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Abstract Let (�, g) be a compact, real-analytic Riemannian manifold with real-
analytic boundary ∂�. The harmonic extensions of the boundary Dirichlet-to-
Neumann eigenfunctions are called Steklov eigenfunctions. We show that the Steklov
eigenfunctions decay exponentially into the interior in terms of the Dirichlet-to-
Neumann eigenvalues and give a sharp rate of decay to first order at the boundary. The
proof uses the Poisson representation for the Steklov eigenfunctions combined with
sharp h-microlocal concentration estimates for the boundary Dirichlet-to-Neumann
eigenfunctions near the cosphere bundle S∗∂�. These estimates follow from sharp
estimates on the concentration of the FBI transforms of solutions to analytic pseudod-
ifferential equations Pu = 0 near the characteristic set {σ(P) = 0}.

Keywords Steklov eigenfunctions · FBI transform · Analytic microlocal analysis ·
Exponential weighted estimates
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1 Introduction

Let (�, g) be an n-dimensional, compact C∞ Riemannian manifold with boundary
M and corresponding unit exterior normal ν. By some abuse of notation, we also let ν
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denote a smooth vector field extension and γM : C0(�) → C0(M) be the boundary
restriction map. LetD : C∞(M) → C∞(M) be the associated Dirichlet-to-Neumann
(DtN) operator defined by

D f := γM∂νu, (1.1)

where u solves the Dirichlet problem

�gu(x) = 0, x ∈ �,

u(q) = f (q), q ∈ M. (1.2)

TheoperatorD is an elliptic, first-order, self-adjoint pseudodifferential operator (see
for example [21, Section 7.11])with an L2-normalized basis of eigenfunctionsϕ j ; j =
1, 2, .... It is useful here to work in the semiclassical setting from the outset. Choosing
h−1 ∈ SpecD, the corresponding eigenfunction ϕh then satisfies the semiclassical
eigenfunction equation

hDϕh = ϕh .

The harmonic extension, uh ∈ C∞(�), of a DtN eigenfunction ϕh is called a Steklov
eigenfunction.

There has been a substantial amount of recent work devoted to the study of the
asymptotic behavior of theDtN eigenvalues and bothDtN and Steklov eigenfunctions,
including the asymptotics of eigenfunction nodal sets (see for example [1,3,4,6,15,
16,20,26–28] and references therein).

For large eigenvalues, Steklov eigenfunctions possess both high oscillation inher-
ited from the boundary DtN eigenfunctions and very sharp decay into the interior of
�. As a consequence, even though Steklov eigenfunctions decay rapidly, the oscil-
lation implies, in particular, that the nodal sets have intricate structure. It has been
conjectured [3] that the analogue of Yau’s conjecture [23,24] for nodal volumes holds
in the Steklov case. This was recently proved for real-analytic Riemann surfaces in
[15].

The question of decay of Steklov eigenfunctions into the interior ofM when (M, g)
is real analytic was first raised by Hislop–Lutzer [6] where they conjecture that the
Steklov eigenfunctions decay into the interior as e−d(x,∂�)/h . In the special case where
dim � = 2 exponential decay with respect to d(x, ∂�) was indeed proved in [15] and
the eigenfunction decay is a key feature in their main results on nodal length. However,
the analysis in [15] relies heavily on the assumption that the dimension equals two.

In Theorem 1, we prove an exponential decay result for Steklov eigenfunctions for
general real-analytic metrics in arbitrary dimension that is sharp to first order at the
boundary, ∂� = M , and we bound the quadratic error in the decay rate in terms of
boundary curvature. In particular, we prove the conjecture due to Hislop–Lutzer [6].

One can heuristically view such exponential decay estimates for the Steklov eigen-
functions as describing the ‘tunnelling’ of the boundary DtN eigenfunctions on M into
the interior of the manifold �. In the Schrödinger case P(h) = −h2�g +V − E , one
thinks of eigenfunctions as tunnelling from V ≤ E into the forbidden region V > E .
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144 J. Galkowski, J. A. Toth

Since the interior eigenfunctions are harmonic, this decay is somewhat more subtle
in the case of Steklov eigenfunctions. The boundary data ϕh concentrate microlocally
on the cosphere bundle of the boundary, S∗∂�, while the fact that −h2�guh = 0
implies that uh must concentrate at the zero section {(x, ξ) ∈ T ∗�; ξ = 0}. Thus,
we think of uh as tunnelling from boundary values with |ξ |g = 1 to the interior where
ξ = 0. For this reason, it is reasonable to view the decay estimates in Theorem 1
as a natural analogue of the well-known Agmon–Lithner estimates (see for example
[7]) for Schrödinger eigenfunctions in classically forbidden regions. We note that the
assumption that (�, g) isCω is necessary in Theorem 1 below because real-analyticity
allows for accuracy up to exponential errors in h in the pseudodifferential calculus,
whereas in the C∞ case, one can only work to O(h∞)-error. In particular, one can
only microlocalize modulo such errors. Since Steklov eigenfunctions decay exponen-
tially in h in the interior of �, the usual C∞ semiclassical calculus of operators is not
accurate enough to deal with these functions in a rigorous fashion. Similarly, our sub-
sequent more general results in Theorems 2 and 3 hinge on the microlocal exponential
weighted estimate in Proposition 2.5 which also requires real-analyticity to effectively
control error terms.

Theorem 1 Let (�n+1, g) be a compact, real-analytic (Cω) Riemannian manifold
with Cω boundary ∂� andD : C∞(∂�) → C∞(∂�) be the associated DtN operator.
Then for all δ > 0 there exist 0 < ε0 = ε0(�

n, g, δ) such that for ϕh ∈ Cω(∂�) with

(hD − 1)ϕh = 0, ‖ϕh‖L2(∂�) = 1,

the harmonic extension uh(x) satisfies the exponential decay estimate

|∂α
x uh(x)| ≤ Cα,δh

− n
2+ 1

4−|α| exp
(

− d(x)/h
)
, d∂�(x) < ε0, (1.3)

where Cα,δ > 0 is a constant independent of h. In (1.3),

d(x) = d∂�(x) + (C�,g − δ)d2∂�(x),

where d∂�(x) is the Riemannian distance to the boundary and

C�,g = −3

2
+ 1

2
inf

(x ′,ξ ′)∈S∗∂�
Q(x ′, ξ ′). (1.4)

Here Q(x ′, ξ ′) is the symbol of the second fundamental form of the boundary ∂�.

Remark 1.1 The estimate (1.3) is only valid in a small collar neighborhood of ∂� and
indeed, since C�,g may be negative, the rate function d(x) may cease to give expo-
nential decay outside a collar neighborhood of ∂�. However, the maximum principle
for the Laplace equation on �ε = {x ∈ � | d∂�(x) > ε} together with Theorem 1
also implies that for any ε > 0, there exists C, c > 0 so that

|uh(x)| ≤ Ce−c/h, d∂�(x) > ε.
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Pointwise Bounds for Steklov Eigenfunctions 145

Unfortunately, we lose control of the rate function outside a small collar neighborhood
of the boundary.

We will see by examining the case of � = B(0, R) ⊂ R
2 that the rate of decay in

(1.3) is optimal to first order at the boundary. We do not expect to be able to obtain
the optimal second order estimate since we are forced to throw away some of the
oscillations in u when we apply the Cauchy–Schwarz inequality in (1.22), however,
the behavior with respect to Q is optimal as we will see from several examples.

We point out that the estimate in Theorem 1 holds without change if one takes the
ϕh to be L2-normalized Laplace eigenfunctions on the boundary. Indeed, the bound
in Theorem 1 can be adapted to the case of harmonic extensions of eigenfunctions of
general elliptic, analytic, self-adjoint h-pseudodifferential operators on M . However,
the bounds are somewhat cumbersome to state and we do not pursue this here.

It is worth noting that the proof of Theorem 1 is microlocal and thus the constant
C�,g can be made to depend on the nearest point in ∂�. In particular, let (x ′, xn+1)

be Fermi normal coordinates in a collar neighborhood of ∂� so that xn+1 = d∂�(x).
Then the estimate (1.3) holds with d(x) replaced by

d̃(x) = xn+1 + (a�,g(x
′) − δ)x2n+1,

where

a�,g(x
′) = −3

2
+ 1

2
inf

p∈S∗
x ′∂�

Q(p).

1.1 Examples of Steklov Eigenfunctions: Sharpness of d(x) to First Order

We now examine a few examples to illustrate the results of Theorem 1.

1.1.1 The Disk

Let � = B(0, R) ⊂ R
2. Then the Steklov eigenvalues are precisely σ = 0, 1

R , 2
R . . .

with corresponding Steklov eigenfunctions given by

u±
k = 1√

2πRRn
rke±ikθ , σ = k

R
. (1.5)

In particular, letting h = σ−1 = k−1R,

u±
k = 1√

2πR
e[R log(1−(R−r)/R))]/heiθ/h .

Therefore, in this case

d(x) = −R log(1 − d∂�(x)/R) =
∞∑
j=1

[d∂�(x)] j
j R j−1 .
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146 J. Galkowski, J. A. Toth

This shows that to first order, the results of Theorem 1 are sharp. Moreover, notice
that the second fundamental form of ∂B(0, R) is given by R−1 and thus, for the disk,
the optimal quadratic term is

1

2
inf

p∈S∗∂�
Q(p)[d∂�(x)]2 (1.6)

hence, modulo the 3
2 in (1.4), the constant C�,g sharp. In particular, as the curvature

of the boundary increases, the decay into the interior becomes more rapid.
The case of spheres in higher dimensions is nearly identical if we replace e±inθ by

a spherical harmonic.

1.1.2 Cylinders

Let (M, g) be a real-analytic manifold of dimension n without boundary and � =
(−1, 1)t × Mx with metric dt2 + g(x). Then

�� = ∂2t + �M .

Let ϕk be an orthonormal basis for L2(M) with

(−�M − λ2k)ϕk = 0.

Then the Steklov eigenfunctions are given by

uh(t, x) = cosh(λk t)

cosh(λk)
ϕk(x), vh(x, t) = sinh(λk t)

sinh(λk)
ϕk(x)

with Steklov eigenvalues σk = λk tanh(λk) and σ ′
k = λk coth(λk) respectively. Notice

that for λk � 1,

cosh(x) = 1

2
e|x | + O(e−|x |), sinh(x) = sgn(x)

2
e|x | + O(e−|x |).

In particular, near |t | = 1,

|uh(t, x)| = (e−λk (1−|t |) + O(e−λk ))|ϕk(x)|.

Then, notice that

σk = λk(1 + O(e−λk )).

So, using Hörmander’s L∞ bounds (see e.g., [29, Chapter 7]) we have the estimate

|uh(t, x)| = (e−σk (1−|t |) + O(e−σk ))|ϕk(x)| ≤ Cσ
n−1
2

k e−σk (1−|t |).
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Pointwise Bounds for Steklov Eigenfunctions 147

Indeed, it is not hard to construct examples (e.g., where M is the sphere) so that this
estimate is sharp. The analysis is similar for vh .

In particular, the best possible decay rate is given by

d(x) = d∂�(x)

and we again see that the first-order term in Theorem 1 is sharp and that the quadratic
term is given by (1.6) since in this case the second fundamental form is 0.

1.1.3 The Annulus

Now, consider B(0, 1)\B(0, r0) ⊂ R
2. Then a simple computation shows that the

Steklov eigenvalues are the roots, of

pk(σ ) = σ 2 − σk

(
1 + r0
r0

) (
1 + r2k0
1 − r2k0

)
+ k2

r0
, k = 0, 1, . . .

with corresponding eigenfunctions

u±
σ (r, θ) = Ck,σ e

±inθ

(
rk + k − σ

k + σ
r−k

)
. (1.7)

It is easy to show that the roots of pn(σ ) have

σk,1 = k + O(kr2k0 ), σk,2 = k

r0
+ O(kr2k0 ).

Then,

u±
σk,1

= 1√
2π

e±ikθrk + O(e−cv), u±
σk,2

= 1√
2πr0

rk0r
−ke±ikθ + O(e−ck).

The case of uσk,1 is identical to that for the disk, so we focus on uσk,2 . Let h = σ−1
k,2 =

r0k−1 + O(e−ck). Then,

|u±
σk,2

(r, θ)| = 1√
2πr0

e−r0 log[1+(r−r0)/r0]/h(1 + O(e−c/h)).

Therefore, in this case

d(x) = −r0 log(1 + d∂�(x)/r0) = −
∞∑
j=1

[−d∂�(x)] j
jr j−1

0

.

This shows again that to first order, the results of Theorem 1 are sharp. Moreover,
notice that the second fundamental form of ∂� near ∂B(0, r0) is given by −r−1

0 and
thus, near this boundary component, the optimal quadratic term is again given by (1.6).
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148 J. Galkowski, J. A. Toth

1.2 Microlocal Estimates

It is clear from the approximate Poisson formula for uh(x) (see (3.1) below) that
the exponential eigenfunction decay in the interior � is closely related to the precise
rate of h-microlocal exponential decay of the boundary DtN eigenfunctions ϕh off
the cosphere bundle S∗∂� = {(y, η) ∈ T ∗∂�; |η|g = 1}. To derive the requisite
bounds, we prove weighted exponential h-microlocal estimates for the associated
wave packets T (h)ϕh where T (h) : C∞(∂�) → C∞(T ∗∂�) is a globally defined
FBI transform in the sense of [18]. Since these estimates seem of independent interest,
we prove them for a rather general class of analytic h-pseudodifferential operators.
An important consequence is the following exponential decay estimate for T (h)ϕh off
the characteristic variety when ϕh solves P(h)ϕh = O(e−c/h).

We recall that an operator P(h) ∈ Oph(S0,k) with principal symbol p(y, η) is said
to have simple characteristics provided dp �= 0 on the set {p = 0}. Moreover, p(y, η)

is classically elliptic if |p(y, η)| ≥ C ′〈η〉k for |η| ≥ C with constants C,C ′ > 0. Let
Sm,k
cla denote the class of classical analytic symbols (see Sect. 2).

Theorem 2 Let (Mn, g) be a compact, closed, real-analytic manifold and P(h) ∈
Oph(S

0,k
cla ) be an analytic, h-pseudodifferential operator with real, classically elliptic

principal symbol p(x, ξ) having simple characteristics. Suppose that

P(h)ϕh = OL2(e−c/h), ‖ϕh‖L2 = 1.

Let T (h) : C∞(M) → C∞(T ∗M) be a globally defined FBI transform as in (2.8)
associated with an h-ellptic symbol a ∈ S3n/4,n/4

cla and consider the weight function

ψ(x, ξ) = δ · p2(x, ξ)

〈ξ 〉2k .

Then, provided δ > 0 is a sufficiently small positive constant depending on (M, g),
it follows that for h ∈ (0, h0(δ)] with h0(δ) > 0 sufficiently small,

|eψ/hT (h)ϕh‖L2(T ∗M) = O(1). (1.8)

Themain technical ingredient needed for the proof of Theorem2 is given in Proposi-
tion 2.5; it is essentially the manifold analogue of the microlocal exponential weighted
estimates in R

n proved by Martinez [12,13] and Nakamura [14] (see also [22]). As a
direct application of Theorem 2, we prove the first-order exponential decay estimate
in Theorem 1 (1.3).

