure on D = Kern. Here “compatible” means first that
dn(®U, V) = dn(U, V) for any U,V € D, and dn(U, ®U) > 0 for any non-
zero U € D. Further, we require L ® = 0, where £ is the unique vector field with
n(€) = 1,and dn(&, -) = 0. ® induces a splitting

DeC=D""eD",
with D10 = DO “Integrable” means that [D*!, D%1] ¢ D%!. This is equivalent to

that the induced almost complex structure on the local leaf space of the foliation by &
is integrable. For more discussions on this, see [13, Chapter 6].

Definition 2.1 A p-form 6 on M is called basic if
10 =0,L:0 =0.

Let A’é be the bundle of basic p-forms and Qg =TI(S, A’;) the set of sections of Alé.

The exterior differential preserves basic forms. We setdp = d |9§' Thus the subal-

gebra Q p (Fg) forms a subcomplex of the de Rham complex, and its cohomology ring
H; (Fe) is called the basic cohomology ring. When (M, &, n, g) is a Sasaki structure,
there is a natural splitting of A’é ® C such that

p i,j
Ap®@C=0AY,

where Ai;j is the bundle of type (i, j) basic forms. We thus have the well-defined
operators

op - @y — QM
dp - QY — Qi
Then we have dg = dp + 5. Set d% = % —1(dp — 9p) . It is clear that

dpdy = +/—19p0p, d5 = (d$)? = 0.

We shall recall the transverse complex (Kihler) structure on local coordinates. Let U,
be an open covering of M and 7y : Uy, — V, C C" submersions such that

Ty O nlgl 17Uy NUB) — mo(Ugy N Up)
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Geometric Pluripotential Theory on Sasaki Manifolds 1099

is biholomorphic when U, N Ug is not empty. One can choose local coordinate charts
(z1,...,2n) on V4 and local coordinate charts (x, zy, ..., 2,) on U, C M such that
& = d,, where we use the notations

O =—,0 = P L
ToxT Ay T 0z 9z
The map 7y : (x,z1,...,20) — (21, ..., 2,) is then the natural projection. There is

an isomorphism, for any p € Uy,
drg : Dp = Ty (pyVa-

Hence the restriction of g on D gives an Hermitian metric gg on V,, since £ generates
isometries of g. One can verify that there is a well-defined Kéhler metric gg on each
V, and

Ty © nﬂ_l 1 (Uy NUB) = 1y (Uy N Up)

gives an isometry of Kidhler manifolds (V,, gg ). The collection of Kihler metrics { gg }
on {V,} can be used as an alternative definition of the transverse Kihler metric. The
(local) transverse holomorphic (Kihler) structure is essential for us and we shall use
these charts enormously. We summarize as follows:

Definition 2.2 (Local foliation charts) We can choose the open covering {U,} of M
such that there exists a local product structure for each «, determined by its foliation
structure and transverse complex structure. That is, there are charts

W, Uy, - W, CR xC",

where W, = (-8, 8) x V. For a point p € W, we write p = (x, z1, ..., Z) With
& =0y and V, = B,(0) C C" for 0 < r . We assume that §, r are sufficiently small
depending only on (M, &, 1, g),and w? is uniformly equivalent to an Euclidean metric
oneach V, = B, c C",

%Si.f < a)Z; < 281’]'

In Sasaki geometry, it is often mostly convenient to work with these charts when we
need to consider the Sasaki structure locally. For each U,, we assume it is contained
in the geodesic normal neighborhood of its “center,” W 1 (0,0, ...,0), by choosing
8, r small enough. We call these charts foliation charts. The existence of foliation
charts is well known in the subject, see [40]; in particular, any Sasaki metric g can
be locally expressed in terms of a real function of 2n variables. Given a foliation
chart W, = (—48,68) x Vg, for (x,z1,...,2,) € Uy, locally there exists a strictly
plurisubharmonic function % : V, — R, and the Sasaki structure reads
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1100 W. He, J. Li

=0 n=dx— V=13 (hidz — hidz)
i

o = V=Th;3dZ AdZls g = n@y+2h;;d7 @ dz. .1

If we consider a Sasaki structure induced by a transverse Kahler potential ¢, then
locally we have i — h + ¢. In particular, we have

ne =1+ V=10 — )¢, 0y = 0" +v/~103¢.

We shall also use holomorphic charts on its Kidhler cone X. There exist indeed
holomorphic charts on the Kéhler cone X which are closely related to foliation charts
on M. This seems to be much less well known and we shall describe them now.

Lemma 2.1 (Holomorphic coordinates on the Kéhler cone) For a Sasaki structure
locally generated by a plurisubharmonic function h : V,, — R in foliation charts on
M, then the following gives a local holomorphic structure on its Kihler cone X, for
w = (wg,...,wy) €Uy CCxV,,

wo =logr —h(z, ) +vV—=Ilx,w; =z,i=1,....n,2=(21,...,22). (22)

The holomorphic structure J is given by the holomorphic coordinates w =

(w()v""wn)r 8 a
J—=V-1—,i=0,...,n. 2.3)
8wi 8wl~
Proof Given (2.1), it is straightforward to check that (2.2) gives a holomorphic chart

satisfying (2.3). O

Remark 2.1 These holomorphic charts would be very useful for us later; in particular,
when we consider plurisubharmonic functions on X and transverse plurisubharmonic
functions on M. The explicit holomorphic charts given above seem to appear in liter-
ature first time to our knowledge, while the foliation charts are well known.

When the Reeb vector field £ is irregular, the local foliation charts satisfy cocycle
condition but they do not give a manifold (or orbifold) structure of the quotient M / F.
We shall recall Type-I deformation defined in [15]. Let (M, &y, no, go) be a compact
Sasaki manifold, denote its automorphism group by Aut(M, &, no, go). We fix a torus

T C Aut(M, &y, no, go) such that &y € t = Lie algebra(T).

Definition 2.3 (Type-I deformation) Let (M, &g, 1o, go) be a T-invariant Sasaki struc-
ture. For any & € t such that no(§) > 0. We define a new Sasaki structure on M
explicitly as

n= 1o
no(€)’

Note that under Type-I deformation, the essential change is the Reeb vector field
&y <> & and this construction can be done vice versa.

1
<I>=<Do—<1>o$®77,g=77®77+5d77(]1®<1>)-
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3 The Space of Transverse Kahler Potentials

In this section, we consider the space of transverse Kdhler potentials on a compact
Sasaki manifold through its transverse Kihler structure. It turns out to be necessary
to consider these objects not only from point of view of PDE, but also from the point
of view of pluripotential theory. Geometric pluripotential theory on Kihler manifolds
turns out to be one crucial piece in the proof of properness conjecture [6,24]. We
refer [30,44] and references therein for details of pluripotential theory. We extend these
results to Sasaki manifolds. These results would form a crucial piece for existence of
constant scalar curvature (cscs) on Sasaki manifolds as well, see [49] for details.

Using the transverse Kéhler structure of a Sasaki structure, many of the extensions
of pluripotential theory on Kihler manifolds to Sasaki manifolds are rather straight-
forward, and the proofs are a direct adaption of Kéhler setting with some necessary
modifications. On the other hand, there are several exceptions that would need essential
inputs from the Sasaki structure. And the proofs are new and substantially different,
compared with the Kihler setting. We summarize the main differences as follows.
The first is Lemma 3.1, where we will prove a counterpart of an approximation result
of plurisubharmonic functions as in Kéhler setting by Blocki—Kolodziej [10]. One
can apply Blocki—Kolodziej approximation locally to transverse Kéhler structure and
obtain a local approximation, but such construction has trouble to patch together when
the Sasaki structure is irregular. Instead, we need to do the construction on the Kéhler
cone, and the holomorphic chart on the cone (Lemma 2.1) plays a substantial role in
our construction. The second main difference is Lemma 3.2, where we will prove an
important property of the rooftop envelop construction P (ug, #1) on the non-contact
set; this result plays a very important role in Darvas’s theory. The proof as in Kéh-
ler setting again does not work directly to Sasaki setting when the Sasaki structure
is irregular. Instead, we need to apply a Type-I deformation carefully (Theorem 6.1,
Lemma 6.1) to bypass the difficulty.

3.1 The Quasiplurisubharmonic Functions on Sasaki Manifolds

Denote H = {¢p € CFP(M) : wyp = ol + /—=1030p¢ > 0}, the space of transverse
Kihler potentials on a Sasaki manifold (M, &, n, g). Given ¢ € H, it defines a new
Sasaki structure, (M, &, ¢, g,w) as follows,

N =1 +2d50, wp = 0" +V—1353p0, gy, = np ® Ny + v4.

The most relevant results in pluripotential theory for us lie in [44], [5, Section 2], [45]
and [30]. Part of them has been done by van Covering [58, Section 2], including the
Monge—Ampere operator and weak convergence, with main focus on L> and C°
potentials. We shall need most of the results on the energy classes £ and £, (defined
below).

Given a Sasaki structure (M, &, n, g), we recall the following definition,

Definition 3.1 An L!, upper semicontinuous (usc) function u : M — R U {—o0}
is called a transverse w” -plurisubharmonic (TPSH for short) if u is invariant under
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the Reeb flow, _and u is a)T-plurisubharmonic on each local foliation chart V,, that is
ol + /—19gdgu > 0 as a (1, 1)-current on V,,.

Itis apparent that the definition above does not depend on the choice of foliation charts.
Indeed, u is invariant along the flow of £ and we extend u trivially in the cone direction
to a function on cone. Using the holomorphic structure on the cone (see Lemma 2.1),
u is a TPSH if and only if o’ + +/=180u > 0 is a closed, positive (1,1) current on
the cone X. We use the notation,

PSH(M, &, ol)y={ue LI(M) : u is usc and invariant under the Reeb flow; w, > 0}

One of the cornerstones of Bedford—Taylor theory [2] is to associate a complex
Monge—Ampere measure to a bounded psh function. Their construction generalizes to
bounded Kihler potentials in a straightforward manner [44] and it has direct adaption
to Sasaki setting. We refer to [58, Section 2] and Sect. 1 for definition of complex
Monge—-Ampere measures w]; A7 foru € PSH(M, &, a)T) N L®° on Sasaki manifolds,
which is a direct adaption of Bedford—Taylor theory [2].

Proposition 3.1 Suppose that the sequence u; € PSH(M,&, wT) N L™ decreases
tou € PSHM,E, a)T) N L. Then for k = 1, ...,n, we have the following weak
convergences of complex Monge—Ampere measures,

oy, A @Y TEAD = A @) A, 3.1

Proof By applying a partition of unity subordinated to covering by foliation charts,
we need to show that for f € C®, supported on a foliation chart W, = (=6, §) x V,

/ fwﬁj A @D FAn > / fk A @) F A (3.2)
M M

We should emphasize that f is not a basic function in general. The weak convergence
in Kihler setting implies that for each x € (—§, §)

[z, Doy, A @) > / fx, 2, D A (@),
Ve Vo

Note that for each x, f is supported on V. Taking integration with respect to dx, this
leads to (3.2), since on W, wllj A @Dk Ay = a)ﬁ A (@D F Adxasa product
measure. O

The following Bedford—Taylor identity in Sasaki setting would be used numerously:

Proposition 3.2 Foru,v € PSH(M, &, w') N L™,
X{u>v}w:lnax(u,v) AN = X{u>v}w2 AT (3.3)
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Geometric Pluripotential Theory on Sasaki Manifolds 1103

Proof We only need to prove this in foliation charts. Recall for each foliation chart
Wy = (=8,8) x Vy, Vy = B,(0) C C" gives the local transverse complex structure.
Forapoint p € Wy, wewrite p = (x, z) withé = 9d,. Givenu € PSH(M, &, wHNL>®
it defines a Kéhler current o/, on V,,. Since both u and v are basic functions, u, v are
independent of x in W,,. Hence on W, N {u > v} = (=4, 8) x {z € Vi : u > v}. Note
that w!' A 7 is invariant along the Reeb direction, and it coincides with the product
measure dx A @) on Wy, = (=4, 8) x V. On each W,, we have

X{(X»Z)GWa5u>v}wﬁ]ax(u,v) A= X{ZGVa1u>U}wﬁlax(u,v) A dx

X{(x,z)eWa:u>v}wZ AN = X{zeVa:u>v}wZ Adx.

To prove (3.3), it reduces to show that

X{ZeVa:u>v}wfnax(u,v) = X{zeVa:u>u}a)Z-
This is just the Bedford—Taylor identity [2]. O

It is possible to generalize the Bedford—Taylor constructions to a much larger class
on a compact Kéhler manifold, see Guedj—Zeriahi [44]. The reference [30, Section
2] is sufficient for our purpose. These constructions in Kéhler setting have a direct
extension to Sasaki setting, where Proposition 3.2 plays an important role. First we
prove the following well-known result in pluripotential theory.

Proposition 3.3 There exists C = C(M, g) such that for any u € PSH(M , &, »7),

1
< d C.
SP= Voin) /M” He ¥

Proof When u is C? this is obvious by the fact that Agu + n > 0. In general, we can
prove this using sub-mean value property of plurisubharmonic functions, similar as
in [30, Lemma 3.45]. In this proof, we can either use foliation charts on M or Kihler
cone structure on X = C(M). We use foliation charts in this argument.

We assume sup,, # = 0 and want to show that the integration of u is uniformly
bounded below. We can cover M by finitely many nested foliation charts Uy C Wy C
M (1 < k < N) such that there exist diffeomorphisms ¢k : B(0, 4) x (=26, 28) — Wy
with ¢ (B(0, 1) x (=48, 8)) = Ui, where § is a fixed positive constant and B(0, 1) C
B(0,4) C C" are Euclidean balls centered at the origin in C". We assume that (z, x) €
B(0,4) x (=26, 26) such that z € B(0, 4) represents transverse holomorphic charts
and x € (—26, 28) represents the Reeb direction (i.e., £ = 9d,). On each Wy, there
exists a smooth basic function ¥ = ¥ (z) such that ! = /—19.9.y. Note that we
only need to show that, there exists a uniformly bounded constant C > 0, such that

/ udpg > —C,k € {l,...,N}.
Uk
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1104 W. He, J. Li

Note that u is basic, we have

/ uoprduy . = 28/ u o @r(z, xo)duz, xo € (=46, 98)
B(0,1)x(—38,5) B(0,1)

where du, ; and dp, are Euclidean measure on C" x R and C", respectively. Hence
we only need to show that

/ uogp(z, xo)dpu; > —C,kefl,---, N} 3.4
B(0,1)

Note that by our construction, (¥ +u) ogy is independent of x and is plurisubharmonic
on B(0, 4) for each k. As u is usc, its supremum is realized at some point p; € M
such that u < u(p;) = 0. Since Uy covers M, we can assume p; € U; with the
coordinate ¢1(z1,x1) = p1 for some (z1,x1) € B(0, 1) x (-4, §). Note that since
u is basic, hence it is independent of x-coordinate we can also take x; = 0. Since
B(z1,2) C B(0, 4), we have the following sub-mean value property for (| +u)o¢,

1
o 0) = 0 _— 0)du,.
Y1 091(21,0) = (Y1 +u) o 1(z21, )S,u(B(m,Z)) B(Zlgz)(lﬁ1+u)0§01(z, Nd i,

Since u < 0and B(0, 1) C B(zy, 2), there exists C; > 0, independent of u, such that

/ uogpidu, > —Ci. (3.5)
B(0,1)

Since {Uy}r covers M, we can assume U intersects U,;. We can choose r; > 0,
such that ¢2(B(z2,712) X (81,82)) C Uy N U, for some B(za,73) C B(0,1) and
—8 < 81 < 8 < 8. Since u < 0, it follows that there exists C’l > 0, independent of
u (@1 depends only on Cy, r2, and ¥»), such that

1

I ( + ¥2) o podpz > —C1.
w(B(z2,72)) JBz,r) :

Since (u + ) o ¢ is plurisubharmonic in B(0, 4), we can obtain that

1

m B(22,2)
1

-~_ -
— w(B(z2,12)) B(z2,12)

(u + ¥2) o podp,
(u +¥2) 0 p2dp, = =C.
Since u < 0 and B(0, 1) C B(z2, 2), we obtain for some C> > 0

/ uo@du, > —Cs.
B(0,1)
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We continue this process to consider that Uy U U intersects a member, say Usz. After
at most N — 2 step, we prove (3.4). O

As a direct consequence, we know the following (see [33, Proposition 1.5.9]):

Proposition 3.4 The set C = {u € PSH(M, £, ") : supy, u < C} is bounded in L'
and it is precompact in L' (dp ¢) topology.

Proof By the above-mentioned proposition, we know that sup,, u bounded above
implies that f 1 luldpwg is uniformly bounded. By the Motel property of subharmonic
functions and plurisubharmonic functionals [33, Propositions 1.4.21, 1.5.9], C is pre-
compact with respect to L' (du ¢) topology. Note that in Sasaki setting we apply the
compactness of plurisubharmonic functions to nested foliations charts Uy C Wy as
above for wkT -plurisubharmonic functions locally, that C is precompact in L' topol-
ogy in each Uy. After passing by subsequence if necessary, we can then get weak
compactness of C with respect to L' (dug) topology. O

Let v € PSH(M, S,a)T). For h € R, we denote v, = max{v, —h} to be the
canonical cutoffs of v. It is evident that vy, is invariant under the Reeb flow and hence
v, € PSH(M, &, a)T) N L. 1If hy < hy, then Proposition 3.2 implies that

n _ n n
X(w>—h}@y, AN = Xo>—h}@y,, NN = X{o>—hy) @y, AT
Hence x{y>—nj@}, Anisanincreasing sequence of Borel measure on M with respect

to A. This leads to the following definition:
Definition 3.2 We define

wy A= lim xps_poy,, A1 (3.6)
o0

h—

We shall emphasize that by the definition above, we have for any Borel set B C M,

/ o) A= lim X{v>—h)@y, A 1. (3.7)

B h—o00 B

Hence the convergence in (3.6) is a stronger than the weak convergence of measures.
To proceed, we need the following approximation of TPSH functions. Our proof

uses the Kéhler cone structure and builds up on Blocki—Kolodziej [10].

Lemma 3.1 Givenu € PSH(M, &, w?), there exists a decreasing sequence {uy }ren C
‘H such that uy converges to u.

Proof First we assume that u has zero Lelong number. Recall X is the Kihler cone
and we identify M with the link {r = 1} C X. For u € PSH(M, &, w’), we extend
u to be a function on X such that u(r, p) = u(p), for any r > 0. We recall that
o’ = Jdn = dd°(logr) = +/—183(logr). Hence for u € PSH(M, &, '), we have
the following,

«/—laé(logr +u)>0
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In other words, v = u 4log r is a plurisubharmonic function on X. This is transparent
in foliations charts and corresponding holomorphic charts asin Lemma 2.1. Let 4, be a
local potential for T in a foliation chart Vu,and we write h = h(wy, wq, ..., Wy, Wy)
in the holomorphic chart on cone, then logr = hy + Re(wg). Denote wy to be the
Kihler form on X. Since u has zero Lelong number, applying Blocki—Kolodziej [10,
Theorem 2], we get a sequence of smooth functions v; converges to u, decreasing in
k,suchthaton X = {27! <r <2} Cc X

V=103 () + of +kTwy > 0. (3.8)
We can assume in addition that vy is invariant under the flow of &, by taking average
with respect to the torus action generated by & € Aut(§, n, g). We define a basic
function u; on M such that, by taking » = 1, uy = vg|r=1. 5
Now for any point on X , we choose holomorphic charts U, as in Lemma 2.1 to
cover X . We write the function in a holomorphic chart as
v = vr(Re(wo), x, wi, Wi ..., Wy, Wy).
We recall the relation between the holomorphic charts and the foliation charts,

wo = log(r) + v —1x —hy(z,2),w; =zi,i =1,...,n. 3.9)

Note we assume that vy is invariant under the flow of &, hence vy is independent of
x = Im(wq). We write v as follows, using (3.9),

Uk(Re(w()), wlv U_)l, AR ] wnv II))’!) = Uk(logr - h(Z, Z)v Zs Z)

Locally, this gives

ui(z,7) = vp(—hy(z,2), 2, 2)- (3.10)
The tangent space T, X is given by, in terms of coordinate (7, x, z1, .. ., Zn),
0 0 0 0 - 0 0
T,X®C = — ' = Xi=— 4+ V-1 — Xj=— —V—1h;—1.
A Span{ar A T P Tax” T bz, fax}

Note that the contact bundle D, = span{X;, X;,i =1,...,n}.Forpe M C X, we
can assume that h(z,z) = oh = 0h =0, hij = 5ij at p, and hence

X =T, M| A A
— — ¢ =Spany —, —,T PR R
P P or P 0z; 0z dx OJr

By (3.8), we compute (at p),

= 0 0

(V —190v; + CDT + k_lwx> (a_, —/ —18—_) = —0vx + 1 +k_l + (vk)i; >0,
Zi Zi

(3.11)
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where ¢ stands for the first argument of vg. This is equivalent to the following, on M
we have,

V—=10gdgur + (1 +k Heo! > 0.

