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Abstract
We introduce the Local Increasing Regularity Method (LIRM) which allows us to get
from local a priori estimates, on solutions u of a linear equation Du = ω, global ones.
As an application we shall prove that if D is an elliptic linear differential operator of
order m with C∞ coefficients operating on the sections of a complex vector bundle
G := (H , π, M) over a compact Riemannian manifold M without boundary and
ω ∈ Lr

G(M)∩ (kerD∗)⊥, then there is a u ∈ Wm,r
G (M) such that Du = ω on M .Next

we investigate the case of a compactmanifoldwith boundary by using the “Riemannian
double manifold.” In the last sections we study the more delicate case of a complete
but non-compact Riemannian manifold by the use of adapted weights.

Keywords Elliptic linear equation · Riemannian manifold · Sobolev estimates

Mathematics Subject Classification 35J58 · 58J05 · 58A14

1 Introduction

Let (M, g) be a complete Riemannian manifold and � := dd∗ + d∗d be the Hodge
laplacian on it. Let �p(M) be the set of p-forms C∞ smooth on M, then we have
� : �p → �p. The Poisson equation �u = ω for ω ∈ �p(M) was extensively
studied. Set Lr

p the closure of �p(M) in the space Lr (M) for the volume measure of

M . We define as usual the Sobolev spaces Wk,r
p (M) to be the set of p-forms on M in

Lr
p(M) together with all its covariant derivatives up to order k.

Then Lr
p estimates for the solutions of the Poisson equation are essentially equivalent

to the Lr
p Hodge decomposition:
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2566 E. Amar

Lr
p(M) = Hr

p ⊕ dW 1,r
p−1(M) ⊕ d∗W 1,r

p+1(M).

Let us recall some results in the case M compact without boundary.
The basic work of CB Morrey [22] for ω ∈ L2(M) has led to the L2 Hodge decom-
position:

L2
p(M) = H2

p ⊕ dW 1,2
p−1(M) ⊕ d∗W 1,2

p+1(M),

which is useful in Algebraic Geometry, see C. Voisin [28].
In 1995 Scott [25] proved a strong Lr Hodge decomposition:

∀r > 1, Lr
p(M) = Hr

p ⊕ dW 1,r
p−1(M) ⊕ d∗W 1,r

p+1(M).

Schwarz [24] proved the same result but in a compact Riemannian manifold with
boundary.
For the case of a complete non-compact Riemannian manifold, there are also classical
results.

In 1949, Kodaira [20] proved that the L2-space of p-forms on (M, g) has the (weak)
orthogonal decomposition:

L2
p(M) = H2

p ⊕ dDp−1(M) ⊕ d∗Dp+1(M),

and in 1991 Gromov [15] proved a strong L2 Hodge decomposition, under the hypoth-
esis that � has a spectral gap in L2

p:

L2
p(M) = H2

p ⊕ dW 1,2
p−1(M) ⊕ d∗W 1,2

p+1(M).

There are also nice results by X-D. Li [21] who proved a strong Lr Hodge decom-
position on complete non-compact Riemannian manifold. See the references list on
these questions therein.
Finally, by using the raising steps method, I proved in [5] that we have a non-classical
weighted Lr

p(M)Hodge decomposition in a complete non-compact Riemannian man-
ifold.

The aim of this work is to extend these results to the general case of a linear
elliptic operator D of orderm in place of the Hodge Laplacian. If (M, g) is a compact
boundary-less Riemannian manifold, this was done in the L2 case, for instance, by
Warner [29] and Donaldson [10]. See the references therein.

Here we shall study the equation Du = ω for a general linear elliptic operator D
of order m acting on sections of G := (H , π, M), a complex Cm vector bundle over
M of rank N with fiber H in the Riemannian manifold M .

Let M be a complete n-dimensional Cm Riemannian manifold for some m ∈ N,

and let G := (H , π, M) be a complex Cm vector bundle over M of rank N with fiber
H . By a trivializing coordinate system (Uϕ, ϕ, χϕ) for G we mean a chart ϕ of M
with domain Uϕ ⊂ M together with a trivializing map:

π−1(Uϕ) → Uϕ×H , g → (π(g), χϕ(g)),
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The LIR Method 2567

over Uϕ for G. Given a section u of G, its local representation uϕ with respect to
(Uϕ, ϕ, χϕ) is defined by uϕ := χϕ ◦ u ◦ ϕ−1.

Then given s ∈ [0, m] and r ∈ (1,∞), we denote by Ws,r
G (M) the vector space of

all sections u of G such that ψuϕ ∈ Ws,r (ϕ(Uϕ), H) for each Cm function ψ with
compact support in ϕ(Uϕ) ⊂ R

n and each trivializing coordinate system (ϕ,Uϕ, χϕ)

for G, where sections coinciding almost everywhere have been identified and Ws,r

is the usual Sobolev space whose main properties are recalled in the Sect. 7.2 of
Appendix. In particular we have Lr

G(M) = W 0,r
G (M).

By analogy with the bundle of p-forms on M, we shall call G-forms the measurable
sections of G.

The method we shall use is different from the previous ones. We shall provide a
way to go from local results to global ones by using the Local Increasing Regularity,
LIR for short, given by the fundamental elliptic estimates. We shall introduce a quite
general method, the LIR method, which allows us to get the generalization to Lr of
the result of Warner [29] and Donaldson [10] done for L2.

Theorem 1.1 Let (M, g) be a C∞ smooth compact Riemannian manifold without
boundary. Let D : G → G be an elliptic linear differential operator of order
m with C∞ coefficients acting on the complex Cm vector bundle G over M . Let
ω ∈ Lr

G(M) ∩ (kerD∗)⊥ with r ≥ 2. Then there is a bounded linear operator
S : Lr

G(M) ∩ (kerD∗)⊥ → Wm,r
G (M) such that DS(ω) = ω on M . So, with u := Sω

we get Du = ω and u ∈ Wm,r
G (M).

By duality we get the range r < 2 as we did in [3], using an avatar of the Serre
duality [26].

To study the same problem when M has a smooth boundary ∂M, we shall use the
technique of the “Riemannian double.”

The “Riemannian double” 
 := 
(M) of M, obtained by gluing two copies of
(a slight extension of) M along ∂M, is a compact Riemannian manifold without
boundary. Moreover, by its very construction, it is always possible to assume that 


contains an isometric copy M of the original domain M . See Guneysu and Pigola [16,
Appendix B].

We shall need:

Definition 1.2 We shall say that D has the weak maximum property, WMP, if, for any
smooth DG-harmonic h, i.e., a G-form such that Dh = 0 in M, smooth up to the
boundary ∂M, which is flat on ∂M, i.e., zero on ∂M with all its derivatives, then h is
zero in M .

This definition has to be linked to Definition [19, Introduction, p. 948]:

Definition 1.3 We shall say that an operator D has the Unique Continuation Property,
UCP, if Du = 0 on 
 and u = 0 in an open set O 
= ∅ of 
 implies that u ≡ 0 in 
.

WMP is weaker than the UCP, because if D has the UCP and if h is flat on ∂M,

then we can extend h by zero in Mc in 
, which makes h still DG-harmonic, and
apply the UCP to get that h is zero in M .

The Hodge Laplacian in a Riemannian manifold has the UCP for p-forms by a
difficult result by Aronszajn et al. [6]. Then we get:
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2568 E. Amar

Theorem 1.4 Let M be a smooth compact Riemannianmanifoldwith smooth boundary
∂M . Let ω ∈ Lr

G(M). There is a form u ∈ Wm,r
G (M), such that Du = ω and

‖u‖Wm,r
G (M) ≤ c‖ω‖LrG (M), provided that the operator D has the WMP.

We shall use the same ideas as we did in [5] to go from the compact case to the
non-compact one.
First we have to define am, ε-admissible ball centered at x ∈ M . Its radius R(x) must
be small enough to make that ball like its euclidean image. Precisely:

Definition 1.5 Let (M, g) be a Riemannian manifold and x ∈ M .We shall say that the
geodesic ball B(x, R) is m, ε admissible if there is a chart ϕ : (y1, . . . , yn) → R

n

defined on it with

(1) (1 − ε)δi j ≤ gi j ≤ (1 + ε)δi j in B(x, R) as bilinear forms,

(2)
∑

|β|≤m−1

sup i, j=1,...,n, y∈Bx (R)

∣∣∂βgi j (y)
∣∣ ≤ ε.

We naturally take ε < 1 in order to have that the Riemannian metric in the admissible
ball be equivalent to the euclidean one in Rn .

Of course, without any extra hypotheses on the Riemannian manifold M, we have
∀m ∈ N, m ≥ 2, ∀ε > 0, ∀x ∈ M, taking gi j (x) = δi j in a chart on B(x, R) and
the radius R small enough, the ball B(x, R) is m, ε admissible.

Definition 1.6 Let x ∈ M, we set R′(x) = sup {R > 0 :: B(x, R) is ε admissible}.
We shall say that Rε(x) := min (1, R′(x)) is the m, ε admissible radius at x .

Our admissible radius is bigger than the harmonic radius rH (1 + ε, m − 1, 0)
defined in the Hebey’s book [17, p. 4], because we do not require the coordinates to
be harmonic. I was strongly inspired by this book.

When comparing non-compact M to the compact case treated above, we have four
important issues:

(0) we have no longer, in general, a global solution u ∈ L2
G(M) of Du = ω for a

G-form ω ∈ L2
G(M) verifying ω ⊥ kerD∗. So we have to make this “threshold”

hypothesis, which depends on G.

In case the elliptic operator D is essentially self-adjoint, this amounts to ask
that its spectrum has a gap near 0, i.e., ∃δ > 0 such that D has no spectrum in
]0, δ[. We shall note this hypothesis (THL2G). Moreover, because L2

G(M) is a
Hilbert space, we have that the u ∈ L2

G(M), Du = ω with the smallest norm is
given linearly with respect to ω. This means that the hypothesis (THL2G) gives a
bounded linear operator S : L2

G(M) → L2
G(M) such that D(Sω) = ω provided

that ω ⊥ kerD∗.
(1) The “ellipticity constant” may go to zero at infinity and we prevent this by asking

that D is uniformly elliptic in the sense of Definition 3.1.
To be sure that the constants in the local elliptic inequalities are uniform, we
make also the hypothesis that the coefficients of D are in C1(M). These are the
hypotheses (UEAB) in Definition 6.3.

(i) The “admissible” radius may go to 0 at infinity, which is the case, for instance, if
the canonical volume measure dvg of (M, g) is finite and M is not compact.

123
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(ii) If dvg is not finite, which is the case, for instance, if the “admissible” radius is
bounded below, then G-forms in Lt

G(M) are generally not in Lr
G(M) for r < t .

We address these two last problems by the use of adapted weights on (M, g). These
weights are relative to a Vitali type covering Cε of “admissible balls”: the weights are
positive functions which vary slowly on the balls of the covering Cε .

