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Abstract We extend the classical Schwarz—Pick inequality to the class of harmonic
mappings between the unit disk and a Jordan domain with given perimeter. It is intrigu-
ing that the extremals in this case are certain harmonic diffeomorphisms between the
unit disk and a convex domain that solve the Beltrami equation of second order.
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1 Introduction

Let U be the unit disk in the complex plane C and denote by T its boundary. A harmonic
mapping f of the unit disk into the complex plane can be written by f (z) = g(z)+h(z),
where g and & are holomorphic functions defined on the unit disk. Two of essential
properties of harmonic mappings are given by Lewy theorem, and Rado—Kneser—
Choquet theorem. Lewy theorem states that a injective harmonic mapping f is indeed
a diffeomorphism, or what is the same its Jacobian J := Pf1Z—13f1*> =18 @)* -
| (2)]* # 0. Rado—Kneser—Choquet theorem states that a Poisson extension of a
homeomorphism of the unit circle T onto a convex Jordan curve y is a diffeomorphism
on the unit disk onto the inner part of y . For those and many more important properties
of harmonic mappings, we refer to the book of Duren [2].
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The standard Schwarz lemma states that if f is a holomorphic mapping of the unit
disk U into, itself such that f(0) = 0 then | f(z)| < |z|.

Its counter-part for harmonic mappings states the following ([2, Sect. 4.6]). Let f
be a complex-valued function harmonic in the unit disk U into itself, with f(0) = 0.
Then

4
[f (@] = - arctan |z,

and this inequality is sharp for each point z € U. Furthermore, the bound is sharp
everywhere (but is attained only at the origin) for univalent harmonic mappings f of
U onto itself with f(0) = 0.

The standard Schwarz—Pick lemma for holomorphic mappings states that every
holomorphic mapping f of the unit disk onto itself satisfies the inequality:

, 1—|f@)
I f'(2)] < ToRp (1.1)

If the equality is attained in (1.1) for a fixed z = a € U, then f is a Mobius
transformation of the unit disk.
It follows from (1.1) the weaker inequality:

If'(@)] < (1.2)

1—|z]?

with the equality in (1.2) for some fixed z = a if and only if f(z) = e” . We will
extend this result to harmonic mappings.

2 Main Result

Theorem 2.1 If f is a harmonic orientation preserving diffeomorphism of the unit
disk U onto a Jordan domain Q2 with rectifiable boundary of length 2n R, then the
sharp inequality
R
[0f (2)| < 2 |2, zeU 2.1

holds. If the equality in (2.1) is attained for some a, then Q2 is convex, and there is a
holomorphic function u : U — U and a constant 0 € [0, 2r], such that

s z+a\ ¢ dt /Z w(t)dt
F@=e f<1+za)_R</0 1+t2u(t)+ 0 1+r2u(z)>‘ 2.2

Moreover, every function f defined by (2.2) is a harmonic diffeomorphism and maps
the unit disk to a Jordan domain bounded by a convex curve of length 2m R and the
inequality (2.1) is attained for 7z = a.
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394 D. Kalaj

Corollary 2.2 Under the conditions of Theorem 2.1, if R = 1 and |u|oc = k < 1,
then the mapping F is K = % bi-Lipschitz, and K—quasi-conformal.

Proof We have that

F.(2)

T 1+ 22u()
and
F) = #ﬁ(n
Thus
Lok VRl — Bl = 1F) < [dF| = |Fu] + 1P < 228
1+k 1—k

Thus, F is K—Dbi-Lipschitz. Furthermore, we have

[ Fz(2)]
= |u@)| <k,
[F(2)]
and so
UFl+1F:D? Pl +1Fsl _ 14k _
|F.|? = |Fz1? |F | —|Fz| — 1—k
Therefore, f is K—quasi-conformal. O

Corollary 2.3 If Q2 = U, then the equality is attained in (2.1) for some a if only if f
is a Mobius transformation of the unit disk onto a disk.