It is clear that u; converges to u, deceasing in k. Without loss of generality, we can
assume that u < —1 and u; < 0. It follows that k(k + 2)_luk € H such that
k(k 4+ 2)~'u; converges to u, decreasing in k. This completes the proof when u has
zero Lelong number.

Now suppose u € PSH(M, &, wT). We consider the canonical cutoffs u; =
max{u, —j} € PSH(M, &, ') N L>™. By the above statements, we know that for
each j, there exists a sequence of smooth functions {vlj‘- }x C H which decreases to u ;.

By adding a small constant k! to each v¥, we can assume that {vlj‘. }i strictly decreases
(for each j). Then for each k, we can find k4 such that

k.
vj’_:ll < v];. (3.12)

Indeed we consider the open set U ={xeM: v§.+1 < v]]‘.}. Clearly {U'}; is an

increasing sequence of open sets such that U;U' = M, since

. 1 k
ll_l)rglovﬁ] Ujpl Suj < V).

Since M is compact, there exists k11 such that U*i+1 = M. By (3.12), we can find a
sequence {v,;j }; C 'H inductively such that v];.j N\ #. This completes the proof. O

Remark 3.1 The Kihler cone structure, in particular, the relation between holomorphic
charts and foliation charts as in Lemma 2.1, plays a very important role in Sasaki
setting. If the Reeb vector field is irregular, the approximation from transverse Kéihler
structure can produce local approximation. But it seems to be hard to patch such
a local construction together when the Reeb vector field is irregular. Instead we do
approximation on the Kéhler cone. We shall mention that in (3.12), the assumption
that each sequence {vj?}k strictly decreases is necessary. For example, we can take
u = 1over[0, 1], v =0over [0, 1) and v(1) = 1. We can choose u; = 1 for each k,
and vg (x) = x¥4+k~!. Thenv < u and {ur}r decreases to u and vy (strictly) decreases
to v. But for {u}r and {vg}r, (3.12) does not hold: given uy, there does not exist [
such that v; < uy since v;(1) > 1 for all /.

As a direct consequence, we have the following (just as in Kéhler setting, see [30,
Lemma 2.2)),

Proposition 3.5 Foru € PSH(M, &, w’) N L™,

Vol(M) :=/ Wy A1 =/ ol AT (3.13)
M M
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Proof By Lemma 3.1, we can choose a smooth sequence u; converges to u as a
decreasing sequence. It then follows from Bedford-Taylor theory (see Proposition
3.1) that a);jk A 1 converges to o, A n weakly, we obtain (3.13). O

It is then clear that, given (3.6), we have only f I, o) An < Vol(M) forv €
PSH(M, &, »7).

Definition 3.3 We define the full-mass elements in PSH(M, &, a)T) as
EM,E, 07) :={vePSHM, & o) : / o A = Vol(M)} (3.14)
M

As in Kihler case, many of the properties that hold for bounded TPSH functions
hold for elements of (M, &, w” ) as well. We include the comparison principle, mono-
tonicity property, and generalized Bedford—Taylor identity as follows. These properties
are proved in [44] for Kihler setting. Given (3.3) and (3.13), our proof follows almost
identical as in Kihler setting (see [44, Theorem 1.5, Proposition 1.6, Corollary 1.7]).
Nevertheless, we include the details.

Proposition 3.6 (Comparison principle) Suppose u,v € E(M, &, w"). Then

/ wh Ap < / & A . (3.135)
{v<u} {v<u}

Proof Our proof is similar to Kihler case, see [30, Proposition 2.3]. First we show
(3.15) for u, v bounded. Using Propositions 3.2 and 3.5, we write

/ (’Uﬁ AT :/ (");Lnax{u,v} AN = / wﬁlax{u,v} A= / a)ﬁlax{u,v} AT
{v<u} {v<u} M {u<v}

< Vol(M) — / a)ﬁlax{uﬁv} AT

{u<v

:/ AN —/ W) AT
M {u<v}
=/ ol A .

{v<u}

Replacing v by v + €, we have

/ Wy An < / o AT
{v+e<u} {v+e<u}

Recall that
{v<u}=Uecofv+e <u} =Ucofv+e€ <uj.
Hence (3.15) for bounded potentials follows immediately by letting € — 0.
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In general, let u; = max{u, —I/}, vy = max{v, —k},/,k € N be the canonical
cutoffs of u, v respectively. We apply (3.15) for bounded potentials to get

/ w;’k/\nﬁf Wy, A1
(v <uy) {or<ug}

Together with the inclusions {v; < u} C {v; < ur} C {v < ux}, we have

/ Wy A= / wy, A 1. (3.16)
{v<u} {v<ur}

Letting [ — o0, using the definition (3.6) on a)ﬁ[ Anand {v < u} = Uien{v; < u},
(3.16) gives

/ Wy AN = / W AT
{v<u} {v<up}

Letting k — o0, using the definition (3.6) on a)ﬁk Anand {v < u} = Ngenf{v < ur},

we get
f Wy A < / ) A1)
{v<u) {v=<u}

The replacing v by v + € in the above inequality, we can then argue as in the bounded
case, taking the limit € — 0 yields (3.15). O

Proposition 3.7 (Monotonicity property) Suppose u € E(M,&, w') and v €
PSH(M, &, w"). Ifu < v, thenv € EM, &, 7).

Proof This is proved in [44, Proposition 1.6] in Kéhler case and the Sasaki case is
almost identical. First we show that v = v/2 € £(M, &, w!). We can assume that
u < v < —2, hence ¥ < —1. This normalization gives the following inclusions for
the canonical cutoffs u;, v, ¥,

W=-jt={;=—Jjl C{uzj <¥j —Jj+ 1} Cluzj = —j}.

By Proposition 3.15 and the inclusions above, we have

U

w"./\nS/ w".AUS/ w, AN
/{szj} Vi gy <yj—j+1y faj<yj—j+1)

n
< / W, AT
{uzj<—j}

Note that we have

/ wy,, A1 = Vol(M) — / @)y A)-
{uzj<—j} {uzj>—j}

@ Springer



1110 W. He, J. Li

Applying Proposition 3.2 tomax{uz;, —j} = uj ontheset{uz; > —j} = {u; > —j},

we have
/ wgzl_/\nzf CUZ/-/\W-
{u2j>—j} ’ {uj>—jt -

It then follows that

/ .wﬁzj/\n:/ ‘wﬁj/\n:/ W, A
{uzj=—j} {uj=—j} {u=—j}

By definition of u € (M, &, w"), it follows that, as j — oo,

/ a)’,},j/\nff a)Zi/\n—>0.
{Yj=<—J} fu=—j} -~

Hence = v/2 € E(M, &, w"). To show that v € E(M, &, ), we observe that
{v=-2j}={y < —jland wy; > wy,;/2, hence

a)"_/\77§2"/ a)",/\n§2”/ o A
/{v<—2j} 2 we—2jy Wiy U

By letting j — o0, we can then conclude that v € £(M, &, a)T). |

Proposition 3.8 (Generalized Bedford-Taylor identity) For u € E(M, &, w7), v €
PSH(M, &, wT), then max{u, v} € EM, &, o’ and

X{u>v}wﬁ]ax(u,v) AN = X{u>v}wx A 1. (3.17)

Proof Our argument is identical to the Kéhler setting; see [44, Corollary 1.7] and [30,
Lemma 2.5]. Proposition 3.7 implies that w := max{u, v} € (M, &, o). Now
observe that max{u;, vy} = max{u, v, —j} = w;. Since the cutoffs are bounded
we have

X{uj>vj+1}wz;j AN = X{Ltj>vj+1}a);lj AT (3.18)
By 3.7, we know that (> )@}, ATl = X(u>v) @y AN and X(usv) @y, AN = Xjusv) @A
n as j — oo (we also use the fact that u, w € E(M, &, »!)). Since

{u>v}C{u; >vjri}and {u; > vj}\{u > v} C {u < —j},
it follows that
0 = Otfuj>vjs1) = Xu>v)@y; AN = Xus—jjwy; A —> 0.
Similarly since
{uj >vjpi\{u > v} C{w =< -}
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we also obtain that
0< (X{uj>v_,'+|} - X{u>v})wZ;j AN = X{wf—j}wﬁj An— 0.

By taking limit in (3.18) together with the limit facts above, we get the desired
result. O

Next we introduce finite-energy class on Sasaki manifolds, following [44]. By
considering Young weights x € W;“ (see [30, Chapter 1] for a short introduction to

Young weights), one can introduce various finite-energy subclasses of £(M, &, ol),
ExM. & o) :={uecEM, & o) : Ex) < oo},

where E, is the x-energy defined by

E,(u):= /M Xl An.

Of special importance are the weights x”(r) = |¢|”/p and the associated classes
Ep(M, &, ). For theses weights it is clear that £,(M, &, 0T) C £(M, &, »7) for
p > 1. We will need the following straightforward fact:

Proposition 3.9 Foranyu € £ (M, &, o™, u has Lelong number zero at every point.

Proof For similar results in Kihler case, see [44, Corollary 1.8]. This is straightfor-
ward. We can assume supu = 0. Foru € £1(M, &, a)T), we have

/ (—w)w) A < oo.
M

We consider locally (0, 0) € W, = (-6, ) x V, in a foliation chart. Then we have

28/ (—wwj, < / (—w)wj, An < oo.
Ve M

This implies that u has Lelong number zero at (0, 0). O

The following result implies that to test membership in £, (M, &, oT) it is enough
to test the finiteness condition E, (1) < oo on canonical cutoffs.

Proposition 3.10 Suppose u € E(M, &, o) with canonical cutoffs {ui}xen. If b :
R4+ — Ry is continuous and increasing, then

/ h(lu))w; An < 00 < lim sup/ h(lukl)wy, A1 < oo,
M k—oo JM

Moreover, if the above condition holds, then
/ h(lu)w); An = lim / h(lukl)wy, A n.
M k—oo J
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Proof Our proof is similar to the Kihler case, see [30, Proposition 2.6]. Without loss
of generality we can assume that u < 0. If lim sup;_, fM h(lugwy, A1 < oo, we
obtain that the sequence of Radon measures & (|uy |)w{jk A1 is weakly compact. Hence
there exists a subsequence h(|ug,[)w;,, A n converging weakly to a Radon measure
. Recall that 2(Jug;|) is an increasing sequence of lower semicontinuous functions
converging to h(Ju|) and @y, A7 4 w); A 1, this yields that h(Ju|)w)} A1 < @ as
J
measure. In particular [, o} An < u(M) < oco.
Now assume [, h(ju)w); An < oo. If lim;_, 4o h(1) = 400, we have

lim h(lu)w, Anp = lim h(lul)w,; An=0.
k=00 J{u<—k) I=+00 Jin(juy>1)

It follows from Propositions 3.5, 3.8 and Definition 3.3 that

/ W, AN = f W)y A 1.
{u<—k} {u<—k}

Then by Propositions 3.5, 3.8 and Definition 3.3 again we have

V ey, An= [ hunef, nn
M M

sf h(k)ka/\n+/ h(luloft A
{u<—k} {u<—k}

— hk) w;An+/ h(uDeft A
{u<—k} {u<—k}

< 2/ h(lule A n.
{u<—k}

It follows that [, h(|uk|)w];, Anisboundedand [y, h(lu)w)jAn = limg oo [}, h(Jur])
wy, A1

Iflim,_, 4o h(t) = L < 00, it follows from Proposition 3.5 that fM h(ug)wy, An
is bounded. Moreover for any € > 0O there exists N > O suchthat0 < L — h(t) < €
for all t > N. By Propositions 3.5, 3.8 and Definition 3.3 we have

’/ h(lukoy,, A n —/ h(ju))wl A '7‘
M M

= '/ (L — h(luk ey, A — / (L = h(lul)wy, A 77‘
M M

sf (L — e, /\n+/ (L — h(uD)of! A
{u<—k} {u<—k}

< 2eVol(M)
for k > N.Ttyields that [}, h(Ju)w) A1 =limgoo [, h(lukDe, An. m|
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With the proposition above, we can then prove the so-called fundamental estimate.

Proposition 3.11 (Fundamental estimate) Suppose x € W; andu,v e &, (M, &, o)
such thatu < v < 0. Then

E,() < (p+ 1)"Ey(u). (3.19)

Proof The proof is similar to the Kéhler case, see [44, Lemma 3.5]. First of all we
assume that u, v € PSH(M, &, oT) N L™. For0 < j < n — 1, we have

/X(u)a)frl/\a);’_j_l/\nzf x W’ /\w’Aa)" J= lAn
M M
/ N~ X(u)agagv/\wj/\a)n = 1/\77.
Recall that x'(I) < 0 for/ < 0. Using integration by parts, we have
/X(u)a) /\a)’/\wn = 1An=/ x(u)/\a)i/\w',j_jAn
M M
/ N X(u)agagu/\a)f/\wn J= 1/\17
:/ X(u)/\a)]/\a)” j/\n
M
/«/ X(u)agu/\agu/\a)f/\a)n] 1/\77
5/ X(u)Aw{;AwZ_jAn.
M

Recall that x'(I) < 0 forl < O and lx'(l) < px(l) for [ > 0. Using the integration
by parts repeatedly, we have

/J_X(u)aBaBquf N AN
:/ \/—_lvx (u)dpu A dgu /\a){,‘/\wzfjfl/\n
/\/_vx (M)BBE)BM/\a)JAa)n = lAn
/ \/_v)( (u)agagu/\a)//\w” J= 1/\n
5/ vx Wl Awy ! /\n—/ Wl (uhwi Awy™ An

/ lulx (|u|>wawZ"An5pf x(uDwl Aoyl An.
M
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Combine the inequalities above we obtain
/ x@aol™ Aoy An = (p+ D / x@aol Aoy A,
M M

It follows that
E,(v) < / xawy An < (p+ D"E,(u).
M

In the general case u,v € &, (M, &, '), we have Ey(v) < (p+ D"E,(uy) for
the canonical cutoffs uy, vg of u, v. It follows from Proposition 3.10 that E, (v) <
(p+ D"Ey(u). o

As a direct consequence, we obtain the monotonicity property for £, (M, &, wl).

Proposition 3.12 Supposeu € £, (M, &, o) andv € PSH(M, &, »?). Ifu <, then
veE (M, E o).

Proof Without loss of generality we can assume that u < v < 0. The monotonicity
property implies that v € £(M, &, w”). We have u < vy for the canonical cutoffs vy
of v, then E, (vr) < (p+1)"E, (1) according to the Proposition 3.11. It follows from
Proposition 3.10 that £, (v) < (p + D)"E, (u) and v € &, (M, &, wl). O

We also have the following,

Proposition 3.13 Suppose u,v € £, (M, &, ol for x € W['," Ifu,v <0, then

/Mx(u)w’,f AN < p2P(Ey(u) + Ey (v)).

Proof For similar result is Kéhler case, see [44, Proposition 3.6]. For § > 0, we have
x(@®) = x@) +68|t| € W;. Assume that ¢ > 0, it is obvious x(¢), x'(z) > 0. Recall
that e” x () < x(et) and tx'(t) < px(¢t) for x € 1/\/1',Ir and 0 < € < 1, hence we have
X (2t) <273 (¢). It follows from the convexity of the function x () that @ < x' ().

Then _ _ _
_lagenxen x@ _
2 xQ2t)y x@® t

Then 8§ — 0 implies that x'(2) < p2P~!y/(¢) fort > 0.
By Proposition 3.6 and {|u| > 2t} C {u < v — 1t} U {v < —t}, we have

%' (21) P27 (o).

o0
/x(u)w;’An=f X (O A nilul > 1)dr
M 0
[o/0]
< p2r f X Ol Al > 21)de
0

o0
< p2? (/0 x' (D) An{u < v —t}de
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+/‘°° x' (Do) An{v < —t}dt)

0

< p2” (/00 x' (Dol Anfu <v—r1}dt + E, (v))
0

< p2? </(‘)<>0 x' (D) An{u < —t}dt + E, (v)>
= p2P(Ey(u) + Ex (v)).
O

Proposition 3.14 Supposeu € £, (M, &, ol), x € WI‘,". Then there exists ¥ € W2+p+l
such that x (t) < x (1), x@)/x@®) — Oast — occandu € E(M, &, wh).

Proof This construction borrows from similar results in Kihler case, see [30, Lemma
2.10]. Take xo = x, recall that tlim xo(t) =ococandu € £, (M, &, w’), we have
—00

lim x(lu)wl An = lim x(luw; An=0.
790 J{jul>1) S0 wy>s)

Then one can choose #; > 0 such that f{|u|>t|} x(uDwl An < 21—2 We define x; :
R*T — RT by the formula:

x0(?) if t<n
x1(t) = .
x0(t1) +2(xo(®) — xo(t1)) if > 1.

Then it is easy to verify that

(M) xo(®) < x1(8);
. x1( _ .
(2) 11rnt—)oo m — 4 1
3) Em(“) =< EXO(“) + 25
ltx; ()] 20t (1)l
(@) sup-o Tuar = SUP Tomr < 2
1 ()

(5) lim; o 0@ =p

p+1;

These properties imply that for #, > #; big enough, the function x, : RT — R*

) = x1(1) if t<n
K= ) 42000 — i) i 1> 10

satisfies

(D x1(2) < x2(2)3
- x2@ _ A
(2) lim;— 00 o — 2;

(3) Ex,(u) < Eyy () + 55
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ltx5 (0]
(4) sup,o oy <2P+ 1

. 1X5(1)
(5) lim;— o0 ﬁ <p

Continuing the above construction we can obtain an increasing sequence { xx }x and the
limit weight y () = limg_  xx(¢) Will satisfy the requirements of the proposition. O

Proposition 3.15 Assume that {k }reN, {@kkeN, {Vilken C €4 (M, &, ') decrease
(increase a. e) to ¢, Y, v € £, (M, &, wT), respectively. Suppose

(1) ¥k < ¢k and Yy < vy.
(2) h: R — Ris continuous with lim supy;_, o |h(D)|/x (1) < C for some C = 0.

Then we have the weak convergence of

h(gx — Yy, A — h(p — Pl An.

Proof For similar results in Kihler case, see [30, Proposition 2.11]. Without loss of
generality one can assume all the functions ¢y, ¢, ¥k, ¥, v, v are negative. We will
only prove the proposition for decreasing sequences, the case of increasing sequences
can be proved similarly.

First of all we suppose that the functions involved are uniformly bounded below,
that is, there exists L > 1 such that —L < ¢, ¢, ¥k, ¥, v, v < 0. Given € > 0,
it follows from Theorem 6.3 that there exists an open subset O, C M such that
cap(0O¢) < € and ¢k, ¢, Vi, ¥, vk, v are continuous on M — O,. Then ¢ — ¢ and
Yx — ¥ uniformly on M — O,. Hence there exists N such that for k > N we have
|h(px — Yk) — h(p — )| < e on M — O, and the term

/h(¢k—1/fk)wﬁk/\n—/ h(¢ — )y, An
M M

=(/ +f )[h(«pk—wk)—h(qs—w)]wﬁkm
e M—0Oc

is bounded by 2¢ L" ‘Illlla)Li |h(l)| + € Vol(M). Hence
=

/ h(gx — Yy, A — / h(¢ — )y, A — 0. (3.20)
M M

Given € > 0, it follows from Theorem 6.3 that there exists an open subset O such
that cap(O,) < € and ¢, ¥ are continuous on M — O,. By the Tietze’s extension
theorem, the function 2 (¢ — V)|, _ 6, can be extended to a continuous function « on
M bounded by Irllllg.z |h(1)|. By Proposition 3.1 we have wy, An — wy An weakly. Then

there exists a constant N such that fork > N we have | fM awy An— fM awiAn| < €
and the term

/h<¢>—w)w:§km—/ hg — )l An
M M
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=/0(h(aﬁ—w)—a)wﬁkAn—/()(h(¢—tﬁ)—a)w2’/\n

+ </Maa)'$k/\n—/Maa)ﬁAn)

is bounded by 4€ L" maxy; <z, |h(I)| + €. Hence

/ h(¢p — l/f)a)ﬁk AN — / h(p — y)wly A — 0. (3.2
M M

It follows from (3.20) and (3.21) that h(¢x — Yi)wy, AN —> h(P — Y)wy A .

