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Abstract
We study the global Lipschitz character of minimisers of the Dirichlet energy of
diffeomorphisms between doubly connected domains with smooth boundaries from
Riemann surfaces. The key point of the proof is the fact that minimisers are certain
Noether harmonic maps, with Hopf differential of special form, a fact invented by
Iwaniec et al. (InventMath 186:667–707, 2011) for Euclideanmetric and by the author
in Kalaj (Calc Var Partial Differ Equ 51:465–494, 2014) for the arbitrarymetric, which
depends deeply on a result of Jost (in: Yau (ed) Tsing Hua lectures on geometry and
analysis, Taiwan, 1990–91. International Press, Cambridge, 1997).
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1 Introduction and Overview

Let 0 < r < R, 0 < r∗ < R∗ and let X and Y be two domains in the complex plane
C ∼= R2. Let ρ be a continuous function on the closure of Y. The ρ-Dirichlet energy
integral of a mapping h ∈ W 1,2(X,Y) is defined by

E ρ[h] =
∫
X

ρ(h(z))‖Dh(z)‖2dz. (1.1)

The central aim of this paper is to get some boundary regularity of the minimizer of
the ρ-energy integral of homomorphisms from the Sobolev class W 1,2(X,Y).
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The main result of this paper is

Theorem 1.1 Suppose that X and Y are double connected domains in C with C2

boundaries and let ρ ∈ C2(Y) be a real non-vanishing function in the closure of
Y. Then every energy minimizing diffeomorphism of ρ-energy between X and Y is
Lipschitz continuous up to the boundary ofX.However it is not bi-Lipschitz in general.

The paper consist of this section and three more sections.
In the following subsections,wepresent three different types of harmonicmappings.

Further in the Sect. 2 we make some background and reformulate main result in the
therm of harmonicmappings. In Sect. 3 we define the class of (K , K ′)-quasiconformal
mappings and prove that stationary points of the energy take part on this class. In the
Sect. 4 we prove the main result. In the last subsection are performed some precise
calculations of Lipschitz constants for minimisers of energy for radial metrics and
circular annuli.

1.1 Harmonic Mappings

Assume thatX is domain inR2 (for exampleX is homeomorphic to an circular annulus
{x ∈ R2|1 < |x | < R}). The classical Dirichlet problem concerns the energy minimal
mapping h : X → R

2 of the Sobolev class h ∈ h◦ + W 1,2◦ (X,R2) whose boundary
values are explicitly prescribed by means of a given mapping h◦ ∈ W 1,2(X,R2). Let
us consider the variation h � h + εη, in which η ∈ C∞◦ (X,R2) and ε → 0, leads to
the integral form of the familiar harmonic system of equations

∫
X

(
〈∇ρ, η〉 || Dh || 2 + 〈ρ(h)Dh, Dη〉

)
= 0, for every η ∈ C∞◦ (X,R2). (1.2)

Equivalently

Δρh
def== (Div (ρ(h)Dh1) ,Div (ρ(h)Dh1)) − 1

2
|| Dh || 2∇ρ = 0, (1.3)

in the sense of distributions. Here h = (h1, h2). Then by using the complex notation
(1.3) can be written as

τ(h) ≡ hzz + (log ρ)w ◦ h · hz hz̄ = 0. (1.4)

The solutions to the Eq. (1.4) are called weak harmonic mappings or simply harmonic
mapping [see the Remark 1.2, (1) for the explanation].

On the next subsection we derive the general harmonic equation which by using a
different variation as the following.

1.2 General Harmonic Mappings (cf. [5])

The situation is different if we allow h to slip freely along the boundaries. The inner
variation come to stage in this case. This is simply a change of the variable; hε = h◦ηε,
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where ηε : X onto−→ X is a C∞-smooth diffeomorphism of X onto itself, depending
smoothly on a parameter ε ≈ 0 where η◦ = id : X onto−→ X.

