
The Journal of Geometric Analysis (2019) 29:2702–2708
https://doi.org/10.1007/s12220-018-0091-6

A Note on Perelman’s No Shrinking Breather Theorem

Yongjia Zhang1

Received: 16 August 2018 / Published online: 17 September 2018
©Mathematica Josephina, Inc. 2018

Abstract
As an application of his entropy formula, Perelman (The entropy formula for the
Ricci flow and its geometric applications, 2002) proved that every compact shrinking
breather solution to the Ricci flow is a shrinking gradient Ricci soliton. Zhang (Asian
J Math 18(4):727–756, 2014) and Lu and Zheng (J Geom Anal, 1–7, 2017) proved no
shrinking breather theorems in the noncompact case under additional conditions. It is
a natural question to ask whether one can generalize Perelman’s no shrinking breather
theorem to the noncompact case assuming only bounded curvature. This is the result
we prove in this paper. Our proof uses Perelman’s L-geometry and an idea of Lu and
Zheng (J Geom Anal, 1–7, 2017). The novelty of this paper is that we can remove
the technical assumptions in Zhang (Asian J Math 18(4):727–756, 2014) and Lu and
Zheng (J Geom Anal, 1–7, 2017).
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1 Introduction

The Ricci flow on a manifold M can be regarded as an orbit in the space

Met(M)
/

(Diff ⊕ Scal), where Met(M) stands for the space of all the Riemannian

metrics on M and Diff ⊕ Scal denotes the group of self-diffeomorphisms of M and
scalings (with positive factors) in Met(M). The breathers are the periodic orbits in this
space.

Definition 1 A metric g(t) evolving by the Ricci flow on a Riemannian manifold M
is called a breather, if for some t1 < t2, there exists an α > 0 and a diffeomorphism
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φ : M → M , such that αg(t1) = φ∗g(t2). If α = 1, α < 1, or α > 1, then the breather
is called steady, shrinking, or expanding, respectively.

As a special case of the periodic orbits, the Ricci solitons, moving by diffeomor-
phisms and scalings, are the static orbits in the space Met(M)/(Diff ⊕ Scal).

Definition 2 A gradient Ricci soliton is a 3-tuple (M, g, f ), where (M, g) is a Rie-
mannian manifold and f is a smooth function on M called the potential function,
which satisfies

Ric + ∇2 f = λ

2
g,

where λ = 0, λ = 1, or λ = −1, corresponding to the cases of steady, shrinking, or
expanding solitons, respectively.

It is well understood that when moving by the 1-parameter family of diffeomor-
phisms generated by the potential function, along with a scaling factor, the pull-back
metric of the soliton satisfies the Ricci flow equation, and this Ricci flow is called the
canonical form of the Ricci soliton; one may refer to [3] for more details.

Perelman proved that on a closedmanifold, any periodic orbit inMet(M)/Diffmust
be static.

Theorem 3 (Perelman’s no breather theorem) A steady, shrinking, or expanding
breather on a closedmanifold is (the canonical form of) a steady, shrinking, or expand-
ing gradient Ricci soliton, respectively. In particular, in the steady or expanding case,
the breather is also Einstein. In dimension 3, this was originally proved by Ivey.

We extend the no shrinking breather theorem to the complete noncompact case.

Theorem 4 Every complete noncompact shrinking breather with bounded curvature
is (the canonical form of) a shrinking gradient Ricci soliton.

Our main technique is the L-geometry, an important technique for the Ricci flow
established by Perelman. In Sect. 2, we give a brief introduction to the L-functional.
In Sect. 3, we prove Theorem 4.

2 Perelman’sL-Geometry

The definitions and results in this section can be found in Perelman [8] and Naber [7].
We consider a backward Ricci flow (M, g(τ )), τ ∈ [0, T ], satisfying

∂

∂τ
g(τ ) = 2Ric(g(τ )). (1)

Let γ (τ) : [0, τ0] → M be a smooth curve. The L-functional of γ is defined by

L(γ ) :=
∫ τ0

0

√
τ
(
R(γ (τ ), τ ) + |γ̇ (τ )|2g(τ )

)
dτ. (2)
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The reduced distance between two space-time points (x0, 0), (x1, τ1), where τ1 > 0,
is defined by

l(x0,0)(x1, τ1) := 1

2
√

τ1
inf
γ

L(γ ), (3)

where the inf is taken among all the (piecewise) smooth curves γ : [0, τ1] → M such
that γ (0) = x0 and γ (τ1) = x1. When regarded as a function of (x1, τ1), l(x0,0)(·, ·) is
called the reduced distance based at (x0, 0). When the base point is understood, we
also write l(x0,0) as l. It is well known that the reduced volume based at (x0, 0)

V(x0,0)(τ ) :=
∫

M
(4πτ)−

n
2 e−l(x0,0)(·,τ )dg(τ ) (4)

is monotonically decreasing in τ . We often write V(x0,0)(τ ) as V(τ ) for simplicity. We
also remark here that the integrand (4πτ)− n

2 e−l of the reduced volume is a subsolution
to the conjugate heat equation

∂

∂τ
u − 	u + Ru = 0,

in the barrier sense or in the sense of distributions.
Nowwe consider an ancient solution (M, g(τ )), where τ ∈ [0,∞) is the backward

time. The Type I condition is the following curvature bound.

