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Abstract We study here the error of numerical integration on metric measure spaces
adapted to a decomposition of the space into disjoint subsets.Weconsider both the error
for a single given function, and the worst case error for all functions in a given class of
potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and
ad hoc definitions of function spaces on metric measure spaces. The same techniques
are used to prove the existence of point distributions in metric measure spaces with
small L p discrepancy with respect to certain classes of subsets, for example, metric
balls.
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1 Introduction

The starting point of this research is a simplified version of Lemma 5 in [15] which
gives an upper bound of higher norms of the discrepancy of a random set of points in
the unit square [0, 1]2, treated as a torus. Let N = M2 and consider a random set of N
points P as follows: Split the unit square into N small squares {S j }N

j=1 of area N−1 in
the usual way. In each small square S j there is a random point x j , uniformly distributed
in the small square, independently of the distribution of all the other random points in
the other small squares.

Suppose that B is a convex set in [0, 1]2. Let J denote the set af all values of j for
which the small squares S j intersect the boundary ∂B of B. Then it is easy to see that
the cardinality of J , |J |, is O(M). For each j ∈ J , write

ξ j = χB(x j ) =
{
1 ifx j ∈ B,

0 otherwise,

and let η j = ξ j − Eξ j . Then, |η j | � 1 and Eη j = 0. Furthermore if we define the
discrepancy as

D[P,B] := 1

N

N∑
j=1

χB(x j ) − |B|, (1)

then

D[P,B] = 1

N

∑
j∈J

η j .

We now want to estimate E(|D[P,B]|p) from above, where p is an even positive
integer. Note first that

|D[P,B]|p = 1

N p

∑
j1∈J

· · ·
∑
jp∈J

η j1 . . . η jp

and so

E(|D[P,B]|p) = 1

N p

∑
j1∈J

· · ·
∑
jp∈J

E(η j1 . . . η jp ) (2)

The random variables η j , where j ∈ J , are independent because the distributions
of the random points are independent of each other. If one of j1, . . . , jp, say ji , is
different from all the others, then

E(η j1 . . . η jp ) = E(η ji )E(η j1 . . . η ji−1η ji+1 . . . η jp ) = 0.
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330 L. Brandolini et al.

It follows that the only non-zero contribution to the sum (2) comes from those terms
where each of j1, . . . , jp appears more than once. It can be shown that the major
contribution comes when they appear in pairs, and there are

Op

(( |J |
p/2

))
= Op(|J |p/2) = Op(M p/2) = Op(N p/4)

such pairs. Bounding each of such terms E(η j1 . . . η jp ) trivially by 1, we obtain the
estimate

E(|D[P,B]|p) = Op(N−3p/4). (3)

This result is the first step towards the proof of the existence of point sets with
small L p discrepancy with respect to, say, all discs in the square. Indeed, let B(x, r)

be the ball centered in the point x and with radius r . Then, an application of the above
estimate to the sets B(x, r) gives

∫ 1/2

0

∫
[0,1]2

E(|D[P, B(x, r)|p)dx dr = Op(N−3p/4) (4)

and Fubini’s theorem immediately implies the existence of an N -point set P such that

(∫ 1/2

0

∫
[0,1]2

|D[P, B(x, r)]|p dx dr

)1/p

= Op(N−3/4). (5)

By the monotonicity of the L p norms, one obtains these estimates for all p < +∞.
This argument can be easily extended to a very general setting. In some sense, all

that one needs for the argument to work is

1. a partition of the ambient space into N parts with the same measure and similar
diameter (the analog of the “small squares” in the previous argument);

2. a collection of sets with uniformly regular boundary, in such a way that the cardi-
nality of the collection of indices J can be controlled uniformly in terms of the
diameter of the “small squares.”

We will therefore be able to replace the unit square with a compact Riemannian
manifold, or more generally, with metric measure spaces M having finite measure
and with the property that for any integer N the space can be partitioned as required in
point 1 above.By a recent result [19] this property holds under very general hypotheses.

In fact, we can replace the characteristic function of the set B with more general
functions, so that our results are actually results on numerical integration. Consider
the integral

∫
M

f (x) dx
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of a function f (x) over the metric measure space M with finite measure dx and
distance between two points x and y denoted with |x − y|, and the Riemann sums

N∑
j=1

ω j f
(
x j
)
,

where
{

x j
}N

j=1 are nodes in M and
{
ω j
}N

j=1 are given weights. We are interested in
the rate of decay of the error

N∑
j=1

ω j f
(
x j
)−
∫
M

f (x) dx

as N → +∞. This decay depends on the smoothness of the function f (x), the
weights

{
ω j
}N

j=1 and the distribution of the nodes
{

x j
}N

j=1 in M. For references on
this problem when the metric space is a torus, a sphere, or more generally a compact
Riemannian manifold, see, for example, [7–13,23–27,31]. For some results related to
metric measure spaces, see [33,47,48].

Herewe proceed as in the situation described before for the study of the discrepancy,
and partition M into N disjoint measurable sets X1, . . . ,XN with positive measure,
set ω j = ∣∣X j

∣∣, where |·| denotes the measure, and consider random choices of points
x j ∈ X j .

To fix the notation we writeω = (ω1, . . . , ωN ), x = (x1, . . . , xN ),X = X1×· · ·×
XN , dx = dx1

ω1
× · · · × dxN

ωN
, and consider the probability space (X, dx). We also write

the error as

Ex,ω ( f ) =
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x) dx . (6)

Notice the analogywith the discrepancy (1). Therewill be however an important differ-
ence: In order to measure the smoothness of our functions we will use suitable Besov
spaces or potential spaces adapted to this more general context and obtain estimates of
Ex,ω ( f ) for functions in such spaces. The previous combinatorial argument, however,
works only when the integrability exponent p is an even integer, whereas in this case
in order to obtain sharp results, we need estimates that work for generic values of p.
The main idea is to replace such combinatorial argument with a generalization of the
classical Khintchine inequality for sums of random variables, due to Marcinkiewicz
and Zygmund [34,35]. It says that for every 1 � p < +∞ and for every sequence of
independent random variables { f j }N

j=1

E

⎛
⎝
∣∣∣∣∣∣

N∑
j=1

(
f j − E

(
f j
))
∣∣∣∣∣∣

p⎞
⎠ ≈p E

⎛
⎜⎝
⎛
⎝ N∑

j=1

∣∣ f j − E
(

f j
)∣∣2
⎞
⎠

p/2
⎞
⎟⎠ .
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332 L. Brandolini et al.

For the case of discrepancy, this immediately gives

E(|D[P,B]|p) ≈p
1

N p
E

⎛
⎜⎝
⎛
⎝∑

j∈J
|η j |2
⎞
⎠

p/2
⎞
⎟⎠ � 1

N p
E

(
|J |p/2

)
= O(N−3p/4).

We will see that one such argument can be also used to deduce estimates on the error
in numerical integration. In particular, we will study two types of problems. In the first
case we will focus on the worst case numerical integration error, which determines
how bad the error of a given fixed quadrature rule can be when applied to all integrands
whose norm has an upper bound. The function space that we will consider for this type
of problem is a space of potentials: We will say that f ∈ H

Φ
p (M) for 1 � p � ∞ and

a suitable kernel Φ(x, y) defined on M × M (see Sect. 2 for the precise definition)
if there is a g ∈ L

p(M) such that

f (x) =
∫
M

Φ(x, y)g(y)dy,

and its norm is ‖ f ‖HΦ
p (M) = infg ‖g‖Lp(M), where the infimum is taken over all

g(x) which give the potential f (x). Observe that whenM is the Euclidean space Rd

and Φ(x, y) = |x − y|α−d , 0 < α < d is the Riesz kernel, then for 1 < p < ∞ the
potential space H

Φ
p (M) coincides with the homogeneous fractional Sobolev space

Ḣ
α
p(R

d). The (non-homogeneous) fractional Sobolev space Hα
p(R

d) can be obtained
similarly, via the Bessel kernel. Also, when M is a compact Riemannian manifold,
the Sobolev space Hα

p(M) can be defined as a potential space via the Bessel kernel,
see Example 6.5 here or [7] for details on this. We will show here the following

Theorem I Let M be a metric measure space with the property that there exist d and
c such that for every y ∈ M and r > 0,

|{x ∈ M : |x − y| � r}| � crd .

Assume also that M can be decomposed into a finite disjoint union of sets in the form
M = X 1∪· · ·∪XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d . Assume

that for some 0 < α < d

|Φ (x, y)| � c |x − y|α−d for every x and y,

|Φ (x, y) − Φ (z, y)| � c |x − z| |x − y|α−d−1 if |x − y| � 2 |x − z| .

Finally, assume that 1 < p � +∞, 1/p + 1/q = 1, and d/p < α < d. Then

⎧⎨
⎩
∫
X

sup
‖ f ‖

H
Φ
p

�1

∣∣Ex,ω( f )
∣∣q dx
⎫⎬
⎭

1/q

�

⎧⎨
⎩

cN−α/d if α < d/2 + 1,
cN−1/2−1/d (log N )1/2 if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1.
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The first observation is that the Bessel kernel on a compact Riemannian manifold
satisfies the hypotheses required by this theorem. In fact, the particular case given by
the caseM a compact Riemannian manifold, Φ the Bessel kernel, α < d/2 + 1, and
p = 2 had been proved in [7, Theorem 2.7] (see also [13, Theorem 24] for the case
of the sphere).

We also show that under rather natural hypotheses on the spaceM and on the kernel
Φ, the estimates from above hold from below as well.

Theorem II LetM be a metric measure space with the property that there exist H, K ,
and d such that for every y ∈ M and 0 < r < r0,

Hrd � |{x ∈ M : |x − y| � r}| � Krd .

Assume also that M can be decomposed into a finite disjoint union of sets in the form
M = X 1∪· · ·∪XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d . Suppose

that there exists 0 < α < d, such that for any j = 1, . . . , N and any z ∈ X j , and for
any y such that dist

(
y,X j
)

� 2δ j ,

∫
X j

|Φ (x, y) − Φ (z, y)| dx � cN−1−1/d (dist (y,X j
))α−d−1

.

Suppose also that for any y ∈ M, the function x �→ Φ (x, y) is continuous in x 	= y.
Finally, assume that 1 < p � +∞, 1/p + 1/q = 1, and d/p < α < d. Then

⎧⎨
⎩
∫
X

sup
‖ f ‖

H
Φ
p

�1

∣∣Ex,ω( f )
∣∣q dx
⎫⎬
⎭

1/q

�

⎧⎨
⎩

cN−α/d if α < d/2 + 1,
cN−1/2−1/d (log N )1/2 if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1.

Once again, it should be observed that the Bessel kernel on a compact Riemannian
manifold satisfies the hypotheses in the above theorem, and that the particular case
given by the case whereM is the sphere, Φ the Bessel kernel, and p = 2 is contained
in [13, Theorems 24 and 25].

In order to understand the two above results it could be useful to recall the following
result [7, Theorem 2.16]: Let M be a compact Riemannian manifold. For every 1 �
p � ∞ and α > d/p there exists c > 0 such that for every distribution of points
x = {x j }N

j=1 and weights ω = {ω j }N
j=1, one has

sup
‖ f ‖

H
α
p
�1

∣∣Ex,ω( f )
∣∣ � cN−α/d .

