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Abstract
We show existence of homothetically shrinking solutions of the fractional mean
curvature flow, whose boundary consists in a prescribed number of concentric spheres.
We prove that all these solutions, except from the ball, are dynamically unstable.
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1 Introduction

Let us introduce the geometric evolution which we consider in this paper. Given an
initial set E ⊂ R

n , we define its evolution Et according to fractional mean curvature
flow as follows: the velocity at a point x ∈ ∂Et is given by

∂t x · ν = −Hs(x, Et ) := − lim
ε→0

∫
Rn\Bε(x)

(
χRn\Et (y) − χEt (y)

) 1

|x − y|n+s
dy,

(1.1)
where s ∈ (0, 1) is a fixed parameter and ν is the outer normal at ∂Et in x . The
fractional mean curvature of a set has been introduced in [5] as the first variation of
the fractional perimeter functional, and it has been proved in [1] that for sufficiently
smooth sets E the rescaled fractional mean curvature (1 − s)Hs(x, E) converges as
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s → 1 to the classical mean curvature of E at x . The evolution law (1.1) can be
interpreted as the L2-gradient flow of the fractional perimeter.

Existence and uniqueness of viscosity solutions to a level set formulation of (1.1)
has been provided in [8,15], and qualitative properties of smooth solutions have been
studied in [19].However,we point out that the short-time existence of smooth solutions
has not yet been proved. In [6], the convergence to the fractional mean curvature flow
of a threshold dynamics scheme is proved; this result was adapted to the anisotropic
case, even in presence of a driving force in [9], where it is also shown that the flow
preserves convexity. It has also been observed that the geometric law (1.1) presents
some different behavior with respect to the classical mean curvature flow: we refer for
instance to the paper [10] about the formation of neck-pinch singularities, and to the
paper [7] about fattening and non-fattening phenomena.

In this paper, we are interested in the homothetically shrinking solutions for the
flow (1.1). A homothetic solution to (1.1) is a self-similar solution to (1.1): substituting
Et = λ(t)E in (1.1), it is easy to see, using scale invariance of the fractional mean
curvature, that this is equivalent to λ′(t)x · ν = − 1

λ(t)s Hs(x, E) for all x ∈ ∂E . So
homothetically shrinking solutions to (1.1) are given by the solutions to (1.1) with
initial datum every set E ⊆ R

n of class C1,1 which satisfies

x · ν = c Hs(x, E) for some constant c > 0. (1.2)

Homothetically shrinking solutions are particularly relevant in the analysis of the
classical mean curvature flow, as they are canonical examples of singularities, in
the sense that any solution converges to a self-shrinker, if properly rescaled around a
singular point. This result follows from an importantmonotonicity formula established
by Huisken in [14] for the mean curvature flow. The analog of such formula in the
fractional setting is still an open problem. We recall moreover that, at the moment, the
existence theorem for local in time regular solutions of (1.1), even if expected, has
not been proved.

It is well-known that the only embedded planar curve which is homothetically
shrinking under curvature flow is the circle [2], whereas in higher dimensions there
exist other smooth embedded surfaces which are self-shrinkers for the mean curvature
flow, starting from the rotationally symmetric torus discovered by Angenent [3], and
then going to more complex configurations as punctured compact surfaces or non-
compact asymptotically conical surfaces, see [4,16]. However, it is easy to show that
the ball is the only self-shrinker which is also radially symmetric.

In the fractional setting, the classification of self-shrinkers is still at a very early
stage. As far as we know,we provide here the first examples of fractional self-shrinkers
which are different from balls and cylinders. More precisely, in Sect. 2, we show the
existence of homothetic solutions to the flow (1.1) which are radially symmetric, and
have a prescribed number of boundary spheres (see Theorem 2.3). Moreover, in the
case of a single annulus, we show uniqueness of the ratio R/r for which the flow
starting from the annulus BR \ Br self-similarly shrinks to a point. The existence of
such radially symmetric self-shrinkers, different from balls, is a new feature compared
with the local case, and it is due to the nonlocal nature of the fractional mean curvature.
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A natural question arising about self-similar shrinkers is the issue of their dynamic
stability. In the case of the classical mean curvature flow, the study of the dynamic
stability of self-shrinkers was initiated in [11], and later developed by other authors.
From the convergence results in [12,13] it follows that the balls is dynamically stable
under mean curvature flow (see also [17,18,20] for a discussion of the stability of the
Wulff-Shape as homothetic solution of the anisotropic and crystalline curvature flow).
Moreover, in [11] it is shown that balls and cylinders are the only stable self-shrinkers.

In the fractional case, none of such results is currently available, in particular it
is not known whether the ball is dynamically stable, and if convex sets shrink to a
round point at the singular time. We discuss in this paper the stability issue for the
class of solutions that we construct in Theorem 2.3. In particular, in Sect. 3 we show
that the radial self-shrinkers different from the ball are all dynamically unstable (see
Theorem 3.1).