Let us take on the inner variation of the form

ηε(z) = z + ε η(z), η ∈ C∞◦ (X,R2). (1.5)

By using the notation w = z + ε η(z) ∈ X, we obtain

ρ(hε)Dhε(z) = ρ(h(w))Dh(y)(I + εDη(z)).

Hence

ρ(hε(z)) || Dhε(z) || 2 = ρ(h(w)) || Dh(y) || 2
+ 2ε ρ(h(w))〈D∗h(w) · Dh(w), Dη〉 + o(ε).

By integrating with respect to x ∈ X we obtain

Eρ[hε] =
∫
X

ρ(hε(z)) || Dhε(z) || 2dz

=
∫
X

[ρ(h(w)) || Dh(w) || 2

+ 2ερ(h(w))〈D∗h(w) · Dh(w), Dη(z)〉] dz + o(ε).

We now make the substitution w = z + ε η(z), which is a diffeomorphism for small
ε, for which we have: z = w−ε η(w)+o(ε), Dη(z) = Dη(w)+o(1),when ε → 0,
and the change of volume element dz = [1 − ε Tr Dη(w)] dw + o(ε). Further
∫
X

ρ(h(w)) || Dh(w) || 2dz =
∫
X

ρ(h(w)) || Dh(w) || 2[1 − ε Tr Dη(w)] dw + o(ε).

The so-called equilibrium equation for the inner variation is obtained from

d

dε

∣∣∣∣
ε=0

Ehε = 0 (1.6)

∫
X

〈
ρ(h)D∗h · Dh − ρ(h)

2
|| Dh || 2 I , Dη

〉
dw = 0 (1.7)

or, by using distributions

Div

(
ρ(h)D∗h · Dh − ρ(h)

2
|| Dh || 2 I

)
= 0. (1.8)

This Eq. (1.8) is known as the Hopf equation, and the corresponding differential is
called the Hopf differential. Since for h(z) = (a(z), b(z)), we have

ρ(h)D∗h Dh − ρ(h)

2
|| Dh || 2 I =

(
U V
V −U

)
,
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where

U = ρ(h)

2

(
a2x + b2x − a2y − b2y

)

and

V = ρ(h)(axay + bxby),

then (1.8) in complex notation takes the form

(Ux +Uy) − i(Vx + Vy) = 0

or what is the same
∂

∂ z̄

(
ρ(h(z))hzhz̄

) = 0, z = x + iy. (1.9)

The solution to (1.9) is called the general ρ-harmonic mapping. Assume that h ∈ C 2

and assume that h satisfies (1.4). Then by direct calculation we obtain

∂

∂ z̄

(
ρ(h(z))hzhz̄

) = ρ(h(z))
(
h̄z · τ(h) + hz · τ(h)

)
= 0.

This implies that every harmonic mapping is general harmonic mapping.

1.3 Noether Harmonic Mappings (cf. [5])

We call a mapping h Noether harmonic if

d

dt

∣∣∣∣
t=0

Eρ
[
h ◦ φ−1

t

]
= 0 (1.10)

for every family of diffeomorphisms t → φt : Y → Y which depend smoothly on the
parameter t ∈ R and satisfy φ0 = id . The latter mean that the mapping Y× [0, ε0] �
(t, z) → φt (z) ∈ Y is a smooth mapping for some ε0 > 0. It is clear by the definition
that every Noether harmonic mapping is general harmonic mapping, and therefore its
Hopf differential is holomorphic. Namely the Eq. (1.10) implies the Eq. (1.6).

In the following remark we summarize the difference between harmonic mappings,
general harmonic mappings and Noether harmonic mappings.

Remark 1.2 Assume that h is a mappings between two domains of the complex plane
C.

(1) Every weak solution to (1.4) which belongs to W 1,2 is smooth (see paper of
Hélein [4] see also the Remark after [10, Definition 1.3.1]), and thus it is a strong
solution of (1.9).Moreover it satisfies the Eq. (1.9), i.e., it is a general ρ-harmonic
mapping.
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(2) There are general harmonic mappings that are not weakly harmonic mappings.
If h ∈ C2 or h ∈ C1 and J (z, h) �= 0 (see [9]) then a general harmonic mapping
is a harmonic mapping.

