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Abstract
We view Dolbeault–Morse–Novikov cohomology H p,q

η (X) as the cohomology of the
sheaf �

p
X ,η of η-holomorphic p-forms and give several bimeromorphic invariants.

Analogue to Dolbeault cohomology, we establish the Leray–Hirsch theorem and the
blow-up formula for Dolbeault–Morse–Novikov cohomology. At last, we consider the
relations betweenMorse–Novikov cohomology andDolbeault–Morse–Novikov coho-
mology,moreover, investigate stabilities of their dimensions under the deformations of
complex structures. In some aspects, Morse–Novikov and Dolbeault–Morse–Novikov
cohomology behave similarly with de Rham and Dolbeault cohomology.
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1 Introduction

Let X be a smooth manifold and θ a real closed 1-form on X . SetAp(X) the space of
real smooth p-forms and define dθ : Ap(X) → Ap+1(X) as dθα = dα + θ ∧ α for
α ∈ Ap(X). Clearly, dθ ◦ dθ = 0, so we have a complex

· · · Ap−1(X)
dθ Ap(X)

dθ Ap+1(X) · · · · · · ,

whose cohomology H p
θ (X) = H p(A•(X), dθ ) is called the pth Morse–Novikov coho-

mology. For a complex closed 1-form θ on X , denote H p
θ (X ,C) = H p(A•

C
(X), dθ ),
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494 L. Meng

where A•
C
(X) = A•(X) ⊗R C. If θ is real, H p

θ (X ,C) = H p
θ (X) ⊗R C. Simi-

larly, we can define Morse–Novikov cohomology with compact support H p
θ,c(X) and

H p
θ,c(X ,C).
This cohomology was originally defined by Lichnerowicz ([13]) and Sullivan [24]

in the context of Poisson geometry and infinitesimal computations in topology, respec-
tively. It is well used to study the locally conformally Kählerian (l.c.K.) and locally
conformally symplectic (l.c.s.) structures [2–4,10,12,26]. H∗

θ (X) can be viewed as the
cohomologyof aflat bundle (weight line bundle) or a local constant sheaf ofR-modules
with finite rank, referring to [14,16,17,24,29]. As we know, the two viewpoints are
equivalent, whereas the latter is much more convenient, seeing [14].

In his seminal paper [16], Novikov introduced a generalization of the classical
Morse theory to the case of circle-valued Morse functions. Pajitnov [21] observed the
relation of the circle-valued Morse theory to the homology with local coefficients and
perturbed de Rham differential, see also [22], pp. 414–416.

For smooth manifolds, the Mayer–Vietoris sequence and Poincaré duality theo-
rem were generalized on Morse–Novikov cohomology by Haller and Rybicki [10].
León, López, Marrero and Padrón [12] proved that a compact Riemannian manifold
X endowed with a parallel one-form θ has trivial Morse–Novikov cohomology. By
Atiyah–Singer index theorem, Bande and Kotschick [4] found that the Euler charac-
teristic of Morse–Novikov cohomology coincides with the usual Euler characteristic.
In [14], we proved several Künneth formulas and theorems of Leray–Hirsch type.

For complex manifolds, Vaisman [26] studied the classical operators twisted with a
closed one-form on l.c.K. manifolds. In [14], we gave two explicit formulas of blow-
ups of complex manifolds for Morse–Novikov cohomology. As we know, de Rham
cohomology is closely related to Dolbeault cohomology on complex manifolds, such
as Hodge decomposition theorem, hard Lefschetz theorem, Hodge’s index theorem,
etc. Inspired by these, it is necessary to studyDolbeault–Morse–Novikov cohomology,
which is a generalization of Dolbeault cohomology. Recently, Ornea, Verbitsky, and
Vuletescu [20] showed that, for a locally conformally Kähler manifold X with proper
potential, H∗,∗

aη (X) = 0 holds for all a ∈ C but a discrete countable subset, where η

is the (0, 1)-part of Lee form θ of X .
Ornea, Verbitsky, and Vuletescu [19] proved that the blow-up of an l.c.K. manifold

along a submanifold is l.c.K. if and only if the submanifold is globally conformally
equivalent to a Kähler submanifold. Thus, it is necessary to consider the variance of
the Morse–Novikov [14] and Dolbeault–Morse–Novikov cohomology under blowing
up.

Theorem 1.1 Let π : ˜X → X be the blow-up of a connected complex manifold X
along a connected complex submanifold Z and iE : E = π−1(Z) → ˜X the inclusion
of the exceptional divisor E into ˜X. Suppose that η is a ∂̄-closed (0, 1)-form on X and
η̃ = π∗η. Then, for any p, q,

π∗ +
r−2
∑

i=0

(iE )∗ ◦ (hi∪) ◦ (π |E )∗
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gives an isomorphism

H p,q
η (X) ⊕

r−2
⊕

i=0

H p−1−i,q−1−i
η|Z

(Z)→̃H p,q
η̃

(˜X), (1)

where r = codimCZ and h is defined in (4).

For η = 0, Rao et al. [23] first proved there exists an isomorphism (1) on a compact
complex manifold X . It seems difficult to write it out explicitly using their method. In
[15], we write out an isomorphism explicitly on any (possibly noncompact) base with
a different way.

Deformations of complex structures play a significant role in studying Kählerian,
balanced, strongly Gauduchon and ∂∂-manifolds. For l.c.K. geometry, we have known
the facts that a deformation of a l.c.K. manifold is generally not l.c.K. [5] and the
class of compact l.c.K. manifolds with potential is stable under small deformations
[18]. These results inspire us to investigate behaviors of Dolbeault–Morse–Novikov
cohomology under deformations.

Lemma 1.2 Let f : X → Y be a proper surjective submersion of connected smooth
manifolds and θ a real (resp. complex) closed 1-form on X. Then, for any k, the higher
direct image Rk f∗RX ,θ (resp. Rk f∗CX ,θ ) is a local system of R (resp. C)-modules
with finite rank.

Using above lemma and the relation between Morse–Novikov and Dolbeault–
Morse–Novikov cohomologies, we get the theorem of stability of η-hodge numbers
under the deformation.