2 Existence of Symmetric Self-Shrinkers

We start with a technical result which will be useful in the sequel. We denote by Br
the ball of center 0 and radius r > 0, and we let Br (x) = x + Br . Moreover, we recall
that, by the scale invariance of fractional mean curvature, for all xr ∈ ∂Br there holds
(see [19, Lemma 2])

Hs(xr , Br ) = k(n)

rs
where k(n) := Hs(x1, B1).

Lemma 2.1 Let x ∈ R
n \ {0} and δ �= 0. Then, as δ → 0, the following estimate

holds:

∫
∂B|x |+δ

1

|y − x |n+s
dy = 1

|δ|1+s
(c + o(1)) ,

for a constant c > 0 depending only on n and s.

Proof Up to a rotation of the reference system, we can assume that x = −|x |e1. By
the change of coordinates y′ = (y − x), we get,

∫
∂B|x |+δ

1

|y − x |n+s
dy =

∫
∂B|x |+δ(|x |e1)

1

|y′|n+s
dy′

Note that

∫
∂B|x |+δ(|x |e1)∩{y′·e1>|x |}

1

|y′|n+s
dy′ ≤ nωn (|x | + δ)n−1

2 |x |n+s
≤ C . (2.1)
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Moreover, we write ∂B|x |+δ(|x |e1) ∩ {y′ · e1 < |x |} = {( f (z), z) | z ∈ R
n−1, z ∈

B ′|x |+δ}, where B ′
r ⊆ R

n−1 denotes the ball of center 0 and radius r in R
n−1 and

f (z) = |x | −√(|x | + δ)2 − |z|2. Therefore, denoting Rδ := |x |+δ
|δ| , we get∫

∂B|x |+δ(−x)∩{y′·e1<|x |}
1

|y′|n+s dy′ =
∫
B′|x |+δ

|x | + δ√
(|x | + δ)2 − |z|2

1(
f (z)2 + |z|2) n+s

2

dz

= (n − 1)ωn−1

|δ|s+1

∫ Rδ

0

Rδ√
R2

δ − ρ2
ρn−2

⎡
⎢⎣
⎛
⎝ δ

|δ| − ρ2

Rδ +
√
R2

δ − ρ2

⎞
⎠
2

+ ρ2

⎤
⎥⎦

− n+s
2

dρ.

Let

gδ(ρ) := Rδ√
R2

δ − ρ2
ρn−2

⎡
⎢⎣
⎛
⎝ δ

|δ| − ρ2

Rδ +
√
R2

δ − ρ2

⎞
⎠

2

+ ρ2

⎤
⎥⎦

− n+s
2

.

Now we observe that there exists C = C(n, s) > 0, such that

∫ Rδ

Rδ/2
gδ(ρ)dρ ≤ C

Rs+1
δ

= C
|δ|s+1

(|x | + δ)s+1 . (2.2)

Moreover, taking |δ| sufficiently small such that Rδ > 4, we get that there exists a
dimensional constant C = C(n, s) > 0 such that

gδ(ρ)χ(0,Rδ/2)(ρ) ≤ Cχ(0,1)(ρ) + C
1

ρs+2 χ(1,+∞)(ρ) ∈ L1(0,+∞), (2.3)

whereχ(a,b) is the characteristic function of the interval (a, b). Using (2.3) and observ-
ing that

gδ(ρ) → ρn−2

(1 + ρ2)
n+s
2

as δ → 0,

we conclude by (2.2) and by Lebesgue dominated convergence theorem that

∫
∂B|x |+δ(−x)∩{y′

1<|x |e1}
1

|y′|n+s
dy′

= (n − 1)ωn−1

|δ|s+1

[∫ Rδ
2

0
gδ(ρ)dρ +

∫ Rδ

Rδ
2

gδ(ρ)dρ

]
= c + o(1)

|δ|s+1

where

c := (n − 1) ωn−1

∫ +∞

0

ρn−2

(1 + ρ2)
n+s
2

dρ .

The conclusion follows by this estimate and (2.1). ��
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First of all, we look to the simplest example of rotationally symmetric set different
from a ball. We show that there exists a unique value of the ratio R

r which depends on
the dimension n and on the fractional power s ∈ (0, 1) such that the annulus BR \ Br
is a self-shrinker.

Proposition 2.2 Let n ≥ 1. Then, for all R > 0 fixed, there exists a unique r =
r(n, s) ∈ (0, R) depending only on R, s ∈ (0, 1) and n, such that the flow (1.1) with
initial datum the annulus

A := BR \ Br

is a homothetically shrinking solution of the flow.