Definition 5 An ancient solution (M, g(τ )), where τ ∈ [0,∞) is the backward time,
is called Type I if there exists C < ∞, such that

|Rm|(τ ) ≤ C

τ
,

for every τ ∈ (0,∞).

To ensure the existence of a smooth limit, the κ-noncollapsing condition is often
required.

Definition 6 A backward Ricci flow is called κ-noncollapsed, where κ > 0, if for any
space-time point (x, τ ), any scale r > 0, whenever |Rm| ≤ r−2 on Bg(τ )(x, r) ×
[τ, τ + r2], it holds that Volg(τ )(Bg(τ )(x, r)) ≥ κrn .

We will use the following theorem of Naber [7].

Theorem 7 (Asymptotic shrinker for Type I ancient solution) Let (M, g(τ )), where
τ ∈ [0,∞) is the backward time, be a Type I κ-noncollapsed ancient solution to
the Ricci flow. Fix x0 ∈ M. Let l be the reduced distance based at (x0, 0). Let
{(xi , τi )}∞i=1 ⊂ M × (0,∞) be such that τi ↗ ∞ and

∞
sup
i=1

l(xi , τi ) < ∞. (5)
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Then {(M, τ−1
i g(ττi ), (xi , 1))τ∈[1,2]}∞i=1 converges, after possibly passing to a sub-

sequence, to the canonical form of a shrinking gradient Ricci soliton.

Remark 1 In Naber’s original theorem, he fixes the base points xi ≡ x0. However, it
is easy to observe from his proof that so long as (5) holds, all the estimates of l also
hold in the same way as in his case. Hence one may apply the blow-down shrinker
part of Theorem 2.1 in [7] to the sequence of space-time base points (xi , τi ) and the
scaling factors τ−1

i .

Remark 2 The estimates for l and the monotonicity formula for V in [7] do not
depend on the noncollapsing condition. According to Hamilton [4], if the noncol-
lapsing assumption is replaced by

∞
inf
i=1

inj
τ−1
i g(τi )

(xi ) > δ, (6)

where injg(x) stands for the injectivity radius of the metric g at the point x , and δ > 0
is a constant, then the conclusion of Theorem 7 still holds.

3 Proof of theMain Theorem

Following the argument in Lu and Zheng [6], we construct a Type I ancient solution to
the Ricci flow starting from a given shrinking breather. After scaling and translating
in time, we consider the backward Ricci flow (M, g0(τ ))τ∈[0,1], where g0(τ ) satisfies
(1), such that there exists α ∈ (0, 1) and a diffeomorphism φ : M → M , satisfying

αg0(1) = φ∗g0(0). (7)

Furthermore, we let C < ∞ be the curvature bound, that is,

sup
M×[0,1]

|Rm|(g(τ )) ≤ C . (8)

For notational simplicity, we define

τi =
i∑

j=0

α− j ,

where i = 0, 1, 2, ... Evidently, τi ↗ ∞ since α ∈ (0, 1), and we can find a C0 < ∞
depending only on α (for instance, one may let C0 = (1 − α)−1) such that

α−i ≤ τi ≤ C0α
−i , for every i ≥ 0. (9)

For each i ≥ 1, we define a Ricci flow

gi (τ ) := α−i (φi )∗g0
(
αi (τ − τi−1)

)
, where τ ∈ [τi−1, τi ]. (10)
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To see all these Ricci flows are well-concatenated, we apply (7) to observe that

g1(τ0) = α−1φ∗g0(0) = g0(1),

gi (τi−1) = α−i (φi )∗g0(0) = α−(i−1)(φi−1)∗g0(1)

= α−(i−1)(φi−1)∗g0
(
αi−1(τi−1 − τi−2)

)
= gi−1(τi−1).

Therefore, we define an ancient solution

g(τ ) =
{
g0(τ ) for τ ∈ [0, 1]
gi (τ ) for τ ∈ [τi−1, τi ] and i ≥ 1.

(11)

It then follows from the uniqueness theorem of Chen and Zhu [2] that the ancient
solution g(τ ) is smooth.