To state our result in the case of a complete non-compact Riemannian manifold M
without boundary, we shall use the following definition:

Definition 1.7 We shall define the Sobolev exponents Sk(r) by
1

Sk(r)
:= 1

r
− k

n
where n is the dimension of the manifold M .

Now we suppose we have an elliptic operator D with C1(M) smooth coefficients, of
orderm, operating on the vector bundleG := (H , π, M) over M .We set tl := Sml(2).
We suppose that tl−1 ≤ r < tl , and tl−1 < ∞.

We set the weights, with R(x) the admissible radius at the point x ∈ M :

wl(x) = R(x)lmtl−1 and vr (x) := R(x)

(
r
tl

−1
)
+(l+2)mr

.

Now we can state the main result of this section, where we omit the subscript G to
ease the notation.

Theorem 1.8 Under hypotheses (THL2G) and (UEAB), we have provided that:

ω ∈ L2(M) ∩ Ltl−1(M, wl), ω ⊥ kerD∗,

that u := Sω verifies Du = ω with the estimates:

‖u‖Lr (M,vr ) ≤ max
(
‖ω‖Ltl−1 (M,wl )

, ‖ω‖L2(M)

)
.

We also have with the same u:

‖u‖Wm,r (M,vr ) ≤ c1‖ω‖Ltl (M,vr )
+ c2 max

(‖ω‖Ltl−1 (M,wl )
, ‖ω‖L2(M)

)
.

Remark 1.9 If the admissible radius R(x) is uniformly bounded below, we can forget
the weights and we get the existence of a solution u of Du = ω with:

‖u‖Lr (M) ≤ max
(‖ω‖Ltl−1 (M), ‖ω‖L2(M)

)
.

‖u‖Wm,r (M) ≤ c1‖ω‖Ltl (M) + c2 max
(‖ω‖Ltl−1 (M), ‖ω‖L2(M)

)
.

An advantage of this method is that it separates cleanly the geometry and the
analysis:

• The geometry controls the behavior of the admissible radius R(x) as a function of
x in M . For instance by Theorem 1.3 in Hebey [17], we have that the harmonic
radius rH (1+ ε, m, 0) is bounded below if the Ricci curvature Rc verifies ∀ j ≤
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m,

∥∥∥∇ j Rc
∥∥∥∞ < ∞ and the injectivity radius is bounded below. This implies that

the m, ε admissible radius R(x) is also bounded below.
• The analysis gives the weights as function of R(x) to get the right estimates. For
instance if the admissible radius R(x) is bounded below, then we can forget the
weights and we get more “classical” estimates, as in Remark 1.9.

I am indebted to Bachelot, Helffer, Métivier, and Sjöstrand for clearing strongly my
knowledge on the local existence of solutions to system of elliptic equations needed
in the study of elliptic equations acting on vector bundles.

This work is presented in the following way.

• In the next section we state the LIRmethod in the general context of metric spaces.
• In Sect. 3 we apply it for the case of elliptic equations in a compact connected
Riemannian manifold without boundary.

• In Sect. 4 we study the case of elliptic equations in a compact connected Rieman-
nian manifold with a smooth boundary.

• In Sect. 5 we show that the LIR condition, which is a priori estimates, implies the
existence of a local solution with good estimates.

• In Sect. 6 we study the more delicate case of elliptic equations in a complete
non-compact connected Riemannian manifold without boundary.

• Finally in Appendix we have put technical results concerning the ε admissible
balls, Vitali coverings, and Sobolev spaces.

If the general ideas under this work are quite simple and natural, unfortunately the
computations to make them work are a little bit technical.

2 The Local Increasing Regularity Method (LIRM)

Let X be a complete metric space with a positive σ -finite measure μ. Let � be a
relatively compact domain in X .We shall denote E p(�) the set ofCp valued functions
on �.

This means that ω ∈ E p(X) ⇐⇒ ω(x) = (ω1(x), . . . , ωp(x)). We put a punctual

normonω in E p(�) in the followingway: for any x ∈ �, |ω(x)|2 := ∑p
j=1

∣∣ω j (x)
∣∣2.

We consider the Lebesgue space Lr
p(�), i.e.,

ω ∈ Lr
p(�) ⇐⇒ ‖ω‖rLrp(�) :=

∫

�

|ω(x)|r dμ(x) < ∞.

The space L2
p(�) is a Hilbert space with the scalar product

〈
ω,ω′〉 :=

∫
�

(∑p
j=1 ω j (x)ω̄′

j (x)
)
dμ(x).

We are interested in solutions of a linear equation Du = ω, where D = Dp is a
linear operator acting on E p. This means that D is a matrix whose entries are linear
operators on functions.

We shall make the following hypotheses.
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The LIR Method 2571

Let � be a relatively compact connected domain in X . Let B := B(x, R) be a ball in

X and B1 := B(x, R/2). There is a τ > 0 with
1

t
= 1

r
− τ such that:

(i) Local Increasing Regularity (LIR), we have

∀x ∈ �̄, ∃R > 0 :: ∀r ≥ s, ∃cl > 0, ∀u ∈ Lr
p(B),

‖u‖Lt
p(B

1) ≤ cl(‖Du‖Lrp(B) + ‖u‖Lrp(B)).

It may happen, in the case X is a manifold, that we have a better regularity locally:

(i’) Local Increasing Regularity (LIR) with Sobolev estimates: there is α > 0 such
that

∀x ∈ �̄, ∃R > 0 :: ∀r ≥ s, ∃cl > 0, ∀u ∈ Lr
p(B),

‖u‖Wα,r
p (B1) ≤ cl(‖Du‖Lrp(B) + ‖u‖Lrp(B)).

(ii) Global resolvability. There exists a threshold s ∈ (1,∞) such that we can solve
Dw = ω globally in � with Ls − Ls estimates. It may happen that there is a
constrain: let K be a subspace of Ls′

p (�), s′ the conjugate exponent of s, then
we can solve Dw = ω if ω ⊥ K . In case with no constrain, we set K = {0}.
This means:

∃cg > 0, ∃w s.t . Dw = ω in � and ‖w‖Ls
p(�) ≤ cg‖ω‖Ls

p(�),

provided that ω ⊥ K .

It may happen, in the case X is a manifold, that we have a better regularity for
the global existence:

(ii’) Sobolev regularity: We can solve Dw = ω globally in � with Ls − Wα,s

estimates, i.e.,

∃cg > 0, ∃w s.t . Dw = ω in � and ‖w‖Wα,s
p (�) ≤ cg‖ω‖Ls

p(�),

provided that ω ⊥ K .

Then we have:

Theorem 2.1 Under the assumptions (i), (ii) above, there is a positive constant c f

such that for r ≥ s, if ω ∈ Lr
p(�), ω ⊥ K there is a u ∈ Lt

p(�) with
1

t
= 1

r
− τ,

such that Du = ω and ‖u‖Lt
p(�) ≤ c f ‖ω‖Lrp(�).

If moreover we have (i’) and (ii’) and the manifold X admits the Sobolev embedding
theorems, then u ∈ Wα,r

p (�) with control of the norm.

Proof Let ω ∈ Lr
p(�), r > s. Because � is relatively compact and μ is σ -finite,

we have that ω ∈ Ls
p(�). The global resolvability, condition (ii), gives that there is a

u ∈ Ls
p(�) such that Du = ω, provided that ω ⊥ K .
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The LIR, condition (i), gives that for any x ∈ �̄ there is a ball B := B(x, R) and

a smaller ball B1 := B(x, R/2) such that, with
1

t1
= 1

s
− τ (we often forget the

subscript p for simplicity),

‖u‖Lt1 (B1) ≤ C(‖Du‖Ls (B) + ‖u‖Ls (B))

= C(‖ω‖Ls (B) + ‖u‖Ls (B)) ≤ C(‖ω‖Lr (B) + ‖u‖Ls (B)),

because ‖ω‖Ls (B) � ‖ω‖Lr (B), since r ≥ s and �̄ is compact.
Then applying again the LIR we get, with the smaller ball B2 := B(x, R/4) and with
t2 := min(r , t1),

‖u‖Lt2 (B2) ≤ C(‖ω‖Lt1 (B1) + ‖u‖Lt1 (B1)) � (‖ω‖Lr (B) + ‖u‖Ls (B)).

• If t1 ≥ r ⇒ t2 = r , and ‖u‖Lr (B1) � (‖Du‖Lr (B) + ‖u‖Ls (B)) and with
1

t
=

1

r
− τ ,

‖u‖Lt (B2) � (‖ω‖Lr (B1) + ‖u‖Lr (B1)) � (‖ω‖Lr (B) + ‖u‖Ls (B)).

It remains to cover �̄ by a finite set of balls B2 to be done, because

∑

B2

‖u‖Lt (B) � ‖u‖Lt (�) and ‖u‖Ls (�) � ‖ω‖Ls (�) by the threshold hypothesis.

• If t1 < r , we still have:

‖u‖Lt2 (B2) � (‖ω‖Lr (B1) + ‖u‖Lt1 (B1)).

Then applying again the LIR we get, with the smaller ball B3 := B(x, R/8) and with
t3 := min(r , t2),

‖u‖Lt3 (B3) � (‖ω‖Lr (B2) + ‖u‖Lt2 (B2)) � (‖ω‖Lr (B1) + ‖u‖Lt1 (B1))

� (‖ω‖Lr (B) + ‖u‖Ls (B)).

Hence if t2 ≥ r we are done as above, if notwe repeat the process. Because 1
tk

= 1
s −kτ

after a finite number k ≤ 1 + 1
τ
( r−s

2s ) of steps, we have tk ≥ r and we get, with
Bk := B(x, R/2k) and another constant C, ‖u‖Ltk (Bk ) ≤ C(‖ω‖Lr (B) + ‖u‖Ls (B)).

It remains to cover �̄ with a finite number of balls Bk(x) to prove the first part of the
theorem.

For the second part, the global resolvability, condition (ii), gives that there is a
global solution u ∈ Ls(�) such that Du = ω in � with ‖u‖Ls (�) � ‖ω‖Ls (�). Now
if we have the LIR with Sobolev estimates, condition (i’), then
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∀x ∈ �̄, ∃R > 0 :: ∀r ≥ s, ∃C > 0, ∀v ∈ Lr (B(x, R)),

‖v‖Wα,r (B1) ≤ C(‖Dv‖Lr (B) + ‖v‖Lr (B)),

with, as usual, B := B(x, R) and B1 := B(x, R/2).
So, because r ≥ s, and �̄ is compact, ω ∈ Ls(�) and we get

‖u‖Wα,s (B1) � (‖Du‖Ls (B) + ‖u‖Ls (B)) � (‖ω‖Lr (B) + ‖u‖Ls (B)).

The Sobolev embedding theorems, true by assumption here, give ‖u‖Lτ (B1) ≤
c‖u‖Wα,s (B1) with

1
τ

= 1
s − α

n .