Remark 1.2 Although weaker than Theorem 2 (since no rate of decay is specified), we
point out that the following exponential decay estimate is an immediate consequence
of Theorem 2.

Corollary 1.3 For fixed ε0 > 0 consider the cutoff χε0(x, ξ) := χ
(
p(x,ξ)

ε0

)
. Then, for

any ϕh satisfying the assumptions in Theorem 2, there exists constant C(ε0) > 0 such
that for h ≤ h(ε0),
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Pointwise Bounds for Steklov Eigenfunctions 149

‖(1 − χε0)T (h)ϕh‖L2(∂�) = O(e−C(ε0)/h).

We also note that Corollary 1.3 also follows from a rather standard parametrix con-
struction for analytic h-pseudodifferential operators (see Sect. 2.2).

To prove Theorem 1 (1.4), one must estimate the constant C�,g in the rate function
d(x) = d∂�(x) − C�,gd2∂�(x). Unfortunately, the weighted L2 bound in Theorem 2
for Tϕh does not quite suffice for this since one needs an additional geometric bound
for the constant δ > 0. To achieve this, we must h-microlocally refine the bound in
Theorem 2. Global refinement of the decay estimate for T (h)ϕh by specifying sharp
constant δ > 0 in the Gaussian seems a rather intractable problem. However, with
Corollary 1.3 in hand, we see that away from the characteristic variety, T (h)ϕh is
exponentially small. Consequently, instead of attempting to refine the global estimate
in Theorem 2, we h-microlocalize to a small neighborhood of the characteristic variety
p−1(0). In order to exploit the real-analyticity of (M, g) and P(h), we choose the
neighborhood of M in T ∗M to be the Grauert tube complexification MC

τ ⊃ M,

which we assume throughout contains the characteristic variety, p−1(0). In addition,
for the subsequent estimates, it will be important to choose a specific h-microlocal
FBI transform Thol(h) : C∞(M) → C∞(MC

τ ) that is compatible with the complex
structure on MC

τ . In view of [10, Theorem 0.1], it is natural to choose Thol(h) to be
the holomorphic continuation of the heat kernel on (M, g) at time t = h

2 .

1.2.1 Motivating Example of FBI Transforms

Recall that the standard FBI transform on R
n is given by

TRn u(αx , αξ ) = 2− n
2 (πh)−

3n
4

∫
e− i

h 〈αx−y,αξ 〉− 1
2h |αx−y|2u(y)dy. (1.9)

We will introduce two globally defined FBI transforms below, Thol and Tgeo. In the
case of R

n , these two FBI transforms agree and are given by (1.9). That is, on R
n ,

Thol(αx − iαξ ) = Tgeo(αx , αξ ) = TRn (αx , αξ ).

Before formally stating our next result, we give some motivation. Consider the
simple example of the circle R/2πZ with a flat metric g = dx2. That is, consider
the boundary for the examples in Sects. 1.1.1 and 1.1.3. The functions ϕh(x) = eix/h

appearing in (1.5) and (1.7) satisfy (hDx −1)ϕh = 0. In this case, the complexification
is

C/2πZ = {αx + iαξ ;αx + 2π ≡ αx } ∼= T ∗(R/2πZ).

We compute Tholϕh by extending ϕh smoothly to R as a solution of (hDx − 1)ϕh = 0
or using the definition of Thol in (1.12). Then,

Tholϕh(αx − iαξ ) = h−1/4e− 1
2h α2

ξ − 1
2h ei(αx−iαξ )/h = h−1/4eiαx/he− 1

2h (αξ −1)2 .
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150 J. Galkowski, J. A. Toth

In particular, with ψhol(α) = 1
2 (αξ − 1)2,

eψhol/hTholϕh = h−1/4eiαx/h .

Thus, for any γ < 1,

c ≤ ‖e γψhol
h Tholϕh‖L2(T ∗S1) ≤ C. (1.10)

We note that (1.10) is consistent with Theorem 2. However, it is useful to observe that
with the precise weight function ψhol = 1

2 (αξ − 1)2 (with γ = 1),

‖e ψhol
h Tholϕh‖L∞(T ∗S1) = h−1/4. (1.11)

Thus, with the optimal weight function ψhol , one has a polynomial gain of h−1/4 in
the weighted L2 mass. The computations for eigenfunctions on higher-dimensional
flat tori R

n/Z
n are very similar.

To state the h-microlocal refinement of Theorem 2, we let M be a compact, closed,
real-analytic manifold of dimensionm and M̃ denote a Grauert tube complex thicken-
ing of M with M a totally real submanifold. By Bruhat-Whitney, M̃ can be identified
with MC

τ := {(αx , αξ ) ∈ T ∗M;√
2ρ(αx , αξ ) ≤ τ } where

√
2ρ = |αξ |g is the

exhaustion function using the complex geodesic exponential map κ : MC
τ → M̃ with

κ(α) = expαx
(iαξ ).

Remark 1.4 We use the notation α rather than (x, ξ) because it is useful to think of
α ∈ M̃ at some times and α ∈ T ∗M at other times where we identify M̃ as a subset
of T ∗M .

By possibly rescaling the semiclassical parameter h we assume without loss of
generality that the characteristic manifold

p−1(0) ⊂ MC
τ .

Now, let eh�g/2 have Schwartz kernel E(x, y, h) and EC(α, y, h) denote the holo-
morphic continuation of E(x, y, h) to MC

τ in the outgoing x-variables. It is proved in
[10] Theorem 0.1 (see also Sect. 2) that the operator given by

Thol(h)u(α) := h−n/4e−ρ(α)

∫

M
EC(α, y, h)u(y)dy (1.12)

is an L2-normalized, h-microlocal FBI transform defined for α ∈ M̃ .

Theorem 3 Under the same assumptions as in Theorem 2 and with T = Thol is as in
(1.12), there exists ε > 0 small enough so that with γ < 1/2,
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Pointwise Bounds for Steklov Eigenfunctions 151

‖eγ a0 p2/hThol(h)ϕh‖L2({|p|≤ε}) = O(1), a0 = 1

2|dp|2gs
(1.13)

where gs is the Sasaki metric on T M (see for example [2, Chapter 9]).
Moreover, there exists ψhol ∈ C∞(MC

τ ) with

ψhol(α) = p2(α)
(
a0(α) + O(p(α))

)
,

where a0 is given in (1.13) such that for ε > 0 sufficiently small,

‖eψhol/hThol(h)ϕh‖L2({|p|≤ε}) = O(h−1/4). (1.14)

We note that the example of the Laplace eigenfunctions on the circle (see (1.10)
and (1.11) above), shows that the upper bound in Theorem 3 (1.14) is sharp.

Remark 1.5 We use (1.13) instead of (1.14) in the proof of Theorem 1. Using (1.14)
results in better estimates as soon as d(x) � ch log h−1, but for simplicity and since
the function d(x) that we obtain is still not sharp, we do not state these estimates here.

1.3 Sketch of the Proof of Theorem 1

Let P : C∞(∂�) → C∞(�) be the Poisson operator for the boundary value problem
in (1.2), so that uh(x) = Pϕh(x). The first step in the proof of Theorem 1 amounts
to understanding the microlocal structure of the Poisson operator, P following the
analysis in [19].

1.3.1 Microlocal Analysis of the Poisson Operator

In view of [19, Section 3] and the fact that ϕh is microlocally supported away from
the zero section one can write

uh(x) = Pϕh(x) = U (h)ϕh(x) + O(e−C/h), (1.15)

where U (h) : C∞(∂�) → C∞(�) is a semiclassical, complex-phase h-Fourier
integral operator supported near diagonal. In terms of Fermi coordinates (xn+1, x ′) in
a collar neighborhood U = {(x ′, xn+1); xn+1 ≥ 0} of ∂� = {xn+1 = 0}, U (h) has
Schwartz kernel

K (x, y′, h) = (2πh)−n
∫

Rn
ei〈x ′−y′,ξ ′〉/h e−�(xn+1,x ′,ξ ′)/h

a(x, y′, ξ ′, h) χ(x ′ − y′) dξ ′. (1.16)

Here,

�(xn+1, x
′, ξ ′) = xn+1|ξ ′|x ′ + x2n+1(Q(x ′, ξ ′) + i

〈
∂x ′ |ξ ′|x ′, ξ ′〉

x ′)

2|ξ ′|x ′
+ O(x3n+1|ξ ′|x ′)
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152 J. Galkowski, J. A. Toth

satisfies a complex eikonal equation (3.3) and a(x, y′, ξ ′, h) is a semiclassical analytic
symbol as in (2.3). Note that the error is exponentially decreasing since we work in
the analytic setting.

In the Euclidean case, we note that one can derive the semiclassical Poisson formula
(1.15) in an elementary fashion directly from the potential layer formulas using residue
computations. For the benefit of the reader, we outline the argument here. Let� ⊂ R

n

be a bounded Euclidean domain with real-analytic boundary ∂�. Let G(z, z′) ∈
D′(Rn × R

n) be the free Green’s functions with �z′G(z, z′) = δ(z − z′). From
Green’s formula and the DtN eigenfunction condition, one gets

uh(z) = h−1
∫

∂�

G(z, z′)ϕh(z
′)dσ(z′) −

∫

∂�

N (z, z′)ϕh(z
′)dσ(z′). (1.17)

with N (z, z′) = ∂ν(z′)G(z, z′), (z, z′) ∈ R
n+1 × ∂�. Writing G(z, z′) and N (z, z′)

as Fourier integrals and rescaling the frequency variables ξ → h−1ξ one rewrites
(1.18) in the form

uh(z) = (2πh)−(n+1)h
∫

Rn+1

∫

∂�

ei〈z−z′,ξ〉/h(|ξ |2 + i0)−1 ϕh(z
′)dσ(z′)dξ

+ i(2πh)−(n+1)h
∫

Rn+1

∫

∂�

ei〈z−z′,ξ〉/h〈ν(z′), ξ 〉(|ξ |2 + i0)−1ϕh(z
′)dσ(z′)dξ.

(1.18)

Let χ ∈ C∞
0 (R) with χ = 1 near the origin and supp χ ⊂ [−ε0, ε0]. We note that

by making a change a change of contour ξ �→ ξ + iδξ in (1.18) with 0 < δ < 1 one
can insert a spatial cutoffχ(|z−z′|) in both integrals modulo an O(e−C/h) error. Next,
we introduce convenient coordinates in a tubular neighborhood U∂� of the boundary.
Given a local Cω parameterization of the boundary q : U → ∂� with U ⊂ R

n open,
we write locally

z = q(x ′) + xn+1ν(x ′) and z′ = q(y′)

By choosing ε0 > 0 sufficiently small, we can assume that z and z′ lie in the same
local coordinate chart. In terms of these new coordinates, one can rewrite the phase
function

〈z − z′, ξ 〉 = 〈q(x ′) − q(y′), ξ 〉 + xn+1〈ν(x ′), ξ 〉
= 〈x ′ − y′, dqt (x ′, y′)ξ 〉 + xn+1〈ν(x ′), ξ 〉.

We make the affine change of variables in (1.18) given by ξ �→ (η′, ηn+1) where

ηn+1 = 〈ν(x ′), ξ 〉, η′ = dqt (x ′, y′)ξ

Then, for x = (x ′, xn+1) ∈ U∂�, using the fact that the DtN eigenfunctions are
h-microlocally O(e−C/h) near the zero section η′ = 0 (see Proposition 4.6), one can
write
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uh(x) + O(e−C(ε)/h)

= (2πh)−(n+1)h
∫

|η′|>ε

∫

∂�

ei〈x ′−y′,η′〉/heixn+1ηn+1/h b(x, y′, η)χ(x ′ − y′)ϕh

(y′)dy′dηn+1dη
′, (1.19)

where b(x, y′, η) = (1 + iηn+1)(η
2
n+1 + |η′|2x + i0)−1a(x ′, y′).

For η′ �= 0, a residue computation gives
∫
R
eixn+1ηn+1/h(η2n+1 + |η′|x +

i0)−1dηn+1 = πe−xn+1|η′ |x /h

|η′|x and similarily,
∫
R
eixn+1ηn+1/hηn+1(η

2
n+1 + |η′|x +

i0)−1dηn+1 = πe−xn+1|η′|x/h . Substitution of these integral formulas in (1.19) gives
modulo O(e−C(ε)/h) error,

uh(x) = (2πh)−n
∫

|η′|>ε

∫

∂�

ei〈x ′−y′,η′〉/he−xn+1|η′|x/h |η′|−1
x a(x ′, y′)

× (1 + i |η′|−1
x )ϕλ(y

′)dy′dη′.

This is consistent with the general formula in (1.16).

1.3.2 Microlocal Lift of the Poisson Representation (1.15)

Given the representation of uh in (1.15) in terms of semiclassical, complex-phase h-
Fourier integral operator U (h) : C∞(∂�) → C∞(�), the key idea in the proof of
Theorem 1 is to lift (1.15) to the cotangent bundle of the boundary T ∗∂� and then
apply the weighted estimate in Theorem 2 to give the first-order approximation for
the Steklov decay rate function d(x) in Theorem 1 (1.3). The quadratic term in d(x)
is then bounded from above to prove Theorem 1 (1.4) using the refined h-microlocal
weighted estimates in Theorem 3.

Roughly speaking,we do this as follows:Viewing x ∈ � as parameters,we consider
the family of functions Kx,h ∈ C∞(∂�) with

Kx,h(y
′) := K (x, y′, h).

Then, (1.15) can be written in the form

uh(x) = 〈Kx,h, ϕh〉L2(∂�) + O(e−C/h). (1.20)

To lift (1.20) we let T (h) : C∞(∂�) → C∞(T ∗∂�) be an FBI transform in the
sense of Sjöstrand [18] and S(h) : C∞(T ∗∂�) → C∞(∂�) be a left-parametrix with

S(h)T (h) = I + R(h),

and R(h) exponentially small in the sense that

|∂α
x ∂β

y R(x, y)| = Oα,β(e−C/h).
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Given the weight function ψ ∈ C∞(T ∗∂�) in Theorem 2, one can write

uh(x) = 〈e−ψ/h S(h)t Kx,h, eψ/hT (h)ϕh〉L2(T ∗∂�) + O(e−C/h). (1.21)

Using the bound

‖eψ/hT (h)ϕh‖L2(T ∗M) = O(1)

in Theorem 2 and applying Cauchy–Schwarz in (1.21) one gets

|uh(x)| = O(1) ‖e−ψ/h S(h)t Kx,h‖L2(T ∗∂�) + O(e−C/h). (1.22)

Finally, a direct analysis of the first term on the RHS of (1.22) using the method of
analytic stationary phase yields the bounds (1.3) and (1.4) in Theorem 1. We refer to
Sect. 3 for a detailed proof of Theorem 1 using the weighted bounds in Theorems 2
and 3.

Remark 1.6 Both Theorems 2 and 3 have other applications to eigenfunction bounds,
including the problem of obtaining geometric rates of decay for eigenfunctions in sub-
domains of configuration spaceM that correspond to classically forbidden regions that
are geometrically more refined than the classical Agmon–Lithner estimates. Specific
examples include (but are not limited to) joint eigenfunctions for quantum completely
integrable (QCI) eigenfunctions. We hope to return to this elsewhere.