Proof Up to rescaling the set we fix R = 1. We observe that A is a solution to (1.2) if
and only if for some c > 0,

1 = cHs(x1, A) for all x1 with |x1| = 1 and r = −cHs(xr , A) for all xr with |xr | = r

and so if and only if
Hs(xr , A) = −r Hs(x1, A). (2.4)

By rotational invariance, we get that Hs(xr , A), Hs(x1, A) do not depend on the points
xr , x1, but only on 0 < r < 1. Moreover, they are both continuous functions with
respect to r , due to the continuity of the fractional mean curvature with respect to C2-
convergence of sets (see [8, Sect. 5.2]). We consider the following function defined
for r ∈ (0, 1)

fs(r) = Hs(xr , A) + r Hs(x1, A). (2.5)

Note that the function fs is continuous on (0, 1). To prove the statement it is sufficient
to show that there exists a unique r = r(n, s) such that fs(r(n, s)) = 0.

Let r , r ′ such that 0 < r < r ′ < 1. By the inclusions A1,r ′ := B1 \ Br ′ ⊆ A ⊆ B1,
we get, by the monotonicity of the fractional mean curvature (see [8, Sect. 5.2]), that

Hs(x1, A1,r ′) > Hs(x1, A) ≥ Hs(x1, B1) = k(n) > 0. (2.6)

This implies that

r ∈ (0, 1) �→ Hs(x1, A) is monotone increasing and positive. (2.7)

Moreover, we observe, recalling the definitions, that

Hs(xr , A) = −Hs(xr , Br ) + 2
∫
Rn\B1

1

|xr − y|n+s
dy.
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Note that if r ′ > r then Hs(xr ′ , Br ′) = k(n)
(r ′)s <

k(n)
rs = Hs(xr , Br ), whereas for

1 > r ′ > r , |xr − y| ≥ | r ′
r xr − y| for all y ∈ R

n \ B1, and xr with |xr | = r . Therefore,
by symmetry of the kernel we have that

∫
Rn\B1

1

|xr − y|n+s
dy <

∫
Rn\B1

1

|xr ′ − y|n+s
dy

for all xr , xr ′ with |xr | = r , |xr ′ | = r ′. Using these facts we conclude that

r ∈ (0, 1) �→ Hs(xr , A) is monotone increasing. (2.8)

Due to (2.7), (2.8), we notice that the function fs(r) defined in (2.5) is monotone
increasing. Now, we claim that limr→0 fs(r) = −∞ and that limr→1 fs(r) = +∞.
If the claim is true, then the proof is concluded.

First of all we observe that

Hs(xr , A) =
∫
Rn\B1

1

|xr − y|n+s
dy

+ lim
ε→0

(∫
Br−ε

1

|xr − y|n+s
dy −

∫
B1\Br+ε

1

|xr − y|n+s
dy

)
.

This implies that limr→0 Hs(xr , A) = −∞, and so also limr→0 fs(r) = −∞.
Moreover, recalling Lemma 2.1 we get that

Hs(xr , A)

= Hs(xr , Br ) + lim
ε→0

(
2
∫
Br−ε

1

|xr − y|n+s
dy − 2

∫
B1\Br+ε

1

|xr − y|n+s
dy

)

= k(n)

rs
+ lim

ε→0

(
2
∫ r

ε

∫
∂Br−δ

1

|xr − y|n+s
dydδ − 2

∫ 1−r

ε

∫
∂Br+δ

1

|xr − y|n+s
dydδ

)

= k(n)

rs
+ 2

∫ r

1−r

[∫
∂Br−δ

1

|xr − y|n+s
dy −

∫
∂Br+δ

1

|xr − y|n+s
dy

]
dδ

= k(n)

rs
+ 2
(
c + o(1)

) ( 1

(1 − r)s
− 1

rs

)
.

So, limr→1 Hs(xr , A) = +∞, which permits to conclude that limr→1 fs(r) = +∞.
��

We now look for more general symmetric self-shrinkers, given by the union of a
finite number of annuli.

Theorem 2.3 For all N ≥ 1 and all R > 0 there exists an increasing sequence
0 < r1 < . . . < r2N−1 < r2N = R, depending only on n, s and N, such that such
that the flow (1.1) with initial datum

123



3704 A. Cesaroni, M. Novaga

E :=
N⋃

k=1

(
Br2k \ Br2k−1

)

is a homothetically shrinking solution of (1.1).
Similarly, for all N ≥ 1 and R > 0 there exists an increasing sequence 0 < r̃0 <

r̃1 < . . . < r̃2N−1 < r2N = R, depending only on n, s and N, such that such that the
flow (1.1) with initial datum

Ẽ := Br̃0 ∪
N⋃

k=1

(
Br̃2k \ Br̃2k−1

)

is a homothetically shrinking solution of (1.1).