In other words, the worst case error for any quadrature rule cannot have a better
decay than N−α/d . Thus, Theorem I says that a random choice of points x j ∈ X j ,
j = 1, . . . , N , gives the best possible decay for the worst case error in Hα

p(M) when
d/2 < α < d/2 + 1, while Theorem II says that when α � d/2 + 1 the stratification
strategy does not lead, on average, to quadrature rules with the desired decay N−α/d

of the worst case error in Hα
p(M).
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By the above-mentioned result in [19] on the partitioning of M into N regions of
equal measure and small diameter, under the hypotheses onM contained in Theorem
II (see Sect. 5), the above Theorems I and II apply with equal weights, that is ω j =
|M|/N for all j = 1, . . . , N . In [11] and [13] a sequence of point configurations on
the sphere that gives the best possible decay N−α/d for the worst case error in the
equal weight case has been called a Quasi Monte Carlo (QMC) design sequence for
H

α
p(M).
We would like to emphasize that all the cited results in [7] and [13] are based

on Hilbert space techniques (p = 2), while we were able to obtain L
p integrability

results thanks to the Marcinkiewicz–Zygmund inequality. Moreover, we work in the
more general setting of metric measure spaces, and some of the results are new even
in the particular case of compact Riemannian manifolds.

Concerning the non-Hilbert space setting, we mention here that when M is the
d-dimensional sphere, 1 ≤ p ≤ +∞, and α > d/p, the existence of QMC design
sequences for Hα

p(M) has been proved with different techniques in [11].
So far, we have considered the worst case error in numerical integration, that is the

error for a whole class of functions. The second type of estimate that will be discussed
here concerns the numerical integration error for a given fixed function. In particular,
we will consider functions in the homogeneous Hajłasz–Besov space Ḃα

p,∞(M), as
defined in [30]. For details on these spaces, see §3. Here we should mention that when
0 < α < 1, the spaces HΦ

p (M) as in Theorem I are embedded into Ḃ
α
p,∞(M), and

that when M is the Euclidean space Rd and 0 < α < 1 then the spaces Ḃα
p,∞(M)

coincide with the classical homogeneous Besov spaces defined via Littlewood–Paley
decomposition. The main result in this context is the following

Theorem III Assume that a metric measure spaceM can be decomposed into a finite
disjoint union of sets in the formM = X 1∪· · ·∪XN , with measure 0 <

∣∣X j
∣∣ = ω j ≈

N−1 and 0 < diam
(X j
) ≈ N−1/d . Then for every 1 � p � 2 there is a constant c

such that {∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� cN 1/p−1−α/d ‖ f ‖
Ḃ

α
p,∞(M)

and for every 2 � p < +∞ there is a constant c such that

{∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� cN−1/2−α/d ‖ f ‖
Ḃ

α
p,∞(M) .

Of course, here a random choice of points x j ∈ X j , j = 1, . . . , N gives better
estimates than those obtained in Theorem I (and better than N−α/d ). This is natural,
since in this case we are looking for point distributions which give a small error for a
given integrand f , whereas in the situation described by Theorem I we were looking
for point distributions which give a small error for all integrands in our space at the
same time.

Theorem III and its sharpness will be discussed in Sect. 7.
We believe that our effort in the search for the minimal properties that guarantee the

validity of certain results in discrepancy theory and numerical integration can be of
some help towards a deeper understanding of these results, even in the classical cases.
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In fact, to the best of our knowledge, the above Theorems I, II, and III are new even
when applied to a general compact Riemannian manifold. There has recently been
some interest in this type of problems in spaces as general as those considered here, or
even more. See for example [33,39,43–45] for discrepancy and numerical integration
on metric spaces and [47,48] for analysis on fractals.

The plan of the paper is the following. In Sects. 2 and 3we introduce the appropriate
Sobolev-type spaces, and we recall a few results on how these spaces relate to each
other. These matters are not completely new, but can be of some help for the unfamiliar
reader. In Sect. 4 we introduce in some detail theMarcinkiewicz–Zygmund inequality.
In Sect. 5 we recall the above-mentioned result in [19] concerning the partitioning of
a metric measure space into regions of equal measure and small diameter. In Sects. 6
and 7 we give all the details on our results on numerical integration, with examples.
Finally, Sect. 8 contains our results on the L p (and L∞) discrepancy that generalize
(3) and (5).

2 Sobolev Spaces and Potentials on Measure Spaces

Our estimates on the worst case error described in Theorems I and II require a defini-
tion of Sobolev spaces via potentials. For a classical approach to potentials, see, for
example, [46].

Definition 2.1 LetM be a measure space, let 1 � p, q � +∞ with 1/p + 1/q = 1,
and let Φ (x, y) be a measurable kernel on M × M. Assume that for every x ,

∫
M

|Φ (x, y)|q dy < +∞ if q < +∞,

ess sup
y∈M

{|Φ (x, y)|} < +∞ if q = +∞.

Then every function g(x) in Lp (M) has a pointwise well defined potential

f (x) =
∫
M

Φ (x, y) g (y) dy.

The space HΦ
p (M) is the space of all potentials of functions in L

p (M), with norm

‖ f ‖HΦ
p (M) = inf

g

{∫
M

|g (x)|p dx

}1/p

.

The infimum is taken over all g(x) which give the potential f (x).

Observe that this definition does not even require a metric. Potentials can also be
defined under weaker assumptions on the kernel, but the above assumptions guarantee
that these potentials are defined pointwise everywhere, and this will be necessary in the
sequel. In particular, when M is the Euclidean space Rd and Φ (x, y) = |x − y|α−d

with 0 < α < d is the Riesz kernel, then H
Φ
p (M) is the homogeneous fractional
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336 L. Brandolini et al.

Sobolev space Ḣα
p

(
R

d
)
. However, the cases p = 1 and p = +∞ require some extra

care. For interesting examples of generalized potential spaces, see, for example, [29].

3 Besov and Triebel–Lizorkin Spaces on Metric Measure Spaces

Our estimates inTheorem III require a definition of Sobolev spaces,more appropriately
Besov or Triebel–Lizorkin spaces, via upper gradients. Let M be a metric measure
space, that is, a metric space equipped with a positive Borel measure. With a small
abuse of notation we denote by |X | the measure of a measurable set X and by |x − y|
the distance between two points x and y. We will often denote with B(x, r) the open
balls {y ∈ M : |x − y| < r} with center x and radius r . Simple examples are
Riemannian manifolds, or not necessarily smooth surfaces in a Euclidean space with
the inherited measure and distance. In [22] Hajłasz has given a purely metric definition
of a Sobolev space: A measurable function f (x) is in the Sobolev space W

1
p (M),

1 � p � +∞, if there exists a non-negative function g (x) in L
p (M) such that for

almost every x, y ∈ M,

| f (x) − f (y)| � |x − y| (g(x) + g(y)) .

For example, it is proved in [22] that in Euclidean spaces one can choose as an
upper gradient g(x) a suitable multiple of the Hardy–Littlewood maximal function of
the gradient ∇ f (x).

The following is a natural generalization of upper gradient and associated Sobolev
space.

Definition 3.1 LetM be a metric measure space and ϕ (t) a non-negative increasing
function in t � 0. A measurable non-negative function g (x) is a ϕ-gradient of a
measurable function f (x) if there exists a set N with measure zero such that for all
x and y inM\N ,

| f (x) − f (y)| � ϕ (|x − y|) (g (x) + g (y)) .

Definition 3.2 Ameasurable function f (x) is in theHajłasz–Sobolev spaceṀϕ
p (M) ,

0 < p � +∞, if it has a ϕ-gradient in L p (M). We set

‖ f ‖
Ṁ

ϕ
p(M) = inf ‖g‖L p(M) .

The infimum is taken over all ϕ-gradients g (x) of f (x).

In [22] Hajłasz proved that when ϕ(t) = t , 1 < p ≤ +∞ and M = R
d , then

this space coincides with the classical homogeneous Sobolev space Ḣ
1
p

(
R

d
)
. The

above definition has been extended by Koskela et al. [30] who have defined Besov and
Triebel–Lizorkin spaces on a general metric measure space. In particular they proved
that, when ϕ(t) = tα with 0 < α < 1 andM = R

d , then the space Ṁϕ
p (M) is larger

than the classical fractional Sobolev space, and it coincides with the homogeneous
Triebel–Lizorkin space Ḟα

p,∞
(
R

d
)
.
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What follows is in the spirit of the definitions of Besov and Triebel–Lizorkin spaces
in [30]. In order to define these spaces one needs to introduce families of gradients
localized at different scales.

Definition 3.3 LetM be a metric measure space and ϕ (t) a non-negative increasing
function in t � 0. Let n0 = log2 (diam (M)), possibly infinity. A sequence of non-
negative measurable functions {gn (x)}+∞−n0 is a ϕ-gradient for a measurable function
f (x) if there exists a setN with measure zero such that for all x and y inM\N with
|x − y| � 2−n ,

| f (x) − f (y)| � ϕ
(
2−n) (gn (x) + gn (y)) .

Definition 3.4 A measurable function f (x) is in the Hajłasz–Triebel–Lizorkin space
Ḟ

ϕ
p,q (M) , 0 < p < +∞ and 0 < q � +∞, if f (x) has a ϕ-gradient {gn (x)} with

∥∥∥∥∥∥
{ +∞∑

n=−n0

|gn (x)|q
}1/q
∥∥∥∥∥∥
Lp(M)

< +∞ if 0 < q < +∞,

∥∥supn�−n0 |gn (x)|∥∥
Lp(M)

< +∞ if q = +∞.

The infimum of the above expression taken over all ϕ-gradients defines the semi-norm
‖ f ‖

Ḟ
ϕ
p,q (M).

Definition 3.5 Ameasurable function f (x) is in the Hajłasz–Besov space Ḃϕ
p,q (M),

0 < p � +∞ and 0 < q � +∞, if f (x) has a ϕ-gradient {gn (x)} with
{ +∞∑

n=−n0

‖gn (x)‖q
Lp(M)

}1/q

< +∞ if 0 < q < +∞,

supn�−n0 ‖gn (x)‖Lp(M) < +∞ if q = +∞.

The infimum of the above expression taken over all ϕ-gradients defines the semi-norm
‖ f ‖

Ḃ
ϕ
p,q (M).

Observe that the above spaces are homogeneous, and constant functions have
semi-norms equal to zero. Also observe that when q = +∞ and ϕ(t) is dou-
bling, that is ϕ(2t) ≤ cϕ(t), then the space Ḟϕ

p,∞ (M) coincides with the previously
defined Hajłasz–Sobolev space Ṁϕ

p (M). It suffices to define g (x) = sup {gn (x)}. In
particular, the straightforward generalization of a Hajłasz–Sobolev space is a Hajłasz–
Triebel–Lizorkin space.

When ϕ (t) = tα the above definition is nothing but the definition of Hajłasz–Besov
and Hajłasz–Triebel–Lizorkin given in [30]. To be precise, the definition of ϕ-gradient
in [30] requires

| f (x) − f (y)| � 2−αn (gn (x) + gn (y))

123
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only for x and y with 2−n−1 � |x − y| � 2−n . On the other hand, if one defines

Gn (x) =
+∞∑
k=0

2−αk gn+k (x) ,

then

| f (x) − f (y)| � 2−αn (Gn (x) + Gn (y))

for x and y with |x − y| � 2−n , and the semi-norms defined via {gn (x)} and {Gn (x)}
are equivalent. In the same paper, it is proved that whenM is the Euclidean space Rd

and ϕ (t) = tα with 0 < α < 1, then the spaces Ḃϕ
p,q (M) and Ḟ

ϕ
p,q (M) coincide

with the classical Besov and Triebel–Lizorkin spaces defined via a Littlewood–Paley
decomposition. See, for example, [3] for the relevant definitions.

The lemma below gives an example of a function in the spaces Ḃ
ϕ
p,q (M) and

Ḟ
ϕ
p,q (M).

Definition 3.6 For every subset B inM, define

ψB (t) = |{x ∈ B : dist {x,M\B} � t}| + |{x ∈ M\B : dist {x,B} � t}| .

For example, if M is a d-dimensional Riemannian manifold and B is a bounded
open set with regular boundary, then ψB (t) ≈ t , while if ψB (t) ≈ tβ , then the
boundary has Minkowski fractal dimension d − β.