(3) There are general ρ-harmonicmappings that are not Noether harmonicmappings.
Namely the Hopf differential of Noether harmonic mappings are very special (see
Sect. 1.4 for details).

1.4 Some Key Properties of Noether Harmonic Diffeomorphisms

Two of following key properties of the Noether harmonic mappings are derived in
[13]:

(1) The function ϕ := ρ(g(z))gzgz̄, a priori in L1(X), is holomorphic.
(2) If ∂X is C 1-smooth then ϕ extends continuously to X, and the quadratic differ-

ential ϕ dz2 is real on each boundary curve of X.

Further by using those key properties in [13] it is shown the following statement.
Let X = A(r , R) be a circular annulus, 0 < r < R < ∞, and Y a doubly connected
domain. If g is a stationary diffeomorphism, then

ρ(g(z))gzgz̄ ≡ c

z2
in X, (1.11)

where c ∈ R is a constant.
Throughout this paper M = (X, σ ) and N = (Y, ρ) will be doubly connected

domains in the complex plane C, where ρ is a non-vanishing smooth metric defined
in Y so that:

(1) It has a bounded Gauss curvature K where

K(w) = −Δ log ρ(w)

ρ(w)
;

(2) It has a finite area defined by

A(ρ) =
∫
Y

ρ(w)dudv, w = u + iv;

(3) There is a constant P > 0 so that

|∇ρ(w)| ≤ Pρ(w), w ∈ Y, (1.12)

which means that ρ is so-called approximately analytic function (cf. [3]).

We call such a metric admissible one. The Euclidean metric is an admissible met-
ric. The Riemannian metric defined by ρ(w) = 1

(1+|w|2)2 is admissible as well.

The hyperbolic metric λ(w) = 1
(1−|w|2)2 is not an admissible metric on the unit

disk neither on the annuli A(r , 1)
def== {z : r < |z| < 1}, but it is admissible in
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A(r , R)
def== {z : r < |z| < R}, where 0 < r < R < 1. In this case the Eq. (1.4) leads

to hyperbolic harmonic mappings. The class is particularly interesting, due to recent
discovery that every quasisymmetric map of the unit circle onto itself can be extended
to a quasiconformal hyperbolic harmonic mapping of the unit disk onto itself. This
problem is known as the Schoen conjecture and it was proved by Marković [21].

2 Some Background and Precise Statement of the Results

The primary goal of this paper is to study someLipschitz behaviors of theminimisers of
the functional Eρ[g]. We will study the Lipschitz continuity of the diffeomorphisms
f : X onto−→ Y of smallest ρ-Dirichlet energy where ρ is an arbitrary smooth metric
with bounded Gauss curvature and finite area. Notice first that a change of variables
w = f (z) in (1.1) yields

Eρ[ f ] = 2
∫
X

ρ( f (z))J (z, f ) dz + 4
∫
X

ρ( f (z))| fz̄|2 ≥ 2A(ρ), (2.1)

where J (z, f ) is the Jacobian determinant of f at z and A(ρ) is the area of Y. A
conformalmapping f : X onto−→ Y,which exists due to the celebratedRiemannmapping
theorem; that is, a homeomorphic solution of the Cauchy–Riemann system fz̄ = 0,
is an obvious minimiser of (2.1). The boundary behaviors of conformal mappings
between planar domains are well-established. We refer to the book of Pommerenke
[23]. Two results that are of broad interest are

(1) the Carathéodory theorem, which states that every conformal mapping between
two Jordan domains has a continuous extension to the boundary;

(2) the results of Warschawski’s and Kellogg that every conformal mapping between
Ck,α Jordan domains has Ck,α extension to the boundary. Here k is a positive
integer and α ∈ (0, 1).

In particular we have

Proposition 2.1 If f is a conformalmapping between two Jordan domainswith smooth
boundary, then f is Lipschitz continuous.