1.4 Outline of the Paper

In Sect. 2 we discuss the eigenfunction mass microlocalization results for the eigen-
functions ϕh . The long range exponential decay estimates are proved in Proposition
2.3 and the short-range exponential weighted estimates near the characteristic variety
(and inside the Grauert tube MC

τ ) are proved in Proposition 2.5. These estimates are
combined to prove Theorem 2 in Sect. 2.6. The h-microlocally refined weighted esti-
mates for Thol(h)ϕh along with the proof of Theorem 3 are taken up in Sect. 2.7. In
Sect. 3, the exponential weighted estimates in Sects. 2.6 and 2.7 are used to prove the
decay estimates in Theorem 1 for the Steklov eigenfunctions. In Sect. 4, we prove the
necessary h-microlocal exponential decay estimates for the Steklov eigenfunctions
near the zero section of T ∗∂�. This is necessary since the semiclassical DtN opera-
tor hD : C∞(∂�) → C∞(∂�) fails to be an h-analytic pseudodifferential operator
microlocally near the zero section.

2 Eigenfunction Mass Microlocalization

Let M be a compact, closed, real-analytic manifold of dimension m and M̃ denote a
Grauert tube complex thickening of M with M a totally real submanifold. By Bruhat-
Whitney, M̃ can be identifiedwithMC

τ := {(αx , αξ ) ∈ T ∗M;√
ρ(αx , αξ ) ≤ τ }where√

2ρ = |αξ |g is the exhaustion function MC
τ , where we identify M̃ with MC

τ using
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the complexified geodesic exponential map κ : MC
τ → M̃ with κ(α) = expαx ,C

(iαξ )

Viewed on M̃ , the function
√

ρ(α) = −i
2
√
2
rC(α, ᾱ), which satisfies homogeneous

Monge–Ampere and its level sets exhaust the complex thickening M̃ (see Remark 2.6
and [5] for further details).

The example of the round sphere To illustrate these basic complex analytic entities,
we consider the case of the n-dimensional round sphere

M = {(x1, ..., xn+1) ∈ R
n+1; x21 + · · · + x2n+1 = 1} ⊂ R

n+1.

The complexification of M is the quadric

M̃ = {(z1, ..., zn+1) ∈ C
n+1; z21 + · · · z2n+1 = 1}

= {(x, ξ) ∈ R
2(n+1); |x |2 − |ξ |2 = 1, 〈x, ξ 〉 = 0}. (2.1)

The Riemannian exponential map written in terms of affine ambient coordinates on
R
n+1 is

expx (ξ) = cos(|ξ |)x + (sin |ξ |) ξ

|ξ | ,

where ξ ∈ TxM , so ξ ∈ R
n+1 is orthogonal to x . The complexification of expx (ξ) is

then given by

expx,C(iξ) = (cosh |ξ |)x + i(sinh |ξ |) ξ

|ξ | .

The distance function r(x, y) = 2 sin−1
( |x−y|

2

)
complexifies to

rC(z, w) = 2 sin−1
(√

(z − w)2

2

)

and the associated exhaustion function on the complexification is

−i

2
√
2
rC(z, z̄) = 1√

2
sinh−1(|Im z|), z ∈ M̃ .

Pulling rC(z, z̄) back to T ∗
S
2 via the complexified exponential map gives

√
ρ(z) = exp−1

x,C

(
− i

2
√
2
rC(z, z̄)

)
= |ξ |√

2
.

In terms of local coordinates α = (αx , αξ ) ∈ T ∗
S
2, this just gives

√
ρ(α) = 1√

2
|αξ |g.

Of course, the multiplicative factor of −i
2
√
2
above is just a computationally convenient

normalization that we choose to adopt here.
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By possibly rescaling the semiclassical parameter h we assume without loss of
generality that the characteristic manifold

p−1(0) ⊂ MC
τ .

We will also have to consider a complexification of T ∗M of the form

T̃ ∗M :=
{
α; |Im αx | < τ, |Im αξ | ≤ 1

C
〈αξ , 〉

}
(2.2)

where C � 1 is a sufficiently large constant and T ∗M ⊂ T̃ ∗M is then a totally real
submanifold.

We recall that a complex m-dimensional submanifold, �, of T̃ ∗M is said to be
I-Lagrangian if it is Lagrangian with respect to

Imω = Im (dαx ∧ dαξ ),

where ω = dαx ∧ dαξ is the complex symplectic form on T̃ ∗M .
Let U ⊂ T ∗M be open. Following [18], we say that a ∈ Sm,k

cla (U ) provided a ∼
h−m(a0 + ha1 + . . . ) in the sense that

∂ l1x ∂
l2
ξ ∂(x,ξ)a = Ol1,l2(1)e

−〈ξ〉/Ch, (x, ξ) ∈ U,∣∣∣a − h−m
∑

0≤ j≤〈ξ〉/C0h

h ja j

∣∣∣ = O(1)e−〈ξ〉/C1h,

|a j | ≤ C0C
j j ! 〈ξ 〉k− j , (x, ξ) ∈ U.

(2.3)

We sometimes write Sm,k
cla = Sm,k

cla (T ∗M).
Following [19], we also define the notion of a homogeneous analytic symbol of

order k and write a ∈ Skha provided that there exist holomorphic functions ak on a
fixed complex conic neighborhood of T ∗M\{0} homogeneous of degree k in ξ so that
there exists C0 > 0 so that

∣∣∣∣ak− j

(
x,

ξ

|ξ |
)∣∣∣∣ ≤ C0

j+1 j j , j ≥ 0 (2.4)

and for every C1 > 0 large enough, there exists C2 > 0 so that

∣∣∣∣∣∣
a(x, ξ) −

∑
0≤ j≤|ξ |/C1

ak− j (x, ξ)

∣∣∣∣∣∣
≤ C2e

−|ξ |/C2 , |ξ | ≥ 1. (2.5)

We say that an operator A(h) is a semiclassical analytic pseudodifferential operator
of order m, k if its kernel can be written as A(x, y; h) = K1(x, y; h) + R1(x, y; h)

where for all α, β,

123



Pointwise Bounds for Steklov Eigenfunctions 157

|∂α
x ∂β

y R1(x, y; h)| ≤ Cαβe
−cαβ/h, cαβ > 0,

and

K1(x, y; h) = 1

(2πh)n

∫
e

i
h 〈x−y,ξ 〉a(x, ξ, h)χ(|x − y|)dξ,

where χ ∈ C∞
c (R) is 1 near 0 and a ∈ Sm,k

cla . We say A is h-elliptic if |a0(x, ξ)| >

ch−m〈ξ 〉k where a0 is from (2.3). Recall also that A is classically elliptic if there is
C > 0 so that if |ξ | > C , |a0(x, ξ)| > C−1h−m |ξ |k .

We say that an operator, B is a homogeneous analytic pseudodifferential operator of
order k if its kernel can be written as B(x, y) = K2(x, y) + R2(x, y) where R2(x, y)
is real analytic and

K2(x, y) = 1

(2π)n

∫
ei〈x−y,ξ 〉b(x, ξ)χ(|x − y|)dξ

for some b ∈ Skha .and χ ∈ C∞
c (R) is 1 near 0. We say B is elliptic if there exists c > 0

so that bk > c|ξ |k on |ξ | ≥ 1 where bk is from (2.4) and (2.5). For more details on
the calculus of analytic pseudodifferential operators, we refer the reader to [17].

As in [18], given an h-elliptic, semiclassical analytic symbol a ∈ S3n/4,n/4
cla (M ×

(0, h0]),we consider an intrinsic FBI transform T (h) : C∞(M) → C∞(T ∗M) of the
form

Tu(α; h) =
∫

M
eiϕ(α,y)/ha(α, y, h)χ(αx , y)u(y) dy (2.6)

with α = (αx , αξ ) ∈ T ∗M in the notation of [18].

Remark 2.1 The normalization a ∈ S3n/4,n/4
cla appears so that T is L2 bounded with

uniform bounds as h → 0 [18].

The phase function is required to satisfy ϕ(α, αx ) = 0, ∂yϕ(α, αx ) = −αξ and

Im (∂2yϕ)(α, αx ) ∼ |〈αξ 〉| Id .

Given T (h) : C∞(M) → C∞(T ∗M) it follows by an analytic stationary phase
argument [18] that one can construct an operator S(h) : C∞(T ∗M) → C∞(M) of
the form

Sv(x; h) =
∫

T ∗M
e−i ϕ(x,α)/hb(x, α, h)v(α) dα (2.7)

with b ∈ S3n/4,n/4
cla such S(h) is a left-parametrix for T (h) in the sense that

S(h)T (h) = Id+R(h), ∂α
x ∂β

y R(x, y, h) = Oα,β(e−C/h).
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We use two invariantly defined FBI transforms. The first transform Tgeo(h) :
C∞(M) → C∞(T ∗M) is defined using only the Riemannian structure of (M, g)
and has phase function

ϕ(α, y) = i exp−1
y (αx ) · αξ − 1

2
r2(αx , y)〈αξ 〉. (2.8)

Here, r(·, ·) is geodesic distance and χ(αx , y) = χ0(r(αx , y)) where χ0 : R → [0, 1]
is an even cutoff with supp χ0 ⊂ [−in j (M, g), in j (M, g)] and χ0(r) = 1 when
|r | < 1

2 in j (M, g).
The transform Tgeo(h)will be used to derive h-microlocal exponential decay outside

the Grauert tube MC
τ and far from the characteristic variety p−1(0). We will refer to

the corresponding estimates as long-range.
To estimate h-microlocal eigenfunctionmass inside theGrauert tubeMC

τ containing
p−1(0) we use instead another FBI -transform Thol(h) which is defined in terms of
the holomorphic continuation of the heat operator et�g at time t = h/2. We refer to
the corresponding estimates as short-range.

Before continuing, we briefly recall here some background on the operator Thol(h) :
C∞(M) → C∞(MC

τ ) and refer the reader to [10] for further details.

2.1 Complexified Heat Operator on Closed, Compact Manifolds

Consider the heat operator of (M, g) defined at time h/2 by

Eh = e
h
2�g : C∞(M) → C∞(M).

By a result of Zelditch [25, Section 11.1], the maximal geometric tube radius τmax
agrees with the maximal analytic tube radius in the sense that for all 0 < τ < τmax,
all the eigenfunctions ϕ j extend holomorphically to MC

τ (see also [10, Prop. 2.1]). In
particular, the kernel E(·, ·; h) admits a holomorphic extension to MC

τ × MC
τ for all

0 < τ < τmax and h ∈ (0, 1), [10, Prop. 2.4]. We denote the complexification by
EC

h (·, ·). To recall asymptotics for EC

h we note that the squared geodesic distance on
M

r2(·, ·) : M × M → R

holomorphically continues in both variables to Mτ × Mτ in a straightforward fashion.
More precisely, 0 < τ < τmax, there exists a connected open neighborhood �̃ ⊂ MC

τ ×
MC

τ of the diagonal � ⊂ M × M to which r2(·, ·) can be holomorphically extended
[10, Corollary 1.24]. We denote the holomorphic extension by r2

C
(·, ·). Moreover,

one can easily recover the exhaustion function
√

ρg(αz) from rC; indeed, ρg(αz) =
−r2

C
(αz, ᾱz) for all αz ∈ MC

τ .
To analyze the asymptotic behavior of EC

h (αz, y) with (αz, y) ∈ MC
τ ×M , we split

the kernel into two pieces where
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(i) the point (πMαz, y) ∈ M × M is close to the diagonal in terms of in j and the
Grauert tube radius τ ,

(ii) the point (πMαz, y) ∈ M × M is relatively far from the diagonal in terms of in j
and τ.

To control the behavior of the complexified heat kernel for a pair of points
(πMαz, y) ∈ M × M that are relatively close or far from the diagonal, we need
the following result [10].

Proposition 2.2 There exist 0 < τ0 ≤ τmax and positive constants β, δ0, h0 and C,
depending only on τ0 > 0, such that for 0 < τ ≤ τ0, 0 < δ ≤ δ0 and (αz, y) ∈
MC

τ × M, the following is true:

(i) When r(πMαz, y) < δ and h ∈ (0, h0],

EC

h (αz, y) = e− r2
C

(αz ,y)
2h aC(αz, y; h) + O(e−β/h). (2.9)

Here, aC(αz, y; h) is the polyhomogeneous sum

aC(αz, y; h) := (2πh)−n/2
∑

0≤k≤D/h

aCk (αz, y)h
k, (2.10)

where the aCk ’s denote the analytic continuation of the coefficients appearing in
the formal solution of the heat equation on (M, g)

(ii) There exists C > 0 so that when r(πMαz, y) > δ
2 and h ∈ (0, 1),

∣∣∣EC

h (αz, y)
∣∣∣ ≤ C e− δ2

Ch , (2.11)

where C is a positive constant depending only on (M, g).

From now on, we always carry out our analysis in the complex Grauert tubes MC
τ

with 0 < τ ≤ τ0, where in view of Proposition 2.2, we have good control of the
complexified heat kernel, EC

h (·, y) for y ∈ M .
For (αz, y) ∈ MC

τ × M with r(Re z, y) < ε with ε > 0 small, one can show that
the function y �→ −Re r2

C
(αz, y) attains a non-degenerate maximum at y = Re z.

The corresponding strictly plurisubharmonic weight is the square of the exhaustion
function given by

2ρ(α) = −Re r2
C
(αz,Re z) = −1

4
r2
C
(αz, ᾱz) = |αξ |2αx

,

where

αz = expαx
(−iαξ ).
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Using this observation and the expansion in Proposition 2.2 it is proved in [10,
Theorem 0.1] that the operator Thol(h) : C∞(M) → C∞(MC

τ ) given by

Tholϕh(α) = h−n/4
∫

M
e[−r2

C
(αz ,y)/2−ρ(αz)]/haC(αz, y, h)χ

(αx , y)ϕh(y)dy, α ∈ MC
τ (2.12)

is also an FBI transform in the sense of (2.6) with amplitude a ∈ Sm/2,0
cla and phase

function

ϕ(α, y) = i
( r2

C
(αz, y)

2
+ ρ(α)

)
. (2.13)

In (2.12) the multiplicative factor h−n/4 is added to ensure L2-normalization so
that
‖Tholϕh‖L2(MC

τ ) ≈ 1. The fact that the transform Thol is compatible with the complex

structure of the Grauert tube MC
τ will be used a crucial way in the proof of the h-

microlocal, short-range weighted L2 bounds in Proposition 2.5.
Since P(h) has simple characteristics and is classically elliptic p−1(0) is a compact,

real-analytic hypersurface and by assumption, p−1(0) ⊂ MC
τ .

2.2 Long-Range Estimates

Let p(α, h) ∼ ∑∞
j=0 p j (α)h j ∈ Sm be the full symbol of P(h) and assume that it lies

in S0,mcla (W )whereW is a neighborhood of (x0, ξ0). Here, ξ0 is allowed to be a point at
infinity in which case a neighborhood means a conic neighborhood of ξ0 near infinity.
We say p is elliptic at (x0, ξ0) if |p0| ≥ c 〈ξ 〉m > 0 in a neighborhood of (x0, ξ0).

