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Abstract We partially resolve a conjecture of Meeks on the asymptotic behavior of
minimal surfaces in R

3 with quadratic area growth.
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1 Introduction

Let � be an embedded minimal surface in R
3. One of the fundamental properties of

minimal surfaces is the following:

Theorem 1.1 (Monotonicity) [1] Let r > s. Then

A(� ∩ Br )

r2
− A(� ∩ Bs)

s2
=

∫
�∩Br \Bs

|xN |2
|x |4 ≥ 0

Note that if we define the area density as

�(r) := A(� ∩ Br )

πr2
,
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Fig. 1 Catenoid (from http://www.indiana.edu/~minimal)

Fig. 2 Scherk singly periodic (from http://www.indiana.edu/~minimal)

then the monotonicity formula implies that � is nondecreasing. If

lim
r→∞ �(r) = �(∞) = k < ∞,

we say that � has quadratic area growth, or the area growth of k planes.
For surfaces with the growth of 2 planes, there are two canonical examples: the

catenoid (Fig. 1), and Scherk’s singly periodic surfaces,which occur in a one parameter
family (Figs. 2 and 3), where the parameter is the angle between the two leaves. As
the angle goes to zero, the Scherk surfaces approach a catenoid on compact sets after
an appropriate rescaling. In 2005, Meeks and Wolf proved the following theorem:

Theorem 1.2 [4] Suppose that � is an embedded minimal surface in R
3 which has

infinite symmetry group and �(∞) < 3. Then � is either a catenoid or a Scherk
example.

Meeks has conjectured that the symmetry condition in the above may be removed:

Conjecture 1.3 [3] Let � be an embedded minimal surface in R
3 with area growth

of 2 planes. Then � is either a catenoid or a Scherk example.

However, an initial difficulty with the above is that it is not yet known that aminimal
surface with quadratic growth even needs to be asymptotic to a catenoid or a Scherk
example. By the compactness results from Geometric Measure Theory, it is known
that if � is an embedded minimal surface with quadratic area growth, then for any
sequence ri → ∞, there exists a subsequence ρi such that �/ρi ∩ B1 converges to
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Fig. 3 Non-orthogonal Scherk (from http://www.indiana.edu/~minimal)

a minimal cone C in the varifold topology. Such a cone C is called a tangent cone at
infinity. A priori, there may be many tangent cones at infinity.

This leads to the following conjecture, also due to Meeks:

Conjecture 1.4 [3] Let� be an embedded minimal surface inR3 with quadratic area
growth. Then � has a unique tangent cone at infinity.

In the case of finite genus, this had already been resolved by Collin [2], who
proved that any minimal surface with finite genus and quadratic area growth must
be asymptotic to a single multiplicity k plane. In particular, when combined with a
result of Schoen [5], this resolves Meeks’ full conjecture in the case of finite genus—
that is, the only minimal surface with the area growth of two planes and finite genus
is the catenoid.

In this paper, we prove that Meeks’ Conjecture 1.4 holds true under additional
assumptions:

Theorem 1.5 Let� be an embeddedminimal surfacewith the area growth of k planes.
Suppose that there exists α < 1 such that for all R sufficiently large, there exists a line
lR

� ∩ BR ∩ {d(x, lR) > Rα}
is a union of at least 2k disks �i and such that ∂�i is homotopically nontrivial in
∂(BR ∩ {d(x, lR) > Rα}). Then � has a unique tangent cone at infinity.

This leads to the following:

Theorem 1.6 Let � be an embedded minimal surface with quadratic area growth.
Let

Cα = {x21 + x22 ≤ R2α}.
Then if for some R0, �\(BR0 ∪ Cα) is a union of 2k topological disks �i each with
finitely many boundary components, then � has a unique tangent cone at infinity.
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Note that the corollary substitutes the homotopy requirement from the theorem for
the existence of a single line around which we can base our sublinearly growing set.
To the author’s knowledge, these two theorems are the first progress towards proving
Meeks’ conjecture.

1.1 Summary of Proofs

Both of the above theorems are proved by first showing a lower area bound for the area
of � inside large balls. This, combined with the upper area bound coming from the
monotonicity formula and quadratic area growth, along with a projection argument
due to Brian White, leads to uniqueness of tangent cones.

Both theoremsprove their lower area boundbyworking on each leaf of� separately.
The lower area bound used in Theorem 1.5 is rather straightforward to prove using
the homotopy requirement. However, bounding the area from below in Theorem 1.6
is slightly more detailed, and relies on arguments made in the proof of Lemma 2.1, as
well as a case by case analysis of the possible shapes of the leaves of �.

2 Proof of Theorem 1.5

The proof of this begins with the following:

Lemma 2.1 (Lower Area Bound) Suppose that � satisfies the conditions of Theorem
1.5. Then for some C = C(�)

Area(BR ∩ �) > kπR2 − CRα+1.

Proof Wewill work on each leaf�i separately, and the lemma will come from adding
the area of all the leaves together.

