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Abstract
We introduce the notion of good coverings of metric spaces, and prove that if a metric
space admits a good covering, then it has the same locally Lipschitz homotopy type as
the nerve complex of the covering. As an application, we obtain a Lipschitz homotopy
stability result for a moduli space of compact Alexandrov spaces without collapsing.
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1 Introduction

For given n and D, v0 > 0, let A(n, D, v0) denote the set of isometry classes of
compact n-dimensional Alexandrov spaces with curvature ≥ −1, diameter ≤ D, and
volume≥ v0. Perelman’s stability theorem has played important roles in the geometry
of Alexandrov spaces with curvature bounded below. This theorem implies that the set
of homeomorphism classes of spaces inA(n, D, v0) is finite. Although he also claimed
the Lipschitz version of the stability theorem is true, it has not yet been appeared.

We formulate our results for general metric spaces having good coverings. We
say that a locally finite open covering of a metric space is good if any non-empty
intersection in the covering has a Lipschitz strong deformation retraction to a point
(see Definition 2.6 for the detail).

We use a symbol τ(ε1, ε2, . . . , εk) to denote a positive continuous function satis-
fying limε1,ε2,...,εk→0 τ(ε1, ε2, . . . , εk) = 0.
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The main theorems of the present paper are stated as follows.

Theorem 1.1 Let M be a σ -compact metric space having a good covering U . Then M
has the same locally Lipschitz homotopy type as the nerve of U .

We remark that in Theorem 1.1 if M is compact, it has the same Lipschitz homotopy
type as the nerve of U .
Theorem 1.2 There exists a positive number ε = εn(D, v0) such that if M, M ′ ∈
A(n, D, v0) have the Gromov–Hausdorff distance dG H (M, M ′) < ε, then M has
the same Lipschitz homotopy type as M ′. More precisely if θ : M → M ′ is an
ε-approximation, then there is a Lipschitz homotopy equivalence f : M → M ′
satisfying that | f (x), θ(x)| < τ(ε) for all x ∈ M.

As a direct consequence of Theorem 1.2, we have.

Corollary 1.3 The set of Lipschitz homotopy types of Alexandrov spaces inA(n, D, v0)

is finite.

This provides a weaker version of “the finiteness of bi-Lipschitz homeomorphism
classes” mentioned above.

In Corollary 1.3 we prove that every M and M ′ inA(n, D, v0)with small Gromov–
Hausdorff distance have the same Lipschitz homotopy type through isomorphic nerves
of some good coverings on them. However it was shown in [1] and [14] that there is
an almost isometric map from a closed domain of an almost regular part of M to a
closed domain of an almost regular part of M ′. John Lott asked us if one can extend
such an almost isometric map to a Lipschitz homotopy equivalence M → M ′. The
answer is yes:

Theorem 1.4 Let δ be a sufficiently small positive number with respect to n. For given
compact n-dimensional Alexandrov space M with curvature ≥ −1 and a closed
domain D in the δ-regular part of M, there exists an ε = εM,D > 0 satisfying
the following: Let M ′ be a compact n-dimensional Alexandrov space with curvature
≥ −1 and with dG H (M, M ′) < ε, and let θ : M → M ′ be an ε-approximation. Then
there is a Lipschitz homotopy equivalence f : M → M ′ such that

(1) the restriction of f to D is τ(ε)-almost isometric;
(2) | f (x), θ(x)| < τ(ε) for all x ∈ M.

Theorem 1.1 has an application to the set of homotopies of mapping between two
metric spaces. Let [X , Y ] denote the set of all homotopy classes of continuous maps
from X to Y , and [X , Y ]loc-Lip the set of all locally Lipschitz homotopy classes of
locally Lipschitz maps from X to Y . In Corollary 1.3 of [7], we proved that if K is
a simplicial complex and Y is a locally Lipschitz contractible metric space, then the
natural map [K , Y ]loc-Lip → [K , Y ] is bijective.

Using Theorem 1.1 and Corollary 1.3 of [7], we obtain the following.

Corollary 1.5 Let X be a σ -compact metric space admitting a good covering, and Y
a locally Lipschitz contractible metric space. Then, the natural map [X , Y ]loc-Lip →
[X , Y ] is bijective.

In particular, every continuous map from X to Y is homotopic to a locally Lipschitz
one.
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As an immediate consequence of Corollary 1.5, we have the following for instance.

Corollary 1.6 Let X be a finite-dimensional compact Alexandrov space with curva-
ture bounded below, and Y a locally Lipschitz contractible metric space. Then every
continuous map from X to Y is homotopic to a Lipschitz map.

Organization The rest of the present paper consists of Sects. 2–6. In Sect. 2, we recall
the notions of Lipschitz homotopies, Alexandrov spaces and good coverings needed
in this paper. Sections 3 and 4 are devoted to prove Theorem 1.1, where we employ
a basic strategy in the proof of Theorem 9.4.15 of [13]. Since the argument in [13]
is only topological, we need to proceed in the category of (locally) Lipschitz maps.
In Sect. 3, we consider the case when metric spaces are compact, and deal with the
non-compact case in Sect. 4. Using Theorem 1.1 and a stability result of nerves of
good coverings in [9], we prove Theorem 1.2 and Corollaries 1.3 and 1.5 in Sect. 5.
In Sect. 6, we prove Theorem 1.4 by developing a gluing method in [1].

2 Preliminaries

In this paper, the distance between two points x, y in a metric space is denoted by |xy|
or |x, y|. The open metric ball around x of radius r is denoted by B(x, r). To prove
the main result, we prepare several terminologies.

2.1 Homotopies in the Category of (Locally) Lipschitz Maps

Let X and Y be metric spaces.

Definition 2.1 We say that a subset A of X is a locally Lipschitz strong deformation
retract of X if there is a Lipschitz map F : X × [0, 1] → X such that F(x, 0) = x ,
F(x, 1) ∈ A and F(a, t) = a for any x ∈ X , a ∈ A and t ∈ [0, 1]. Then, the map F
is called a locally Lipschitz strong deformation retraction of X to A.

Definition 2.2 Two maps h0, h1 : X → Y are said to be locally Lipschitz homotopic
if there exists a locally Lipschitz map h : X × [0, 1] → Y such that hi = h(·, i)
(i = 0, 1).

We say that X and Y are locally Lipschitz homotopy equivalent if there are locally
Lipschitz maps f : X → Y and g : Y → X such that g ◦ f and f ◦ g are locally
Lipschitz homotopic to 1X and 1Y , respectively. In this case, f and g are called locally
Lipschitz homotopy equivalences.

In the above definition, if a locally Lipschitz homotopy can be chosen to be a
Lipschitz one, then it is called a Lipschitz homotopy. For other notions appeared
in Definitions 2.1 and 2.2, we use similar terminologies. From definition, if Y is
a (locally) Lipschitz strong deformation retract of X , then X and Y are (locally)
Lipschitz homotopy equivalent.

Let X be an unbounded metric space, and f : X → X a Lipschitz map whose
image is a bounded subset. Then it follows from definition that f is not Lipschitz
homotopic to 1X . In particular if a metric space X is Lipschitz homotopy equivalent
to a bounded metric space, then X is also bounded.
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2.2 The Gromov–Hausdorff Distance

A map f : X → Y between metric spaces is called an ε-approximation if it satisfies

• || f (x), f (y)| − |x, y|| < ε for all x, y ∈ X ;
• for any y ∈ Y , there is an x ∈ X such that | f (x), y| < ε.