Proposition 2.3 Suppose that P(h) is a semiclassical pseudodifferential operator
analytic in a neighborhood of (x0, ξ0) and elliptic at (x0, ξ0). Suppose that

P(h)ϕh = O(e−c/h), ‖ϕh‖L2 = 1.

Then, for any FBI transform T (h), there exists c > 0 andW a neighborhood of (x0, ξ0)
so that

‖T (h)ϕh‖L2(W ) = O(e−c/h).

Proof Let χ1 ∈ C∞
0 (T ∗M) so that χ1 ≡ 1 near (x0, ξ0) and p is elliptic and analytic

on suppχ1. Let T (h) be anFBI transformwith symbol r ∈ S3n/4,n/4
cla and phase function

ϕ. An application of analytic stationary phase [18] gives

χ1(α)T (h)P(h)ϕh = χ1(α)Tb(h)ϕh + O(e−C〈αξ 〉/h), (2.14)
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where

Tb(h)ϕh(α) =
∫

M
eiϕ(α,y)/hb(α, y, h)χ(|αx − y|)ϕh(y)dy,

with

b(α, y, h) =
Ch−1∑
j=0

p̃ j (y, α,−dyϕ(α, y))h j , p̃ j ∈ S3n/4− j,n/4+m− j
cla

p̃0(y, α, η) = r0(α, y)p0(y, η). (2.15)

Here, r0 is the principal symbol of r from (2.3). Since

−dyϕ(α, y) = αξ (1 + O(|αx − y|))

and |αx − y| < δ � 1 on supp χ(αx − y) it follows that p0(y,−dyϕ) is h-elliptic
near α = (x0, ξ0). In particular,

1

C
〈αξ 〉m ≤ |p0(y,−dyϕ(α, y))| ≤ C〈αξ 〉m, α near (x0, ξ0). (2.16)

Then, from (2.14) and the eigenfunction equation P(h)ϕh = O(e−c/h), it follows
that

‖χ1Tb(h)ϕh(α)‖L2 = O(e−C〈αξ 〉/h). (2.17)

We claim that (2.17) is independent of FBI transform; in particular,

‖χ1Tgeo(h)ϕh‖L2 = O(e−C/h). (2.18)

Since χ1(α)b(α, y, h) is h-elliptic near (x0, ξ0, x0), [18, Proposition 6.2] proves the
estimate. We review the proof here for the reader’s convenience. The operator given
by

Au(x) = h−3n/2
∫∫

exp

[
i

h

(
ϕ(α, x) − ϕ(α, y)

)]
b(α, y)χ1(α)

χ(|αx − y|)χ(|αx − x |)u(y)dydα

is an h-pseudodifferential operator with elliptic symbol near (x0, ξ0). So, for any
a(α, x), supported near (x0, ξ0, x0), we can find a classical analytic symbol, b̃ defined
near (x0, ξ0, x0) so that

A(b̃(α, ·)eiϕ/h) = a(α, x)eiϕ/h
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modulo exponential errors. In particular, for W a small enough neighborhood of
(x0, ξ0),

a(α, x)eiϕ/h =
∫

β∈W
b(β, x)eiϕ(β,x)/hK (α, β)dβ,

where

K (α, β) = h−3n/2
∫∫

exp

[
i

h

(
ϕ(α, y) − ϕ(β, y)

)]
b̃(α, y)dy.

By an application of analytic stationary phase,

K (α, β) = ei�(α,β)/hc(α, β; h)χ(αx − βx )χ(|αξ |−1|αξ − βξ |)
+ ON (e−C/h)max{|αξ |, |βξ |}−N ,

where Im�(α, β) ≥ |α − β|2, and c ∈ Sn,∞
cla .

In particular, we can write

χ2(α)Tgeo = Kχ1(α)Tb + R(h)

where K is tempered in h,

|∂α
x ∂β

y R(x, y, h)| = Oα,β(e−C/h), C > 0,

and χ1 ≡ 1 on suppχ2. Henceforward, we write χ2 � χ1 to denote this. Thus,

χ2Tgeoϕh = Kχ1Tbϕh + O(e−C/h) = O(e−C/h).

��

2.3 Short-Range Estimates

Let χin ∈ C∞
0 (MC

τ ; [0, 1]) and χ̃in ∈ C∞
0 (MC

τ ; [0, 1]) be a cutoff with χ̃in � χin .
To deal with the short-range case, using analytic stationary phase one constructs

an h-pseudodifferential intertwining operator Q(h) ∈ Oph(S0,∞(T ∗M)) that is h-
microlocally analytic on the Grauert tube MC

τ ⊂ T ∗M and satisfies

χinThol(h)P(h)ϕh = χin Q(h)Thol(h)ϕh + O(h∞)‖χ̃inThol(h)ϕh‖L2 + O(e−C/h).

(2.19)

To construct Q(h) in (2.19), using (2.14) we write

Thol(h)P(h)ϕh = Tb(h)ϕh + O(e−C/h),
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whereb ∈ S3n/4,n/4+m
cla (T ∗M) is givenby (2.15). Then, the symbolq(α, α∗; h) ∼h→0+∑∞

j=0 q j (α, α∗)h j of Q(h) is determined by solving the equations

q j (α, dαϕ(α, y)) = p̃ j (y, α,−dyϕ(α, y)); j = 0, 1, 2, 3, ...

p̃0(y, α, η) = r0(y, α)p0(y, η), (2.20)

where α∗ is the dual coordinate to α and p̃ j are determined as in (2.15). To solve for
the q j in (2.20), we first consider the complexified equations

qCj (α, dαϕC(α, y)) = p̃Cj (y,−dyϕ
C(α, y)); j = 0, 1, 2, 3, ... (2.21)

Let˜MC
τ be a complex extension of MC

τ . Here,
C denotes holomorphic continuation

to (α, y) ∈˜MC
τ × MC

τ with |αx − y| < ε0 and MC
τ = {α;√

ρ(α) ≤ τ } is identified
with the complex thickening M̃ . Since

∂αxϕ
C = −∂yϕ

C + O(|αx − y|) = αξ + O(|αx − y|),
∂αξ ϕ

C = αx − y + O(|αx − y|2), (2.22)

it follows that near αx = y, det ∂2y αξ
ϕ �= 0 and so by the holomorphic implicit

function theorem, dαξ ϕ(α, y) = w defines y = βC
x (α,w) with βC

x holomorphic in a
neighborhood of αx = y. Hence, restricting to real points (α, y) ∈ MC

τ × M with
|αx − y| < ε0, we can write

q j (α, α∗) = p̃ j (βx (α, α∗
ξ ),−dyϕ(α, βx (α, α∗

ξ )))

= p̃ j (βx (α, α∗
ξ ), βξ (α, α∗

ξ )); j = 0, 1, 2, ..., (2.23)

where βx and βξ are locally Cω.

Since p̃0 = p0, for the principal symbols one gets

q0(α, α∗) = p0(βx (α, α∗
ξ ), βξ (α, α∗

ξ )). (2.24)

It will be useful to introduce the principal symbol of conjugated operator eψ/hQ(h)

e−ψ/h given by

qψ
0 (α, α∗) := q0(α, α∗ + idαψ(α)). (2.25)

Now, ∂2y,αξ
ϕ|y=αx = − Id, and since ∂2yr(α, y)|y=αx = 2 Id, ∂2yϕ|y=αx = i Id.

Therefore, using also that

dαξ ϕ(α, y) = αx − y + O(|αx − y|2),

It follows from (2.22) that,

βx (α, α∗
ξ ) = αx − α∗

ξ + O(|α∗
ξ |2), βξ (α, α∗

ξ ) = αξ + iα∗
ξ + O(|α∗

ξ |2). (2.26)
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for (α, y) ∈ MC
τ × M with r(αx , y) < ε0. As an example, we note that in the R

n

case with standard phase function ϕ(α, y) = (αx − y)αξ + i
2 |αx − y|2, one has

βx = αx − α∗
ξ and βξ = αξ + iα∗

ξ .

Given the intrinsic complex structure on theGrauert tubeMC
τ ,we denote the associ-

ated Cauchy–Riemann operators by ∂ : C∞(MC
τ ) → �1,0(MC

τ ) and ∂ : C∞(MC
τ ) →

�0,1(MC
τ ). Moreover, given local coordinates αx in a chart U ⊂ M, the correspond-

ing complex coordinates in UC ⊂ MC
τ will be denoted by αz := expαx

(−iαξ ), ᾱz =
expαx

(iαξ ).

Given a smooth one-form θ ∈ �1(MC
τ ) one can write it in local (αx , αξ )-

coordinates in the form

θ = α∗
x dαx + α∗

ξ dαξ

and in terms of complex coordinates (αz, ᾱz) as

θ = α∗
z dαz + ᾱz

∗dᾱz .

Consequently, in terms of the Cauchy–Riemann operators, α∗
z = σ(∂)(α) and ᾱz

∗ =
σ(∂̄)(α). Here, σ denotes the principal symbol of a pseudodifferential operator.

Given a weight function ψ ∈ C∞(MC
τ ) and the strictly plurisubharmonic weight

ρ(αz, ᾱz) = |αξ |2g
2 , we consider the associated submanifold � ⊂˜MC

τ given by

� = { (α, 2i∂ψ(α) + i(∂̄ − ∂)ρ(α)), α ∈ MC
τ }. (2.27)

As we shall see below, the manifold � will play an important role in our main
exponential weighted estimate in Proposition 2.5.

For future reference, we note that in terms of the local complex coordinates (αz, ᾱz)

in a geodesic normal coordinate chart U,

�|U := {( αz, ᾱz;α∗
z = (2i∂αzψ − i∂αzρ)(α), ᾱz

∗ = i∂αzρ(α)), α ∈ MC
τ }
(2.28)

2.4 Complex Geometry of �

We first recall some basic complex symplectic geometry: Let X be a complex n-
dimensional manifold with complex cotangent bundle T ∗X. Viewing X as a real-
analytic manifold, we let T ∗XR denote the real 4n-dimensional cotangent bundle.
There is a natural identification [9] of T ∗XR with T ∗X given as follows. Let v ∈
T X (a complex tangent vector) and (z, ζ ) ∈ T ∗X (a complex covector). Then, the
identification ι : T ∗X → T ∗XR is given by

ι(z, ζ(v)) = (z, ξ(v)); ξ(v) = Re ζ(v).
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In terms of local coordinates (Re z, Im z) : X → R
2n and the corresponding dual

coordinates (ξ, η) ∈ T ∗
(Re z,Im z)XR,

ι(Re z, Im z; ξ, η) = (z, ζ ), ζ = ξ + iη.

Let � ⊂ T ∗X be I -Lagrangian with respect to the complex symplectic form � =
dz ∧ dζ. Then, for any contractible coordinate chart U, we recall that [9, Lemma
3.1] using the identification ι, one can locally characterize � as the graph of complex
differential; that is,

�|U = {(z, 2i∂z f ), z ∈ U }, (2.29)

with f ∈ C∞(U ; R) and 2∂z f = (∂Re z + i∂Im z) f.
We claim that � ⊂ T ∗(MC

τ ) in (2.27) can be naturally identified with an I -
Lagrangian with respect to the canonical complex symplectic form. More precisely,
consider

�̃ := � − i graph(dρ) ⊂˜MC
τ .

To see that �̃ is indeed I -Lagrangian, we note that since d = ∂ + ∂̄, one can write

2i∂ψ + i(∂̄ − ∂)ρ = 2i∂(ψ − ρ) + idρ

and so,

�̃ = {(α, 2i∂(ψ − ρ)(α)), α ∈ MC
τ }.

Consequently, in view of (2.29), �̃ is indeed I -Lagrangian. Moreover, since ρ is
strictly plurisubharmonic with ∂∂̄ρ > 0, it follows that with ‖ψ‖C2 sufficiently small,
�̃ is also R-symplectic.

We note that clearly one canwrite the Toeplitzmultiplier q0|� on the RHS of Propo-
sition 2.5 as q̃0| �̃ where q̃0(α, α∗) = q0(α, α∗ + idαρ(α)) and �̃ is the I -Lagrangian
above. However, we find working with q0 (from (2.24)) and � (from (2.27)) compu-
tationally simpler and so we continue to work throughout with these instead.

Remark 2.4 Here we call q0 a Toeplitz multiplier in reference to the corresponding
Toeplitz operator Sholq0Thol (see e.g., [29, Chapter 13.4]).

The following h-microlocal manifold version of the microlocal Agmon estimates
in R

n [13,14] is central to the proofs of Theorems 1, 2.

Proposition 2.5 Let� ⊂˜MC
τ be as in (2.27). Then, for any P(h) ∈ Oph(S

0,∞
cla ) there

exists δ > 0 so that for ψ ∈ S0(1) with ‖ψ‖C1< δ,

〈χine
ψ/hThol(h)P(h)ϕh, e

ψ/hThol(h)ϕh〉L2

= 〈χine
ψ/h q0|� Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ O(h)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h).
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Proof The operator Qψ(h) := χineψ/hQ(h)e−ψ/h has Schwartz kernel

Qψ(α, β, h) = (2πh)−2n lim
ε→0+

∫
ei〈α−β,α∗〉/he−ε〈α∗〉/hei[ψ(α)−ψ(β)]/hχin(α)

q(α, α∗; h) dα∗. (2.30)

By Taylor expansion,

ψ(α) − ψ(β) = 〈�(α, β), α − β〉

with |�| < ‖ψ‖C1 < δ. Since q(α, α∗, h) is analytic, for δ > 0 small it follows by
Stokes formula one can make the contour deformation

α∗ �→ α∗ + i�(α, β)

in (2.30). Boundary terms as |α∗| → ∞vanish and one gets that Qψ(h) ∈ Oph(S0(1))
with symbol

qψ(α, α∗, h) ∼
∞∑
j=0

χin(α)q j (α, α∗ + idαψ)h j .

and principal symbol

qψ
0 (α, α∗) = q0(α, α∗ + idαψ(α)),

where q0 is defined in (2.24).
In view of (2.19) it follows that

〈χine
ψ/hThol(h)P(h)ϕh, e

ψ/hThol(h)ϕh〉L2

= 〈χin Q
ψ(h) [eψ/hThol(h)ϕh], eψ/hThol(h)ϕh〉L2

+ O(h∞)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h). (2.31)

Next, in analogy with [13], we observe that with D̄αz = 1
i ∂̄αz ,

hDαz

(
eψ/hThol(h)ϕh

)

=
∫

M
hDαz

(
e[−r2

C
(αz ,y)/2+ψ(αz ,ᾱz)−ρ(α) ]/ha(αz, y, h)χ(αx , y)

)
ϕh(y)dy

=
(

− i∂αzψ(α) + i∂αzρ(α)
)
eψ/hThol(h)ϕh + O(e−C(ε0)/h)

= −i∂αz ψ̃(α) eψ/hThol(h)ϕh + O(e−C(ε0)/h), (2.32)

where we have written

ψ̃ = ψ − ρ.
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The last line in (2.32) follows since r2
C
(·, y) and a(·, y, h) are holomorphic and

the exponential error arises from differentiation of the cutoff χ(αx , y). In particular,
when r(αx , y) ≥ ε0 > 0, there exists C(ε0) > 0 so that

Re [ −r2
C
(αz, y)/2 + ψ(αz, ᾱz) − ρ(α)]≤ −C(ε0)<0.