Now we proceed to show that (M, g(τ ))τ∈[0,∞), where g(τ ) is defined in (11),
is Type I. We need only to consider the case when τ ≥ 1. Let i ≥ 1 be such that
τ ∈ [τi−1, τi ]. Then

|Rm(g(τ ))| = |Rm(gi (τ ))| ≤ αi sup
M×[0,1]

∣∣∣Rm
(
(φi )∗g0(τ )

)∣∣∣ ≤ Cαi ,

where we have used (8), (10), and (11). Then we have

|Rm(g(τ ))| ≤ Cαi ≤ C

τ
τiα

i ≤ B

τ
, (12)

where we have used (9), and B = CC0 is independent of i .
With all these preparations, we are ready to prove our main theorem.

Proof of Theorem 4 Fix an arbitrary point y ∈ M as the base point, and for each i ≥ 0
we define

xi = φ−(i+1)(y). (13)

In Lu and Zheng [6], they made the assumption that the {xi }∞i=1 do not drift
away to spatial infinity so that they may apply Theorem 4.1 in [1] to show that
{(M, τ−1

i g(ττi ), (xi , 1))τ=[1,2]}∞i=1 converges, after passing to a subsequence, to the
canonical formof a shrinking gradient Ricci soliton. Insteadwewill show that l(xi , τi ),
where i ≥ 0 and l is the reduced distance based at (y, 0), is a bounded sequence. To
see this, we let σ : [0, 1] → M be a smooth curve such that σ(0) = y and σ(1) = x0.
Let A < ∞ be such that

|σ̇ (τ )|g0(τ ) ≤ A, for all τ ∈ [0, 1]. (14)

For each i ≥ 0, we define

σi (τ ) := φ−(i+1) ◦ σ(αi+1(τ − τi )), where τ ∈ [τi , τi+1]. (15)
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We observe that these σi ’s and σ altogether define a continuous curve in M :

σ0(τ0) = φ−1 ◦ σ(0) = φ−1(y) = x0 = σ(1),

σi (τi ) = φ−(i+1) ◦ σ(0) = φ−i ◦ σ(1)

= φ−i ◦ σ(αi (τi − τi−1)) = σi−1(τi ).

We then define γi : [0, τi+1] → M , where i ≥ 0, as

γi (τ ) :=
{

σ(τ) when τ ∈ [0, 1],
σ j (τ ) when τ ∈ [τ j , τ j+1] and 0 ≤ j ≤ i .

Evidently γi (τ ) is piecewise smooth, and γi (0) = y, γi (τi+1) = φ−(i+2)(y) = xi+1.
We compute for i ≥ 0

L(γi ) = L(σ ) +
i∑

j=0

∫ τ j+1

τ j

√
τ
(
R(σ j (τ ), τ ) + |σ̇ j (τ )|2g j+1(τ )

)
dτ

≤ D +
i∑

j=0

∫ τ j+1

τ j

√
τ
( B

τ
+ Aα j+1

)
dτ,

where in the last inequality we have used D, a constant independent of i , to represent
L(σ ), and we have used the Type I condition (12), the definition (15) of σ j , and the
assumption (14). Continuing the computation using (9), we have

L(γi ) ≤ D + C1

i∑
j=0

α− j+1
2 ,

where C1 is a constant independent of i . It follows from the definition (3) that

l(xi+1, τi+1) ≤ 1

2
√

τi+1
L(γi )

≤ 1

2
Dα

i+1
2 + 1

2
C1

i∑
j=0

α
j
2 ≤ C2 < ∞,

where C2 is a constant independent of i and where we have used α
1
2 ∈ (0, 1).

Now we consider the sequence

{(M, τ−1
i g(ττi ), (xi , 1))τ∈[1,α−1]}∞i=1. (16)

We observe that

τ−1
i g(τi ) = τ−1

i α−(i+1)
(
φi+1

)∗
g0(0),
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where τ−1
i α−(i+1) is bounded from above and below by constants independent of i ,

because of (9). Taking into account the definition (13) of xi , we can use

injg0(0)(y) > 0

to verify the condition (6). It follows from Theorem 7 that (16) converges smoothly
to the canonical form of a shrinking gradient Ricci soliton. Furthermore, since
(M, τ−1

i g(τi ), xi ) and (M, g0(0), y) differ only by bounded scaling constants and
diffeomorphisms that preserve the base points, by the definition of Cheeger–Gromov
convergence, such diffeomorphisms do not affect the limit. In other words, there exists
a constant C3 > 0 such that

(M, τ−1
i g(τi ), xi ) → (M,C3g0(0), y)

in the pointed smooth Cheeger–Gromov sense. Therefore, (M, g0(0), y) also has a
shrinker structure up to scaling. It then follows from the backward uniqueness theorem
of Kotschwar [5] that the shrinking breather (M, g0(τ ))τ∈[0,1] is the canonical form
of a shrinking gradient Ricci soliton. ��
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