Theorem 1.3 Let f : X → Y be a family of complex manifolds and θ a complex closed
1-form on X. Assume bk(Xo, θ |Xo) = ∑

p+q=k h p,q
η|Xo

(Xo) for some k and some point

o ∈ Y , where η is the (0, 1)-part of θ . Then, for any t near o, h p,q
η|Xt

(Xt ) = h p,q
η|Xo

(Xo),
where η is the (0, 1)-part of θ and p + q = k.

In this article, we investigate the Dolbeault–Morse–Novikov cohomology via the
theory of sheaves. In Sect. 2 and 3, we recall the Morse–Novikov cohomology and
define the Dolbeault–Morse–Novikov cohomology, respectively. In Sect. 4, we study
the properties of the sheaf OX ,η of η-holomorphic functions and show that H p,0

η (X),

H p,0
η,c (X), H0,p

η (X) and H0,p
η,c (X) are all bimeromorphic invariants. In particular, we

prove Leray–Hirsch theorem and Theorem 1.1. In Sect. 5, Lemma 1.2 and Theorem
1.3 are proved.

2 Morse–Novikov Cohomology

We first recall the weight θ -sheaf, refering to [14]. Let Ak
X be the sheaf of germs

of real smooth k-forms and RX , CX be constant sheaves with coefficient R, C on
X , respectively. Set Ak

X ,C
= Ak

X ⊗RX
CX . Define dθ : Ak

X ,C
→ Ak+1

X ,C
as dθα =

dα + θ ∧ α, for α ∈ Ak
X ,C

.
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496 L. Meng

Definition 2.1 The kernel of dθ : A0
X ,C

→ A1
X ,C

is called a weight θ -sheaf, denoted
by CX ,θ .

Locally, θ = du for a smooth complex-valued function u, so dθ = e−u ◦ d ◦ eu and
CX ,θ = Ce−u . Hence, the weight θ -sheaf CX ,θ is a local system of C-modules with
rank 1. We have a resolution of soft sheaves of CX ,θ

0 CX ,θ
i A0

X ,C

dθ A1
X ,C

dθ · · · dθ An
X ,C

0 ,

where i is the natural inclusion. Thus,

H∗
θ (X ,C) ∼= H∗(X ,CX ,θ ), H∗

θ,c(X ,C) ∼= H∗
c (X ,CX ,θ ).

For dθ -closed α ∈ A∗
C
(X), denote by [α]θ (resp. [α]θ,c) the class in H∗

θ (X ,C) (resp.
H∗

θ,c(X ,C)).

Assume X is also oriented. Let D′k
X be the sheaf of germs of real k-currents and

D′k
X ,C

= D′k
X ⊗RX

CX . Similarly, define dθ : D′k
X ,C

→ D′k+1
X ,C

as dθ T = dT + θ ∧ T

for T ∈ D′k
X ,C

. We have another resolution

0 CX ,θ
i D′0

X ,C

dθ D′1
X ,C

dθ · · · dθ D′n
X ,C 0 ,

of soft sheaves ofCX ,θ , where i is the natural inclusion. By [6], p. 213 (6.3) (6.4) and p.
217 (7.8), the natural morphismA•

X ,C
↪→ D′•

X ,C
of resolutions induces isomorphisms

H∗
θ (X ,C)→̃H∗(D′•

C
(X), dθ ), H∗

θ,c(X ,C)→̃H∗(D′•
C,c(X), dθ ).

For dθ -closed T ∈ D′∗
C

(X), denote by [T ]θ (resp. [T ]θ,c ) the class in H∗
θ (X ,C) (resp.

H∗
θ,c(X ,C)).

Lemma 2.2 ([14]) Let X be a connected smooth manifold and θ a complex closed
1-form on X.

(1) CX ,θ
∼= CX if and only if θ is exact. More precisely, if θ = du for u ∈ A0

C
(X),

then h �→ eu · h gives an isomorphism CX ,θ→̃CX of sheaves.
(2) If μ is a closed 1-form on X, then CX ,θ ⊗CX

CX ,μ = CX ,θ+μ.
(3) Suppose f : Y → X is a smooth map between connected smooth manifolds.

Then, inverse image sheaf f −1
CX ,θ = CY , f ∗θ .

Proof (1) If CX ,θ
∼= CX , H0

θ (X) = H0(X ,CX ,θ ) = C. By [10], Example 1.6, θ is
exact. Inversely, if θ = du, CX ,θ = Ce−u , which implies the conclusion.

(2) Locally, θ = du and μ = dv. Then,CX ,θ = Ce−u ,CX ,μ = Ce−v andCX ,θ+μ =
Ce−u−v , locally. Clearly, the products of functions give an isomorphismCX ,θ ⊗RX

CX ,μ → CX ,θ+μ.

(3) Locally, θ = du,CX ,θ = Ce−u andCY , f ∗θ = Ce− f ∗u . Thepullbacks of functions
give an isomorphism f −1

CX ,θ→̃CY , f ∗θ . �
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Let X be a smooth manifold and θ , μ complex closed 1-forms on X . The wedge
product α ∧ β defines a cup product

∪ : H p
θ (X ,C) × Hq

μ(X ,C) → H p+q
θ+μ (X ,C).

Similarly, we can define cup products between H p
θ (X ,C) or H p

θ,c(X ,C) and
Hq

μ(X ,C) or Hq
μ,c(X ,C).

Let f : X → Y be a smooth map between connected smooth manifolds and θ a
complex closed 1-form on Y . Set θ̃ = f ∗θ and r = dimX − dimY .

(i) Define pullback f ∗ : H∗
θ (Y ,C) → H∗

θ̃
(X ,C) as [α]θ �→ [ f ∗α]θ̃ . If f is proper,

we can also define f ∗ : H∗
θ,c(Y ,C) → H∗

θ̃ ,c
(X ,C) in the same way.

(ii) If X and Y are oriented, define pushout f∗ : H∗
θ̃ ,c

(X ,C) → H∗−r
θ,c (Y ,C) as

[T ]θ,c �→ [ f∗T ]θ̃ ,c. Moreover, if f is proper, f∗ : H∗
θ̃
(X ,C) → H∗−r

θ (Y ,C) is
defined well similarly.