Proof of Corollary 2.3 Under conditions of Theorem 2.1, the function (2.2) can be

written as
F(z):=e 07 (H—“> — R (/ (1 _ tzh’(t)> dt + h(z)) 2.3)
14 za 0
where h(z) = Z,fio axz¥ is defined on the unit disk and satisfies the condition:

' (2)]

—_— <1, e U. 2.4
1 — 221 (2)| ¢ @4

Further

Jr@) =1 =220 @) = W @)
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Since
o0 o0
W)=Y b =Y (k+ Dag,
and
o0 o0
1—220(2) = chzk =1- Z(k — Dag_125,
it follows that
[fU)] = /UJF(Z)dxdy
2r pl )
= / / rJe(re'drdt
0 0
00 2
|br | R2 ek |?
=27R*y
Z 2k +2 Z 2k +2
|tk — Dag— 1|2 |k + Dagy1]?
=27R* (1 —
i ( +Z 2% +2 k; 2%k +2
|k + Dag1]? = |tk + Daggr |
=27R* (1 -
g ( +Z 2%k +6 2 s

k=0

R (1 + ©)lag1]
_nR< 22 316 )

k=0

If R = 1, this implies that Q = U + ao if and only if 7 = ag. This concludes the
proof. O

Using the corresponding result in [1] and Theorem 2.1, we have

Corollary 2.4 Ifasin (2.3), F(z) = g + 7, then F(z) = g(z2) — h(2) is univalent and
convex in direction of real axis.

Using Theorem 2.1, we obtain

Corollary 2.5 For every positive constant R and every holomorphic function | of
the unit disk into itself, there is a unique convex Jordan domain Q = Q, g, with the
perimeter 21t R, such that the initial boundary problem (Beltrami equation)

f7(2) = n(2) f(2),
f:(0) =R, (2.5)
f(0) =0,

admits a unique univalent harmonic solution f = f, g : U Q.
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Remark 2.6 1f instead of boundary problem (2.5), we observe
g:(z) = M(i)gz (@),
g:(a) = =’ (2.6)
g(a) =0,

then the solution g is given by

gx)=cf (f _”‘_)
— Zda

and thus, g(U) = ¢/ - 2, r. Here, f is a solution of (2.5).

3 Proof of the Main Result

Proof of Theorem 2.1 Assume first that f(z) = g(z) + h(z) has C! extension to the
boundary and assume without loss of generality that R = 1. Then, we have

0 (g(z) +M) =ig (Dz+ih'(2)z 3.1)
Therefore, for z = ¢’
lig'(z)z + ih'(2)z] = 18'(z) — W' (2)Z?|.

Thus

271:/
T

As |g'(z) — h'(z)z2| is subharmonic, it follows that

o (8620 + @) 121 = [ 1) - W2lidal
T

1 -
1g"(0)] < 5 / g'(2) — W (2)22||dz|.
T Jr

Thus, we have that |g’(0)| < 1.Now,ifm(z) = szaé,thenm(O) = a,and thus, F(z) =

f(m(z)) is a harmonic diffeomorphism of the unit disk onto itself. Furthermore

IF(0) = f'(aym'(0) = df (a)(1 — |a|?).

Therefore, by applying the previous case to F, we obtain

10f (a)| <

1— a2
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Assume now that the equality is attained for z = 0. Then
’ ! / / 2
lg' (O] = Iy lg'(z) — W' (2)z*||dz|,
Tr JyT
or what is the same
/ 1 / / 2.2
8O =— | |g (zr) — W (zr)r-z|ldz|.
2 T
Thus, for 0 < r < 1, we have
1 / / 2.2 /
~— | 18 (zr) = W (rz)rez*|ldz| — 8" (0)| = 0. (3.2)
2 T

To continue recall the definition of the Riesz measure p of a subharmonic function
u. Namely, there exists a unique positive Borel measure pt, so that

/U o(2)du(z) = /U ul@(z)dm(z), ¢ € C5(U).

Here, dm is the Lebesgue measure defined on the complex plane C. If u € C?, then

di = Audm.

We need the following proposition.

Proposition 3.1 [5, Theorem 2.6 (Riesz representation theorem)]. If u is a subhar-
monic function defined on the unit disk then forr < 1, we have

1 1 r
— f u(r)ldz] — u(0) = — / log L dju(2)
27'[ T lz|<r

2w |z]

where  is the Riesz measure of u.

By applying Proposition 3.1 to the subharmonic function
u(z) = 1g'(2) — h'(2)2?|

in view of (3.2), we obtain that

1 r
— log —du(z) =0.
27 lz|<r |z]
Thus, in particular, we infer that u = 0, or what is the same Au = 0. As u = |w|,

where w = |u|e’? is harmonic, it follows that

Au = u|VO|* = 0.
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398 D. Kalaj

Therefore, VO = 0, and hence, § = const.
Therefore

('@~ W(@)P) = G + H),
is a real harmonic function. Here
Gi)=e"¢'()
and
H(z) = —¢''1 (2)7>

are analytic functions satisfying the condition |H(z)| < |G(z)| in view of Lewy
theorem. Thus

G(z)+H@) =G+ H(z)
or what is the same
G(iz)— H(z) =G(z) — H(z).

