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Abstract
Under the usual condition that the volume of a geodesic ball is close to the Euclidean
one or the injectivity radii is bounded from below, we prove a lower bound of theCα ∩
W 1,q harmonic radius formanifoldswith boundedBakry–ÉmeryRicci curvaturewhen
the gradient of the potential is bounded. Under these conditions, the regularity that can
be imposed on the metrics under harmonic coordinates is only Cα ∩W 1,q , where q >

2n and n is the dimension of themanifolds. This is almost 1-order lower than that in the
classical C1,α ∩W 2,p harmonic coordinates under bounded Ricci curvature condition
(Anderson in Invent Math 102:429–445, 1990). The loss of regularity induces some
difference in the method of proof, which can also be used to address the detail ofW 2,p

convergence in the classical case. Based on this lower bound and the techniques in
Cheeger and Naber (Ann Math 182:1093–1165, 2015) and Wang and Zhu (Crelle’s J,
http://arxiv.org/abs/1304.4490),we extendCheeger–Naber’sCodimension 4Theorem
in Cheeger and Naber (2015) to the case where the manifolds have bounded Bakry–
ÉmeryRicci curvaturewhen the gradient of the potential is bounded. This result covers
Ricci solitons when the gradient of the potential is bounded. During the proof, we will
use a Green’s function argument and adopt a linear algebra argument in Bamler (J
Funct Anal 272(6):2504–2627, 2017). A new ingredient is to show that the diagonal
entries of the matrices in the Transformation Theorem are bounded away from 0.
Together these seem to simplify the proof of the Codimension 4 Theorem, even in the
case where Ricci curvature is bounded.
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1 Introduction

In this paper, we extend two important results from the case of boundedRicci curvature
to the case of bounded Bakry–Émery curvature with C1 potential. One of these is
Anderson’s lower bound for harmonic radius [1] and the other is Cheeger–Naber’s
codimension 4 theorem [10]. While many results in these two cases are parallel,
extending these two results requires some new effort and entails new applications
which we explain now.

In a series of works [4–12], Cheeger–Colding–Tian–Naber developed a very deep
and powerful theory for studying the Gromov–Hausdorff limits of manifolds with
bounded Ricci curvature. In particular, when the manifolds are in addition volume
non-collapsed, according to their results, we know that the Gromov–Hausdorff limits
decompose into the union of the regular set and singular set. The regular set is an open
convex C1,α manifold, the singular set has codimension at least 4, and the tangent
cone at any point must be a metric cone.

However, there are objects in geometry where the boundedness of the Ricci cur-
vature is not available. One of these is a Ricci soliton under the typical condition
that the gradient of the potential is bounded. More generally, these solitons belong to
a class of manifolds where the Bakry–Émery Ricci curvature is bounded. The later
has become a subject of study by numerous authors. Many of the classical geometric
and analytic results such as volume comparison theorems and gradient bounds, valid
under pointwise Ricci bound, have been extended to this case in the papers [15,19,23].
Recently Wang and Zhu [24] established analogous results for most of the Cheeger–
Colding–Tian–Naber theory. One notable exception is the codimension 4 theorem for
the singular part. A goal of this paper is to prove such a theorem.

Another case of interest is when the Ricci curvature in only in certain L p spaces
(see e.g., [25] or [13] for motivation). The first effort was made by Petersen–Wei
[17,18], where they assumed that |Ric−| ∈ L p for some p > n/2 and obtained
extended Laplacian and volume comparison theorems and continuity of volume under
Gromov–Hausdorff limit. Recently, Tian and Zhang [22] successfully extended most
of the Cheeger–Colding–Tian–Naber theory except for the codimension 4 theorem
for the singular part. Bamler [3] proves a codimension 4 theorem for some Ricci flat
singular spaces.

In proving these results under weaker Ricci curvature conditions, one needs to
extend many key ingredients therein, such as Cheng–Yau gradient estimate, Segment
inequality, Poincaré inequality, maximum principle, heat kernel estimates, Abresch–
Gromoll estimate, and Anderson’s bound on harmonic radius. While many of the
extensions are expected to be true and the proofs are analogous, there are notable
exceptions. One of them is the bound on harmonic radius in the spirit of Anderson
[1]. In that paper, Anderson proved the following result. Under suitable conditions on
volume of balls or injectivity radius, if also the Ricci curvature is bounded, then C1,α

harmonic radius has a positive lower bound and themetric isC1,α ∩W 2,q within such a
radius. The lower bound of harmonic radius is very useful in many situations such that
in establishing compactness of families of manifolds, e.g. However, one cannot expect
such a result under Bakry–Émery Ricci curvature bound. Instead one can only expect
Cα ∩ W 1,q property for harmonic radius and the metric. To see this, let us recall the
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equation connecting metric g and Ricci curvature under a harmonic coordinate chart:

gab
∂2gkl

∂va∂vb
+ Q(∂g, g) = −2(Rkl + ∇k∇l L) + 2∇k∇l L. (1.1)

Here Q is an expression involving quadratic quantity of ∂g. Assuming the Bakry–
Émery Ricci curvature is bounded, then the right-hand side of the equation is the
sum of an L∞ function and the Hessian of the function L . So if one wishes g is a
W 2,p function, one needs to assume that the Hessian of L is L p. However, this is not
available for us.

The first result of this paper is a lower bound for such harmonic radius under suitable
conditions on volume of balls.

In order to state the result rigorously, followingAnderson–Cheeger [2], let us define
the W 1,q harmonic radius. Let (Mn, g) be an n-dimensional Riemannian manifold,
and denote by Br (x) the geodesic ball inM centered at x with radius r .

Definition 1.1 For x ∈ M, the W 1,q harmonic radius rh(x) at x is the largest r ≥ 0
such that there is a coordinate chart � = (v1, v2, . . . , vn) : Br (x) → R

n centered at
x such that � is a diffeomorphism onto its image, and

(1) �gvk = 0, 1 ≤ k ≤ n;
(2) let gi j = g(∂vi , ∂v j ) be the component of the metric g considered as a function on

Br (x). We have

‖gi j − I di j‖C0(Br (x)) + r1−
n
q ||∂vk gi j ||Lq (Br (x)) ≤ 1

10
, (1.2)

where I di j is the standard Euclidean metric on R
n .

Our first main result is

Theorem 1.2 Let (Mn, g) be a Riemannian n-manifold and p be a point in Mn. For
each q > 2n, there exist positive constants δ = δ(n, q) and θ = θ(n, q) with the
following properties.