The Gromov–Hausdorff distance dGH(X , Y ) between X and Y is defined as

dGH(X , Y ) := inf

{
ε > 0

∣∣∣∣∣ there exist ε-approximations

X → Y and Y → X

}
.

A bijective map f : X → Y is called an ε-almost isometry if both f and f −1 are
Lipschitz with Lipschitz constants at most 1 + ε.

2.3 Alexandrov Spaces and Good Coverings

We briefly recall the definition of Alexandrov spaces and their properties. For details,
we refer to [1]. A complete metric space X is called an Alexandrov space if it is a
length space and for any p ∈ X , there exist κ ∈ R and a neighborhood U of p such
that for any x, y, z ∈ U \ {p}, we have

∠̃κ xpy + ∠̃κ ypz + ∠̃κ zpx ≤ 2π,

where ∠̃κ xpy is defined as the angle of a comparison triangle 	̃xpy = 	x̃ p̃ ỹ at p̃ in
the complete simply connected surface Mκ of constant curvature κ . It is known that
the Hausdorff dimension of X coincides with its Lebesgue covering dimension [1,12],
which is called the dimension of X . When κ is chosen to be independent of the choice
of points p ∈ X , we say that X is of curvature ≥ κ . When X is of dimension n, its
volume is measured by the n-dimensional Hausdorff measure.

Complete Riemannian manifolds and orbifolds, the quotient spaces of complete
Riemannian manifolds by isometric actions, and the Gromov–Hausdorff limits of
sequences of completeRiemannianmanifoldswith a uniform lower sectional curvature
bound are typical examples of Alexandrov spaces.

For m ∈ N and δ > 0, a point p in an Alexandrov space X of curvature ≥ κ is
called (m, δ)-strained if there exist pairs of points {(ai , bi )}m

i=1 such that

∠̃κai pbi > π − δ, ∠̃κai pb j > π/2 − δ,

∠̃κai pa j > π/2 − δ, ∠̃κbi pb j > π/2 − δ

for all 1 ≤ i �= j ≤ m. The set {(ai , bi )} is called an (m, δ)-strainer at p. The
length 
 of the strainer {(ai , bi )} at p is defined as


 := min{|p, ai |, |p, bi | | 1 ≤ i ≤ m}.
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From now on, we shall use the convention

∠̃xyz := ∠̃κ xyz,

when the curvature lower bound is understood.
In an n-dimensional Alexandrov space X , a point p ∈ X is called δ-regular if it is

(n, δ)-strained and δ 	 1/n. The set of all δ-regular points is called a δ-regular part,
and is denoted by RX (δ).

In the present paper, we are concerned with a moduli space of Alexandrov spaces
with curvature bounded frombelow by a uniform constant, say κ . Rescaling themetric,
we assume κ = −1 without loss of generality. Thus we deal with the moduli space
A(n, D, v0) as explained in the introduction.

Theorem 2.3 [1] Suppose that X is n-dimensional and δ is sufficiently small with
δ 	 1/n. If p is (n, δ)-strained by an (n, δ)-strainer {(ai , bi )}n

i=1 with length 
, then
the map ϕ defined by

ϕ(x) := (|a1, x |, . . . , |an, x |)

is a τ(δ, σ/
)-almost isometry from B(p, σ ) to an open subset of Rn.

We will use Theorem 2.3 in Sect. 6.
Perelman proved the following theorem, called the topological stability theorem.

Theorem 2.4 ([10], see also [5]) Let D > 0 and n ∈ N be fixed. Let M j be a sequence
of n-dimensional compact Alexandrov spaces of diameter ≤ D and curvature ≥ −1
which converges to an n-dimensional compact Alexandrov space M as j → ∞. Then,
there is j0 such that M j and M are homeomorphic for all j ≥ j0.

In particular, the set of homeomorphism types of spaces in the moduli space
A(n, D, v0) is finite.

The last statement follows from the fact that A(n, D, v0) is compact with respect
to the Gromov–Hausdorff distance.

We shall define a new notion of good coverings for metric spaces. In [9], we have
proved that any Alexandrov space has a covering with geometrically and topologically
good properties:

Theorem 2.5 [9] For any open covering of a finite-dimensional Alexandrov space
X, there is an open covering U of X which is a refinement of the original covering,
satisfying the following: Let V = ⋂k

i=0 U ji be any non-empty intersection of finitely
many elements of U . Then

(1) V is convex in the sense that every minimal geodesic joining any two points in V
is contained in V ;

(2) there exists a point p ∈ V such that (V , p) is homeomorphic to a cone (C, v),
where v is the apex of C ;

(3) there exists a Lipschitz strong deformation retraction h : V × [0, 1] → V of V
to the point p as above (2) such that |ht (x), p| is non-increasing in t ∈ [0, 1] for
each x ∈ V .
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By extracting some fundamental properties that the covering U in Theorem 2.5
posses, we define good coverings for general metric spaces as follows.

Definition 2.6 A locally finite open covering U = {U j } j∈J of a metric space X is
good if it satisfies the following:

(1) the closure of each element of U is compact;
(2) every non-empty intersection

⋂k
i=0 U ji of finitely many elements of U has a

Lipschitz strong deformation retraction to a point p.

Any such a point p as in (2) is called a center of
⋂k

i=0 U ji . We also say that U is a
good r -cover if diam (U j ) < r for any j ∈ J .

3 Proof of Theorem 1.1 (Compact Case)

In this section, we prove Theorem 1.1 in the case when M is compact. We deal with
the non-compact case in the next section. For the proof of Theorem 1.1, we employ
a basic strategy in the proof of Theorem 9.4.15 of [13], where it is proved that if a
topological space has a locally finite covering all of whose non-empty intersection are
contractible, then it has the same homotopy type as the nerve of the covering. Since
the argument there is only topological, we have to proceed in the category of (locally)
Lipschitz maps.

Setting and Strategy

Let M be a compact metric space having a good cover U = {U j } j∈J . Note that J is a
finite set since U is locally finite and M is compact. Let J = {1, 2, . . . , N }. Let NU
denote the nerve of U , which is a simplicial complex with the set of vertexes {U ∈
U | U �= ∅}, and whose k-simplices are unordered (k + 1)-tuples

〈
U j0 , U j1 , . . . , U jk

〉
of elements in U so that

⋂k
i=0 U ji �= ∅. We denote by |NU | ⊂ R

N its geometric
realization, where we assume that j th vertex v j := 〈

U j
〉
of NU is given by

v j = (0, . . . ,
j
1, . . . , 0) ∈ R

N .

Let θ : V (NU ) → [0, 1] be a function defined on the set of vertices ofNU satisfying

(1)
∑

j∈J θ(v j ) = 1;
(2) supp(θ) defines a simplex σθ of NU .

Since θ defines the point
∑

j∈J θ(v j )v j of σθ , it can be considered as an element
of |NU |. From now on, we identify a function θ satisfying (1), (2) with an element∑

j∈J θ(v j )v j ∈ |NU |. That is,

|NU | =
⎧⎨
⎩θ ≡

∑
j∈J

θ(v j )v j

∣∣∣ θ satisfies above (1), (2)

⎫⎬
⎭ .
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This will be useful later on (see the proof of Lemma 3.1, for instance). For any subset
A ⊂ J , we put

UA :=
⋂
j∈A

U j .