Proposition 3.7 Let B be an arbitrary subset of M. Then

‖χB‖
Ḟ

ϕ
p,∞(M) �

{ +∞∑
n=−n0

ϕ
(
2−n)−p

ψB
(
2−n)
}1/p

,

‖χB‖
Ḃ

ϕ
p,∞(M) � sup

n�−n0

{
ϕ
(
2−n)−1

ψB
(
2−n)1/p

}
.

In particular, if ϕ (t) = tα and ψB (t) � ctβ , then χB ∈ Ḟ
ϕ
p,∞ (M) for pα < β and

χB ∈ Ḃ
ϕ
p,∞ (M) for pα � β.

Proof It suffices to observe that a ϕ-gradient for the characteristic function χB (x) is
given by

gn(x) =
{

ϕ
(
2−n
)−1 if x ∈ B and dist {x,M\B} � 2−n,

0 otherwise.

Of course, there are other possible choices for the ϕ-gradient of χB (x), for example,
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gn(x) =
{

ϕ
(
2−n
)−1 if x ∈ M\B and dist {x,B} � 2−n,

0 otherwise.

�

The following is an immediate consequence of the definitions.

Proposition 3.8 (i) If q1 � q2 and ϕ1 (t) � ϕ2 (t), then

Ḃ
ϕ1
p,q1 (M) ⊆ Ḃ

ϕ2
p,q2 (M) and Ḟ

ϕ1
p,q1 (M) ⊆ Ḟ

ϕ2
p,q2 (M) .

(ii) For every ϕ (t) and 0 < p � +∞,

Ḃ
ϕ
p,p (M) = Ḟ

ϕ
p,p (M) and Ḟ

ϕ
p,∞ (M) ⊆ Ḃ

ϕ
p,∞ (M) .

In particular, for fixed p and ϕ (t), the largest space in the scale of Hajłasz–Besov
and Hajłasz–Triebel–Lizorkin spaces is Ḃϕ

p,∞ (M).

In the Euclidean spaces it is well known that the homogeneous potential spaces
Ḣ

α
p

(
R

d
)
defined via the Riesz potentials coincide with the homogeneous Triebel–

Lizorkin spaces Ḟα
p,2

(
R

d
)
defined via the Littlewood–Paley decomposition [3,18].

We do not know under which assumptions on Φ (x, y) and ϕ (t) and M the equality
H

Φ
p (M) = Ḟ

ϕ
p,2 (M) holds. Anyhow, the following proposition guarantees a weaker

embedding.

Proposition 3.9 Assume that ψ (t) is an increasing function on 0 � t < +∞ with
ψ (0) = 0, and define for ε > 0

ϕ (t) =
+∞∑
k=0

ψ
(
22−k t
)

+
+∞∑
k=0

2−(k+1)εψ
(
2k+2t
)

.

Also assume that Φ (x, y) is a kernel on M × M with the property that for some
C > 0

|Φ (x, y)| � C
ψ (|x − y|)

|B (x, 6 |x − y|)| for every x, y ∈ M,

|Φ (x, y) − Φ (z, y)| � C

( |x − z|
|x − y|

)ε
ψ (|x − y|)

|B (x, 6 |x − y|)| when|x − y| � 2|x − z|.

Define the potential

f (x) =
∫
M

Φ (x, y) g (y) dy.

Finally, define the Hardy–Littlewood maximal operator

Mg (x) = sup
r>0

{
|B (x, 3r)|−1

∫
{|x−y|�r}

|g (y)| dy

}
.
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Then,
| f (x) − f (z)| � 2Cϕ (|x − z|) (Mg (x) + Mg (z)) .

Proof By the hypotheses on the kernel,

| f (x) − f (z)| �
∫
M

|Φ (x, y) − Φ (z, y)| |g (y)| dy

� C
∫

{|x−y|�4|x−z|}
ψ (|x − y|) |B (x, 6 |x − y|)|−1 |g (y)| dy

+ C
∫

{|z−y|�4|x−z|}
ψ (|z − y|) |B (z, 6 |z − y|)|−1 |g (y)| dy

+ C
∫

{|x−y|�2|x−z|}
|x − z|ε |x − y|−ε ψ (|x − y|)

× |B (x, 6 |x − y|)|−1 |g (y)| dy.

The dyadic decomposition

{|x − y| � 4 |x − z|} =
+∞⋃
k=0

{
21−k |x − z| < |x − y| � 22−k |x − z|

}

gives

∫
{|x−y|�4|x−z|}

ψ (|x − y|) |B (x, 6 |x − y|)|−1 |g (y)| dy

�
+∞∑
k=0

ψ
(
22−k |x − z|

) ∣∣∣B (x, 6 · 21−k |x − z|
)∣∣∣−1
∫
{|x−y|�22−k |x−z|}

|g (y)| dy

�
+∞∑
k=0

ψ
(
22−k |x − z|

)
sup
r>0

{
|B (x, 3r)|−1

∫
{|x−y|�r}

|g (y)| dy

}

� ϕ (|x − z|) Mg (x) .

Similarly,

∫
{|z−y|�4|x−z|}

ψ (|z − y|) |B (z, 6 |z − y|)|−1 |g (y)| dy � ϕ (|x − z|) Mg (z) .

Finally, the dyadic decomposition

{|x − y| � 2 |x − z|} =
+∞⋃
k=0

{
2k+1 |x − z| � |x − y| < 2k+2 |x − z|

}
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gives

∫
{|x−y|�2|x−z|}

|x − z|ε |x − y|−ε ψ (|x − y|) |B (x, 6 |x − y|)|−1 |g (y)| dy

�
+∞∑
k=0

2−(k+1)εψ
(
2k+2 |x − z|

) ∣∣∣B (x, 6 · 2k+1 |x − z|
)∣∣∣−1

×
∫
{|x−y|�2k+2|x−z|}

|g (y)| dy � ϕ (|x − z|) Mg (x) .

�


Corollary 3.10 With the notation of the above proposition, if 1 < p � +∞, then the
potential space H

Φ
p (M) can be continuously embedded into Ḟ

ϕ
p,∞ (M).

Proof It suffices to recall that, due to the extra 3 in the definition of Mg (x), this
maximal operator Mg (x) is bounded on L

p (M) for all 1 < p � +∞, even when
the measure on the metric space is non-doubling. See [37]. �


Example 3.11 If ϕ (t) = tα with 0 < α < ε, then

ψ (t) =
+∞∑
k=0

ϕ
(
22−k t
)

+
+∞∑
k=0

2(−k−1)εϕ
(
2k+2t
)

=
(
22α

+∞∑
k=0

2−kα + 22α−ε
+∞∑
k=0

2−k(ε−α)

)
tα = Ctα.

Thus, if

|Φ (x, y)| � C
|x − y|α

|B (x, 6 |x − y|)| for every x, y ∈ M,

|Φ (x, y) − Φ (z, y)| � C

( |x − z|
|x − y|

)ε |x − y|α
|B (x, 6 |x − y|)| when|x − y| � 2|x − z|.

and if 1 < p � +∞ then the potential spaceHΦ
p (M) can be continuously embedded

into Ḟϕ
p,∞ (M) with ϕ(t) = tα .

4 The Marcinkiewicz–Zygmund Inequality

The main ingredient in what follows is the Marcinkiewicz–Zygmund inequality for
sums of independent random variables.
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As is well known, the variance of the sum of independent random variables is the
sum of the variances. For every sequence of independent random variables f j ,

E

⎛
⎜⎝
∣∣∣∣∣∣
∑

j

(
f j − E

(
f j
))
∣∣∣∣∣∣
2
⎞
⎟⎠ =
∑

j

E

(∣∣ f j − E
(

f j
)∣∣2) .

In fact, there is a similar result with the second moment replaced by other moments
and with the equality replaced by two inequalities.

Theorem 4.1 (Marcinkiewicz–Zygmund) For every 1 � p < +∞, there exist pos-
itive constants A (p) and B (p) such that for every sequence { f j } of independent
random variables,

A (p)

⎧⎪⎨
⎪⎩E
⎛
⎝ N∑

j=1

∣∣ f j − E
(

f j
)∣∣2
⎞
⎠

p/2
⎫⎪⎬
⎪⎭

1/p

�

⎧⎨
⎩E
⎛
⎝
∣∣∣∣∣∣

N∑
j=1

(
f j − E

(
f j
))
∣∣∣∣∣∣

p⎞
⎠
⎫⎬
⎭

1/p

� B (p)

⎧⎪⎨
⎪⎩E
⎛
⎝ N∑

j=1

∣∣ f j − E
(

f j
)∣∣2
⎞
⎠

p/2
⎫⎪⎬
⎪⎭

1/p

.

TheMarcinkiewicz–Zygmund inequality is a generalization of the classical inequal-
ity of Khintchine for sums of random variables with Rademacher distribution that take
values ±1 with probability 1/2. For a proof, see [34] and [35], or [17].

In what follows, special attention will be paid to the constants, and A (p) and B (p)

will denote the best constants in theMarcinkiewicz–Zygmund inequality. If A (p) and
B (p) are the corresponding best constants for the Khintchine inequality, then it can
be proved that

1
2 A (p) � A (p) � A (p) and B (p) � B (p) � 2B (p) ;

see, for example, [17]. In particular there is a positive constant c such that c � A(p) �
1, while B (p) = 1 for 1 � p � 2 and B(p) = √

2
(
Γ ((p + 1)/2) /

√
π
)1/p for

2 � p < +∞; see [14] and [21].
We remark that the Marcinkiewicz–Zygmund inequality can also be extended to

infinite sums of independent random variables.
From now on we will assume that M is a measure space of finite measure which

can be expressed as a finite union X1 ∪ · · · ∪ XN of disjoint sets X1, . . . ,XN with
measures 0 <

∣∣X j
∣∣ = ω j < +∞.
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As indicated earlier, we write ω = (ω1, . . . , ωN ), x = (x1, . . . , xN ), X = X1 ×
· · · × XN and

dx = dx1
ω1

× · · · × dxN

ωN
.

The error incurred in a quadrature rule with sampling points x = (x1, . . . , xN ) and
weights ω = (ω1, . . . , ωN ) is the functional

Ex,ω ( f ) =
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x) dx .

The aboveMarcinkiewicz–Zygmund inequality has an immediate corollary that allows
us to control the norm of this error.

Corollary 4.2 Let 1 � p < +∞. For every measurable function f (x) on M,

A (p)

⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

∣∣∣∣∣ω j f
(
x j
)−
∫
X j

f
(
y j
)
dy j

∣∣∣∣∣
2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭

1/p

�
{∫

X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� B (p)

⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

∣∣∣∣∣ω j f
(
x j
)−
∫
X j

f
(
y j
)
dy j

∣∣∣∣∣
2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭

1/p

.

Proof It suffices to apply the Marcinkiewicz–Zygmund inequality to the independent
random variables

f j (x) = f j (x1, x2, . . . , xN ) = ω j f
(
x j
)
,

and observe that

E
(

f j
) =
∫
X j

f
(
x j
)
dx j

and

N∑
j=1

(
f j − E

(
f j
)) =

N∑
j=1

(
ω j f
(
x j
)−
∫
X j

f
(
x j
)
dx j

)

=
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x) dx .

�
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5 Diameter Bounded Equal Measure Partition of Metric Measure Spaces

In some of the results that follow we shall assume that a metric measure spaceM can
be decomposed into a finite disjoint union of sets in the form M = X 1 ∪ · · · ∪ XN ,
with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d . In fact, under appropriate

assumptions, Gigante and Leopardi in [19] proved the following more precise result.

Theorem 5.1 Let M be a connected metric measure space with finite measure with
the property that there exist positive constants d, H and K such that for every y ∈ M
and 0 < r < diam(M),

Hrd � |{x ∈ M : |x − y| < r}| � Krd .