Now consider the general case when ¢, @, Vi, ¥, vr, v are unbounded. Let
qb,lc, ¢Z , 1/f,l(, I//l , v,lc, v! be the canonical cutoffs of the corresponding potentials, then
we only have to show that

f h(x — Yrws, An — / h(¢, — Y@ An—0 (3.22)
M M k
and
f h(¢ — Y An —/ h(@' — el A — 0 (3.23)
M M

as [ — oo uniformly with respect to k.

By Proposition 3.14 there exists ¥ € W5 ., such that x < ¥, lim L0 — (0 and

2p+1 =00 X()

Yoe &y (M, E, »T). Then Vi, P, @, vk, v € E7 (M, €, »’) according to Proposition
3.12.

Recall that there exists L > 0 such that x (L) > 1 and |h(z)| < (C + 1)x (¢) for
max |h(l)|

7| > L. Take C = max{C + 1, %}, then we have

Ih(ly — )| < Cx(lh)

forl, < —L and [, <I; < 0. Using Propositions 3.8, 3.11, and 3.13, we have

‘f h(¢k—wk>wﬁkAn—f h(@i—x/qi)a);',m‘
M M k

= V h($r — Yoy, A1 —/ h(gl — w,i)w’z, AT
(Ye=—1} (Ye=—1} k
= / |h(dr — Y lwy, An +/ Ih(¢f — W/i)lez AN
{ve=<-1} {Ye<—1} k
c (/ X (W), An+ / x(w,i)w’;, A n)
{Yie=—1} {Y=—1} k

x(s) ~ n ~ I\
sup — X W, An+ XWw , A
s=—1 X () \Jgyr=—1) W=—1) %k
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<Cs pX()</ x(wk>wﬁkAn+f )?(llf;i)w”wn>
s< IX( ) M Uk
< @2p + 1D2°PFIC sup )EE ;(E (W) + Ez(w) + E; (wk)+E (wh)
s<—1 X

<4Qp+ 1)Q2p +2)"22P T CE; () sup XE ;
s<—1 X

for [ > L and the statement (3.22) follows. We also have

‘/ h<¢—w>wg’An—/ h(g! — ol A
M M

= ‘/ h(«»—w)w:}m—/ h(¢' = yal, A
{v=-1} {y=-1}

s/ |h<¢—w>|w3m+/ (¢! — whHle, A
{yv=-1} {y=-1}

<C (/ X (W) /\77+f x(WHe!, An)

{(y=-1} {¥=<-1}
sup X&) ( / FO A+ / oy An)
s<—1 X(8) \Jp<-1) (y=<-1)

X(S) ~ n =~ 1 n
= Csup — xWwy A+ [ xWHo, An
s<—1 X(8) \Jm M

< @2p + D2°PFIC sup ﬁ(E W) + E;(v) + E; (¥ + E; (v))

s<—1 X ()
x(s)

<4Q2p+1)2p +2)"2*P T CE; (¢) sup 6
s<— -1 X

IA
(@}

(@Y

for/ > L and the statement (3.23) follows. This completes the proof. O
Proposition 3.16 Suppose x € W; and {uplken C &y (M, &, ") is a decreas-

ing sequence converging to u € PSH(M,&, o!). If sup, Ey(ug) < oo, then
ue&(M,E wl)and

Ey(u) = klin;o Ey (ug).

Proof For similar results in Kihler case, see [44, Proposition 5.6]. Without loss of
generality, we assume that 1 < 0. The canonical cutoffs ui = max{uy, —I} decreases
to the canonical cutoff u! = max{u, —1}. As —I < ul < ui < 0, Propositions 3.15
and 3.11 imply that

Ey(u) = lim EyG) < (p+ 1" sup Ey (e).
k
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By Proposition 3.10, u € &, (M, &, oT). Applying the previous proposition in the
case Yx = vk = uy, ¢x = 0 gives that E, (u) = limy_ 0 Ey (ug). O

A very important notion in pluripotential theory is the envelop construction, which
we shall describe below. In our setting on a compact Sasaki manifold, given a usc
function f € M — [—o00, 00) such that f is invariant under the Reeb flow, we
consider the envelop

P(f) :=sup{u € PSH(M, &, wT) such that u < f}. (3.24)
As in Kihler setting, we have the following

Proposition 3.17 The envelop construction P(f) € PSHM, &, w").

Proof This statement is local in nature, hence we only need to argue in foliations
charts W, = (—38,8) x V,, where V,, C C" give a transverse holomorphic charts.
Since P(f) is invariant under the Reeb flow, its usc regularization P (f)* is invariant
under the Reeb flow. Hence by P(f)* is a)g -psh on each V,, see [12, Theorem 1.2.3
(viii)]. Since f is usc, hence P(f)* < f* = f. Hence P(f)* is a candidate in the
definition of P(f), gives that P(f)* < P(f). This implies that P(f) = P(f)* and
P(f) e PSHM, &, w"). o

We also introduce the notion rooftop envelop, for usc functions fi, ..., f, which
are invariant under the Reeb flow,

P(fi, ..., fu) = P(min{f1, ..., fu}).

We have the following,

Theorem 3.1 Given f € C{ (M), then we have the following estimate
IP(Nlleri < CM, 0", g, [ fllcri)-
Moreover, ifuy, ..., ur € Ha, where we use the notation
Ha = {u € PSHM, &, 0") : ull -1 < 00}

then P(uy, ...,ur) € Ha.

We shall prove Theorem 3.1 in Appendix. The following result (for similar result
in Kéhler case, see [2, Corollary 9.2]) would be very essential for the rooftop envelop
P(ug, uy):

Lemma3.2 Forug,u; € Ha, then
w'}')(uo’ul) An=0 (3.25)

on the non-contact set I' = {P(ug, u1) < min(ug, up)}.
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1120 W. He, J. Li

Proof First we assume £ is regular or quasiregular, then the proof follows similarly
as in Kihler setting. We sketch the proof briefly. We consider the quotient Kihler
manifold (orbifold) (Z = M /F:, wz) such that ol = t*wy, wherew : M — Z
is the natural quotient map. Since ug, u1, and P(ug, u1) are all basic functions, and
they descend to Z to define the functions on Z, which we still denote as uq, u1, and
P (ug, u1). We only need to show that (wz + ~/—139 P(ug, u1))" =0on Tz :={z €
Z : P(ug,u1) < min(ug, u1)}. Note that 'y = 7 (I"). This simply follows from [2,
Corollary 9.2].

Now we deal with the case when £ is irregular. We need to use a Type-I deformation
to approximate (M, &,n, g, @), as in Theorem 6.1. Denote T* to be the torus in
Aut(€, n, g) with the Lie algebra t. Take p; € t such that p; — 0 (convergence
is smooth with respect to a fixed metric g). We can take p; such that & = & + p;
is quasiregular. Consider the Type-I deformation (M, &;, n;, gi, ®;) as in Definition
2.3. Given ug, u; € Ha and we know that P(ug, u1) € Ha (see Theorem 3.1), by
Lemma 6.1, there exists €, — 0 such that (1 —€;)ug, (1 —€;)uy, (1 —¢€;)P(ug, u1) €
PSH(M, &, »!). Define

P = Pi((1—€)ug, (1—€;)uy) = sup{v € PSH(M, &, o] ), v < (1—€)uo, (1—€;)ur}.

(3.26)
Since (1 —¢;) P(ug, u1) € PSH(M, &;, a)l.T) and (1 —¢€;)P(ug, u1) < (1 —¢)ug, (1 —
€i)ut, hence (1 — €;) P(ug, u;) < P;. On the other hand, we apply Lemma 6.1 and
we know there exists &; — 0, such that (1 — &;) P; € PSH(M, &, w"). It follows that

(1—&)P; < P(ug.up) < Pi(1—€)".
By Theorem 3.1, we know that |[d®d P;| is uniformly bounded and hence P; —
P(ug, 1) in cle For any compact subset K C I' = {P(ug, u1) < min(ug, u1)}, we

can choose i sufficiently large, such that P; < min{(1 — €;)ug, (1 — €;)u;}. Since &;
is quasiregular, by (3.26), we can then get that

l n
<a)iT + EchidPi) Ani =0, on K.
Taking i — oo, by Lemma 6.2, we get that
1 n
(a)T + 5d®d P (o, u1)> An=0, onK.

This completes the proof. O
As a consequence, we get a volume partition formula for o' (wouuy) N 1138 follows:

Lemma3.3 For ug,u; € Ha, denote Ay, = {P(uo,u1) = uo} and Ay, =
{P(ug, u1) = ur}. Then we have the following

w’;’(uo,m) AN = XAan)ZO AN+ XAul\Auole AT, (3.27)
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Proof The proof is similar to the Kihler case, see [29, Proposition 2.2]. The previous
lemma implies that the measure w’, o) N1 is supported on the set Ay, U A, . It
follows from Theorem 3.1 that P (uq, 1) has bounded Laplacian, hence all second
partial derivatives of P(ug,u;) are in LP (M) for all p > 1. Then all the second-
order partial derivatives of P(uq,u1) and uo coincide on A,, almost everywhere,
all the second-order partial derivatives of P(ug, 11) and u; coincide on A, almost
everywhere. Recall the definition of Monge—Ampere operators on psh functions belong
to W2" we can write:

n _ n n
OPug,ur) N = Xy @Pug N1 + XAy \ Ay @y N 1-
O

Lemma 3.4 Suppose x € W; and ug,u; € EX(M,E,a)T). Then P(ug,u1) €
E,(M,E, a)T). Ifug, uy <0, then the following estimates hold

Ey(P(ug,u1)) < (p+ D"(Ey(uo) + Ey(u1)). (3.28)

Proof The proof is similar to the Kihler case, see [29, Lemma 3.4]. Without loss of
generality we can assume ug, #1 < 0. It follows from Lemma 3.1 that there exist
negative transverse Kihler potentials ug u]f € 'H deceasing to ug, 1] respectively. By
Theorem 3.1, the rooftop envelopes P(u](‘), ull‘) € H decreases to P (ug, u1). And we
have the following inequality by Lemma 3.3:

n < n n
Dp b aky N = Khug@ug N1 T Xy @y A1

Then

E (P (ug, u})) = /M X (P (g, i) i A

= / X(ulé)ka AT +/ x(u]f)w;’k AN
P(Mé’ulf)=ul(§ 0 P(ué,u’f):u]l‘ 1

< Ey(uf) + Ey (u})

< (p+ D"(Ey(uo) + Ey (uy)).

By Proposition 3.16 we have P ((ug, u1)) € £,(M, &, w’) and the required inequality
holds. O

As a corollary we know that £, (M, &, a)T) is convex.

Corollary 3.1 Ifug, u1 € £, (M, &, ol), then tug+ (1 —t)u; € Ex(M,E, a)T)forany
t €0, 1].

Proof By the previous lemma we have P(ug,u1) € &£,(M,§, »T). Notice that
P(ug,u1) < tup + (1 — t)u; for t € [0, 1], then the monotonicity property of
Ey(M, &, o) implies that tug + (1 — Huy € (M, £, ). u]
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To finish this subsection, we establish a domination principle which will be needed
later.

Lemma 3.5 Let U C M be a Borel set with (wT)* An(U) > Oandu € £ (M, &, »7).
Then there exists ¢ € E1(M, &, ol with ¢ <uand wZ AnU) > 0.

Proof The proof is similar to the Kihler case, see [30, Lemma 2.22]. Without loss
of generality we can assume that # < 0. Then we can choose a sequence u; € H
decreasing to u with uxy < 0. For a constant T > 0, we have {P(u; + 7,0) =
up + t} C {ux < —t}. It follows from Proposition 3.3 that

ug
Opupre0) NN S Kup=—a)@, A+ @) Ap < —7ka A+ @) A,

The sequence P (u;+1,0) € £1(M, &, o’ ) decreasesto P(u+1,0) € £(M, &, w").
It follows from Proposition 3.15 that

u
iy N1 = =@ A+ @) An.
Hence we have

n _ l n T\n _
wP(uH,O)/\n(M U) < . lu|lw, An+ ()" An(M —U)
-U

IA

1
?/ lulwl A+ (D" An(M = U).
M

It follows from a)r}l’(u+r,0) AN(M) = (@) A n(M) = Vol(M) that

1
ey NI = @ An@) =+ [ lulof n
M

and a)';)(u_mo) An(U) > 0 for T big enough. Then ¢ = P(u + 7, 0) — 7 satisfies the
requirements. O

Lemma 3.6 (The domination principle) If u,v € £1(M, &, wT) and u < v almost
everywhere with respect to the measure w); A 1. Then u < v.

Proof The proof is similar to the Kihler case, see [30, Proposition 2.21]. We only have
to prove u < v almost everywhere with respect to (w’ )" A n for u, v < 0.

Suppose that (w”)" An({u > v}) > 0. The previous lemma implies that there exists
¢ € &E1(M,E, w") with ¢ < u and w('/’) A n({u > v}) > 0. It follows from Corollary

3.1thattg + (1 —tu € E(M, &, ") for t € [0, 1]. Using the fact O AT

t”w$ A 1, the Comparison principle (3.15) and {v < t¢p + (1 — t)u} C {v < u}, we
have

t”/ w”/\nf/ OF oy A
{v<to+(1—t)u} ¢ {v<top+(1—t)u} to+(d=tu
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[N
{v<tp+(1— t)u}

W) AT
{v<u}

=0

IA

IA

and wg An({v <te+ (1 —1t)u}) =0fort € (0, 1]. Then

1 1
wy An({v <u})=kli>n;ow(';)/\n<{v < E<p+(1—z)u}> =0.

This leads to a contradiction. O

3.2 The Space of Transverse Kahler Potentials and (7, d>)

The Riemannian structure on H has been studied extensively, notably by Guan-
Zhang [42]. Guan-Zhang proved that for any two points ¢, ¢ € H, there exists

a unique Cg’l geodesic which realizes the distance of (H, d>) and (H, d») is a metric
space. The Riemannian structure would play a very central role, as in Chen’s result [20]
in Kihler setting.

We shall recall these results. For 1, ¥ € TyH = CF (M), define a L? inner
product on this tangent space

(W1, ¥2)p = /M Y1vadig

and the length [[v]|4 of a vector ¢ € Ty'H is

1

1¥]l2.p = (/Mwlwzdw)z,

where we use the notation
dpg = a)g Ay = w(’;, A (3.29)
For a smooth path ¢; € H, the length of the path is defined to be

1
l(¢r) = /O | e |12,4,dt.

This is a direct adaption of Mabuchi’s metric [53] on the space of Kéhler potentials
to Sasaki setting. The Levi-Civita connection V is torsion free and satisfies

d
E(“h V), = (Vd;tut, v)g, + (ug, V(g,t V) g,
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for any smooth vector fields u;, v, along the path ¢, in H. Letu, € C3>(M) be smooth
vector fields along a smooth curve ¢; in H, then

1 .
Vq'ﬁrl/lt = l:lt — Z < V¢[, vut >¢ - (330)

The geodesic equation can be written as

. . 1 .
Vi, (@) = ¢ — ZIV@I;[ =0. (3.31)

Given ¢y, ¢; € H, to solve the geodesic equation, Guan—Zhang [42] introduced the
following perturbation equation, for a path ¢, : M x [0, 1] — R,

(6 — 51Vai2, )y An= @) An, M x ©0.1)
Bli=o = ¢ (3.32)
Pli=1 = ¢1.

Define a function ¢ on M x [1, 3/2], as a subset of the cone X,
Y(,r)=¢:()+4logr, t =2r—2.

Seta (1, 1) form by,

2
_ 0 _
Qy = ox + 5V (aw - 8‘”3&) .

or
Guan—Zhang wrote an equivalent form of (3.32) in terms of a complex Monge—Ampere
equation on ¥ of the following form (with f = r2ee O, 1D,

Q)" =€ flox)"™, M x (1. 3)

(3.33)
YiMx(r=1) = G0, ¥IMx{r=3/2) = ¥1 +4log(3/2).

Guan—Zhang proved the following results regarding (3.33):

Theorem 3.2 (Guan—Zhang) Fix a Sasaki structure (M, &, n, g) on a compact mani-
fold M. For any positive basic function f and any two points ¢o, ¢1 € 'H, there exists a
unique smooth solution of yr to (3.33), satisfying the following estimates: \ is basic and

there exists a constant C > 0, depending only on ||f% ”CZ(Mx[l,%])’ lgollc2t, @112
such that
IVlicz == I¥llct +sup|Ay| < C. (3.34)

Denote the corresponding solution of (3.32) by ¢5, then ¢; is called a e-geodesic
(smooth) connecting ¢o, ¢1 satisfying

€Nt + sup(¢€ + VeS|, + Aggf) < C. (3.35)
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When € — 0, there exists a unique (weak Ci) limit ¢; of ¢; : M x [0,1] - R
connecting ¢o, ¢1 such that Qe 14106, is positive. The later is equivalent to

. 1 .
wge > 0, ¢ — Z'V¢f|°2”¢f > 0.

As a consequence, (H, d») is a metric space.

Remark 3.2 The constant 1/4 appears in the geodesic equation

L.,
b1 = VL2, =0.

This constant is insignificant. In Kéhler setting, some authors write the constant as 1,/2
and some write as 1, depending on the gradient V is interpreted as real or complex;
they differ by a constant 2. The constant 1/4 appears in Sasaki setting in [42] since the
authors use the real gradient and use the space of Sasaki potentials (transverse Kahler
potentials) defined as

{¢p :dn+ v/ —1053p¢ > 0.}
In the following, we shall write the geodesic equation as
¢t — Vi3, =0,

where we use complex gradient, and our choice space of transverse Kéhler potentials
is as

H={pecCPM):w +/—13z0p¢ > 0}.

To prove (H, d») is a metric space, Guan—Zhang [42, Lemma 14, Proof of Theorem
2] proved the following triangle inequality,

Lemma 3.7 (Guan—Zhang) Let ¥ (s) : [0,1] — H be a smooth curve, ¢ €
H\Y ([0, 1]). Fix € € (0,1]. Let u¢ € CF([0, 1] x [0, 1] x M) be the function

such that ug (-, s) is the e-geodesic connecting ¢ and s, for t € [0, 1]. Then the
following estimate holds:

Lug (-, 0) <L) +1(us (-, 1)) + €C, (3.36)

where C = C(¢, ¥, g) is a uniform constant, independent of €.

There are several estimates which are not explicitly stated or not proved in [42].
We include these estimates below since we shall need them below. Regarding (3.32),
first we have the following comparison principle,
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Lemma 3.8 Suppose we have two solutions ¢, ¢ with boundary datum o, ¢1 and
@0, P1, respectively,

(& = 1V9il2, ) o An=e@) A= (6= Va2, Jopan, (337
then we have the following

max ¢ — ¢| < max [¢o — ol + max |¢1 — ¢1]. (3.38)

Proof This is a standard comparison principle. We sketch the proof for completeness.
Denote the operator

b 7 . .
F(D2¢) = logdet ((vq;)l g[TjT +¢¢ij> - IOg det(giTjT) = log (¢t - |V¢t|(2o¢t>

det(g> + ;)

+ log
det(g])

The e-geodesic equation can be written as F(D?¢) = ¢. Now suppose F(D?¢)
= F(D?p) = € > 0, then (3.38) holds. Otherwise suppose at some interior point

¢ — ¢ > max [¢o — ¢o| + max |1 — ¢1].

Hence ¢ — ¢ 4+ at(1 — t) obtains its maximum at an interior point p for some a > 0.
Denote v = ¢ 4+ at(t — 1). Then on one hand,

F(D>v) > F(D?¢) = e.