First note that BR ∩ {d(x, lR) > Rα} = TR is a rotationally symmetric solid torus
and (since �i is a disk), ∂�i is contractible in TR . However, since TR is rotationally
symmetric, the smallest spanning disk for any such curve has area at least that of a
vertical cross section C . Any such vertical cross section consists of a half-circle of
radius R minus a strip of length 2R and width CRα . Thus, we have

A(�i ) ≥ A(C) ≥ π

2
R2 − CRα+1.

�	
Remark 2.2 Note that Lemma 2.1 implies that there are in fact exactly 2k disks in the
statement of Theorem 1.5.

We make a definition:

Definition 2.3 The error at scale r of a minimal surfaces with area growth of k planes
is defined as

e(r) = πk − Area(� ∩ Br )

r2
.
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Thus, Lemma 2.1 is equivalent to the statement:

e(r) ≤ Crα−1. (1)

We now apply an argument of Brian White [6] to prove uniqueness of the tangent
cone.

Lemma 2.4 Let � satisfy the following: ∃R0, α < 1 such that for R0 < r < ∞,

e(r) < Cr1−α (2)

Then � has a unique tangent cone at infinity.

Proof Define F(z) = z/|z|. Then note that A(F(� ∩ (Br\Bs))) is equal to the area
of the projection of � ∩ (Br\Bs)) onto the unit sphere. We will bound this area. We
have

A(F(� ∩ (Br\Bs))) =
∫

�∩Br \Bs
|xN |
|x |3 d�

≤
[∫

�∩Br \Bs
|xN |2
|x |4 d�

]1/2 [∫
�∩Br \Bs

1

|x |2 d�
]1/2

.

By the monotonicity formula, 1.1 and the fact that the area density of � is uniformly
bounded by k, we can bound the term inside the first bracket:

∫
�∩Br \Bs

|xN |2
|x |4 d� ≤ A(� ∩ Br )

r2
− A(� ∩ Bs)

s2

≤ kπ − A(� ∩ Bs)

s2
= e(s).

For the term in the second bracket, we have

∫
�∩Br \Bs

1

|x |2 d� ≤
∫

�∩Br \Bs
1

s2
d� ≤ A(Br ∩ �)s−2.

Thus, we get that

A(F(� ∩ (Br\Bs))) ≤ e(s)1/2(s−2A(Br ∩ �))1/2.

Now, by Eq. (2), along with the fact that A(Br ∩ �) < kπr2, we have that this is
bounded by

Cs(α−1)/2
[(r

s

)2
(r−2A(Br ∩ �))

]1/2
≤ C

r

s(1−α)/2+1
.
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Pick s and r such that s ≤ r ≤ 2s. Then

A(F(� ∩ (Br\Bs))) ≤ Cs(α−1)/2.

We then sum the above bound to see

A(F(� ∩ (B2nr\Br ))) =
n∑

k=1

A(F(� ∩ (B2kr\B2k−1r )))

≤ C
n∑

k=1

(2kr)(α−1)/2

≤ C

r (1−α)/2

1

1 − 2(1−α)/2
.

As r → ∞, this term goes to zero. Thus, the area of the projection of�\Br approaches
zero as r gets large, which means that the tangent cone must be unique. �	

3 Proof of Theorem 1.6

For the reader’s convenience, we restate the assumptions: that there exists α, R0 such
that if

Cα = {x21 + x22 ≤ R2α}
and �\(BR0 ∪ Cα is a union of 2k disks �i , each with finitely many boundary com-
ponents.

Note that the closure of�i inR3 must be conformally equivalent toD
2
with finitely

many boundary points removed. Take a neighborhood N of one of these missing
boundary points which does not come close to any other missing boundary points.
Then N ⊂ �i has exactly one boundary component. There are two options for the
shape of ∂N .

(1) The function x3|∂N is unbounded in both directions.
(2) x3|∂N is bounded in one direction.

Note that x3 cannot be bounded in both directions, as then ∂N would be compact,
which it is not.

We temporarily assume that Option 1 occurs (see Fig. 4). Let γ be the portion of ∂N
which is not on the boundary of Cα ∪ BR0 . Note that we can take R0 to be large enough

so that ∂BR0 is arbitrarily close to the missing point of ∂D
2
, and thus in particular,

γ ⊂ BR0 . Redefine N to be N ∩ Bc
R0
, and let R >> R0.

Lemma 3.1 ∂BR∩N has a component which starts at the x3 → +∞ side of ∂N∩∂Cα

and ends at the x3 → −∞ side.

Proof Suppose not. Then every component of ∂BR ∩ N starts and ends on the same
side of themissing point. In particular, there are an even number of points on each side.
Consider moving along ∂Cα towards the missing point. Each point of ∂BR ∩ N ∩ ∂Cα
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Fig. 4 N and �i for option 1 (conformal picture)

represents a change from radius smaller than R to radius larger than R. However, since
the radius started at R0 < R, there cannot be an even number of these points. �	

The above lemma implies that some component of N ∩ BR ∩ Cc
α will satisfy the

homotopy conditions of Theorem 1.5. This implies that it is possible to prove the
Lower Area Bound lemma for this component, and in particular, the area must be
asymptotic to πR2/2.