Then, there exist two constants c1 and c2, such that for every sufficiently large N there
exists a partition M = X1 ∪ · · · ∪XN and points y j ∈ X j with

∣∣X j
∣∣ = |M| /N and

{
x ∈ M : ∣∣x − y j

∣∣ < c1N−1/d
}

⊂ X j ⊂
{

x ∈ M : ∣∣x − y j
∣∣ < c2N−1/d

}
.

For example, the theorem applies to all compact Riemannian manifolds. An algo-
rithmic construction in the particular case of the 2-dimensional sphere that pays
attention to the size of the constant c2 is contained in [38] (see also [32] for the
extension to higher dimensions).

6 Numerical Integration in Potential Spaces

In this section we shall study the functional Ex,ω on the potential spaceHΦ
p (M). Let

∥∥Ex,ω∥∥Φ,p = sup
f ∈HΦ

p (M)

{ ∣∣Ex,ω ( f )
∣∣

‖ f ‖HΦ
p (M)

}

be the norm of this functional, also termed worst case error, and the following lemma
gives an explicit formula for it.

Lemma 6.1 Assume that a measure space M can be decomposed into a finite disjoint
union of sets in the form M = X 1 ∪ · · · ∪XN , with measure

∣∣X j
∣∣ = ω j > 0. Assume

also that 1 � p � +∞, 1 � q � +∞, 1/p + 1/q = 1, and that for every x,

{∫
M

|Φ (x, y)|q dy

}1/q

< +∞.

Finally, assume that

{∫
M

(∫
M

|Φ (x, y)| dx

)q

dy

}1/q

< +∞.
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Then the functional Ex,ω is well defined and continuous on HΦ
p (M), and its norm is

∥∥Ex,ω∥∥Φ,p =
⎧⎨
⎩
∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ(x j , y) − Φ(x, y)

)
dx

∣∣∣∣∣∣
q

dy

⎫⎬
⎭

1/q

.

Proof For simplicity assume that q < +∞, the case q = +∞ being similar. Let

f (x) =
∫
M

Φ (x, y) g (y) dy

be the potential of a function g(x) in Lp (M). Since

∫
M

|Φ (x, y)|q dy < +∞,

f (x) is pointwise well defined. Since

∫
M

(∫
M

|Φ (x, y)| dx

)q

dy < +∞,

it follows from Fubini’s theorem that f (x) is integrable, and

∫
M

f (x) dx =
∫
M

∫
M

Φ (x, y) g (y) dy dx =
∫
M

g (y)

∫
M

Φ (x, y) dx dy.

This implies that Ex,ω ( f ) is well defined. Moreover,

∣∣Ex,ω ( f )
∣∣ =
∣∣∣∣∣∣

N∑
j=1

ω j f
(
x j
)−
∫
M

f (x) dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣

N∑
j=1

ω j

∫
M

Φ
(
x j , y
)

g (y) dy −
∫
M

g (y)

∫
M

Φ (x, y) dx dy

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫
M

⎛
⎝ N∑

j=1

∫
X j

(
Φ
(
x j , y
)− Φ (x, y)

)
dx

⎞
⎠ g (y) dy

∣∣∣∣∣∣

�
{∫

M
|g(y)|p dy

}1/p
⎧⎨
⎩
∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ
(
x j , y
)− Φ (x, y)

)
dx

∣∣∣∣∣∣
q

dy

⎫⎬
⎭
1/q

.

Taking the infimum as g (y) varies among all possible functions in L
p (M) with

potential f (x), one obtains

∥∥Ex,ω∥∥Φ,p �

⎧⎨
⎩
∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ
(
x j , y
)− Φ (x, y)

)
dx

∣∣∣∣∣∣
q

dy

⎫⎬
⎭

1/q

.
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Conversely, using the standard argument for L p − Lq duality, set

F (y) =
N∑

j=1

∫
X j

(
Φ
(
x j , y
)− Φ (x, y)

)
dx,

g (y) =
{

F (y) |F (y)|q/p−1 if F (y) 	= 0,
0 if F (y) = 0,

and

f (x) =
∫
M

Φ (x, y) g (y) dy.

Then

∣∣Ex,ω ( f )
∣∣ =
∣∣∣∣∣∣

N∑
j=1

ω j f
(
x j
)−
∫
M

f (x)dx

∣∣∣∣∣∣ =
∣∣∣∣
∫
M

F (y) g (y) dy

∣∣∣∣

=
∫
M

|F (y)|1+q/p dy =
{∫

M
|F (y)|q dy

}1/q {∫
M

|F (y)|q dy

}1/p

=
{∫

M
|F (y)|q dy

}1/q {∫
M

|g (y)|p dy

}1/p
�
{∫

M
|F (y)|q dy

}1/q
‖ f ‖

HΦ
p

.

This implies that

∥∥Ex,ω∥∥Φ,p �
{∫

M
|F (y)|q dy

}1/q

.

�

Theorem 6.2 Assume that a measure space M can be decomposed into a finite dis-
joint union of sets in the form M = X 1 ∪ · · · ∪ XN , with measure

∣∣X j
∣∣ = ω j > 0.

Assume also that 1 � p � +∞, 1 � q � +∞, 1/p + 1/q = 1, and that for every x,

{∫
M

|Φ (x, y)|q dy

}1/q

< +∞.

Finally, assume that

{∫
M

(∫
M

|Φ (x, y)| dx

)q

dy

}1/q

< +∞.

Define

Γ (Φ) =
N∑

j=1

{∫
X j

∫
M

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
q

dy
dx j

ω j

}1/q

,
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and

Δ(Φ) =

⎧⎪⎨
⎪⎩
∫
X

∫
M

⎛
⎝ N∑

j=1

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠

q/2

dy dx

⎫⎪⎬
⎪⎭

1/q

.

Then for every 1 � p � +∞,

{∫
X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

� Γ (Φ) , (7)

and for every 1 < p � +∞,

A (q) Δ (Φ) �
{∫

X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

� B (q) Δ (Φ) . (8)

In particular, there exist choices of nodes
{

x j
}

with the property that for every function
f (x) in the potential space H

Φ
p (M),

∣∣∣∣∣∣
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x)dx

∣∣∣∣∣∣ �
{

Γ (Φ) ‖ f ‖HΦ
p (M) for every 1 � p � +∞,

B (q) Δ (Φ) ‖ f ‖HΦ
p (M) for every 1 < p � +∞.

The constants A (q) and B (q) are the best constants in the Marcinkiewicz–
Zygmund inequality. The constants Γ (Φ) and Δ(Φ) are related to the smoothness
of the kernel Φ (x, y). These last constants could be estimated in terms of Sobolev
norms. However, in the applications, the estimates in terms of Sobolev norms are not
always optimal, and it is more convenient to keep the above complicated expressions.
Finally, since B (q) → +∞ as p → 1+, the interest of the estimate (7) is when
p → 1+.

Proof By Lemma 6.1 and the triangle inequality,

{∫
X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

=
⎧⎨
⎩
∫
X

∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣∣
q

dy dx

⎫⎬
⎭
1/q

�
N∑

j=1

{∫
X j

∫
M

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
q

dy
dx j

ω j

}1/q

,

where we have used the fact that for a function depending only on x j , integration on
X coincides with integration on X j . This gives the proof with Γ (Φ). The proof with
Δ(Φ) is similar, with the crucial difference that we replace the triangle inequality
with the Marcinkiewicz–Zygmund inequality. Indeed, by Corollary 4.2,
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{∫
X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

=
⎧⎨
⎩
∫
M

∫
X

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣∣
q

dx dy

⎫⎬
⎭

1/q

� B (q)

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝ N∑

j=1

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

.

The proof for the lower bound is similar. �


The following corollary is a slightly generalized version of Theorem I in the Intro-
duction.

Corollary 6.3 Let M be a metric measure space with the property that there exist d
and c such that for every y ∈ M and r > 0,

|{x ∈ M : |x − y| � r}| � crd .

Assume also that M can be decomposed into a finite disjoint union of sets in the form
M = X 1∪· · ·∪XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d . Assume

that for some ε > 0 and 0 < α < d,

|Φ (x, y)| � c |x − y|α−d

for every x and y, and

|Φ (x, y) − Φ (z, y)| � c |x − z|ε |x − y|α−d−ε

if |x − y| � 2 |x − z|. Finally, assume that 1 < p � +∞, 1/p + 1/q = 1 and
d/p < α < d. Then

{∫
X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

�

⎧⎨
⎩

cN−α/d if α < d/2 + ε,

cN−1/2−ε/d (log N )1/2 if α = d/2 + ε,

cN−1/2−ε/d if α > d/2 + ε.

Proof The assumption α > d/p ensures that the kernel Φ (x, y) is q integrable and
satisfies the hypotheses of Theorem 6.2. It then suffices to estimate

Δ(Φ) =

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝ N∑

j=1

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

.
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If dist
(
y,X j
)

� 2δ j , then for every x j in X j ,

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣ � c
∫
X j

(∣∣x j − y
∣∣α−d + ∣∣z j − y

∣∣α−d
)
dz j

� cω j
∣∣x j − y

∣∣α−d + cδα
j � cN−1

∣∣x j − y
∣∣α−d

.

If dist
(
y,X j
)

� 2δ j , then

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣ � c
∫
X j

∣∣x j − z j
∣∣ε ∣∣x j − y

∣∣α−d−ε dz j

� cδε
j ω j
∣∣x j − y

∣∣α−d−ε � cN−1−ε/d ∣∣x j − y
∣∣α−d−ε

.

Hence

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝ N∑

j=1

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

� c

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝N−2

∑
j :dist(y,X j)�2δ j

∣∣x j − y
∣∣2α−2d

⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

+ c

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝N−2−2ε/d

∑
j :dist(y,X j)>2δ j

∣∣x j − y
∣∣2α−2d−2ε

⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

.

Under the assumption that diam
(X j
) ≈ N−1/d , there is only a bounded number of

X j with dist
(
y,X j
)

� 2 diam
(X j
)
. Hence

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝N−2

∑
j :dist(y,X j)�2δ j

∣∣x j − y
∣∣2α−2d

⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

� c

⎧⎨
⎩
∫
M

∫
X

N∑
j=1

(
N−2χ{dist(y,X j)�2δ j} (y)

∣∣x j − y
∣∣2α−2d

)q/2
dx dy

⎫⎬
⎭

1/q

� c

⎧⎨
⎩N−q

N∑
j=1

∫
X j

∫
{|y−x j |�cN−1/d}

∣∣x j − y
∣∣αq−dq dy

dx j

ω j

⎫⎬
⎭

1/q

� cN−α/d .
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Moreover,

N−2−2ε/d
∑

j :dist(y,X j)>2δ j

∣∣x j − y
∣∣2α−2d−2ε

� cN−1−2ε/d
∑

j :dist(y,X j)>2δ j

ω j
∣∣x j − y

∣∣2α−2d−2ε

� cN−1−2ε/d
∑

j :dist(y,X j)>2δ j

∫
X j

|x − y|2α−2d−2ε dx

� cN−1−2ε/d
∫
{|x−y|>cN−1/d}

|x − y|2α−2d−2ε dx

�

⎧⎨
⎩

cN−2α/d if α < ε + d/2,
cN−1−2ε/d log N if α = ε + d/2,
cN−1−2ε/d if α > ε + d/2.

Hence

⎧⎪⎨
⎪⎩
∫
M

∫
X

⎛
⎝N−2−2ε/d

∑
j :dist(y,X j)>2δ j

∣∣x j − y
∣∣2α−2d−2ε

⎞
⎠

q/2

dx dy

⎫⎪⎬
⎪⎭

1/q

�

⎧⎨
⎩

cN−α/d if α < ε + d/2,
cN−1/2−ε/d (log N )1/2 if α = ε + d/2,
cN−1/2−ε/d if α > ε + d/2.