On the other hand at p, D?>v < DZ?g. It follows from the concavity of F, we have
at p,

F(D*) = F(Dp) < Lr(v —¢) <0,
where L, is the linearized operator of F' at v. Contradiction. o

One can actually be more precise about the estimate (3.35) [and (3.34)]. For sim-
plicity, we state the result for (3.32).

Lemma 3.9 The € geodesic ¢; connecting ¢o, ¢1 € H satisfies the following estimate,
max |¢f | < max |1 — ol + C max [V (1 — po)[; + €. (3.39)
where C depends only on ¢, ¢1. Moreover, we have

IVylg + sup Agp® < Clligollct, lgillcr, sup Aggo, Agdhr, &) (3.40)
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Proof The first estimate follows from qbf > 0 and the following CY estimate (3.41),
which can be proved similarly using the concavity of F. First there exists a > 0 such
that

at(t = 1) + (1 = Dgo + 11 < ¢y < (1 =)o + 1¢1. (3.41)

The right-hand side is a direction consequence of ¢f > 0, while the left-hand side
can be argued as follows. Denote U4 = at(t — 1) 4+ (1 — t)¢o + t¢1; we know ¢
agrees with U on the boundary. Hence if ¢f < U“, then ¢; — U“ takes its minimum
at some interior point p. At p, we know D’¢¢ > D>U*. By concavity of F, we get
(at p)

0 < Lk, (@S — U%) < F(D*¢f) — F(D*UY).

That is F(D*U“) < loge. This is a contradiction when a > 0 is sufficiently large.
Indeed, a direct computation shows that if ¢ > C max|V(¢; — ¢0)|2 + €, then
F(D%*U%) > loge. Hence for such choice of a, (3.41) holds. By convexity in ¢
direction, we know that

$(.0) < f < ¢ 1.
It is evident to show that
—a+¢1—¢o = ¢ (0) < ¢1 — o = P (. 1) <a+ 1 — do.

Hence (3.39) follows. The gradient estimate |V¢y | is given by [42, Proposition 2].
The estimate on Ag¢;, depending only on ¢y, ¢ up to second-order derivative, was
proved for Kihler setting by the first named author [47, Theorem 1.1] (for e = O, it
was proved earlier in [8] using pluripotential theory). The method in [47] is to deal
with Eq. (3.32) directly, and it can be carried over to prove the interior estimate of
A4¢¢ word by word (since in Sasaki setting, this estimate only involves transverse

Kihler structure and basic functions). For completeness, we sketch the proof. Denote
¢¢ = ¢ for simplicity. We write the equations as

log(¢p — |V¢3|é) + log det (ng]— +¢,7) = loge + log det (giTJf), (3.42)

using the transverse Kihler metric ng/- For any basic function %, we denote

.7 kT
hee + g;fgd,]hki%qbt;

Dh =A¢/’l + 5
b — V2
en o - b
_ 8¢ (ht1¢;j + hz;'d)”) (3.43)
b — Vi 2
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where ( g;j ) is the inverse of the transverse Kihler metric (giTj + ¢; ])- Proceeding
exactly as in the computation in the Kéhler setting (see [47, (2.4)—(2.19)]), we compute

Dllog(n + A®) — Cp+1%) = g/ g" + G~ IV —(n+1)C,  (3.44)

where C depends only on the background transverse Kihler metric g7 and n. Hence
we have

D(log(n + Ap) — Co +1%) > (n+ Ap + — VP re™n — (n + 1DC, (3.45)

where we have used the elementary inequality
n n n
Z a;] > Z; =0%
i=0 i

Hence it follows that either log(n + A¢) — C¢ + 2 achieves its maximum on the
boundary, or at an interior maximum point P,

(n+Ap+ ¢ — [VI2)1e m — (1 + 1)C < Dlog(n + Ag) — Co + 1*)(P) < 0.
This gives the desired bound

—n < A¢S < Clligolict. 1d1llcr, Aggo, Agr, &)

By taking € — 0, we have the following,

Lemma 3.10 Suppose ¢ is the weak geodesic connecting ¢o, ¢p1 € H, then for some
positive constant C = C(M, g, ||¢ollc2, @11l c2), we have

|| < max |¢ — do| + C max|Ve — Vel

As a consequence, when ¢po — ¢ in 'H, then dy(¢o, ¢1) — O.

Remark 3.3 One can get a much sharper estimate,

|| < max [p1 — ol

using the uniqueness and comparison for the generalized solutions of complex Monge—
Ampere in the sense of Bedford—-Taylor, see [30, Lemma 3.5] for Kihler setting. We
shall prove this sharper version below.

Using Lemmas 3.7 and 3.10, it follows that the distance function dz (¢, ¢1) is
realized by the weak geodesic ¢ connecting ¢, ¢1. In particular,
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Lemma 3.11 Given ¢g, ¢1 € H, we have,

do (o, $1) = llplla.g,, Vt € 10, 1] (3.46)

Proof Let ¢; be the € geodesic connecting ¢o, ¢1. Then we compute
d 1e2 n =9 1€/ L€ \V4 1€ n
a )y 7 |7 (wge)™ A= M¢, (7 = IVP;lge)(wge)™ A
=2€/ (@) A . (3.47)
M
Since |<i>f| is uniformly bounded, letting ¢ — 0, we get that
d i 2 n
— An=0.
a /M 1" (g,)" A1

This proves (3.46). In particular if ¢g # ¢1, ¢; is not identically zero for any .
Moreover, if € is small enough, depending on ¢o # ¢1, then ¢f is not identically zero
forany ¢ € [0, 1]. This follows from (3.47) and it is easy to see that fM |¢,e |2(a)¢[e YtAR
has a positive lower bound for any ¢ (say /(¢;)/2), if € is sufficiently small. O

We also have the following

Theorem 3.3 (Guan—Zhang, Theorem 2). For u, v, w € H,

dry(u, w) <do(u,v) +dr(v, w).

3.3 The Orlicz-Finsler Geometry on Sasaki Manifolds

The Orlicz—Finsler geometry on the space of Kéhler potentials was introduced by
Darvas [28] and it has played an important role in problems regarding csck and Calabi’s
extremal metric in Kéhler geometry. In particular, the Finsler metric d will play an
important role and it is used to define the properness of K-energy. In this section,
we discuss the Orlicz—Finsler geometry on Sasaki manifolds. We prove the following
theorem, which is the counterpart of Darvas’s [28, Theorem 1] in Sasaki setting.

Theorem3.4 If x € W[f, p > 1, then (H, dy) is a metric space and for any ug, uy €

H, the C;’l geodesic t — u; connecting ug, uy satisfies
dy (uo, u1) = lltislly,u,. t € [0, 1]. (3.48)

Theorem 3.4 is the generalization for d> to general Young weights. This important

result in Darvas’s theory says that, the same C }3’1 geodesic (with respect to d>) is
“length minimizing” for all d, metric structures and this holds in Sasaki setting. The
proof of Theorem 3.4 pretty much follows Darvas’s proof [30, Theorem 3.4], with
minor modifications adapted to Sasaki setting. The main point is that only transverse
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Kabhler structure is involved, and hence this is essentially the same as in Kéhler setting.
We include the details for completeness.

Following Darvas (see [30, Chapter 3]), we define the Orlicz—Finsler length of
v e T,/H=Cg (M) for any weight x W[j':

1
Vol(M)

||u||X,u=inf{r>0: / X(E)a)Z/\dnSX(l)}. (3.49)
M r

For simplicity, we shall assume Vol(M) = 1 in this section. Given a smooth curve
y 1t € [0, 1] = H, its length is computed by the formula

1
Ly(y) = /O 171l .y, dt. (3.50)

Furthermore, the distance d, (1o, u1) between ug, u1 € H is defined to be
d, (uo, u1) = inf{ly (y;) : y; is a smooth curve with yg = ug, y1 = u1}.  (3.51)

First we have the following,

Proposition 3.18 Suppose x € W;‘ N C*®(R). For a smooth curve u;(t € [0, 1]) in
H and a vector field f; € Cy°(M) along this curve with f; # 0, we have

fM X/ <Hft‘f|tx1¢[> Vﬂ,ftdﬂu,

1y fi :
m X (nﬁux.u,) AP

d
a1 il = (3.52)

Proof This works as in [28, Proposition 3.1] word by word. We skip the details. 0O
Lemma 3.12 Suppose x € W; N C®(R) and ug, u; € H,uo # uy. Then the €-

geodesics [0, 1] 5 t — uj € H connecting ug, u satisfies the following estimate:

/ x (i)wle A > max </ x (min(u; — uo, 0))w;’0 AT,
M ' M
/ x (min(ug — uy, 0))wy, A n) —eC (3.53)
M

Jorallt € [0, 1], where C := C(x, [luollc2(pry, 1urllc2ary)-

Proof This follows exactly as in Kihler setting [30, Lemma 3.8], by a direct compu-
tation and the convexity of x. O

Lemma 3.13 Suppose x € WIT N C®MR) and ug,u; € H,ug # uy. Then there
exists a constant € that depends on uq, uy such that for all € € (0, €g] the €-geodesic
[0, 1] >t — uf € H connecting ug, u satisfies:
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/ g T\n
Ju X (‘afnx,g;)(‘" A
o€ o€ ’
U / U
- - wye N
Iu Mg X (nuix,i,f) g N T

Proof 1If we choose €y > 0 sufficiently small, then #{ is not identically zero for any
€ [0, 1], if € € (0, €ol, given ug # uy, see (3.46). Then the results follows from
Proposition 3.18. O

allufllx,u; =€ t €0, 1]. (3.54)

We have the following, similar to (3.46) (for d»),

Proposition 3.19 Suppose x € W;‘ N C*®(R) and ug, u1 € H, ug # uy. Then there
exists €9 > 0 such that for any € € (0, €g] the e-geodesic [0,1] > t — uf € 'H
connecting u, u| satisfies

€y ||u ||)( ué > Ro,t € [0, 1];
(i) 1311l uc] < €R1 1 €0, 1],
where €9, Ro, Ri depend on upper bounds for ||luol|c2ary, [lu1llc2ary and lower

wZO/\nuO and U)Zl/\nm
(@T) Ay (@Tynn

bounds for || x (u; — u0)||L1((wT)n,\,7),

Proof (i) Recall Eq. (1.11) in [30]

Sl = m

Jo % (Frdu (fg x(f)du)i
RO

and Lemma 3.12, the estimate in (i) follows immediately.
(i) Choose €y small so that Lemma 3.13 applies. Recall the Young identity

x(@ + x*(x'(@) =ax'(a),a,b e R, x'(a) € dx(a)
Then we have
’fM X <||u,|| ) @) A ’7‘

Ju ||»sz|[|;,¢; X (ufoX_L-,; ) Duf N T

o () @
x() =+ [y x* <x/ <||,,[T—|’Xz)) Wye A My
/ x' (— i ) @")" A

M [eeg 1y, s

|u§||x,uf| =€

dr

=€

(3.55)

<
x (1)
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Then the estimates (ii) follows from (i) and the fact that i} is uniformly bounded
in terms of [[uollc2(arys U1l c2(ary-
O

Remark 3.4 The estimate (i) in Proposition 3.19 holds for general weights x € W;‘

Recall that 7 is uniformly bounded in terms of [[uo | c2(az), |141| 2 (a1)- We can choose

smooth weights x; € W;k N C*°(R) which approximate x uniformly on compact

subsets of R. Moreover we have klim Heeg [y ue = Hetg |1y ue [30, Section 1]. It follows
—00

that the estimates (i) hold for y.

Next we are ready to prove the triangle inequality, as in Lemma 3.7 for d, and [28,
Proposition 3.4] in Kihler setting.

Proposition 3.20 Suppose x € W[‘," N C*®(R), ¥s € H is a smooth curve, ¢ €
H\¥ ([0, 1)), and € > 0. u¢ € C*°([0, 1] x [0, 1] x M) is the smooth function for

which t — uj(-,s) = u®(t, s, -) is the e-geodesic connecting ¢ and 5. Then there
exists €o(¢p, ¥) > 0 such that for any € € (0, €o) the following holds:

Ly (ug (-, 0)) < L (W) + Ly (ug (-, 1) + €R

for some R(¢, ¥, x, €0) > 0 independent of €.
Proof Fixs € [0, 1]. By Propositions 3.18 and 3.19, there exists a constant €y (¢, V) >
0 such that for € € (0, €p)

d g

) =/0 it 5,
fMX (Iullxu)VduudM”’
S x! (W) Wdﬂm

/1 S ¥ () Vaidi,
0+ Ly (2 (7)) dia
o () Sedom, — 80V (¢ (i) s
X+ fuy ot (1 (7)) doa

dt

Il
h

dr

dr.

I
c\_

Moreover we have

i i \a i d
Vi x’(.—))du zx”( . > . gyl | At
u( MNelly,u “ [a]]y ||u||x,u [laa]12 . o “

(3.56)
It follows from Proposition 3.19 that ||i||,; is uniformly bounded away from zero

and both V;udu,, and %||12|| »,u are uniformly bounded by the form € R, where R
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is uniformly bounded. Moreover i, g“ are uniformly bounded independent of € [42,

Lemma 14]. Hence

il (e (-, 5)) =/1 (%IM X/(W) i_’;du"’
ds X ’ 0 x(1)+fMX*<X,(W))dM

where R is uniform bounded independent of €.
Recall that x* (x'(I)) = [ for I € R, the expression

X X ; M
dt M ||“||x,u “
:/ 'u X”( .u )V,j (_u >d,uu[
M ||M||xu ||u||xu ||”||xu

is a term of type € R. Hence we can write

d v ux () e
Gy = [ — i v
0 X(1)+fMX*(X (W))d“‘”
(1., d
S 2 (i ) Gy
o
X (D) + [y x* (x’ (W))d“‘”
|

ds
where the last line follows from the Young inequality

+€R,

x(a) + x*(b) > ab,a,b € R.

The integration of the above inequality with respect to s € [0, 1] yields the desired
inequality. O

Now we are ready to prove Theorem 3.4. Certainly the proof follows closely Dar-
vas’s result in Kihler setting [28, Section 3].

Proof First we show that for ug, u; € H and the weak C };T—geodesic u; connecting
uO? ul

dx(”O»”l) =lx(ut)~ (3.57)

We assume o # u;. Recall that, by Guan—Zhang [42], e-geodesics u{ connecting

ug, u| converge to the weak CII;’1 geodesic u; in C'*. Hence us converges uniformly
to I;lt.
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Recall that 7 is uniformly bounded in terms of |[uo||c2(pr)s |11l c2(pr)- Combine
with the remark after Proposition 3.19, there exist constants 0 < C; < C3 such that
for sufficiently small € > 0

Cr < |lig |l ue < Ca.
Take a cluster point N of {|[uf || ¢ }€>0, after taking a subsequence we can assume

that [[uf ], u¢ — N as e — 0. Then —={— converges to 4 7 uniformly. Moreover,

T, ue ||
we have a)uf A 7 converges to @, A1 Weakly

Recall || f||,, = @ > Oif and only ifo X(é)d,u = x(1)[30, Section 1]. We have

X(I)Z/MX(H,HH,) = ()w i

and N = |[i,|],u,- Hence |[ii;|]y 4, is the only possible cluster point of {||itf ||, u¢ }e>0-
It means that

et e ug = Nite ],
as € — 0. Then by the dominated convergence theorem we have

fim 1y (uf) = 1y (ur) (3.58)
€—>

and d, (ug, u1) < I (uy).
Then Eq. (3.57) follows if we can prove

Ly (¢r) = Ly (ur) (3.59)

for all smooth curves ¢; in H connecting ug, u|.

First we consider the case x € W; N C*(R). We can assume that u; ¢ ¢ ([0, 1))
and take & € [0, 1). Applying Proposition 3.20 to the case ¢ = u; and ¥y = ¢|[0,1]
letting ¢ — 0, we can obtain

Ly () < Ly (@rljo.ny) + Ly (wh),

where u; is the C 113’1 geodesic connecting uy, ug, and wt is the CL B geodesic connect-
ing u1, ¢5. By Lemma 3.9, lX(w,) — Oas h — 1. Hence I, (¢;) > [, (u;).

For the general weight y € W, we need to do approximation as in [28, Proposition
2.4]. There exists sequence x € W;rk N C°(R) such that y; converges to x uniformly
on compact subsets. Then we have

1 1
/O el ., A2 = Ly (Dr) = Ly (ur) =/O ke |1, A1
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and ||¢¢ 1.6, = 1116, Nite g = Iliiellx.u, [30, Section 1]. Moreover,ity ,
are uniformly bounded. By the dominated convergence theorem, I, (¢;) > [, (u;).
This completes the proof of 3.57.

Recall [, (u;) = fol [ti¢|ly,u,df and by Lemma 3.14, we have
dy (uo, u1) = llirllyu,» t €10, 1].

Suppose ug # uj € 'H, take € — 0 in the estimate Lemma 3.12 we obtain izg # 0
and d (ug, u1) = ||tto|ly,ue > 0. This implies that (H, d,) is a metric space. O

Lemma 3.14 Let u; be the weak CII;’1 geodesic connecting uo, u1. Then for any x €
W; and to, t; € [0, 1], the following holds

dx(MOa uy) = ||l'.tt0||)(,u10 = ||l;tt] ||X,u11o (3.60)
Proof 1t had been shown that for e-geodesics uj joining ug, u1, we have
162 g, = Wi g 1y Ly = My
as € — 0. Proposition 3.19 implies that
16 g, — 11 . | < Ito — r1l€ Ry,
Then taking € — 0 we have ||1'.¢to||x,u;0 = ||uy e, - o

Finally, we have the following triangle inequality,

Lemma3.15 Foru,v,w e H, x e Wi, p > 1,

dy (u, w) <dy(u,v) +dy (v, w).

4 The Metric Space (§,(M, ¢, ®@7), dp)

In this section, we prove Theorem 2. We shall follow the Kéhler setting closely asin [28,
Section 4], but we shall only consider d,, distance. Given ug, u1 € £,(M, &, o), p=>
1, by Lemma 3.1 there exists decreasing sequences {ug}keN, {ulf }ken C “H such that
u’é N\ 4o and u’f \ #1. We shall prove that the following formula for distance d, is
well defined,

dp(uo, ur) = klgrgo dp (b, uk) 4.1

and the definition in (4.1) coincides with (3.51) (we only consider x (/) = |/|”/p). We
will prove that

Theorem 4.1 (£,(M, £, 07), dp) is a complete geodesic metric space extending
(H, dp).
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We start with the notion of generalized solution of complex Monge—Ampere in the
sense of Bedford-Taylor in Sasaki setting, which was considered by van Coevering
in [58], by adapting the complex Monge—Ampere operator for basic functions in
PSH(M, &, w") N L™ to Sasaki setting. van Coevering discussed in particular weak
solution in PSH(M, &, )N CO(M) [58, Section 2.4]. Let S = [0, 1] x S! be the
cylinderand N = M x S. Then N is amanifold of dimension 21 + 3 with boundary and
N has a transverse holomorphic structure, simply the product structure of transverse
holomorphic structure on M, and holomorphic structure on S. A path ¢ : [0, 1] —
CZ (M) corresponds to an § Linvariant function ®,, on N. If ¢, is a smooth path in
‘H then a direct computation gives

(o’ + —105050)" ' = ¢, (¢ — |v¢'>|i£ ) wh)" Adw A di. 4.2)
t

Note that this choice of complexification [see van Coevering (4.2)] is different with the
choice of Guan—Zhang (3.33). It seems that (4.2) would be more natural to discuss weak
solutions. By (4.2), a smooth geodesic then corresponds to a solution of homogeneous
complex Monge—Ampere for basic function ® : N — R,

(ol +/=10505®)" ' Ay =0.

We define a weak geodesic between ug, u; € PSH(M, &, ®T) N L as follows, for
O, w) = ®(-, 1) € PSH(N®, &, *w’) N L™, (t = Re(w)), it satisfies

. . (4.3)
lim; o ®(-, 1) = ug, lim—1 @, 1) = u;.

{(n*wT 1+ /“T0pdpd)"™* A =0
We have the following strong maximum principle, see [58, Theorem 2.5.3], [11,
Theorem 21], and [30, Theorem 3.2].