The doubly connected case, being next in the order of complexity, is the subject
of the further results. Conformal mappings are not minimisers for arbitrary doubly
connected domains provided that the domains are not conformally equivalent.

The case of circular annuli w.r.t. Euclidean metric and the metric ρ(w) = 1/|w|
is fully established in [1] by Astala, Iwaniec and Martin, where it is shown that the
radial harmonic mappings are minimisers. This result has been extended to all radial
metrics in [14] by Kalaj. The regularity of the class of radial mappings is a simple
issue since they have explicit expression.

Concerning the existence, Koh and colleagues [7] proved that there exists a har-
monic diffeomorphism which minimizes the Euclidean energy in the class of Sobolev
homeomorphisms between doubly connected domains in the complex plane, provided
that the domain has smaller modulus than the target. Then this result has been extended
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for arbitrary metric with bounded area and Gaussian curvature by the author in [13],
where the following theorem is proved.

Proposition 2.2 Suppose that X and Y are doubly connected domains in C such that
ModX ≤ ModYand letρ ∈ C2(Y)beametric inYwithGaussian curvature bounded
from above and assume that the metric has area A(ρ) < ∞. Then there exists an ρ-
energy-minimal diffeomorphism f : X

onto−→ Y, which is ρ-Noether harmonic (and
consequently a ρ-harmonic) and is unique up to a conformal change of variables in
X.

Concerning some behaviors that minimisers of Euclidean energy inherit inside of
the double connected domain, provided that the image domain is bounded by convex
curves or by two circles we refer to the recent papers by Koh [17,18]. Now we refor-
mulate the main result of this paper in which we establish the boundary behaviors of
minimisers.

Theorem 2.3 Suppose that M = (X, σ ) and N = (Y, ρ) are Riemannian surfaces,
so that X and Y are double connected domains in C with C2 boundaries and let
ρ ∈ C2(Y) be an admissible metric. Then every Noether harmonic diffeomorphism of
ρ- between X and Y, is Lipschitz continuous up to the boundary of X. However it is
not bi-Lipschitz in general.

Proposition 2.2 and Theorem 2.3 imply the following

Corollary 2.4 Suppose that X and Y are doubly connected domains in C with C2

smooth boundaries such that ModX ≤ ModY and let ρ ∈ C2(Y) be a metric in
Y with finite area and Gaussian curvature bounded from above. Then there is a ρ-
energy-minimal Noether harmonic diffeomorphism f : X onto−→ Y which is Lipschitz
continuous up to the boundary of X.

3 (K,K ′)-Quasiconformal Mappings

A sense-preserving mapping w of class ACL between two planar domains X and Y is
called (K , K ′)-quasiconformal if

‖Dw‖2 ≤ 2K J (z, w) + K ′, (3.1)

for almost every z ∈ X. Here K ≥ 1, K ′ ≥ 0, J (z, w) is the Jacobian of w in z and
‖Dw‖2 = |wx |2 + |w2

y | = 2|wz|2 + 2|wz̄|2. Since
|Dw| = |wz| + |wz̄ |,

from (3.1) it follows that

|Dw|2 ≤ 2K J (z, w) + K ′. (3.2)

Mappings which satisfy Eq. (3.1) arise naturally in elliptic equations, where w =
u + iv, and u and v are partial derivatives of solutions (see [2, Chap. XII] and the
paper of Simon [24]).
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3.1 Noether Harmonic Maps and (K, K′)- Quasiconformal Mappings

Now we want to prove the following important property of Noether harmonic maps

Lemma 3.1 Every sense-preserving Noether harmonic map g : A(r , 1) → Y is
(K , K ′) quasiconformal, where

K = 1 and K ′ = 2|c|
r2 infw∈Y ρ(w)

,

and c is the constant from (1.11). The result is sharp and for c = 0 the Noether
harmonic map is (1, 0) quasiconformal, i.e. it is a conformal mapping. In this case Y
is conformally equivalent with A(r , 1).