�


The following result shows that under some natural assumptions on the kernel,
the mean value estimate in the above corollary is essentially sharp, and is a slightly
generalized version of Theorem II in the Introduction.

Corollary 6.4 Let M be a metric measure space with the property that there exist
H, K and d such that for every y ∈ M and 0 < r < r0,

Hrd � |{x ∈ M : |x − y| � r}| � Krd .

Assume also that M can be decomposed into a finite disjoint union of sets in the
form M = X 1 ∪ · · · ∪ XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d .

Suppose that there exists 0 < α < d and ε > 0, such that for any j = 1, . . . , N and
any z ∈ X j , and for any y such that dist

(
y,X j
)

� 2δ j ,

∫
X j

|Φ (x, y) − Φ (z, y)| dx � cN−1−ε/d (dist (y,X j
))α−d−ε

.
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Suppose also that for any y ∈ M, the function x �→ Φ (x, y) is continuous in x 	= y.
Finally, assume that 1 < p � +∞, 1/p + 1/q = 1 and d/p < α < d. Then

{∫
X

∥∥Ex,ω∥∥qΦ,p dx
}1/q

�

⎧⎨
⎩

cN−α/d if α < d/2 + ε,

cN−1/2−ε/d (log N )1/2 if α = d/2 + ε,

cN−1/2−ε/d if α > d/2 + ε.

Proof It follows from Lemma 6.1 that

{∫
X

∥∥Ex,ω∥∥q dx
}1/q

=
⎧⎨
⎩
∫
X

∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣∣
q

dy dx

⎫⎬
⎭

1/q

� |M|−1/p
∫
X

∫
M

∣∣∣∣∣∣
N∑

j=1

∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣∣ dy dx.

By Corollary 4.2, this is bounded from below by

|M|−1/p A (1)
∫
M

∫
X

⎛
⎝∑

j

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠
1/2

dx dy

� |M|−1/p A (1)
∫
M

∫
X

⎛
⎜⎝ ∑

j :dist(y,X j
)�2δ j

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎟⎠
1/2

dx dy.

By the continuity of z j → Φ(z j , y), there exists a point x∗
j , depending on y, such

that
∫
X j

Φ(z j , y)dz j = ω jΦ(x∗
j , y).

Thus

∫
X

⎛
⎝ ∑

j :dist(y,X j)�2δ j

∣∣∣∣∣
∫
X j

(
Φ(x j , y) − Φ(z j , y)

)
dz j

∣∣∣∣∣
2
⎞
⎠

1/2

dx

=
∫
X

⎛
⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣∣Φ(x j , y) − Φ(x∗
j , y)

∣∣∣2
⎞
⎠

1/2

dx.

For any two positive sequences
{
α j
}
and
{
β j
}
we clearly have

∑
j

α2
j β j �

⎛
⎝∑

j

α2
j

⎞
⎠

1/2⎛
⎝∑

j

α2
j β

2
j

⎞
⎠

1/2

.
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Thus if v j is a point of the closure of X j that minimizes the distance from y,

∫
X

⎛
⎜⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

∣∣∣Φ(x j , y) − Φ(x∗
j , y)

∣∣∣2∣∣v j − y
∣∣2α−2d−2ε

⎞
⎟⎠

1/2

dx

�
∫
X

⎛
⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

⎞
⎠

−1/2

×
∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

∣∣∣Φ(x j , y) − Φ(x∗
j , y)

∣∣∣∣∣v j − y
∣∣α−d−ε

dx

=
⎛
⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

⎞
⎠

−1/2

×
∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣α−d−ε

(∫
X

∣∣∣Φ(x j , y) − Φ(x∗
j , y)

∣∣∣ dx
)

� c

⎛
⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

⎞
⎠

−1/2

×
∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

N−ε/d

= c

⎛
⎝ ∑

j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε

⎞
⎠

1/2

N−ε/d .

The desired result now follows from the estimates

∑
j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε � c

⎧⎨
⎩

N−2α/d+2ε/d if α < d/2 + ε,

N−1 log N if α = d/2 + ε,

N−1 if α > d/2 + ε.

Indeed,

∑
j :dist(y,X j)�2δ j

ω2
j

∣∣v j − y
∣∣2α−2d−2ε � cN−1

∫
{|x−y|>cN−1/d}

|x − y|2α−2d−2ε dx .

If λ � (2K/H)1/d , then for every center y and r < r0/λ,

|{x ∈ M : r < |x − y| � λr}| � Krd .
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This gives

N−1
∫
{|x−y|>cN−1/d}

|x − y|2α−2d−2ε dx

� N−1

[
logλ

(
r0N1/d

)]−1∑
k=0

∫
{λk N−1/d�|x−y|<λk+1N−1/d}

|x − y|2α−2d−2ε dx

� N−1

[
logλ

(
r0N1/d

)]−1∑
k=0

(
λk N−1/d

)2α−2d−2ε
K
(
λk N−1/d

)d

= K N−2α/d+2ε/d

[
logλ

(
r0N1/d

)]−1∑
k=0

λk(2α−d−2ε)

� c

⎧⎨
⎩

N−2α/d+2ε/d if α < d/2 + ε,

N−1 log N if α = d/2 + ε,

N−1 if α > d/2 + ε.

�

Example 6.5 LetM be a d-dimensional compact Riemannian manifold. Let

{
λ2
}
and

{ϕλ(x)} be the eigenvalues and a complete orthonormal system of eigenfunctions of
the Laplace Beltrami operator Δ, respectively. Every tempered distribution onM has
Fourier transform and series

F f (λ) =
∫
M

f (y)ϕλ(y)dy and f (x) =
∑
λ

F f (λ)ϕλ(x).

The Bessel kernel Bα(x, y), −∞ < α < +∞, is a distribution defined by the expan-
sion

Bα(x, y) =
∑
λ

(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

A distribution f (x) is the Bessel potential of a distribution g(x) if

f (x) =
∫
M

Bα(x, y)g(y)dy =
∑
λ

(
1 + λ2

)−α/2 Fg(λ)ϕλ(x).

Bessel potentials of functions inLp (M) define the fractional Sobolev spaceHα
p (M).

If 0 < α < d, then the Bessel kernel satisfies the estimates

∣∣Bα(x, y)
∣∣ � c |x − y|α−d and

∣∣∇Bα(x, y)
∣∣ � c |x − y|α−d−1 .

See [7, Lemmas 2.5 and 2.6]. In particular, Corollary 6.3 applies with Φ(x, y) =
Bα(x, y) and ε = 1. Indeed, using the Hadamard parametrix for the wave equation,
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see, for example, [6], one can prove a more precise result: there is a smooth positive
function C (y) and positive constants η and c such that

Bα (x, y) = C (y) |x − y|α−d + E (x, y) ,

with

|E (x, y)| � c |x − y|α−d+η and |∇E (x, y)| � c |x − y|α−d−1+η .

It then follows that Corollary 6.4 applies also. See [13, Theorems 24 and 25] for the
case of the sphere.

7 Numerical Integration in Besov Spaces

The techniques of the previous section can also be used to study the error in numerical
integration from a different perspective. So far we have considered the worst case
error

⎧⎨
⎩
∫
X

sup
‖ f ‖

H
Φ
p (M)

�1

∣∣Ex,ω ( f )
∣∣q dx
⎫⎬
⎭

1/q

,

whereas now we will estimate the error

{∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

.

for a given f ∈ Ḃ
ϕ
p,∞ (M). The following is a slightly generalized version of Theorem

III in the Introduction.

Theorem 7.1 Assume that a metric measure spaceM can be decomposed into a finite
disjoint union of sets in the formM = X 1∪· · ·∪XN , with measure 0 <

∣∣X j
∣∣ = ω j <

+∞ and 0 < diam
(X j
) = δ j < +∞. Also let ϕ (t) be a non-negative increasing

function in t � 0, and let Ḃϕ
p,∞ (M) be the associated Besov space. Then for every

1 � p � +∞,

{∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� 2 |M|1−1/p ϕ
(
2 sup
{
δ j
}) ‖ f ‖

Ḃ
ϕ
p,∞(M) . (9)

Furthermore, if 1 � p � 2, then

{∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� 2B (p) sup
{
ω
1−1/p
j

}
ϕ
(
2 sup
{
δ j
}) ‖ f ‖

Ḃ
ϕ
p,∞(M) , (10)
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and if 2 � p < +∞, then

{∫
X

∣∣Ex,ω ( f )
∣∣p dx
}1/p

� 2B (p) |M|1/2−1/p sup
{
ω
1/2
j

}
ϕ
(
2 sup
{
δ j
}) ‖ f ‖

Ḃ
ϕ
p,∞(M)

.

(11)

Observe that the estimate (9) is of some interest only for large p. Indeed, if
1 � p � 2, then (10) is better than (9), and if 2 � p < +∞ and B (p) �
|M|1/2

(
sup
{
ω
1/2
j

})−1
, then (11) is better than (9).

In order to prove Theorem 7.1, we need a Poincaré type inequality for functions in
Hajłasz–Besov spaces.

Lemma 7.2 Let 1 � p � +∞, let M be a metric measure space, and let {gn (x)}
be a ϕ-gradient for an integrable function f (x). Let X be a measurable subset of M
with ω = |X | > 0 and diam (X ) � 2−n, and let

fX = 1

ω

∫
X

f (y) dy.

Then

{∫
X

| f (x) − fX |p dx

ω

}1/p

� 2ϕ
(
2−n) {∫

X
|gn (x)|p dx

ω

}1/p

.

Proof For almost every x and y with |x − y| � 2−n , we have

| f (x) − f (y)| � ϕ
(
2−n) (gn (x) + gn (y)) .

Then, by Hölder’s inequality, we obtain

{∫
X
∣∣ f (x) − fX

∣∣p dx

ω

}1/p
�
{∫

X

∫
X

| f (x) − f (y)|p dx

ω

dy

ω

}1/p

� ϕ
(
2−n) {∫

X

∫
X

|gn (x) + gn (y)|p dx

ω

dy

ω

}1/p
� 2ϕ
(
2−n) {∫

X
|gn (x)|p dx

ω

}1/p
.

�
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Proof of Theorem 7.1 Let f ∈ Ḃ
ϕ
p,∞ (M), and let {gn (x)} be a ϕ-gradient for f (x).

Choose n such that 2−n−1 < sup δ j � 2−n . Then by Lemma 7.2, we have

⎧⎨
⎩
∫
X

∣∣∣∣∣∣
∑

j

ω j f
(
x j
)−
∫
M

f (x) dx

∣∣∣∣∣∣
p

dx

⎫⎬
⎭
1/p

=
⎧⎨
⎩
∫
X

∣∣∣∣∣∣
∑

j

ω j

(
f
(
x j
)− fX j

)∣∣∣∣∣∣
p

dx

⎫⎬
⎭
1/p

�
∑

j

ω j

{∫
X j

∣∣∣ f (x j
)− fX j

∣∣∣p dx j

ω j

}1/p

� 2ϕ
(
2−n)∑

j

ω j

{∫
X j

∣∣gn
(
x j
)∣∣p dx j

ω j

}1/p

� 2ϕ
(
2−n)
⎧⎨
⎩
∑

j

ω j

⎫⎬
⎭
1−1/p ⎧⎨

⎩
∑

j

∫
X j

∣∣gn
(
x j
)∣∣p dx j

⎫⎬
⎭
1/p

� 2ϕ
(
2 sup δ j

) |M|1−1/p
{∫

M
|gn (x)|p dx

}1/p
.

The proofs of (10) and (11) are similar. Indeed, by Corollary 4.2, we have

⎧⎨
⎩
∫
X

∣∣∣∣∣∣
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x)dx

∣∣∣∣∣∣
p

dx

⎫⎬
⎭

1/p

� B (p)

⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

ω2
j

∣∣∣ f (x j
)− fX j

∣∣∣2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭

1/p

.