Let f : X → Y be a proper smooth map between connected oriented smooth mani-
folds. If μ is a closed 1-forms on Y and θ̃ = f ∗θ , we have the projection formula

f∗(σ ∪ f ∗τ) = f∗(σ ) ∪ τ

for σ ∈ H∗
θ̃
(X ,C) or H∗

θ̃ ,c
(X ,C) and τ ∈ H∗

μ(Y ,C) or H∗
μ,c(Y ,C). We get it easily

by f∗(T ∧ f ∗β) = f∗T ∧ β, where T ∈ D′∗(X) and β ∈ A∗(Y ).
Recall that a complexmanifold X is called p-Kählerian, if it admits a closed strictly

positive (p, p)-form � [1, Definition 1.1, 1.2]. For any p-dimensional connected
complex submanifold Z of a p-Kähler manifold X , �|Z is a volume form on Z . We
have

Proposition 2.3 Let f : X → Y be a proper surjective holomorphic map between
connected complex manifolds, and θ a complex closed 1-form on Y . Set r =
dimCX − dimCY and θ̃ = f ∗θ . Assume that X is r-Kählerian. Then, for any p,
f ∗ : H p

θ (Y ,C) → H p
θ̃

(X ,C) is injective and f∗ : H p
θ̃

(X ,C) → H p−2r
θ (Y ,C) is

surjective. They also hold for the cases of compact supports.

Proof Let � be a strictly positive closed (r , r)-form on X . Then c = f∗� is a closed
current of degree 0, hence a constant. By Sard’s theorem, the set U of regular values
of f is nonempty. For any y ∈ U , X y = f −1(y) is a r -dimensional compact complex
submanifold, so c = ∫

X y
�|X y > 0 onU . By the projection formula, f∗([�]∪ f ∗τ) =

c · τ , where [�] ∈ H2r (X ,C) and τ ∈ H p
θ (Y ,C) or H p

θ,c(Y ,C). It is easily to deduce
the conclusion. �

Clearly, any complex manifold is 0-Kählerian and any Kähler manifold X is p-
Kählerian for every p ≤ dimCX , so we get

Corollary 2.4 Let f : X → Y be a proper surjective holomorphic map between
connected complex manifolds with the same dimensions. Let θ be a complex closed
1-form on Y and θ̃ = f ∗θ . Then, for any p, f ∗ : H p

θ (Y ,C) → H p
θ̃

(X ,C) is injective

123



498 L. Meng

and f∗ : H p
θ̃

(X ,C) → H p
θ (Y ,C) is surjective. They also hold for the cases of compact

supports.

Corollary 2.5 Let f : X → Y be a proper surjective holomorphic map between
connected complex manifolds and θ a complex closed 1-form on Y . Set r =
dimCX − dimCY and θ̃ = f ∗θ . Assume that X is a Kähler manifold. Then, for any
p, f ∗ : H p

θ (Y ,C) → H p
θ̃

(X ,C) is injective and f∗ : H p
θ̃

(X ,C) → H p−2r
θ (Y ,C) is

surjective. They also hold for the cases of compact supports.

3 Dolbeault–Morse–Novikov Cohomology

Let X be a n-dimensional complex manifold and η a ∂̄-closed (0, 1)-form on X .
SupposeAp,q(X) is the space of smooth (p, q)-forms on X . Define ∂̄η : Ap,q(X) →
Ap,q+1(X) as follows:

∂̄ηα = ∂̄α + η ∧ α,

for every α ∈ Ap,q(X). Clearly, ∂̄η ◦ ∂̄η = 0, so we have a complex

· · · Ap,q−1(X)
∂̄η Ap,q(X)

∂̄η Ap,q+1(X) · · · · · · .

We call its cohomology H p,q
η (X) = Hq(Ap,•(X), ∂̄η) Dolbeault–Morse–Novikov

cohomology. Similarly, we can define Dolbeault–Morse–Novikov cohomology with
compact support H p,q

η,c (X). If η = 0, H p,q
η (X) is the classical Dolbeault cohomology

H p,q(X). Suppose Ap,q
X is the sheaf of germs of smooth (p, q)-forms on X . We

naturally get a morphism ∂̄η : Ap,q
X → Ap,q+1

X of sheaves.

Definition 3.1 We call the kernel of ∂̄η : Ap,0
X → Ap,1

X a weight η-sheaf of holomor-
phic p-forms, denoted by�

p
X ,η. In particular,OX ,η := �0

X ,η is called a weight η-sheaf
of holomorphic functions.

Locally, by Grothendieck–Poincaré lemma, η = ∂̄u for a smooth complex-valued
function u, and then, ∂̄η = e−u ◦ ∂̄ ◦ eu . Hence, locally, �

p
X ,η = e−u�

p
X , where

�
p
X is the sheaf of germs of holomorphic p-forms. So OX ,η is a locally free sheaf of

OX -modules with rank 1 and

�
p
X ,η = �

p
X ⊗OX OX ,η. (2)

Moreover, we have a soft resolution of �
p
X ,η

0 �
p
X ,η

i Ap,0
X

∂̄η Ap,q
X

∂̄η · · · ∂̄η Ap,n
X 0 .
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Similarly, we can define ∂̄η on the sheaf D′p,q
X of germs of (p, q)-currents and have

a soft resolution

0 �
p
X ,η

i D′p,0
X

∂̄η D′p,1
X

∂̄η · · · ∂̄η D′p,n
X 0 .

So

Hq(D′p,•(X), ∂̄η) ∼= H p,q
η (X) ∼= Hq(X ,�

p
X ,η)

and

Hq(D′p,•
c (X), ∂̄η) ∼= H p,q

η,c (X) ∼= Hq
c (X ,�

p
X ,η).

