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Abstract
We prove global existence of Yamabe flows on non-compact manifolds M of dimen-
sion m ≥ 3 under the assumption that the initial metric g0 = u0gM is conformally
equivalent to a complete backgroundmetric gM of bounded, non-positive scalar curva-
ture and positive Yamabe invariant with conformal factor u0 bounded from above and
below. We do not require initial curvature bounds. In particular, the scalar curvature
of (M, g0) can be unbounded from above and below without growth condition.

Keywords Yamabe flow · Non-compact · Unbounded scalar curvature ·
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Richard Hamilton’s [12] Yamabe flow describes a family of Riemannian metrics g(t)
subject to the evolution equation ∂

∂t g = −Rg g, where Rg denotes the scalar cur-
vature corresponding to the metric g. This equation tends to conformally deform a
given initial metric towards a metric of vanishing scalar curvature. Hamilton proved
existence of Yamabe flows on compact manifolds without boundary. Their asymptotic
behaviour was subsequently analysed by Chow [7], Ye [21], Schwetlick and Struwe
[17] and Brendle [4,5]. The theory of Yamabe flows on non-compact manifolds is not
as developed as in the compact case. Daskalopoulos and Sesum [8] analysed the pro-
files of self-similar solutions (Yamabe solitons). The question of existence in general
was addressed by Ma and An who obtained the following results on complete, non-
compact Riemannian manifolds (M, g0) satisfying certain curvature assumptions:

• If (M, g0) has Ricci curvature bounded from below and uniformly bounded, non-
positive scalar curvature, then there exists a global Yamabe flow on M with g0 as
initial metric [15].
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• If (M, g0) is locally conformally flat with Ricci curvature bounded from below
and uniformly bounded scalar curvature, then there exists a short-time solution to
the Yamabe flow on M with g0 as initial metric [15].

• If (M, g0) has non-negative scalar curvature Rg0 (possibly unbounded from above)
and if the equation −�g0w = Rg0 has a non-negative solution w in M , then there
exists a global Yamabe flow on M with g0 as initial metric [14].

More recently, Bahuaud and Vertman [1,2] constructed Yamabe flows starting from
spaces with incomplete edge singularities such that the singular structure is preserved
along the flow. Choi, Daskalopoulos and King [6] were able to find solutions to the
Yamabe flow on R

m which develop a type II singularity in finite time.
In dimension m = 2, where the Yamabe flow coincides with the Ricci flow, Giesen

and Topping [10,18,19] introduced the notion of instantaneous completeness and
obtained existence and uniqueness of instantaneously complete Ricci flows on arbi-
trary surfaces. In particular, they do not require any assumptions on the curvature of
the initial surface in order to prove existence of solutions. It is natural to ask whether
Giesen and Topping’s results generalise to non-compact manifolds of higher dimen-
sion.

In [16], the author obtained existence of instantaneously complete Yamabe flows
on hyperbolic space of arbitrary dimension m ≥ 3 provided the initial metric is
conformally hyperbolic with conformal factor and scalar curvature bounded from
above. The goal of this paper is to construct complete Yamabe flows on non-compact
manifolds M of dimension m ≥ 3 starting from some complete initial metric g0 but
without any curvature assumption on (M, g0). In particular, the initial scalar curvature
Rg0 : M → R is allowed to be unbounded fromabove and below. Insteadwe assume g0
to be conformally equivalent to some “well-behaved” backgroundmetric gM onM and
only require pointwise bounds on the conformal factor u0 characterising g0 = u0gM .
More precisely, we prove the following statement.

Theorem 1 Let (M, gM ) be a complete, non-compact Riemannian manifold of dimen-
sionm ≥ 3with positive Yamabe invariant and non-positive, bounded scalar curvature
−κ2 ≤ RgM ≤ −κ1 ≤ 0. Let g0 = u0gM be any conformal metric on M with con-
formal factor u0 ∈ C2,α(M) for some 0 < α < 1 allowing constants c1, c2 such
that

0 < c1 ≤ u0 ≤ c2 < ∞.

Then, there exists a global Yamabe flow (g(t))t∈[0,∞[ on M satisfying

(1) g(0) = g0 in the sense that g(t) → g0 locally in C2 as t ↘ 0,
(2) (κ1t + c1) gM ≤ g(t) ≤ (κ2t + c2) gM for every t > 0,
(3) Rg(t) ≥ − 1

t for every t > 0.