Choose n such that 2−n−1 < sup δ j � 2−n , and assume that 1 � p � 2. By Lemma
7.2, we obtain

⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

ω2
j

∣∣∣ f (x j
)− fX j

∣∣∣2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭
1/p

�

⎧⎨
⎩
∫
X

⎛
⎝ N∑

j=1

ω
p
j

∣∣∣ f (x j
)− fX j

∣∣∣p
⎞
⎠ dx

⎫⎬
⎭
1/p

=
⎧⎨
⎩

N∑
j=1

ω
p
j

∫
X j

∣∣∣ f (x j
)− fX j

∣∣∣p dx j

ω j

⎫⎬
⎭
1/p

� 2ϕ
(
2−n)
⎧⎨
⎩

N∑
j=1

ω
p
j

∫
X j

∣∣gn
(
x j
)∣∣p dx j

ω j

⎫⎬
⎭
1/p

� 2 sup
(
ω
1−1/p
j

)
ϕ
(
2 sup
{
δ j
}) {∫

M
|gn (x)|p dx

}1/p
.

Similarly, if 2 � p < +∞, then Hölder’s inequality with indices p/ (p − 2) and p/2
yields
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⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

ω2
j

∣∣∣ f (x j
)− fX j

∣∣∣2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭

1/p

�

⎧⎨
⎩

N∑
j=1

ω
(2p−2)/(p−2)
j

⎫⎬
⎭

(p−2)/2p ⎧⎨
⎩

N∑
j=1

ω j

∫
X j

∣∣∣ f (x j
)− fX j

∣∣∣p dx j

ω j

⎫⎬
⎭

1/p

� sup
(
ω
1/2
j

)⎧⎨
⎩

N∑
j=1

ω j

⎫⎬
⎭

(p−2)/2p

2ϕ
(
2−n)
⎧⎨
⎩

N∑
j=1

ω j

∫
X j

∣∣gn
(
x j
)∣∣p dx j

ω j

⎫⎬
⎭

1/p

� 2 |M|1/2−1/p sup
(
ω
1/2
j

)
ϕ
(
2 sup δ j

) {∫
M

|gn (x)|p dx

}1/p

.

�

Corollary 7.3 Assume that a metric measure spaceM can be decomposed into a finite
disjoint union of sets in the form M = X 1 ∪ · · · ∪ XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and
diam
(X j
) ≈ N−1/d for a suitable positive constant d. Then for every 1 � p < +∞

and every 0 < ε < 1, there exists a constant c with the following property. For every
function f (x) in the Besov space Ḃ

ϕ
p,∞ (M), ϕ (t) = tα and α > 0, with probability

greater than 1 − ε, a random choice of points
{

x j
}

in
{X j
}

gives

∣∣∣∣∣∣
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x)dx

∣∣∣∣∣∣ �
{

c ‖ f ‖
Ḃ

ϕ
p,∞(M) N 1/p−1−α/d if 1 � p � 2,

c ‖ f ‖
Ḃ

ϕ
p,∞(M) N−1/2−α/d if 2 � p < +∞.

Proof This follows from Theorem 7.1 via Chebyshev’s inequality. �

The following example shows that Theorem 7.1 is essentially sharp.

Example 7.4 As in Theorem 5.1, let M be a metric measure space of finite measure
with the property that there exist positive constants H , K , d, such that for every y ∈ M
and 0 < r < diam (M),

Hrd � |{x ∈ M : |x − y| < r}| � Krd .

For every N , the spaceM can be decomposed into a finite disjoint union of sets in the
form M = X1 ∪ · · · ∪ XN , with ω j = ∣∣X j

∣∣ ≈ N−1 and δ j = diam
(X j
) ≈ N−1/d .

Moreover every X j contains a ball B
(
w j , r j

)
of center w j and radius r j ≈ δ j . It is

possible to prove that each ball B
(
w j , r j

)
contains two disjoint balls B

(
y j , εr j

)
and

B
(
z j , εr j

)
, with ε = 6−1 (2K/H)−1/d . Fix 1 � j � N and define

f j (x) =
(
1 − 2

εr j

∣∣x − y j
∣∣)

+
− ϑ j

(
1 − 2

εr j

∣∣x − z j
∣∣)

+
,
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with ϑ j such that f has mean 0. Observe that 0 < ϑ j < C independent of N . Also
note that there exist constants A and B independent of N such that

∫ ∣∣ f j (x)
∣∣p dx

ω j
� A,

and

∣∣ f j (x) − f j (y)
∣∣ � Bδ−1

j |x − y| for all x, y ∈ M.

If ϕ (t) = tα with d/p < α � 1, and if w j is the above defined point in X j , then the
function

g j (x) = cmin
(
δ−α

j ,
∣∣x − w j

∣∣−α
)

is a ϕ-gradient of f (x). Indeed, if x ∈ X j and |x − y| � 2δ j , then

∣∣ f j (x) − f j (y)
∣∣ � Bδ−1

j |x − y| � cδ−α
j |x − y|α ,

while for x ∈ X j and |x − y| > 2δ j ,

∣∣ f j (x) − f j (y)
∣∣ = ∣∣ f j (x)

∣∣ � max
{
1, ϑ j
} = max

{
1, ϑ j
} |x − y|−α |x − y|α

� c
∣∣w j − y

∣∣−α |x − y|α .

In particular,

∥∥ f j
∥∥
Ḃ

ϕ
p,∞(M)

� c

{∫
M

min
(
δ
−αp
j ,
∣∣x − w j

∣∣−αp
)
dx

}1/p

� cNα/d−1/p.

Moreover, since f (x) has mean zero and it is supported in X j ,

⎧⎨
⎩
∫
X

∣∣∣∣∣
N∑

k=1

ωk f j (xk) −
∫
M

f j (x) dx

∣∣∣∣∣
p

dx

⎫⎬
⎭

1/p

= ω j

{∫
X j

∣∣ f j
(
x j
)∣∣p dx j

ω j

}1/p

� cN−1.

Finally,

N−1 = N 1/p−1N−α/d Nα/d−1/p � c sup
{
ω
1−1/p
j

}
ϕ
(
2 sup
{
δ j
}) ∥∥ f j

∥∥
Ḃ

ϕ
p,∞(M)

.

This shows that Theorem 7.1 with 1 � p � 2 is sharp.
In order to show that the theorem is essentially sharp also for 2 < p � +∞, let

f j (x) as before and define

f (x) =
N∑

j=1

f j (x) .
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If ϕ (t) = tα , then a ϕ-gradient of f (x) is given by

g (x) = cNα/d .

Indeed, if x, y ∈ X j , then

| f (x) − f (y)| = ∣∣ f j (x) − f j (y)
∣∣ � Bδ−1

j |x − y| � cNα/d |x − y|α .

If x ∈ Xi and y ∈ X j , with i 	= j and |x − y| � N−1/d , then

| f (x) − f (y)| = ∣∣ fi (x) − f j (y)
∣∣ � | fi (x) − fi (y)| + ∣∣ f j (y) − f j (x)

∣∣
� cNα/d |x − y|α .

If |x − y| � N−1/d , then

| f (x) − f (y)| � c � cNα/d |x − y|α .

This gives

‖ f ‖
Ḃ

ϕ
p,∞(M) � cNα/d .

Moreover, the Marcinkiewicz–Zygmund inequality gives for 2 < p < +∞,

⎧⎨
⎩
∫
X

∣∣∣∣∣∣
N∑

j=1

ω j f
(
x j
)−
∫
M

f (x) dx

∣∣∣∣∣∣
p

dx

⎫⎬
⎭

1/p

� A (p)

⎧⎪⎨
⎪⎩
∫
X

⎛
⎝ N∑

j=1

∣∣ω j f j
(
x j
)∣∣2
⎞
⎠

p/2

dx

⎫⎪⎬
⎪⎭

1/p

� A (p)

⎧⎨
⎩
∫
X

⎛
⎝ N∑

j=1

∣∣ω j f j
(
x j
)∣∣2
⎞
⎠ dx

⎫⎬
⎭

1/2

� A (p)

⎧⎨
⎩

N∑
j=1

ω j

∫
X j

∣∣ f j
(
x j
)∣∣2 dx j

⎫⎬
⎭

1/2

� A (p)min
{
ω
1/2
j

}{∫
M

| f (x)|2 dx

}1/2
� cN−1/2.

Finally,

N−1/2 = N−1/2N−α/d Nα/d � c sup
{
ω
1/2
j

}
ϕ
(
2 sup
{
δ j
}) ‖ f ‖

Ḃ
ϕ
p,∞(Td) .

In particular, this estimate shows that Theorem 7.1 with 2 < p < +∞ is sharp.
When p = +∞ let f (x) and

{
y j
}
as before, so that f

(
y j
) = 1. Then

∣∣∣∣∣∣
N∑

j=1

ω j f
(
y j
)−
∫
M

f (x) dx

∣∣∣∣∣∣ = 1 � cϕ
(
2 sup
{
δ j
}) ‖ f ‖

Ḃ
ϕ
p,∞(M) .

In particular, this estimate shows that Theorem 7.1 with p = +∞ is sharp.
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8 Discrepancy

The following result on the expected value of the pth power of the discrepancy of a
random set of points with respect to a fixed given set in a measure space extends a
result in [15, Lemma 5]. The result in the latter paper concerns the case of a compact
convex set in the d-dimensional unit cube, and the proof is based on the combina-
torial argument described in the Introduction, which in our case is replaced by the
Marcinkiewicz–Zygmund inequality.

Theorem 8.1 Assume that a metric measure space M is decomposed into a finite
disjoint union of sets in the form M = X 1 ∪ · · · ∪ XN , and call ω j = ∣∣X j

∣∣ and
δ j = diam

(X j
)
. Let B be a measurable subset of M, and let

ψB (t) = |{x ∈ B : dist {x,M\B} � t}| + |{x ∈ M\B : dist {x,B} � t}| .

If J is the set of indices j such that X j intersects both B and its complement, then
the following hold:

(i) For every choice of points
{

x j
}

in
{X j
}
,

∣∣∣∣∣∣
N∑

j=1

ω jχB
(
x j
)− |B|

∣∣∣∣∣∣ ≤ ψB

(
sup
j∈J
{
δ j
})

.

(ii) For every 1 � p < +∞,

⎧⎨
⎩
∫
X

∣∣∣∣∣∣
N∑

j=1

ω jχB
(
x j
)− |B|

∣∣∣∣∣∣
p

dx

⎫⎬
⎭

1/p

≤ B (p)

√√√√sup
j∈J
{
ω j
}
ψB

(
sup
j∈J
{
δ j
})

.

Observe that the right hand side in (ii) is better than the one in (i) when

B (p) ≤
√√√√ψ
(
sup j∈J

{
δ j
})

sup j∈J
{
ω j
} .

Also observe that

sup
j∈J
{
ω j
} ≤
∑
j∈J

ω j ≤ ψB

(
sup
j∈J
{
δ j
})

.

For a sufficiently refined decomposition {X j } of the space, one should expect
sup j∈J

{
ω j
}
to be much smaller than ψB

(
sup j∈J

{
δ j
})
. Hence, for a fixed value

of p, estimate (ii) is in general better than (i) as N → +∞. On the other hand, recall
that B (p) → +∞ as p → +∞, hence, for a fixed decomposition ofM, estimate (i)
wins for sufficiently large values of p.
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Proof The proof of (i) is elementary. For every choice of x j ∈ X j one has

N∑
j=1

ω jχB
(
x j
)− |B| =

N∑
j=1

(
ω jχB∩X j

(
x j
)− ∣∣B ∩ X j

∣∣) .

If X j ⊆ B or if B∩X j = ∅ then ω jχB∩X j

(
x j
)− ∣∣B ∩ X j

∣∣ = 0. Moreover, for every
j ,

∣∣∣ω jχB∩X j

(
x j
)− ∣∣B ∩ X j

∣∣∣∣∣ ≤ ω j .