Proof The argument is similar to that in the proof of Proposition 2.2. As before, up
to rescaling the sets E , Ẽ , we can assume r2N = 1. Then, we want to find radii ri in
such a way that, letting xri ∈ ∂Bri , there hold

fi (r1, . . . , r2N−1) := ri Hs(x1, E)+(−1)i−1Hs(xri , E) = 0 ∀ i ∈ {1, . . . , 2N−1}
(2.9)

and

fi (r0, . . . , r2N−1) := ri Hs(x1, Ẽ)+(−1)i−1Hs(xri , Ẽ) = 0 ∀ i ∈ {0, . . . , 2N −1}.
(2.10)

Notice that the functions fi are all continuous in their domain of definition.
We divide the proof into four steps. In the first step, we deal with the case N = 1 ,

and in step 2, 3 and 4 we consider the case N > 1. For N > 1 we provide the proof
just of (2.9) for the existence of the set E , since the analogous assertion (2.10) for Ẽ
follows similarly.
Step 1. The case N = 1 for E has been proved in Propositions 2.2. Thus, we consider
the set Ẽ .

First of all, we fix r1 ∈ (0, 1) and we prove that there exists r0 = r0(r1) ∈ (0, r1)
such that f0(r0(r1), r1) = 0 for all r1 ∈ (0, 1). Due to the monotonicity properties of
the fractional mean curvature, fixed r1 ∈ (0, 1) we get

lim
r0→0

Hs(x1, Ẽ) = Hs(x1, A1,r1) > 0 lim
r0→r1

Hs(x1, Ẽ) = Hs(x1, B1) = k(n) > 0.

Moreover, by definition we get that,

Hs(xr0 , Ẽ) = −2
∫
B1\Br1

1

|xr0 − y|n+s
dy + Hs(xr0 , Br0)

= −2
∫
B1\Br1

1

|xr0 − y|n+s
dy + k(n)

rs0
,
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from which we conclude that

lim
r0→0

Hs(xr0 , Ẽ) = +∞ lim
r0→r1

Hs(xr0 , Ẽ) = −∞.

Therefore, we obtain that

lim
r→0

f0(r , r1) = −∞ lim
r→r1

f0(r , r1) = +∞.

By continuity of the function f0, we deduce that for all r1 ∈ (0, 1) there exists at
least one r = r(r1) ∈ (0, r1) such that

f0(r(r1), r1) = 0 . (2.11)

We choose as r0(r1) to be the smallest among all possible r(r1) ∈ (0, r1) which solve
(2.11). Observe that due to this choice, the function r → f1(r0(r), r) is continu-
ous. To conclude, it is sufficient to prove that that there exists r1 ∈ (0, 1) such that
f1(r0(r1), r1) = 0. Indeed, this would imply that (B1 \ Br1) ∪ Br0(r1) is a solution to
(1.2).

Observe that limr→0 r0(r) = 0, and therefore, we get

lim
r→0

f1(r0(r), r) = −∞. (2.12)

We now claim that
lim
r→1

f1(r0(r), r) = +∞. (2.13)

Recalling Lemma 2.1, we observe that as r → 1,

Hs(x1, Ẽ) = 2
∫
Br \Br0(r)

1

|x1 − y|n+s
dy + Hs(x1, B1)

= 2
∫ r

r0(r)

∫
∂Bt

1

|x1 − y|n+s
dy dt + k(n)

= 2
(
c + o(1)

) ( 1

(1 − r)s
− 1

(1 − r0(r))s

)
+ k(n) (2.14)

where the constant c = c(n, s) > 0 is given by Lemma 2.1. Similarly, we have that

Hs(xr , Ẽ)

= lim
ε→0

(
2
∫
Br−ε\Br0(r)

1

|xr − y|n+s
dy − 2

∫
B1\Br+ε

1

|xr − y|n+s
dy

)
+ Hs(xr , Br )

= lim
ε→0

(
2
∫ r−ε

r0(r)

∫
∂Bt

1

|xr − y|n+s
dy − 2

∫ 1

r+ε

∫
∂Bt

1

|xr − y|n+s
dy

)
+ k(n)

rs

= 2
(
c + o(1)

) (− 1

(r − r0(r))s
+ 1

(1 − r)s

)
+ k(n)

rs
(2.15)
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and

Hs(xr0(r), Ẽ) = −2
∫ 1

rn

∫
∂Bt

1

|xr0(r) − y|n+s
dy + k(n)

(r0(r))s

= −2
(
c + o(1)

) ( 1

(r − r0(r))s
− 1

(1 − r0(r))s

)
+ k(n)

(r0(r))s
.

(2.16)

Therefore as r → 1 by (2.14) and (2.15)

f1(r0(r), r) = 2
(
c + o(1)

) ( 1 + r

(1 − r)s
− 1

(r − r0(r))s
− r

(1 − r0(r))s

)
+ O(1).