(a) If |Ric + ∇2L| ≤ n − 1 with |∇L| ≤ 1, and

Vol(Bδ(p)) ≥ (1 − δ)Vol(Bδ(0
n)), (1.3)

where 0n denotes the origin of R
n, then the W 1,q harmonic radius rh(x) satisfies

rh(x) ≥ θd(x, ∂Bδ2(p)),

for all x ∈ Bδ2(p).
(b) If |Ric + ∇2L| ≤ n − 1 with |∇L| ≤ 1, and the injectivity radius satisfies

in j(x) ≥ i0 > 0
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in B10(p), then the W 1,q harmonic radius rh(x) satisfies

rh(x) ≥ θd(x, ∂B1(p)),

for all x ∈ B1(p).

Remark 1.3 Under the condition of the theorem, since q > 2n > n, one knows that
W 1,q space embeds into Cα for α = 1 − n

q . So we know that the metric is Cα

automatically.

Remark 1.4 Also indicated in the proof of Theorem 1.2 is the continuity of the W 1,q

harmonic radius.

An immediate consequence of the theorem is the following:

Corollary 1.5 Letλ1, λ2, i0, D befixedpositive numbers and L beany smooth function.
The space of compact Riemannian n-manifolds such that

|Ric + ∇2L| ≤ λ1, |∇L| ≤ λ2, in j ≥ i0, diam ≤ D

is compact in the Cα topology.

The next theorem of the paper is

Theorem 1.6 Suppose a sequence of pointed manifolds (Mn
j , g j , p j ) satisfies that

|RicMj + ∇2L j | ≤ (n − 1), wi th |∇L j | ≤ 1,

and

Vol(B10(x)) ≥ ρ, ∀x ∈ M j ,

where L j ∈ C∞(M j ), and ρ > 0 is a constant.

If (M j , d j , p j )
dGH−−→ (X , d, p), then the singular set S satisfies

dim(S) ≤ n − 4.

Remark 1.7 The constants n − 1 and 1 in the assumptions on Bakry–Émery Ricci
curvature in the above theorems are chosen for convenience. They can be replaced by
any positive constants.

Remark 1.8 In the special case where (M j , g j ) is a sequence of gradient shrinking
Ricci solitons, i.e., Rc + ∇2L = g, with the additional assumption that the diameters
ofM j are uniformly bounded, the conclusion in Theorem 1.6 can be derived from the
original arguments of Cheeger–Naber [10] by using a conformal transformation of the
metrics as in [27] (See also [21] for a similar result for compact shrinkingKähler–Ricci
solitons).

More generally, the method of conformal transformation in [27] can also be applied
whenever |∇L| and |�L| are bounded. However, in Theorem 1.6, the boundedness of
|�L| is not assumed.
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The rest of the paper is organized as follows. In Sect. 2, we prove Theorem 1.2. The
proof follows the strategy in [1] where a method of contradiction is used following a
blow-up procedure. Since our Ricci condition is weaker, a deeper analysis of themetric
equation within harmonic radius is needed. These include mixed second derivative
bound of Greens function and a careful covering argument. The main issue is to prove
W 1,q convergence of the metrics in a blow-up process. One technical difficulty is that
bounded sets in W 1,q may not be compact in W 1,q ′

for q ′ < q, which is different
from the fact that bounded sets in Cα is compact in Cα′

if α′ < α. An example is the
sequence fk = 1

k sin(kx), x ∈ [0, 2π ] in W 1,2([0, 2π ]). During the blow-up process,
it is easy to prove Cα

loc convergence of the metrics. However, Cα
loc convergence does

not imply W 1,q convergence. So we cannot immediately deduce that the non-linear
term Q in (1.1) converges. In the classical case, one can prove C1,α

loc convergence

quickly and this already implies the Cα/2
loc convergence of the non-linear term.

Theorem 1.6 will be proved in Sect. 3. The proof is based on the techniques in
[10,24]. A new ingredient is to show that the diagonal entries of the matrices in the
Transformation Theorem are bounded away from 0. Some other short cuts to the
proof are also found. Together these seem to simplify the proof of the Transformation
Theorem in [10], even in the original case.

2 Bounds on Harmonic Radius and �-Regularity

Let us start with a simple observation. Recall the condition that

|Ric + ∇2L| ≤ (n − 1), |∇L| ≤ 1. (2.1)

The theorem and proof are local in space. After blowing up of metrics, this condition
on Ricci curvature is always satisfied and actually becomes better.

Let G(x, y) be the Green’s function onM. It is standard (using gradient bound on
heat kernel, etc.) to show that (see e.g., [20])

|G(x, y)| ≤ C

d(x, y)n−2 , and |∇yG(x, y)| ≤ C

d(x, y)n−1 , d(x, y) ≤ 100. (2.2)

Here and for the rest of this section, we use C to denote constants depending only on
the dimension n and the parameters in the assumptions.

Suppose that� : U → R
n is a local coordinate chart on some open subsetU ofM.

Denote by ∂y j G(x, y) the jth component of∇yG(x, y). Then it is a harmonic function
off the diagonal as a function of x . Thus, by the gradient estimate under Bakry–Émery
Ricci condition, it follows that (see e.g., [20])

Lemma 2.1 Under assumption (2.1), it holds

|∇x∂y j G(x, y)| ≤ C

d(x, y)n
, if d(x, y) ≤ 100, B(y, 100) ⊂ U ; (2.3)

where ∇x∂y j G(x, y) is the gradient of ∂y j G(x, y) as a function of x.
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Here, gradient estimate works for (2.3) because only mixed derivative is involved
in the proof, which only requires the control of the quantities in (2.1) but not the whole
curvature tensor.

As a consequence of the Green’s function estimates (2.2) and (2.3), one can show

Lemma 2.2 Assume that (2.1) holds. Then for any r ≤ 1, 0 < α ≤ 1, and y, x1, x2 ∈
B2r (p), we have

|G(x1, y) − G(x2, y)| ≤ Cd(x1,x2)α

min(d(x1,y)n−2+α,d(x2,y)n−2+α)
;

|∂y j G(x1, y) − ∂y j G(x2, y)| ≤ Cd(x1,x2)α

min(d(x1,y)n−1+α,d(x2,y)n−1+α)
(2.4)

if B(y, 100) ⊂ U.

Proof We only prove the second estimate in (2.4). The proof of the first one is similar
but easier.