So applying again the LIR condition in a ball B2 := B(x, R/4), we get, with
t1 := min(τ, r),

‖u‖Wα,t1 (B2) � (‖ω‖Lt1 (B) + ‖u‖Lt1 (B1)) � (‖ω‖Lr (B) + ‖u‖Ls (B)).

Now we proceed as above. If τ ≥ r ⇒ t1 = r , then we apply again the LIR condition
to a smaller ball B3 := B(x, R/8), we get

‖u‖Wα,r (B3) � (‖ω‖Lr (B) + ‖u‖Lr (B2)) � (‖ω‖Lr (B) + ‖u‖Ls (B)).

and we are done by covering �̄ by a finite set of balls B3 as above.
If τ < r , then we iterate the process as in the previous part, adding the use of the

Sobolev embedding theorem to increase the exponent, up to the moment we reach r .
��

Remark 2.2 We notice that in fact the solution u in Theorem 2.1 is the same as the one
given by condition (ii). It is a case of “self improvement” of estimates.

3 Application to Elliptic PDE

Let (M, g) be a C∞ smooth connected compact Riemannian manifold without bound-
ary. We shall denote G := (H , π, M) a complex Cm vector bundle over M of rank
N with fiber H . The fiber π−1(x) � H is equipped with a scalar product varying
smoothly with x in M .

We can define punctually, for ω, ϕ ∈ C∞
G (M), two smooth sections of G over M,

a scalar product (ω, ϕ)(x) := 〈ω(x), ϕ(x)〉Hx
where Hx := π−1(x) is the fiber over

x ∈ M . This gives a modulus: for x ∈ M, |ω| (x) := √
(ω, ω)(x). By using the

canonical volume dvg on M we get a scalar product:

〈ω, ϕ〉 :=
∫

M
(ω, ϕ)(x)dvg(x),
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2574 E. Amar

for G-forms in L2
G(M), i.e., such that

‖ω‖2
L2
G (M)

:=
∫

M
|ω|2 (x)dvg(x) < ∞.

The same way we define the spaces Lr
G(M) of G-forms ω such that

‖ω‖rLrG (M) :=
∫

M
|ω|r (x)dvg(x) < ∞.

Let D : G → G be a linear differential operator of order m with C∞ coefficients.
There is a formal adjoint D∗ : G → G defined by the identity 〈D∗ f , g〉 = 〈 f , Dg〉.

We shall use the definition of ellipticity given by Warner [29, Definition 6.28, p.
240] or by Donaldson [10, p. 17].

Let D : E → F be a differential operator of order m operating from the sections
of the vector bundle E to the ones of the vector bundle F over M . Then at each point
x ∈ M and for each cotangent vector ξ ∈ T ∗M there is a linear map σξ : Ex → Fx
which can be defined in the followingway: choose a section s of E, and a function f on
M, vanishing at x and with d f = ξ at x . Then we can define σξ (s(x)) = D( f ms)(x).
We can check that this definition is independent of the choice of f , s. Now we can
state:

Definition 3.1 An operator D : E → F is elliptic if for each non-zero ξ ∈ T Mx , the
linear map σξ is an isomorphism from Ex to Fx . We shall say that D is uniformly
elliptic if the isomorphism σξ and its inverse are bounded independently of the point
x ∈ M for |ξ | = 1.

Then for s = 2, Warner [29, Exercise 21, p. 257] or also Donaldson [10, Theorem 4,
p. 16] proved:

Theorem 3.2 Let D be an operator of order m acting on sections of G := (H , π, M)

in the connected compact Riemannian manifold M without boundary. Suppose that D
is elliptic and with C∞ smooth coefficients.

1. In L2
G(M), kerD, kerD∗ are finite dimensional vector spaces.

2. We can solve the equation Du = ω in L2
G(M) if and only if ω is orthogonal to

kerD∗.

Moreover, because L2
G(M) is a Hilbert space, we have that there is a bounded linear

operator S : L2
G(M) → L2

G(M) such that D(Sω) = ω provided that ω ⊥ kerD∗.
On the other hand, we have local interior regularity by Hörmander [18, Theorem

17.1.3, p. 6], in the case of functions. We quote it in the weakened form we need:

Theorem 3.3 (LIR) Let D be an operator of order m on C∞(M) in the complete
Riemannian manifold M . Suppose that D is elliptic and with C∞ smooth coefficients.
Then, for any x ∈ M there is a ball Bx := B(x, R) and a smaller ball B ′

x relatively
compact in Bx , such that:

‖u‖Wm,r (B′
x )

≤ C(‖Du‖Lr (Bx ) + ‖u‖Lr (Bx )).
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For the case of G-forms, we need to use Agmon et al. [2, Theorem 10.3]:

Theorem 3.4 Positive constants r1 and K1 exist such that, if r ≤ r1 and the∥∥u j
∥∥
t j
, j = 1, . . . , N , are finite, then

∥∥u j
∥∥
l+t j

also is finite for j = 1, . . . , N ,

and

∥∥u j
∥∥
l+t j

≤ K1

⎛

⎝
∑

j

∥∥Fj
∥∥
l−s j

+
∑

j

∥∥u j
∥∥
0

⎞

⎠.

The constants r1, K1 depend on n, N , t ′, A, b, p, k,, and l and also on the modulus
of continuity of the leading coefficients in the li j .

From this theorem we get quite easily what we want (in the case r = 2 and in
its global version, F.W. Warner [29, Theorem 6.29, p. 240] quotes it as Fundamental
Inequality):

Theorem 3.5 (LIR) Let D be an operator of order m on G in the complete Riemannian
manifold M . Suppose that D is elliptic and with C1(M) smooth coefficients. Then, for
any x ∈ M there is a ball B := B(x, R) and, with the ball B1 := B(x, R/2), we
have

‖u‖Wm,r
G (B1) ≤ c1‖Du‖LrG (B) + c2R

−m‖u‖LrG (B)).

Moreover the constants are independent of the radius R of the ball B.

Proof Let x ∈ M ; we choose a chart (V , ϕ(y)) so that gi j (x) = δi j and ϕ(V ) = Be

where Be = Be(0, Re) is a Euclidean ball centered at ϕ(x) = 0 and gi j are the
components of the metric tensor w.r.t. ϕ. We choose also the chart (V , ϕ) to trivialize
the bundle G. So read in (V , ϕ) we have that the sections of G are just CN valued
functions.

We denote by Dϕ the operator D read in the map (V , ϕ). This is still an elliptic
system operating onCN valued functions in Be inRn . Let χ ∈ D(Be) such that χ = 1
in B1

e := Be(0, Re/2) � Be. Let u be a G-form in Lr
G(ϕ−1(Be)) such that Du is

also in Lr
G(ϕ−1(Be)). Denote by uϕ the C

N valued functions u read in (V , ϕ). We
can apply the Agmon et al. Theorem 3.4 to χuϕ and we get, with the constant K
independent of the radius Re of Be,

∥∥χuϕ

∥∥
Wm,r (Be)

≤ K
(∥∥Dϕ(χuϕ)

∥∥
Lr (Be)

+ R−m
e

∥∥χuϕ

∥∥
Lr (Be)

)
. (3.1)

We have that Dϕ(χuϕ) = χDϕ(uϕ) + uϕDϕχ + �ϕ, with �ϕ := Dϕ(χuϕ) −
χDϕ(uϕ) − uϕDϕχ. The point is that �ϕ contains only derivatives of the j th com-
ponent of uϕ of order strictly less than in the j th component of uϕ in Dϕuϕ. So we
have

∥∥�ϕ

∥∥
Lr (Be)

≤ ‖∂χ‖∞
∥∥χuϕ

∥∥
Wm−1,r (Be)

≤ R−1
e

∥∥χuϕ

∥∥
Wm−1,r (Be)

.
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We can use the “Peter-Paul” inequality [14, Theorem 7.28, p. 173] (see also [29,
Theorem 6.18, (g) p. 232] for the case r = 2.)

∀ε > 0, ∃Cε > 0 :: ∥∥χuϕ

∥∥
Wm−1,r (Be)

≤ ε
∥∥χuϕ

∥∥
Wm,r (Be)

+ Cε−m+1
∥∥χuϕ

∥∥
Lr (Be)

.

We choose ε = Reη and we get

R−1
e

∥∥χuϕ

∥∥
Wm−1,r (Be)

≤ η
∥∥χuϕ

∥∥
Wm,r (Be)

+ Cη−m+1R−m
e

∥∥χuϕ

∥∥
Lr (Be)

.

Putting this in (3.1) we get

∥∥χuϕ

∥∥
Wm,r (Be)

≤ K
(∥∥χDϕuϕ

∥∥
Lr (Be)

+ η
∥∥χuϕ

∥∥
Wm,r (Be)

+Cη−m+1R−m
e

∥∥χuϕ

∥∥
Lr (Be)

+ ∥∥uϕDϕχ
∥∥
Lr (Be)

)
.

But again
∥∥Dϕχ

∥∥∞ ≤ R−m
e so, choosing η small enough to get ηK ≤ 1/2, we have

with new constants still independent of Re:

1

2

∥∥χuϕ

∥∥
Wm,r (Be)

≤ c1
∥∥χDϕuϕ

∥∥
Lr (Be)

+ c2R
−m
e

∥∥χuϕ

∥∥
Lr (Be)

.

Now χ = 1 in B1
e and χ ≤ 1 gives, changing the constants suitably,

∥∥uϕ

∥∥
Wm,r (B1

e )
≤ c1

∥∥Dϕuϕ

∥∥
Lr (Be)

+ c2R
−m
e

∥∥uϕ

∥∥
Lr (Be)

. (3.2)

It remains to go back to the manifold M to end the proof. ��
We deduce the local elliptic inequalities:

Corollary 3.6 Let D be an operator of order m on G in the complete Riemannian
manifold M . Suppose that D is elliptic and with C1(M) smooth coefficients. Then, for
any x ∈ M there is a ball B := B(x, R) and the smaller ball B1 := B(x, R/2), such
that, ∀k ∈ N, with D in Ck+1(M) here, we get for any G-form u ∈ Wm+k,r

G (B1) :

‖u‖Wm+k,r
G (B1)

≤
k∑

j=0

c j R
− jm‖Du‖

Wk− j,r
G (B)

+ ck+1R
−(k+1)m‖u‖LrG (B).

Moreover the constants are independent of the radius R of the ball B.