Lemma4.1 Letu, v € PSH(N®, &, n*w’) N L®(N). Suppose that
(ol + —=10gdgu)"™ ' An < (7*0 + V—=105350)" T A
and limy,_, 35 (u — v)(x) > 0, thenu > von N.

Proof Our proof is similar to Kihler case, see [30, Theorem 3.2]. Fix € > 0 and
ve = max{u,v — €} € PSH(N®, &, w’) N L>®. Then v. = u near the boundary
AN =M x S' x {t =0}UM x S! x {t = 1}. Hence it is enough to show that u = v,
on N.

We write N = M x S and o, = 70 + dd%u, etc. Note that on each foliation
chart W, = (-6, 8) x V, of M, we have the following inequality on V,, x S for
complex Monge—Ampere measure [12, Theorem 2.2.10]

n+1 n+1 n+1 n+1
wy, Z X{uzv—enV, @, + Xfu<v—elNV, @®y = w, .

€
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It follows that on N, we have
wn+] An > a);l+1 AT

Ve

Then we have the following
0< / (Ve — u)(wf)'jl - a)Z‘H) A (4.4)
N
Using integration by parts, we obtain that
/ d(u—vE)Ad%(u—ve)/\a)ﬁAwZ;kAnzo,OSkfn.
N
By an induction argument as in [30, Theorem 3.2], we can prove that
/ d(w —ve) NG —ve) Ak A (TF 0T KA =0,0<k <n.
N
For k = n, this shows that
/ d(u —ve)/\d%(u—ve)/\(n*wT)" An=0.
MxS
Writing p = u — v, this reads
/ 10, p1%dt Ads A (TF0T)" Ay = 0.
MxS

Hence 9, p = 0. Since p = 0 near the boundary 9N = M x S! x {t = 0}UM x S' x {
= 1}, this shows that p = 0. It completes the proof. O

Remark 4.1 One can certainly formulate a general version of comparison principle as
in [30, Theorem 3.2]. But one would need certainly a (transverse) Kihler form. Note
that 7*w? is not transverse Kahler (it is zero along S-direction). Here we use the
product structure of N.

With this maximum principle for bounded TPSH, we have the following,

Lemma4.2 Given ug,u; € H, let u; : [0,1] — H be the unique C;’l geodesic
connecting ug, u1. Then we have the following,

litsllco < lluo — uillco, Ve € [0, 1].
Proof Note that this gives a much sharper estimate than Lemma 3.10. The proof follows
the Kihler setting [30, Lemma 3.5]. Denote C = max |ug — u1]|. By the convexity of
u in t-variable, we know that

lfiofl;ltful'
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Note that v, = ug — Ct is a smooth geodesic connecting u( and ug — C. Hence its
complexification gives a solution to (4.3). By Lemma 4.1, we know that v; < u;, for
t € [0, 1], since ug — C < uy. It follows that —C < i¢. Similarly, one can prove that
i1 < C, by considering v; = ug + Ct. O

Remark 4.2 The upper envelop construction was used to construct bounded weak
geodesic segment in Kihler setting by Berndtsson [9], where he proved that Lemma
4.2 holds for ug, u; € PSH(M, ) (when (M, w) is Kéhler). A direct adaption to
Sasaki setting using Lemma 4.1 would lead to an extension of Berndtsson’s result to
Sasaki setting.

In general, ®(-, w) € PSH(N®, &, 7*wT) will be called weak subgeodesic, if
D(-,) = D(-, Re(w)), (t = Re(w)). For ug, u; € PSH(M, &, T, we define

u = sup {cp : ®(-, 1) € PSH(N®, £, m*07), dim @(.1) <ug } . (4.5)

We have the following:

Proposition 4.1 u € PSH(N®, &, m*w"). Denote u;, = u(-, t). We refer t — u; to the
weak geodesic segment connecting ug, ui.

Proof Note that usc u* is basic, and u* € PSH(N®, &, 7*w”). Since ® is convex in ¢
direction, it follows that ®(-,¢) < (1 — H)ug + tu;. Hence u; < (1 — Hug + tuy. It
follows that

u* < (1 —1tug+ tug.

In other words, u™ < u by definition. It follows that u™* = u. |

Proposition 4.2 If ug,u; € PSH(M, &, o) N L>®, uis defined by (4.5) and u,
= u(-, t) is the weak geodesic. Let C be a constant > ||u1 — ug|| .

(1) We have
max(ug — Ct,uy — C(1 — 1)) <u; < (1 —Hug + tu;. 4.6)

(2) u; € PSHIM, &, ") N L™ and u is the unique solution of (4.3).
(3) u; is uniformly Lipschitz continuous with respect to t:

lur —ug| = Cls —1l.

fors,t [0, 1].
(4) The derivatives g, 1t exists and

ligl < C, i) <C.
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Proof (1) Itis obvious that ug — Ct, u; — C(1 —t) are weak subgeodesics. It follows
from the definition of u, (4.5) that

max(ug — Ct,u; — C(1 —1)) < uy.

The other half of the inequality comes from the convexity of u; with respect to 7.
(2) By the inequality (4.6) we have u; € PSH(M, &, ®’)N L*® and lirél1 Uy = uop,1.
t—0,

Then u € PSH(N®, &, T*w’) N L. Using the classical Perron-Bremmerman
argument, we have (w* T + /=105 gu)" 1 A n = 0. Hence u is a solution of
(4.3). The uniqueness of the solution of (4.3) follows from the strong maximum
principle.

(3) If one of s, ¢ equals to O or 1, the required inequality is a direct consequence of
(4.6).If 0 < s <t < 1, by the convexity of u, with respect to ¢ we have

t—ys r—ys
(us —uo) =y —uy = (1 — us)

and the inequality follows from the case + = 0, 1 we have proved.
(4) By the convexity of u;, we have

Uy — UugQ < Uy, — UQ

f - 1)
for 0 < ;1 < tp. These quantities are uniformly bounded by C. Hence i exists
and |itg| < C. The case of i follows by a similar argument.
(]

Remark 4.3 1f ug, u; € H, the weak geodesic u; coincides with the C};T geodesic.

The weak geodesic u; connecting ug, u; € PSH(M, &, wT) has the advantage of
admitting some homogeneous structures and offering a new interpretation of rooftop
envelope. Moreover, it is closed for class £,(M, &, wT): the weak geodesic u; con-
necting ug, uy; € £,(M, &, w’) stays in the same class. It is called the finite-energy
geodesic in £,(M, &, ol).

Proposition 4.3 Let u](‘), u]f € PSH(M, &, a)T) be sequences decreasing to ugp, u| €
PSH(M, &, a)T), respectively. Suppose that u'f, u; € PSHM, &, a)T) be the weak
geodesic connecting u’é, ulf and uo, uy, respectively. Then

(D) uf decreases to u; fort € [0, 1];
(2) Forany t;,tp € [0,1], [0, 1] 3 t = u—ni+i, € PSH(M, &, w") is the weak
geodesic connecting u;, and u,.

Proof (1) By the definition of u’t‘ (4.5) it is obvious that {uf}keN is decreasing and
v = klim u’,‘ € PSH(M, &, w"). Again by the definition of uf u; (4.5) we have
—00

uf > u;, hence v, > uy.
Recall that u¥ is convex with respect to ¢. Then uf < (1 — t)u’é + tu’f and
vy < (1 — Hug + tu;. It follows from the definition of u; (4.5) that v, < u;.

Consequently the sequence {uf}keN decreases to u; fort € [0, 1].
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(2) Recall that ug, u; are the decreasing limits of their canonical cutoffs, it follows
from part (1) that we only have to prove the proposition for ug, | in L. v; =
U(1—1)t+11, 1S @ path connecting uy, , us,. By Proposition 4.2 we have li%ll v =

t—0,

Us 1, and & (-, t) = v; is a solution of Eq. ((4.3)) with initial data u,,, u;,. Then
it follows from Proposition 4.2(2) that v; = wu(—s 4+, 15 the weak geodesic
connecting iy, , Uy,.

O

Lemma 4.3 Suppose ug,u; € PSH(M, &, ol and t — u, is the weak geodesic
segment connecting ug, u1.

(1) For any t € R we have

ir(l)fl)(u, —tt) = P(ug,u1 — 1), 7 € R. “4.7)

te(
() Ifug,uy € PSH(M, &, w") N L™, then
{iig > t} = (P (uo, uy — 1) = uop}. (4.8)

3) Ifuo,ur € E,(M, &, 7)), thenu, € E,(M, &, &) fort € [0, 1].

Proof (1) First note that t+ — v, = u, — vt is the weak geodesic connecting

ug,u; — t, hence the proof can be reduced to the particular case t = 0.
By definition P(ug, u1) < ug,u;. As a result, the constant weak subgeodesic
t — h; := P(ug, uy) is a candidate for definition of u,;, hence h; < u,,t € [0, 1].
It follows that P (ug, 1) < inf;c(o,1] ;-
For the other direction, we use Kiselman minimum principle [33, Chapter I, Theo-
rem 7.5], which asserts that w := inf;¢(o,1;u; € PSH(M, &, »T) (note that u; is a
genuine plurisubharmonic function on foliation charts, for each ¢ and u; is convex
in ¢ variable; hence Kiselman minimum principle applies, as in Kihler setting).
Note that u; < (1 —t)ug + tuy, it follows that w is a candidate for P (uq, u1) and
hence w < P(ug, u1). This completes the proof.

(2) Forx € M wehave P (ug, u1 —t)(x) = uo(x) if and only iftei[r(l)fl](u,(x) —17) =

uo(x). By the convexity of u, in the ¢ variable, it is equivalent to 1g(x) > 7.
(3) By Lemma 3.4, we have P(ug,u;) € £,(M, &, w’). Notice that P(ug, u1) <
uo, up. It follows from (1) that P(ug, u;) < u,. By Proposition 3.11 we have
u € Ep(M, €, 07) fort € [0, 1].
O

Now we prove Theorem 4.1, through a series of propositions and lemmas, follow-
ing [28, Section 4] (and in particular [30, Section 3]).
First of all, the d,, distance between comparable smooth potentials behaves well.

Lemma 4.4 Suppose u,v € H withu < v. We have

1
max{zn—ﬂ)/ Iu—vlpa);j/\n,/ Iu—vlpa)ﬁ/\n} < dp(u,v)? S/ lu — vl A .
M M M
4.9)

@ Springer



Geometric Pluripotential Theory on Sasaki Manifolds 1141

Proof Let w; : [0,1] — H be the C é’l geodesic connecting # and v. By Theorem
3.4, we have

d,(u,v)f = / lwolPwl; A = / [Pl A 7. (4.10)
M M
By Lemma 4.1, we have u < w; given u < v. Since w; is convex in ¢, it follows that

O0<wyg<v—u<uw. 4.11)

It then follows that, by (4.10) and (4.11),

IA

/|u—v|pa)ﬁ/\n§d[)(u,v)p /|v—u|pa);’/\n. (4.12)
M M

Next we use )} A1 < 2"w',,, A1 toobtain that

)
2_"/ |u—v|pa)Z/\77§/ [ — v|P@hsn AT
M M 2

We write the right-hand side above as follows and apply (4.12) for u < (u 4+ v)/2 to
obtain

2—"/ |u—v|f’w';+vAn=f ’u—”“
M T M 2

The lemma below implies thatd, (u, (v +v)/2) < d,(u, v), completing the proof. O

4 u+v 14
w’,i+v/\n§dp<u, 2 ) .

Lemma 4.5 Suppose u, v, w € Handu <v < w. Then we have

dp(u,v) <dp(u, w),dp(v, w) <d,u, w).

Proof Leto;, B; bethe C 113’] geodesic segments connecting u, v and u, w, respectively.
Since # < v < w, by Lemma 4.1 we have u < oy < vand u < ; < w; moreover,
a; < B;. Since ap = Py, this gives that 0 < &g < By. Theorem 3.4 then implies that
dp(u, v) < d,(u, w). Similarly we can prove d, (v, w) < d,(u, w). O

Next we prove that the distance formula (4.1) is well defined and extends the original
definition (3.51).

Lemma4.6 Givenug,u; € £,(M, &, wl), the limit (4.1) is finite and independent of
the approximating sequences u’é, ulf € H.

Proof First we show that given u € &£,(M, &, ) and a sequence {ug)reny C H
decreasing to u. We have d, (u;, ux) — 0 asl, k — oo. We can assume that/ < k and
hence u; < u;. Then Lemma 4.4 implies that

dp(up, up)? < /M lur — ur| Py, A .
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Clearly, we have u —u; < uy —u; <Oandu —u;, ux —u; € £,(M, &, w,;). Hence
applying Proposition 3.11 for the class £,(M, &, w,,;), we obtain that

dy s, ) < /

lur — ug|Pwy,, A < (p+ 1)"/ lu —u|Pwy An.  (4.13)
M M
As y; decreases tou € £,(M, &, »T), the monotone convergence theorem implies
that the right-hand side above converges to zero as [ — 00, hence d, (u;, ux) — 0 as
I,k — oc.

Now by Lemma 3.15, we know that

Idp (b, uh) — dpy b, ub)| < dp b, ub) + dp, uk) — 0,1,k — oo,

Hence this proved that the limit (4.1) is convergent and finite.

Next we show that the limit is independent of the choice of approximating
sequences. Let vé, vl1 be other approximating sequences. Certainly we can assume
the sequences are strictly decreasing, by adding small constants if necessary. Fix k
and consider the sequence {rnax{ug‘H , vé } jen} decreases pointwise to ug'H .ByDini’s
lemma, the convergence is uniform (for fixed k) and hence we can choose jj; suffi-
ciently large such that vé < u’é, J = Jjk. Repeating the argument we can assume

v{ < u]f , for j > ji. By triangle inequality again, we have

I, (0], v]) — dp(us, )] < dp (vl ub) +dp ], ub), j = ji.

By (4.13) we know that if k is sufficiently large, d, (vé, u’(‘)) +d, (v{ , u']‘) is sufficiently
small. Hence the distance d, (uo, #1) is independent of the choice of approximating
sequence. O

For ug, u; € H, we can approximate ug, #1 by constant sequences. The previous
lemma indicates that the distance (4.1)on &, (M, &, T is an extension of the distance

(3.51) on H for weight x (/) = %
For up, uy € £,(M, &, T, we choose a decreasing sequence {u’é}keN, {u’f}keN C

'H such that ul(‘) \y U0, ull‘ N\, u1. We connect ulé, ull‘ by the unique Cg’l geodesic seg-
ment u¥. By Lemma 4.1, it follows that u* decreases in k. Hence the limit limy_, o u*
exists. Using Dini’s lemma as above, one can show that the limit does not depend on
the choice of approximating sequence. By Proposition 4.3 and the remark before it,
the limit indeed coincides with the weak geodesic u; connecting ug, u1:

k

u; = lim u;.

k—o00

Lemma4.7 Forug,u; € E,(M, &, '), the weak geodesic u; connecting them is a
dp-geodesic in the sense that

dp(usy, ur) = 1t — ta]dp (uo, u)

@ Springer



Geometric Pluripotential Theory on Sasaki Manifolds 1143

forty, t €0, 1].

Proof Let {u’é}keN, {u’f}keN C H be sequences strictly decreasing to ug, u1, respec-

tively, and uf € Ha the unique C 113’1 geodesic connecting u/(‘), u]f By Theorem 3.4, we
have

dy(uo, up)? = Jim dy(ub, uh)P = lim / |u’5|Pka A (4.14)
—00 k=00 J 0

For!l € (0, 1), Lemma 4.1 implies that uf‘ strictly decreases to u;. Then one can choose
a sequence {wf‘}keN C 'H such that

(M) ™ < wf <uf;

(2) For the CII;l geodesic vf‘ connecting u’é and w{‘ with vlg = u’é, v’f = wf‘ , we have

-k -k
‘/ |v0|pr§ AT —lpf |u0|1’wu16 AT
M M

In fact there exists a sequence {¢/} jeN C H decreasing to uf‘. By Dini’s lemma, ¢/
converges to uf{ uniformly. It follows from Lemma 4.8 and Proposition 4.3 that for j
big enough, wf = ¢/ will satisfy our requirements. By Theorems 3.4 and (4.14),

< —

T

dp (uo, up)? :khm d, (ugy, wy)? = lim f ||v0||a)Zk An=17d,(ug, up)?.
—00 k— 00 M 0

Hence d, (uo, ;) = [dp(ug, uy) for I € [0, 1].

Without loss of generality, we assume that 0 < #; < f, < 1. By Proposition 4.3,
h: = u@—nn is the weak geodesic connecting u;, and up. By following from the
results above, we have

t
dp (g, tyy) = (1 - é) dp (s, 1) = (12 — 11)d,p (1, ).

This completes the proof. O

Lemma 4.8 Supposeug, u; € PSH(M, &, o )NL>. Let{ull‘}keN C PSH(M, £, oT)N
L be a sequence decreasing to uy and uy, uf € PSH(M, &, wT) N L the weak
geodesic connecting ug, u and u, u'l‘, respectively. Then

. k .
lim / litg|? wyy A = / lizo|? @y, A 1.
k— 00 M M

Proof Denote by C = max(||u% — uol| e, [lur — uol|r=). It follows Proposition 4.2
that ||ug||~ < C, ||L't’5| |z~ < C. By Proposition 4.3 the sequence {uf}keN decreases
to u, hence the sequence {ﬁg}keN is decreasing with u{‘) > ug.

Moreover, we have 12](‘) decreases to 1. If this is not true, we can find xg € M, a € R
such that L't’é > a > 1. Then there exists 0 < 7y < 1 such that u’f(xo) > ug + at >
u;(xg) for t € [0, tp]. It contradicts with the fact that uf decreases to u;.
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Then the lemma follows from Lebesgue’s dominated convergence theorem. O

Pythagorean formula about d,, distance involves that rooftop envelope plays an
essential role in Darvas’s results [28,29] and we have a similar formula in Sasaki
setting:

Theorem 4.2 (Pythagorean formula) Givenug, uy € £,(M, £, ), wehave P(ug, u1)
e &p(M,E, o’ and

d,(uo, u1)? = d(ug, P(ug, ur))? +dp(ur, P(ug, ur))?. (4.15)
Proof First we prove the formula fqr ug, u; € H. It follows from Theorem 3.1 that
P(ug,u;) € Ha. Let u; be the Cllg’l geodesic connecting ug, u1. Let v, be the weak
geodesic connecting P (uq, u1), u;. It follows from Lemma 4.1 that P (ug, u1) < vy

for t € [0, 1]. Hence we have vg > 0. By Lemmas 4.9, Lemma 4.3, the definition of
rooftop envelope, and Lemma 3.3, we have

dp(P(up, uy), upf = /M |l}0|pw§(uo’ul) AT
= [vo| P @'y AN
/{1')0>0} P(ug,ui)

o0
= p/(; spfla)';)(uo’ul) An({vg > s}ds

o0
- p/o P oy A NP CP (g, ).y — )

= P(ug, u1)})ds

o
= P/ P b oy A MAP (o, uy — s) = P(ug, up)})ds
0
o
= P/ sP el AP (uo, uy — 5) = P(uo, ur) = uo})ds
0
o
= P/ sP7 ol AP (uo, uy — 5) = up})ds
0

o0
- p/O sP ol Ao > s})ds

{i10>0}

By a similar argument we also have

d, (o, Pluo, up))” =f ol @y A .
{up<0}

@ Springer



Geometric Pluripotential Theory on Sasaki Manifolds 1145

Now using Theorem 3.4 we have
dy (g, 1)” = / NS
M
=f Iﬂolpwﬁo/\n+/ lito|P wyy A
{10 <0} {i0>0}
=d,(uo, P(uo, u1))’ +d,(P(ug, uy), ur)?

and the Pythagorean formula holds for smooth potentials ug, u; € H.

For the general case we can choose sequences {u’(‘)}keN, {u’f}keN C 'H decreases to
uo, u1, respectively. Then the sequence P(ul(‘), u]f) € Ha decreases to P(ug, up) and
the Pythagorean formula follows from Lemma 4.11. O

Lemma 4.9 Let u; be the weak geodesic connecting ug, uy € Ha. Then the following
holds:

dp(u07u1)p=/ Iﬂol”wﬁoAn=/ i1 [Py, A 1.
M M

Proof v, = u;_, is the weak geodesic connecting u1, ug. By Lemma 4.3, we have

{(P(wo+s,uy) <ur} =M —{P(uo+s,u1) =ui}
=M — {vg > —s}

= {u; > s}.
Recall that w;,, A1 has total finite measure Vol(M), hence except for a countably many
s € Rwehave wy, An(fup = u1—s}) = Oand oy An({is > s}) = o An({its > s}).
For such real number s, it follows from Lemma 3.3 that
wr;’(uo,ul—s) AN = X{P(MOJll—S):MO}wZ() AN+ X{P(uo,ul—S):ul—S}wzl AN
and

Vol(M) = ), An({P(uo, ur —s) = uo}) + wy, AP o, ur —s) =uy —s}).