Each simplex σ ∈ NU defines a subset A(σ ) ⊂ J , and we also use the symbol

Uσ = UA(σ ).

By definition, there is a Lipschitz contraction ϕ : Uσ × [0, 1] → Uσ to a point pσ of
Uσ .

We define a function f j on M by

f j (x) = |x, U c
j |

|x, U c
j | + |x, p j | ,

where U c
j denotes the complement of U j and p j is a center of U j to which U j has a

Lipschitz strong deformation retraction. Since |x, U c
j | + |x, p j | ≥ |p j , U c

j |/2 > 0, it
is straightforward to check that f j is Lipschitz. Set

ξ j (x) = f j (x)∑
i fi (x)

.

Then {ξ j } j∈J defines a partition of unity dominated with U satisfying

(1) supp(ξ j ) = Ū j ;
(2) each ξ j is Lipschitz;
(3)

∑
j ξ j = 1.

The polyhedron |NU | has the distance induced from the metric of RN defined as

d(x, y) = max
1≤i≤N

|xi − yi |.

In the rest of this section, we are going to construct metric spacesD(U) andM(p)

together with natural bi-Lipschitz embeddings

M
τ−−−−→ D(U)⏐⏐�ι

|NU | −−−−→
�

M(p)

(3.1)

and prove that their images are Lipschitz strong deformation retracts of the target
spaces. This strategy comes from [13]. The most complicated part is a construction
of a Lipschitz strong deformation retraction from M(p) to ι(D(U)), which will be
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done simplex-wisely by means of provided Lipschitz strong deformation retractions
of Uσ ’s to their centers.

We divide the proof into three steps.
Step 1We consider the following subspace of the product metric space |NU | × M

defined as

D(U) := {(θ, x) ∈ |NU | × M | x ∈ Usupp θ }.

Let p : D(U) → |NU | and q : D(U) → M be the projections:

p(θ, x) = θ, q(θ, x) = x .

Lemma 3.1 There exists a Lipschitz map τ : M → D(U) such that

(1) τ is a section of the map q (i.e., q ◦ τ = 1M );
(2) τ(M) is a Lipschitz strong deformation retract of D(U).

Proof Define τ : M → D(U) by

τ(x) = (�(x), x),

where �(x) ∈ |NU | is defined by �(x)(v j ) = ξ j (x), j ∈ J . Obviously τ and
� : M → |NU | are Lipschitz. For any x ∈ M , let s(x) := { j ∈ J | x ∈ U j }, which
forms a simplex of NU . For any (θ, x) ∈ D(U), supp(θ) defines a face of s(x). Thus
we can define the Lipschitz map H : D(U) × [0, 1] → D(U) by

H(θ, x, s) = (s�(x) + (1 − s)θ, x) (3.2)

satisfying H(θ, x, 0) = 1D(U)(θ, x), H(θ, x, 1) = (�(x), x) = τ(x) and
H(τ (x), s) = τ(x) for every s ∈ [0, 1]. Obviously H is Lipschitz. This completes
the proof. ��
Corollary 3.2 M has the same Lipschitz homotopy type as D(U).

Proof Let q ′ : τ(M) → M be the restriction of q to τ(M). Since τ is Lipschitz and
q ′ is 1-Lipschitz with q ′ ◦ τ = 1M and τ ◦ q ′ = 1τ(M), M and τ(M) are bi-Lipschitz
homeomorphic to each other. The conclusion follows from Lemma 3.1. ��

Step 2 For L > 0 (see (3.3) for the proper choice of L), consider the mapping
cylinder of p:

M(p) := D(U) × [0, L] � |NU |/(θ, x, L) ∼ θ.

Recall that

D(U) =
⋃

σ∈NU

σ × Uσ ⊂ |NU | × M .
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Thecanonical correspondence [(θ, x, t)] → (θ, [(x, t)])gives rise to the identification

M(p) =
⋃

σ∈NU

σ × K (Uσ ) ⊂ |NU | × K (M),

where K (V ) = V × [0, L]/V × L denotes the Euclidean cone. From now on, we
consider the metric ofM(p) induced from that of the product metric |NU | × K (M),
where the metric of the Euclidean cone K (M) = M × [0, L]/M × L is defined as

|[x, t],[x ′, t ′]|2
= (L − t)2 + (L − t ′)2 − 2(L − t)(L − t ′) cos(min{π, |x, x ′|}),

for [x, t], [x ′, t ′] ∈ K (M).
Note that there is a natural isometric embedding � : |NU | → M(p) defined by

�(θ) = (θ, [x, L]) = [θ ]= (θ, vM ),

where vM denotes the vertex of K (M).

Lemma 3.3 |NU | is a Lipschitz strong deformation retract of M(p).

Proof Define � ′ : M(p) → |NU | by

� ′(θ, [x, t]) = θ.

Since

|� ′(θ, [x, t]),� ′(θ ′, [x ′, t ′])|
= |θ, θ ′|
≤

√
|θ, θ ′|2 + |[x, t], [x ′, t ′]|2

= |(θ, [x, t]), (θ ′, [x ′, t ′])|,

and since |�(θ1),�(θ2)| = |θ1, θ2|, both � and � ′ are 1-Lipschitz.
Note that � ◦ � ′(θ, [x, t]) = [θ ] = (θ, [x, L]) and � ′ ◦ � = 1|NU |. Define

F : M(p) × [0, 1] → M(p) by

F(θ, [x, t], s) = (θ, [x, (1 − s)t + sL]).

Then F0 = 1M(p) and F1 = � ◦ � ′. We show that F is Lipschitz. Since it suffices
to prove that it is locally Lipschitz, let us assume that (θ, [x, t], s) and (θ ′, [x ′, t ′], s′)
are close to each other. We then have

|F(θ, [x, t], s), F(θ ′, [x ′, t ′], s′)|2 = |θ, θ ′|2 + |[x, u], [x ′, u′]|2,

where we set u = (1 − s)t + sL , u′ = (1 − s′)t ′ + s′L , and
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|[x, u],[x ′, u′]|2
= (L − u)2 + (L − u′)2 − 2(L − u)(L − u′) cos |x, x ′|
≤ (u − u′)2 + (L − u)(L − u′)|x, x ′|2.

Since |u − u′| ≤ (1 − s′)|t − t ′| + (L − t)|s − s′|, we have

|F(θ, [x, t],s), F(θ ′, [x ′, t ′], s′)|2
≤ |θ, θ ′|2 + 2|t − t ′|2 + 2|s − s′|2 + (L − u)(L − u′)|x, x ′|2.

Similarly we have

|(θ, [x, t], s),(θ ′, [x ′, t ′], s′)|2

≥ |θ, θ ′|2 + |t − t ′|2 + 1

2
(L − t)(L − t ′)|x, x ′|2+|s − s′|2.

Combining those inequalities, we conclude that F is Lipschitz. ��
Step 3 Let us define ι : D(U) → D(U)× 0 ⊂ M(p) by ι(θ, x) = (θ, x, 0). In this

last step, we prove

Proposition 3.4 There exists a Lipschitz strong deformation retraction � : M(p) ×
[0, 1] → M(p) of M(p) to D(U) × 0.

The compact case of Theorem 1.1 now follows from Corollary 3.2, Lemma 3.3 and
Proposition 3.4.