Similarly with Morse–Novikov cohomology, we can define pullback f ∗, pushout
f∗, cup product ∪ and have projection formulas on Dolbeault–Morse–Novikov coho-
mology. Moreover, by the similar proofs of Proposition 2.3, Corollaries 2.4 and 2.5,
we have

Proposition 3.2 Let f : X → Y be a proper surjetive holomorphic map between
complex manifolds and η a ∂̄-closed (0, 1)-forms on Y . Set r = dimCX −dimCY and
η̃ = f ∗η. Assume that X is a r-Kähler manifold. Then, for any p, q, f ∗ : H p,q

η (Y ) →
H p,q

η̃
(X) is injective and f∗ : H p,q

η̃
(X) → H p−r ,q−r

η (Y ) is surjective. They also hold
for the cases of compact supports.

Corollary 3.3 Let f : X → Y be a proper surjetive holomorphic map between complex
manifolds with the same dimensions. Let η be a ∂̄-closed (0, 1)-forms on Y and η̃ =
f ∗η. Then, for any p, q, f ∗ : H p,q

η (Y ) → H p,q
η̃

(X) is injective and f∗ : H p,q
η̃

(X) →
H p,q

η (Y ) is surjective. They also hold for the cases of compact supports.

Corollary 3.4 Let f : X → Y be a proper surjetive holomorphic map between complex
manifolds and η a ∂̄-closed (0, 1)-forms on Y . Set r = dimCX −dimCY and η̃ = f ∗η.
If X is a Kähler manifold. Then, for any p, q, f ∗ : H p,q

η (Y ) → H p,q
η̃

(X) is injective

and f∗ : H p,q
η̃

(X) → H p−r ,q−r
η (Y ) is surjective. They also hold for the cases of

compact supports.

Remark 3.5 On de Rham and Dolbeault cohomologies, several particular cases were
proved in [28].

4 Dolbeault–Morse–Novikov Cohomology Via Sheaf Theory

4.1 Weight�-Sheaf

First, we give several properties of weight η-sheaves of holomorphic functions.

Lemma 4.1 Let X be a complex manifold and θ a complex closed 1-form on X. Assume
θ = ζ̄ + η, where ζ and η are the (0, 1)-forms on X. Then
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500 L. Meng

(1) OX ,η = OX ⊗CX
CX ,θ ;

(2) OX ,η, OX ,ζ and CX ,θ are subsheaves of A0
X ,C

. Moreover, OX ,η ∩OX ,ζ = CX ,θ ,

where OX ,ζ is the sheaf of complex conjugation of OX ,ζ in A0
X ,C

.

Proof Locally, θ = du, ζ = ∂̄ ū, η = ∂̄u, hence, CX ,θ = Ce−u , OX ,η = e−u · OX

and OX ,ζ = e−ū · OX . Clearly, OX ,η ∩ OX ,ζ = CX ,θ , and the products of functions
give an isomorphism OX ⊗CX

CX ,θ → OX ,η . �
Lemma 4.2 Let X be a complex manifold and η a ∂̄-closed (0, 1)-form on X.

(1) Suppose η is ∂̄-exact, i.e., there exists u ∈ A0
C
(X), such that η = ∂̄u . Then

OX ,η → OX , h �→ h · eu

is an isomorphism of sheaves of OX -modules.
(2) Suppose ζ is a ∂̄-closed (0, 1)-form on X. Then OX ,ζ ⊗OX OX ,η = OX ,ζ+η.

Thus, (OX ,η)
∨ = OX ,−η, where (OX ,η)

∨ = HomOX (OX ,η,OX ) is the dual of
OX ,η of OX -modules.

(3) If f : Y → X is a holomorphic map of complex manifolds, then

f ∗OX ,η = OY , f ∗η,

where f ∗OX ,η = f −1OX ,η ⊗ f −1OX
OY is the inverse image sheaf of OY -modules.

Proof We can get (1), (2) immediately with the similar proof of Lemma 2.2.
(3) For any presheaf G, denote by G+ the sheaf associated to G. Define presheaves

F and R on Y as

F(U ) = lim−→
W⊇ f (U )

OX ,η(W )

and

R(U ) = lim−→
W⊇ f (U )

OX (W ),

for anyopen subsetU ofY . ThenF+ = f −1OX ,η,R+ = f −1OX and (F⊗ROY )+ =
f ∗OX ,η.
Define ϕ(U ) : F(U ) ⊗R(U ) OY (U ) → OY , f ∗η(U ) as [h] ⊗ g �→ g · ( f ∗h)|U ,

for every open subset U of Y , where [h] is the class of the η-holomorphic function h
under the direct limit. We get a morphism ϕ : F ⊗R OY → OY , f ∗η of presheaves,
and moreover, induce a morphism ϕ+ : f ∗OX ,η → OY , f ∗η of sheaves.

We claim that ϕ+ is an isomorphism. Actually, for any y ∈ Y , choose a open ball
V near f (y), such that η = ∂̄u on V for some u ∈ A0

C
(V ). The elements of Fy =

(OX ,η) f (y) and (OY , f ∗η)y can be written as [pe−u] and [qe− f ∗u] respectively, where
p, q are holomorphic functions near f (y), y respectively, where [a] denote the the
class of a under direct limit. At the stalk over y, ϕ+

y ([pe−u]⊗[g]) = [g · f ∗ p ·e− f ∗u],
which is isomorphic. We complete the proof. �
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Remark 4.3 If η is the (0, 1)-part of a closed 1-form, Lemma 4.2(3) can be proved
simply by Lemma 4.1(1).

For a complex closed 1-form θ on a complex manifold X , we write θ = ζ̄ + η,
where ζ and η are both (0, 1)-forms. Let ∂ζ̄ = ∂ + ζ̄∧. Then dθ = ∂ζ̄ + ∂̄η, ∂2ζ̄ = 0,

∂̄2η = 0, and ∂ζ̄ ∂̄η + ∂̄η∂ζ̄ = 0. Locally, θ = du, for a smooth complex-valued function

u. Then, η = ∂̄u, ζ̄ = ∂u and ∂ζ̄ = e−u ◦ ∂ ◦ eu , locally. By the holomorphic de Rham
resolution of C, there exists a resolution of CX ,θ

0 CX ,θ
i OX ,η

∂ζ̄
�1

X ,η

∂ζ̄ · · · ∂ζ̄
�n

X ,η 0 .