It follows from Lemma 4.3, the definition of rooftop envelope, that
oo
/ lito]? wyyy A = p/ sP el An({iig > s))ds
{iio>0} 0

oo
= p/ sPalhy AP (o, 1 = 5) = ughds
0

p/oosp*(\/ouM)— @y, AN((P(ug, uy — )= ui—s}))ds
0

o0
p/ sp71w31 AN{Pug, uy —s) < up —s}ds
0
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(e.¢]
Pl AP (o + s, u1) < w1})ds

p

o0
s”_la)f,1 An({ity > s})ds

S— 5— 55—

p

o0

=p s”_la)’;1 An({uy > shds

:/ |lftl|pa)21 /\T]
{i11>0}

A similar argument gives that

/ Iﬂol”wﬁo/\n=/ lit1 [Py, A .
{11o <0} {111 <0}
It follows that

/IﬁolpwﬁoAn=/ jin Pt A,
M M

Now choose sequence {u’{)}keN, {u]f tken C 'H decreasing to ug, u1, respectively. Let
ult‘l ,u; be the C 113’1 geodesic connecting ug, ull and ug, uy, respectively. Let uf be the

C }3‘1 geodesic connecting ué, u1. It follows from Lemmas 4.11, 4.8 and the above
results that

k : k1 : -kl -k
dp(ug, u1)? = lim dj,(ug, u})? = lim 175 |pa)zk AN = |u0|pa)Zk AT
[—o00 [—o0 Jyy 0 M 0

-k
M

Then using Lemmas 4.11, 4.8, and Proposition 4.3, we have
dp(uo, u1)? = lim dp(ulé,ul)p = lim / |zi]1‘|”a)zI AT =/ |L't1|”a);1 AD.
k—o00 k—o0 Jpm M

This completes the proof. O

Lemma 4.10 Assume thatu,v € £,(M, &, a)T) with u < v.Then we have

1
P
max (2n+p/ |v—u|pa)Z/\n,/ |u—v|”a)ﬁ/\n> sdp(u,v)pS/ v —ulPwy, An.
M M M

Proof First we can choose ux, wy € H strictly decreasing to u, v, respectively. Then
max(uy, wy) € PSH(M, &, o™ are continuous and strictly decreases to v. By Dini’s
lemma there exists vy € H such that max(ui_1, vi—1) > vr > max(ug, vr). Then vg
decreases to v and u; < vg. It follows from Lemma 4.4 that
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1
max (2n+p/ Ivk—uklprkAU,/ |Mk—Uk|pw’$k/\77> < dp(ug, vi)?
M M
< —up|Pol A
< | vk —upl"wu A
M

By Proposition 3.15, the required inequality follows as k — oo. O

Lemma4.11 Ifthe sequence {uy}ien, {vitken C Ep(M, &, ') decreases (increases)
tou,v € SP(M,S,a)T), respectively, then d,(ui, vg) — dp(u,v) as k — oo. In
particular, dp (ug, u) — 0.

Proof If the sequence {uy }rc is decreasing, using the triangle inequality and Lemma
4.10, we have

[dp (g, vi) — dp(u, v)| < dpug, u) +d,(v, vg)

1 1
P P
5(/ Iuk—ul”wZAn) +<f Ivk—vl”wﬁf\n)
M M

and the lemma follows from Lemma 3.15.
If the sequence {uj}ren is increasing, using the triangle inequality and Lemma
4.10, we have

dp (ur, i) — dp(u, V)| < dp(ug, u) +dp (v, vg)

1 1
P P
S(/ Iuk—ul”wﬁkAn) +</ Ivk—vlpwﬁk/\n)
M M

and the lemma follows from Lemma 3.15. O
Next we proceed to prove that (£,(M, &, ol),d p) is a complete metric space.

Lemma 4.12 Suppose ug, uy € £,(M, &, a)T). Then we have

p
dP <M0, uo;ul> = Cdp(”(% ul)p'

Proof It is obvious that P(ug,u;) < P(ug, @) < ug and P(ug,uy) <

P(ug, 03 < " By the Pythagorean theorem 4.2, Lemmas 4.5, and 4.10,
we have

uo +ur \? uo+ur\\?

dp (uo, 3 > de <u0,P(u0, B ))
uy+u ug+u P
+dp( 02 laP<an 02 1))

uo+u p
Sdp(uo,P(uo,m))”erp( 4 I,P(uo,m))
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< / lug — P(uo, ul)lpwllg(uo,ul) AN
M

)y

<2 (/M lug — P (o, un)”@p g upy A1

P

uog + uy n
OP (ug,uy) N

2

- P(”Ov Ml)

—i—/M lur — P uo, u)P@p g up) N ’7>

< 2"FPN(d, (u, Pug, u1))? + dp(ur, Plug, ur))?)

= 2", (ug, ur)? .
This completes the proof. O

Theorem 4.3 For any ug, uy € £,(M, &, wT), we have
C'dp(ug, up)? < / luo — ur|” (wyy A+ wy An) < Cdp(ug, ur)?.  (4.16)
M

Proof Using the triangle inequality, arithmetic—geometric mean inequality, and
Lemma 4.10, we have:

dp(u()s ul)p S (dp(u()s max(uOs I/ll)) + dp(ulv maX(uO, ul)))p

< 2P71(d (o, max(uo, u1))” + dp (u1, max(uo, ur))")

<or-! ([ luo — max(uo, u1)|Pwy,, An
M
+/ |uy — max(ug, ur)|” wy, /\TI)
M
=2r1 (/ |u0—u1|1’a);'0/\r]+/ lur — uol?wy, /\n)
{uo<ur} {ur<uo}
<20 [ o — Pl A+l A
M

By the previous lemma, the Pythagorean formula, and Lemma 4.10, there exists a
constant C such that

14
Cdyug, un)? = d, (uo, M)

2

> dp(uo, P (Mo, ol —; M1>)p

ug+u
2/ uo—P(uo, 0 1)‘0)20/\7’].
M 2
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Recall that wy, ) A < 2"@' 1, A 7. Similarly, we also have:
totiy

4
Cdy(uo, u)? = d, (uo, @)

p
>d, (uo-;ul,P<Mo, uo;ul))

P
2/ u0+u] _P<u09 u0+ul> w’io+u| /\77
M 2 2 3
1 p
L[ )
M
Hence by the Holder inequality, we have:
n uo +up\|?
2 +1)Cdp(u0,u1)”z uo— Pluyg, —
M 2
ug +u up +ur \|?
+ 02 I—P(uo, 02 l) )wﬁo/\n

1
22]7—1 /M IMO - u1|pa)ZO AT.

By symmetry of ug, u1, we also have:

=

1 n
221771 w |MO—M1|(I)M1 /\77

Adding the last two inequalities, we obtain:

(2" + DCdy(ug, u)? =

22p+1(2n+1)Cdp(uo,u1)pZ/ luo — ur P (@} Am+ ol A7)
M

This completes the proof. O

Lemma4.13 Let {urjren C Ep(M, &, w’) be a dp-bounded sequence decreasing
(increasing) to u. Thenu € E(M,, &, ') and dp(ug, u) — 0.

Proof If {u;}ien is decreasing, we can assume that u; < 0. It follows from Lemma
4.10 that

1
- Pt Py P
maX<2n+p/M|uk| wuk/\n,fMlukl (™) /\n) < dp(uk, 0)

are uniformly bounded. f o lukl? (@T)" A 7 is uniformly bounded; the monotone con-
vergence theorem and the dominated convergence theorem imply that u; — u in L'
andu € PSH(M, &, 7). E,(up) = fM |ug |/’a)ﬁk A1 is uniformly bounded; it follows
from Proposition 3.16 and Lemma 4.11 thatu € £,(M, &, ') and dp(ug, u) — 0.
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If {uy }ren is increasing, it follows from Theorem 4.3 that there exists a constant C
such that

/ P (@0, A+ @) A ) < Cdyug, 0)7
M

is uniformly bounded. By Propositions 3.3 and 3.4, we have u;y — uin L' and u €
PSH(M, &, w™). By Proposition 3.16 and Lemma 4.11, we have u € £,(M, &, o)
and dp, (ug, u) — 0. O

Proposition 4.4 Given ug, ui,v € £,(M, &, o?),
dp(P(up, v), P(uy, v)) < dp(uog, ur).

Proof By Theorem 3.1 and Lemma 4.11, we only have to prove the inequality for
ug, uy, v € Ha. In this case, P(ug, v), P(u1, v) € Ha according to Theorem 3.1.

First we assume that ug < u;. Let u;, v; be the C}g’l geodesic connecting ug, u1 and
P(ug, v), P(uy, v), respectively. Then P (ug, v) < P(u1, v) < v and Proposition 4.1
imply that P (uo, v) < v; < v. Hence for x € {P (up, v) = v}, v;(x) is independent
of t and vg(x) = 0. Then we have

/ [vo| Py A = 0.
[P (ug.v)=v}

P(up,v) < P(u1,v), P(up, v) <up, P(ur,v) < uj, and Proposition 4.1 imply that
P(ug,v) < v, <u;fort € [0, 1] and vy9 > 0. Moreover, for x € {P (ug, v) = ug} we
have

ur(x) —up(x) _

1o (x).

. . Vr(X) — vo(X .
t—0+ t 1—0+ t

Then it follows from Lemmas 4.9 and 3.3 that

dp (P g, v), Py, )P = /M 19010 g9 A 17

< / liolP @l A +/ [0l A
{P (uo,v)=uo} {P(ug,v)=v}

< f ol et A7
{P(ug,v)=uo}

< / lito|P wyy A1
M

=dp(ug, u)”.

For the general case, using the Pythagoreans formula we have

dp(P(MO’ v)’ P(l/l], v))P = d[?(P(MOa v)a P(”Ov ur, v))P
+d,(P(uy, v), P(ug, uy, v))?
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= dp(P(ug, v), P(P(uo, u1), v))”

+dp(P(uy, v), P(P(ug, ur), v))”
<dp(uo, P(uo, u1))? +d,uy, P(ug, ur))”
=dp(ug, up)?.

This completes the proof. O
Proposition4.5 (£,(M, &, o), dp) is a complete metric space.

Proof First we show that (£,(M, &, ol), dp) is a metric space. The symmetry of
d, is obvious and the triangle inequality is inherited from the triangle inequality
for smooth potentials. We only have to check the non-degeneracy of d,. Suppose
wi, wy € Ep(M, &, a)T) andd, (w1, wz) = 0.Itfollows from the Pythagorean formula
thatd, (w, P(wi, wz)) = 0and d, (P (wi, w2), wz) = 0. Then Lemma 4.10 implies
that w; = P(wp, wy) = wy with respect to the measure a)r;’(wl,wz) A 1. Then the
domination principle Lemma 3.6 implies that w; < P(w1, wp) and wy < P(Wp, wa).
It follows that w; = P (w1, w2) = wy. Hence (£,(M, &, o), dp) is a metric space.

Next we show that the metric space (£,(M, &, wT), dp) is complete. Suppose
{uitken C Ep(M, &, wl)isad p Cauchy sequence. We will prove that there exists
ue&yM,&, o) such that d, (ug, u) — 0.

Without loss of generality we can assume that

dp(ui, ugy1) < >

for k € N. Denote by ui = P(ug,Ug+1,.-.,ugyy) for k,I € N and ug = uy. It
follows from the definition of rooftop envelope and Proposition 4.4 that

1
dp (a7 = dp (PCat iy, Py, i) < dp (st i) < 2y

and the sequence {Mi}leN C&p(M,E, w’) is d, bounded and decreasing. According
to Lemma 4.13, iy = lim u € E,(M, &, ") and d,(ub, iix) — O0asl — oo.
— 00

Moreover, ui“ < ui 1 implies that iy < itx+1 and {iy }ken is a increasing sequence
in€,(M,&, 7).

It follows from Lemma 4.11, the definition of rooftop envelope, and Proposition
4.4 that

dp ik, fix1) = lim dp( ' )
= Jim dp (P, 10, Py, wies1))

< lim d(ug, ug+1)
[— o0

1
<
=5k
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and the sequence {iix}ren C Ep(M, &, wl)is d, bounded and increasing. By Lemma
413, u = klim i € Ep(M, &, ') and klim dp (itg, u) = 0. Moreover, by Proposi-
—> 00 —0Q

tion 4.4 we have

dp (e, ug) = dp (P (g, ul ), Plug, ug)) < dp(ul | up) < dp i) )

+dp (uk, ug+1)

and

! !
! 0
dp(up, ) < dp(ugyy, ug+) + de(uk+j—l» Uktj) = de(uk+j—1, Uktj)-
=1 j=1

It follows from Lemma 4.11 that

]

1 1

dp (i, ug) < ZW = k=T
j=1

By the triangle inequality
dp(ug, u) < dp (g, ur) +dp (g, u),
we have d, (uy, u) — 0. This completes the proof. O

To end this section, we remark that Theorem 4.1 follows from Lemmas 4.6, 4.7,
and Proposition 4.5. Our main Theorem 2 follows from Theorem 4.1, Lemmas 4.7,
4.3(3), and 4.12, and Theorem 4.3.

5 Sasaki-Extremal Metric

We give a brief discussion of existence of Sasaki-extremal metric and properness of
modified K-energy. Calabi’s extremal metric was extended to Sasaki setting by Boyer—
Galicki-Simanca [16]. A Sasaki metric is called Sasaki-extremal if its transverse
Kihler metric is extremal in the sense of Calabi [17]. As in Kihler setting, given a
priori estimates [49] and the pluripotential theory developed in the paper, we have the
following:

Theorem 5.1 A compact Sasaki manifold (M, &, n, g) admits a Sasaki-extremal metric
in the transverse Kihler class [w! ] if and only if the modified K-energy is reduced

proper:

We recall some basic notions [16,17,35,36,52]. We use the group Auty(&, J) to
denote the subgroup of diffeomorphism group of M which preserves both & and
transverse holomorphic structure. Its Lie algebra is the Lie algebra of all Hamiltonian
holomorphic vector fields in the sense of [37, Definition 4.4].
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First one can define Sasaki—Futaki invariant as follows, given X € aut, the Lie
algebra of Autg (&, J),

Fr@') = /M X(f)alh A, 5.1)

where f is the potential of transverse scalar curvature,

Af=RT—R

The first step is certainly to verify that (5.1) does not depend on a particular choice
of transverse Kihler form in [ ] (see [16, Proposition 5.1]). We are interested in the
reduced part o of aut, which consists of Hamiltonian holomorphic vector fields such
that n(Y) has non-empty zero. When (M, &, n, g) is a Sasaki-extremal metric, then
similar as in Calabi’s decomposition, we have [16, Theorem 4.8] the decomposition

h=ad ho,

where a consists of parallel vector fields of the transverse Kéhler metric gT. Moreover,
the reduced part ho has the decomposition

ho = 30 © J30 ® (Br=0h"),
where 30 = aut(&, 1, ¢)/{&} and
h* ={Y eh:LxY =AY, X = (OR)",}

where X := (3 R)* is the dual vector and it is the extremal vector field in h. In general,
we can define Futaki-Mabuchi bilinear form [36] on h as in Kdhler setting (in Sasaki
setting this is well defined on aut since every Hamiltonian vector field has a potential,
simply given by 1(Y); for example, & has potential 1). Given Y, Z € aut, define

B(Y,Z) = /M n(NN(Z) (@) An. (5.2)

Itis straightforward to check that (5.2) remains unchanged if n — n+d4¢ for¢ € H.
If we restrict us on the real Hamiltonian holomorphic vector fields such that n(Y) is
real, then there exists a unique vector field V such that

Fre(v) = B(Re(Y), V). (5.3)

We call such V and its corresponding X = V —+/—1JV the extremal vector field. Asin
Kabhler setting, for J V -invariant metrics in H, we define the modified K-energy [41,56]
as

Ky = — /M 8¢(Ry — R — np(V))wy A 1. (5.4)

Let Autg(&, J, V) be the subgroup of Auty(&, J) which commutes with the flow of
JV.
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Proposition 5.1 The Ky energy is invariant under the action of Auty(&, J, V)

Proof The proof is similar to Kéhler setting [48, Lemma 2.1] and it follows in a
tautologic way from Futaki invariant and definition of extremal vector field through
Futaki—-Mabuchi bilinear form. We fix a background transverse Kihler structure
such that it is JV invariant. For o € Auty(§, J, V), let o, be one parameter subgroup
generated by the flow of YR := Re(Y) for some Y € aut. Since ¥ commutes with V,
hence o;*wy is invariant with respect to JV if wp € [wT] is invariant. We compute

d
K oron) = - fM o7 (o (Re(Y)(Ro — R — no(V))al) A o)
=— /M no(Yr)(Ro — R)wy A mo + /M no(Yr)no(V)wy A no.

The right-hand side is zero by (5.3). O

We define the distance di modulo the group action Gy := Autg(§, J, V). Fix a
compact subgroup K of G such that K contains the flow of JV (and & of course).
Denote

H(I)( = {¢ € Ho, ¢ is invariant under the flow of K}.

Note that G acts on Hp through wy — o*wy = o’ 4+ /—=103dpc[¢]. Given any
¢, v € Hp, we can consider the distance modulo G as follows [26]

di.Go(¢,¥) = inf di(oil¢], o2[y]) = inf di(p,o[y¥]).
01,02€Gy 0eGy

Definition 5.1 We say Ky is reduced proper for K -invariant metrics with respect to
d1,G,, if the following conditions hold

(1) Ky is bounded below over HX.
(2) There exists constant C, D > 0 such that for ¢ € HX

Ky (¢) = Cdy,6,(0, ¢) — D.

To prove Theorem 5.1, we proceed exactly as in [48], to consider the modified

Chen’s continuity path [21], for a K -invariant transverse Kihler metric T,

H(Rp — R—np(V))+ (1 — t)(A%wT —n)=0. (5.5)

Given a priori estimates as in [49] and the pluripotential theory on Sasaki manifolds
developed in this paper, we can then follow [48,49] to prove Theorem 5.1. Since the
argument is almost identical, we only sketch the process and skip the details.

(1) The openness of (5.5) is proved similarly [48, Theorem 3.4]; note that we assume
transverse Kihler metrics and potentials are K -invariant.
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(2) For0 < t < 1, Ky bounded below over HX implies that the distance d (0, ¢,) is
uniformly bounded by a constant in the order C((1 — r)~! + 1), where ¢, is the
solution of (5.5) at ¢. This together with the fact that ¢, minimizes t/Cy + (1 —1¢)J,
gives the uniform upper bound of entropy of H (¢,) (depending on (1 — )~ 1).
Hence estimates in [49, Theorem 2] apply to get the solution for any ¢ < 1.