(2.17)
We claim that

lim
r→1

r − r0(r)

1 − r0(r)
= 1. (2.18)

Note that the claim is equivalent to

lim
r→1

1 − r

1 − r0(r)
= 0 = lim

r→1

1 − r

r − r0(r)

and this implies immediately, recalling (2.17), that limr→1 f1(r0(r), r) = +∞.
To prove (2.18) we recall that f0(r0(r), r) = 0 and using (2.14) and (2.16) we get

2
(
c + o(1)

) ( r0(r)

(1 − r)s
− r0(r) + 1

(1 − r0(r))s
+ 1

(r − r0(r))s

)
+ r0(r)k(n) + k(n)

(r0(r))s
= 0

from which we deduce that

r0(r)

(1 − r)s
+ 1

(r − r0(r))s
= 1 + r0(r)

(1 − r0(r))s
+ O(1). (2.19)

Recalling that

1

(1 − r)s
≥ 1

(1 − r0(r))s
and

1

(r − r0(r))s
≥ 1

(1 − r0(r))s

from (2.19) we get that

1

(1 − r0(r))s
≤ 1

(r − r0(r))s
≤ 1

(1 − r0(r))s
+ O(1) ,

which gives the claim (2.18).
By continuity of f1, from (2.12) and (2.13), it follows that there exists r1 ∈ (0, 1)

such that f1(r0(r1), r1) = 0, which gives the thesis.
Step 2 We pass now to consider the case N > 1. We provide a proof of the existence
of a sequence of radii ri which solves (2.9). We shall determine ri by induction on i .
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For i = 1 we observe that, given a choice of 0 < r2 < . . . < r2N−1 < 1, we have

lim
r1→0

Hs(xr1 , E) = −∞ and lim
r1→r2

Hs(xr1 , E) = +∞.

By continuity of the function f1 it follows that there exists r̄1 = r̄1(r2, . . . r2N−1) ∈
(0, r2) such that f1(r̄1, . . . , r2N−1) = 0. As before, in case of multiple solutions we
choose the smallest one. Notice that r̄1 is continuous as a function of r2, . . . , r2N−1.
Notice also that, if we fix r3, . . . , r2N−1 and let r2 → r3, letting F := Br̄1 ∪ Ar3,r2
and proceeding as in Step 1, we get

Hs(xr̄1 , E)

= −Hs(xr̄1 , F) + O(1) = 2
(
c + o(1)

) ( 1

|r2 − r̄1|n+s
− 1

|r3 − r̄1|n+s

)
+ O(1)

Since f1(r̄1, . . . , r2N−1) = 0, we also have Hs(xr̄1 , E) = −r̄1Hs(xr̄1 , E) = O(1),
whence

lim
r2→r3

|r2 − r̄1|
|r3 − r̄1| = 1. (2.20)

Step 3 Let now 2 ≤ i < 2N − 1. By induction assumption, for all j < i there exist
continuous functions r̄ j (ri , . . . , r2N−1)) such that f j (r̄1, . . . , r̄i−1, ri , . . . , r2N ) = 0.
In view of (2.20), we shall also assume that

lim
ri→ri+1

|ri − r̄i−1|
|ri+1 − r̄i−1| = 1,

which is equivalent to

lim
ri→ri+1

|ri+1 − ri |
|ri − r̄i−1| = 0. (2.21)

Given a choice of r j for j > i , we want to find r̄i such that

fi (r̄1, . . . , r̄i , ri+1, . . . , r2N ) = 0 (2.22)

and

lim
ri+1→ri+2

|ri+1 − r̄i |
|ri+2 − r̄i | = 1. (2.23)

We first notice that

lim
ri→0

fi (r̄1, . . . , r̄i−1, ri , . . . , r2N−1) = lim
ri→0

(−1)i−1Hs(xi , E) = −∞.

We now consider the limit ri → ri+1. Reasoning as in Step 1, we get

(−1)i−1Hs(xri , E) = 2
(
c + o(1)

)
⎛
⎝ 1

|ri+1 − ri |s +
i−1∑
j=k

(−1)i−k

|ri − r̄k |s

⎞
⎠+ O(1),
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and therefore, recalling (2.21),

lim
ri→ri+1

fi (r̄1, . . . , r̄i−1, ri , . . . , r2N−1)

= lim
ri→ri+1

(−1)i−1Hs(xri , E) + O(1)

= lim
ri→ri+1

⎛
⎝ 1

|ri+1 − ri |s +
i−1∑
j=k

(−1)i−k

|ri − r̄k |s

⎞
⎠ = +∞.

By continuity of fi it follows that there exists r̄i such that fi (r̄1, . . . , r̄i , ri+1, . . . , r2N )

= 0. As before, in case of multiple solutions, we choose the smallest one.
We now show (2.23). If we fix ri+2, . . . , r2N−1 and let ri+1 → ri+2, from (2.22)

we get Hs(xr̄i , E) = O(1), which implies

− 1

|ri+2 − r̄i |s + 1

|ri+1 − r̄i |s +
i−1∑
j=k

(−1)i−k

|r̄i − r̄k |s = O(1).