Remark Typical examples of backgroundmanifolds (M, gM ) satisfying the hypothesis
of Theorem 1 are Euclidean space (Rm, gRm ) with RgRm ≡ 0 and hyperbolic space
(H, gH) with RgH ≡ −m(m − 1). We verify positivity of their Yamabe invariant in
Lemma 2.2.
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1 Local Existence

Let g0 = u0gM be any conformalmetric on (M, gM ). Since theYamabe flowpreserves
the conformal class of the initial metric, any Yamabe flow (g(t))t∈[0,T ] on M with
g(0) = g0 is given by g(t) = u(·, t) gM with some function u : M×[0, T ] → ]0,∞[.
Let

η := m − 2

4

where m = dim M ≥ 3 and U = uη. Then, the metric g = ugM has scalar curvature

Rg = U−m+2
m−2

(
RgMU − 4m−1

m−2�gMU
)
.

Hence, the conformal factor u is subject to the evolution equation

∂u

∂t
= −uRg = −u1−

m+2
4

(
RgM u

η − 4m−1
m−2�gM u

η
)

= −RgM + m−1
η

u−η�gM u
η

= −RgM + (m − 1)
(
u−1�gM u + (η − 1)u−2|∇u|2gM

)

which can also be expressed in the form

1

η + 1

∂U 1+ 1
η

∂t
= −RgMU + m − 1

η
�gMU . (1)

Let Br ⊂ M denote the openmetric ball of radius r around some origin p0 ∈ M and let
M1 ⊂ M2 ⊂ . . . ⊂ M be an exhaustion of M with smooth, open, connected, bounded
domains such that Bk ⊂ Mk ⊂ Bk+1 for every k ∈ N. Fix any radius 4 < k ∈ N. Let
ϕ : M → [0, 1] be smooth with compact support in Bk such that ϕ|Bk−1 ≡ 1. Under
the assumption u0 ∈ C2,α(Mk) for some 0 < α < 1 and c1 := infM u0 > 0 we
consider

ů0 := (1 − ϕ)c1 + ϕ u0 (2)

as initial data for the Yamabe flow equation on Mk . In particular, 0 < ů0 ∈ C2,α(Mk)

coincides with u0 in Bk−1 and takes the constant value c1 in some neighbourhood of
∂Mk as illustrated in Fig. 1. As parabolic boundary data, we choose

φ(x, t) := c1 − t RgM (x). (3)

Then, since ů0 and φ satisfy the first-order compatibility conditions, there exists some
T > 0 (which a priori depends on k) and a solution 0 < u ∈ C2,α;1, α

2 (Mk × [0, T ])
of

123



Yamabe Flow on Non-compact Manifolds with Unbounded... 4181

Fig. 1 Initial data ů0 for problem (4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

m − 1

∂u

∂t
= −RgM

m − 1
+ �gM u

u
+ (m − 6)

4

|∇u|2gM
u2

in Mk × [0, T ],
u = φ on ∂Mk × [0, T ],
u = ů0 on Mk × {0}.

(4)

In [16, Lemma 1.1], the author gives a detailed proof of this short-time existence
result for bounded domains in hyperbolic space using the inverse function theorem
on Banach spaces. This approach generalises to smooth, bounded domains Mk in any
Riemannian manifold.

Lemma 1.1 (Upper and lower bound) Let 0 < u ∈ C2;1(Mk × [0, T ]) be a solution
to problem (4) with boundary data (3) and initial data (2). If the background scalar
curvature satisfies 0 ≤ κ1 ≤ −RgM ≤ κ2 in Mk, then

c1 + κ1t ≤ u(·, t) ≤ c2 + κ2t

for every 0 ≤ t ≤ T , where we recall c1 = inf u0 and c2 = sup u0.

Proof Equation (4) implies that the function w(·, t) = u(·, t) − c1 − κ1t satisfies

1

m − 1

∂w

∂t
− �gMw

u
− (m − 6)

4u2
〈∇u,∇w〉gM = −RgM − κ1

m − 1
≥ 0. (5)

Since u > 0, equation (5) is uniformly parabolic. Moreover, we have w ≥ 0 on
(∂Mk × [0, T ]) ∪ (Mk × {0}). Hence, the linear parabolic maximum principle (see
[16, Prop. A.2]) implies w ≥ 0 in Mk × [0, T ]. The proof of the upper bound is
analogous. ��
Lemma 1.2 (Global existence on bounded domains) If the background scalar cur-
vature satisfies 0 ≤ κ1 ≤ −RgM ≤ κ2 in Mk, then there exists a unique solution
0 < u ∈ C2,α;1, α