If d(x1, y) ≤ 2d(x1, x2), then (2.2) implies that

|∂y j G(x1, y)| ≤ C

d(x1, y)n−1 ≤ Cd(x1, y)α

d(x1, y)n−1+α
≤ Cd(x1, x2)α

d(x1, y)n−1+α
,

and

|∂y j G(x2, y)| ≤ Cd(x2, y)α

d(x2, y)n−1+α
≤ C[d(x2, x1) + d(x1, y)]α

d(x2, y)n−1+α
≤ Cd(x1, x2)α

d(x2, y)n−1+α
.

The estimates are similar when d(x2, y) ≤ 2d(x1, x2).
Finally, if min(d(x1, y), d(x2, y)) > 2d(x1, x2), then by (2.3), one gets

|∂y j G(x1, y) − ∂y j G(x2, y)| ≤ |∇x∂y j G|(x∗, y)d(x1, x2) ≤ Cd(x1, x2)

d(x∗, y)n
.

Notice that in this case

d(x∗, y) ≥ d(xi , y) − d(x∗, xi ) ≥ d(xi , y) − d(x1, x2) ≥ 1

2
d(xi , y) ≥ d(x1, x2).

Thus,

|∂y j G(x1, y) − ∂y j G(x2, y)| ≤ Cd(x1, x2)α

min(d(x1, y), d(x2, y))n−1+α
.

��
Proof of Theorem 1.2: Proof of (a): We will use the blow-up argument in [1] together
with an extensive use of the “intrinsic” Green’s function on the manifold M. Let
us remark here that alternatively, one may also use the “extrinsic” Green’s function,
namely, the Green’s function of the operator gab ∂2

∂va∂vb
in the Euclidean space, after

extending gab suitably to the whole space.
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Notice that by rescaling the metric g by a factor δ−4, it amounts to prove the
following statement. If |Ric + ∇2L| ≤ (n − 1)δ4 with |∇L| ≤ δ2, and

Vol(Bδ−1(p)) ≥ (1 − δ)Vol(Bδ−1(0n)), (2.5)

then the W 1,q harmonic radius rh(x) satisfies

rh(x) ≥ θd(x, ∂B1(p)),

for all x ∈ B1(p).
Under condition (2.5), by Theorem 1.2 in [23] (see also Corollary 2.5 in [26]), we

have for any x ∈ B1(p),

Vol(Bδ−1(x)) ≥ Vol(Bδ−1−1(p)) ≥ e−2nδ(1 − δ)Vol(Bδ−1−1(0
n))

= e−2nδ(1 − δ)n+1 Vol(Bδ−1(0n)).

Thus, when δ is small, it implies that

Vol(Bδ−1(x)) ≥ [1 − (3n + 1)δ]Vol(Bδ−1(0n)). (2.6)

Then applying the volume comparison theorem (Theorem 1.2 in [23]) one more time
yields

Vol(B1(x))

Vol(B1(0n))
≥ e−2nδ Vol(Bδ−1(x))

Vol(Bδ−1(0n))
≥ [1 − (3n + 1)δ]e−2nδ. (2.7)

Again, if δ is small enough, one gets

Vol(B1(x)) ≥ [1 − (5n + 1)δ]Vol(B1(0
n)). (2.8)

Now we argue by contradiction to show that the theorem holds for some small δ.
Suppose that the theorem is not true. Then for any δ j → 0, there is a sequence of
manifolds (M j , g j ), points p j ∈ M j , and smooth functions L j such that

|RicM j + ∇2L j |g j ≤ (n − 1)δ4j , |∇L j |g j ≤ δ2j ,

and

Vol(B
δ−1
j

(p j )) ≥ (1 − δ j )Vol(Bδ−1
j

(0n)),

but for some z j ∈ B1(p j ), we have

rh(z j )

d(z j , ∂B1(p j ))
→ 0. (2.9)
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Without loss of generality, wemay assume that z j is chosen so that the ratio
rh(z)

d(z,∂B1(p j ))

reaches the minimum in B1(p j ). It then implies that in the ball B 1
2 d(z j ,∂B1(p j ))

(z j ),
we have

rh(z) ≥ 1

2
rh(z j ). (2.10)

In the following, we finish the proof in 5 steps.

Step 1 Blow-up and Cα convergence
Denote by r j = rh(z j ). Note that (2.9) implies that r j → 0. Let us rescale the

metric g j by the factor r−2
j , i.e., g j → r−2

j g j . In the following, unless otherwise

specified, all norms are taken with respect to the rescaled metric r−2
j g j . Hence, the

manifold (M j , g j ) satisfies

|RicM j + ∇2L j | ≤ (n − 1)r2j δ
4
j , |∇L j | ≤ r jδ

2
j , (2.11)

and

Vol
(
B(δ j r j )−1(p j )

) ≥ (1 − δ j )Vol
(
B(δ j r j )−1(0n)

)
. (2.12)

Also, from (2.9), one has

d
(
z j , ∂Br−1

j
(p j )

) → ∞. (2.13)

Gromov’s precompact theorem implies that by passing to a subsequence, we have

(Bd(z j ,∂Br−1
j

(p j ))(z j ), d j , z j )
dGH−−→ (M∞, d∞, z∞), where d j is the distance func-

tion related to the Riemannian metric g j . Then Corollary 4.8 and Remark 4.9 in [24]
and (2.8) conclude that (M∞, d∞) = (Rn, | · |), where | · | denotes the standard
Euclidean distance. Without loss of generality, we may assume that z∞ = 0n .

On the other hand, by (2.10), there is an open cover {B1/2(z jk )} of
B 1

2 d(z j ,∂Br−1
j

(p j ))
(z j ) such that B1/4(z jk ) are mutually disjoint and there is a W 1,q

harmonic coordinate chart on all the balls. Since q > 2n, by Sobolev embed-
ding and the virtue of Lemma 2.1 in [1] (See also [16]), it actually holds that

(Bd(z j ,∂Br−1
j

(p j ))(z j ), g j , z j )
Cα′
−−→ (Rn, I di j , 0n) for any α′ < 1 − n

q in Cheeger–

Gromov sense, i.e., there exist exhausting open subsets Uj and Vj of R
n and

Bd(z j ,∂Br−1
j

(p j ))(z j ), respectively, and diffeomorphisms Fj : Uj → Vj such that F∗
j g j

converges in Cα′
to I d on compact subsets of R

n . Moreover, we may assume that the

index set {k} is the same for all Bd(z j ,∂Br−1
j

(p j ))(z j ), and B1/2(z jk )
dGH−−→ B1/2(z∞,k)

for fixed k, as j → ∞.
Next, we want to show that the convergence actually takes place in Cα and W 1,s

topology for any α ∈ (0, 1) and 1 < s < ∞.
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The estimates below work for all M j ’s, so the subscript j is dropped for con-
venience. In the remaining context of this step, denote by ∂va the partial derivative
operator ∂