Multiplying by |ri+1 − r̄i |s and recalling (2.21) we then get

lim
ri+1→ri+2

|ri+1 − r̄i |s
|ri+2 − r̄i |s −

i−1∑
j=k

(−1)i−k |ri+1 − r̄i |s
|r̄i − r̄k |s = lim

ri+1→ri+2

|ri+1 − r̄i |s
|ri+2 − r̄i |s = 1,

which gives (2.23).
Step 4. Finally, for i = 2N − 1 we still have

lim
r2N−1→0

f2N−1(r̄1, . . . , r̄2N−2, r2N−1) = −∞.

We now consider the limit r2N−1 → 1. Recalling (2.23) with i = 2N − 2, as in Step
1 we get

Hs(xr2N−1 , E) = 2
(
c + o(1)

) ( 1

(1 − r2N−1)s
− 1

(r2N−1 − r̄2N−2)s

)
+ O(1)

Hs(x1, E) = 2
(
c + o(1)

) ( 1

(1 − r2N−1)s
− 1

(1 − r̄2N−2)s

)
+ O(1)

= 2
(
c + o(1)

) 1

(1 − r2N−1)s
+ O(1),

= 2
(
c + o(1)

) 1

(1 − r2N−1)s
+ O(1).
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Therefore, we have

0 = lim
r2N−1→1

f2N−1(r̄1, . . . , r̄2N−2, r2N−1)

= lim
r2N−1→1

(
r2N−1Hs(x1, E) + Hs(xr2N−1 , E)

)

= lim
r2N−1→1

2
(
c + o(1)

)
,

1 + r2N−1

|1 − r2N−1|s = +∞.

As before, it follows that there exists r̄2N−1 such that f2N−1(r̄1, . . . , r̄2N−1) = 0. ��
Remark 2.4 An interesting question which is left open by the previous result is the
issue of uniqueness for self-shrinkers with a prescribed number of boundary spheres.
In the simplest case, that is the annulus, in Proposition 2.2 we prove uniqueness of the
ratio R

r for which the annulus BR \ Br is a self-similar shrinker.

From Theorem 2.3 we readily obtain the existence of cylindrical self-shrinkers.

Corollary 2.5 Let k < n. For all N ≥ 1 and R > 0 there exists an increasing sequence
0 < r1 < . . . < r2N−1 < r2N = R, depending only on k, s and N, such that such that
the flow (1.1) with initial datum

C := R
n−k ×

N⋃
j=1

(
Bk
r2 j \ Bk

r2 j−1

)

is a homothetically shrinking solution of (1.1), where Bk
r denotes the ball of radius r

in Rk .
Similarly, for all N ≥ 1 and R > 0 there exists an increasing sequence 0 < r̃0 <

r̃1 < . . . < r̃2N−1 < r̃2N = R, depending only on k, s and N, such that such that the
flow (1.1) with initial datum

C̃ := R
n−k × Bk

r̃0
∪

N⋃
j=1

(
Bk
r̃2 j

\ Bk
r̃2 j−1

)

is a homothetically shrinking solution of (1.1).

Remark 2.6 We observe that the radii r(n, s) in Proposition 2.2, ri (n, s), r̃i (n, s)
in Theorem 2.3 and Corollary 2.5 all satisfy lims→1 r(n, s) = lims→1 ri (n, s) =
lims→1 r̃i (n, s) = R.

We give a brief justification of this fact just for the simplest case, that is the case
of r(n, s) in Proposition 2.2, the others being completely analogous. We recall that if
E ⊂ R

n is a compact set withC2 boundary then (1−s)Hs(x, E) converges uniformly
as s → 1 to the classical mean curvature H(x, ∂E) (see [1]). Under the same notation
as in the proof of Proposition 2.2, we note that for s = 1 the function f1(r) defined
in (2.5) is given by r − 1

r (this is also true for the functions fi defined in the proof
of Theorem 2.3, that is fi = ri − 1

ri
). So, by uniform convergence of the curvatures,
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we get that if (rk)k is a sequence with rk ∈ (0, 1) and rk → 1, there exists (sk)k
with 0 < sk < 1 such that fs(t) < 0 for t ∈ (0, rk] and s ≥ sk . This implies that
r(n, s) > rk for all s ≥ sk and that sk → 1, since limr→1 fs(r) = +∞ for all s < 1.

3 Stability

We now discuss the dynamic stability of the symmetric self-shrinkers constructed in
the previous section. By definition, self-shrinkers are stationary solutions to the flow

∂t x · ν = −Hs(x, E) + x · ν. (3.1)

If the initial datum is rotationally symmetric as in Theorem 2.3 then (3.1) becomes a
system of ODE’s in the radii ri , and Theorem 2.3 guarantees the existence of a station-
ary point for every number of radii. We are interested in the stability of such critical
points, with respect to perturbations which are orthogonal to the vector (r1, . . . r2N )

(or resp. (r0, . . . r2N )) given by the radii. Indeed this vector corresponds to a rescaling
of the initial datum, and therefore, gives a direction of instability for the system which
is not geometrically significant.