2 (Mk×[0,∞[) to problem (4)with boundary data (3) and initial data
(2).
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4182 M.B. Schulz

Proof We invoke the same argument as in [16]. First we show that two positive solu-
tions u, v ∈ C2,α;1, α

2 (Mk × [0, T ]) of problem (4) with equal initial and boundary
data must agree. We have

1

m − 1

∂

∂t
(u − v) = �gM u

u
− �gM v

v
+ m − 6

4

( |∇u|2gM
u2

− |∇v|2gM
v2

)

= �gM (u − v)

u
+ m − 6

4u2
〈∇(u + v),∇(u − v)〉gM

− �gM v

uv
(u − v) − m − 6

4

|∇v|2gM
u2v2

(u + v)(u − v)

which can be considered as linear parabolic equation for u − v with bounded coeffi-
cients because u, v ∈ C2,α;1, α

2 (Mk × [0, T ]) are uniformly bounded away from zero
and from above by Lemma 1.1 and because |∇u|, |∇v|, �v are bounded functions in
Mk . Since (u−v) vanishes along (Mk×{0})∪(∂Mk×[0, T ]), the parabolic maximum
principle (see [16, Prop A.2]) implies u − v = 0 in Mk × [0, T ] as claimed.

It remains to show that the solution can be extended globally in time. Let T∗ > 0
be the supremum over all T > 0 such that problem (4) has a solution defined in
Mk × [0, T ]. As shown above, two such solutions agree on their common domain.
Therefore, there exists a solution u defined on Mk × [0, T∗[. Suppose T∗ < ∞. The
functionU = uη for η = m−2

4 satisfies equation (1)which can bewritten in divergence
form

1

m − 1

∂uη+1

∂t
= − (η + 1)RgM

(m − 1)u
uη+1 + divgM

(1
u

∇uη+1
)
. (6)

Since |RgM | ≤ κ2 and since 0 < c1 ≤ u ≤ c2 + κ2T∗ by Lemma 1.1, equation (6)
can be interpreted as linear parabolic equation with uniformly bounded coefficients.
Hence, parabolic DeGiorgi–Nash–Moser theory [20, §4] applies and yields

‖uη+1‖
C0,α;0, α

2 (Mk×[0,T∗]) ≤ C(m, c1, c2, κ2, T∗)

for some Hölder exponent 0 < α < 1 and some constant C depending only on
the indicated constants. Together with Lemma 1.1 we conclude, that 1

u is Hölder
continuous and apply linear parabolic theory [13, § IV.5, Theorem 5.2] to obtain

‖uη+1‖
C2,α;1, α

2 (Mk×[0,T∗]) ≤ C ′(m, c1, c2, κ2, T∗).

Hence, u(·, T∗) ∈ C2,α(Mk) are suitable initial data for problem (4). The boundary
data (3) are defined also for t ≥ T∗ and are compatible with u(·, T∗) at time T∗.
Therefore, we can extend the solution in contradiction to the maximality of T∗. ��
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2 Scalar Curvature Estimates

We assume the background scalar curvature to satisfy 0 ≤ κ1 ≤ −RgM ≤ κ2 in
M . From section 1 we recall the exhaustion of M with smooth, connected, bounded
domains M1 ⊂ M2 ⊂ . . . ⊂ M such that Bk ⊂ Mk ⊂ Bk+1 for every k ∈ N. By
Lemma 1.2 there exists a unique solution uk : Mk × [0,∞[ → ]0,∞[ of problem
(4) for every k ∈ N. The goal of this section is to estimate the corresponding scalar
curvature RugM independently of the index k.

Lemma 2.1 Let u ∈ C2,α;1, α
2 (Mk × [0, T ]) be a solution to problem (4). For every

t ∈ [0, T ], the scalar curvature Rg(t) of the Riemannian metric g(t) = u(·, t)gM
satisfies

Rg(t) ≥ −1

t
in Mk .

Proof Let w(t) = 1
ε+t , where 0 < ε < c1

κ2
is chosen such that Rg(0) > −w(0) in

Mk . In Mk × [0, T ] we can express the scalar curvature in the form Rg = − 1
u

∂u
∂t . In

particular, the choice of boundary data (3) implies

Rg|∂Mk×[0,T ] = − 1

φ

∂φ

∂t
= − −RgM

c1 − t RgM
≥ − 1

c1
κ2

+ t
≥ −w(t) on ∂Mk × [0, T ].