Proof As for Theorem 3.5, we choose a chart (V , ϕ) trivializing the bundle G and so
that gi j (x) = δi j and ϕ(V ) = B where B is a Euclidean ball centered at ϕ(x) = 0
and gi j are the components of the metric tensor w.r.t. ϕ. We start with the Eq. (3.2) in

R
n and we apply it to ∂ j uϕ := ∂uϕ

∂ y j
instead of uϕ. We get

∥∥∂ j uϕ

∥∥
Wm,r (B1)

≤ c1
∥∥Dϕ(∂ j uϕ)

∥∥
Lr (B)

+ c2R
−m
e

∥∥∂ j uϕ

∥∥
Lr (B)

.
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Now Dϕ(∂ j uϕ) = ∂ j Dϕ(uϕ)+[Dϕ, ∂ j ]uϕ,with as usual, [Dϕ, ∂ j ]uϕ := Dϕ(∂ j uϕ)−
∂ j Dϕ(uϕ).

So we get

∥∥∂ j uϕ

∥∥
Wm,r (B1)

≤ c1
∥∥∂ j Dϕuϕ

∥∥
Lr (B)

+ c1
∥∥[Dϕ, ∂ j ]uϕ

∥∥
Lr (B)

+ c2R
−m
e

∥∥∂ j uϕ

∥∥
Lr (B)

.

So, because [Dϕ, ∂ j ] is a differential operator of order m, we get

∥∥∂ j uϕ

∥∥
Wm,r (B1)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ c1
∥∥uϕ

∥∥
Wm,r (B)

+ c2R
−m
e

∥∥uϕ

∥∥
W 1,r (B)

.

This is true for any j = 1, . . . , n so

∥∥uϕ

∥∥
Wm+1,r (B1)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ c1
∥∥uϕ

∥∥
Wm,r (B)

+ c2R
−m
e

∥∥uϕ

∥∥
W 1,r (B)

.

We always have
∥∥uϕ

∥∥
W 1,r (B)

≤ ∥∥uϕ

∥∥
Wm,r (B)

hence, with other constants c j ,

∥∥uϕ

∥∥
Wm+1,r (B1)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ (c1 + c2R
−m)

∥∥uϕ

∥∥
Wm,r (B)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ c2R
−m

∥∥uϕ

∥∥
Wm,r (B)

,

because R ≤ 1.
Now we use again Eq. (3.2) to get

∥∥uϕ

∥∥
Wm,r (B)

≤ c1
∥∥Dϕuϕ

∥∥
Lr (B)

+ c2R
−m
e

∥∥uϕ

∥∥
Lr (B)

,

hence still with different constants from line to line

∥∥uϕ

∥∥
Wm+1,r (B1)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ c2R
−m
e (

∥∥Dϕuϕ

∥∥
Lr (B)

+ c2R
−m
e

∥∥uϕ

∥∥
Lr (B)

)

≤ c1
∥∥Dϕuϕ

∥∥
W 1,r (B)

+ c2R
−m
e

∥∥Dϕuϕ

∥∥
Lr (B)

+ c3R
−2m
e

∥∥uϕ

∥∥
Lr (B)

).

Now, proceeding by induction along the same lines, we get

∥∥uϕ

∥∥
Wm+k,r (B1)

≤
k∑

j=0

c j R
− jm

∥∥Dϕuϕ

∥∥
Wk− j,r (B)

+ ck+1R
−(k+1)m
e

∥∥uϕ

∥∥
Lr (B)

.

It remains to go back to the manifold M to end the proof. ��
Remark 3.7 We stress here the dependence in R because we shall need it to study the
case of non-compact Riemannian manifolds.

Now we can prove

Theorem 3.8 Let (M, g) be a C∞ smooth compact Riemannian manifold without
boundary. Let D : G → G be an elliptic linear differential operator of order m
with C∞(M) coefficients. Let ω ∈ Lr

G(M) ∩ (kerD∗)⊥ with r ≥ 2. Then there is a
u ∈ Wm,r

G (M) such that Du = ω on M . Moreover u is given linearly w.r.t. to ω.
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Proof Let ω ∈ Lr
G(M) ∩ (kerD∗)⊥ with r ≥ 2. Because M is compact, we have

ω ∈ L2
G(M). Theorem 3.2 gives us the Global Resolvability, condition (ii), with the

threshold s = 2, and with K := kerD∗, i.e., provided that ω ⊥ K :

u := Sω ∈ L2
G(M) :: Du = ω, ‖u‖2 ≤ C‖ω‖2.

The Theorem 3.5 of Agmon et al. gives us the Local Interior Regularity with the
Sobolev estimates for α = m.

So we can apply Theorem 2.1 and we use Remark 2.2 to have that u = Sω so u is
given linearly w.r.t. to ω. The proof is complete. ��

By duality we get the range r < 2. We shall proceed as we did in [3], using an
avatar of the Serre duality [26].

Let g ∈ Lr ′
G(M) ∩ kerD⊥, because D∗ has the same elliptic properties than D, we

can solve D∗v = g, with r ′ < 2 and r ′ conjugate to r in the following way.
We know by the previous part that

∀ω ∈ Lr
G(M) ∩ (kerD∗)⊥, ∃u ∈ Lr

G(M), Du = ω. (3.3)

Consider the linear form

∀ω ∈ Lr
G(M), L(ω) := 〈u, g〉,

where u is a solution of (3.3); in order for L(ω) to be well defined, we need that if u′
is another solution of Du′ = ω, then

〈
u − u′, g

〉 = 0; hence we need that g must be
“orthogonal” to G-forms ϕ such that Dϕ = 0, which is precisely our assumption.

Hence we have that L( f ) is well defined and linear; moreover

|L( f )| ≤ ‖u‖Lr (M)‖g‖Lr ′ (M)
≤ c‖ω‖Lr (M)‖g‖Lr ′ (M)

.

So this linear form is continuous on ω ∈ Lr
G(M) ∩ (kerD∗)⊥. By the Hahn Banach

Theorem there is a form v ∈ Lr ′
G(M) such that

∀ω ∈ Lr
G(M) ∩ (kerD∗)⊥, L(ω) = 〈ω, v〉 = 〈u, g〉.

Butω = Du, sowehave 〈ω, v〉 = 〈Du, v〉 = 〈u, D∗v〉 = 〈u, g〉, for anyu ∈ C∞
G (M).

Hence we solved D∗v = g in the sense of distributions with v ∈ Lr ′
G(M). So we

proved:

Theorem 3.9 For any r , 1 < r ≤ 2, if g ∈ Lr
G(M) ∩ (kerD)⊥ there is a v ∈ Lr

G(M)

such that D∗v = g, ‖v‖LrG (M) ≤ c‖g‖LrG (M).

Moreover the solution is in Wm,r
G (M).

It remains to prove the “moreover” and for this we use the LIR Theorem 3.5: for
any x ∈ M there is a ball B := B(x, R) and, with the ball B1 := B(x, R/2), we get

‖u‖Wm,r
G (B1) ≤ C

(‖Du‖LrG (B) + ‖u‖LrG (B)

)
.
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We cover M with a finite number of balls B1 to prove the theorem. ��
Set H2

G := kerD∗ ∩ L2
G(M).

Because D and D∗ have the same elliptic properties, we finally proved:

Theorem 3.10 Let (M, g) be a C∞ smooth compact Riemannian manifold without
boundary. Let D : G → G be an elliptic linear differential operator of order m with
C1 coefficients. Let ω ∈ Lr

G(M) ∩ (H2
G)⊥ with r > 1. Then there is a u ∈ Lr

G(M)

such that Du = ω on M . Moreover the solution is in Wm,r
G (M).

Now we make the hypothesis that D has C∞ smooth coefficients. Theorem 3.2
of Warner or Donaldson gives, on a compact manifold M without boundary, that
dimRH2

G < ∞.

We shall generalize here a well-known result valid for the Hodge Laplacian.

Lemma 3.11 We have H2
G ⊂ C∞(M).

Proof Take x ∈ M, h ∈ H2
G . The fundamental inequalities, Corollary 3.6, give,

applied to D∗, that there is a ball B := B(x, R) with the ball B1 := B(x, R/2) such
that

∀k ∈ N, ‖h‖Wm+k,2(B1) ≤ ck+1R
−(k+1)m‖h‖L2(B).

The Sobolev embedding theorems, valid in a these balls, give that, for any l ∈ N, h ∈
Cl(B1). Then h ∈ C∞(B1).

Because the C∞ regularity is a local property, we get that h ∈ C∞(M). ��
Lemma 3.12 There is a linear projection from Lr

G(M) toH2
G .

Proof We set

∀v ∈ Lr
G(M), H(v) :=

N∑

j=1

〈
v, e j

〉
e j ,

where {e j } j=1,...,N is an orthonormal basis for H2
G . This is meaningful because v ∈

Lr
G(M) can be integrated against e j ∈ H2

G ⊂ C∞(M).Moreover we have v−H(v) ∈
Lr
G(M) ∩ H⊥

G in the sense that ∀h ∈ H2
G, 〈v − H(v), h〉 = 0; it suffices to test on

h := ek . We get

〈v − H(v), ek〉 = 〈v, ek〉 −
〈

N∑

j=1

〈
v, e j

〉
e j , ek

〉
= 〈v, ek〉 − 〈v, ek〉 = 0.

This ends the proof. ��
Proposition 3.13 We have a direct decomposition:

Lr
G(M) = H2

G ⊕ ImD(W 2,r
G (M)).
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Proof Let v ∈ Lr
G(M). Set h := H(v) ∈ H2

G, and ω := v − h. We have that
∀k ∈ H2

G, 〈ω, k〉 = 〈v − H(v), k〉 = 0. Hence we can solve Du = ω with u ∈
W 2,r

G (M) ∩ L2
G(M). So we get v = h + Du which means

Lr
G(M) = H2

G + ImD(W 2,r
G (M)).

The decomposition is direct because if ω ∈ H2
G ∩ ImD(W 2,r

G (M)), then ω ∈ C∞(M)

and

ω = Du ⇒ ∀k ∈ H2
G, ω ⊥ k,

so choosing k = ω ∈ H2
G we get 〈ω,ω〉 = 0; hence ω = 0. The proof is complete. ��

In the special case where D is the Hodge Laplacian, we already seen [4] that
we recover this way the strong Lr Hodge decomposition without using Gaffney’s
inequalities.

4 Case of Compact Manifold with a Smooth Boundary

Let N be a C∞ smooth connected Riemannian manifold compact with a C∞ smooth
boundary ∂N . We want to show how the results in case of a compact boundary-less
manifold apply to this case.

First we know that a neighborhood V of ∂N in N can be seen as ∂N×[0, δ]
by [23, Theorem 5.9 p. 56] or by [9, Théorème (28) p. 1–21]. This allows us to
“extend” slightly N : we have N = (N\V ) ∪ V � (N\V ) ∪ (∂N×[0, δ]). So we set
M := (N\V ) ∪ (∂N×[0, δ + ε]).
Then M can be seen as a Riemannian manifold with boundary ∂M � ∂N and such
that N̄ ⊂ M .

Now a classical way to get rid of a “annoying boundary” of a manifold is to use its
“double.” For instance, Duff [12], Hörmander [18, p. 257]. Herewe copy the following
construction from Guneysu and Pigola [16, Appendix B].