∂va
. In harmonic coordinates, the components of the Ricci curvature tensor

can be expressed as

−2Rkl = gab∂va∂vb gkl + Q(∂g, g),

where Q(∂g, g) is a quantity quadratic in the components of ∂g. The above equation
may be viewed as a semi-linear elliptic equation of gkl , namely,

gab∂va∂vb gkl + Q(∂g, g) = −2(Rkl + ∇k∇l L) + 2∇k∇l L, (2.14)

from which we can derive the local W 1,s boundedness of gkl . Below, we present the
rough idea of getting the W 1,s bound, see for example (2.40) and the discussions
thereafter for more details. In fact, the worst term on the right-hand side of (2.14) is
∇k∇l L . To deal with it, one may first rewrite (2.14) as

gab(p0)∂va∂vb gkl

= [gab(p0) − gab]∂va∂vb gkl
−Q(∂g, g) − 2(Rkl + ∇k∇l L) + 2(∂k∂l L − �m

kl∂mL)

= · · · + 2∂k∂l L, (2.15)

where p0 is some fixed point, and �m
kl is the Christoffel symbol of g. Multiplying both

sides by a cut-off function φ (see the first paragraph of step 2 below) yields

gab(p0)∂va∂vb (φgkl) = · · · + 2φ∂k∂l L + T (∂φ, ∂2φ)

= 2φ∂k∂l L + · · · , (2.16)

where T (∂φ, ∂2φ) is the quantity involving the partial derivatives of φ, and · · · rep-
resents all the other mild terms. It then follows from Green’s formula that

φgkl(x) = 2
ˆ

Gp0(x, y)φ(y)∂k∂l L(y) + · · · dy, (2.17)

where Gp0(x, y) is the kernel of the operator gab(p0)∂va∂vb . Thus, inside the ball
where φ = 1, we have

∂x gkl(x) = 2
ˆ

∂xG p0(x, y)φ(y)∂k∂l L(y) + · · · dy

= −2
ˆ

∂x∂yl G p0(x, y)∂l L(y) + · · · dy. (2.18)

Notice that by the definition of harmonic coordinates, ∂x∂yG p0(x, y) is a Calderón–
Zygmund kernel, and |∂g| ∈ Lq , gab ∈ Cα′

, |Ric + ∇2L| ∈ L∞, and |∇L| ∈ L∞.
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Therefore, one can see from (2.18) that the W 1,s norm of gkl is uniformly bounded
locally for all 1 < s < ∞.

Since we have got the uniform W 1,s bound of g j on compact subsets, it then
follows from Sobolev embedding and the Arzela–Ascoli lemma

that (Bd(z j ,∂Br−1
j

(p j ))(z j ), g j , z j )
Cα−→ (Rn, I d, 0n) for any α ∈ (0, 1). Here g j =

(gkl) j , where j is the index in the sequence of metrics.

Step 2 control of the W 1,s norm on small scales
To show theW 1,s convergence of g j , for any z ∈ B1/2(z jk ), let η > 0 be an arbitrary

constant such that B2η(z) ⊆ B1/2(z jk ). Choose a cut-off functionφ supported in B2η(z)
such that φ = 1 in B3η/2(z) and |�φ| + |∇φ|2 ≤ C/η2. For the existence, see e.g.,
Lemma 1.5 in [24]. Also, for simplicity of presentation we temporarily drop the index
j in the metrics, unless there is confusion. Then for

hkl = gkl − gkl(z), (2.19)

from (2.14), we have

−1

2
�(φhkl) = φ (Rkl + ∇k∇l L) − φ∇k∇l L − φQ(∂g, g)

+2gab∂va hkl∂vbφ + gabhkl∂va∂vbφ

:= I1 + I2 + I3 + I4 + I5.

It follows from Green’s formula that

φhkl(x) = 2
ˆ
M
G(x, y)(I1 + · · · + I5)(y)dy,

and hence

∂vm gkl(x) = ∂vm (φhkl)(x) = 2
ˆ
M

∂vm (x)G(x, y)(I1 + · · · + I5)(y)dy (2.20)

in Bη(z).
For any q < s < ∞, let s′ = s

s−1 and ψ ∈ C∞
0 (Bη(z)). In the following, the Ls

and Lt norms are taken over B2η(z). From (2.20), one has

ˆ
Bη(z)

∂vm gkl(x)ψ(x)dx = 2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)(I1 + · · · + I5)(y)dy

)
ψ(x)dx .

(2.21)

Firstly, by (2.2) and (2.11), we have

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I1dy

)
ψ(x)dx ≤ Cr2j

´
Bη(z)

(´
B2η(z)

1
dn−1(x,y)

dy
)

ψ(x)dx

≤ Cηr2j Vol(Bη(z))1/s‖ψ‖Ls′ (Bη(z)). (2.22)
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Next, by writing hkl = (gkl − I dkl) − (gkl − I dkl)(z) and using the Cα boundedness
of |g − I d|, we have for any α ∈ (1 − n

s , 1) that

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I5dy

)
ψ(x)dx

≤ C

η2
‖g − I d‖Cα

ˆ
Bη(z)

(ˆ
B2η(z)

d(y, z)α
1

d(x, y)n−1 dy

)

ψ(x)dx

≤ C‖g − I d‖Cα

η1−α
Vol(Bη(z))

1/s‖ψ‖Ls′ (Bη(z))

≤ C‖g − I d‖Cα Vol(Bη(z))
1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)). (2.23)

For I4, using integration by parts yields

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I4dy

)
ψ(x)dydx

=
ˆ
Bη(z)

ˆ
M

∂vm (x)∂va(y)G(x, y)gabhkl∂vbφ ψ(x)dydx

︸ ︷︷ ︸
(1)

+
ˆ
Bη(z)

ˆ
M

∂vm (x)G(x, y)∂va g
abhkl∂vbφ ψ(x)dydx

︸ ︷︷ ︸
(2)

+
ˆ
Bη(z)

ˆ
M

∂vm (x)G(x, y)gabhkl∂va∂vbφ ψ(x)dydx

︸ ︷︷ ︸
(3)

:= (1) + (2) + (3).