In the symmetric situation, we can rewrite (3.1) as the system of ODE’s

ṙi = (−1)i−1Hs(xi , E) + ri i ≤ 2N . (3.2)

Theorem 3.1 Fix N ≥ 1, and let E (resp. Ẽ) be the symmetric shrinker given by
Theorem (2.3), corresponding to the stationary point (r̄1, . . . r̄2N ) (resp. (r̄0, . . . r̄2N ))
for the system (3.2). Then, the Morse index of such point is at least 2, in particular the
corresponding homothetic solution is dynamically unstable.

Proof We shall prove the assertion for the shrinker E , since the proof for Ẽ is analo-
gous.

For the reader convenience, we first present in detail the case N = 1, corresponding
to an annulus A = Br̄2 \ Br̄1 . The system (3.2) then becomes

⎧⎪⎪⎨
⎪⎪⎩

ṙ1 = Hs(xr1 , A) + r1 = k(n)
rs1

+2 limε→0

(∫
Br1−ε

1
|xr1−y|n+s dy − ∫Br2\Br1+ε

1
|xr1−y|n+s dy

)
+ r1

ṙ2 = −Hs(xr2 , A) + r2 = − k(n)
rs2

− 2
∫
Br1

1
|xr2−y|n+s dy + r2.

(3.3)

We define the function g(r1, r2) = (g1(r1, r2), g2(r1, r2)) as follows:

⎧⎨
⎩
g1(r1, r2) := k(n)

rs1
+ 2 limε→0

(∫
Br1−ε

1
|xr1−y|n+s dy − ∫Br2\Br1+ε

1
|xr1−y|n+s dy

)
+ r1

g2(r1, r2) := − k(n)
rs2

− 2
∫
Br1

1
|xr2−y|n+s dy + r2.

We now compute the Jacobian matrix Dg at the point (r̄1, r̄2) which is a stationary
point for (3.3), that is g(r̄1, r̄2) = 0.
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We observe the following fact: for δ �= 0, ε > 0, R > r > |δ|, there hold
∫
Br+δ−ε

1

|xr+δ − y|n+s
dy =

(
r

r + δ

)s ∫
Br−ε r

r+δ

1

|xr − y|n+s
dy

∫
BR\Br+δ+ε

1

|xr+δ − y|n+s
dy =

(
r

r + δ

)s ∫
B Rr
r+δ

\Br+ε r
r+δ

1

|xr − y|n+s
dy.

Thus, using these equalities we get that the derivative of g1 at (r̄1, r̄2) are given by

∂r1g1(r̄1, r̄2) = − sk(n)

r̄ s+1
1

−2s

r̄1
lim
ε→0

(∫
Br̄1−ε

1

|xr̄1 − y|n+s
dy −

∫
Br̄2\Br̄1+ε

1

|xr̄1 − y|n+s
dy

)

+2r̄2
r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy + 1

= − s

r
g1(r̄1, r̄2) + s + 1 + 2r̄2

r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy (3.4)

= s + 1 + 2r̄2
r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy

∂r2g1(r̄1, r̄2) = −2
∫

∂Br̄2

1

|xr̄1 − y|n+s
dy. (3.5)

Analogously, we observe that for δ �= 0, R > r > |δ|, there holds
∫
Br

1

|xR+δ − y|n+s
dy =

(
R

R + δ

)s ∫
B Rr

R+δ

1

|xR − y|n+s
dy.

Using this equality, we compute the derivative of g2 at (r̄1, r̄2):

∂r1g2(r̄1, r̄2) = −2
∫

∂Br̄1

1

|xr̄2 − y|n+s
dy

∂r2g2(r̄1, r̄2) = sk(n)

r̄ s+1
2

+ 2s

r̄2

∫
Br̄1

1

|xr̄2 − y|n+s
dy + 2r̄1

r̄2

∫
∂Br̄1

1

|xr̄2 − y|n+s
dy + 1

= − s

r̄2
g2(r̄1, r̄2) + s + 1 + 2r̄1

r̄2

∫
∂Br̄2

1

|xr̄2 − y|n+s
dy

= s + 1 + 2r̄1
r̄2

∫
∂Br̄2

1

|xr̄2 − y|n+s
dy. (3.6)
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Note that, using (3.5) and (3.6),

Dg(r̄1, r̄2)(r̄1, r̄2)
t = (s + 1)(r̄1, r̄2)

t

so that (r̄1, r̄2) is an eigenvector with eigenvalue s + 1 > 0. Moreover, by (3.6), we
observe that ∂r2g2(r̄1, r̄2) > s + 1. This implies that

max
v: |v|=1

vDg(r̄1, r2)v
t ≥ (0, 1)Dg(r̄1, r̄2)(0, 1)

t > s + 1, (3.7)

which gives that Dg(r̄1, r2) has a second eigenvalue bigger than s + 1, and then in
particular positive.