Thus, G(z) — H(z) is a real holomorphic function, and therefore, it is a constant
function. Furthermore

e g'(2) +¢"h ()2 = G(2) — Hz) = G(0) — H(0) = ¢4 (0).
Hence
G +H@ =G@) +GR) —e ' (0) =20 [e"’“’g’(z)] —e78'(0).
Assume without loss of the generality that & = 0 and g’(0) = 1. Then
g@=1-h@@7" (3.3)
From (2.4), we infer that
(1= 2%(H (2)2%) > K @P(1 = 2. (3.4)
Further for z = ¢/, from (3.1) and (3.3), we have
3 f(2) =iz(1 — 2R (2)22)). (3.5)
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To get the representation (2.2), by Lewy theorem, we have that the holomorphic

mapping p(z) = ;% maps the unit disk into itself. By (3.3), we deduce that

()_/ZL
$IZ o T 2u0

and
* u(ndt
h(z) = _ .
© /ol+tzu(t)

It follows by (3.5) and (3.4) that 9, arg 9; f (z) = 1 > 0, and this implies that the image
of U under f is a convex domain.

To prove that, every mapping f defined by (2.2) is a diffeomorphism of the unit
disk onto a convex Jordan domain, we use Choquet—Kneser—Rado theorem. First of
all, we have

arg o F(z2) = (w/2 +t).
Therefore
drargd F(z)=1>0

which means that F(T) is a convex curve.
As

WF() .
= lZ,
|0: F(2)]

if z1, 20 € T with f(z1) = f(z2), then

W F(z) _ aF(z2)
10: F(z1)| |0 F(z2)]

and so z; = z». Thus by Choquet—Kneser—Rado theorem, F is a diffeomorphism.

If f is not C! up to the boundary, then we apply the approximating sequence. Let
2 be a fixed Jordan domain and assume that ¢ is a conformal mapping of the unit
disk onto €2, with ¢(0) = 0. For r,, = #, let 2, = ¢(r,U), and let U, = f_lQn.
Let ¢, : U — U, be a conformal mapping satisfying the condition ¢, (0) = 0. Then,
fn = f o ¢, is a conformal mapping of the unit disk onto the Jordan domain €2,,.

Furthermore, by subharmonic property of |¢’(z)|, we conclude that

Ry =109, = /T ¢ (rn2)ldz| < /T ¢'(2)ldz| = |8 = R = 1.

Then, we have that
R
9fa(2)] < ﬁ zel. (3.6)
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As ¢, converges in compacts to the identity mapping, and thus, ¢;, converges in
compacts to the constant 1, we conclude that the inequality (2.1) is true for non-smooth
domains.

It remains to consider the equality statement in this case. However, we know that
a%2 is rectifiable if and only if d; f € h1(U) (see, e.g., [4, Theorem 2.7]). Here, h
stands for the Hardy class of harmonic mappings. Now, the proof is just repetition of
the previous approach, and we omit the details. O

Example 3.2 If u(z) = 7", then F defined in (2.2), maps the unit disk to n+2—regular
polygon of perimeter 27 R and centered at 0. Namely, we have that

R7"
0:F(z) = |

8ZF(z)= 1 W

+ Zn+2 ’
The rest follows from the similar statement obtained by Duren in [2, p. 62].

Remark 3.3 If (v is a holomorphic mapping of the unit disk onto itself and F is defined
by (2.2), then F(0) = 0 and

R2
IDF|)? = |F,)* + |F|* > -

Indeed, we have that

I+ pn?> _ R* L 2
|DF|2=R2i>———z%.

2
[14+z22u2 = 2 w2

Here, p = dist(0, d€2). Thus, we have the sharp inequality:

2 p*
IDFP > = (3.7)

In [3], it is proved that we have the general inequality

2
> P

DFf? ,
|f|_16

(3.8)

for every harmonic diffeomorphism of the unit disk onto a convex domain €2 with
f(0) = 0. Some examples suggest that the best inequality in this context is

2 p*
IDf|” = 3 (3.9

The last conjectured inequality is not proved. The gap between '072 and %2 in (3.7)
and (3.9) appears as the mappings F are special extremal mappings which for the case
of 2 being the unit disk are just rotations.
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