Similarly, taking complex conjugates, one gets that

hDαz

(
eψ/hThol(h)ϕh

)
= i∂αz ψ̃(α) eψ/hThol(h)ϕh + O(e−C(ε0)/h). (2.33)

Taylor expansion of the principal symbol qψ
0 of Qψ(h) around ᾱz

∗ = −i∂αz ψ̃ and
α∗
z = i∂αz ψ̃ gives

qψ
0 (α, α∗) = q0(α, α∗ + idαψ(α))

= q0(αz, ᾱz;α∗
z = i∂αz (ψ − ρ)+i∂αzψ, ᾱz

∗ =−i∂αz (ψ−ρ)+i∂αzψ)

+ r1(α, α∗)(ᾱ∗
z + i∂αz ψ̃) + r2(α, α∗)(α∗

z − i∂αz ψ̃)

= q0(αz, ᾱz;α∗
z = 2i∂αzψ − i∂αzρ, ᾱz

∗ = i∂αzρ)

+ r1(α, α∗)(ᾱ∗
z + i∂αz ψ̃) + r2(α, α∗)(α∗

z − i∂αz ψ̃)

= q0(α)|α∈� + r1(α, α∗)(ᾱ∗
z + i∂αz ψ̃) + r2(α, α∗)(α∗

z − i∂αz ψ̃)

(2.34)

Since r1, r2 ∈ S0(1), it then follows from (2.31)–(2.34), L2-boundedness of pseu-
dodifferential operators, and that [Oph(Sm1), Oph(Sm2)] ∈ hOph(Sm1+m2) (see for
example [29, Chapters 4,9]) that

〈χin Qψ(h) [eψ/hThol(h)ϕh] , eψ/hThol(h)ϕh〉L2

= 〈χine
ψ/hq0(α)|α∈�Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ 〈χinr1(α, hDα)[hDαz + i∂αz ψ̃]eψ/hThol(h)ϕh, e
ψ/hThol(h)ϕh〉L2

+ 〈χine
ψ/hThol(h)ϕh, r2(α, hDα)[hDαz + i∂αz ψ̃]eψ/hThol(h)ϕh〉L2

+ O(h)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 .

= 〈χine
ψ/hq0(α)|α∈�Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ O(h)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 . (2.35)

This finishes the proof of the Proposition. ��

123



168 J. Galkowski, J. A. Toth

2.5 Microlocal Eigenfunction Decay Estimates

2.5.1 Estimation of the Multiplier q0|�
In order to prove Theorem 2 we give an invariant characterization of the Toeplitz
multiplier q0|�.

In terms of the local coordinates (αz, ᾱz) the Toeplitz multiplier in Proposition 2.5
is

q(αz, ᾱz, i∂αz (2ψ − ρ), i∂ᾱzρ).

To give this in invariant meaning, we note that function q0 ∈ Cω(T ∗MC
τ ) and

(αz, ᾱz, i∂αz (2ψ − ρ), i∂ᾱzρ)

are local coordinates for the point

ζ = i∂αz (2ψ − ρ)(α) dαz + i∂ᾱzρ(α) dᾱz ∈ T ∗MC
τ .

= 2i∂ψ(α) + i(∂̄ − ∂)ρ(α) ∈ T ∗MC
τ .

Consequently, the Toeplitz multiplier equals

qψ
0 (α, i∂ψ̃(α) − i ∂̄ψ̃(α)) = q0(α, i(∂ − ∂̄)ψ̃(α) + idψ(α))

= q0(α, 2i∂ψ(α) + i(∂̄ − ∂)ρ(α)) = q0|�(α), α ∈ MC
τ , (2.36)

in view of the definition of � in (2.27), where

q0|�(α) = q0(α, 2i∂ψ(α) − i(∂ − ∂̄)ρ(α)). (2.37)

Here, ∂, ∂̄ : C∞(MC
τ ) → �1(MC

τ ) are the intrinsic Cauchy–Riemann operators.
The ρ portion, i ∂̄ρ − i∂ρ, of the argument on the RHS of (2.37) can be readily

computed. Given the strictly plurisubharmonic weight function ρ(α) = 1
2 |αξ |2αx

, we
recall that [5, p. 568],

i(∂̄ − ∂)ρ = ω, (2.38)

where ω = ∑
j αξ j dαx j is the canonical one-form. Since both sides are invariant, one

can easily verify the identity (2.38) by computing in geodesic normal coordinates at
the center of the coordinate chart.

It follows from (2.38) that

α∗
x (2i∂ψ − i(∂ − ∂̄)ρ) = α∗

x (2i∂ψ) + αξ

α∗
ξ (2i∂ψ − i(∂ − ∂̄)ρ) = α∗

ξ (2i∂ψ).
(2.39)

123



Pointwise Bounds for Steklov Eigenfunctions 169

From (2.39) one gets

q|�(α) = p0
(

βx (α, α∗
ξ (2i∂ψ)) , βξ (α, α∗

ξ (2i∂ψ)
)

= p0( αx + O(|∂ψ |), αξ + O(|∂ψ |) ), (2.40)

where in the last equality we have used (2.26).

Remark 2.6 We recall that ρ is a Kahler potential for the intrinsic Kahler form �g on
the Grauert tube corresponding to the complex structure Jg induced by complexified
Riemannian exponential map of the metric g; that is,

∂∂̄ρ = �g.

The corresponding exhaustion function
√
2ρ(α) = |αξ |g satisfies homogeneous

Monge–Ampere,

det
( ∂2

√
ρ

∂αzi ∂ ¯αz j

)
= 0.

We refer to [5,11] for further details.

From Proposition 2.5 and (2.40) we get the following useful estimate.

Proposition 2.7 Under the same assumptions as in Proposition 2.5,

〈χine
ψ/hThol(h)P(h)ϕh, e

ψ/hThol(h)ϕh〉L2

= 〈χine
ψ/h p(α + O(|∂ψ |)) Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ O(h)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h).

2.6 Microlocal Concentration of the Eigenfunctions: Proof of Theorem 2

In this section, we prove the global weighted decay estimate in Theorem 2.

Proof We first prove the weighted estimate in (1.8) h-microlocally on support of
χin ∈ C∞

0 (MC
τ ) and for the h-microlocal FBI transform Thol(h).

‖χine
ψ/hThol(h)ϕh‖L2(T ∗M) = O(1). (2.41)

The transform Thol(h) is only defined on the Grauert tube MC
τ , which is generally

a proper, bounded subset of T ∗M. We then need to prove that the weighted bound
in (2.41) still holds for T (h) = Tgeo(h), after possibly shrinking δ > 0 somewhat
(independently of h).

In the following, we let P(h) ∈ Oph(S
0,k
cla ) be as in the statement of Theorem 2

and ϕh be an exponential quasimode with

P(h)ϕh = O(e−c/h).
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2.6.1 h-Microlocal Bounds for Thol(h)ϕh

Recall ψ = δp2

2〈ξ〉2k . For δ > 0 small,

1

C(δ)
p2(αx , αξ ) ≤ Re p2(α + O(|∂αψ |)) ≤ C(δ)p2(αx , αξ ). (2.42)

To see that (2.42) holds, we split into two cases:

Case (i) {α; |p(α)| � 1} (near the characteristic variety). Here, we make a Taylor
expansion to get

p2(α + O(|∂αψ |) = p2(α) + O(δ)|2p∂α p|2 = p2(α) + O(δ p2(α)).

(2.43)

Consequently, near p = 0 it follows from (2.43) that for δ > 0 small,

Re p2(α + O(|∂αψ |)) ≥ cp2(α).

Case (ii) {α; |p(α)| � 1} (far field). Here we use the fact that ψ ∈ S0(1) and |∂p2| �
〈αξ 〉2k−1 and just make the first-order Taylor expansion

p2(α + O(|∂αψ |)) = p2(α) + O(δ〈αξ 〉2k−1).

Since p2(α) � 〈αξ 〉2k in this range, (2.42) is also satisfied in this case,
provided one chooses δ > 0 small.

Since P(h) ∈ Oph(S
0,∞
cla ) implies that also P2(h) ∈ Oph(S

0,∞
cla ), and so Proposi-

tion 2.7 applies just as well with the latter. We note that by (2.42), there is a constant
C > 0 such that

1

C
p2(α) ≤ Re p2|�(α) ≤ Cp2(α), α ∈ suppχin

and so, by an application of Proposition 2.7 with the globally defined weight function
ψ in the statement of Theorem 2, it follows that

〈χine
ψ/hThol(h)P2(h)ϕh, e

ψ/hThol(h)ϕh〉L2

= 〈χine
ψ/h p2|�Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ O(h)‖χ̃ine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h)

≥ 〈χine
ψ/h p2Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

+ O(h)‖χine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h). (2.44)
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In the last line of (2.44) we have used the long-range estimate (2.3) yet again to
write

‖χ̃ine
ψ/hThol(h)ϕh‖2L2 = ‖χine

ψ/hThol(h)ϕh‖2L2 + O(e−C/h).

To bound the LHS in (2.44) note that Ak(h) := Shol(h)
〈
αξ

〉k
Thol(h) ∈ Oph(S

0,k
cla ).

Hence, A−k(h)P(h) ∈ Oph(S
0,0
cla ) and since P(h) is classically elliptic with

‖P(h)ϕh‖L2 + ‖ϕh‖L2 = O(1), Ak(h)ϕh ∈ L2. In particular,

〈
χine

ψ/hThol(h)P2(h)ϕh, e
ψ/hThol(h)ϕh

〉

=
〈
χine

ψ/h 〈
αξ

〉−k
Thol(h)P2(h)ϕh, e

ψ/h 〈
αξ

〉k
Thol(h)ϕh

〉

=
〈
χine

ψ/hThol(h)A−k(h)P2(h)ϕh, e
ψ/hThol(h)Ak(h)ϕh

〉
+ O(e−C/h)

= O(e−C/h),

since by assumption P(h)ϕh = OL2(e−C/h).

Thus, from (2.44) one gets that for δ small enough and C = C(δ) > 0,

〈χine
ψ/h p2Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2

= Oδ(h)‖χine
ψ/hThol(h)ϕh‖2L2 + O(e−C/h). (2.45)

We note that for any N > 0,

sup
p2(α)≤Nh

ψ(α) = O(h),

so that eψ(α)/h = O(1) when p2(α) ≤ Nh. It then follows from (2.45) that

〈χine
ψ/h[p2 + O(h)]Thol(h)ϕh, e

ψ/hThol(h)ϕh〉L2({p2≥Nh})
= Oδ(h)‖χinThol(h)ϕh‖2L2({p2≤Nh}) + O(e−C/h) = O(h). (2.46)

Choosing N = N (δ) > 0 large enough to absorb the O(h) term on the LHS of
(2.46) (which is independent of N > 0), it follows that

‖χine
ψ/hThol(h)ϕh‖L2({p2≥Nh}) = O(1). (2.47)

Clearly, since ψ ≈ p2 near p = 0 it also follows that

‖χine
ψ/hThol(h)ϕh‖L2({p2≤Nh}) = O(1)

which finishes the proof of (2.41).
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2.6.2 Weighted Bounds in Terms of Tgeo(h)

Since Thol(h) is only h-microlocally defined, we need to show that essentially the
same weighted bound holds for the globally defined FBI transform Tgeo(h). More
precisely, in this section we show that with ε0 < 1 sufficiently small (but independent
of h) the analogue of (2.41) holds for the globally defined FBI transform. That is

‖χine
ε0ψ/hTgeo(h)ϕh‖L2 = O(1). (2.48)

Given (2.48), the global result in Theorem 2 follows (after possibly shrinking δ > 0
further) since we have already established the long range bound in (2.18).

To prove (2.48), we write

χine
ε0ψ/hTgeo(h)ϕh

= χine
ε0ψ/hTgeo(h)Shol(h)Thol(h)ϕh + O(e−C/h)

= χine
ε0ψ/hTgeo(h)Shol(h)χ̃inThol(h)ϕh + O(e−C/h)

= χine
ε0ψ/hTgeo(h)Shol(h)e−ψ/h χ̃ine

ψ/hThol(h)ϕh + O(e−C/h). (2.49)

Note in the second line we us that TgeoShol is pseudolocal modulo exponential
errors. Then, by an application of analytic stationary phase, after possibly shrinking
δ > 0, the Schwartz kernel of the operator χineε0ψ/hTgeo(h)Shol(h)e−ψ/h can be
written in the form

ei�(α,β)/hc(α, β; h)χ(αx − βx )χ(|αξ |−1|αξ −βξ |)+ON (e−C/h)max{|αξ |, |βξ |}−N ,

where,

Im�(α, β) ≥ −ε0 p
2(α) + p2(β) + |α − β|2,

c ∈ Sn,0
cla . To estimate �(α, β) when α and β are near p−1(0), we note that by Taylor

expansion of p2(α) around α = β one gets that

Im�(α, β) ≥ −ε0 p
2(α) + p2(β) + C0(p(α) − p(β))2,

with some C0 > 0. Writing x = p(α) and y = p(β) it therefore suffices to consider
the function

f (x, y) = −ε0x
2 + y2 + C0(x − y)2; (x, y) ∈ R

2.

An application of max/min shows that f (x, y) ≥ 0 provided ε0(C2
0 ) > 0 is chosen

sufficiently small and consequently, it follows that for small ε0 > 0,

Im�(α, β) ≥ 0.
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Then, from (2.49) and an application of the Schur‘s lemma, it follows that for ε0 > 0
sufficiently small,

‖eε0ψ/hTgeo(h)Shol(h)e−ψ/h‖L2→L2 = O(1)

and so,

‖χine
ε0ψ/hTgeo(h)ϕh‖L2 = O(1)‖χ̃ine

ψ/hThol(h)ϕh‖L2 + O(e−C/h) = O(1).

Consequently, the h-microlocal bound (2.48) follows.
After possibly shrinking ε0 > 0 further, we know that by the long range bound in

(2.18),

‖eε0ψ/h(1 − χin)Tgeo(h)ϕh‖L2→L2 = O(1),

and so, Theorem 2 follows. ��

2.7 Refinement of the Weight Function: Proof of Theorem 3

Proof We first turn to the proof of (1.13). Since the results of Theorem 3 are h-
microlocal and, moreover, away from a neighborhood of {p = 0} we know that any
FBI transform applied to ϕh is exponentially small we work in a small neighborhood
of {p = 0}. In particular, this implies that for χ ∈ C∞

c (R) with χ ≡ 1 near 0, and for
fixed arbitrarily small ε0 > 0, there exists c = c(ε0) > 0 so that

Sholχ(ε−1
0 p2/2)Thol(h)ϕh = ϕh + OL2(e−c/h).