We now consider the general case of a self-shrinker

E :=
N⋃

k=1

(
Br̄2k \ Br̄2k−1

)
. (3.8)

We also let r̄ = (r̄1, . . . , r̄2N ), g(r̄) = (g1(r̄), . . . , g2N (r̄)) ∈ R
2N , where

gi (r̄) := − Hs(xi , E) + r̄i = −k(n)

r̄ si
+ r̄i + 2

∑
j<i

(−1)i− j
∫
Br̄ j

1

|xr̄i − y|n+s
dy

− 2
∑
j>i

(−1)i− j
∫
Rn\Br̄ j

1

|xr̄i − y|n+s
dy,

if the index i is even, and

gi (r̄) := Hs(xi , E) + ri = −Hs(xi ,R
n \ E) + ri

= − k(n)

r̄ si
+ r̄i + 2

∑
j<i

(−1)i− j
∫
Br̄ j

1

|xr̄i − y|n+s
dy

− 2
∑
j>i

(−1)i− j
∫
Rn\Br̄ j

1

|xr̄i − y|n+s
dy,

if i is odd. Notice that, since r̄ is a stationary solution to (3.2), we have g(r̄) = 0.
We compute, for j �= i ,

∂gi
∂r j

(r̄) = 2(−1)i− j
∫

∂Br̄ j

1

|xr̄i − y|n+s
dy,
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and

∂gi
∂ri

(r̄) = − sk(n)

r̄ s+1
i

+ 1 − 2
s

r̄i

∑
j<i

(−1)i− j
∫
Br̄ j

1

|xr̄i − y|n+s
dy

+ 2
s

r̄i

∑
j>i

(−1)i− j
∫
Rn\Br̄ j

1

|xr̄i − y|n+s
dy

− 2

r̄i

∑
j �=i

(−1)i− j r̄ j

∫
∂Br̄ j

1

|xr̄i − y|n+s
dy

= − 2

r̄i
gi (r̄) + s + 1 − 2

r̄i

∑
j �=i

(−1)i− j r̄ j

∫
∂Br̄ j

1

|xr̄i − y|n+s
dy

= s + 1 + 2
∑
j �=i

r̄ j
r̄i

(−1)i− j+1
∫

∂Br̄ j

1

|xr̄i − y|n+s
dy.

Notice that

Dg(r̄)r̄ t =
∑
j

∂gi
∂r j

(r̄)r j = (s + 1)r̄ t ,

so that r̄ is an eigenvector with eigenvalue s + 1 > 0.
Now, we claim that

∂g2N
∂r2N

(r̄) > s + 1. (3.9)

If the claim is true, then reasoning as in (3.7), we conclude that there exists an eigen-
value of Dg(r̄) which is strictly greater than s + 1 (and then positive), so that the
Morse index of (r̄1, . . . r̄2N ) is at least 2.

Since

∂g2N
∂r2N

(r̄) = s + 1 + 2

r̄2N

2N−1∑
j=1

(−1) j−1 r̄2N− j

∫
∂Br̄2N− j

1

|xr̄2N − y|n+s
dy,

to get the claim (3.9) it is sufficient to prove that for all 1 ≤ i < j < 2N there holds

r̄i

∫
∂Br̄i

1

|xr̄2N − y|n+s
dy < r̄ j

∫
∂Br̄ j

1

|xr̄2N − y|n+s
dy. (3.10)

We shall prove a slightly stronger statement, namely that

r �→ h(r) :=
∫

∂Br

1

|xr̄2N − y|n+s
dy is strictly increasing on (0, r̄2N ). (3.11)
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Indeed, we compute

h′(r) =
∫

∂Br
∇
(

1

|xr̄2N − y|n+s

)
· ν(y) dy =

∫
Br




(
1

|xr̄2N − x |n+s

)
dx

= (n + s)(s + 2)
∫
Br

1

|xr̄2N − x |n+s+2 dx > 0,

which shows (3.11), and so proves (3.10). ��

Remark 3.2 It would be interesting to determine exactly theMorse index of the station-
ary points (r̄1, r̄2, . . . , r̄2N ) (resp. (r̄0, r̄1, . . . , r̄2N )) of the flow (3.2). In the simplest
case N = 1, we proved in Theorem 3.1 that the index of (r̄1, r̄2) is equal to 2.

It would also be interesting to understand if the ball is dynamically stable for any
perturbation, not necessarily radial, as it happens for the standard mean curvature flow
[11,13].
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