(3) Choose an increasing sequence #; — 1; first using the properness assumption, we
can assume that there are o; € G such that V; := 0;[¢;, ] (wy, = (’i*w%-) satisfies
that d (0, v;) is uniformly bounded above. Then v; satisfies a scalar curvature-type
equation

n

Wy, = efi (@)

. T 1 - 1
Ay, Fi =hi +try, | Ric(w") — w;i |,
1
where £; is uniformly bounded and w; = 01.* (a)T). One can use [49, Theorem 3]
and arguments as in [48, Theorem 3.5] to conclude the convergence of y;, F; to
a smooth Sasaki-extremal structure.
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Appendix
Approximation Through Type-l Deformation and Regularity of Rooftop Envelop

Using Type-I deformation, we can obtain the following approximation of irregular
Sasaki structure (M, &, n, g), which would be important for us; see [55] and in partic-
ular [13, Theorem 7.1.10] for the approximation. Suppose £ is irregular, then the Reeb
flow generates an isometry in Aut(M, &, n, g). Let T¢ ¢ Aut(M,&,n,g) (k = 2)
be the torus generated by & and denote t to be its Lie algebra. We can then choose
pi = 0, p; € tsuchthat§ = & + p; is quasiregular. Define

n

1 1
= O, =0 ————Pp;®n, 0] = =dn;, gi = 1i®Ni+o! (D)),
14+ n(p;)

RETT)) 2
(6.1)

where @ is the (1, 1) tensor field defined on the contact bundle D = Ker(n). We recall
the following:

i

Theorem 6.1 (Approximation of irregular Sasaki structure) Let (M, &, n, g) be an
irregular Sasaki structure on a compact manifold M. Then we can choose p; — 0
such that &; is quasiregular and (6.1) define a quasiregular Sasaki structure which is
invariant under the action of T*, the torus generated by & in Aut(M, &, 1, g).
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Lemma 6.1 Let (M, &, n, g) be a Sasaki structure on a compact manifold M. Consider
atorus T C Aut(M, &, n, g) and & € t. Choose & = & + p; for p; sufficiently small.
Consider two Sasaki structures (§, n, ®, g) <> (&, ni, ®;, g;) via Type-1deformation.
Then we have the following. Suppose u is T invariant and u € PSH(M , &, ") with
|d®du| < Co. Then for p; sufficiently small, there exists positive constant €; — 0 (as
pi — 0) such that,

(1 —€)u € PSHM, &, w]). (6.2)

Similarly, suppose |d®du| < Cy and u € PSH(M, &;, a)iT), then there exists positive
constant €, — 0 as i — 00, such that

(1 —¢)u e PSHM, &, o). (6.3)

Proof Since u is T*-invariant, hence u is a basic function with respect to both & and
&;. We write

. 1
ol +/=18%05u = o + Sd®du.
Using (6.1), we compute

1 r 1 — du(dp; 1 du(dp;
a)iT-f—EdCD,'du: L +nA <M> a)TM

_ + —dddu +2
1 +n(p:) 1L+ (o) 2 1L+ ()

1 + 2du(®p; 1 1 — du(®p;
:Maﬂ‘ + —dddu + nA d (M)
L+ n(pi) 2 1 +n(p:)

1 1 4 2du(®p;) 1 — du(Pp;)
=wr+7d@du+(i_1)wu Ad().
2 1+ n(01) 7 1+ (o)
(6.4)

If |d®du| < Cop, then (6.4) implies that [dD;du| < C; (vice versa). Moreover, when
pi = 0,

1+ 2du(®p;) (1 —du((bpi)>
1+ n(0;) 1 +n(p;)

We can then choose €; — 0 as p; — 0, such that
r o1
w; + Edcbid(u(l —¢)) > 0.

This proves (6.2). Note that given the relation of ® and ®;, then |d Pdu| < Cq implies
that |d®;du| is uniformly bounded (we suppose p; is uniformly small in smooth
topology). Interchanging & and &;, this proves (6.3). O

Remark 6.1 Note that the complex structure on the cone remains unchanged under
Type-I deformation [50, Lemma 2.2]. The transverse holomorphic structure is changed
since the foliation is changed, due to the change of Reeb vector foliation; on the
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other hand, the contact bundle D remains unchanged. Note that (D, ®) and (D, ®;)

can be identified to transverse holomorphic tangent bundle T]’O(]:g) and T]’O(]:gi)

1—du(®pi)
1+n(p:)

1) ! involves with only du, hence the above statement holds if we

(the foliations are different). Since the term n A d ( ) vanishes on D and

1+2du(Pp;)
I+n(pi)
only assume that |du| is uniformly bounded. Since we shall not need this, we skip the

argument. However, it seems that assumption like |du| < C is necessary and we are
not able to extend this to PSH(M, &, »”).

As mentioned above, we fix a torus T C Aut(N, &, n, g) and consider p; € t
sufficiently small. Let & = & + p; and let (&, n;, gi, ©;) be the Type-I deformation
of §,n,8, D).

Lemma6.2 Let p; — 0. Suppose a sequence of T-invariant functions u; €
PSH(M, &;, a)iT) with |d®du;|,r < Co converges to u € PSH(M,E, wl). Then
|[d®du|,r < Co and we have the following weak convergence of the measure

n

1 n 1
(a)lT + zd<b,~du,~> AN —> <a)T + Edd:'du) A,

Proof By (6.4) and |d®du;|,r < Co, w! + $d®;du; and 0’ + Ld®du; differ by a
term with small L norm, hence we only need to prove that

n

r, 1 " r 1
' + EdCDdul- AR —> o + 5dd>du A .
Note that n; = n/(1 4+ n(p;)) converges smoothly to 7, then the above follows from
the weak convergence of (0! + %dcbdui)” A . O

Next we give a proof of Theorem 3.1 in Sasaki setting, regarding the regularity of
envelop construction.

Lemma 6.3 Assume B > 0 andu,v € PSH(M, £, ') N L>®. If
@) An =Py An, (@) An <UD @) A
then v < u.

Proof By the comparison principle (3.6)

/ D" A sf (@D A
{u<v} {u<v)

Then we have

/ PO=D Ty A 5/ PU=D Tyt A )
{u<v}

{u<v}

@ Springer



1158 W. He, J. Li

It follows that {# < v} has zero Lebesgue measure and v < u almost everywhere with
respect to Lebesgue measure. Moreover, we have v < u everywhere on M since they
are w! -plurisubharmonic. O

Using the same computation to the transverse complex Monge—Ampere equation
(as in the complex Monge—Ampere equation [57, p. 99]), we can obtain the following
Laplacian estimate.

Lemma 6.4 Suppose u € 'H is a solution for the equation
(wl{)” An=e (@) AT.

Then

ol

A
A‘DZ logTrwrw,f > » g

0]

T
7 ZBTrwza)

u

where B > 0 is a constant which depends on w.

Theorem 6.2 Given f € C3’ (M), then we have the following estimate

1Pl i < CM, o, g, I fllor)-

Moreover, ifuy, ..., ur € Ha, where we use the notation
Ha = f{u € PSHIM, £, ") : |lullcii < o0}

then P(uy, ..., u;) € Ha.

Proof The first result was proved by Berman—Demailly [8] in Kihler setting. Since
all quantities are basic and only transverse Kéhler structure is involved, the argument
as in Kdhler setting has a direct adaption; see [30, Theorem A.7] for details in Kéhler
setting.

For each > 0, consider the equation

n .
(wfﬁ) Ay = PU=D Ty A, (6.5)
This reads locally

det(g/s +up; ;)

- — Pup—=1)

det(g;5)
The transverse version of Aubin—Yau theorem implies that there exists a unique solu-
tion ug for any B > 0 and a smooth function f. The unique solution ug satisfies the

following:
lug = P(Nllco = 0, — o0 (6.6)
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and there exists Sy > 0 and a uniform constant C such that 8 > By,
—n <A ug<C. (6.7)

To prove (6.6), we choose xo € M such that ug — f obtains its maximum at xg.
Combining with Eq. (6.5), we have

V—=10p9p(f —up) = 0
and

1 (op)"An 1 (@)"An
up — f=—2log ——-— < —log ——
B~ (@) An T B T (@) AR

at xg. It follows that

C
Mﬁ—gff

(@) A1y
on M where C = sup,, log 0

wl Y An

. By the definition (3.24) we have

C
up = PO = % 6.8)

On the other hand, we choose v € H and L > 0 such that

T

T
w, > Lo’ andv < f.

One can choose B; > 2 such that ¢ = % < 1 forall B > By. Take B =

max{%, B1}, then for any B > B, we have
0<8,e<1lande Pe<s"L"
where § = % It follows that
use =1 —-8)P(f)+év—e=<f—¢
and

T
(wué,e

YA = 8Nl = "L (@) An = e Pl An = P DT A

By Eq. ((6.5)) and Lemma (6.3), we have

Use = (1—%) P<f>+§— znlggﬁ < ugp
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and
B 2nlog B 1 .
P(f) < = ﬁ+ 51 _ﬁ—llzrllxlfv'
Combined with Eq. ((6.8)) we can derive that
;mfv—gs f_2n1';)gﬂ u,g—P(f)<% (6.9)

for B > B>. Then (6.6) follows immediately. _
Itis standard to deduce the lower bound in (6.7) from the fact ol +/—1050 5u g =
0. By Eq. ((6.5)) and Lemma 6.4, we have

A (upg — f)

T

T o A®, T
2BTr,r " + A “flogTr rw,, > B
“p A TI'wTCL)ﬁ

It follows that

Tr, T(,() —2n — ' f

T
Trwr wp

2B+ A ”ﬂ(logTr rw,, — Bug) > p

and

BTr,rwl e B < pn + AC" fyeBu

T
+[2nB 4+ A5 log(Terwgﬂe_B“ﬂ)]Trwrquﬂe_B“ﬂ.

Assume that Tr,r o] 5 e~ Bus obtains its maximum s at x; € M and C; = sup,,(2n +

A" f), then we have
Bs < BCre Bustc) 4 2 Bs.

By the inequality (6.9) and P( f) = f, ug is uniformly bounded. Hence we obtain
an upper bound for Tr,rw, e‘B”ﬁ if B > Bo = max{3nB, B>}. We conclude that

A®"ug < C for B = .

The first statement follows from (6.6) and (6.7).

For the second statement, first note that we only need to show that if uq, u; € Ha,
then P(up,u1) € Ha. Let u; be the geodesic segment connecting ug, 11, then by
Lemma 3.9, we know that u; € Ha (see [8] and [47] for Kéhler setting). Now
we have already known P(ug,u1) = inf,¢o,1;u;, then by [31, Proposition 4.4]
(applied to each foliation chart), Au; is uniformly bounded. This shows that P (uq, u1)
(S] HA. O

up
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More generally1 one can obtain results as in [31] that P(fi,..., fn) € C 119’1 given
floeoos fu € Cg’l. The point is that given two functions fi, f2, h = min{ f, f2}
satisfy Ah < max{A fi, A f>} in viscosity sense, writing h = # — M The
argument as in [30, Theorem A.7] applies using the maximum principle in viscosity
sense. Since we do not need this, we shall skip the details.

Complex Monge-Ampere Operator and Intrinsic Capacity on Compact Sasaki
Manifolds

We discuss briefly the Bedford—Taylor theory on Sasaki manifolds. For details for
complex Monge—Ampere operator, see Bedford—Taylor [2]. We also extend intrinsic
Monge—Ampere capacity to Sasaki setting, see [43] for Kihler setting.

Given a Sasaki structure, there is a splitting of tangent bundle TM = L ® D,
where D = Ker(), with ® : D — D inducing a splitting D ® C = D10 @ D1,
Hence the subbundle A%?(D*) of A%” M is well defined and ® induces a splitting to
give bidegree of forms in A2?(D*). Note that we have the following,

A’P(D*) =1{0:0 € A*’ M, 1:0 = 0.

We do not assume that & € A%P(D*) is basic. That is, the coefficients of 6 might not be
invariant under the Reeb flow. A simple observation shows that if 6 € A% (D*), then
0 is basic if it is closed, d6 = 0 (since (g6 = 0). Hence a closed 2 p-form in A2P (D¥)
is basic and can be regarded as a transverse closed 2 p-form, defined as in [58]. In
general, d A*P(D*) is not in A>P+1(D*).

Next, we give a very brief discussion of transverse positive closed currents of
bidegree of (p, p) on M, 0 < p < n; see [58] for similar treatment. We simply treat
them as closed differential forms of bidegree (p, p) in A2P(D*) with measurable
coefficients which are invariant under the Reeb flow. Its total variation is controlled
by

17| ::/ T A (@) P An.
M

Given ¢ € PSH(M, £, "), we write ¢ € L!(T) if ¢ is integrable with respect to
the measure T A (w!)"~P A 5. In this case, the current ¢T is well defined and we
write

wp AT := ' AT +ddG(¢T)
wp AT A (@) PV A =T A @)™ P A +ddS(dT) A (@7 )" P~ A,

The positivity is a local notion and we simply think 7" as a positive closed (p, p)-form
on each foliation chart. Hence wy A T is also a transverse closed positive (p+1, p+1)
form. Note that we think transverse positive closed currents of bidegree of (p, p)-
type as a linear functional on A"~7-"~P(D*), hence the test forms are of bidegree
(n — p,n — p). A main point is that test forms are not restricted to basic forms. In
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other words, given such a current 7 and y € A"~ P"~P(D*), we have the following
pairing:

y—>/ y AT An.
M

When ¢ € PSH(M, &, w’) N L™, it follows that ¢ € LY(T) for any transverse
positive closed current 7 of bidegree (p, p) and hence one can define inductively
a)(];S A (@)K, in particular, this leads to the definition of transverse complex Monge—
Ampere operator w(’; of bidegree (n, n). Moreover, the cocycle condition on transverse

Tyn=k is well defined on M. In particular,

holomorphic structure ensures that a)if> A(w
a)g A n defines a positive Borel measure on M.

It is more convenient to consider this construction locally in foliations charts W,, =
(=4, 8) x V. By taking test forms y € A"~P-"~P(D*) with compact support, we can
consider T' A n on a foliation chart for a transverse positive closed (p, p) current 7.
In particular, this give a local description of the complex Monge—Ampere measures

a)(]; A(wT)"=% An. By taking test functions f supported in a foliation chart, the measure
a);f5 A (a)T)"_k An for each k is regarded as the product measure cu]q‘5 A (a)T)"_k Adx on

Wy, where & = 0, is the Reeb direction. Note that a)g A (@F)"* is defined on V,, as
the usual way in Kéhler setting, and the cocycle condition on transverse holomorphic
structure ensures that a):f5 A (@T)"=* is well defined as a transverse positive closed
current of bidegree (n, n). On each foliation chart, we have a)’d‘) A (@D)"=k A n =
w(]; A (@T)"* A dx as a product measure. This coincides with the local description
given by van Coevering [58, Section 2].

Moreover, when u, v € PSH(M, £, oT) N L™, du A d%v AT can also be defined,
where T is a transverse closed positive current of bidegree (n — 1,n — 1). By the
polarization formula we only need to define du A dGu A T. By adding a positive

constant if necessary, we assume # > 0. Then we define
c . 1 c (.2 c
du ANdgu AT := EddB(” AT —uddzu A T. (6.10)

In particular, du A dyu A T is positive if T is a transverse closed positive current of
bidegree (n — 1,n — 1). We can then define du A dzu A T A n as a positive Borel
measure. Using the polarization formula, we have the following Cauchy—Schwarz
inequality, for u, v € PSH(M, &, oT)yN L,

2
5(/ du/\d%u/\TAn) (/ dv/\d%v/\T/\n).
M M

(6.11)
We alsorecord the following Stokes’ theorem in Sasaki setting, and its proof follows the
Bedford-Taylor theory as in Kdhler setting via approximation (Lemma 3.1); see [58,
Theorem 2.3.1, Proposition 2.3.2].

’/ du AdgvAT A
M
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Lemma 6.5 Letu,v,¢ € PSH(M, &, a)T) N L, then for each0 < k < n — 1, we
have

udd$o Ak A (@) A= vddSu Aok A @T)"TF Ay
mo P ¢ m ¢

:—f du /\d%v/\a)g/\(wT)”_k_l/\n.
M

(6.12)

We record a basic inequality in Sasaki setting, usually referred to Chern—Levine—
Nirenberg inequality.

Proposition 6.1 (Chern-Levine-Nirenberg inequalities) Let T be a positive closed
current of bidegree (p, p) onMand ¢ € PSH(M , &, o )NL™. Then lwp AT || = IT]|.
Moreover, if € PSH(M,, &, o) N LY(T), then /S Ll(a)¢, AT) and

IV L1 (7 Awg) = W N1 () + (2max{sup ¢, 0} +sup¢ —inf Q) [|T'[|.  (6.13)
Proof By Stokes’ theorem, we have fM dd%(¢T) A (@")"=P=1 A p = 0, hence
log ATl = f o AT A @)"P A =T
M
To prove (6.13), we first assume i < 0, ¢ > 0. By assumption, ¥ € LI(T), then
1Vl (7 pwg) = f YT Awg A @) P A=Wl
M
4 / —pddy (@T) A @) A,
M
By Stokes’ theorem, we compute
/ —ddG(@T) A (@) P71 A g =/ ddS (=) AT A (@7 P~ Ay
M M
< [ oT A A
M
SSUP¢/ T A@")'™P An=(supp)|T].
M M M
Now suppose sup ¥ > 0. Replacing ¢ by ¢ — inf ¢, we compute
W1 rnay < [ @sp =0T Ay A @7 A,
M
The same argument as above leads to (6.13) for the general case. O
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For a Borel subset E on a Sasaki manifold (M, &, a)T), we define the capacity as
cap,r (E) := sup {[ wp An:g € PSH(M, &, 0"),0<¢ < 1} )
E

It is obvious that cap,,r (U/?LEk) < Z,fil cap,r (Ex) for a sequence of Borel sets
E. We have the following:

Proposition 6.2 Let ¢ € PSH(M, £, ") with0 < ¢ < 1 and v € PSH(M, &, w")
such that v < 0. Then

f —¢w$/\ni/ (—w>(wT)"An+n/ @")" A (6.14)
M M M

Proof We only need to prove (6.14) for canonical cutoffs v, = max{y, —k} (—y
increases to —i and we can apply monotone convergence theorem). We have the
following:

/ —Yrwy An =/ —wkwg‘l A (@7 +v/=1353p¢) A1
M M
Zf —Iﬂkwg_l N /\7’]+/ —I//ka)g_l Av—18353¢/\n
M M
=/ —wkwg”AwUH/ paly ™' A (—v/=T050s Y1) A
M M
5/ —wkwg_l Aol A 7]—1—/ (a),;))”_1 Aol Ap
M M
5/ —1//ka)(’f] Aol /\17+/ (@H" A .
M M

We can then proceed inductively to obtain (6.14). Note that the argument above is a
special case of (6.13). O

Proposition 6.3 Suppose thatu € PSHM , &, wT) andu < 0. Then fort > 0 we have

ca _ 1(/ _ T\n / T\n >
por (< —t}) < ()@ )" An+n | (@) An].
t M M

Proof This is a direct consequence of Proposition 6.2. Denote K; = {u < —t}, then

/w"/\n<l/ —Ywl A7
K, ¢ Tt m ¢

! (f —w(wT>"An+n/(wT)"An).
t M M
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Proposition 6.4 Suppose that uy,u € PSH(M, &, ®T) N L™ and uy decreases to u.
Then for § > 0 we have

cap,r({ux > u+98}) — 0,k — oo.

Proof This proceeds exactly the same as in [43, Proposition 3.7]. We sketch the
argument briefly. We assume Vol(M) = 1 for simplicity. Fix § > 0 and ¢ €
PSH(M, &, w") such that 0 < ¢ < 1. We have

/ a)g/\nffs_l/(uk—u)a);/\n.
{uk>u+38} M

By Stokes’ theorem, we write
/(uk—u)w¢An—/(uk—u)Aw /\a)¢ /\n
/(uk—u)/\dd3¢>/\a) 1/\77
/(uk—u)/\a) /\a)¢ /\n

—/ d(ur —u) Adge /\a)g_1 AT.
M

By the Cauchy—Schwartz inequality, setting fx = ux —u > 0,

2
‘/ d(u — u) A dye Aoy 5/ dfk/\d%fk/\Aa)(’;_l
M

/\77/ d¢/\d%¢/\/\a);_l/\n.
M
We compute
/dd)/\d YN 1/\71—/ ¢ (—dd3¢) A )y "Ap
5[ pw’ Aa)g_l/\nfl.
M

Similarly, we compute

/dfk/\dBfk/\A% An:f felddGu — ddGu) Ay A
M M

5/ Srwy Aa)g_l A.
M
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Combining all these together gives

/(uk—u)w¢An<f(uk—u)Aw /\a)¢ /\n

1/2
(/ (uy — u)quw¢, ) )

Suppose ur — u < cq for a fixed positive constant co > 1. Then we have

12
/I‘w(uk—u)ngn < ﬂ([M(uk—u)/\wT Aa)(’;—l /\77)

12
+</ (uk—u)a)uAa)g_l/\n> )
M

Hence we have
1/2
(ug — u)a)g AN <+/2c (ur —u) A (@7 + o) Ao Ay .
M M ¢

We can proceed inductively by replacing wg by o’ + w, to obtain

1/2)1
/ (up —wwy A = (/2c0)" (/ p —u) A (@' +o,)" A n) :
M M

The dominated convergence theorem implies the right-hand side goes to zero, inde-
pendent of ¢. This completes the proof. O

As a consequence, we have the following:

Theorem 6.3 Let ¢ € PSH(M, &, w"), then for any € > 0 there exists an open subset
O¢ C M such that cap,r(O¢) < € and ¢ is continuous on M — Oe.