Let

L > 6. (3.3)

Let k0 denote the dimension ofN . For each 0 ≤ k ≤ k0, letN (k) denote the k-skeleton
of NU , and Dk := p−1(|N (k)|) and pk := p|Dk : Dk → N (k). Let M(pk) denote
the mapping cone of pk :

M(pk) := Dk × [0, L] � |N (k)|/(θ, x, L) ∼ θ.

As before, we have

Dk =
⋃

σ∈N (k)

σ × Uσ ,

M(pk) =
⋃

σ∈N (k)

σ × K (Uσ ) ⊂ |NU | × K (M).

Lemma 3.5 For each k, There exists a Lipschitz strong deformation retraction �k :
M(pk) × [0, 1] → M(pk) of M(pk) to Dk × 0

⋃M(pk−1).
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The construction of the Lipschitz strong deformation retraction �k in Lemma 3.5
will be done simplex-wisely. This is based on the following sublemma.

Sublemma 3.6 For each k-simplex σ ∈ NU , there exists a Lipschitz strong deforma-
tion retraction of σ × K (Uσ ) to (σ × Uσ × 0)

⋃
∂σ × K (Uσ ).

Since ∂σ × K (Uσ ) ⊂ M(pk−1), applying Sublemma 3.6 to each k-simplex of
NU , we obtain Lemma 3.5.

By using Lemma 3.5 repeatedly, we have a finite sequence of Lipschitz retractions:

M(p) = M(pk0) −→D(U) × 0
⋃

M(pk0−1) −→ · · ·
−→ D(U) × 0

⋃
M(p0) −→ D(U) × 0.

(3.4)

From (3.4), we conclude that D(U) × 0 is a Lipschitz strong deformation retract of
M(p). Thus all we have to do is to prove Sublemma 3.6.

Remark 3.7 From (3.4), one might think that k0 = dimNU < ∞ is essential in the
argument below.However,we can generalize the argument of this section to the general
case of dimNU = ∞. This will be verified in Sect. 4.

The following is the important first step in the proof of Sublemma 3.6, which is the
case of k = 0.

Claim 3.8 Let U be an element of U . Then there exists a Lipschitz strong deformation
retraction K (U ) × [0, 1] → K (U ) of K (U ) to U × 0.

Proof Let ϕ : U ×[0, L] → U be a Lipschitz strong deformation retraction to p ∈ U .
We may assume that ϕ(x, t) = p for all t ≥ L/2 and x ∈ U . Define the retraction
r : K (U ) → U × 0 ⊂ K (U ) by

r([x, t]) := [ϕ(x, t), 0].

First we show that r is Lipschitz. Again we way assume that [x, t] and [x ′, t ′] are
sufficiently close. Note that

|r([x, t]), r([x ′, t ′])| ≤ |[ϕ(x, t), 0], [ϕ(x ′, t), 0]| + |[ϕ(x ′, t), 0], [ϕ(x ′, t ′), 0]|
≤ L|ϕ(x, t), ϕ(x ′, t)| + L|ϕ(x ′, t), ϕ(x ′, t ′)|
≤ C L|x, x ′| + C L|t − t ′|.

From here on, we use the symbols C, C1, C2, . . . to denote some uniform positive
constants.

If both t and t ′ are greater than L/2, then ϕ(x, t) = ϕ(x ′, t ′) = p. Therefore we
may assume that t, t ′ ≤ L/2. Then we have

|[x, t], [x ′, t ′]|2 ≥ (t − t ′)2 + (L − t)(L − t ′)|x, x ′|2/2
≥ (t − t ′)2 + (L2/8)|x, x ′|2.
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Combining the two inequalities, we have

|r([x, t]), r([x ′, t ′])| ≤ C L|x, x ′| + C1L|t − t ′|
≤ C(1 + L)|[x, t], [x ′, t ′]|.

Now let g : [0, L] × [0, 1] → [0, 1] be a Lipschitz function such that

• g(t, s) = 1 on [0, L] × [0, 1/3];
• g(t, 1) = 0 for all 0 ≤ t ≤ L ,

and define � : K (U ) × [0, 1] → K (U ) by

�([x, t], s) = [ϕ(x, st), g(t, s)t].

Note that �([x, t], 0) = [x, t], �([x, t], 1) = r([x, t]).
To show that � is Lipschitz, let ([x, t], s) and ([x ′, t ′], s′) be elements of K (U ) ×

[0, 1] sufficiently close to each other. By triangle inequalities, it suffices to show the
following:

(1) |�([x, t], s),�([x ′, t], s)| ≤ C1|[x, t], [x ′, t]|;
(2) |�([x, t], s),�([x, t ′], s)| ≤ C2L|[x, t], [x, t ′]|;
(3) |�([x, t], s),�([x, t], s′)| ≤ C3L(1 + L)|s − s′|.
We show (1)

|�([x, t], s),�([x ′, t], s)| = |[ϕ(x, st), g(t, s)t], [ϕ(x ′, st), g(t, s)t]|
≤ |L − g(t, s)t ||ϕ(x, st), ϕ(x ′, st)|
≤ |L − g(t, s)t |C |x, x ′|
≤ |L − g(t, s)t ||x, x ′|.

If s ≤ 1/3, then |L − g(t, s)t ||x, x ′| = (L − t)|x, x ′| ≤ 2|[x, t], [x ′, t]|. If s ≥ 1/3
and t ≥ L/2, then ts ≥ L0, and therefore |�([x, t], s),�([x ′, t], s)| = 0. If s ≥ 1/3
and t ≤ L/2, then |L−g(t, s)t ||x, x ′| ≤ L|x, x ′| ≤ 2(L−t)|x, x ′| ≤ 3|[x, t], [x ′, t]|.

We show (2)

|�([x, t], s),�([x, t ′], s)|2 = |[ϕ(x, st), g(t, s)t], [ϕ(x, st ′), g(t ′, s)t ′]|2
≤ |g(t, s)t − g(t ′, s)t ′|2 + L2|ϕ(x, st), ϕ(x, st ′)|2,
≤ |g(t, s)t − g(t ′, s)t ′|2 + L2C1|st − st ′|2,

where obviously

|g(t, s)t − g(t ′, s)t ′| ≤ |g(t, s)t − g(t ′, s)t | + |g(t ′, s)t − g(t ′, s)t ′|
≤ C(1 + L)|t − t ′|.

Thus we have |�([x, t], s),�([x, t ′], s)| ≤ C2(1 + L)|[x, t], [x, t ′]|.

123



Lipschitz Homotopy Convergence of Alexandrov Spaces 2229

We show (3)

|�([x, t], s),�([x, t], s′)|2 = |[ϕ(x, st), g(t, s)t], [ϕ(x, s′t), g(t, s′)t]|2
≤ |g(t, s)t − g(t, s′)t |2 + C1L2|st − s′t |2
≤ C2L2|s − s′|2 + C3L4|s − s′|2
≤ C4L2(1 + L2)|s − s′|2.

(3.5)

This shows that � is Lipschitz, and together with (3.5) this completes the proof of
Claim 3.8. ��

Next we consider the general case.

Proof of Sublemma 3.6 Let σ be any simplex ofN . Note that σ × 0∪ ∂σ × [0, L] is a
Lipschitz strong deformation retract of σ ×[0, L]. Let r : σ ×[0, L] → σ ×0∪∂σ ×
[0, L] be a Lipschitz strong deformation retraction defined by the radial projection
from the point (x∗, 2L) ∈ σ × R, where x∗ is the barycenter of σ . Let us represent r
as

r(x, t) = (ψ0(x, t), u(x, t)) ∈ σ × 0 ∪ ∂σ × [0, L] ⊂ σ × [0, L].