Sowe can computeMorse–Novikov cohomology by the hypercohomology H p
θ (X ,C)

= H
p(X ,�•

X ,η). If X satisfies that H p,q
η (X) = 0 for any p ≥ 1, q ≥ 0, then

H p
θ (X ,C) = H p(�(X ,�•

X ,η), ∂ζ̄ ).

In this case, H p
θ (X ,C) = 0 for p > dimCX .

4.2 Künneth Formula and Serre’s Duality

If F and G are sheaves of OX and OY -modules on complex manifolds X and Y ,
respectively. The cartesian product sheaf of F and G is defined as

F � G = pr∗
1F ⊗OX×Y pr∗

2G,

where pr1 and pr2 are projections from X ×Y onto X , Y , respectively. Assume that ζ
and η are ∂̄-closed forms on complex manifolds X and Y respectively. By the formula
(2) and Lemma 4.2(3),

pr∗
1�

p
X ,ζ = pr∗

1�
p
X ⊗OX×Y OX×Y ,pr∗

1 ζ

and

pr∗
2�

q
Y ,η = pr∗

2�
q
Y ⊗OX×Y OX×Y ,pr∗

2 η,

hence �
p
X ,ζ � �

q
Y ,η = (�

p
X � �

q
Y ) ⊗OX×Y OX×Y ,ω, where ω = pr∗

1 ζ + pr∗
2η. So

�k
X×Y ,ω = �k

X×Y ⊗OX×Y OX×Y ,ω

=
⎛

⎝

⊕

p+q=k

�
p
X � �

q
Y

⎞

⎠ ⊗OX×Y OX×Y ,ω

=
⊕

p+q=k

�
p
X ,ζ � �

q
Y ,η.

(3)

123



502 L. Meng

If X or Y is compact, by (3) and [6], Chap. IX, (5.23) (5.24), we have an isomor-
phism

⊕

p+q=k,r+s=l

H p,r
ζ (X) ⊗C Hq,s

η (Y ) ∼= Hk,l
ω (X × Y )

for any k, l. We call it Künneth formula for Dolbeault–Morse–Novikov cohomology.
Let X be a connected compact complex manifold of dimension n and η a ∂̄-closed

(0, 1)-form on X . By Lemma 4.1, (2) and Serre duality theorem,

∪ : H p,q
η (X) × Hn−p,n−q

−η (X) → C

is a nondegenerate pair, for 0 ≤ p, q ≤ n.

4.3 Bimeromorphic Invariants

We give several bimeromorphic invariants by Dolbeault–Morse–Novikov cohomol-
ogy.

Proposition 4.4 Let f : X ��� Y be a bimeromorphic map of complex manifolds and
ηX , ηY ∂̄-closed (0, 1)-forms on X, Y , respectively. Assume that there exist nowhere
dense analytic subsets E ⊆ X and F ⊆ Y , such that f : X − E → Y − F is
biholomorphic and f ∗(ηY |Y−F ) = ηX |X−E . Then, for any p,

(1) H0,p
ηX (X) ∼= H0,p

ηY (Y ) and H0,p
ηX ,c(X) ∼= H0,p

ηY ,c(Y );

(2) H p,0
ηX (X) ∼= H p,0

ηY (Y ) and H p,0
ηX ,c(X) ∼= H p,0

ηY ,c(Y ).

Proof We choose two proper modifications g : Z → X and h : Z → Y such that
there is nowhere dense analytic subset S in Z , E ⊆ g(S) and F ⊆ h(S), g : Z − S →
X −g(S), h : Z −S → Y −h(S) are biholomorphic and f g|Z−S = h|Z−S . Obviously,

(g∗ηX − h∗ηY )|Z−S = g∗((ηX |X−E − f ∗(ηY |Y−F ))|X−g(S)) = 0.

By the continuity, g∗ηX = h∗ηY . Hence, we need only to prove the propostion for the
case that f is a proper modification and f ∗ηY = ηX . By [9], page 215, we assume
E = f −1(F), codimY F ≥ 2 and codimX E = 1.

(1) By Lemma 4.2(3) and [25], Proposition 1.13, 2.14,

Rq f∗OX ,ηX = Rq f∗OX ⊗OY OY ,ηY =
⎧

⎨

⎩

OY ,ηY , q = 0;

0, otherwise.

Consider Leray spectral sequences,

E p,q
2 = H p(Y , Rq f∗OX ,ηX ) ⇒ H p+q = H p+q(X ,OX ,ηX )
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and

E p,q
2 = H p

c (Y , Rq f∗OX ,ηX ) ⇒ H p+q = H p+q
c (X ,OX ,ηX ).

Then E p,q
2 = 0 for q > 0. Hence E p,0

2 = H p. We get (1).
(2) Set U = X − E , V = Y − F and jU : U → X , jV : V → Y are inclusions.

We have a commutative diagram

H0(Y ,�
p
Y ,ηY

)

j∗V

f ∗
H0(X ,�

p
X ,ηX

)

j∗U

H0(V ,�
p
Y ,ηY

)
( f |U )∗

H0(U ,�
p
X ,ηX

)

,

By the continuity, the restriction j∗U is injective. By the second Riemann continuation
theorem ([8], p. 133), j∗V is isomorphic. Since f |U is biholomorphic, j∗U is surjective,
and then, an isomorphism. So f ∗ is an isomorphism.

Consider the commutative diagram

H0
c (X ,�

p
X ,ηX

)
f∗

H0
c (Y ,�

p
Y ,ηY

)

H0(X ,�
p
X ,ηX

)
f∗

H0(Y ,�
p
Y ,ηY

)

.

The two vertical maps are inclusions, hence are both injective. We have proven that
f ∗ : H p,0

ηY (Y ) → H p,0
ηX (X) is an isomorphism. By the projection formula, f∗ f ∗ = id

on H p,0
ηY (Y ). So the map at the bottom is an isomorphism. Then the map at the top

is injective. By the projection formula again, f∗ f ∗ = id on H p,0
ηY ,c(Y ), hence f∗ is

isomorphic on H p,0
ηX ,c(X). �

Remark 4.5 H1
θ (X ,C) and H2n−1

θ,c (X ,C) are also bimeromorphic invariants, referring
to [14], Corollary 4.8.