Proof By Proposition 6.3 there exists zo > 0 such that cap,(Op) < 5 for the open
subset Og = {u < —tp}. Take the cutoff u;, = max{u, —to} € PSH(M, &, w?), then
there exists a sequence u; € H decreasing to u. By Proposition 6.4, we can choose a
subsequence u; such thatcap,r (0;) < T 577 forthe open subset O; = = {ug;, > u+- }
Then for the open subset O, = U?‘; O; we have cap,r(0) < €. Moreover u K;
converges uniformly to # on M — O, hence u is continuous on M — Ok. O

Remark 6.2 The discussions above are taken from Kéhler setting [43, Section 3]. Note
that in (6.13) it is necessary to replace sup { by max{sup ¥, 0} (similarly one needs

to replace supy ¥ by max{supy ¥, 0} in [43, Proposition 3.1]).

We also need the following uniqueness in Sasaki setting, see [44, Theorem 3.3].
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Theorem 6.4 Suppose u,v € £;(M, &, ) such that
o An =0y A,
then u — v = const.

Proof This follows exactly as in [44, Theorem 3.3] and we sketch the argument. The
first step is that for u € £ (M, &, o) and its canonical cutoffs uj = max{u, —j},
then Vu; € L%(dp ¢) and has uniformly bounded L? norm (see [44, Proposition 3.2]).
We can assume that u < 0 and hence u; < 0. Then for ¢ € PSH(M, &, a)T) N L*®
such that ¢ < 0, we know that, for any basic positive closed of (n — 1, n — 1) type.

/ (=P)o AT =/ (=9)(wp —ddzp) AT =/ (=P)wp AT
M M M
+/ ch>/\dCB¢/\T§/ (—p)wy A T.
M M

T)n—k—l

An inductive argument applies to 7 = a)g A (o , we get that

05/ d@AdgquTg/ (—p)afy A . (6.15)
M M

Taking ¢ = u; in (6.15) and noting that the right-hand side is uniformly bounded, we
get Vu is uniformly bounded in Lz(dug), hence Vu € Lz(d,ug).

We assume thatu, v < —l and Vol(M) = 1.Set f = (u—v)/2andh = (u+v)/2.
We need to establish that V f = 0 by showing that fM df AdGf A (@D "An=0.
If we assume u, v are bounded, then we have

/ dfAadg fFAal ' An < 2/ dfAdS fA0k A" R An = _/ g(a);l—a)ﬁ)/\n,
M M M

(6.16)
where we use the fact that dd} f = (w, — w,)/2. We shall also establish the following
a priori bound, when u, v are bounded,

]/21171

/df/\dgf/\(wT)"lAn§3"</ dedgf/\w;len) . (6.17)
M M

We apply (6.16) and (6.17) to the canonical cutoffs u ;, v; (writing f;, h ; correspond-
ingly and using Proposition 3.15),

lim/ dfi AdSfi A (@) An=0.
M
We can then conclude that
/ df AdSf A @)™ An=0.
M
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This implies that u — v is a constant. To establish (6.17), we need several observations
as follows. First observe that for/ =n —2,...,0,

/ (= A (@72 A < / (=h)(@D)" An <1,
M

where the last inequality follows from —4 < 1 and the normalization of the volume.
We can then apply the following inequality inductively for T = a)il A (@T)"="=1 such
that

/df/\d fAwl /\T/\n<3(/ df Andj f/\a)hAT/\n)l/z, (6.18)
which proves (6.17). Now we establish (6.18). We write
df Ad§ f/\a) =df AdGf Aop —df AdGf AddGh
hence we obtain, integrating by parts,
/ded fAwl /\T/\n_/df/\d fAnopANT An

+/ df/\d%h/\@/\T/\n.
M

By Cauchy-Schwartz inequality, we have

2
<4/ df nd§ f/\wh/\T/\n/ dh

'f df AdGhAwy, AT A
M

ANGh Aop AT A

We can get a similar control

2
‘/ df AdGh Aoy AT A

<4/ df And§ f/\wh/\T/\n/ dh

M
AdGh Awp AT A1

Clearly, we have the following (h <0, § = wﬁl A (0T)r=1=2)
f dh AdGh A wp AS A 5/ (—hwj ASAn < 1.
M M
Combining these estimate altogether we conclude that,
/ df Andj fAwl /\S/\n</ df AdGf Ao AT A

1/2
+2(/ df Andj f/\wh/\T/\n) .
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The last observation is that

1
/df/\d%f/\wh/\S/\n:—/(u—v)(a)v—wu)/\a)h/\S/\n
M 4 Jm

IA

/ (—h)wi AS A < 1.
M
This completes the proof of (6.18) by combining two inequalities above. O

Functionals in Finite-Energy Class £, and Compactness

We discuss briefly well-known functionals in Kihler geometry and their properties over
finite-energy class &1, see [30, Section 3.8]. The energy functionals include Monge—
Ampere energy I and Aubin’s /-functional on &1, see [1,4,5,30] for Kihler setting.

These results have a direct adaption in Sasaki setting. Recall Aubin’s /-functional in
Sasaki setting, for u, v € H

1
I(u,v) = w,, w,) = —‘/ (v —u)(w) — o) A . (6.19)
n Jm
We also recall the J-functional
1
J(u,v) := J(wy, wy) = —'/ (v — u)wf, AN =1y, (v), (6.20)
n.Jm

where the I, (v)-functional is given by

1 - .
Iy, (V) = TR /M(v — u),;wﬁ A ) LN n. (6.21)

We define the I-functional (with the base w!) on H,

1 . k —k
Ir(u) = m/,w“g‘“" NN (6.22)

The I-functional is also called the Monge—Ampere energy, since if t — v; € H is
smooth, then we have (as in Kihler setting),

d]I _ 1 D" 6.23
E(Ut)—m Mvtwv,/\ﬂ- (6.23)

We mention that / is symmetric with respect to «, v but J is not. I, J are both defined
on the metric level, independent of the choice of normalization of potentials u, v; while
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I, (v) depends on the normalization of u, v. When u, v are bounded, then Bedford—
Taylor theory allows to integrate by parts and the /-functional takes the formula

1 n—1 ) ‘
Hwy, wy) = ———— / du—v) AdSw—v) Aol AT AR (6.24)
u v (n+ l)! ]go M B u v

Hence it is non-negative.

We need more information about I-functional, see [30, Section 3.7] for Kihler set-
ting. These properties in Sasaki setting follow in a rather straightforward way given
pluripotential theory extended to Sasaki setting. We include these facts here for com-
pleteness.

Proposition 6.5 Given u, v € PSH(M, &, o) N L™, the following cocycle condition
holds

1 - _
I(u) — I(v) = e kE_O: /M(u — ok A" Ay =1,,v). (6.25)
Moreover, we have I(u) is concave in u in the sense that,
1 n 1 n
— | w—vo, An<Iw) —Iv) <— | (u—v)o, An. (6.26)

As a direct consequence, if u,v € PSH(M,§, a)T) N L such that u > v. Then
T(u) > I(v).

Proof This follows almost identical as in [30, Proposition 3.8], given the pluripotential
theory established in Sasaki setting in the paper. We sketch the argument. When
u, v € H,thisfollows exactly the same as in Kéhler setting, by taking 7, = (1—t)u-+tv
and then use (6.23) to compute directly. When u, v € PSH(M, &, ®T)N L, we then
use uy, vy € H decreasing to u, v (Lemma 3.1), respectively. Using Bedford-Taylor’s

theorem in Sasaki setting [58, Theorem 2.3.1], we proceed exactly as in Kéhler setting
to conclude that I(ux) — I(u), etc. For the estimate (6.26), we compute

/Mm — vl Aoy A= /M<u — 0ol ARy A
+/M(u — V=108 —v) Aol AWl TE Ay
=/M(u — okt A wﬁ_kH AT
_/M\/__m(u_v)/\é(u—v)Awﬁ’l AN

5/ (u — v)a)llj_1 A wﬁ_kﬂ A
M
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Using the estimate inductively for the terms in (6.25) leads to (6.26). Clearly, I(u) is
concave in u given (6.26). O

The monotonicity property allows to define I(x) for u € PSH(M, &, ') through
the limit process, using the canonical cutoffs u; = max{u, —k}

I(u) = kli)n;o T(max{u, —k}).

Though the above limit is well defined, it may equal —oo. It turns out I(u) is
finite exactly on £ (M, &, w’). We record some further properties of I(u) for u e
E1(M, &, wT). The proofs are almost identical and we shall skip the details, see [30,
Propositions 3.40, 3.42, 3.43; Lemma 3.41].

Proposition 6.6 Let u € PSH(M, &, w'). Then —oo < I(u) if and only if u €
E1(M,E, a)T). Moreover,

Luo) — Lu)| < di(uo, ur), uo, ur € E1(M, §, @"). (6.27)
Proposition 6.7 Suppose ug,u; € E(M,E, w') and t — uy is the finite-energy
geodesic connecting uq, u1. Then t — 1(u;) is linear in t. We also have the following
distance formula:

dy(uo, uy) = L(uo) + I(uy) — 2L(P (ug, u1)).

In particular, dy(ug, u1) = l(uo) — W(uy) if ug > uy.
We have the following (see [30, Lemma 3.47])

Lemma 6.6 Suppose u, wl v, vl € & (M, &, a)T) and u’ \ u and vl N\ v. Then the
following hold:

I(u,v) = I(u, max {u, v}) + I (max {u, v}, v). (6.28)

Moreover, lim_, T/, v/ = I(u,v).

Proof By Proposition 3.8, we have
X(w>u)Pmax(u,o) AN = X>u)@y A1
Hence it follows that

1 n n
I (u, max {u, v}) = m /{U>u}(u —v)(w, —wy,) A 7.

Interchange u < v, we get I (v, max {u, v}) = f{u>v}(u —v)(wf] — ) A n. This
proves (6.28). We write

I(uj,vj) =I(uj,max{uj,vj})—i—l(vj,max{uj,vj}).
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Since ng, v_j < max{u’, v/}, we can apply Proposition 3.15 to conclude I/,
max {u/,v/}) — I(u, max{u,v}) and I(v/, max{u’/,v’}) — I(v, max{u,v}),
using the formula (6.19). This completes the proof. O

We have the following well-known inequalities:

Proposition 6.8 Foru,v € PSH(M, &, o) N L*®, we have

’H_ll(u,v) <Ju,v) < HL_HI(M, v).

Moreover, J(u, v) is convex in v since I 7 (v) is concave in v.

Proof This is well known, by direct computation [38, Proposition 4.2.1] for u, v € H.
A direct approximation argument using Lemma 3.1 shows that this can be generalized
foru, v € PSH(M, &, ') N L™. o

The functionals (7, J, I) are well defined for u, v € £{(M, &, wl) [see Proposition
(3.16)]. Note that (6.26) and Proposition 6.8 both hold in £ (M, &, ') (see [4] for
Kihler setting). This follows by an approximation argument applying Proposition
3.15. Next we prove the following, as a direct adaption of [5, Theorem 1.8],

Lemma 6.7 There exists a positive C = C(n) such that for u, v, w € E1(M, &, ),
then
I(u,v) < CUu,w)+ (v, w)). (6.29)

Proof With Lemma 6.6, we only need to argue (6.29) holds for bounded potentials,
with u, v, w replaced by canonical cutoffs uy, vi, wi. The proof follows exactly as
in [5, Theorem 1.8, Lemma 1.9]. and we include the proof for completeness. For
u,v, ¥ € PSH(M, &, oT) N L™, set

1

2
ld(u — v)lly = (/M d(u —v) AdG(u —v) /\a)’f/,_1 A n) .
Using (6.24), it is straightforward to see that

ld(u = )l < TG, v) < 2" Hld( = )l (6:30)

We need the following, there exists a constant C = C (n) foru, v, ¥ € PSHM, &, TN
L*°, we have the following (see [5, Lemma 1.9]),

I = 013 = €I 0 (169! = 10 =) 63D

With (6.31) we prove (6.29). Taking ¢ = ”er”, the triangle inequality gives,
[d(u —v)llgp = ld —w)llg + Id(v — w)llg.
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Using (6.30) and (6.31), we have

I, v) < 2" Yid@ — )13 < CUld@ — w3 + [d — w)[3)
=1 (10, @) 72 4+ 1w, )7V

+ 1@, w7 (1w,)' 7 1w, @),
By Proposition 6.8, we have
I, ¢) <nl(u,v), [(v,¢) <nl,u), [(w,¢) <n(I(w,u)+I(w,v)).
It follows that
I(u,v) <C <I(u, w)zf%1 + 1(v, w)znll) (I(u, pyl=1/2!
I, ) ™V I, w)1—1/2"—1>_

We assume I («, v) > max{/(u, w), I (v, w)} (otherwise we are done). Hence it fol-
lows

1/2}171 1 1
I(u,v) <C\I(u,w)2>! +I(v,w)2""" ).

This is sufficient to prove that
I(u,v) < CUu,w)+ 1, w)).
Now we establish (6.31) (see [5, Lemma 1.9]). First observe that
ld@ = v)lly < ld@ = )iy + ld@ = ¥)lly < L)V + T, )2
Hence we have
ld(u — v)[[5, < 201, ¥) + (v, ¥)).
Hence if 1 (u, v) > I(u, ¥) + I (v, ¥), clearly we have
ld@ — )15, < 201w, ) + 1 (v, %))

< ClI(u,v)/*" <1(u, W' I 4 I, w)l‘znll>. (6.32)

Now we suppose I (u, v) < I(u, ) + I (v, ). Taking ¢ = “er”, we consider
b, := /Md(u —v) Adgp(u—v) /\a)]'/j /\a);_‘n_l A .
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By (6.30), bg < I(u,v) and b,y = ||d(u — v)||%h. We claim that, p =0, -, n — 2,

byt < bp+4/byl (Y, ). (6.33)

We compute
bpy1 —bp = /M d(u —v) AdG @ —v) AddG(y — qb)a)i A wZ—P—Z A
=-— /M du —v) AddG(u —v) AdG (Y — ¢)wi A wg—p—2 AT
== /M d(u —v) A (0 — wy) Adp (Y — ¢)a)§ A wg—P—Z A
Using Cauchy—Schwarz inequality, we compute
‘/ du —v) Aoy, ANd(r — ¢)w£ /\a):;_p—2 A 77‘
M
5 1/2
= (/Md(u—v)/\d%(u—v)/\wu /\wi /\wg_[’_ /\r])

12
x (/M AW — ¢) NG — §) Awy Aol Aaly PTEA n) <2,/bpl (Y, ),

where we have used that w, < 2wy and (6.24). We can get the same estimate for

’/ d(u—v)/\a)v/\d(lp—¢))a)5/\wg_p_2/\n .
M

This establishes (6.33). By Proposition 6.8, we know that
100.9) = (14 DIV, ¢) = U0 + (. v)).
Denote a = (I (yr, u) + I (¥, v)). We write (6.33) as
bpy1 <bp+4bpa,p=0,...,n-2.

Note that by = I(u, v) < a, hence it is evident that b, < Ca. Hence it follows that,
forp=0,...,n—-2,

bpy1 < Cy/bpa.

A direct computation gives that,
o B
bp—1 < Cby, a T,
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This completes the proof. O
More generally, we have the following [30, Proposition 3.48]

Proposition 6.9 Suppose C > 0 and ¢, r,u,v € (M, &, ") satisfies

—C <(¢), I(¥), I(u), I(v), sup ¢, sup ¥, supu, supv < C.
M M M M

Then there exists a continuous function fc : RT™ — RT depending only on C with
fc(0) = 0 such that

< fcU(u,v))

‘/ ¢(w, —wy) Ay
M

’ /M(u — )@l — o) An| < follu,v)). (6.34)

Proof The proof is similar in philosophy as Lemma 6.7 and follows almost identically
as in Kéhler setting, see [30, Proposition 3.48]. Hence we skip the details. O

As a consequence, we have the following [30, Theorem 3.46]:

Theorem 6.5 Suppose uy,u € E/(M, &, o'). Then the following holds:

(1) di(ug,u) — 0 if and only iffM lux — ulwf An — 0and L(ug) — ().
(2) If di(ug, u) — O, then wy A1 — wy, A n weakly and fM lug —ulwl Am— 0
forv eEl(M,S,a)T).

Proof 1f dy(uy,u) — 0, then Propositions 6.6 and 6.9 imply (1) and (2). For the
reverse direction in (1), it follows almost identically as in Kidhler setting, see [30,
Proposition 3.52], using Proposition 6.9 and approximation argument. We sketch the

process. First we have
/ ukaAn—>/ uwl, A 1.
M M

And then one argues that

T(u,up) < (n+1) (H(uk) — I(u) — f (u — up)wl, A n)
M

Hence this shows that 7 (u, u;) — 0. Using Proposition 6.9 and Lemma 6.6, one can
then show

/ |uk—u|a);’/\77,f luk — ulw,, An— 0,k — oo.
M M
This gives the desired convergence di (uy, u) — 0. ]
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As an application of results established above, we have the following compactness
result in Sasaki setting, following [30, Theorem 4.45].

Theorem 6.6 Letu; € £1(M, &, ) be a dy-bounded sequence for which the entropy

sup H(uj) < oo.
J

Then {u } contains a dy-convergence sequence.

Proof We sketch the proof for completeness; for details see [30, Theorem 4.45]. First d;
bounded implies that I and sup u are both bounded. Together with Proposition 3.4, this
implies that d; bounded set is precompactin L ! Thatis, there exists u € £ (M, &, »?)
such that after passing by subsequence,

/ lug — ul(@")" Ap — 0.

M

Moreover, we have (see [30, Proposition 4.14, Corollary 4.15])
lim sup I(uy) < I(u).

Since all elements in (M, &, o) have zero Lelong number, we apply Zeriahi’s
uniform version of the famous Skoda integrability theorem [59] (we apply Zeriahi’s
theorem in each foliation chart) to obtain: for any p > 1, there exists C = C(p) such
that

/ e P An<C.
M

Since supu; < C, we have

/ Pl An < C.
M

Now we need to use the assumption that H (u;) is uniformly bounded above. We
proceed as in the proof of [30, Theorem 4.45] to conclude

n
/M |uj —u|a)uj An— 0.

By Proposition 6.26 (which holds for &), we can then conclude that lim inf I(x;) >
I(u). This gives lim I(u ;) = I(u). Henced; (u, u) — 0, as aconsequence of Theorem
6.5. O

Finally we have the extension of /C-energy, see [7, Theorem 1.2] for Kéhler setting.
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Theorem 6.7 The KC-energy can be extended to a functional K : £, — R U {4o00}.
Such a K-energy in E' is the greatest di-lIsc extension of K-energy on H. Moreover,
C-energy is convex along the finite-energy geodesics of E'.

Proof As in Kihler setting [19], we can write the KC-energy as the following:
K@) = H(®) + J,r _pic(),

where H (¢) is the entropy part and J is the entropy part, taking the formula, respec-
tively,

H 1 wg/\nd
(¢)—fM 08 iy dve

T
nR " 1 -l
. — = k n—k - . k n—1—k
J]Rw(¢)—(n+1)!/M¢kEOwT/\w¢ AT n!/MqﬁkEOch/\wT/\c% AT

As a direct consequence of this formula, K(¢) is well defined for ¢ € Ha. More
importantly, for ¢o, 1 € H, and ¢, € Ha being the geodesic connecting ¢g, ¢1,
K (¢,) is convex with respect to ¢ € [0, 1].

Now we extend H (¢) and J_g;. to & separately. As in [7], the extension of J_g;c
to & is dj-continuous, while since dj(uy, u) — 0 implies that w;k AN — O An
weakly (Theorem 6.5), this implies that the extension of ¢ — H(¢) to &; is d; Isc.
Moreover, by [49, Lemma 5.4], the extension of K is the greatest Isc extension. In the
end, the convexity of the extended /C-energy along the finite-energy geodesic segments
follows exactly as in [7, Theorem 4.7]. O
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