Define the retraction f : σ × K (U ) → σ × U × 0 ∪ ∂σ × K (U ) by

f (x, [y, t]) = (ψ0(x, t), [ϕ(y, t − u(x, t)), w(x, t)]),

where w : σ × [0, L] → [0, L] is defined as follows: Let us consider the following
closed subsets of RN+1:

�0 = {(x, t) ∈ σ × [0, L] | u(x, t) ≤ L/10},
�1 = {(x, t) ∈ σ × [0, L] | u(x, t) ≥ L/2}.

Note that |�0,�1| ≥ c > 0 for some constant c > 0. Let si (x, t) = |(x, t),�i |,
i = 1, , 2, and define w by

w(x, t) := s1(x, t)

s0(x, t) + s1(x, t)
u(x, t) + s0(x, t)

s0(x, t) + s1(x, t)
t .

Note that w is Lipschitz and has the property

w(x, t) =
{

u(x, t) if u(x, t) ≤ L/10

t if u(x, t) ≥ L/2.

Note also that f is the identity on σ × U × 0 ∪ ∂σ × K (U ), and therefore it defines
a retraction of σ × U × 0 ∪ ∂σ × K (U ). We show that f is Lipschitz. It suffices to
show that the second component

f2(x, [y, t]) = ([ϕ(y, t − u(x, t)), w(x, t)])
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of f is Lipschitz. As before, we may assume that (x, [y, t]) and (x ′, [y′, t ′]) are
sufficiently close to each other. Letting u = u(x, t), u′ = u(x ′, t), w = w(x, t),
w′ = w(x ′, t) we have

| f2(x,[y, t]), f2(x ′, [y, t])|2
= |[ϕ(y, t − u), w], [ϕ(y, t − u′), w′]|2
≤(L − w)2 + (L − w′)2 − 2(L − w)(L − w′) cos |ϕ(y, t − u), ϕ(y, t − u′)|
≤ (w − w′)2 + (L − w)(L − w′)|ϕ(y, t − u), ϕ(y, t − u′)|2
≤ (w − w′)2 + C1L2(u − u′)2

≤ C2(1 + L2)|x, x ′|2,

and

| f2(x, [y, t]), f2(x, [y′, t])| = |[ϕ(y, t − u), w], [ϕ(y′, t − u), w]|
≤ (L − w)|ϕ(y, t − u), ϕ(y′, t − u)|,

where since |[y, t], [y′, t]| ≥ (1/2)(L − t)|y, y′|, we may assume that t ≥ 9L/10. If
t ≥ 9L/10 and u(x, t) ≤ L/2, then ϕ(·, t −u) = p. If t ≥ 9L/10 and u(x, t) > L/2,
then w(x, t) = t , and we have

| f2(x, [y, t]), f2(x ′, [y, t])| ≤ (L − t)C |y, y′|
≤ C |[y, t], [y′, t]|.

Finally letting u = u(x, t), u′ = u(x, t ′), w = w(x, t), w′ = w(x, t ′) we have

| f2(x, [y, t]), f2(x, [y, t ′])|2 = |[ϕ(y, t − u), w], [ϕ(y, t − u′), w′]|2
≤ (w − w′)2 + L2|ϕ(y, t − u), ϕ(y, t − u′)|2
≤ (w − w′)2 + C1L2(u − u′)2

≤ C2(1 + L2)|t − t ′|2.

Thus f is Lipschitz.
Now define the homotopy � : σ × K (U ) × [0, 1] → σ × K (U ) by

�(x, [y, t], s)

= ((1 − s)x + sψ0(x, t), [ϕ(y, μ(s)(t − u(x, t)), (1 − ν(s))t + ν(s)w(x, t)]),

where μ and ν are Lipschitz functions on [0, 1] satisfying

μ(s) =
{
1 if s ≥ 2/3

0 if s ≤ 1/2,
ν(s) =

{
1 if s ≥ 3/4

0 if s ≤ 2/3.
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Obviously, �(·, 0) = 1σ×K (U ), �(·, 1) = f and �(·, s) fixes each point of σ × U ×
0 ∪ ∂σ × K (U ). We show that � is Lipschitz. It suffices to show that the second
component

�2(x, [y, t], s) = ([ϕ(y, μ(s)(t − u(x, t)), (1 − ν(s))t + ν(s)u(x, t)])

of � is Lipschitz. As before, we may assume that (x, [y, t], s) and (x ′, [y′, t ′], s′)
are sufficiently close to each other. Letting u = u(x, t), u′ = u(x ′, t), w = w(x, t),
w′ = w(x ′, t) and μ = μ(s), ν = ν(s), we have

|�2(x,[y, t], s),�2(x ′, [y, t], s)|2
= |[ϕ(y, μ(t − u)), (1 − ν)t + νw], [ϕ(y, μ(t − u′)), (1 − ν)t + νw′]|2
≤ ν2(w − w′)2 + L2|ϕ(y, μ(t − u)), ϕ(y, μ(t − u′)|2
≤ ν2(w − w′)2 + C1L2μ2(u − u′)2

≤ C2(1 + L2)|x, x ′|2,

and

|�2(x,[y, t], s),�2(x, [y′, t], s)|
= |[ϕ(y, μ(t − u)), (1 − ν)t + νw], [ϕ(y′, μ(t − u)), (1 − ν)t + νw]|
≤ (L − (1 − ν)t − νw)|ϕ(y, μ(t − u), ϕ(y′, μ(t − u)|
≤ (L − (1 − ν)t)C |y, y′|,

where if t < 9L/10, then L|y, y′| ≤ C L|[y, t], [y′, t]|. Hence we may assume that
t ≥ 9L/10. If u(x, t) > L/2 then w(x, t) = t . If u(x, t) ≤ L/2 and s ≥ 2/3, then
μ(s) = 1 and ϕ(·, μ(t − u)) = p. If u(x, t) ≤ L/2 and s ≤ 2/3, then ν = 0. Thus
we conclude that

|�2(x, [y, t], s),�2(x, [y′, t], s)| ≤ (L − t)C |y, y′|
≤ C |[y, t], [y′, t]|.

Next letting u = u(x, t), u′ = u(x, t ′), w = w(x, t), w′ = w(x, t ′), we have

|�2(x,[y, t], s),�2(x, [y, t ′], s)|2
= |[ϕ(y, μ(t − u)), (1 − ν)t + νw], [ϕ(y, μ(t ′ − u′)), (1 − ν)t ′ + νw′]|2
≤ ((1 − ν)(t − t ′) + ν(w − w′))2 + L2|ϕ(y, μ(t − u), ϕ(y, μ(t ′ − u′))|
≤ C(1 + L2)(t − t ′)2.

Finally letting μ′ = μ(s′), ν′ = ν(s′), we have

|�2(x,[y, t], s),�2(x, [y, t], s′)|2
= |[ϕ(y, μ(t − u)), (1 − ν)t + νw], [ϕ(y, μ′(t − u)), (1 − ν′)t + ν′w]|2
≤ (t(ν′ − ν) + w(ν − ν′))2 + L2|ϕ(y, μ(t − u), ϕ(y, μ′(t − u))|2
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≤ L2(ν − ν′)2 + C1L2(μ − μ′)2

≤ C2L2(s − s′)2.