The “Riemannian double”
 := 
(M) ofM, obtained by gluing two copies,M and
M2, of M along ∂M, is a compact Riemannian manifold without boundary. Moreover,
by its very construction, it is always possible to assume that 
 contains an isometric
copy of the original manifold N . We shall also write N for its isometric copy to ease
notation.

We extend the operator D to M smoothly by extending smoothly its coefficients,
and because D is strictly elliptic, choosing ε small enough, we get that the extension is
still an elliptic operator on M . Then we take a C∞ function χ with compact support on
M ⊂ 
 such that 0 ≤ χ ≤ 1; χ ≡ 1 on N ; and we consider D̃ := χD + (1− χ)D2
where D2 is the operator D on the copy M2 of M . Then D̃ ≡ D on N and is elliptic
on 
.

Now we shall use Definition 1.2 from the introduction; we recall it here for the
reader convenience.
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Definition 4.1 We shall say that D has the weak maximum property, WMP, if, for
any smooth DG-harmonic h, i.e., G-form such that Dh = 0 in M, smooth up to the
boundary ∂M, which is flat on ∂M, i.e., zero on ∂M with all its derivatives, then h is
zero in M .

Of course if there is a maximum principle for D, thenWMP is true. This is the case
for smoothly bounded open sets in Rn by a Theorem of Agmon [1] for functions and
by [2, Theorem 4.2, p. 59] in the case G = �p(M) of p-forms on M .

Because this maximum principle is not local, I do not know what happen on a
compact Riemannian manifold with smooth boundary for general elliptic operator,
even in the case G = �p(M).

Nevertheless the Hodge Laplacian in a Riemannian manifold has the UCP for p-forms
by a difficult result by Aronszajn et al. [6]; hence it has the WMP too.

The main lemma of this section is:

Lemma 4.2 Let ω ∈ Lr
G(N ), then we can extend it to ω′ ∈ Lr

G(
) such that ∀h ∈
HG(
),

〈
ω′, h

〉



= 0 provided that the operator D has the WMP for the D-harmonic
G-forms.

Proof Recall thatHG(
) := kerD∗ ∩ L2
G(
) is of finite dimension KG andHG(
) ⊂

C∞(
) by Lemma 3.11.
Make an orthonormal basis {e1, . . . , eKG } ofHG(
) with respect to L2

G(
), by the
Gram-Schmidt procedure so

〈
e j , ek

〉



:= ∫


e j ekdv = δ jk .

Set λ j := 〈
ω1N , e j

〉 = 〈
ω, e j1N

〉
, j = 1, . . . , KG; this makes sense since e j ∈

C∞(
) ⇒ e j ∈ L∞(
), because 
 is compact.
We shall see that the system {ek1
\N }k=1,...,KG is a free one. Suppose this is not the

case, then it will exist γ1, . . . , γKG , not all zero, such that
∑KG

k=1 γkek1
\N = 0 in


\N . But the function h := ∑KG
k=1 γkek is in HG(
) and h is zero in 
\N which is

non-void; hence h is flat on ∂N . Then h ≡ 0 in 
 by theWMP. But this is not possible
because ek make a basis forHG(
). So the system {ek1
\N }k=1,...,KG is a free one.

We set γ jk := 〈
ek1
\N , e j1
\N

〉
and hence we have that det{γ jk} 
= 0. So we can

solve the linear system to get {μk} such that

∀ j = 1, . . . , KG ,

KG∑

k=1

μk
〈
ek1
\N , e j

〉 = λ j . (4.1)

We put ω′′ := ∑KG
j=1 μ j e j1
\N and ω′ := ω1N − ω′′1
\N = ω − ω′′. From (4.1)

we get

∀ j = 1, . . . , KG ,
〈
ω′, e j

〉



= 〈
ω, e j

〉 − 〈
ω′′, e j

〉 = λ j −
KG∑

k=1

μk
〈
ek1
\N , e j

〉 = 0.

So the G-form ω′ is orthogonal to HG . Moreover ω′|N = ω and clearly ω′′ ∈ Lr
G(
)

being a finite combination of e j1
\N , so ω′ ∈ Lr
G(
) because ω itself is in Lr

G(
).

The proof is complete. ��
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Now let ω ∈ Lr
G(N ) and see N as a subset of 
; then extend ω as ω′ to 
 by

Lemma 4.2.
By the results on the compact manifold 
, because ω′ ⊥ HG(
), we get that there
exists u′ ∈ Wm,r

G (
), such that Du′ = ω′; hence if u is the restriction of u′ to N we
get u ∈ Wm,r

G (N ), Du = ω in N .

Hence we proved

Theorem 4.3 Let N be a smooth compact Riemannianmanifold with smooth boundary
∂N . Let ω ∈ Lr

G(N ). There is a G-form u ∈ Wm,r
G (N ), such that Du = ω and

‖u‖Wm,r
G (N ) ≤ c‖ω‖LrG (N ), provided that the operator D has the WMP for the D-

harmonic G-forms.

Remark 4.4 I had the hope that the WMP condition be also necessary, but this is not
the case as the Theorem 5.2 shows.

5 Relations with the Local Existence of Solutions

Let (M, g) be a C∞ smooth compact Riemannian manifold without boundary.
Let D : G → G be a linear differential operator of order m with C∞ coefficients.
As above we suppose that D is elliptic in the sense of Definition 3.1.

Let x ∈ M and take a ball B := B(x, R). We suppose that ω ∈ L2
G(B) and we

want to solve Du = ω. For this we shall extend ω as ω′ ∈ L2
G(M) in the whole of M

with ω′ ⊥ HG(M) := kerD∗ in order to apply Theorem 3.2.
Considerω := ω1B the trivial extension ofω toM .Wehave, with Ph the orthogonal

projection on HG(M), h := Phω. Set N := KG the finite dimension of HG(M).

Take an orthonormal basis {e1, . . . , eN } of HG(M), and then we have

h :=
N∑

j=1

h j e j .

If h = 0, we set ω′ = ω and we are done. If not let the radius R of the ball B be small
enough to have

‖e11B‖ ≤ 1

4
√
N

, ..., ‖eN1B‖ ≤ 1

4
√
N

.

This is possible because e j are in C∞(M) so if B is small enough we have
∥∥e j1B

∥∥ ≤ 1

4
√
N
, and we have a finite number of such conditions.

We set ω1 := 1Bc

N∑

j=1

h j e j . Then
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‖ω1‖2 :=
∫

Bc

∣∣∣∣∣∣

N∑

j=1

h j e j

∣∣∣∣∣∣

2

dv ≤
∫

M

∣∣∣∣∣∣

N∑

j=1

h j e j

∣∣∣∣∣∣

2

dv ≤‖h‖2

and

‖h − ω1‖ ≤
N∑

j=1

∣∣h j
∣∣ ∥∥1Be j

∥∥ ≤ 1

4

N∑

j=1

∣∣h j
∣∣ ≤ √

N‖h‖ 1

4
√
N

= 1

4
‖h‖.

Hence, because Ph has norm one,

‖h − Phω1‖ = ‖Phh − Phω1‖ ≤ ‖h − ω1‖ ≤ 1

4
‖h‖.

Now we set h1 := h − Phω1. Then ‖h1‖ ≤ 1
4‖h‖ and we have h1 :=

N∑

j=1

h1j e j . So

we set ω2 := 1Bc
∑N

j=1 h
1
j e j . We have in the same way:

‖ω2‖ ≤ ‖h1‖ ≤ 1

4
‖h‖ and ‖h1 − Phω2‖ ≤ 1

4
‖h1‖ ≤ 1

42
‖h‖.

At the step k we get

‖hk − Phωk+1‖ ≤ 1

4
‖hk‖ ≤ 1

4k
‖h‖ and ‖ωk+1‖ ≤ 1

4k
‖h‖.

We set ω′′ := ∑∞
j=1 ω j .We get that the series converges in norm L2(M) and Phω′′ =

h.

Setting ω′ := ω − ω′′, we get that ω′ = ω on B and Ph(ω′) = 0, which means that
ω′ ⊥ HG(M).

We can apply Theorem 3.2 to get Du′ = ω′ with u′ ∈ L2
G(M) because ω′ ⊥ HG .

We set u := u′|B in B to have Du = ω in B.

So we proved:

Theorem 5.1 Let x in M . There is a R0(x) > 0 such that for any 0 < R ≤ R0
if ω ∈ L2

G(B) with B := B(x, R) there is a u ∈ L2
G(B) such that Du = ω and

‖u‖L2
G (B) � ‖ω‖L2

G (B).

To get the Lr
G(B) case for r > 2, we proceed as in the proof of Theorem 2.1.

Theorem 5.2 Under the assumptions above, for any x ∈ M and r ≥ 2, there is a

positive constant c f such that, if ω ∈ Lr (B), there is a u ∈ Lt (B1) with
1

t
= 1

r
− τ,

such that Du = ω and ‖u‖Lt (B1) ≤ c f ‖ω‖Lr (B).

Moreover we have u ∈ Wm,r
G (B1) with control of the norm.
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Proof Let r ≥ 2 and ω ∈ Lr
G(B). Because B is relatively compact and dv is σ -finite,

we have that ω ∈ L2
G(B). Theorem 5.1 gives that there is a u ∈ L2

G(B) such that
Du = ω. Now we proceed exactly as in the proof of Theorem 2.1, using the same
induction procedure. ��

So we proved the local existence of solutions with estimates; this is an already
known theorem inRn, hence also locally in M (see for instance [11]). This means also
that the LIR condition is stronger than the local existence of solutions with estimates.
These solutions were the basis of Raising Steps Method, see [5].

6 The Non-compact Case

We shall use the same ideas as in [5] to go from the compact case to the non-compact
one.

In order to deal with G-forms in the non-compact case, we have to warranty that
the bundle G has trivializing charts defined on balls of the covering Cε .

Definition 6.1 Wesay that the bundleG := (H , π, M) is compatiblewith the covering
Cε if there is a ε > 0 such that, for any ball B ∈ Cε, the chart (B, ϕ) is a trivializingmap
of the bundle G. Precisely this means that G � ϕ(B)×R

N where N is the dimension
of H and the equivalence has bounds independent of B ∈ Cε .

Example 6.2 The bundle of p-forms in a Riemannian manifold (M, g) is compatible.
To see this take a ball B(x, R) ∈ Cε, and thenwe have that (1−ε)δi j ≤ gi j ≤ (1+ε)δi j
in B(x, R) as bilinear forms, so, because ε < 1, the 1-forms dx j , j = 1, . . . , n are
“almost” orthonormal and hence linearly independent. This gives that the cotangent
bundle T ∗M is equivalent to T ∗

R
n over B, the constants depending only on ε.

By tensorization we get the same for the bundle of p-forms.

From now on we shall always suppose that the bundle G := (H , π, M) is compat-
ible with the covering Cε .

In Sect. 7.1 we define a Vitali type covering Cε by balls suited to our “admissible balls”
(see Definition 1.5). We use these notions now.