Scalar curvature evolves by (see [7, Lemma 2.2])

∂
∂tRg = (m − 1)�gRg + R2

g in Mk × [0, T ]. (7)

Combined with dw
dt = −w2, we obtain

∂
∂t (Rg + w) − (m − 1)�g(Rg + w) − (Rg − w)(Rg + w) = 0.

Since (Rg − w) ≤ Rg is bounded from above in Mk × [0, T ] and since the operator
�g = 1

u�gM + m−2
2 u−2〈∇u,∇·〉gM is uniformly elliptic, the inequality Rg ≥ −w in

Mk × [0, T ] follows from the parabolic maximum principle (see [16, Prop. A.2]). ��
Integral estimates for the positive part of the scalar curvature can be obtained with

the help of Sobolev-type inequalities. This technique requires the Yamabe invariant
of (M, gM ) to be positive.

Lemma 2.2 (Yamabe invariant) Let (M, g) be a Riemannian manifold with scalar
curvature Rg. Then the Yamabe invariant Y of (M, g) is defined by

Y(M, g) := inf

⎧
⎪⎪⎨

⎪⎪⎩

∫

M
|∇g f |2g dμg + m − 2

4(m − 1)

∫

M
Rg f

2 dμg

(∫

M
| f | 2m

m−2 dμg

)m−2
m

; f ∈ C∞
c (M)

⎫
⎪⎪⎬

⎪⎪⎭
.
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The Yamabe invariants of hyperbolic space (Hm, gHm ), Euclidean space (Rm, gRm )

and the round sphere (Sm, gSm ) coincide. Their value is

Y(Hm, gHm ) = Y(Rm, gRm ) = Y(Sm, gSm ) = m(m − 2)

4
|Sm | 2

m > 0. (8)

Proof TheYamabe invariant is a conformal invariant. Hyperbolic space is conformally
equivalent to the Euclidean ball Br of any given radius r > 0. Via stereographic
projection, the sphere minus a point is conformally equivalent to (Rm, gRm ). The H1-
capacity of a point vanishes. Hence, a minimising sequence for Y(Hm, gHm ) yields
competitors for Y(Sm, gSm ) and vice versa. Since RgSm = m(m−1), the claim follows
if we use that Y(Sm, gSm ) is attained for constant functions f (see [3,9]). ��

If the Yamabe invariant is positive, then its definition leads to a Sobolev-type
inequality. Let g = ugM be any conformal metric on (M, gM ). Let B ⊂ M be
open and f ∈ C1

c (B). Computing

|∇g f |2g = 1
u |∇gM f |2gM (9)

and denoting Y := Y(M, gM ), we obtain

∫

B
|∇g f |2g dμg =

∫

B
|∇gM f |2gM u

m
2 −1 dμgM

≥ inf
B
u

m
2 −1

∫

M
|∇gM f |2gM dμgM

≥ inf
B
u

m
2 −1

(
Y

(∫

M
| f | 2m

m−2 dμgM

)m−2
m

− (m − 2)

4(m − 1)

∫

M
RgM f 2 dμgM

)
. (10)

As in Lemma 1.1 we will assume henceforth that the background manifold (M, gM )

has scalar curvature RgM satisfying

0 ≤ κ1 ≤ −RgM ≤ κ2 < ∞. (11)

Lemma 1.1 is the main reason for assumption (11) but it also allows us to drop the
second term in (10) because of its sign to obtain the Sobolev inequality

∫

B
|∇g f |2g dμg ≥

( infB u

supB u

)m−2
2

Y
(∫

B
| f | 2m

m−2 dμg

)m−2
m

. (12)

Lemma 2.3 Given k > 4, let u be the solution to problem (4) in Mk × [0,∞[ and let
Rg(t) be the scalar curvature of the Riemannian metric g(t) = u(·, t)gM in Mk. Let
0 < r0 < k − 4 and 1 < T < ∞ be fixed and let p > 1 be any exponent. Then, for
every t ∈ [0, T ], the positive part R+(x, t) = max{0,Rg(t)(x)} satisfies
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∫

Br0

Rp
+(·, t) dμg(t) ≤ C

where the constant C depends on r0, T and p but not on k.