From (2.23), we have

(3) ≤ C‖g − I d‖Cα Vol(Bη(z))
1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)). (2.24)

Similarly, by Lemma 2.1, we get

(1) ≤ C‖g − I d‖Cα

η

ˆ
Bη(z)

(ˆ
B2η(z)\B3η/2(z)

d(y, z)α

d(x, y)n
dy

)
ψ(x)dx

≤ C‖g − I d‖Cαηα−1
ˆ
Bη(z)

ψ(x)dx

≤ C‖g − I d‖Cαηα−1+ n
s ‖ψ‖Ls′ (Bη(z))

≤ C‖g − I d‖Cα Vol(Bη(z))
1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)). (2.25)
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Since gab ∈ W 1,q , it follows that

(2) ≤ C‖g − I d‖Cα

η

ˆ
Bη(z)

( ˆ
B2η(z)\B3η/2(z)

∣∣∣∂va g
ab
∣∣∣

d(y, z)α

d(x, y)n−1 dy

)
ψ(x)dx

≤ C‖g − I d‖Cαηα−n
ˆ
Bη(z)

( ˆ
B2η(z)

∣∣∣∂va g
ab
∣∣∣ dy

)
ψ(x)dx

≤ C‖∂g‖Lq‖g − I d‖Cαη
α−n+ n(q−1)

q

ˆ
Bη(z)

ψ(x)dx

≤ C‖g − I d‖Cαη
α− n

q + n
s ‖ψ‖Ls′ (Bη(z))

≤ C‖g − I d‖Cα Vol(Bη(z))
1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)). (2.26)

Here we have used q > 2n. Thus, putting (2.24), (2.25), and (2.26) together, one has

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I4dy

)
ψ(x)dx≤C‖g− I d‖Cα Vol(Bη(z))

1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)).

(2.27)

Moreover, since Q(∂g, g) ∈ Lq/2, applying Hölder inequality followed by Young’s
inequality implies that

2
ˆ
Bη(z)

(ˆ
M

∂vm(x)G(x, y)I3dy

)
ψ(x)dx

≤ ‖Q(∂g, g)‖Lq/2

⎡

⎣
ˆ
B2η(z)

(ˆ
Bη(z)

|∂vm(x)G(x, y)|ψ(x)dx

) q
q−2

dy

⎤

⎦

q−2
q

≤ C‖∂g‖2Lq sup
y∈B2η(z)

‖∂vmG(·, y)‖Lt ‖ψ‖Ls′ (Bη(z)),

where ‖∂g‖Ls means the sum of the Ls norms of all the components of ∂g, and t
satisfies

1 + q − 2

q
= 1

t
+ 1

s′ , i .e., t = sq

s(q − 2) + q
.

Noticing that q > 2n, it is easy to check that (n − 1)t < n, and hence

‖∂vmG(·, y)‖Lt (B2η(z)) ≤ C

(ˆ
B2η(z)

1

d(x, y)(n−1)t
dx

)1/t

≤ Cηn/t−(n−1).
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Thus, we have

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I3dy

)
ψ(x)dx ≤ Cη

n
t −(n−1)+ n(s−q)

sq ‖∂g‖Ls‖ψ‖Ls′ (Bη(z)).

(2.28)

Finally,

2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)I2dy

)
ψ(x)dx

= 2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)φ(y)[∂vk (y)∂vl (y)L − �n
kl∂vn(y)L]dy

)
ψ(x)dx

= −2
ˆ
Bη(z)

( ˆ
M

[
∂vm(x)∂vk (y)G(x, y)φ(y) + ∂vm (x)G(x, y)∂vk (y)φ(y)

]
∂vl (y)L

+ ∂vm (x)G(x, y)φ(y)�n
kl∂vn(y)Ldy

)
ψ(x)dx .

For the second and third terms above, since �n
kl ∈ Lq , |∇φ| ≤ C/η and |∇L| ≤ Cr j ,

as in (2.22) we get

−2
ˆ
Bη(z)

(ˆ
M

∂vm (x)G(x, y)∂vk (y)φ(y)∂vl (y)L + ∂vm (x)G(x, y)φ(y)�n
kl∂vn(y)Ldy

)
ψ(x)dx

≤ Cr j Vol(Bη(z))
1/s‖ψ‖Ls′ (Bη(z)). (2.29)

For the first term, using Hölder inequality gives

−2
ˆ
Bη(z)

(ˆ
M

∂vm (x)∂vk (y)G(x, y)φ(y)∂vl (y)Ldy

)
ψ(x)dx

≤ 2

⎡

⎣
ˆ
B2η(z)

∣∣
∣∣∣

ˆ
Bη(z)

∂vm (x)∂vk (y)G(x, y)ψ(x)dx

∣∣
∣∣∣

s′

dy

⎤

⎦

1/s′ (ˆ
B2η(z)

|∇L|sdy
)1/s

≤ Cr j Vol(Bη(z))
1/s‖ψ‖Ls′ (Bη(z)), (2.30)

where in the last step we have used the fact that

⎡

⎣
ˆ
B2η(z)

∣∣
∣∣∣

ˆ
Bη(z)

∂vm (x)∂vk(y)G(x, y)ψ(x)dx

∣∣
∣∣∣

s′

dy

⎤

⎦

1/s′

≤ C‖ψ‖Ls′ (Bη(z)).

This is because G(x, y) is the kernel of the Laplace operator gab ∂2

∂va∂vb
, and then we

may rewrite equation gab ∂2u
∂va∂vb

= ψ as gab(z) ∂2u
∂va∂vb

= (gab(z) − gab) ∂2u
∂va∂vb

+ ψ
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and use the fact that gab ∈ Cα and ∂x∂yGz(x, y) is a Calderón–Zygmund kernel. Here

Gz(x, y) denotes the kernel of the operator gab(z) ∂2

∂va∂vb
.

Thus, combining (2.29) and (2.30), we get

2
ˆ
Bη(z)

(ˆ
M

∂vm(x)G(x, y)I2dy

)
ψ(x)dx ≤ Cr j Vol(Bη(z))

1/s‖ψ‖Ls′ (Bη(z)).

(2.31)

Putting (2.22), (2.23), (2.27), (2.28), and (2.31) together in (2.21), we obtain

ˆ
Bη(z)

∂vm gkl(x)ψ(x)dx

≤ Cηa‖∂g‖Ls‖ψ‖Ls′ (Bη(z)) + C(r j + ‖g − I d‖Cα )Vol(Bη(z))
1
s − 1−α

n ‖ψ‖Ls′ (Bη(z)),

where 0 < a < 1 is a constant.
Therefore, by taking supremum over ψ on the left-hand side and summing up all

indices, we have, after recalling that g = g j in the sequence of metrics, that

‖∂g j‖Ls (Bη(z)) ≤ Cηa‖∂g j‖Ls (B2η(z)) + C(r j + ‖g j − I d‖Cα )Vol(Bη(z))
1
s − 1−α

n .