Thus � is Lipschitz. This completes the proof of Sublemma 3.6. ��

This completes the proof of Proposition 3.4. We have just proved the compact case
of Theorem 1.1.

By the above discussion, we have the following commutative diagram:

M
τ−−−−→ D(U)

�

⏐⏐� ⏐⏐�ι

|NU | ←−−−−
� ′ M(p)

From Lemmas 3.1, 3.3, and Proposition 3.4 together with (3.1), we have the fol-
lowing.

Corollary 3.9 Let M,U , {ξ j } j∈J be the same as in this section. Then the natural map

� : M � x �→ (ξ j (x)) j∈J ∈ |NU |

is a Lipschitz homotopy equivalence.

Corollary 3.10 Let M, U = {U j }N
j=1 and NU be the same as in this section, and

ζ : |NU | → M a Lipschitz homotopy inverse to � : M → |NU |. For every θ ∈ |NU |,
let σ be the open simplex of NU containing θ with σ = 〈U j0 , . . . , U jk 〉. Then we have

ζ(θ) ∈
k⋃

i=0

U ji . (3.6)

Proof Let H : D(U)×[0, 1] → D(U) be a Lipschitz strong deformation retraction of
D(U) to τ(M) given in (3.2), and set H1 := H( · , 1). Let� : M(p)×[0, 1] → M(p)

be a Lipschitz strong deformation retraction ofM(p) toD(U)×0 given in Proposition
3.4, and set �1 := �( · , 1). From our argument in this section, we have the following
commutative diagram:

M
τ−1◦H1←−−−− D(U)

ζ

�⏐⏐ �⏐⏐�1

|NU | −−−−→
�

M(p)

Note that τ−1 ◦ H1(μ, x) = x for every (μ, x) ∈ D(U). Therefore, we can write
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�1 ◦ �(θ) = (η(θ), ζ(θ)) ∈ D(U),

where η(θ) ∈ |NU | and ζ(θ) ∈ M . If σ1 denotes the open simplex of NU containing
η(θ), then it follows from the definition of D(U) that ζ(θ) ∈ Uσ1 . From Sublemma
3.6 together with (3.4), we see that σ1 is a face of σ , which yields (3.6). ��

4 Non-compact Case

We prove Theorem 1.1 for the general case. Let M be a σ -compact metric space
admitting a good coveringU = {U j } j∈J . From the local finiteness ofU , J is countable,
and therefore we may assume J = N. Since U is locally finite, the number of U j ’s
meeting each Ūi is finite. It follows that the nerve NU is locally finite. Note that
|NU | ⊂ R

∞ in this case. Note that the Lipschitz constant of the strong deformation
retraction U j × [0, 1] → U j × [0, 1] of U j to a point of U j depends on j , and that
dimNU = ∞ in general. From the local finiteness of NU , basically we can do the
same construction as in Sect. 3 to obtain the spaces D(U),M(p) in the general case,
too. We also have the natural embeddings in a similar manner:

M
τ−−−−→ D(U)⏐⏐�ι

|NU | −−−−→
�

M(p)

Note that the map τ : M → D(U) defined by

τ(x) = (�(x), x), �(x)(v j ) = ξ j (x) ( j ∈ J )

is locally bi-Lipschitz. In a way similar to Corollary 3.2, we see that τ(M) has the
same locally Lipschitz homotopy type asD(U). Note also that the natural embedding
� : |NU | → M(p) defined by

�(θ) = (θ, [x, L]) = [θ ]

is isometric, and we see that |NU | is a locally Lipschitz strong deformation retract of
M(p) in a way similar to Lemma 3.3. Therefore to complete the proof of Theorem
1.1 in the general case, we only have to check the following:

Lemma 4.1 There exists a locally Lipschitz strong deformation retraction of M(p) to
D(U) × 0.

Proof Recall that in the compact case in Sect. 3, the strong deformation retraction
� : M(p)×[0, 1] → M(p) ofM(p) toD(U)×0 is constructed simplex-wisely from
higher dimensions to lower dimensions through Lemma 3.5. Therefore the Lipschitz
constant of � depends on the dimension k0 of NU .
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Since dimNU could be infinite in the present case, first of all, we have to verify
that the map � : M(p) × [0, 1] → M(p) is well defined. For any point (θ, [x, t]) ∈
M(p), let σθ be the simplex whose interior contains θ . Let L be the star of σθ , which
is a finite subcomplex because of the local finiteness of NU . Then

ML(p) :=
⋃
σ∈L

σ × K (Uσ )

provides an open subset of M(p) containing (θ, [x, t]). Set

DL :=
⋃
σ∈L

σ × Uσ .

From the argument in Lemma 3.5, we have a Lipschitz strong deformation retraction
�L : ML(p) × [0, 1] → ML(p) of ML(p) to DL × 0. Since M(p) is a locally
finite union of such open subsets ML(p), we can construct a strong deformation
retraction� : M(p)×[0, 1] → M(p) ofM(p) toD×0 simplex-wisely in a similar
manner. Since�|ML (p)×[0,1] = �L and the construction is simplex-wise,� is locally
Lipschitz. This completes the proof. ��

5 Proofs of Theorem 1.2 and Corollary 1.5

To prove Theorem 1.2, we need the following result, which follows from the proof of
[9, Theorem 1.2].

Theorem 5.1 [9] For every M ∈ A(n, D, v0), let Mi be a sequence in A(n, D, v0)

converging to M as i → ∞. Then for any μ > 0, there exists a good μ-covering U =
{U j } j∈J of M satisfying the following. For every εi -approximations φi : M → Mi with
εi → 0, there exist a good 2μ-covering Ui = {Ui j } j∈J of Mi and νi -approximations
ϕi : M → Mi with νi → 0 such that for sufficiently large i

(1) ϕi (p j ) is a center of Ui j in the sense of Definition 2.6 for every j ∈ J ;
(2) the corresponding U j �→ Ui j induces an isomorphism NU → NUi between the

nerves of U and Ui ;
(3) limi→∞ supx∈M |φi (x), ϕi (x)| = 0.

Definition 5.2 We call such a Ui given in Theorem 5.1 a lift of U with respect to ϕi .

Proof of Theorem 1.2 Due to [9, Theorem 1.2], there exist ε > 0 and finitely many
spaces M1, . . . , MN ∈ A(n, D, v0) and finite simplicial complexes K1, . . . , KN such
that

• ⋃N
i=1 UGH

ε (Mi ) = A(n, D, v0);
• any M ∈ UGH

ε (Mi ) admit a good covering whose nerve complex is isomorphic to
Ki .

Here, UGH
ε (X) denotes the ε-neighborhood of X inA(n, D, v0) with respect to the

Gromov–Hausdorff distance. From this andTheorem1.1,weobtain thefirst conclusion
of Theorem 1.2.
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Weprove the second conclusion by contradiction. Suppose it does not hold. Thenwe
would have sequences {Mi }, {M ′

i } inA(n, D, v0)with dG H (Mi , M ′
i ) < δi , lim δi = 0,

together with δi -approximation θi : Mi → M ′
i such that

sup
x∈Mi

|θi (x), ki (x)| > c > 0, (5.7)

for any Lipschitz homotopy equivalence ki : Mi → M ′
i , where c is a constant not

depending on i . Passing to a subsequence, we may assume that both Mi and M ′
i

converge to an Alexandrov space M ∈ A(n, D, v0). We introduce a new positive
number μ 	 c. By Theorem 5.1, one can take a good μ-cover U = {U j } j∈J of M
and a good 2μ-cover Ui = {Ui j } j∈J of Mi such that Ui is a lift of U with respect to
some νi -approximation ϕi : M → Mi , where limi→∞ νi = 0. Let ψi : Mi → M be
an νi -approximation, which is an almost inverse of ϕi , in the sense that

sup
x∈Mi

|ϕi ◦ ψi (x), x | ≤ νi , sup
x∈M

|ψi ◦ ϕi (x), x | ≤ νi .