Proof For any exponent p > 1 and any ψ ∈ C∞
c (Mk), we have

∂

∂t

∫

Mk

ψRp
+ dμg

= p
∫

Mk

ψRp−1
+

(
R2 + (m − 1)�gR

)
dμg − m

2

∫

Mk

ψRp
+R dμg

= (p − m
2 )

∫

Mk

ψRp+1
+ dμg + p(m − 1)

∫

Mk

ψRp−1
+ �gR dμg

= (p − m
2 )

∫

Mk

ψRp+1
+ dμg (13)

+ (m − 1)
(
−

∫

Mk

〈∇ψ,∇Rp
+〉g dμg − 4(p − 1)

p

∫

Mk

ψ |∇R
p
2+|2g dμg

)
. (14)

The strategy of the proof is as follows.

Step 1. If 1 < p < m
2 then the negative sign of (13) leads to a bound uniformly in k.

Step 2. We use the estimate obtained in the first step to deal with the case p = m
2 .

Step 3. The bound from the second step can be extended to p = β m
2 for some β > 1.

Step 4. Using the estimate for p = β m
2 we obtain a bound with any exponent p > m

2 .

In each step we choose a different cutoff function ψ and apply different estimates to
control the terms in (13) and (14). Young’s inequality appears frequently in either of
the following forms.

∀a, b ≥ 0 ∀0 < s < 1 : asb1−s ≤ sa + (1 − s)b, (15)

∀b, c ≥ 0 ∀x ∈ R : bx − cx2 ≤ b2
4c . (16)

Step 1. Let ϕ1 ∈ C∞
c (Br0+4) be a cutoff function such that 0 ≤ ϕ1 ≤ 1, such that

ϕ1|Br0+3 ≡ 1 and such that |∇ϕ1|gM ≤ 2. Given 1 < p < m
2 , we set

ψ1 = ϕ
2(p+1)
1 .

This cutoff function has the property that

|∇ψ1|2gM ≤(
4(p + 1)

)2
ϕ
4p+2
1 =(

4(p + 1)
)2

ψ
1+ p

p+1
1 .

Choosing ψ = ψ1 and recalling

|∇ψ1|2g = 1

u
|∇ψ1|2gM
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the terms in (14) can be estimated as follows using Young’s inequality and Hölder’s
inequality:

−
∫

Mk

〈∇ψ1,∇Rp
+〉g dμg − 4(p − 1)

p

∫

Mk

ψ1|∇R
p
2+|2g dμg

≤ p

4(p − 1)

∫

Mk

|∇ψ1|2g
ψ1

Rp
+ dμg

≤ 4p(p + 1)2

(p − 1)

∫

Br0+4

ψ

p
p+1
1

u
Rp

+ dμg

≤ 4p(p + 1)2

(p − 1)

(∫

Br0+4

u
m
2 −p−1 dμgM

) 1
p+1

(∫

Mk

ψ1R
p+1
+ dμg

) p
p+1

≤ (4p(p + 1)2)
p+1

(p + 1)λp(p − 1)p+1

(∫

Br0+4

u
m
2 −p−1 dμgM

)
+ λp

p + 1

(∫

Mk

ψ1R
p+1
+ dμg

)

(17)

where the parameter λ > 0 is arbitrary. If we choose 1 < p < m
2 and λ = (m2 −p)(p+1)

(m−1)p ,
then we obtain

∂

∂t

∫

Mk

ψ1R
p
+ dμg ≤ Cm,p

(∫

Br0+4

u
m
2 −p−1 dμgM

)
(18)

with some constant Cm,p depending only on m and p. Moreover, since u(·, t) ≥
c1 + κ1t by Lemma 1.1, the right hand side of (18) is integrable in t ∈ [0, T ] if
1 < p < m

2 . In particular, for p = 2m
5 ∈ ]1, m

2 [ we obtain
∫

Br0+3

R
2m
5+ dμg ≤

∫

Br0+4

|Rg(0)| 2m5 dμg(0) + Cm,r0,T . (19)

Step 2. For any regular, non-negative functions ψ, F and any exponent p, there
holds

|∇(ψF p)
1
2 |2 = | 12ψ− 1

2 F
p
2 ∇ψ + ψ

1
2 ∇F

p
2 |2

= F p

4ψ
|∇ψ |2 + F

p
2 〈∇ψ,∇F

p
2 〉 + ψ |∇F

p
2 |2.