Thus, we work exclusively with Thol(h) here and start by reexamining the proof of
(2.47). The key estimate is (2.44) where we use that (P(h))2ϕh = OH−k

h
(e−c/h) (here

H−k
h is the semiclassical Sobolev space or order −k; see for example [29, Chapter

14]). Notice that in order to conclude that eψ/hThol(h)ϕh is well controlled, we must
have good control of the O(h) error term appearing in the right hand side of (2.44).
In particular, we must have control of eψ/hThol(h)ϕh strictly away from {p = 0}.
The long range estimates tell us that we have some exponential decay, however, we
do not have any useful control over the constant. Therefore, in order to complete the
arguments leading to (2.47), we must choose ψ so that

ψ = 0 on p2 > 2ε, p2(β(α, α∗
ξ (2i∂ψ))) ≥ cp2 with c > 0 when p2 < ε.

(2.50)

��
Lemma 2.8 For all δ0 > 0, 0 < γ < 1/2, there exists ψ0 ∈ C∞(Mτ ) so that
‖ψ0‖C1 ≤ δ0, suppψ0 ⊂ {|p| ≤ δ0},
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Re p2(β(α, α∗
ξ (2i∂ψ0))) ≥ 1 − 2γ

2
p2,

and in a neighborhood of p = 0,

psi0 = γ

2|dp|2gs
,

where gs is the Sasaki metric on T M (see e.g., [2, Chapter 9]).

Proof Motivated by the construction of the weight in Theorem 2, we let χ ∈ C∞
c (R)

with χ ≡ 1 on [−1, 1], suppχ ⊂ [−2, 2], 0 ≤ χ ≤ 1, χ ′(x) ≤ 0 on x ≥ 0, and make
the ansatz

ψ0 = χ(δ−1 p2)ap2. (2.51)

Note that throughout this proof, all O(·) statements are uniform in δ.
By (2.26),

βx (α, α∗
ξ ) = αx − α∗

ξ + O(|α∗
ξ |2), βξ (α, α∗

ξ ) = αξ + iα∗
ξ + O(|α∗

ξ |2).

We work in geodesic normal coordinates centered at αx (i.e., αz = expαx
(−iαξ )) so

that ∂ψ0 = 1
2 (∂αxψ0 + i∂αξ ψ0)(dαx − idαξ ). Therefore,

α∗
ξ (2i∂ψ0) = ∂αxψ0 + i∂αξ ψ0.

Now,

∂ψ0 = 2p ∂p a(χ(δ−1 p2) + δ−1 p2χ ′(δ−1 p2)) + p2χ(δ−1 p2) ∂a.

In particular, then

p2(β(α, α∗
ξ (2i∂ψ0))) = p2 − 2p(∂αx p − i∂αξ p)(∂αxψ0 + i∂αξ ψ0) + O(|∂ψ0|2)

= p2 ·
(
1 − 4|dp|2gs a(χ(δ−1 p2) + δ−1 p2χ ′(δ−1 p2))

+ O(p−1|∂ψ0|2)
)

Therefore, choosing

a = γ

2|dp|2gs
,

proves the lemma since χ ′(x) ≤ 0 on x ≥ 0 implies

1 − 4|dp|2gs a(χ(δ−1 p2) + δ−1 p2χ ′(δ−1 p2)) ≥ 1 − 2γ (χ(δ−1 p2)

+ δ−1 p2χ ′(δ−1 p2)) ≥ 1 − 2γ

123



Pointwise Bounds for Steklov Eigenfunctions 175

and

p−1|∂ψ0|2 = p−1(O(δ−2 p6 + p2)) = O(p).

��
Using ψ0 from Lemma 2.8 in the analysis leading to (2.47) proves (1.13).

Next, we prove the bound in Theorem 3 (1.14). The fact that (P(h))2ϕh =
OH−k

h
(e−c/h) is a weaker condition than P(h)ϕh = OL2(e−c/h) and indeed, the

example of eix/h on S1 shows that the weight ψ0 is not quite optimal. To remedy this,
and obtain (2.41) we need to work directly with P(h)ϕh = OL2(e−c/h). Unlike p2,
p does not have a fixed sign, so we need to work separately on p > 0 and p < 0.
Therefore, we construct slightly different weights on p > 0 and p < 0. Since the
weighted estimate naturally localizes to each region, we consider first the case p > 0
and then easily adapt the argument to the case p < 0.

Lemma 2.9 For all δ0 > 0, there exists ψ+ ∈ C∞(Mτ ) with ‖ψ+‖C1 < δ0,
suppψ+ ⊂ {|p| ≤ δ0} so that

Re p(β(α, α∗
ξ (2i∂ψ+))) ≥ p2 on p ≥ 0

and in a neighborhood of p = 0,

ψ+ = p2

2|dp|2gs
+ O(p3),

where gs is the Sasaki metric on T M.

Proof First, let χ ∈ C∞
c (R) with χ ≡ 1 on [−1, 1], suppχ ⊂ [−2, 2], and χ ′(x) ≤ 0

on x ≥ 0. Then fix δ > 0 to be chosen small enough later and let

ψ+ = χ(δ−1 p)(a0 p
2 + a1 p

3), ai ∈ C∞(Mτ ).

Note that throughout this proof, all O(·) statements are uniform in δ.
Computing as in the proof of Lemma 2.8,

βx (α, α∗
ξ (2i∂ψ)) = αx − (∂αxψ+ + i∂αξ ψ0) + O(|dψ |2),

βξ (α, α∗
ξ (2i∂ψ)) = αξ + i(∂αxψ+ + i∂αξ ψ0) + O(|dψ |2).

For convenience, let

∂ᾱz = ∂αx + i∂αξ , ∂αz = ∂αx − i∂αξ .

Then,

∂ᾱzψ+ = χ(δ−1 p)(2a0 p∂ᾱz p + a13p
2∂ᾱz p + p2∂ᾱz a0

+ O(p3)) + δ−1χ ′(δ−1 p)(∂ᾱz p)(a0 p
2 + O(p3))
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Then, Taylor expansion of p ◦ β(α, α∗
ξ (2i∂ψ+)) around α gives

p(β(α, α∗
ξ (2i∂ψ+)))

= p

⎡
⎣ 1 − 2|dp|2g

(
δ−1χ ′(δ−1 p)a0 p + χ(δ−1 p)(a0 + 3pa1)

)

−
〈
∂αz p, χ(δ−1 p)p∂ᾱz a0

〉
+ Ẽ

⎤
⎦ ,

where

|Ẽ | ≤ δ−2 p3|χ ′(δ−1 p)|2 + |p|χ2(δ−1 p)

+ p2|χ(δ−1 p)| + δ−1 p2|χ ′(δ−1 p)| = O(p).

Grouping terms by homogeneity in p, we have then

p(β(α, α∗
ξ (2i∂ψ+)))

= p

⎡
⎣
1 − 2|dp|2gsχ(δ−1 p)a0

− p
(
2|dp|2gs [χ(δ−1 p)a1 + δ−1χ ′(δ−1 p)a0] −

〈
∂αz p, χ(δ−1 p)∂ᾱz a0

〉 ) + Ẽ

⎤
⎦

Now, let N > 0 to be chosen large enough independently of δ later

a0 := 1

2|dp|2gs
, a1 = −N .

Then, notice that on p ≥ 0, χ ′(δ−1 p) ≤ 0, so, since χ ≥ 0,

Re p(β(α, α∗
ξ (2i∂ψ+)))

≥ p
[
1 − χ(δ−1 p) + p

(
2|dp|2gχ(δ−1 p)N −

〈
∂αz p, χ(δ−1 p)∂ᾱz a0

〉)
+ O(p)

]

Therefore, on {χ(δ−1 p) ≥ 1
2 } ∩ {p ≥ 0},

Re p(β(α, α∗
ξ (2i∂ψ+))) ≥ p

[
p
(|dp|2gN

−
〈
∂αz p, χ(δ−1 p)∂ᾱz a0

〉 ) + O(p)
]

≥ N

2
p2

for N large enough. On the other hand, on suppχ(δ−1 p)∩{χ(δ−1 p) ≤ 1
2 }∩ {p ≥ 0},

Re p(β(α, α∗
ξ (2i∂ψ+))) ≥ p

[
1

2
+ O(p)

]
≥ 1

4
p

if δ > 0 is chosen small enough.
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This completes the proof of the lemma since

|ψ+| ≤ Cδ2, |∂ψ+| ≤ Cδ.

��
Remark 2.10 It is possible to constructψ+ satisfying the following: For every N > 0,
M0 > 0, and δ0 > 0, there exists ψ+ ∈ C∞(Mτ ) with ‖ψ+‖C1 ≤ δ0, and suppψ+ ⊂
{|p| ≤ δ0} so that

Re p(β(α, α∗
ξ (2i∂ψ+))) ≥ 1

2
pN + hM0, on p ≥ 0,

and in a neighborhood of p = 0,

ψ+ =
N−1∑
j=0

a j p
2 − ChM0 p, a0 = 1

2|dp|2gs
.

Moreover, for any j < N − 1 and δ > 0, there exist b ∈ C∞(Mτ ) with ‖b‖C1 < δ so
that if a j is replaced by a j + b, then

inf
0≤p<δ0

Re p(β(α, α∗
ξ (2i∂ψ+))) < 0.

This allows one to improve the higher order terms in ψhol in Theorem 3 so that they
are sharp for eix/h modulo pN for any N .

Since we want to localize to p > 0, we insert a smooth cutoff χ+ that approximates
the indicator function 1[0,ε0](p). However, in order to estimate error terms in the
weighted L2 bounds corresponding to Proposition 2.5, we must ensure that ψ+ =
O(h) on supp ∂χ+ so that, in particular,

‖eψ+/hThol(h)ϕh‖L2(supp ∂χ+) = O(1),

where supp∂χ+ ⊂ {0 ≤ p ≤ h1/2} ∪ {p ≥ ε0}.
To construct χ+, we let χ1 ∈ C∞(R)with suppχ1 ⊂ (1,∞)with χ1 ≡ 1 on (2,∞)

and let

χ+ := χ(ε−1
0 p)χ1(h

−1/2 p),

and χ̃+ = χ̃ (ε−1
0 p2/2)χ̃1(h−1/2 p) where χ̃ ∈ C∞

c (R) has χ̃ ≡ 1 on suppχ and
χ̃1 ∈ C∞(R) with χ̃1 ≡ 1 on suppχ1 and suppχ̃1 ⊂ (1,∞). Then suppχ+ ⊂ {0 ≤
p ≤ 2ε0} so that ψ+ = O(h) on supp∂χ+.

We will need the following
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Lemma 2.11 Under the same assumptions as in Proposition 2.5,

〈χ+eψ+/hThol(h)P(h)ϕh, e
ψ±/hThol(h)ϕh〉L2

= 〈χ+eψ±/h(p ◦ β)|�Thol(h)ϕh, e
ψ+/hThol(h)ϕh〉L2

+ O(h)‖χ̃+eψ+/hThol(h)ϕh‖2L2

+ O(h1/2)‖χ̃+eψ+/hThol(h)ϕh‖2L2({|p|≤Ch1/2}) + O(e−C/h) (2.52)

Proof We follow very closely the argument in the proof of Proposition 2.5. The only
difference here occurs in the integration by parts arguments with respect to ∂αz and ∂̄αz

in (2.32) and (2.33), precisely when the cutoff χ+ is differentiated in the amplitude
since it is a singular semiclassical symbol with χ+ ∈ S01/2(1) [29, Chapter 4] i.e.,

|∂α
αz

χ+| ≤ Cαβh
−|α|/2.

Specifically, one needs to estimate a term of the form
〈
h∂αz (χ±) r(α, hDα)[eψ/hThol(h)ϕh], eψ/hThol(h)ϕ

〉

=
〈
hχ∂αz (χ1) r(α, hDα)[eψ/hThol(h)ϕh], eψ/hThol(h)ϕ

〉

+
〈
hχ1∂αz (χ) r(α, hDα)[eψ/hThol(h)ϕh], eψ/hThol(h)ϕ

〉
r ∈ S0(1). (2.53)

Since χ+ ∈ S01/2(1), it is in a singular symbol class. However, because it is a

multiplier depending only the spatial coordinates α ∈ MC
τ , it can be effectively com-

posed with the standard h-pseudodifferential operators r(α, hDα) ∈ Oph(S0(1)). In
particular, symbols compose with h− j/2-loss in the j th term of the asymptotic expan-
sion, L2-boundedness and sharp Gårding still hold, as does h-pseudolocality. More
precisely, for any R(h) ∈ Oph(S0(1)) and spatial cutoff χ+ = χ+(α, h) ∈ S01/2(1),

χ+R(h) = χ+R(h)χ̃+ + O(h∞)L2→L2 .

Since the cutoff χ1∂αzχ ∈ S01/2(1), and depends only on the spatial α-variables, it
follows that for second term on the RHS of (2.53),

〈
hχ1∂αz (χ) r(α, hDα)[eψ/hThol(h)ϕh], eψ/hThol(h)ϕ

〉

= O(h)‖χ̃+eψ+/hThol(h)ϕh‖L2 .

As for the first term on the RHS of (2.53), hχ∂αz (χ1) ∈ h− 1
2 S01/2(1) since there is

a loss of h1/2 coming from differentiation of the χ1-term. Thus,
〈
hχ∂αz (χ1) r(α, hDα)[eψ/hThol(h)ϕh], eψ/hThol(h)ϕ

〉

= O(h1/2)‖χ̃+eψ+/hThol(h)ϕh‖2L2({|p|≤Ch1/2}).

��
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Since P(h)ϕh = OL2(e−c/h), it follows from Lemma 2.3 that for ε small enough
and N > 0,

〈χ+eψ+/h(p ◦ β)|�Thol(h)ϕh, e
ψ+/hThol(h)ϕh〉L2

= O(h)‖χ̃+eψ+/hThol(h)ϕh‖2L2

+ O(h1/2)‖χ̃+eψ+/hThol(h)ϕh‖2L2(0≤p≤Nh1/2) + O(e−c/h). (2.54)

In analogy with the arguments used to prove (2.47), we substitute the lower bound
(p ◦ β)|� ≥ p2 on p ≥ 0 from Lemma 2.9 in (2.54). Then, since ψ+ = O(h) when
p2 = O(h) (so that eψ+/h = O(1) on the latter set), it follows that

〈χ+eψ+/h(cNh + O(h))Thol(h)ϕh, e
ψ+/hThol(h)ϕh〉L2(p≥Nh1/2)

= O(h1/2)‖χ̃+Thol(h)ϕh‖2L2(0≤p≤Nh1/2)

+ O(h)‖(χ̃+ − χ+)Thol(h)ϕh‖2L2(p≥Nh1/2)

+ O(e−c/h) = O(h1/2). (2.55)

In (2.55) we have also used that eψ+(α)/h = O(1) for all α ∈ supp(χ̃+−χ+)∩{p >

Ch1/2} since by construction ψ+ = O(h) on the latter set (see also Figure 1).
Choosing N > 0 large enough to absorb the O(h) term on the LHS of (2.55) it

follows that

‖χ+eψ+/hThol(h)ϕh‖L2 = O(h−1/4). (2.56)

The analysis on the set p < 0 follows in the same way as above, except one uses
the reflected cutoff function χ−(p) = χ+(−p), and the ansatz for the corresponding
weight function is

ψ− = χ(−δ−1 p)p2(a0 + a1 p), p < 0, a j ∈ C∞(Mτ ); j = 0, 1. (2.57)

0

1

Fig. 1 We show the various cutoffs used in the proof of Theorem 3
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so that

−Re p(β(α, α∗
ξ (2i∂ψ−))) ≥ p2 p ≤ 0.