Then, by the triangle inequality,

∣∣∣∣∣∣
N∑

j=1

(
ω jχB∩X j

(
x j
)− ∣∣B ∩ X j

∣∣)
∣∣∣∣∣∣ ≤
∑
j∈J

ω j ≤ ψB

(
sup
j∈J
{
δ j
})

.

The proof of (ii) is similar, with the crucial difference that we replace the triangle
inequality with the Marcinkiewicz–Zygmund inequality (Corollary 4.2),

⎧⎨
⎩
∫
X

∣∣∣∣∣∣
N∑

j=1

(
ω jχB∩X j

(
x j
)− ∣∣B ∩ X j

∣∣)
∣∣∣∣∣∣

p

dx

⎫⎬
⎭

1/p

� B (p)

⎧⎨
⎩
∑
j∈J

ω2
j

⎫⎬
⎭

1/2

� B (p) sup
j∈J

{
ω
1/2
j

}⎧⎨
⎩
∑
j∈J

ω j

⎫⎬
⎭

1/2

� B (p)

√√√√sup
j∈J
{
ω j
}
ψB

(
sup
j∈J
{
δ j
})

.

�

Theorems like the above are the main building block for the proof of the existence

of point distributions with small L p discrepancy with respect to given collections of
subsets. A very general result of this type is the following.

Corollary 8.2 Assume that a metric measure space M can be decomposed into a
finite disjoint union of sets in the form M = X 1 ∪ · · · ∪XN , with ω j = ∣∣X j

∣∣ ≈ N−1

and δ j = diam
(X j
) ≈ N−1/d . Let G be a collection of measurable subsets of Mwith

the property that there exist positive constants c and β such that for all sets G ∈ G

ψG (t) = |{x ∈ G : dist {x,M\G} � t}| + |{x ∈ M\G : dist {x,G} � t}| � ctβ.

Then for any finite positive measure μ on any sigma algebra on G, and for every
1 � p < +∞ there exists a constant C and a choice of points

{
x j
}

in
{X j
}

such that
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⎛
⎝∫

G

∣∣∣∣∣∣
N∑

j=1

ω jχG
(
x j
)− |G|

∣∣∣∣∣∣
p

dμ(G)

⎞
⎠

1/p

� C N−1/2−β/2d .

Proof By point (ii) of Theorem 8.1,

∫
G

∫
X

∣∣∣∣∣∣
N∑

j=1

ω jχG
(
x j
)− |G|

∣∣∣∣∣∣
p

dxdμ(G)

� B (p)p
∫
G

(
sup
j∈J
{
ω j
}
ψG

(
sup
j∈J
{
δ j
}))p/2

dμ(G)

� B (p)p μ(G)

⎛
⎝sup

j∈J
{
ω j
}

c

(
sup
j∈J
{
δ j
})β
⎞
⎠

p/2

.

This implies that there exists an x ∈ X such that the thesis of the theorem holds. �

We emphasize that under the hypotheses of Corollary 5.1 the required decomposi-

tion exists, and it is always possible to take all ω j equal to |M|N−1. The corollary has
several possible applications. We now examine a few particular cases, starting with
the isotropic discrepancy (the discrepancy with respect to convex sets) in the unit cube
[0, 1]d . For interesting phenomena concerning stratified sampling in the unit cube, see
[16].

Corollary 8.3 Let 1 � p < +∞, and let μ be a finite positive measure on a sigma
algebra on the collection Kd

u of all convex sets of the unit cube [0, 1]d . For any integer
N there exists a distribution of points {x j }N

j=1 in [0, 1]d such that

⎛
⎝∫

Kd
u

∣∣∣∣∣∣
1

N

N∑
j=1

χK
(
x j
)− |K |

∣∣∣∣∣∣
p

dμ(K )

⎞
⎠

1/p

� C N−1/2−1/2d .

Proof It suffices to show thatCorollary 8.2 applieswithβ = 1. First of all, the unit cube
can be decomposed into a finite disjoint union of sets in the formM = X 1∪· · ·∪XN ,
with ω j = ∣∣X j

∣∣ = N−1 and δ j = diam
(X j
) ≈ N−1/d . See, for example, Theorem

5.1. It then suffices to observe that for all convex sets K the uniform estimateψK (t) �
4dt holds. Indeed, by the coarea formula

ψK (t) = |{x ∈ [0, 1]d : dist(x, ∂K ) � t}| =
∫ t

−t
|∂Ku |d−1du,

where for u > 0 we define Ku = {x ∈ K : dist(x, ∂K ) � u} and for u < 0 we
define Ku = {x ∈ [0, 1]d : dist(x, K ) � |u|}, and | · |d−1 is the (d − 1)-dimensional
Hausdorff measure. It is a well known property of convex sets that all sets Ku are
convex (see e.g. [42, Chap. 3]. By the Archimedean property of monotonicity with
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respect to inclusion of the measure of the boundary of convex sets (see [5, Property 5,
page 52]), from Ku ⊂ [0, 1]d it follows |∂Ku |d−1 � |∂[0, 1]d |d−1 = 2d. �


As an explicit example ofmeasure, one could consider any finitemeasure supported
on the translated, rotated and dilated copies of a fixed convex set. Hence, this result
includes and extends well known results on the L p discrepancy with respect to discs,
or other collections of sets with “reasonable” shapes (see, for example, [15, Theorem
2D]). It is interesting to observe that if one replaces the above L p norm with a supre-
mum in K ∈ Kd

u , then the above result fails. Indeed, Schmidt (see [41]) proved that
for any N point distribution in the unit cube there exists a convex set with discrepancy
of order N−2/(d+1).

It is perhaps worth mentioning some results about measures on the space of convex
sets. It is well known that the set of non-empty convex compact subsets of Rd , let us
call it Kd , can be made into a metric space by introducing the Hausdorff distance

dH (A, B) = max

{
sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|
}

.

A large class of sigma finite Borel measures onKd , which are positive on open sets of
Kd and are invariant under rigid motions, has been recently constructed by Hoffmann
[28]. Just to give a rough idea, let {Kn}+∞

n=1 be an enumeration of all polytopes of Rd

with vertices in rational points, and let
∑+∞

n=1 αn < +∞ be a convergent series with
positive terms. Then one can define the measure

μ =
+∞∑
n=1

αnδKn ,

where δKn is the Dirac delta centered at Kn . This measure is supported on rational
polytopes, but is positive on open sets since these rational polytopes are dense. A
suitable clever modification can be made invariant under rigid motions. Nevertheless,
it can be shown that there are more isometries of the spaceKd than those coming from
rigid motions of Rd , and in fact it has been showed by Bandt and Baraki (see [2])
that for d > 1 there are no non-trivial sigma finite measures on Kd , that are invariant
with respect to all isometries of the whole space Kd . Hence it seems that there is no
“natural” measure on Kd .

Similar results hold in compact Riemannian manifolds. For the sake of simplicity,
we state here a result on the L p discrepancy associated to geodesic balls.

Corollary 8.4 Let M be a compact Riemannian manifold with injectivity radius r0,
and let 0 < r1 < r0. Denote by B(x, r) the geodesic ball centered at the point x ∈ M
with radius r . Then for any 1 � p < +∞, for any finite positive measure μ on
M× (0, r1), and for any integer N, there exists a distribution of points {x j }N

j=1 in M
such that

⎛
⎝∫∫

M×(0,r1)

∣∣∣∣∣∣
|M|

N

N∑
j=1

χB(x,r)

(
x j
)− |B(x, r)|

∣∣∣∣∣∣
p

dμ(x, r)

⎞
⎠

1/p

� C N−1/2−1/2d .
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Proof As before, it suffices to show that Corollary 8.2 applies with β = 1. Indeed,M
can be decomposed into a finite disjoint union of sets in the formM = X 1∪· · ·∪XN ,
with ω j = ∣∣X j

∣∣ = |M|N−1 and δ j = diam
(X j
) ≈ N−1/d . See, for example,

Theorem 5.1. Moreover, there exists a positive constant c such that for every geodesic
ball B(x, r) with r < r1 and every t > 0 one has ψB(x,r) (t) � ct . It clearly suffices
to prove this for all 0 < t � (r0 − r1)/2. Indeed, by the triangle inequality,

{y ∈ B(x, r) : dist {y,M\B(x, r)} � t} ⊂ B(x, r)\B(x, r − t),

{y ∈ M\B(x, r) : dist {y, B(x, r)} � t} ⊂ B(x, r + t)\B(x, r).

If s � 0 thenwe set B(x, s) = ∅. Finally, if r < r1 and t < (r0−r1)/2, the exponential
map diffeomorphicallymaps the annulus B(x, r +t)\B(x, r −t) into the tangent space
in x , and by a uniform bound on the Jacobian of the exponential map, its measure is
bounded above by c((r + t)d − max{0, r − t}d) � ct . �


We have already mentioned that the above results fail in general when one replaces
the L p norm with a supremum. Nevertheless, an extra hypothesis concerning the
complexity of the collection of sets G allows to obtain the same upper bound in the
supremum case too, up to a logarithmic transgression.

Theorem 8.5 Let M be a metric measure space with finite measure with the property
that there exist positive constants d and c1, such that for every sufficiently large N
there exists a partition M = X1 ∪ · · · ∪XN with

∣∣X j
∣∣ = |M| N−1 and diam

(X j
)

�
c1N−1/d . Let G be a collection of measurable subsets of M with the following two
properties:

(i) There exist positive constants c2 and β such that for all sets G ∈ G

ψG (t) = |{x ∈ G : dist {x,M\G} � t}| + |{x ∈ M\G : dist {x,G} � t}| � c2tβ.

(ii) There exist positive constants c3 and γ such that for all integers N and for all
distributions P of N points in M there are at most c3N γ equivalence classes in
G, where G,G′ in G are defined to be equivalent if P ∩ G = P ∩ G′.

Then for any integer N there exists a distribution of points {z j }N
j=1 such that

sup
G∈G

∣∣∣∣∣∣
|M|

N

N∑
j=1

χG
(
z j
)− |G|

∣∣∣∣∣∣ � C N−1/2−β/2d
√
log N .

A few words on the above condition (ii) are perhaps necessary. We say thatG shatters
a finite subset P of N points of M if there are exactly 2N distinct intersections of
sets of G with P . The Vapnik–Chervonenkis dimension, or VC dimension, of G is
the supremum of the sizes of all finite subsets of M that are shattered by G. By
Sauer lemma (see [40]), condition (ii) coincides with asking that the collection G has
finite VC dimension. For example, the collection of convex sets in Rd has infinite VC
dimension. Indeed a set of N points on a circle can be easily shattered with convex
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sets. On the other hand, the collection of balls in R
d has VC dimension d + 1 (see

[36, Chap. 5] for an account on this subject).
The proof that we present here follows closely the lines of the classic result for

discs in the unit square, as one can find in Matoušek’s book [36].

Proof Let M = N q , where q is a positive integer that will be fixed later. Consider two
partitions ofM as in the hypothesis. The first is composed by the N setsX1, . . . ,XN ,
and the second is composed by the M sets Y1, . . . ,YM . For any j = 1, . . . , N , define
I j = {i = 1, . . . , M : Yi ∩ X j 	= ∅} and, for all i ∈ I j define

Y j,i = X j ∩ Yi .

Fix a point y j,i in any of the sets Y j,i . Clearly {Y j,i }i∈I j forms a partition of X j and
Y j,i ⊂ {x ∈ M : |x − yi, j | < c1M−1/d}.