4.4 Leray–Hirsch Theorem

Now,we establish the Leray–Hirsch theorem for theDolbeault–Morse–Novikov coho-
mology.

Theorem 4.6 Let π : E → X be a holomorphic fiber bundle over a connected complex
manifold X whose general fiber F is compact and η a ∂̄-closed (0, 1)-form on X.
Assume there exist classes e1, . . . , er of pure degrees in H∗∗(E), such that, for every
x ∈ X, their restrictions e1|Ex , . . . , er |Ex freely linearly generate H∗∗(Ex ). Then,
π∗(•) ∪ • gives isomorphisms of bigraded vector spaces
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H∗∗
η (X) ⊗C spanC{e1, . . . , er }→̃H∗∗

η̃ (E),

where η̃ = π∗η.

Proof If X is a Stein manifold, the theorem holds. Actually, since H0,1(X) = 0, η is
∂̄-exact. By (2) and Lemma 4.2(1), we may assume η = 0. It is exactly [15], Theorem
1.2.

Go back to the general case. Let t1, . . . , tr be forms of pure degrees in A∗∗(E),
such that ei = [ti ] for 1 ≤ i ≤ r . Set L∗,∗ = spanC{t1, . . . , tr }, which is a bigraded
vector spaces and isomorphic to spanC{e1, . . . , er }. For any open set U in X , set

B p,q(U ) =
⊕

k+l=p,u+v=q

Ak,u(U ) ⊗C Ll,v

and ∂̄B = ∂̄η ⊗ 1. For any p, (B p,•(U ), ∂̄B) is a complex, whose cohomology is

D p,q(U ) =
(

H∗,∗
η (U ) ⊗C spanC{e1, . . . , er }

)p,q

=
⊕

k+l=p,u+v=q

Hk,u
η (U ) ⊗C (spanC{e1, . . . , er })l,v.

Clearly, the morphism π∗(•) ∧ • : B p,•(U ) → C p,•(U ) := Ap,•(EU ) of complexes
induces a morphism on the cohomological level

π∗(•) ∪ • : D p,q(U ) → E p,q(U ) := H p,q
η̃

(EU ),

denoted by �U . We need to prove �X is an isomorphism.
Given p, for any open subsets U , V in X , there is a commutative diagram of

complexes

0 B p,•(U ∪ V )

π∗(•)∧•

(ρU∪V
U ,ρU∪V

V )

B p,•(U ) ⊕ B p,•(V )

(π∗(•)∧•,π∗(•)∧•)

ρU
U∩V −ρV

U∩V
B p,•(U ∩ V )

π∗(•)∧•

0

0 C p,•(U ∪ V )
( jU∪V

U , jU∪V
V )

C p,•(U ) ⊕ C p,•(V )
jU
U∩V − j V

U∩V
C p,•(U ∩ V ) 0

,

where ρ, j are restrictions and the differentials of complexes in the first, second rows
are all ∂̄B , ∂̄ , respectively. The two rows are both exact sequences of complexes.
Therefore, we have a commutative diagram of long exact sequences

· · · D p,q−1(U ∩ V )

�U∩V

D p,q (U ∪ V )

�U∪V

D p,q (U ) ⊕ D p,q (V )

(�U ,�V )

D p,q (U ∩ V )

�U∩V

· · ·

· · · E p,q−1(U ∩ V ) E p,q (U ∪ V ) E p,q (U ) ⊕ E p,q (V ) E p,q (U ∪ V ) · · · .
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If �U , �V and �U∩V are isomorphisms, then �U∪V is an isomorphism by five
Lemma (seeing [11], p. 6). We claim that:

(∗) For open subsets U1, . . . , Us ⊆ X , if �Ui1∩···∩Uik
is an isomorphism for any

1 ≤ k ≤ s and 1 ≤ i1 < · · · < ik ≤ s, then �⋃s
i=1 Ui

is an isomorphism.
We prove this conclusion by induction. For r = 1, the conclusion holds clearly.

Suppose it holds for s. For s + 1, set U ′
1 = U1, . . . , U ′

s−1 = Us−1, U ′
s = Us ∪

Us+1. Then �U ′
i1

∩···∩U ′
ik

= �Ui1∩···∩Uik
is isomorphic for any 1 ≤ i1 < · · · <

ik ≤ s − 1. Moreover, �U ′
i1

∩...∩U ′
ik−1

∩U ′
s
is also isomorphic for any 1 ≤ i1 < · · · <

ik−1 ≤ s − 1, since �Ui1∩···∩Uik−1∩Us , �Ui1∩···∩Uik−1∩Us+1 and �Ui1∩···∩Uik−1∩Us∩Us+1

are isomorphic. By inductive hypothesis, �⋃s+1
i=1 Ui

= �⋃s
i=1 U ′

i
is an isomorphism.

We proved (∗).
For a disjoint union U = ⋃

Uα of open subsets Uα in X , �U is exactly the direct
product

∏

�Uα :
∏

D p,q(Uα) →
∏

H p,q
η̃

(EUα ).

If �Uα are all isomorphic, then �U is also an isomorphism.
Let U be a basis for topology of X such that every U ∈ U is Stein and let Uf be the

collection of the finite unions of open sets in U .
For any finite intersection V of open sets in Uf, �V is an isomorphism. Actually,

V = ⋂s
i=1 Ui , where Ui = ⋃ri

j=1 Ui j and Ui j ∈ U . Then V = ⋃

J∈� UJ , where
� = {J = ( j1, . . . , js)|1 ≤ j1 ≤ r1, . . . , 1 ≤ js ≤ rs} and UJ = U1 j1 ∩ · · · ∩ Usjs .
For any J1, . . . , Jt ∈ �, UJ1 ∩ · · · ∩ UJt is a Stein manifold, so �UJ1∩···∩UJt

is
isomorphic. By (∗), �V = �⋃

J∈� UJ is an isomorphism.
By [7], p. 16, Prop. II, X = V1 ∪ · · · ∪ Vl , where Vi is a countable disjoint union of

open sets in Uf. For any 1 ≤ i1 < · · · < ik ≤ l, Vi1 ∩ · · · ∩ Vik is a disjoint union of
the finite intersection of open sets in Uf. Hence, �Vi1∩···∩Vik

is isomorphic, so is �X

by (∗). We complete the proof. �
In particular, we can calculate the Dolbeault–Morse–Novikov cohomology of pro-

jectivized bundles.