(2.32)

Step 3 covering argument and W 1,s convergence
Even though the second term on the right is approaching 0, estimate (2.32) above

cannot be applied directly to derive the W 1,s convergence of the metrics due to the
difference between the size of the balls centered at z. The idea is to make the sizes
of the balls on both sides even. For this purpose, we take advantage of the Whitney
covering, which allows us to cover a big ball with countable many small balls while
none of the small balls will escape the big ball and the overlapping number can be
uniformly controlled. Eventually, the Ls norm of ∂g j on both sides will be on the
same ball, and δ can be replaced by the largest diameter of the balls in the covering.
Hence, by making δ small enough, one will get the ‖∂g j‖Ls → 0 as desired.

We choose the Whitney covering B of B1/2(z jk ) as follows: for some m0 chosen
below, cover the ball B 1

2− 1
2m0

(z jk ) with finitely many balls B 1
2m0+1

of fixed size, cover

the sphere ∂B 1
2− 1

2m
(z jk ), m ≥ m0 with balls B 1

2m+1
, and cover the remaining region

in the annulus B 1
2− 1

2m+1
(z jk ) \ B 1

2− 1
2m

(z jk ) also by balls B 1
2m+2

, where Br denotes a

ball with radius r . Hence, B1/2(z jk ) is the union of all the balls in the covering. In
addition, we may require all the balls with half of the radius to be disjoint.

Denote the number of balls with the radius 1
2m+1 by Km . To estimate Km , first notice

that Km0 is a constant only depending on m0 and the parameters in the assumptions
of the theorem. Then for each m ≥ m0 + 1, since the balls B 1

2m+1
are contained in the

annulus B 1
2− 1

2m+1
\ B 1

2− 1
2m−2

, and these balls with half of the radius 1
2m+2 are disjoint

and volume non-collapsed, we have
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cKm

(
1

2m+2

)n

≤ C

[(
1

2
− 1

2m+1

)n

−
(
1

2
− 1

2m−2

)n]
, (2.33)

which implies that

Km ≤ C2m(n−1). (2.34)

In the above, the right-hand side of (2.33) is derived by integrating the area of geodesic
spheres between B 1

2− 1
2m+1

and B 1
2− 1

2m−2
, and using the volume element comparison.

See e.g., [23] (also [24] or [26]).
In (2.32), we replace Bη(z) on the left-hand side by the balls in the Whitney cover

B and sum up all the integrals. Note that balls {B2η(z)} also form a Whitney cover
of B1/2(x jk ), denoted by 2B, and the overlapping number N is uniformly bounded
regardless the choice of m0. By using (2.34), one has

‖∂g j‖sLs (B1/2(z jk ))

≤
∑

B∈B
‖∂g j‖sLs (B)

≤ C
1

2asm0

∑

2B∈2B
‖∂g j‖sLs (2B)

+C(r j + ‖g j − I d‖Cα )s

⎛

⎝Km0

( 1

2m0+1

)n−(1−α)ns +
∞∑

m=m0+1

Km

( 1

2m+1

)n−(1−α)ns

⎞

⎠

≤ C

2asm0
N‖∂g j‖sLs (B1/2(z jk ))

+C(r j + ‖g j − I d‖Cα )s

⎛

⎝C(m0) + C
∞∑

m=m0+1

(1
2

)m[1−(1−α)ns]
⎞

⎠ .

Therefore, one can see that for any s > q, by choosing m0 and α so that C
2asm0 N < 1

2
and 1 − (1 − α)ns > 0, it follows that

‖∂g j‖sLs (B1/2(z jk )) ≤ 1
2‖∂g j‖sLs (B1/2(z jk )) + C(r j + ‖g j − I d‖Cα ),

which amounts to

‖∂g j‖Ls (B1/2(z jk )) ≤ 2C(r j + ‖g j − I d‖Cα ) → 0, (2.35)

since both r j → 0 and ‖g j − I d‖Cα → 0.
This implies the W 1,s convergence of (Bd(z j ,∂Br−1

j
(p j ))(z j ), g j , z j ). Indeed, for a

fixed small radius η > 0 and any compact subset D ⊂ Bd(z j ,∂Br−1
j

(p j ))(z j ), by using

volume comparison, one can get a uniform control (independent of j) of the number of
points in the η/4-net of D. When η is chosen small enough, we can get a covering of D
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with balls with radius η/2, such that on each ball there is a harmonic coordinate chart.
Then by using a similar argument as in the proof of Whitney embedding theorem, we
may construct an smooth embedding from D toR

N . Moreover, under this embedding,
the local images are graphs. Since from (2.35), we have the W 1,s convergence of the
metrics in harmonic coordinates to the Euclideanmetric onR

n , the transition functions
of the covering of D are converging in W 2,s to the transition functions of R

n . Also,
for the same reason, the local graphs are converging in W 2,s norm. And hence, when
j is large enough there exist diffeomorphisms between exhausting compact sets in
R
n and sets Bd(z j ,∂Br−1

j
(p j ))(z j ) such that the pull back metrics of g j are converging

in W 1,s norm to I di j . See e.g., Proposition 12 in [14] for more details. One can also
find similar arguments on W 1,s convergence in [2]. Note in that paper, one assumes
the Ricci curvature is bounded from below. However, this assumption is only used to
deduce volume comparison results which also holds in our situation. So the proof is
valid in our case.

Therefore, we have shown that (Bd(z j ,∂Br−1
j

(p j ))(z j ), g j , z j )
Cα∩W 1,s−−−−−→

(Rn, I di j , 0n).

Step 4 Constructing harmonic coordinates on balls with radius larger than 1
From step 3 and the definition of Cheeger–Gromov convergence, we have that for j

sufficiently large, there is a diffeomorphism Fj : Uj → Vj such that F∗
j g j converges

to I d in W 1,s topology on compact subsets of R
n , where Uj and Vj are exhausting

open subsets of R
n andM j , respectively. Thus, there is a covering of B2(0n), denoted

by {Bi }, with balls of radius 1/2, on each of which there is a harmonic coordinate
chart {v1, . . . , vn} uniformly bounded in C1,α ∩W 2,s . In fact, the Laplace equation in
Euclidean coordinates reads

� jvk = 1
√
det(h j )

∂

∂xa

(√
det(h j )h

ab
j

∂vk

∂xb

)
= 0.