That finishes the proof of Theorem 3 (1.14). ��

3 Exponential Decay of the Harmonic Extensions of Boundary
Eigenfunctions: Proof of Theorem 1

Proof Recall that M := ∂� with � the domain of the Steklov problem. Given
the FBI transform T (h) : C∞(M) → C∞(T ∗M) we construct a left-parametrix
S(h) : C∞(T ∗M) → C∞(M) and then given q ∈ Sm(1) we define the anti-Wick
h-pseudodifferential quantization by

qaw
h := S(h)qT (h).

Let P : C∞(M) → C∞(�) be the Poisson operator and χ ∈ C∞
0 (T ∗M; [0, 1])

be a cutoff supported near the zero section, with χ(x ′, ξ ′) = 1 for {0 ≤ |ξ ′| ≤ ε} and
χ(x ′, ξ ′) = 0 for |ξ ′| > 2ε. Here, ε > 0 is some arbitrarily small but fixed constant.
Then, one can write

uh(x) = Pϕh(xn+1, x
′) = P(1 − χaw

h )ϕh(x) + Pχaw
h ϕh(x). (3.1)

Here, x = (xn+1, x ′) denote Fermi coordinates in a neighborhood of the boundary
with � = {xn+1 ≥ 0} and M = {xn+1 = 0}. We show in Sect. 4.2 that for χaw

h ϕh (the
piece supported near the zero section), one has the apriori bound

‖χaw
h ϕh‖L2 = O(e−C/h) (3.2)

for some C > 0.
It follows from [19] that P(1 − χaw

h )ϕh(x) (the piece h-microlocally supported
away from the zero section) has Schwartz kernel of the form

K (x, y′, h) = (2πh)−n
∫

Rn
ei(�(xn+1,x ′,ξ ′)−〈y′,ξ ′〉)/h c(x, y′, ξ ′, h) χ(x ′ − y′) dξ ′

+ O(e−C/h),

with c ∈ S0(1) supported away from |ξ ′| = 0 and in S0,0cla (|ξ ′| > 2ε), � solving

(∂xn+1�)2 + r(x, ∂x ′�) = 0, �(0, x ′, ξ ′) = 〈
x ′, ξ ′〉 , Im� ≥ 0 (3.3)

with r(a, x ′, ξ ′) the symbol of the Laplacian induced on {xn+1 = a}. In particular,

r(xn+1, x
′, ξ ′) = |ξ ′|2x ′ + 2xn+1Q(x ′, ξ ′) + O(x2n+1),
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where Q(x ′, ξ ′) is the symbol of the second fundamental form. It follows by Taylor
expansion in xn+1 that

� = i�1(xn+1, x
′, ξ ′) + 〈

x ′, ξ ′〉 ,

where

�1(xn+1, x
′, ξ ′) = xn+1|ξ ′|x ′ + x2n+1(Q(x ′, ξ ′) + i

〈
∂x ′ |ξ ′|x ′ , ξ ′〉

x ′)

2|ξ ′|x ′

+ O(x3n+1|ξ ′|x ′)

is homogeneous of degree 1 in ξ ′. The near-diagonal cutoff χ(x ′ − y′) appears above
since K (x, y′, h) is the part of the Poisson operator arising h-microlocally from the
complement of the zero section.

Consequently, from (3.1) and (3.2) we have

uh(x) = (2πh)−n
∫

Rn

∫

M
ei(�(xn+1,x ′,ξ ′)−〈y′,ξ ′〉)/h c(x, y′, ξ ′, h)

χ(x ′ − y′) ϕh(y
′) dy′dξ ′ + O(e−C/h). (3.4)

Next we make an analytic resolution of the identity and write

I d = S(h)T (h) + O(e−C/h),

where T (h) : C∞(M) → C∞(T ∗M) is an FBI transform with phase function ϕ (not
to be confusedwith the Steklov eigenfunction ϕh) and S(h) : C∞(T ∗M → C∞(M) is
a left-parametrix. Notice that by Theorem 2 or Corollary 1.3 together with the analysis
in Sect. 4.2 for χ1 ∈ Cc(R) with χ1 ≡ 1 on [−1, 1], and suppχ1 ⊂ [−2, 2], for any
ε > 0,

(1 − χ1(ε
−1(|αξ ′ |αx ′ − 1))T (h) = OL2(e−c/h).

Let χ1,ε(α) = χ1(ε
−1(|αξ ′ |αx ′ − 1)). Then,

ϕh = S(h)χ1,ε(α)T (h)ϕh + OL2(e−c/h)

and substitution in the integral formula for uh gives

uh(x) = (2πh)−n
∫

M
Kh,x (y

′) S(h)χ1,ε(α)T (h)ϕh(y
′)dy′ + O(e−C/h) (3.5)

with

Kh,x (y
′) =

∫

Rn
ei(�(xn+1,x ′,ξ ′)−〈y′,ξ ′〉)/hc(x ′, y′, ξ ′, h)χ(x ′ − y′) dξ ′.
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One can then rewrite the formula (3.5) in the form

uh(x) = (2πh)−n〈χ1,ε(α)S(h)t Kh,x , T (h)ϕh〉L2(T ∗M) + O(e−C/h). (3.6)

Thus, χ1,ε(α)S(h)t Kh,x (α) equals

(2πh)−n
∫

M

∫

Rn
ei[−ϕ(α,y′)+�(xn+1,x ′,ξ ′)−〈y′,ξ ′〉 ]/h

c(x ′, y′, ξ ′, h)χ(αx − y′)a(y′, αx ′ , h)χ(x ′ − y′)χ1,ε(α) dy′dξ ′

with α = (αx ′ , αξ ′) ∈ T ∗M and c ∈ S0,0cla (|ξ ′| > 2ε), a ∈ S3n/4,n/4
cla . Next, we apply

analytic stationary phase in the (y′, ξ ′) variables. We can do for xn+1 small since
ψ(xn+1, x ′, η′) = 〈

x ′, η′〉 + OC∞(xn+1). Writing

�(x, ξ ′;α, y′) := −ϕ(α, y′) + �(x, ξ ′) − 〈y′, ξ ′〉

for the total phase and computing in geodesic normal coordinates centered at αx ′ , the
critical point equations are

∂ξ ′� = x ′ − y′ + i∂ξ ′�1(x
′, ξ ′) = 0,

∂y′� = −∂y′ϕ(α, y′) − ξ ′ = αξ ′ − ξ ′ + O(|αx ′ − y′|) = 0.

It follows that, denoting the complex critical points by y′
c, η

′
c, we have, using the fact

that ψ1 is homogeneous of degree 1

〈
x ′ − y′

c, ξ
′
c

〉 = −i
〈
∂ξ ′�1(x

′, ξ ′
c), ξ

′
c

〉 = −i�1(x, ξ
′
c).

Therefore,

�(x, ξ ′
c, α, y′

c) = −ϕ(α, y′
c),

y′
c = x ′ + i∂ξ ′ψ1|ξ ′=ξ ′

c
, ξ ′

c = αξ ′ + O(|αx ′ − y′
c|).

Here, we implicitly analytically continue ϕ(α, y′). In particular, notice that since
on the support of the integrand,

∣∣|αξ |g − 1
∣∣ � 1, and ξ ′

c = αξ ′ + O(|αx ′ − y′
c|), we

have that ||ξ ′
c|g − 1| � 1 and hence the fact that the amplitude is not analytic in ξ ′

near ξ ′ = 0, does not cause issues in the analytic stationary phase argument.
Consequently, the (2πh)−n factor in front of (3.5) gets killed upon application of

analytic stationary phase in (y′, η′) and we get the bound

|χ1,ε(α)S(h)t Kx,h(α)| � h−3n/4eIm ϕ(α,y′
c(x,α))/hχ1,ε(α)χ(αx ′ − y′

c). (3.7)

123



Pointwise Bounds for Steklov Eigenfunctions 183

Substitution of (3.7) togetherwith theweighted L2 estimate ‖eψ/hT (h)ϕh‖L2 = O(1)
with ψ = γ p2, γ < 1

2 (see Theorem 3 (1.13) ) in (3.6) gives, by Cauchy–Schwarz,

|uh(x)| ≤ | 〈e−ψ/hχ1,ε(α)S(h)t Kh,x , eψ/hT (h)ϕh〉L2(T ∗M) | + O(e−C/h)

≤ h−3n/4‖e−ψ(α)/heIm ϕ(α,y′
c(x,α))/h‖L2(T ∗M,dα) + O(e−C/h). (3.8)

Now, recall that we may work with Thol and Shol since for some ε > 0,

Sholχ(ε−1 p2)Tholϕh = ϕh + OL2(e−c/h).

In this case the analytic continuation, of −ϕ is given by

i(ρ(ᾱ) + r2
C
(ᾱ, y))/2.

Computing in normal geodesic coordinates centered at αx , observe that

r2(αx , y) = 〈αx − y, αx − y〉

Therefore,

2iϕ(α, y′
c(x, α)) = 〈

αx ′ + iαξ ′ − y′
c, αx ′ + iαξ ′ − y′

c

〉 + |αξ ′ |2
= |αx ′ − Re y′

c|2 − |Im y′
c|2 + 2i

〈
αx ′ − Re y′

c, Im y′
c

〉

+ 2i
〈
αx ′ − y′

c, αξ ′
〉

Now, by Taylor expansion in ξ ′,
〈
∂ξ ′�1|ξ ′=ξ ′

c
, αξ ′

〉 = �1(x, αξ ′) + xn+1O(|ξ ′
c − αξ ′ |2)

= �1(x, αξ ′) + xn+1O(|αx ′ − y′
c|2)

= �1(x, αξ ′) + xn+1O((|αx ′ − Re y′
c|2 + |Im y′

c|2))

so,

Im ϕ(α, y′
c(x, α)) = −1

2
(|αx ′ − Re y′

c|2(1 + OC∞(xn+1))

− |Im y′
c|2(1 + OC∞(xn+1))) − �1(x, αξ ′)

Written out explicitly, the last line in (3.8) says that for γ < 1/2,

|uh(x)|
� h−3n/4

( ∫

T ∗M
e2Im ϕ(α,y′

c(x,α))/he−2ψ(α)/h dα
)1/2

� h−3n/4
( ∫

T ∗M
e−[(|αx ′ −Re y′

c |2−|Im y′
c |2)(1+OC∞ (xn+1))+2Re�1(x,αξ ′ )+2ψ(α)]/h dα

)1/2
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� h−3n/4
( ∫

T ∗M
e−[(|αx ′ −Re y′

c |2−|Im y′
c |2)(1+OC∞ (xn+1))+2Re�1(x,αξ ′ )+2ψ(α)]/h dα

)1/2

� h−3n/4
( ∫

Sn−1

∫ ∞

0

∫

M
e−[(|αx ′ −Re y′

c |2−|Im y′
c |2)(1+OC∞ (xn+1))+2Re�1(x,rω)+γ (r−1)2]/h

dαx ′drdω
)1/2

Now, recall that Im y′
c = O(xn+1) and ∂α y′

c = O(xn+1) and hence applying the
method of steepest descent, in the αx ′ , r variables, the critical point of the phase
occurs at

2(αx ′ − Re y′
c)(I − ∂αx ′Re y

′
c) + (αx ′ − Re y′

c)
2O(xn+1)

− 2(Im y′
c)∂αx ′ Im y′

c = O(x3n+1) (3.9)

2(αx ′ − Re y′
c′)(−∂rRe y

′
c) + (αx ′ − Re y′

c)
2O(xn+1) − 2(Im y′

c)∂r Im y′
c

+ 2∂rRe�1(x, rω) + 2γ (r − 1) = O(x3n+1) (3.10)

Using (3.9), we have that at the stationary point

αx ′ − Re y′
c = (Im y′

c)∂αx ′ Im y′
c + O(x3n+1).

Putting this into (3.10) gives

2∂rRe�1(x, rω) + 2γ (r − 1) = 2(Im y′
c)∂r Im y′

c(x, αx , rω) + O(x3n+1).

Now,

2∂r Im y′
c = 0, 2∂rRe�1(x, rω) = a(x, ω)

a(x, ω) = 2xn+1 + x2n+1∂ξ ′Q(x ′, ω) + x2n+1Q(x ′, ω) + O(x3n+1)

So, the critical point occurs at

r = 1 − a(x, ω)

2γ
+ O(x3n+1).

Noting that Im y′
c = xn+1 + O(x2n+1) and evaluating the exponential at this point

yields

|uh(x)| � h−n/2+1/4
(∫

Sn−1
e−2(xn+1+x2n+1(Q(x ′,ω)−γ −1−1)/2+O(x3n+1))/hdω

)1/2

� h−n/2+1/4e−(xn+1−x2n+1(− inf
ω∈Sn−1 Q(x ′,ω)+γ −1+1)/2+O(x3n+1))/h .

The same argument works for derivatives with each differentiation creating a power
of h−1. ��
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Remark 3.1 We note that the first order bound with d(x) = d∂�(x) + O(d2∂�(x)) in
Theorem 1 (1.3) follows from the weighted L2-bound in Theorem 2 by essentially the
same argument as above. The proof in that case is slightly simpler since one need only
keep track of the analytic stationary phase computations to O(x2n+1) error (rather than
O(x3n+1)).

4 Microlocal Estimates Near the Zero Section

While the Dirichlet-to-Neumann map is a homogeneous analytic pseudodifferential
operator, it is not well behaved as a semiclassical analytic pseudodifferential operator
near the zero section. In particular, when semiclassically rescaled, the full symbol of
a homogeneous pseudodifferential operator, a, typically has singularities of the form

|∂α
ξ a(x, ξ/h)| ∼ Cαh

−|α|, |ξ | � 1.

Apriori, this singular h dependence may result in the transport of semiclassical
analyticwavefront sets away from the zero section under the action of a (homogeneous)
pseudodifferential operator. Thepurposeof this section is to show that no such transport
occurs and then to use this information to estimate Steklov eigenfunctions near the
zero section.

4.1 Cauchy Estimates and the Euclidean FBI Transform

For 0 ≤ h̃ ≤ h, let

Th̃u(x, ξ, h;μ) :=
∫

e
i
h̃
〈x−y,ξ 〉− 1

2h̃
|x−y|2u(y)dy.

Let also

Sh̃v(x) := 2−n(π h̃)−3n/2
∫

e
i
h̃
〈y−x,η〉− 1

2h̃
|x−y|2

v(y, η)dydη.

Then for all u ∈ S(Rn), u = Sh̃Th̃u.
Define

T ′
a,μ,h̃

u :=
∫

e
i
h̃
〈x−y,ξ 〉− μ

2h̃
|x−y|2a(x, y, ξ)u(y)dy.

The next proposition is very similar to [8, Proposition 2.1]. The difference is that we
do not require μ ≥ 1. Instead, we keep track of the dependence of various estimates
on μ ≥ μ0.