Proof of Lemma 3.1 Let N = z
|z| and T = i N . Then we define

gN (z) = Dg(z)N = z

|z|gz + z

|z|gz̄

and

gT (z) = Dg(z)T = zi

|z|gz + zi

|z|gz̄ .

Then it is clear that

‖Dg(z)‖2 = |gN |2 + |gT |2.

Further

|gN |2 − |gT |2 = 4Re

(
z2

|z|2 gzgz̄
)

.

By using now (1.11) we arrive at the equation

ρ(g(z))(|gN |2 − |gT |2) = 4c

|z|2 . (3.3)

In a similar way we get

ρ(g(z))Re(gN gT ) = ρ(g(z))Re

[(
z̄

|z|gz + z

|z|gz̄
)

·
(
zi

|z|gz + zi

|z|gz̄
)]

= ρ(g(z))Im

(
z2

|z|2 gzgz̄
)

= 0.

(3.4)

Further we have that

J (z, g) = |gz|2 − |gz̄|2 = Im(gN gT ) ≥ 0,
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4158 D. Kalaj

which in view of (3.4) reads as

J (z, g) = |gN ||gT |. (3.5)

Now

|gN |2 − |gT |2 = 4c

ρ(g(z))|z|2 .

So
‖Dg‖2 − 2J (z, g) = |gN |2 + |gT |2 − 2|gN ||gT |

= (|gN | − |gT |)2
≤ (||gN | − |gT ||)(|gN | + |gT |)
= ||gN |2 − |gT |2| = 4|c|

ρ(g(z))|z|2 .

(3.6)

This implies the claim. ��

3.2 Distance Function and (K, K′)-Quasiconformal Mappings

LetY be double connected domain with boundary ∂Y ∈ C2. ThenY = Y1 \Y2 where
Y1 and Y2 are two bounded Jordan domains with C2 boundaries ∂Y1 and ∂Y2. The
conditions onY imply that ∂Y satisfies the following condition: at each point w ∈ ∂Y

there exists a disk B = D(aw, rw) depending on w such that B ∩ (C \ Y) = {w}.
Moreover μ := inf{rw,w ∈ ∂Y} > 0.

It is easy to show that μ−1 bounds the curvature of ∂Y, which means that 1
μ

≥ κz,

for z ∈ ∂Y. Let d1 be the distance function with respect to the boundary of the domain
Y1: d1(w) = dist(w, ∂Y1). Let Γμ := {w ∈ Y : d1(w) ≤ μ}. For basic properties of
distance function we refer to [2]. For example ∇d1(w) is a unit vector for w ∈ Γμ,

and d1 ∈ C2(Γμ) because ∂Y ∈ C2.

Under the above conditions for w ∈ Γμ there exists ζ1(w) ∈ ∂Y1 such that

∇d1(w) = ν(ζ(w)), (3.7)

where ν(ζ(w)) denotes the inner unit normal vector at ζ(w) ∈ ∂Y. See [2] for details.
We now have.

Lemma 3.2 Let w : X �→ Y be a (K , K ′)-quasiconformal mapping and χ =
−d1(w(z)). Let κ0 = ess sup{|κz| : z ∈ ∂Y} and 0 < μ < κ−1

0 . Then:

|∇χ(z)| ≤ |Dw(z)| ≤ 2K |∇χ(z)| + √
K ′ (3.8)

for z ∈ w−1(Γμ).

Proof Observe first that ∇d1 is a unit vector. From ∇χ = −∇d1 · Dw it follows that

|∇χ | ≤ |∇d1||Dw| = |Dw|.
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Since w is (K , K ′)-q.c., it follows from (3.2) the inequality

|Dw|2 ≤ 2K J (w, z) + K ′ = 2K |Dw|l(Dw) + K ′.

Then we have

|Dw| ≤ 2Kl(Dw) + √
K ′.

Next we have that (∇χ)T = −(Dw)T · (∇d1)T and therefore for z ∈ w−1(Γμ), we
obtain

|∇χ | ≥ inf|e|=1
|(Dw)T e| = inf|e|=1

|Dw e| = l(w) ≥ |Dw|
2K

−
√
K ′

2K
.