Note that θi ◦ ϕi : M → M ′
i is a 2(δi + νi )-approximation. Applying Theorem 5.1 to

θi ◦ ϕi , we also obtain a ν′
i -approximation ϕ′

i : M → M ′
i with limi→∞ ν′

i = 0 and a
lift U ′

i = {U ′
i j } j∈J of U with respect to ϕ′

i such that

lim
i→∞ sup

x∈M
|θi ◦ ϕi (x), ϕ′

i (x)| = 0. (5.8)

Set pi j := ϕi (p j ) and p′
i j := ϕ′

i (p j ), which are centers of Ui j and U ′
i j , respectively.

It follows that

sup
x∈Mi

|θi (x), ϕ′
i ◦ ψi (x)| ≤ μ (5.9)

for large i . Let αi : NU → NUi and α′
i : NU → NU ′

i
be the isomorphisms given

by the correspondence U j �→ Ui j and U j �→ U ′
i j , respectively. We now consider the

following diagram:

Mi

�i

ψi

hi

M

�

ϕ′
i

gi
M ′

i

|NUi |
α−1

i

|NU |
ζ

α′
i

|NU ′
i
|

ζ ′
i

Here, �, ζ,�i , ζ
′
i are maps given by Corollaries 3.9 and 3.10, for (M,U), (Mi ,Ui ),

and (M ′
i ,U ′

i ), respectively. For instance, �(x) = (ξ j (x)) j∈J for x ∈ M , where
(ξ j ) j∈J is a partition of unity by Lipschitz functions subordinate to

{
Ū j

}
j∈J , and ζ
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is a Lipschitz homotopy inverse of � given by Corollary 3.10. Now, we consider the
compositions

hi := ζ ◦ α−1
i ◦ �i , gi := ζ ′

i ◦ α′
i ◦ �,

which are Lipschitz homotopy equivalences satisfying

sup
x∈Mi

|ψi (x), hi (x)| ≤ 10μ, sup
x∈M

|ϕ′
i (x), gi (x)| ≤ 10μ. (5.10)

Indeed, for x ∈ Mi , �i (x) is contained in a unique open simplex
〈
Ui j0 , . . . , Ui jk

〉 ∈
NUi . Then, α

−1
i ◦ �i (x) is contained in

〈
U j0 , . . . , U jk

〉
. By the property of ζ stated in

Corollary 3.10, we have hi (x) ∈ U j
 for some 0 ≤ 
 ≤ k. On the other hands, since
x ∈ Ui j
 , we have |x, pi j
 | ≤ 2μ and |ψi (x), p j
 | ≤ 3μ. Therefore, we obtain

|hi (x), ψi (x)| ≤ |hi (x), p j
 | + |p j
 , ψi (x)| ≤ 4μ.

Thus we obtain (5.10) for hi . Similarly we obtain (5.10) for gi . It follows from (5.10)
and (5.9) that supx∈Mi

|θi (x), gi ◦ hi (x)| ≤ 100μ, which is a contradiction to (5.7). ��
For two metric spaces A and B, let us denote by

[A, B]loc-Lip
the set of all locally Lipschitz homotopy classes of locally Lipschitz maps from A to
B. Let us denote by

[A, B]

the set of all homotopy classes of continuous maps from A to B. For another
metric space C and a locally Lipschitz map f : A → B, we define a map
f ∗ : [B, C]loc-Lip → [A, C]loc-Lip (and f ∗ : [B, C] → [A, C]) by f ∗(g) := g ◦ f up
to locally Lipschitz homotopy (and up to homotopy, respectively). From the definition,
for a locally Lipschitz map g : B → C , we have

(g ◦ f )∗ = f ∗ ◦ g∗. (5.11)

Proof of Corollary 1.5 Let us fix a good coverU of a σ -compact metric space X , and let
K be the geometric realization of the nerve of U . From [7, Corollary 1.3], the induced
map

[K , Y ]loc-Lip → [K , Y ]

is bijective. By Theorem 1.1, K is locally Lipschitz homotopy equivalent to X . Let f :
X → K and g : K → X be locally Lipschitz homotopy equivalences such that g ◦ f
and f ◦g are locallyLipschitz homotopy equivalent to idX and idK , respectively. By the
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contravariant property (5.11), the inducedmaps g∗ : [X , Y ]loc-Lip → [K , Y ]loc-Lip and
f ∗ : [K , Y ]loc-Lip → [X , Y ]loc-Lip are mutually inverse. So are f ∗ : [K , Y ] → [X , Y ]
and g∗ : [X , Y ] → [K , Y ]. These imply the conclusion. ��

Remark that in the statement of Corollary 1.5, if X is compact, we obtain a natural
bijection between the set of all Lipschitz homotopy classes of Lipschitz maps from X
to Y and [X , Y ].

A refinement of Corollary 1.5 is the following:

Corollary 5.3 Let X and Y be as in Corollary 1.5. For any continuous function ε :
Y → (0,∞) and any continuous map f : X → Y , there is a locally Lipschitz map
g : X → Y which is homotopic to f and satisfies

| f (x), g(x)| < ε( f (x))

for every x ∈ X.

Proof This follows from [7, Corollary 4.4] and a discussion similar to the proof of
Corollary 5.3. ��

6 Gluing with an Almost Isometry

For a small 1/n � δ > 0, letRM (δ) the open set of M consisting of all (n, δ)-strained
points, which is called the δ-regular part of M . In this section we prove Theorem 1.4
by making use of the notion of center of mass developed in [1] (see [2] for the original
idea).

Proof of Theorem 1.4 Let θ : M → M ′ be an ε-approximation. Take μ > 0 such
that the closed 3μ-neighborhood of D is contained in RM (δ). Let D1 be the closed
2μ-neighborhood of D. We also denote by D0 the closed μ-neighborhood of D. By
[1] and [14], for small enough ε > 0 with ε 	 μ, we have a τ(δ)-almost isometric
map

g : D1 → g(D1) ⊂ RM ′(2δ)

such that d(g(x), θ(x)) < τ(ε) for all x ∈ D1. On the other hand from Theorem 1.2,
we have a Lipschitz homotopy equivalence

f : M → M ′

such that d( f (x), θ(x)) < τ(ε) for all x ∈ M .
We shall construct a Lipschitz homotopy equivalence h : M → M ′ such that h = g

on D and h = f on M \ D0. Denote by E the closure of D1 \ D. Take R > 0 such that
each point x ∈ E has an (n, δ)-strainer of length > R. Let {xi }N

i=1 ⊂ E be a maximal
family with |xi , x j | ≥ δR/2 for each i �= j . Then {Bi }N

i=1 with Bi := B(xi , δR/2)
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gives a covering of E . By Theorem 2.3, for each 1 ≤ i ≤ N there are τ(δ)-almost
isometric maps

fi : B(xi , 2δR) → R
n, f ′

i : B(g(xi ), 2δR) → R
n .

Let

d(x) = min{|D, x |, μ}.