Proposition 4.1 Suppose that a has tempered growth in (x, y, ξ) and 0 < μ0 ≤ μ <

μ1. Then suppose that for W a neighborhood of (x0, ξ0),
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sup
W

|Th̃u| ≤ Ce−δ/h̃ .

Then there is a neighborhood V of (x0, ξ0)

sup
V

|T ′
a,μ,h̃

u| ≤ Ce−cmin(μ0,μ
−1
1 ,δ)/h̃ .

Proof Sketch In order to prove the lemma, one writes T ′
a,μ,h̃

u = T ′
a,μ,h̃

Sh̃Th̃u. Then,

one can easily estimate the kernel of T ′
a,μ,h̃

Sh̃ using a simple change of variables. ��
The next proposition is similar to [8, Proposition 2.2], except that we obtain a

quantitative estimate on distances to the zero section.

Proposition 4.2 Fix x0 ∈ M, ε > 0. Let X be a neighborhood of x0 in M. Suppose
that ‖u‖L∞(X) ≤ Ch−N . Then the following are equivalent:

• there exist C, c > 0, h0 > 0 and an ε-independent neighborhood, W, of x0 so that
for every 0 ≤ h̃ ≤ h ≤ h0,

|Th̃u(x, ξ, h)| ≤ Ce−c/h̃‖u‖L∞(X), x ∈ W, |ξ | ≥ ε, (4.1)

• there exists C1 > 0, h0 > 0 and an ε-independent neighborhood, W, of x0 and
constant c1 > 0 so that for 0 < h < h0

sup
Re x∈W, |Im x |≤c1

|u| ≤ C1e
ε
2h ‖u‖L∞(X) (4.2)

• there exists C > 0, h0 > 0 and an ε-independent neighborhood, W, of x0 so that
for 0 < h < h0

|(hD)αu(x)| ≤ C‖u‖L∞(X)C
|α|(h|α| + ε)|α|, x ∈ W. (4.3)

Proof Sketch The fact that (4.2) implies (4.3) follows from basic Cauchy estimates,
while that (4.3) implies (4.2) follows fromwriting out the Taylor formula with remain-
der.

The equivalence of (4.2) and (4.1) follows from writing down a resolution of the
identity in terms of the FBI transform and deforming the contour into the complex
domain. ��

The next estimate proves that the application of an analytic homogeneous pseu-
dodifferential operator preserves estimates of the form (4.3). Roughly speaking, we
show that the Sobolev mapping properties of such an operator behave like the Sobolev
mapping properties of multiplication by an h-independent analytic function. Through-
out the proof of the next proposition, we will use the following elementary estimates
without comment

(
1 + s

t

)t ≤ es ≤
(
1 + s

t

)t+s
, t, s > 0 (4.4)

(ne)−|α||α||α| ≤ α! ≤ |α||α|, α ∈ N
n (4.5)
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Pointwise Bounds for Steklov Eigenfunctions 187

Proposition 4.3 Let P be a homogeneous analytic pseudodifferential operator of
order k. Suppose that u satisfies (4.3) in a neighborhood, U of x0 with some constant
C. Then there exists a neighborhood, W of x0 so that Pu satisfies

|(hD)β Pu(x)| ≤ h−k−nC |β|+1(ε + h|β|)|β|, x ∈ W.

Proof Let χ ∈ Cc(R) with χ ≡ 1 on [−1, 1] and suppχ ⊂ [−2, 2]. Then for any
δ > 0, the kernel of P is given by Kδ(x, y) + Rδ(x, y) where Rδ is real analytic and

Kδ(x, y) = (2π)−n
∫

ei〈x−y,ξ 〉 p(x, y, ξ)χ((3δ)−1|x − y|)dξ

with p ∈ Skha .

The kernel of ∂
β
x P is given by ∂

β
x K + ∂

β
x Rδ . Since Rδ is analytic,

∣∣∣∣
∫

∂β
x Rδ(x, y)u(y)dy

∣∣∣∣ ≤ ‖∂β
x R(x, y)‖L2

y
‖u‖L2 ≤ Cβ

δ β!‖u‖L2 ,

so we need only consider ∂
β
x Kδ .

Observe that

∂β
x Kδ(x, y) = (2π)−n

∫
ei〈x−y,ξ 〉 ∑

β ′+β ′′=β

ξβ ′
∂β ′′
x (pχ((3δ)−1|x − y|))dξ.

Deforming the contour in ξ to

ξ �→ ξ + i R
x − y

|x − y|

for some R > 0, we can, modulo an analytic error, replace the kernel by

(2π)−n
∫

ei〈x−y,ξ 〉 ∑
β ′+β ′′=β

ξβ ′
∂β ′′
x (p)χ(δ−1|x − y|)dξ. (4.6)

Let ∂β
x P̃ be the operator with kernel as in (4.6). Then, let ψ ∈ C∞

c (M) have support
on a neighborhood, W of x0 so that W ⊂ U and d(W, ∂U ) ≥ 2δ with U as in the
statement of the proposition. By [29, Theorem 4.23] there exists N > 0 a constant
(independent of h, β, P) so that

‖ψ∂β
x P̃u‖L2 ≤

∑
β ′+β ′′=β

‖(ξβ ′ 〈ξ 〉−|β ′|−k ∂β ′′
x p)(x, D)‖L2→L2‖u‖Hk+|β′ |(U )

≤
∑

β ′+β ′′=β

∑
|α|≤Nn

‖∂α(ξβ ′ 〈ξ 〉−|β ′|−k ∂β ′′
x p)‖L∞‖u‖Hk+|β′ |(U )
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≤ C
|β|∑
j=1

∑
|α|≤Nn

|β|!
(|β| − j)! j !C

|β|− j+|α|

× (|β| − j + |α|)!h−k− jCk+ j (ε + h(k + j))k+ j

≤ C
|β|∑
j=1

∑
|α|≤Nn

|β|!(ne)|β|

(|β| − j)|β|− j j j
C |β|− j+|α|

(|β| − j + |α|)|β|− j+|α|h−k− jCk+ j (ε + h(k + j))k+ j

‖ψ∂β
x P̃u‖L2 ≤ C |β|+1|β|!(ne)|β|

(
h + ε

|β|
)|β|

h−|β|−k

∑
0≤ j≤|β|
|α|≤Nn

jkC |β|− j+|α|e|α|(|β| − j + |α|)|α|Ck+ j

≤ C |β|+1 (h|β| + ε)|β| h−|β|−k

Relabeling |β| = |β| + n gives the desired estimates using Sobolev embeddings. The
result follows from taking ψ ≡ 1 on a slightly smaller neighborhood W ′ ⊂ W . ��

Let χ ∈ C∞
c (R) with suppχ ⊂ [−1, 1], ε > 0, and define

Sε

h̃
v(x) := 2−n(πh)−3n/2

∫
e

i
h̃
〈y−x,η〉− 1

2h̃
|x−y|2

χ(ε−1|η|)v(y, η)dydη.

Proposition 4.4 Let χ ∈ C∞
c (R) with suppχ ⊂ [−1, 1]. Then for for all ε > 0,

|ξ | ≥ 2ε, and 0 < h̃ ≤ h,

|Th̃ Sε
hu(x, ξ)| ≤ Ce− |ξ |2

2h̃ ‖u‖L2 .

Proof The kernel of Th̃ S
ε
h is given by

= 2−n(πh)−3n/2
∫∫

e
i
h̃

(
〈x−w,ξ 〉+ h̃

h 〈w−y,η〉
)
− 1

2h̃

(
(x−w)2+ h̃

h (w−y)2
)
χ(ε−1|η|)dw

In particular, letting μ = h̃
h ,

Th̃ S
ε
hv(x, ξ) = 2−n(πh)−3n/2hnh̃−n

∫∫
b(x, ξ, y, η)v(y, η)dydη,

where

b(x, ξ, y, η) = e
i
h̃

〈
x−y,ξ+μ2η

〉− μ

2(μ+1)h̃
(x−y)2− 1

2(μ+1)h̃
(μη−ξ)2

χ(ε−1|η|)
∫

e
− μ+1

2h̃

(
w−

(
μx+y+i(μη−ξ)

μ+1

))2
dw
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Shifting contours shows that

|b(x, ξ, y, η)| ≤ χ(ε−1|η|)e− 1
2(μ+1)h̃

(μη−ξ)2

.

On suppχ(ε−1|η|), |η| ≤ ε and |μη| ≤ ε. Therefore, taking |ξ | ≥ 2ε proves the
lemma. ��

Our next proposition is the key proposition for this section and shows that homo-
geneous analytic pseudodifferential operators do not transport semiclassical analytic
wavefront sets away from the zero section.

We say that u is compactly microlocalized if there exists χ ∈ C∞
c (R) so that for

some global FBI transform T̃ ,

(1 − χ(|αξ |αx ))T̃ u = O(e−c/h).

Proposition 4.5 Let M be a compact, real-analytic manifold, and P be a homoge-
neous analytic pseudodifferential operator. Let T̃ be a global FBI transform on M with
left-parametrix S̃. Letχ0, χ1 ∈ C∞

c (R)haveχ0 ≡ 1on [−1, 1]with suppχ0 ⊂ [−2, 2]
and χ1 ≡ 1 on [−N , N ] with suppχ1 ⊂ [−2N , 2N ]. Then, for ε > 0 small enough
and N > 0 large enough, and u compactly microlocalized, there exists c > 0 so that

(1 − χ1(ε
−1|αξ |αx ))T̃ QS̃χ0(ε

−1|αξ |αx )T̃ u = OC∞(e−c/h).

Proof Notice that

S̃χ0(ε
−1|αξ |αx ))T̃ u

is microlocally vanishing for |ξ | ≥ 2ε. Therefore, for ψ with small enough support
so that the Euclidean FBI transforms are well-defined,

ψ S̃χ0(ε
−1|αξ |αx )T̃ u

= ψShTh S̃χ0(ε
−1|αξ |αx )T̃ u

= ψShTh S̃χ0(ε
−1|αξ |αx )χ(|αξ |αx )T̃ u + O(e−c/h)

= ψShχ0((2ε)
−1|ξ |)Th S̃χ0(ε

−1|αξ |αx )χ(|αξ |αx )T̃ u + O(e−c/h)

Now, by Proposition 4.4, (4.1) holds for the image of Shχ0((2ε)−1|ξ |). In particu-
lar, Lemma 4.3 applies and hence taking a partition of unity, QS̃χ0(ε

−1|αξ |αx ))T̃ u
satisfies (4.3) and hence, for any ψ̃ supported in a small enough region so that the
Euclidean FBI transform is well-defined,

ψ̃QS̃χ0(ε
−1|αξ |αx ))T̃ u

is microlocally vanishing on |ξ | ≥ 2ε−1 and since this is independent of the choice of
FBI transform, taking M large enough gives
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(1 − χ1(ε
−1|αξ |αx ))T̃ ψ̃Qψ S̃χ0(ε

−1|αξ |αx )T̃ u = OC∞(e−c/h).

Taking a partition of unity then proves the lemma. ��

4.2 Application to Eigenvalue Problems

Let Q be an (h-independent) homogeneous, elliptic, classical analytic pseudodiffer-
ential operator of order k > 0. Let ϕh denote a solution to

(hkQ − 1)ϕh = 0.

We are now in a position to analyze the behavior of ϕh near |ξ | = 0.
Notice that for any χ̃ ∈ C∞

c (Rd) with χ̃ ≡ 1 near 0, and suppχ̃ ⊂ B(0, 1), (1 −
χ̃(hD))hkQ is a semiclassical pseudodifferential operator whose symbol is analytic
in the interior of {χ̃ = 0}. Thus, since Q is elliptic,

σ(hk(1 − χ̃(hD))Q)| ≥ c|ξ |k, |ξ | ≥ 1

and hence by Proposition 2.3 for χ ∈ C∞
c (R) with χ ≡ 1 on [−2, 2], for any δ > 0,

there exists c > 0 so that

(1 − χ(δ−1q(αx , αξ ))(1 − χ(δ−1|αξ |αx ))Tgeoϕh = O(e−c/h). (4.7)

In the next proposition, we estimate the eigenfunctions ϕh near the zero section by
their norm in a small annulus around the zero section. In particular, this shows that
the cutoff (1 − χ(δ−1|αξ |αx )) can be removed from (4.7).

Proposition 4.6 Let ϕh be a solution to

(hkQ − 1)ϕh = OL2(e−c/h), ‖ϕh‖L2 = 1. (4.8)

For ε > 0, let χε = χ(ε−1|αξ |αx ). Then for ε > 0 small enough, there exists c > 0
so that

‖χεTgeoϕh‖L2 = O(e−c/h).

Proof We first use the apriori estimate (4.7) together with Proposition 4.5 to decom-
pose the eigenfunction equation (4.8) into two (essentially) orthogonal pieces—one
supported near and one supported away from the zero section. We are then able to use
a simple Neumann series argument to obtain estimates near the zero section.
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Fix N > 0 to be chosen large enough later.

O(e−c/h) = Tgeo(h
kQ − 1)SgeoTgeoϕh =Tgeo(h

kQ − 1)Sgeo(χε+(1−χε))Tgeoϕh

= Tgeo(h
kQ − 1)Sgeo(χε + (1 − χ23N ε))Tgeoϕh + O(e−c/h) (4.9)

= (χ2N εTgeoh
kQSgeoχ2ε − 1)χεTgeoϕh

+ (1 − χ22N ε)Tgeo(h
kQ − 1)Sgeo(1 − χ23N ε)Tgeoϕh + O(e−c/h)

(4.10)

In (4.9), we used (4.7) to see that for any ψ with

suppψ ⊂ {|σ(q)(αx , αξ )| < 1} ∩ {|αξ |αx > 0},
ψTgeoϕh = O(e−c/h).

In (4.10), we choose N large enough so that Proposition 4.5 implies

(1 − χ2N ε)Tgeoh
kQSgeoχ2ε, χ22N εTgeoh

kQSgeo(1 − χ23N ε) = O(e−c/h).

In order to invert (χ2N εTgeoh
kQSgeoχ2ε − 1) by Neumann series, we obtain esti-

mates on χ2N εTgeoh
kQSgeoχ2ε. Since Sgeoχ2εTgeo is the anti-Wick quantization of

χ2ε, it is a pseudodifferential operator with symbol χ2ε(α),

‖Sgeoχ2εTgeo‖L2→L2 ≤ 1 + O(h), ‖(h∇)k Sgeoχ2εTgeo‖L2→L2 ≤ Cεk + O(h).

Therefore, ‖Q‖Hk→L2 ≤ C implies

‖TgeohkQSgeoχ2εTgeo‖L2→L2 ≤ (Cεk + O(h)).

In particular,

(χ2N εTgeoh
kQSgeoχ2ε − 1)−1 = −

∞∑
k=0

(χ2N εTgeoh
kQSgeoχ2ε)

k . (4.11)

Hence, applying (4.11) on the left of (4.10)

χεTgeoϕh + (1 − χ22N ε)Tgeo(h
kQ − 1)Sgeo(1 − χ23N ε)Tgeoϕh = O(e−c/h)

and, multiplying by χε/2 on the left, we have

χε/2Tgeoϕh = O(e−c/h).

��
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