The proof of (3.8) is completed. ��

4 Proof of theMain Result

Proof of Theorem 2.3 First of all since f is a diffeomorphism, according to Remark 1.2
f satisfies the harmonic mapping equation

fzz̄ + ∂ log ρ(w)

∂w
◦ f (z) · fz · fz̄ = 0. (4.1)

Now we define χ(z) = −d1(w(z)) = −dist(w(z), ∂Y1). By repeating the proof of
the corresponding result in [12] we get the following

Lemma 4.1 Let w : A(r , 1) �→ Y be a twice differentiable mapping and let χ(z) =
−d1(w(z)) = −dist(w(z), ∂Y1), where ∂Y1 is the outer boundary of Y. Then

Δχ(z) = κw◦ · |(OzDw(z))t e1|2
1 − κw◦d1(w(z))

− 〈(∇d1)(w(z)),Δw〉 , (4.2)

where e1 = (1, 0), z ∈ w−1(Γμ), w◦ ∈ ∂Y1 with |w(z) − w◦| = dist(w(z), ∂Y1),

μ > 0 such that 1/μ > κ0 = ess sup{|κw| : w ∈ ∂Y1} and Oz is an orthogonal
transformation.
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From (4.2), (3.7), (4.1), (3.8) and the condition (1.12) for the metric ρ, we have

|Δχ(z)| ≤ κ0

1 − κ0μ
· ∣∣(OzDw(z))t e1

∣∣2 + | 〈(∇d1)(w(z)),Δw〉 |

≤ κ0

1 − κ0μ
·|Dw(z))|2 + |Δw|

≤ κ0

1 − κ0μ
·|Dw(z))|2 + 2P|Dw(z))|2

=
(

κ0

1 − κ0μ
+ 2P

)
·|Dw(z))|2

≤
(

κ0

1 − κ0μ
+ 2P

)
· (2K |∇χ | + √

K ′)2

≤ a1|∇χ |2 + b1,

where

a1 = 4K 2
(

κ0

1 − κ0μ
+ 2P

)

and

b1 = 2K ′
(

κ0

1 − κ0μ
+ 2P

)
.

On the other hand, because w is a diffeomorphism between A(r , 1) and Y, it follows
that lim|z|→1 χ(z) = 0. Thus we can extend χ to be zero in |z| = 1. Let D be the unit
disk and let χ̃ : D → R be a C2 extension of the function χ |w−1(Γμ/2)

. It exists in

view of Whitney’s theorem. Let b0 = max{|Δχ̃(x)| : x ∈ D \ w−1(Γμ/2)}. Then

|Δχ̃ | ≤ a1|∇χ̃ |2 + b1 + b0.

Thus the conditions of the following Lemma 4.2 are satisfied.

Lemma 4.2 (Heinz-Berenstein) [3, Theorem 4′] Let χ : D �→ R be a continuous
function between the unit disk D and the real line satisfying the conditions:

(1) χ is C2 on D,

(2) χb(θ) = χ(eiθ ) is C2 and
(3) |Δχ | ≤ a|∇χ |2 + b on D for some constant c0.

Then the gradient |∇χ | is bounded on D.

The conclusion is that ∇χ̃ is bounded. Now Lemma 3.2 implies that there is a
constant C > 0 so that

|Dw| ≤ C, z ∈ w−1(Γμ/2). (4.3)
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In order to deal with the inner boundary of Y assume without loss of generality that
0 ∈ Y2. Now if W (z) = 1/w(r/z̄), then after straightforward calculation

ΔW (z) = r2
(2(wx )

2 + 2(wy)
2 − wΔw)

|z|2w̄3 = r2
(8wz · wz̄ − wΔw)

|z|2w̄3 . (4.4)

Further

‖DW‖ = r‖Dw‖
|z|2|w|2 (4.5)

and

J (z,W ) = r2 J (1/z̄, w)

|z|4|w|4 , (4.6)

we get that

|ΔW (z)| ≤ a2‖DW‖2 + b2, z ∈ Y
′.