Corollary 4.7 Let π : P(E) → X be the projectivization of a holomorphic vector
bundle E on a connected complex manifold X. Assume η is a ∂̄-closed (0, 1)-form on
X and h = [ i

2π �(OP(E)(−1))] is in H1,1(P(E)), where OP(E)(−1) is the universal
line bundle on P(E) and �(OP(E)(−1)) is the Chern curvature of a hermitian metric
on OP(E)(−1). Then π∗(•) ∪ • gives an isomorphism of graded vector spaces

H∗,∗
η (X) ⊗C spanC{1, . . . , hr−1}→̃H∗,∗

η̃
(P(E)),

where rankCE = r and η̃ = π∗η.

4.5 A Blow-Up Formula

We have the following lemma by definition.
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Lemma 4.8 [15, Proposition 3.1] Let X be a complex manifold and Z, U closed,
open complex submanifolds of X, respectively. Assume i : Z → X, j : U → X,
i ′ : Z ∩ U → U and j ′ : Z ∩ U → Z are inclusions. Then i ′∗ j ′∗ = j∗i∗ on D′∗∗(Z).

Let π : ˜X → X be the blow-up of a connected complex manifold X along a
connected complex submanifold Z . We know π |E : E = π−1(Z) → Z is the
projectivization E = P(NZ/X ) of the normal bundle NZ/X . Set

h =
[

i

2π
�(OE (−1))

]

(4)

in H1,1
∂̄

(E), where�(OE (−1)) is the curvature of the Chern connection of a hermitian
metric of the universal line bundle OE (−1) on E .

Theorem 4.9 With the above notations, let iE : E → ˜X be the inclusion and r =
codimCZ. Suppose that η is a ∂̄-closed (0, 1)-form on X and η̃ = π∗η. Then, for any
p, q,

π∗ +
r−2
∑

i=0

(iE )∗ ◦ (hi∪) ◦ (π |E )∗ (5)

gives an isomorphism

H p,q
η (X) ⊕

r−2
⊕

i=0

H p−1−i,q−1−i
η|Z

(Z)→̃H p,q
η̃

(˜X).

Proof For a Stein manifold X , we may assume η = 0 with the same reason with the
proof of Theorem 4.6, so the theorem holds by [15], Theorem 1.3.

For the general complex manifold X , set

F p,q = Ap,q
X ⊕

r−2
⊕

i=0

iZ∗Ap−1−i,q−1−i
Z ,

for any p, q. Define ∂̄ : F p,∗ → F p,∗+1 as (α, β0, . . . , βr−2) �→ (∂̄ηα, ∂̄η|Z β0, . . . ,

∂̄η|Z βr−2). For any p, (F p,•, ∂̄) is a complex of sheaves. Let t = i
2π �(OE (−1)) ∈

A1,1(E). For any open subset U in X , define F p,q(U ) → D′p,q(˜U ) as

ϕU =
⎧

⎨

⎩

(π |
˜U )∗ + ∑r−2

i=0 (iE∩˜U )∗ ◦ (t i |E∩˜U ∧) ◦ (π |E∩˜U )∗, Z ∩ U �= ∅

(π |
˜U )∗, Z ∩ U = ∅,

where ˜U = π−1(U ) and iE∩˜U : E∩˜U → ˜U is the inclusion. Clearly, ∂̄η̃◦ϕU = ϕU ◦∂̄ .
Hence, ϕU induces a morphism of vector spaces

�U : H p,q
η (U ) ⊕

r−2
⊕

i=0

H p−1−i,q−1−i
η|Z

(Z ∩ U ) → H p,q
η̃

(˜U ).
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We need to prove that �X is an isomorphism.
For open sets V ⊆ U , denote by ρU

V : F p,q(U ) → F p,q(V ) the restriction of the
sheafF p,q and jU

V : D′p,q(˜U ) → D′p,q(˜V ) the restriction of currents. By Lemma 4.8,
jU
V ◦ϕU = ϕV ◦ρU

V . Given p, for any open subsets U , V in X , there is a commutative
diagram of complexes

0 F p,•(U ∪ V )

ϕU∪V

(ρU∪V
U ,ρU∪V

V )

F p,•(U ) ⊕ F p,•(V )

(ϕU ,ϕV )

ρU
U∩V −ρV

U∩V F p,•(U ∩ V )

ϕU∩V

0

0 D′p,•(˜U ∪ ˜V )
( jU∪V

U , jU∪V
V )

D′p,•(˜U ) ⊕ D′p,•(˜V )
jU
U∩V − j V

U∩V D′p,•(˜U ∩ ˜V ) 0

.

The two rows are both exact sequences of complexes. For convenience, denote

L p,q(U ) = H p,q
η (U ) ⊕

r−2
⊕

i=0

H p−1−i,q−1−i
η|Z

(Z ∩ U ).

Therefore, we have a commutative diagram of long exact sequences

· · · L p,q−1(U ∩ V )

�U∩V

L p,q (U ∪ V )

�U∪V

L p,q (U ) ⊕ L p,q (V )

(�U ,�V )

L p,q (U ∩ V )

�U∩V

L p,q+1(U ∪ V )

�U∪V

· · ·

· · · H
p,q−1
η̃

(˜U ∩ ˜V ) H
p,q
η̃

(˜U ∪ ˜V ) H
p,q
η̃

(˜U ) ⊕ H
p,q
η̃

(˜V ) H
p,q
η̃

(˜U ∩ ˜V ) H
p,q+1
η̃

(˜U ∪ ˜V ) · · · .