Therefore,

−1

2
〈∇ψ,∇Rp

+〉g = |∇ψ |2g
4ψ

Rp
+ − |∇(ψRp

+)
1
2 |2g + ψ |∇R

p
2+|2g, (20)
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where ψ is a new cutoff function to be chosen. Given p ≥ m
2 ≥ 3

2 , we use (20) to
estimate the terms in (14) by

−
∫

Mk

〈∇ψ,∇Rp
+〉g dμg − 4(p − 1)

p

∫

Mk

ψ |∇R
p
2+|2g dμg

= −1

2

∫

Mk

〈∇ψ,∇Rp
+〉g dμg +

(
1 − 4(p − 1)

p

) ∫

Mk

ψ |∇R
p
2+|2g dμg

−
∫

Mk

|∇(ψRp
+)

1
2 |2g dμg + 1

4

∫

Mk

|∇ψ |2g
ψ

Rp
+ dμg

≤ −
∫

Mk

|∇(ψRp
+)

1
2 |2g dμg +

∫

Mk

|∇ψ |2g
ψ

Rp
+ dμg

where we used (1 − 4(p−1)
p ) ≤ − 1

3 and applied Young’s inequality in the form (16).
Consequently, for any p ≥ m

2

∂

∂t

∫

Mk

ψRp
+ dμg ≤ (p − m

2 )

∫

Mk

ψRp+1
+ dμg − (m − 1)

∫

Mk

|∇(ψRp
+)

1
2 |2 dμg

+ (m − 1)
∫

Mk

|∇ψ |2g
ψ

Rp
+ dμg. (21)

Let ϕ2 ∈ C∞
c (Br0+3) be a cutoff function such that 0 ≤ ϕ2 ≤ 1, such that ϕ2|Br0+2 ≡ 1

and such that |∇ϕ2|gM ≤ 2. Given 0 < α < 1, we set ψ2 = ϕ
2

1−α

2 . Then,

|∇ψ2|2g = 1

u
|∇ψ2|2gM ≤ 1

c1

( 4

1 − α

)2
ϕ

4
1−α

−2
2 = 1

c1

( 4

1 − α

)2
ψ1+α
2 .

With this choice of ψ2 and any λ > 0, Hölder’s inequality and Young’s inequality in
the form (15) yield

∫

Mk

|∇ψ2|2g
ψ2

Rp
+ dμg

≤ 1

c1

( 4

1 − α

)2 ∫

Mk

ψα
2 R

p
+ dμg

≤ 1

c1

( 4

1 − α

)2(∫

Mk

(ψ2R
p
+)

m
m−2 dμg

)m−2
m α(∫

Br0+3

R
p 1−α

1−m−2
m α

+ dμg

)1−m−2
m α

≤ αλ
(∫

Mk

(ψ2R
p
+)

m
m−2 dμg

)m−2
m

+ (1 − α)λ− α
1−α c

− 1
1−α

1

( 4

1 − α

) 2
1−α

(∫

Br0+3

R
p 1−α

1−m−2
m α

+ dμg

) 1−m−2
m α

1−α
. (22)
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Restricting to the case p = m
2 , we choose α = m

m+8 such that 1−α

1−m−2
m α

= 4
5 . Then we

choose λ > 0 such that

αλ ≤
( inf u

sup u

)m−2
2

Y,

where we again depend on the uniform upper and lower bound on u from Lemma 1.1.
With these choices and the Sobolev estimate (12), we obtain

∂

∂t

∫

Mk

ψ2R
m
2+ dμg ≤ C

(∫

Br0+3

R
2m
5+ dμg

) 5
4
.

In particular, using (19) from step 1, we conclude

∫

Br0+2

R
m
2+ dμg ≤ Cm,r0,T . (23)

Step 3. Let ψ3 ∈ C∞
c (Br0+2) be a cutoff function such that ψ3|Br0+1 ≡ 1. This step is

based on the estimate

(p − m
2 )

∫

Mk

ψ3R
p+1
+ dμg ≤ (p − m

2 )
(∫

Br0+2

R
m
2+ dμg

) 2
m
(∫

(ψ3R
p
+)

m
m−2 dμg

)m−2
m

.