Further W is (K1, K ′
1) quasiconformal with

‖DW‖2 = r2‖Dw‖2
|z|4|w|4 ≤ 2r2K · J (1/z̄, w) + r2K ′

|z|4|w|4 ≤ K1 J (z,W ) + K ′
1.

Moreover W maps A(r , 1) onto Y
′ = Y

′
1 \ Y

′
2. By proceeding as in the first part

we get that the mapping ξ(z) = −d1(W (z)) = −dist(W (z), ∂Y′
1) is Lipschitz near

T ⊂ ∂A(1, r). Then again in view of Lemma 3.2 we conclude that |DW | is bounded
in W−1(Γ ′

μ/2), where Γ ′
σ = {z ∈ Y

′ : dist(z, ∂Y′
1) < σ }. Thus by (4.5) there exist

ε > 0 and C1 > 0 so that

|Dw(z)| ≤ C1, r < |z| < r + ε. (4.7)

Since w is smooth in A(r , 1) in view of (4.3) and (4.7) we conclude that w has a
Lipschitz extension to A(r , 1).

In order to deal with the arbitrary domain X with C2 boundary, we make use of the
following Kellogg type result that follows from [8, Theorem 3.1].

Proposition 4.3 Suppose thatX is a double connected domain bounded by two Jordan
curves of class C1,α and assume that r = exp(−Mod(X)). Then there exists a con-
formal diffeomorphism τ : X → A(r , 1) which is C1,α up to the boundary together
with its inverse. In particular τ is bi-Lipschitz.

Assume now that w : X onto−→ Y is a harmonic diffeomorphism that minimizes the
the ρ-energy, where X is not a circular annuli. Then there exists a conformal mapping
τ of A(r , 1) onto X which is bi-Lipschitz continuous. Here r = exp(−Mod(X)).

Then the mapping ζ(z) = w(τ(z)) : A(1, r) onto−→ Y is a minimizer that minimizes the
ρ-energy and by the first part of the proof it has Lipschitz continuous extension up
to the boundary. Now we conclude that w is Lipschitz continuous up to the boundary
and this finishes the proof. ��
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Remark 4.4 Let f (z) = ∫ z
0

dw√
1−w4 be a conformal mapping of the unit disk onto a

square. Then f is a conformal mapping of the annulus A(1/2, 1) onto the doubly
connected, whose outer boundary is not smooth. We know that f is a minimiser of
energy but is not Lipschitz. With some more effort, by using e.g. [19] we can define
a conformal mapping between the circular annulus and an annulus with C1 boundary
so that it is not Lipschitz up to the boundary. This in turn implies that the condition
for the annuli to have C2 boundary is essential. It seems that we can weaken the
hypothesis on smoothness of the boundary, but we didn’t make a serious effort in this
direction. Further an Euclidean harmonic diffeomorphism f of the unit disk D onto
itself is seldom a Lipschitz continuous up to the boundary. We cite here an important
result of Pavlović [22] which states that harmonic diffeomorphism of the unit disk is
Lipschitz if it is quasiconformal. Further for such a non-Lipschitz f , let R < 1. Then
the set X = f −1(A(R, 1)) is a doubly connected domain with C∞ boundary. Let ϕ

be a conformal mapping of the annulusA(r , 1) ontoX. Then F = f ◦ϕ is a harmonic
diffeomorphism betweenA(r , 1) ontoA(R, 1)which is not Lipschitz continuous. This
observation tells us that there exists a crucial difference between the Noether harmonic
diffeomorphisms and those harmonic diffeomorphisms between annuli which are not
Noether harmonic.

In the next subsection we get precise estimate for the case of radial metric and
circular annuli and finish the last part of main theorem.