Following the steps in the proof of Theorem 4.6, we proved that�X is an isomorphism.
�

5 Stability of �-Betti and �-Hodge Numbers

For a compact smooth manifold X and a real (resp. complex) closed 1-form θ on
X , bk(X , θ) :=dimRHk

θ (X) [resp. dimCHk
θ (X ,C)] is called k-th θ -betti number of

X . Similarly, for a compact complex manifold X and a ∂̄-closed (0, 1)-form η on X ,
h p,q

η (X) := dimCH p,q
η (X) is called (p, q)-th η-hodge number of X .

Lemma 5.1 Let f : X → Y be a proper surjective submersion of connected smooth
manifolds and θ a real (resp. complex) closed 1-form on X. Then, for any k, the higher
direct image Rk f∗RX ,θ (resp. Rk f∗CX ,θ ) is a local system of R (resp. C)-modules
with finite rank.

In particular,

y �→ bk(X y, θ |X y )

is a constant function, where X y = f −1(y) for any y ∈ Y .
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Proof We may assume Y is an open ball and only prove the real case.
Let o be the center of Y . By Ehresmann’s trivialization theorem, there exists a

diffeomorphism T : Xo ×Y → X , such that pr2 = f ◦ T , where pr2 is the projection
from Xo × Y to Y . By Lemma 2.2(3),

Rk f∗RX ,θ
∼=Rk f∗(T∗RXo×Y ,T ∗θ )

∼=Rk(pr2)∗RXo×Y ,T ∗θ .
(6)

Set pr2 the projection from Xo × Y to Xo. By Künneth formula, pr∗
1 : H1(Xo) →

H1(Xo×Y ) is an isomorphism,whereweuse the fact that H0(Y ) = R and H1(Y ) = 0.
So, T ∗θ can be written as pr∗

1 θo + du for a closed 1-form θo on Xo and a smooth
function u on Xo × Y . Consider the cartesian diagram

Xo × Y

pr1

pr2
Y

pY

Xo
pXo {pt},

where {pt} is a single-point space and pXo , pY are constant map. Evidently, pr2 and
pXo are proper. By Lemma 2.2 and [11], p. 316, Corollary 1.5,

Rk(pr2)∗RXo×Y ,T ∗θ ∼=Rk(pr2)∗RXo×Y ,pr∗
1 θo

∼=Rk(pr2)∗(pr−1
1 RXo,θo

)

∼=p−1
Y Rk(pXo)∗(RXo,θo

)

=RXo×Y ⊗R Hk
θo

(Xo).

(7)

Combined (6) and (7), Rk f∗RX ,θ is constant on the open ball Y . Moreover, the stalk
(Rk f∗RX ,θ )y = Hk(X y,RX ,θ |X y ) = Hk

θ |X y
(X y). We complete the proof. �

Let X be a compact complex manifold and θ = ζ̄ + η a complex closed 1-form on
X , where ζ and η are both (0, 1)-forms. For the double complex (A∗,∗(X), ∂ζ̄ , ∂̄η),
the associated simple complex is (A∗

C
(X), dθ ), which has a natural filtration

F pAk
C
(X) =

⊕

r≥p,r+s=k

Ar ,s(X).

We get a spectral sequence (E∗,∗
r , dr , H∗), where E p,q

1 = H p,q
η (X) and Hk =

Hk
θ (X ,C). If θ = 0, this is Frölicher spectral sequence. Clearly, for p < 0, or

p > n, or q < 0, or q > n, E p,q
r = 0. So, for given p, q, if r is enough large,

E p,q
r = E p,q

r+1 = · · · = E p,q∞ = F p H p+q
θ (X ,C)/F p+1H p+q

θ (X ,C).
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Since dimCE p,q
r+1 ≤ dimCE p,q

r for any r ,

bk(X , θ) =
∑

p+q=k

E p,q∞ ≤
∑

p+q=k

E p,q
1 =

∑

p+q=k

h p,q
η (X).

The degeneration of this spectral sequence at E1 on compact locally conformally
Kähler manifold is proved in some conditions in [20].

We say that f : X → Y is a family of complex manifolds, if f is a proper surjective
holomorphic submersion.

Theorem 5.2 Let f : X → Y be a family of complex manifolds and θ a complex closed
1-form on X. Assume bk(Xo, θ |Xo) = ∑

p+q=k h p,q
η|Xo

(Xo) for some k and some point

o ∈ Y , where η is the (0, 1)-part of θ . Then, for any t near o, h p,q
η|Xt

(Xt ) = h p,q
η|Xo

(Xo),
where η is the (0, 1)-part of θ and p + q = k.

Proof Let �1
X/Y = �1

X/ f ∗�1
Y be the sheaf of the relative holomorphic 1-forms and

�
p
X/Y = ∧p

�1
X/Y . Set it : Xt → X the inclusion. Then, i∗t �

p
X/Y = �

p
Xt
, seeing

[27], p. 234-235. For the locally free sheaf �
p
X/Y ⊗OX OX ,η, we have

i∗t (�
p
X/Y ⊗OX OX ,η) = i∗t �

p
X/Y ⊗OXt

i∗t OX ,η = �
p
Xt ,η|Xt

.

By the semi-continuity theorem, h p,q
η|Xt

(Xt ) ≤ h p,q
η|Xo

(Xo) for any t near o. Thus,

bk(Xo, θ |Xo) =
∑

p+q=k

h p,q
η|Xo

(Xo) ≥
∑

p+q=k

h p,q
η|Xt

(Xt ) ≥ bk(Xt , η|Xt ).

By Lemma 5.1, h p,q
η|Xt

(Xt ) = h p,q
η|Xo

(Xo) for any p + q = k. �
By Hodge decomposition of complex manifolds in Fujiki class C, we get the fol-

lowing corollary immediately.

Corollary 5.3 Let f : X → Y be a family of complex manifolds and θ a complex closed
1-form on X. Assume, for a point o ∈ Y , Xo is in the Fujiki class C and θ |Xo = 0.
Then, for any t near o, h p,q

η|Xt
(Xt ) = h p,q(Xo), for any p, q, where η is the (0, 1)-part

of θ .
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