By step 2, ‖R+‖
L

m
2 (Br0+2)

is bounded uniformly in k. If p = β m
2 with β > 1 suffi-

ciently close to 1, then

(p − m
2 )‖R+‖

L
m
2 (Br0+2)

≤ m − 1

2

( inf u

sup u

)m−2
2

Y

and we can conclude as in step 2.
Step 4. Let ϕ4 ∈ C∞

c (Br0+1) be a cutoff function such that 0 ≤ ϕ4 ≤ 1, such

that ϕ4|Br0 ≡ 1 and such that |∇ϕ4|gM ≤ 2. As in step 2, we set ψ4 = ϕ
2

1−α

4 with
0 < α < 1.

We apply Lemma 2.2 to estimate (21) and obtain

∂

∂t

∫

Mk

ψ4R
p
+ dμg

≤ (
p − m

2 + m−2
4

) ∫

Mk

ψ4R
p+1
+ dμg − (m − 1)Y

(∫

Mk

(ψ4R
p
+)

m
m−2 dμg

)m−2
m

+ (m − 1)
∫

Mk

|∇ψ4|2g
ψ4

Rp
+ dμg. (24)
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As in shown in (22) we have

∫

Mk

|∇ψ4|2g
ψ4

Rp
+ dμg ≤ αλ

(∫

Mk

(ψ4R
p
+)

m
m−2 dμg

)m−2
m

+ (1 − α)λ− α
1−α c

− 1
1−α

1

( 4

1 − α

) 2
1−α

(∫

Br0+1

R
p 1−α

1−m−2
m α

+ dμg

) 1−m−2
m α

1−α
(25)

for any λ > 0. This time we choose 0 < α < 1 depending on m and p such that

p
1 − α

1 − m−2
m α

= m

2
.

Then we choose λ = 1
2α Y > 0. Let β > 1 as in step 3. Hölder’s inequality and

Young’s inequality yield

∫

Mk

ψRp+1
+ dμg

≤
(∫

Mk

(ψRp
+)

m
m−2 dμg

)m−2
m γ (∫

Mk

ψ

1−γ

1−m−2
m γ R

β m
2+ dμg

)1−m−2
m γ

≤ γ δ
(∫

Mk

(ψRp
+)

m
m−2 dμg

)m−2
m + (1 − γ )δ

− γ
1−γ

(∫

Br0+1

R
β m

2+ dμg

) 1−m−2
m γ

1−γ
(26)

where δ > 0 is arbitrary but 0 < γ < 1 must satisfy p + 1 = pγ + β(m2 − m−2
2 γ ).

We solve the equation for

γ = p − β m
2 + 1

p − β m
2 + β

which indeed satisfies 0 < γ < 1 since β > 1, and compute

1 − m−2
m γ

1 − γ
= 2(p − m

2 + 1)

m(β − 1)
.

Finally we chose δ > 0 such that (p− m
2 − m−2

4 )γ δ < 1
2 (m−1)Y and combine (24),

(25) and (26) to

∂

∂t

∫

Mk

ψ4R
p
+ dμg

≤ Cm,p,c1

(∫

Br0+1

R
m
2+ dμg

) 2p
m + Cm,p,r0

(∫

Br0+1

R
β m

2+ dμg

) 2(p−m
2 +1)

m(β−1)
. (27)

With the estimates from steps 2 and 3, the claim follows. ��
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Lemma 2.4 Given k > 4, let u be the solution to problem (4) in Mk × [0,∞[ and let
Rg(t) be the scalar curvature of the Riemannian metric g(t) = u(·, t)gM in Mk. Let
0 < r0 < k − 4 and 1 < T < ∞ be fixed and let p > m

2 be any exponent. Then, for
every t ∈ [0, T ]

∫

Br0

|Rg(t)|p dμg(t) ≤ C

where the constant C depends on r0, T and p but not on k.

Proof In view of Lemma 2.3, it remains to prove a similar estimate for the negative
part R−(x, t) = max{0,−Rg(t)(x)}. Since R = R+ − R−, we have

∂

∂t

∫

Mk

ψRp
− dμg

= p
∫

Mk

ψRp−1
−

(−R2 − (m − 1)�gR
)
dμg − m

2

∫

Mk

ψRp
−R dμg

= (−p + m
2 )

∫

Mk

ψRp+1
− dμg − p(m − 1)

∫

Mk

ψRp−1
− �gR dμg

= (−p + m
2 )

∫

Mk

ψRp+1
− dμg

+ p(m − 1)
(∫

Mk

Rp−1
− 〈∇ψ,∇R〉g + ψ〈∇Rp−1

− ,∇R〉 dμg

)

= (−p + m
2 )