Here � j is the Laplace operator of the metric h j = F∗
j g j , and {xk} are the standard

Euclidean coordinates. Thus, the W 2,s bound of vk follows from the W 1,s bound of
h j and standard elliptic regularity theory (see e.g., (2.40) and the discussion below it).

To construct larger harmonic coordinate chart with respect to h j , let yk = yk( j) be
the solution of the Dirichlet problem

� j yk = 0, in B3/2(0
n); yk = xk on ∂B3/2(0

n).

We first show that {yk} gives a harmonic coordinate chart on B5/4(0n). Indeed, let
wk = xk − yk , then

� jwk = � j xk, in B3/2(0
n), and wk = 0 on ∂B3/2(0

n). (2.36)
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In Euclidean coordinates � j xk = 1√
det(h j )

∂
∂xa

(
√
det(h j )hab

∂xk
∂xb

). Since the metrics

h j converges in W 1,s
loc norm to the Euclidean metric, it implies that

‖� j xk‖Ls (B3/2(0n)) → 0. (2.37)

Thus, by the maximal principle, one gets that

‖wk‖L∞(B3/2(0n)) → 0. (2.38)

It then follows from the gradient estimate under Bakry–Émery Ricci condition that

‖∇ jwk‖L∞(B5/4(0n)) → 0. (2.39)

Let φ be a cut-off function supported in B3/2(0n) such that φ = 1 in B11/8(0n) and
|� jφ| + |∇ jφ| ≤ C . From (2.36) and Green’s formula, we have

φwk(x) = −
ˆ
M
G(x, y)

[
φ� j xk + 2 < ∇ jφ,∇ jwk > +wk� jφ

]
dy.

From Lemma 2.2, we have for x1, x2 ∈ B5/4(0n) that

|∇ jwk(x1) − ∇ jwk(x2)|
= |∇ j (φwk)(x1) − ∇ j (φwk)(x2)|
≤
ˆ
M

|∇ j G(x1, y) − ∇ j G(x2, y)|
∣∣φ� j xk + 2 < ∇ jφ,∇ jwk > +wk� jφ

∣∣ dy

≤
ˆ
B3/2(0n)

Cd j (x1, x2)α

d j (x1, y)n−1+α
(|� j xk | + |∇ jwk | + |wk |)dy.

Then by Hölder inequality, (2.37), (2.38), and (2.39), it implies that for α ∈ (0, 1− n
s )

‖wk‖C1,α(B5/4(0n)) → 0.

In particular, {y1, . . . , yn} forms a coordinate systemon B5/4(0n)when j is big enough.
Step 5 larger W 1,q harmonic radius and contradiction

It is left to show that (1.2) is satisfied under {yk} with r = 5
4 . For this, we need

to show that yk converges in W 2,s norm. In each Bi , under the harmonic coordinates
{v1, . . . , vn}, (2.36) can be written as

hmn
j

∂2wk

∂vm∂vn
= � j xk .

For any point v0 ∈ Bi , let φ be a cut-off function supported in B2η(v0) such that
φ = 1 in Bη(v0) and |�φ| + |∇φ|2 ≤ C/η2, where η is a small constant which will
be determined later.
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Then, we have

habj (v0)
∂2(φwk)

∂va∂vb
=

(
habj (v0) − habj (v)

) ∂2(φwk)

∂va∂vb
+ habj (v)

∂2(φwk)

∂va∂vb

=
(
habj (v0) − habj (v)

) ∂2(φwk)

∂va∂vb
+ φ� j xk + 2habj

∂φ

∂va

∂wk

∂vb
+ wkh

mn
j

∂2φ

∂va∂vb

:= F(v). (2.40)

Since hmn
j (v0) is a constant satisfying (1 − c)I d ≤ h j (v0) ≤ (1 + c)I d, it follows

that ∂x∂yGv0(x, y) is a Calderón–Zygmund kernel, where Gv0(x, y) is the kernel of

the operator habj (v0)
∂2

∂va∂vb
. Hence, it defines a Calderón–Zygmund operator bounded

on Ls space, namely, we have

‖∂2(φwk)

∂va∂vb
‖Ls (B2η(v0)) ≤ C‖F(v)‖Ls (B2η(v0)).

By the Cα boundedness of habj , one derives

‖F(v)‖Ls (B2η(v0)) ≤Cηα‖∂2(φwk)

∂va∂vb
‖Ls (B2η(v0))+

C

η2

[‖� j xk‖Ls + ‖∇ jwk‖L∞ + ‖w‖L∞
]
.

By choosing η small enough, we can make Cηα < 1
2 , and hence from (2.37), (2.38),

(2.39), it follows that

‖ ∂2wk

∂va∂va
‖Ls (Bη(v0)) ≤ ‖∂2(φwk)

∂va∂vb
‖Ls (B2η(v0)) ≤ C

[‖� j xk‖Ls + ‖∇ jwk‖L∞ + ‖w‖L∞
] → 0.

Through a standard covering argument, it is easy to see that

‖wk‖W 2,s (B5/4(0n)) → 0.

This is sufficient to indicate that

‖∂ym h j (∂yk , ∂yl )‖Lq (B5/4(0n)) =
∥∥∥∥

∂xa
∂ ym

∂xa

[
h j (∂xc , ∂xd )

∂xc
∂ yk

∂xd
∂ yl

]∥∥∥∥
Lq (B5/4(0n))

→ 0.

Therefore, it follows that {y1, . . . , yn} is aW 1,q harmonic coordinate chart on B5/4(0n)
when j is large enough, which in term induces a W 1,q harmonic coordinate chart on
a ball centered at z j with radius larger than 1 inM j , and contradicts to the hypothesis
that the W 1,q harmonic radius rh(z j ) = 1.

Proof of (b) The proof of part (b) is similar. One just needs to first notice that by
modifying the proof of part (a) slightly, one can derive the following compactness
result for manifolds under W 1,s convergence. ��
Theorem 2.3 Let (Mn

j , g j , p j ) be a sequence of pointed Riemannian manifolds satis-

fying that |RicM j + ∇2L j | → 0, |∇L j | → 0, and (Mn
j , d j , p j )

dGH−−→ (M∞, d∞, p).
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Suppose also the W 1,s harmonic radius is bounded from below by a uniform positive
constant for all s > 2n. Then there is a Cα ∩ W 1,s Riemannian metric g∞ on M∞
such that (Mn

j , g j , p j )
Cα∩W 1,s−−−−−→ (M∞, g∞, p) in Cheeger–Gromov sense for any

0 < α < 1 and 1 < s < ∞.