Definition 6.3 We shall say that the hypothesis (UEAB) is fulfilled for the operator D
if D has smooth C1(M) coefficients.

Moreover we ask that D be uniformly elliptic as in Definition 3.1.

We start with ω in L2
G(M), by the (THL2p) hypothesis, provided that ω ⊥ kerD∗,

there is a G-form u ∈ L2
G(M) such that Du = ω. Moreover, because L2

G(M) is a
Hilbert space, u ∈ L2

G(M), Du = ω with the smallest norm, is given linearly with
respect to ω. This means that we have a bounded linear operator S : L2

G(M) →
L2
G(M) such that D(Sω) = ω provided that ω ⊥ kerD∗.
The local elliptic inequalities by Theorem 3.5 become uniform by the hypothesis

(UEAB):
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Corollary 6.4 Let D be an operator of order m acting on sections of G in the complete
Riemannian manifold M . Suppose that D verifies (UEAB). Then, for any Bx :=
B(x, R) ∈ Cε and B1

x := B(x, R/2), we have, with D with C1(M) coefficients:

‖u‖Wm,r
G (B1

x )
≤ c1‖Du‖LrG (Bx ) + c2R

−m‖u‖LrG (Bx ).

The hypotheses (UEAB) are precisely done towarranty that the constants c1, c2 depend
only on n = dimRM, r and ε.

With t = Sm(r), we get, by Lemma 7.7 from the Appendix,

‖u‖Lt
G (B(x,R)) ≤ CR−m ‖u‖Wm,r

G (B(x,R)).

When there is no ambiguity we shall omit the subscript G, i.e., L2
G(B) becomes

L2(B), etc.

Lemma 6.5 We have, with Bl := B(x, 2−l R) and t0 = 2, B0 = B(x, R), the a priori
estimates:

R(l+1)m‖u‖Ltl (Bl ) ≤
l∑

j=1

c j R
(l− j+1)m‖Du‖Ll− j (Bl− j ) + cl+1‖u‖L2(B)

and

R(l+2)m‖u‖Wm,tl (Bl+1) ≤ c0R
(l+2)m‖Du‖Ltl (Bl )

+
l∑

j=1

c j R
(l− j+1)m‖Du‖Ltl− j (Bl− j )

+ cl+1‖u‖L2(B).

Proof From the LIR, Theorem 3.5, we have

∀B ∈ Cε, ‖u‖Wm,2(B1) ≤ c1‖D(u)‖L2(B) + c2R
−m‖u‖L2(B).

Now we shall use the local Sobolev embedding theorem, Lemma 7.7, to get

∀B ∈ Cε, ‖u‖Lt1 (B1) ≤ CR−m‖u‖Wm,2(B)

so we get

∀B ∈ Cε, ‖u‖Lt1 (B1) ≤ c1R
−m‖Du‖L2(B) + c2R

−2m‖u‖L2(B)

with 1
t1

:= 1
2 − m

n ⇐⇒ t1 := Sm(2).

• If t1 ≥ r , then we get still by the LIR, Theorem 3.5:
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∀B ∈ Cε, ‖u‖Wm,t1 (B2) ≤ c1‖Du‖Lt1 (B1) + c2R
−m‖u‖Lt1 (B1). (6.1)

Putting the estimate of ‖u‖Lt1 (B1) in (6.1) we get

‖u‖Wm,t1 (B2) ≤ c1‖Du‖Lt1 (B1) + c2R
−m(

c1‖Du‖L2(B) + c2R
−m‖u‖L2(B)

)

so, with suitable constants

‖u‖Wm,t1 (B2) ≤ c1‖Du‖Lt1 (B1) + c2R
−m‖Du‖L2(B) + c3R

−2m‖u‖L2(B).

Putting the powers of R on the other side to isolate ‖u‖L2(B), we get

R2m‖u‖Wm,t1 (B2) ≤ c1R
2m‖Du‖Lt1 (B1) + c2R

m‖Du‖L2(B) + c3‖u‖L2(B).

We iterate, using again the local Sobolev embedding theorem, Lemma 7.7,

u ∈ Lt2(B2), ‖u‖Lt2 (B2) ≤ cR−m‖u‖Wm,t1 (B2),

and hence

R3m‖u‖Lt2 (B2) ≤ c1R
2m‖Du‖Lt1 (B1) + c2R

m‖Du‖L2(B) + c3‖u‖L2(B).

with
1

t2
:= 1

t1
− m

n
= 1

2
− 2m

n
⇐⇒ t2 := S2m(2). The LIR gives again:

‖u‖Wm,t2 (B3) ≤ c1‖Du‖Lt2 (B2) + c2R
−m‖u‖Lt2 (B2)

so

R4m‖u‖Wm,t2 (B3) ≤ c1R
4m‖Du‖Lt2 (B2) + c2R

3m‖u‖Lt2 (B2),

and hence

R4m‖u‖Wm,t2 (B3) ≤ c1R
4m‖Du‖Lt2 (B2)

+ c2R
2m‖Du‖Lt1 (B1) + c3R

m‖Du‖L2(B) + c4‖u‖L2(B).

Iterating the same way we get

R(l+1)m‖u‖Ltl (Bl ) ≤ c1R
lm‖Du‖Ltl−1 (Bl−1) + c2R

(l−1)m‖Du‖Lt(l−2) (B(l−2))
+ · · ·

+ cl R
m‖Du‖L2(B) + cl+1‖u‖L2(B),

which gives, using the LIR,

‖u‖Wm,tl (Bl+1) ≤ c1‖Du‖Ltl (Bl ) + c2R
−m‖u‖Ltl (Bl )
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so

R(l+2)m‖u‖Wm,tl (Bl+1) ≤ c1R
(l+2)m‖Du‖Ltl (Bl ) + c2R

(l+1)m‖u‖Ltl (Bl )

and

R(l+2)m‖u‖Wm,tl (Bl+1) ≤ c1R
(l+2)m‖Du‖Ltl (Bl ) + c2R

lm‖Du‖Lt(l−1) (B(l−1))

+ c3R
(l−1)m‖Du‖Lt(l−2) (B(l−2))

+ · · · + cl R
m‖Du‖L2(B)

+ cl+1‖u‖L2(B),

which proves the lemma. ��
Lemma 6.6 We have for r < t, B := B(x, R),

∀ f ∈ Lr (B), ‖ f ‖Lr (B) ≤ R
1
r − 1

t ‖ f ‖Lt (B).

Proof Because the measure dμ(x) := 1B(x)

|B| dm(x) is a probability measure, using

that r < t, we have ‖ f ‖Lr (μ) ≤ ‖ f ‖Lt (μ) which implies readily the lemma. ��
Corollary 6.7 Let ∀ j ∈ N, 1

t j
= 1

2 − jm
n . Fix r ≥ 2, we have, for tl−1 < r < tl ,

R

(
1
tl

− 1
r

)
+(l+1)m‖u‖Lr (Bl ) ≤

l∑

j=1

c j R
(l− j+1)m‖Du‖Ll− j (Bl− j ) + cl+1‖u‖L2(B).

Proof By Lemma 6.6 we get ‖u‖Lr (Bl ) ≤ R
1
r − 1

tl ‖u‖Lt (Bl ) so by Lemma 6.5 we have

R(l+1)m‖u‖Lr (Bl ) ≤ R
1
r − 1

tl ‖u‖Lt (Bl )

≤ R
1
r − 1

tl

l∑

j=1

c j R
(l− j+1)m‖Du‖Ll− j (Bl− j ) + cl+1R

1
r − 1

tl ‖u‖L2(B).

Isolating ‖u‖L2(B) we get

R

(
1
tl

− 1
r

)
+(l+1)m‖u‖Lr (Bl ) ≤

l∑

j=1

c j R
(l− j+1)m‖Du‖Ll− j (Bl− j ) + cl+1‖u‖L2(B).

Now we have a finite number of terms, so changing the values of the constants, we
get

R

(
r
tl

−1
)
+(l+1)mr‖u‖rLr (Bl )

≤
l∑

j=1

c j R
(l− j+1)mr‖Du‖rLl− j (Bl− j )

+ cl+1‖u‖rL2(B)
.
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which ends the proof of the corollary. ��
We shall use the following weights, with t j := S jm(2) i .e., 1

t j
= 1

2 − jm
n :

tl−1 < r < tl , vr (x) := R(x)

(
1
tl

− 1
r

)
+(l+1)m

, w j (x) = R(l+1− j)m

and we set

‖ω‖tl− j

Ltl− j (M,w
tl− j
j )

:=
∫

M
|ω(x)|tl− j w j (x)

tl− j dv(x).

Theorem 6.8 Under hypotheses (THL2G) and (UEAB), with the weights defined
above, we have, provided that ω ⊥ kerD∗, that there is a u := Sω linearly given
from ω such that Du = ω and

‖u‖LrG (M,vrr )
≤

l∑

j=1

c j‖ω‖
L
tl− j
G (M,w

tl− j
j )

+ cl+1‖ω‖L2
G (M).

Proof By hypothesis (THL2G) for ω ∈ L2
G(M) with ω ⊥ kerD∗ we set u := Sω ∈

L2
G(M).

We have, with hypothesis (UEAB) and using the covering of M by the Bl , hence a
fortiori by the B j , j < l,

‖u‖rLr (M,vrr )
≤

∑

B∈Cε

R

(
1
tl

− 1
r

)
+(l+1)mr‖u‖rLr (Bl )

. (6.2)

Using that the overlap of the covering is bounded by T ,

∑

B∈Cε

R(l+1− j)mtl− j ‖ω‖tl− j

Lt(l− j) (Bl− j )
≤ T ‖ω‖tl− j

Ltl− j (M,w
tl− j
j )

(6.3)

with w j (x) = w j,l(x) = R(l+1− j)m, and for any γ, ‖γ ‖sLs (M,ws
k )

:=
∫
M |γ (x)wk(x)|s dv(x).

Now if r ≥ tl−1 ≥ tl− j , j ≤ l − 1, we have
∑

j∈N arj ≤
(∑

j∈N a
tl− j
j

)r/tl− j
, so

∑

B∈Cε

R(l+1− j)mr‖ω‖r
Lt(l− j) (Bl− j )

≤
⎛

⎝
∑

B∈Cε

R(l+1− j)mtl− j ‖ω‖tl− j

Lt(l− j) (Bl− j )

⎞

⎠
r/tl− j

.

Using (6.3) we get

∑

B∈Cε

R(l+1− j)mr‖ω‖r
Lt(l− j) (Bl− j )

≤ T r/tl− j ‖ω‖r
Ltl− j (M,w

tl− j
j )

.
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Grouping with (6.2) we deduce

‖u‖rLr (M,vrr )
≤

l∑

j=1

c j T
r/tl− j ‖ω‖r

Ltl− j (M,w
tl− j
j )

+ cl+1‖u‖rL2(M)
.