∫

Mk

ψRp+1
− dμg

+ (m − 1)
(
−

∫

Mk

〈∇ψ,∇Rp
−〉g dμg − 4(p − 1)

p

∫

Mk

ψ |∇R
p
2−|2g dμg

)
. (28)

We choose ψ = ϕ2(p+1), where ϕ ∈ C∞
c (Br0+4) satisfies 0 ≤ ϕ ≤ 1, ϕ|Br0 ≡ 1 and

|∇ϕ|gM ≤ 2 as in step 1 of the proof of Lemma 2.3 and estimate (28) as in (17). Thus,

∂

∂t

∫

Mk

ψRp
− dμg

≤
( (m − 1)λp

p + 1
− (p − m

2 )
) ∫

Mk

ψRp+1
− dμg + Cm,p

λp

(∫

Br0+4

u
m
2 −p−1 dμgM

)

where the parameter λ > 0 is arbitrary. Since p > m
2 we may choose λ = (p−m

2 )(p+1)
(m−1)p

to obtain

∂

∂t

∫

Mk

ψRp
− dμg ≤ Cm,p

(∫

Br0+4

u
m
2 −p−1 dμgM

)
.
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Since u ≥ c1 > 0 by Lemma 1.1, we conclude

∫

Br0

Rp
−(·, t) dμg(t) ≤

∫

Br0+4

|Rg(0)|p dμg0 + tCm,r0,p,c1 .

��
Remark Weprove the L p(Br0)-estimates for R+ andR− separately rather than directly
estimating ‖R‖L p(Br0 ) because it is interesting to see that the estimate for the negative
part of scalar curvature is simpler than the estimate for the positive part if p > m

2 .

The sign of the non-linear term (p− m
2 )Rp+1

+ respectively (−p+ m
2 )Rp+1

− makes the
difference.

Proof of Theorem 1 For every k ∈ N, let uk be the solution to problem (4) in Mk ×
[0,∞[. Let Uk = uη

k for η = m−2
4 . Lemmata 1.1 and 2.4 imply that for every fixed

t ≥ 0, the sequence {Uk(·, t)}4<k∈N is bounded in the Sobolev space W 2,p(M1) for
any p > m

2 . In fact, we may apply the Calderon–Zygmund Inequality [11, Theorem
9.11] to the elliptic equation

�gMUk = η

(m − 1)

(
RgMUk −U

1+ 1
η

k RukgM

)

in M1 ⊂ B2. Let T ≥ 1 be fixed. Since

∂Uk

∂t
= −ηUkRukgM ,

we obtain that the sequence {Uk}4≤k∈N is bounded inW 1,p(M1×[0, T ]) for any fixed
p > m

2 . If we choose p = 2(m+1), then Sobolev’s embeddingW 1,p(M1×[0, T ]) ↪→
C0,α(M1 × [0, T ]) is compact for any 0 < α < 1

2 (recall that M1 × [0, T ] is bounded
with Lipschitz boundary) and we obtain a subsequence �1 ⊂ N such that

{Uk |M1×[0,T ]}4<k∈�1

converges inC0,α(M1×[0, T ]) to someV1. In particular, {Uk(·, t)}4<k∈�1 converges to
V1(·, t) inC0,α(M1) for every fixed t ∈ [0, T ]. As observed above, {Uk(·, t)}4<k∈�1 is
bounded inW 2,p(M1)which compactly embeds intoC1,α(M1). Hence, a subsequence
converges inC1,α(M1) and its limitmust beV1(·, t). Thus,V1 ∈ C1,α;0,α(M1×[0, T ]).
Passing to the limit in the weak formulation of equation (1), we conclude that V1 is
a weak solution to equation (1) in M1 × [0, T ]. By parabolic regularity theory, V1 is
actually regular and a classical solution.

We repeat this argument to obtain a subsequence �2 ⊂ �1 such that

{Uk |M2×[0,2T ]}5<k∈�2

converges in C0,α(M2 ×[0, 2T ]) to some solution V2 of equation (1) in M2 ×[0, 2T ].
Iterating this procedure leads to a diagonal subsequence of {Uk}4<k which converges to
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4192 M.B. Schulz

a limitU satisfying theYamabeflowequation (1) inM×[0,∞[.Moreover, the uniform
bounds from Lemmata 1.1 and 2.1 are preserved in the limit and by construction, the
initial condition is satisfied. ��
Acknowledgements This research was supported by the Swiss National Science Foundation under Grant
200020_159925.
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