The following lemma will complete our proof:

Lemma 3.2 Under our assumptions, Option 2 is not possible.

Proof Suppose that Option 2 occurs.WLOG, let x3|∂N be bounded below by 0, and let
(x1, x2, 0) ∈ ∂N be the point atwhich thatminimum is achieved. Letρ = (x21+x22 )

1/2.
Let C be a catenoid where the radius of the center geodesic is strictly larger than 2ρ.
Then by a simple application of the maximum principle, N must intersect C . In
particular, this implies that inf∂BR x3|N < C0 + log R.

Now, consider a sequence of Ri such that � ∩ BRi converges to a tangent cone at
infinity. By compactness, R−1

i N ∩ ∂BRi must either converge to a union of geodesics
on B1 or must disappear at infinity. However, due to the discussion of the previous
paragraph, N cannot disappear at infinity, and so must converge to a nontrivial union
of geodesics 	 j , possibly with endpoints at the north or south poles. We aim to show
that these 	 j are all great circles.

Let p be a nonsmooth point on ∪	 j . Then there must exist a neighborhood S of p
such that |A| restricted to S ∩ R−1

i N is unbounded as i → ∞. However, since N is a
minimal disk with quadratic area growth bounds, |A|(x)must be bounded by C/d(x),
where d(x) is the distance of x from the boundary of N .

Suppose that our nonsmooth p is not equal to the south pole. Then we can choose
our neighborhood S of p to stay away from the x3 axis, so we will have that |A| < C
uniformly on S ∩ R−1

i N . Suppose that p is equal to the south pole. Then by the
assumption of Option 2, ∂N is only contained in the region x3 ≥ 0. So, we can choose
S = B1/2(p), and this implies the same uniform |A| bound.

Therefore, therewill be no nonsmooth points of∪	 j , which implies that	 j consists
of a single great circle passing through the north pole.
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In particular, this implies that there are some ε(Ri ) → 0 such that the area of
R−1
i N ∩ B1 is greater than π − ε(Ri ), where ε → 0 as Ri → ∞. Thus, we have at

least 2k components of �\Cα , each of which has area growth at least πR2/2 by the
discussion of Option 1. However, since the global area growth is kπR2, no component
can have growth πR2. �	

4 Future Directions

There are several potential extensions of the work above. Theorem 1.5 and Corollary
1.6 effectively assume that all tangent cones of � are unions of planes with a common
axis. It is likely not significantly more difficult to show that the same result holds in
the case when the one-dimensional singular set is more complicated, as long as away
from a sublinearly growing neighborhood, � is a union of disks. That is, we have the
following as another potential step towards the resolution of Meeks’ Conjecture:

Conjecture 4.1 Let� have the area growth of k planes, and suppose that there exists
a uniform α < 1 such that for each R > R0 >> 1, the following is true: There exist
line segments Li (R), 1 ≤ i ≤ m(R) < M such that outside of an α−sublinearly
growing neighborhood of ∪Li (R), � ∩ BR is a union of disks. Then � has a unique
tangent cone at infinity.

There are likely other simple conditions which can be put on � to force Lemma
2.1 to hold. However, it may be possible to prove theorems approaching Conjecture
1.4 without factoring through some kind of lower area bound.

Acknowledgements The author would like to thank his advisor, William Minicozzi, as well as Jonathan
Zhu, Frank Morgan, Ao Sun, and Nick Strehlke for their comments and suggestions throughout the writing
of this paper. Many thanks also to the referee’s helpful suggestions.

References

1. Colding, T.H., II, W.P.M.: A Course in Minimal Surfaces. American Mathematical Society, Providence,
RI (2011)

2. Collin, P.: Topologie et courbure des surfaces minimales proprement plonges deR3. Ann. Math 145(2),
1–31 (1997)

3. Meeks III, W.H.: Global problems in classical minimal surface theory. In: Hoffman, D. (ed.) Global
Theory of Minimal Surfaces, pp. 453–470. American Mathematical Society, Providence, RI (2005)

4. Meeks III, W.H., Wolf, M.: Minimal surfaces with the area growth of two planes: the case of infinite
symmetry. J. AMS 20(2), 441–465 (2006)

5. Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. JDG 18, 791–809 (1983)
6. White, B.: Tangent cones to two-dimensional area-minimizing integral currents are unique. Duke Math.

J. 50(1), 143–160 (1983)

123


	A Criterion for Uniqueness of Tangent Cones at Infinity for Minimal Surfaces
	Abstract
	1 Introduction
	1.1 Summary of Proofs

	2 Proof of Theorem 1.5
	3 Proof of Theorem 1.6
	4 Future Directions
	Acknowledgements
	References