Changing the constants, we take the r root to get, using the hypothesis (THL2G),
which says also that ‖u‖L2(M) ≤ c‖ω‖L2(M),

‖u‖Lr (M,vrr )
≤

l∑

j=1

c j‖ω‖
Ltl− j (M,w

tl− j
j )

+ cl+1‖ω‖L2(M).

The proof is complete. ��
Lemma 6.9 Provided that ω ∈ L2(M) ∩ Ltk (M, R(x)αk ), with

α j := k + 1

k
m× j t j , β j := ( j + 1)m×t j ,

we have

∀ j ≤ k, ω ∈ Lt j (M, Rβ j ), ‖ω‖
Lt j (M,Rβ j )

≤ C max(‖ω‖Ltk (M,Rαk ), ‖ω‖L2(M)).

Proof Recall the Stein-Weiss interpolation Theorem [8, Theorem 5.5.1, p. 110]

(
Ls0(v0), L

s1(v1)
)
θ,t = Ls(v), 0 < θ < 1 where v := v

s(1−θ)/s0
0 v

sθ/s1
1 ,

1

s
= 1 − θ

s0
+ θ

s1
.

We choose s0 = 2, v0 = 1 ; s1 = tk = Skm(2), s = t j = S jm(2), so 1
tk

=
1
2 − km

n , 1
t j

= 1
2 − jm

n . This fixes θ :

1

s
= 1

t j
= 1

2
− jm

n
= (1 − θ)

1

2
+ θ

(
1

2
− km

n

)
⇒ θ = j

k
.

Replacing v0 = w2
1 = 1, v1 = w

s1
2 = R(x)(k+1)m×tk and using v := v

s(1−θ)/s0
0 v

sθ/s1
1

we get

v = v

s
s1

× j
k

1 ⇒ s

s1
× j

k
= t j

tk
× j

k
⇒ v = R(x)

(k+1)m×tk× t j
tk

× j
k = R(x)

k+1
k m× j t j .

So, because the function x+1
x is decreasing, we get k+1

k ≤ j+1
j for j ≤ k so, R(x) ≤

1 ⇒ R(x)α j ≥ R(x)β j with α j := k+1
k m× j t j , β j := ( j + 1)m×t j and α j ≤ β j .
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Using this we get
‖ω‖

Lt j (M,Rβ j )
≤ ‖ω‖Lt j (M,Rα j )

. (6.4)

By interpolation we have that ω ∈ L2(M)∩ Ltk (M, Rαk ) ⇒ ω ∈ Lt j (M, Rα j ), with

‖ω‖Lt j (M,Rα j )
≤ C max(‖ω‖Ltk (M,Rαk ), ‖ω‖L2(M)).

Now using (6.4) we get

∀ j ≤ k, ω ∈ Lt j (M, Rβ j ), ‖ω‖
Lt j (M,Rβ j )

≤ C max(‖ω‖Ltk (M,Rαk ), ‖ω‖L2(M)).

This proves the lemma. ��
Corollary 6.10 Let ∀ j ∈ N, 1

t j
= 1

2 − jm
n . With w1(x) = w1,l(x) = Rlm, fix r ≥ 2,

we have, provided that ω ∈ L2(M) ∩ Ltl−1(M, w
tl−1
1 ), tl−1 ≤ r < tl , and that

ω ⊥ kerD∗, with u := Sω ⇒ Du = ω,

‖u‖Lr (M,vrr )
≤ C max(‖ω‖

Ltl−1 (M,w
tl−1
1 )

, ‖ω‖L2(M)).

Proof Clear. ��
To get an estimate for ‖u‖Wm,r (B) we use again the LIR, Theorem 3.5:

‖u‖Wm,tl (Bl+1) ≤ c1‖Du‖Ltl (Bl ) + c2R
−m‖u‖Ltl (Bl ).

Replacing ‖u‖Ltl (Bl ) by the use of Corollary 6.7, we get

R

(
1
tl

− 1
r

)
+(l+2)m‖u‖Wm,r (Bl+1) ≤ c1R

(
1
tl

− 1
r

)
+(l+2)m‖ω‖Ltl (Bl )

+ c2R

(
1
tl

− 1
r

)
+(l+1)m‖u‖Ltl (Bl ),

so

R

(
1
tl

− 1
r

)
+(l+2)m‖u‖Wm,r (Bl+1) ≤ c1R

(
1
tl

− 1
r

)
+(l+2)m‖ω‖Ltl (Bl )

+
l∑

j=1

c j R
(l− j+1)m‖ω‖Ll− j (Bl− j ) + cl+1‖u‖L2(B).

Now we cover the manifold M the same way as for the proof of Lemma 6.9 and

we prove, with v′
r (x) := R(x)

( r
tl

−1)+(l+2)mr
and w j (x) = w j,l(x) = R(l+1− j)m,

‖u‖Wm,r (M,v′
r )

≤ c1‖ω‖Ltl (M,v′
r )

+
l∑

j=1

c j‖ω‖
Ltl− j (M,w

tl− j
j )

+ cl+1‖ω‖L2(M).
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Using again Lemma 6.9, we end with

‖u‖Wm,r (M,v′
r )

≤ c1‖ω‖Ltl (M,v′
r )

+ c2 max(‖ω‖
Ltl−1 (M,w

tl−1
1 )

, ‖ω‖L2(M)).

So we proved, using the weights: v′
r (x) := R(x)

( r
tl

−1)+(l+2)mr
, w′

1(x) = Rlmtl−1 , the
following result:

Theorem 6.11 Under hypotheses (THL2G) and (UEAB), let ∀ j ∈ N, 1
t j

= 1
2 − jm

n

and fix r ≥ 2 and l such that tl−1 ≤ r < tl . Provided that ω ⊥ kerD∗ we get that
u := Sω ⇒ Du = ω verifies

‖u‖Wm,r
G (M,v′

r )
≤ c1‖ω‖

L
tl
G (M,v′

r )
+ c2 max(‖ω‖

L
tl−1
G (M,w′

1)
, ‖ω‖L2

G (M)).

Remark 6.12 We always ask that tl−1 < ∞ to have r < ∞, because tl−1 ≤ r < tl , and

this implies that 2(l−1)m < n.This condition in turn implies that (
r

tl
−1)+(l+2)mr ≥

0. So, if the admissible radius R(x) is uniformly bounded below, we can forget the
weights and we get, with the same hypotheses,

‖u‖Wm,r
G (M) ≤ c1‖ω‖

L
tl
G (M)

+ c2 max(‖ω‖
L
tl−1
G (M)

, ‖ω‖L2
G (M)).

7 Appendix

We shall use the following lemma.

Lemma 7.1 Let (M, g) be a Riemannian manifold; then with R(x) = Rε(x) = the ε

admissible radius at x ∈ M and d(x, y) the Riemannian distance on (M, g) we get

d(x, y) ≤ 1

4
(R(x) + R(y)) ⇒ R(x) ≤ 4R(y).

Proof Let x, y ∈ M :: d(x, y) ≤ 1

4
(R(x) + R(y)) and suppose for instance

that R(x) ≥ R(y). Then y ∈ B(x, R(x)/2) and hence we have B(y, R(x)/4) ⊂
B(x,

3

4
R(x)). But by the definition of R(x), the ball B(x,

3

4
R(x)) is admissible and

this implies that the ball B(y, R(x)/4) is also admissible for exactly the same constants
and the same chart; this implies that R(y) ≥ R(x)/4. ��

7.1 Vitali Covering

Lemma 7.2 Let F be a collection of balls {B(x, r(x))} in a metric space, with
∀B(x, r(x)) ∈ F , 0 < r(x) ≤ R. There exists a disjoint subcollection G of F
with the following property: every ball B in F intersects a ball C in G and B ⊂ 5C .
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This is a well-known lemma, see for instance [13], Section 1.5.1.
Fix ε > 0 and let ∀x ∈ M, r(x) := Rε(x)/120, where Rε(x) is the admissible

radius at x, and we built a Vitali covering with the collection F := {B(x, r(x))}x∈M .

The previous lemma gives a disjoint subcollection G such that every ball B in F
intersects a ballC in G and we have B ⊂ 5C .We set G′ := {x j ∈ M :: B(x j , r(x j )) ∈
G} and Cε := {B(x, 5r(x)), x ∈ G′}. We shall call Cε the m, ε admissible covering
of (M, g).
We shall fix m ≥ 2 and we omit it in order to ease the notation.

Recall that ε < 1, then we have:

Proposition 7.3 Let (M, g) be aRiemannianmanifold. The overlap of the ε admissible

covering Cε is less than T = (1 + ε)n/2

(1 − ε)n/2 (120)n, i.e.,

∀x ∈ M, x ∈ B(y, 5r(y))

for at most T such balls, where B(y, r(y)) ∈ G.

So we have

∀ f ∈ L1(M),
∑

j∈N

∫

Bj

| f (x)| dvg(x) ≤ T ‖ f ‖L1(M).

Proof Let Bj := B(x j , r(x j )) ∈ G and suppose that x ∈
k⋂

j=1

B(x j , 5r(x j )). Then we

have

∀ j = 1, . . . , k, d(x, x j ) ≤ 5r(x j )

and hence

d(x j , xl) ≤ d(x j , x) + d(x, xl) ≤ 5(r(x j ) + r(xl)) ≤ 1

4
(R(x j ) + R(xl))

⇒ R(x j ) ≤ 4R(xl)

and by exchanging x j and xl , R(xl) ≤ 4R(x j ).
So we get

∀ j, l = 1, . . . , k, r(x j ) ≤ 4r(xl), r(xl) ≤ 4r(x j ).

Now the ball B(x j , 5r(x j ) + 5r(xl)) contains xl and hence the ball B(x j , 5r(x j ) +
6r(xl)) contains the ball B(xl , r(xl)). But, because r(xl) ≤ 4r(x j ), we get

B(x j , 5r(x j ) + 6×4r(x j )) = B(x j , r(x j )(5 + 24)) ⊃ B(xl , r(xl)).
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The balls in G being disjoint, we get, setting Bl := B(xl , r(xl)),

k∑

j=1

Vol(Bl) ≤ Vol(B(x j , 29r(x j ))).

The Lebesgue measure read in the chart ϕ and the canonical measure dvg on
B(x, Rε(x)) are equivalent; precisely because of condition (1) in the admissible ball
definition, we get that

(1 − ε)n ≤ |detg| ≤ (1 + ε)n,

and the measure dvg read in the chart ϕ is dvg =
√∣∣detgi j

∣∣dξ, where dξ is the

Lebesgue measure in Rn . In particular,

∀x ∈ M, Vol(B(x, Rε(x))) ≤ (1 + ε)n/2νn R
n,

where νn is the euclidean volume of the unit ball in R
n .