For each j = 1, . . . , N , let us pick one point q j among all the points y j,i with i ∈ I j .
This point q j is chosen randomly with probability P[q j = y j,i ] = N |Y j,i |/|M|,
the choices being independent for distinct values of j . The discrepancy of the point
distribution {q j }N

j=1 with respect to a given G ∈ G can be estimated as follows

∣∣∣∣∣∣
|M|

N

N∑
j=1

χG
(
q j
)− |G|

∣∣∣∣∣∣

�

∣∣∣∣∣∣
|M|

N

N∑
j=1

⎛
⎝χG
(
q j
)− N

|M|
∑
i∈I j

|Y j,i |χG
(
y j,i
)
⎞
⎠
∣∣∣∣∣∣+
∣∣∣∣∣∣

N∑
j=1

∑
i∈I j

|Y j,i |χG
(
y j,i
)− |G|

∣∣∣∣∣∣

The second term in the above sum is deterministic and can be treated easily. By
Theorem 8.1 (i) it is bounded above by

ψG
(

c1M−1/d
)

� c2
(

c1M−1/d
)β = cβ

1 c2N−βq/d .

It is therefore sufficient to take q � d/β to obtain an estimate better than what is
needed.

The other term is of a probabilistic nature. We only need to consider the values of
j for which X j intersects both G andM. Call this set J and its cardinality m. Since

m
|M|

N
� ψG

(
c1N−1/d

)
� cβ

1 c2N−β/d ,

we have m � cβ
1 c2N 1−β/d/|M|. Let us now set

k j = N

|M|
∑
i∈I j

|Y j,i |χG
(
y j,i
)
,
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and call Fj the random variable χG
(
q j
)− k j . Thus we have

|M|
N

N∑
j=1

⎛
⎝χG
(
q j
)− N

|M|
∑
i∈I j

|Y j,i |χG
(
y j,i
)⎞⎠ = |M|

N

⎛
⎝∑

j∈J
Fj

⎞
⎠ .

The variables Fj are mutually independent, and Fj takes the value 1 − k j with prob-
ability k j , and −k j with probability 1 − k j . Therefore for every Δ > 0 we have

P

⎡
⎣
∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � Δ

⎤
⎦ � 2 exp(−2Δ2/m)

(see, for example, [1, Corollary A.1.7]). Let us fix a constant C > 0. Then we have
showed that

P

⎡
⎣ |M|

N

∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � C N−1/2−β/(2d)
√
log N

⎤
⎦

= P

⎡
⎣
∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � C N 1/2−β/(2d)
√
log N/|M|

⎤
⎦

� 2 exp(−2C2N 1−β/d log N/|M|2)/m)

� 2N−C2c−β
1 c−1

2 |M|−1
.

Finally, if F ⊂ G contains one representative for each equivalence class, then

P

⎡
⎣ |M|

N

∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � C N−1/2−β/(2d)
√
log N for some G ∈ G

⎤
⎦

= P

⎡
⎣ |M|

N

∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � C N−1/2−β/(2d)
√
log N for some G ∈ F

⎤
⎦

�
∑
G∈F

P

⎡
⎣ |M|

N

∣∣∣∣∣∣
∑
j∈J

Fj

∣∣∣∣∣∣ � C N−1/2−β/(2d)
√
log N

⎤
⎦

� 2c3N γ−C2c−β
1 c−1

2 |M|−1
< 1

if C is large enough. The theorem follows. �

The next Corollary shows one possible application of the above theorem.

Corollary 8.6 Let M be a d-dimensional compact Riemannian manifold isometri-
cally embedded in R

D, and call B D(x, r) = {y ∈ R
D : ‖y − x‖ < r} the Euclidean
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D-dimensional ball of center x and radius r . Then there exist positive constants r0
and C such that for any integer N there exists a distribution of points {z j }N

j=1 ∈ M
such that

sup
r�r0,x∈M

∣∣∣∣∣∣
|M|

N

N∑
j=1

χB D(x,r)∩M
(
z j
)− ∣∣∣B D(x, r) ∩ M

∣∣∣
∣∣∣∣∣∣ � C N−1/2−1/2d

√
log N .

Notice that, by the Nash embedding theorem, every Riemannian manifold can be
isometrically embedded into some Euclidean space. In particular, if one takes as M
the d-dimensional unit sphere in R

d+1, then the sets Bd+1(x, r) ∩ M of the above
corollary coincide with the usual spherical caps, and one recovers Beck’s estimate for
the spherical cap discrepancy (see [4, Theorem 24D]).

Proof It is enough to show that the collection of subsets of the form B D(x, r) ∩ M
satisfies the two hypotheses of Theorem 8.5. By compactness, there exists a positive
number r0 such that for all 0 < r � r0 and for all x ∈ M, the set N = {y ∈ M :
‖x − y‖ = r} is a hypersurface of M with uniformly bounded (d − 1)-dimensional
volume. Furthermore, the measure of the set of points of M with geodesic distance
from N less than or equal to t is bounded above by

∫
N

∫ t

−t
| f (s, n)|ds dn,

where dn is the (d − 1)-dimensional volume form onN and f (s, n) is the (uniformly
bounded) Jacobian of the exponential map of the normal bundle onN inM (see [20]
for the details). Thus

ψM∩B D(x,r)(t) � ct,

and the first hypothesis of Theorem 8.5 holds with β = 1. Finally, as we mention
before, balls inRD satisfy the second hypotheses of the same theoremwith γ = D+1
([36, Chap. 5]). �

Acknowledgements The authors wish to thank Dmitriy Bilyk for several conversations concerning the
results on discrepancy contained in this paper.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics
and Optimization, 3rd edn. Wiley, Hoboken (2008)

2. Bandt, C., Baraki, G.: Metrically invariant measures on locally homogeneous spaces and hyperspaces.
Pac. J. Math. 121, 13–28 (1986)

3. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)
4. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge University Press, Cambridge (1987)
5. Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. Translated from the German and edited by L.

Boron, C. Christenson and B. Smith. BCS Associates (1987)
6. Brandolini, L., Colzani, L.: Decay of Fourier transforms and summability of eigenfunction expansions.

Ann. Sc. Norm. Super. Pisa Cl. Sci. 29, 611–638 (2000)

123



368 L. Brandolini et al.

7. Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and
distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13, 889–923 (2014)

8. Brandolini, L., Chen,W.W.L., Gigante, G., Travaglini, G.: Discrepancy for randomized Riemann sums.
Proc. Am. Math. Soc. 137, 3187–3196 (2009)

9. Brandolini, L., Colzani, L., Gigante,G., Travaglini, G.:On theKoksma–Hlawka inequality. J. Complex.
29, 158–172 (2013)

10. Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of
Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38, 397–445 (2013)

11. Brauchart, J.S., Dick, J., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Covering of spheres by
spherical caps and worst-case error for equal weight cubature in Sobolev spaces. J. Math. Anal. Appl.
431, 782–811 (2015)

12. Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx.
25, 41–71 (2007)

13. Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC design: optimal order quasi Monte
Carlo integration schemes on the sphere. Math. Comput. 83, 2821–2851 (2014)

14. Burkholder, D.: Sharp inequalities for martingales and stochastic integrals. Astérisque 157–158, 75–94
(1988)

15. Chen, W.W.L.: On irregularities of distribution. III. J. Aust. Math. Soc. 60, 228–244 (1996)
16. Chen, W.W.L., Travaglini, G.: Deterministic and probabilistic discrepancies. Ark. Mat. 47, 273–293

(2009)
17. Chow, Y.S., Teicher, H.: Probability Theory. Independence, Interchangeability, Martingales. Springer,

Berlin (1988)
18. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. CBMS

Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI (1991)

19. Gigante,G., Leopardi, P.:Diameter bounded equalmeasure partitions ofAhlfors regularmetricmeasure
spaces. Discret. Comput. Geom. 57, 419–430 (2017)

20. Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for
submanifolds. Ann. Sci. Ecole Norm. Sup. (4) 11, 451–470 (1978)

21. Haagerup, U.: The best constant in the Khintchine inequality. Studia Math. 70, 231–283 (1981)
22. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)
23. Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimension. Numer.

Math. 103, 413–433 (2006)
24. Hesse,K.,Mhaskar,H.M., Sloan, I.H.:Quadrature inBesov spaces on theEuclidean sphere. J.Complex.

23, 528–552 (2007)
25. Hesse, K., Sloan, I.H.: Worst-case errors in a Sobolev space setting for cubature over the sphere S2.

Bull. Aust. Math. Soc. 71, 81–105 (2005)
26. Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere S2. J. Complex. 21,

790–803 (2005)
27. Hesse, K., Sloan, I.H.: Cubature over the sphere S2 in Sobolev spaces of arbitrary order. J. Approx.

Theory 141, 118–133 (2006)
28. Hoffmann, L.M.: Measures on the space of convex bodies. Adv. Geom. 10, 477–486 (2010)
29. Hu, J., Zähle, M.: Generalized Bessel and Riesz potentials on metric measure spaces. Potential Anal.

30, 315–340 (2009)
30. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterization of Besov and Triebel Lizorkin spaces and

quasiconformal mappings. Adv. Math. 226, 3579–3621 (2011)
31. Kushpel, A.: Optimal cubature formulas on compact homogeneous manifolds. J. Funct. Anal. 257,

1621–1629 (2009)
32. Leopardi, P.: Diameter bounds for equal area partitions of the unit sphere. Electron. Trans. Numer.

Anal. 35, 1–16 (2009)
33. Maggioni, M., Mhaskar, H.N.: Diffusion polynomial frames on metric measure spaces. Appl. Comput.

Harmon. Anal. 24, 329–353 (2008)
34. Marcinkiewicz, J., Zygmund, A.: Sur les fonctions indépendantes. Fund. Math. 29, 60–90 (1937)
35. Marcinkiewicz, J., Zygmund, A.: Quelques théorèmes sur les fonctions indépendantes. Studia Math.

7, 104–120 (1938)
36. Matoušek, J.: Geometric discrepancy. An illustrated guide. Revised paperback reprint of the 1999

original. Algorithms and Combinatorics, 18. Springe, Berlin (2010)

123



Discrepancy and Numerical Integration 369

37. Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund
operators on nonhomogeneous spaces. Int. Math. Res. Not. 9, 463–487 (1998)

38. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett.
1(6), 647–662 (1994)

39. Reznikov, A., Saff, E.B.: The covering radius of randomly distributed points on a manifold. Int. Math.
Res. Not. IMRN 19, 6065–6094 (2016)

40. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147 (1972)
41. Schmidt, W.M.: Irregularities of distribution IX. Acta Arith. 27, 385–396 (1975)
42. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Second Expanded Edition (Encyclo-

pedia of Mathematics and its Applications). Cambridge University Press, Cambridge (2014)
43. Skriganov, M.M.: Point distributions in compact metric spaces. Mathematika 63, 1152–1171 (2017)
44. Skriganov, M.M.: Point distributions in compact metric spaces, II. arXiv:1701.04007
45. Skriganov, M.M.: Point distribution in compact metric spaces, III. Two-point homogeneous spaces.

arXiv:1701.04545
46. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University

Press, Princeton (1970)
47. Strichartz, R.S.: Analysis on fractals. Not. Am. Math. Soc. 46(10), 1199–1208 (1999)
48. Strichartz, R.S., Usher,M.: Splines on fractals. Math. Proc. Camb. Philos. Soc. 129(2), 331–360 (2000)

123

http://arxiv.org/abs/1701.04007
http://arxiv.org/abs/1701.04545

	Discrepancy and Numerical Integration on Metric Measure Spaces
	Abstract
	1 Introduction
	2 Sobolev Spaces and Potentials on Measure Spaces
	3 Besov and Triebel–Lizorkin Spaces on Metric Measure Spaces
	4 The Marcinkiewicz–Zygmund Inequality
	5 Diameter Bounded Equal Measure Partition of Metric Measure Spaces
	6  Numerical Integration in Potential Spaces
	7  Numerical Integration in Besov Spaces
	8  Discrepancy
	Acknowledgements
	References