4.1 Lipschitz Continuity of Minimisers for Circular Annuli

Assume that ρ : [r , 1] → (0,+∞) is a smooth mapping with ρ(s) ≥ 1/M > 0.
Then it defines the radial metric also denoted by ρ in A(r , 1), ρ(z) = ρ(|z|). Then
in [14] the author calculated the class of all ρ-minimisers between annuli A(r , 1) and
A(τ, σ ). They are up to the rotation given by

w(sei t ) = p(s)ei t = q−1(s)ei t , (4.8)

where

q(y) = exp

(∫ y

Q

dy√
y2 + cρ−1(y)

)
, q ≤ y ≤ Q, (4.9)

and c is a constant satisfying the condition:

c ≥ −y2ρ(y), for q ≤ y ≤ Q. (4.10)

Then w is a ρ-harmonic mapping between annuli A = A(r , 1) and A
∗ = A

∗(q, Q),

where

r = exp

(∫ q

Q

dy√
y2 + cρ−1(y)

)
. (4.11)

The harmonic mapping w is normalized by

w(ei t ) = Qei t .
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The mapping w = hc(z) is a diffeomorphism. Further

|Dw| def== max{|Dw(z)h : |h| = 1}
= |∂zw| + |∂z̄w|
= |p(s) + sp′(s)| + |p(s) − sp′(s)|

2s

= max

{
p(s)

s
, p′(s)

}
,

(4.12)

and
l(Dw)

def== min{|Dw(z)h| : |h| = 1}
= |∂zw| − |∂z̄w|
= |p(s) + sp′(s)| − |p(s) − sp′(s)|

2s

= min

{
p(s)

s
, p′(s)

}
.

(4.13)

By using (4.9) we get

p′(s) = 1

q ′(p(s))
=

√
p(s)2 + cρ−2(p(s))

s
. (4.14)

Thus

|Dw(sei t )| =
√
p(s)2 + max{c, 0}ρ−1(p(s))

s

≤
√
Q2 + max{c, 0}M2

r
< ∞.

(4.15)

This implies that w is Lipschitz continuous on A(r , 1). On the other hand we have
that

l(Dw) =
√
p(s)2 + cρ−1(p(s))

s
.

Thus for c ≥ 0 we have
l(Dw) ≥ q > 0. (4.16)

Now (4.15) and (4.16) imply that w is bi-Lipschitz in A(r , 1) for c ≥ 0. However it
is not bi-Lipschitz in general, i.e., for c < 0. Indeed l(Dw) can be equal to zero for

c = c◦ = −min
{
p2(s)ρ(p(s)) : s ∈ [r , 1]

}
. (4.17)

It should be noted that the condition c ≥ 0, in view of (4.11) is equivalent with the
condition

Mod(X) ≤ Mod(Y). (4.18)
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The minimiser w is not bi-Lipschitz for the so-called critical J. C. C. Nitsche
configuration of annuli: A(r◦, 1) and A(q, Q), where

r◦ = exp

(∫ q

Q

dy√
y2 + c◦ρ−1(y)

)
. (4.19)

In particular for Euclidean metric we have the following critical J. C. C. Nitsche
configuration of annuli. For 0 < r < 1 the mapping

w(z) = r2 + |z|2
z̄(1 + r2)

(4.20)

is a harmonicminimiser (see [1]) of the Euclidean energy ofmappings betweenA(r , 1)

and A

(
2r

1+r2
, 1

)
, however |wz| = |wz̄| = 1

1+r2
for |z| = r , and so w is not bi-

Lipschitz. Those twoannulimake critical configuration of annuli. Those configurations
are important in framework of J. C. C. Nitsche conjecture solved by Iwaniec et al. [6]
after some partial results given by Lyzzaik [20], Weitsman [25] and Kalaj [11]. For a
related result in more general setting we refer to [15] and [16].

The following conjecture is motivated by the previous observation.

Conjecture 4.5 Assume that X and Y are doubly connected domains with smooth
boundaries. Assume that ρ is a smooth non-vanishing metric defined in the closure
of Y. If Mod(X) ≤ Mod(Y) then the minimiser of ρ-energy is globally bi-Lipschitz
continuous and has smooth extension up to the boundary.

Acknowledgements I am grateful to the referee for numerous corrections that have improved this paper.
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