Now because R(x j ) is the admissible radius and 4×29r(x j ) < R(x j ), we have

Vol(B(x j , 29r(x j ))) ≤ 29n(1 + ε)n/2vnr(x j )
n .

On the other hand we also have

Vol(Bl) ≥ vn(1 − ε)n/2r(xl)
n ≥ vn(1 − ε)n/24−nr(x j )

n,

and hence

k∑

j=1

(1 − ε)n/24−nr(x j )
n ≤ 29n(1 + ε)n/2r(x j )

n,

so finally

k ≤ (29×4)n
(1 + ε)n/2

(1 − ε)n/2 ,

which means that T ≤ (1 + ε)n/2

(1 − ε)n/2 (120)n .

Saying that any x ∈ M belongs to at most T balls of the covering {Bj } means that∑
j∈N1Bj (x) ≤ T , and this implies easily that

∀ f ∈ L1(M),
∑

j∈N

∫

Bj

| f (x)| dvg(x) ≤ T ‖ f ‖L1(M).

��
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7.2 Sobolev Spaces

We have to define the Sobolev spaces in our setting, following Hebey [17], p. 10.
First define the covariant derivatives by (∇u) j := ∂ j u in local coordinates, while the
components of ∇2u are given by

(∇2u)i j = ∂i j u − 
k
i j∂ku, (7.1)

with the convention that we sum over repeated index. The Christoffel 
k
i j verify [7]:


k
i j = 1

2
gil

(
∂gkl
∂x j

+ ∂gl j
∂xk

− ∂g jk

∂xl

)
. (7.2)

If k ∈ N and r ≥ 1 are given, we denote by Crk (M) the space of smooth functions

u ∈ C∞(M) such that
∣∣∣∇ j u

∣∣∣ ∈ Lr (M) for j = 0, . . . , k. Hence

Crk (M) :=
{
u ∈ C∞(M), ∀ j = 0, . . . , k,

∫

M

∣∣∣∇ j u
∣∣∣
r
dvg < ∞

}
.

Now we have [17].

Definition 7.4 The Sobolev space Wk,r (M) is the completion of Crk (M) with respect
to the norm:

‖u‖Wk,r (M) =
k∑

j=0

(∫

M

∣∣∣∇ j u
∣∣∣
r
dvg

)1/r

.

We extend in a natural way this definition to the case of G-forms.
Let the Sobolev exponents Sk(r) be as in Definition 1.7, then the k th Sobolev embed-
ding is true if we have

∀u ∈ Wk,r (M), u ∈ LSk (r)(M).

This is the case inRn, or if M is compact, or if M has a Ricci curvature bounded from
below and inf x∈Mvg(Bx (1)) ≥ δ > 0, due to Varopoulos [27], see Theorem 3.14, p.
31 in [17].

Lemma 7.5 We have the Sobolev comparison estimates where B(x, R) is a ε admis-
sible ball in M and ϕ , B(x, R) → R

n is the admissible chart relative to B(x, R),

∀u ∈ Wm,r (B(x, R)), ‖u‖Wm,r (B(x,R)) ≤ (1 + εC)

∥∥∥u ◦ ϕ−1
∥∥∥
Wm,r (ϕ(B(x,R)))

,

and, with Be(0, t) the euclidean ball in Rn centered at 0 and of radius t,

‖v‖Wm,r (Be(0,(1−ε)R)) ≤ (1 + 2Cε)‖u‖Wm,r (B(x,R)).
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Proof We have to compare the norms of u, ∇u, ..., ∇mu with the corresponding ones
for v := u ◦ ϕ−1 in Rn .

First we have because (1 − ε)δi j ≤ gi j ≤ (1 + ε)δi j in B(x, R):

Be(0, (1 − ε)R) ⊂ ϕ(B(x, R)) ⊂ Be(0, (1 + ε)R).

Because

∑

|β|≤m−1

sup i, j=1,...,n, y∈Bx (R)

∣∣∂βgi j (y)
∣∣ ≤ ε in B(x, R),

we have the estimates, with ∀y ∈ B(x, R), z := ϕ(y),

∀y ∈ B(x, R), |u(y)| = |v(z)| , |∇u(y)| ≤ (1 + Cε) |∂v(z)| .

Because of (7.2) and (7.1) we get

∀y ∈ B(x, R),

∣∣∣∇2u(y)
∣∣∣ ≤

∣∣∣∂2v(z)
∣∣∣ + εC |∂v(z)| .

And taking more derivatives, because

∑

|β|≤m−1

sup i, j=1,...,n, y∈Bx (R)

∣∣∂βgi j (y)
∣∣ ≤ ε,

we get, for 2 ≤ k ≤ m,

∀y ∈ B(x, R),

∣∣∣∇ku(y)
∣∣∣ ≤

∣∣∣∂kv(z)
∣∣∣ + ε(C1 |∂v(z)| + · · · + Ck−1

∣∣∣∂k−1v(z)
∣∣∣).

Integrating this we get for 2 ≤ k ≤ m,

∥∥∥∇ku
∥∥∥
Lr (B(x,R))

≤
∥∥∥
∣∣∣∂kv

∣∣∣ + ε(C1 |∂v(z)| + · · · + Ck−1

∣∣∣∂k−1v(z)
∣∣∣)

∥∥∥
Lr (Be(0,(1+ε)R))

≤
∥∥∥∂kv

∥∥∥
Lr (Be(0,(1+ε)R))

+ C1ε‖∂v‖Lr (Be(0,(1+ε)R)) + · · ·

+Ck−1ε

∥∥∥∂k−1v

∥∥∥
Lr (Be(0,(1+ε)R))

,

and

‖∇u‖Lr (B(x,R)) ≤ (1 + Cε)‖∂v‖Lr (Be(0,(1+ε)R)).

We also have the reverse estimates
∥∥∥∂kv

∥∥∥
Lr (Be(0,(1−ε)R))

≤
∥∥∥∇kv

∥∥∥
Lr (Be(0,(1+ε)R))

+ C1ε‖∇v‖Lr (Be(0,(1+ε)R)) + · · ·

+Ck−1ε

∥∥∥∇k−1v

∥∥∥
Lr (Be(0,(1+ε)R))

,
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and

‖∂v‖Lr (Be(0,(1−ε)R)) ≤ (1 + Cε)‖∇u‖Lr (B(x,R)).

So, using that

‖u‖Wk,r (B(x,R)) =
∥∥∥∇ku

∥∥∥
Lr (B(x,R))

+ · · · + ‖∇u‖Lr (B(x,R)) + ‖u‖Lr (B(x,R)),

we get

‖u‖rWk,r (B(x,R))
≤

∥∥∥∂kv

∥∥∥
Lr (Be(0,(1+ε)R))

+ C2ε

∥∥∥∂2v

∥∥∥
Lr (Be(0,(1+ε)R))

+ · · ·

+ Ck−1ε

∥∥∥∂k−1v

∥∥∥
Lr (Be(0,(1+ε)R))

+(1 + Cε)‖∂v‖Lr (Be(0,(1+ε)R))

+ ‖v‖Lr (Be(0,(1+ε)R))

≤ (1 + 2εC)‖v‖Wk,r (Be(0,(1+ε)R)).

Again all these estimates can be reversed so we also have

‖v‖Wm,r (Be(0,(1−ε)R)) ≤ (1 + 2Cε)‖u‖Wm,r (B(x,R)).

This ends the proof of the lemma. ��
We have to study the behavior of the Sobolev embeddings w.r.t. the radius. Set

BR := Be(0, R).

Lemma 7.6 We have, with t = Sm(r),

∀R, 0 < R ≤ 1, ∀u ∈ Wm,r (BR), ‖u‖Lt (BR) ≤ CR−m ‖u‖Wm,r (BR)

the constant C depending only on n, r .

Proof Start with R = 1, and then we have by Sobolev embeddings with t = Sm(r),

∀v ∈ Wm,r (B1), ‖v‖Lt (B1) ≤ C‖v‖Wm,r (B1), (7.3)

where C depends only on n and r . For u ∈ Wm,r (BR) we set

∀x ∈ B1, y := Rx ∈ BR, v(x) := u(y).

Then we have

∂v(x) = ∂u(y)×∂ y

∂x
= R∂u(y);

∂2v(x) = ∂2u(y)×
(

∂ y

∂x

)2

= R2∂2u(y); ... ;

∂mv(x) = ∂mu(y)×
(

∂ y

∂x

)m

= Rm∂mu(y).
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So we get, because the Jacobian for this change of variables is R−n,

‖∂v‖rLr (B1) =
∫

B1
|∂v(x)|r dm(x) =

∫

BR

|∂u(y)|r Rr

Rn
dm(x) = Rr−n‖∂u‖rLr (BR).

So
‖∂u‖Lr (BR) = R−1+n/r‖∂v‖Lr (B1). (7.4)

The same way we get

∥∥∂mu
∥∥
Lr (BR)

= R−m+n/r
∥∥∂mv

∥∥
Lr (B1)

(7.5)

and of course ‖u‖Lr (BR) = Rn/r‖v‖Lr (B1).
So with 7.3 we get

‖u‖Lt (BR) = Rn/t‖v‖Lt (B1) ≤ CRn/t‖v‖Wm,r (B1). (7.6)

But

‖u‖Wm,r (BR) := ‖u‖Lr (BR) + ‖∂u‖Lr (BR) + · · · + ∥∥∂mu
∥∥
Lr (BR)

,

and

‖v‖Wm,r (B1) := ‖v‖Lr (B1) + ‖∂v‖Lr (B1) + · · · + ∥∥∂mv
∥∥
Lr (B1)

,

so

‖v‖Wm,r (B1) := R−n/r‖u‖Lr (BR) + R1−n/r‖∂u‖Lr (BR) + · · · + Rm−n/r
∥∥∂mu

∥∥
Lr (BR)

.

Because we have R ≤ 1, we get

‖v‖Wm,r (B1) ≤ R−n/r (‖u‖Lr (BR) + ‖∂u‖Lr (BR) + · · · + ∥∥∂mu
∥∥
Lr (BR)

)

= R−n/r‖u‖Wm,r (BR).

Putting it in (7.6) we get

‖u‖Lt (BR) ≤ CRn/t‖v‖Wm,r (B1) ≤ CR
−n

(
1
r − 1

t

)

‖u‖Wm,r (BR).

But, because t = Sm(r), we get (
1

r
− 1

t
) = m

n
and

‖u‖Lt (BR) ≤ CR−m‖u‖Wm,r (BR).

The constant C depends only on n, r . The proof is complete. ��
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2598 E. Amar

Lemma 7.7 Let x ∈ M and B(x, R) be a ε admissible ball; we have, with t = Sm(r),

∀u ∈ Wm,r (B(x, R)), ‖u‖Lt (B(x,R)) ≤ CR−m ‖u‖Wm,r (B(x,R)),

the constant C depending only on n, r , and ε.

Proof This is true in R
n by Lemma 7.6 so we can apply the comparison Lemma 7.5.

��
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