Note that the multiplicity of the covering B(xi , 2δR) is uniformly bounded by a
constant Cn .

For every x ∈ Bi , let

h0
i (x) := ( f ′

i )
−1

(
d(x)

μ
f ′
i ( f (x)) +

(
1 − d(x)

μ

)
f ′
i (g(x))

)
.

This extends to a Lipschitz map hi : M \ E ∪ Bi → M ′ satisfying

hi (x) =
{

g(x), x ∈ D

f (x), x ∈ M \ D0,

and |θ(x), hi (x)| < τ(ε) for all x ∈ M \ E ∪ Bi .
Now we are going to glue these Lipschitz maps {hi } to get a Lipschitz map h :

M → M ′. Define a Lipschitz cut-off function ϕi : M → R by

ϕi (x) :=
{
1 − |x,xi |

δR , x ∈ B(xi , δR)

0, otherwise.

Let Fi := M \ E ∪ B1 ∪ · · · ∪ Bi , and set

ψi (x) :=
i∑

j=1

ϕ j (x), x ∈ M .

Assuming that h1···i : Fi → M ′ is already defined in such a way that

⎧⎪⎨
⎪⎩

|θ(x), h1···i (x)| < τ(ε), x ∈ Fi

h1···i (x) =
{

g(x), x ∈ D

f (x), x ∈ M \ D0,

(6.12)

define h1···i+1 : Fi+1 → M ′ by
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h1···i+1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

h1···i (x), x ∈ Fi \ Bi+1,

( f ′
i+1)

−1
((

1 − ϕi+1(x)
ψi+1(x)

)
f ′
i+1(h1···i (x)

)
+ ϕi+1(x)

ψi+1(x)
f ′
i+1(hi+1(x))), x ∈ Bi+1.

Note that h1···i+1 also satisfies (6.12).
Finally we set h := h1···N : M → M ′. Note that |h(x), θ(x)| < τ(ε) for all x ∈ M ,

and

h(x) =
{

g(x), x ∈ D

f (x), x ∈ M \ D0.

Similarly we define h′ : M ′ → M by using the Lipschitz homotopy inverse f ′ of
f , g′ := g−1, D′ := g(D), D′

0 := g(D0), D′
1 := g(D1) and d ′ = d ◦ g−1 in place

of f , g, D, D1, and d. Note that every y ∈ D′
1 has (n, 2δ)-strainer of length > R/2.

Obviously, |h′ ◦ h(x), x | < τ(ε) and

h′ ◦ h(x) =
{

x, x ∈ D

f ′ ◦ f (x), x ∈ M \ D0.

To construct a Lipschitz homotopy between 1M and h′ ◦ h, we use a method devel-
oped in [3]. We consider the product space M × M and denote by 	 ⊂ M × M
the diagonal. Introduce a positive constant σ with ε 	 σ 	 μ and take a sequence
0 < σi < σ with lim σi = 0. For every x := (x1, x2) ∈ D1 × D1 ∩ A(	; σi , σ ), let y
denote the midpoint of a minimal geodesic joining x1 and x2, where A(	; σi , σ ) :=
B(	, σ) \ B(	, σi ) is the annulus. Note that y := (y, y) is the foot of a minimal
geodesic from x to 	. It is possible to take points z1 and z2 of M such that

∠̃yxi zi > π − τ(δ), i = 1, 2,

|y, z1| = |y, z2|, |	, z| = σ,

where z := (z1, z2). Then a direct computation shows that

|zi , y| > |zi , xi | + (1 − τ(δ))|xi , y|, i = 1, 2,

and

|z, y| > |z, x| + (1 − τ(δ))|x, y|,

which yields that

∠̃zxy > π − τ(δ).

Theabove argument shows that the distance functiond	 from	 is (1−τ(δ))-regular on
D1× D1∩ A(	; σi , σ ). Now we consider a smooth approximation of a neighborhood
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Ui of D1 × D1 ∩ A(	; σi , σ ). By [6] and [8], there are a smooth manifold Ni and a
bi-Lipschitz homeomorphism �i : Ui → Ni together with a gradient like unit vector
field Xi for d	◦�−1

i defined on Ni such that ifφi (�i (x), t) denotes the integral curves
of −Xi starting at �i (x), then for each x ∈ D1 × D1 ∩ A(	; σi , σ ) with |x,	| = σ ,

|�−1
i ◦ φi (�i (x), t0),	| = σi ,

for some t0 < 2(σ−σi ). By combining theflowcurves {�−1
i ◦φi (�i (x), t)}i ,we obtain

a Lipschitz flow φ on D1 × D1 ∩ B(	, σ) such that for each x ∈ D1 × D1 ∩ B(	, σ)

with |x,	| = σ , φ(x, s0) ∈ 	 for some s0 < 2σ . For x = (x, h′ ◦ h(x)), if we
denote φ(x, t) = (φ1(x, t), φ2(x, t)), the union of φ1(x, t) and φ2(x, 1− t) provides
the desired Lipschitz homotopy between 1M and h′ ◦ h on D1.

We have just constructed a Lipschitz homotopy H(x, t) between 1M and h′ ◦ h on
D1. Recall that we have a Lipschitz homotopy F(x, t) between 1M and f ′ ◦ f . We
have to glue F and H to get a Lipschitz homotopy G(x, t) between 1M and h′ ◦ h
defined on M . Let ρ : M × [0, 1] → [0, 1] be a Lipschitz function such that

ρ(x, t) =
{
0, on D × [0, 1] ∪ D0 × [1/2, 1],
1, on M \ D1 × [0, 1].

For every (x, t) ∈ Bi × [0, 1], let

G0
i (x, t) := f −1

i (ρ(x, t) fi (F(x, t)) + (1 − ρ(x, t)) fi (H(x, t))) .

This extends to a Lipschitz map Gi : M \ E ∪ Bi × [0, 1] → M satisfying

Gi (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, on M \ E ∪ Bi × 0,

f ′ ◦ f (x), on M \ E ∪ Bi × 1,

H(x, t), on D × [0, 1],
F(x, t), on M \ D1 × [0, 1].

Assuming that G1···i : Fi × [0, 1] → M is already defined in such a way that

G1···i (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, on Fi × 0,

f ′ ◦ f (x), on Fi × 1,

H(x, t), on D × [0, 1],
F(x, t), on M \ D1 × [0, 1],

(6.13)

define G1···i+1 : Fi+1 × [0, 1] → M by

G1···i+1(x, t) :=

⎧⎪⎪⎨
⎪⎪⎩

G1···i (x, t), (x, t) ∈ (Fi \ Bi+1) × [0, 1],
( fi+1)

−1
((

1 − ϕi+1(x)
ψi+1(x)

)
fi+1(G1···i (x, t)

)
+ ϕi+1(x)

ψi+1(x)
fi+1(Gi+1(x, t))), (x, t) ∈ Bi+1 × [0, 1].
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Finally set G := G1···N . Obviously G is Lipschitz, and G = H on D × [0, 1] and
G = F on M \ D1 ×[0, 1], and thus G is a required Lipschitz homotopy between 1M

and h′ ◦ h. Similarly we obtain a Lipschitz homotopy between 1M ′ and h ◦ h′. This
completes the proof of Theorem 1.4. ��

7 Further Problems

It is quite natural to expect that there should exist uniform Lipschitz constants of the
Lipschitz homotopies in Theorems 1.2 and 1.4.
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