Indeed, from the assumption and Arzela–Ascoli lemma, we immediately get Cα′

convergence of the sequence of manifolds for any 0 < α′ < 1− n
s . To show the W 1,s

convergence, we just need to replace the Euclidean metric I d in step 2 and 3 in the
proof of part (a) by g∞, and estimate ‖∂g − ∂g∞‖Ls instead of ‖∂g‖Ls . So instead of
(2.35), one obtains

‖∂g j − ∂g∞‖Ls (B1/2(x jk )) ≤ 2C(ε j + ‖g − g∞‖Cα ) → 0.

Here we have assumed, without loss of generality, the harmonic radii is bounded from
below by 1. Also

ε j = ||RicM j + ∇2L j ||∞ + ||∇L j ||∞.

Now the convergence in Cα sense follow from Sobolev imbedding.

With Theorem 2.3 in hand, we can finish the proof of part (b). The difference
from part (a) is that in this case, the fact that the limit space is R

n will follow from
Cheeger–Gromoll splitting theorem as argued in [1]. Indeed, by Theorem 2.3 and the
equation for the Ricci curvature tensor in harmonic radius, the limit space is Ricci flat.
On the other hand, the injectivity radius becomes infinity after blowing up. Hence,
Cheeger–Gromoll splitting theorem can be applied. ��

Following the arguments in [5], one may also show that under condition (2.1), the
codimension of the singular space of the Gromov–Hausdorff limit is still at least 2
(see Theorem 5.1 in [24]). Combining this result with Theorem 1.2, we have

Theorem 2.4 (ε-regularity) Given ρ > 0 and q > 2n, for each ε > 0, there is a
δ = δ(ε |n, ρ, q) such that if (M, g) is a Riemannian manifold with |Ric + ∇2L| ≤
(n − 1)δ2, |∇L| ≤ δ, and Vol(B10(p)) ≥ ρ, and

dGH (B2(p), B2((0
n−1, x∗))) ≤ ε,

where (0n−1, x∗) ∈ R
n−1 × X for some metric space X, then the W 1,q harmonic

radius rh(p) satisfies

rh(p) ≥ 1.

3 The Transformation Theorem

In this and next section, following the guidelines in [10], we prove the Transforma-
tion and Slicing Theorems, which allow us to derive the Codimension 4 Theorem
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by following the remaining arguments as in [10]. However, since our assumption is
made on the Bakry–Émery Ricci curvature, to be able to overcome some technical
difficulties, we need to add a weight to the concepts used in [10]. We start by restating
the definition of ε-splitting map introduced in [10].

Definition 3.1 A harmonic map u = (u1, u2, . . . , uk) : Br (x) → R
k is an ε-splitting

map, if

(1) |∇u| ≤ 1 + ε in Br (x);

(2)
 
Br (x)

∣∣
∣〈∇ui ,∇u j 〉 − δi j

∣∣
∣
2 ≤ ε2, ∀i, j ;

(3) r2
 
Br (x)

|∇2ui |2 ≤ ε2, ∀i .

Denote by �L := � − ∇L · ∇ the drifted Laplacian by the vector field ∇L ,
dVL := e−LdV the weighted volume form, VolL(Br (x)) := ´

Br (x)
dVL the weighted

volume of the geodesic ball Br (x), and
ffl L
Br (x)

· · · := 1
VolL (Br (x))

´
Br (x)

· · · dVL the
weighted average value over the ball Br (x).

In the definition above, using the drifted Laplacian and weighted average value
instead of the regular ones, we define

Definition 3.2 A map f = ( f 1, f 2, . . . , f k) : Br (x) → R
k is called an L-harmonic

map, if �L f i = 0, for i = 1, 2, . . . , k.
Moreover, an L-harmonic map f : Br (x) → R

k is called an L-drifted ε-splitting
map if

(1’) |∇ f | ≤ 1 + ε in Br (x);

(2’)
 L

Br (x)

∣∣∣〈∇ f i ,∇ f j 〉 − δi j

∣∣∣
2 ≤ ε2, ∀i, j ;

(3’) r2
 L

Br (x)
|∇2 f i |2 ≤ ε2, ∀i .

In the following, we first prove that the concepts of ε-splitting and L-drifted
ε-splitting maps are equivalent. This equivalence will be used in the proof of The-
orem 1.6.

Lemma 3.3 Given ρ > 0. For each ε > 0 there exists an δ = δ(ε |n, ρ) satisfying the
following property. Suppose that a manifold Mn satisfies Ric + ∇2L ≥ −(n − 1)δ,
|∇L| ≤ δ, and Vol(B1(x)) ≥ ρ. Then for any r ≤ 1, and an ε-splitting map u
on Br (x), there is an L-drifted Cε1/2-splitting map f on B 1

4 r
(x) for some constant

C = C(n, ρ), and the converse is also true.
The notation δ(ε |n, ρ) means a constant depending on the parameters in the

parenthesis and δ → 0 as ε → 0.

Proof Suppose that u is an ε-splitting map on Br (x). Without loss of generality, we
may assume that ε ≤ 1. Let hi , i = 1, 2, . . . , k, be the solution of the Dirichlet
problem

�L f i = 0 ∈ Br (x); f i = ui on ∂Br (x). (3.1)
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Since ui is a harmonic function, the function hi = f i − ui satisfies

�L(hi ) = 〈∇L,∇ui 〉 ∈ Br (x); hi = 0 on ∂Br (x). (3.2)

Observe that�L = eLdiv(e−L∇) andwecan assume L is locally boundedby replacing
L(·) by L(·) − L(x); it is well known that the integral maximum principle (or mean
value property) and gradient estimate still hold for equation (3.2) (see e.g., [24]).

From the assumption on u, we have |∇u| ≤ 1 + ε. Combining this with |∇L| ≤ δ

and using the maximum principle, we get that for some q > n/2,

sup
Br (x)

|hi | ≤ Cr2
( 

Br (x)
|〈∇L,∇ui 〉|q

)1/q

≤ Cδr2.

Then it follows from the gradient estimate that

sup
B 1
2 r

(x)
|∇hi |2 ≤ C

[

r−2
 
Br (x)

|hi |2 +
( 

Br (x)
| < ∇L,∇ui > |2q

)1/q
]

≤ Cδ2,

(3.3)

i.e.,

sup
B 1
2 r

(x)
|∇ f i | ≤ 1 + ε + Cδ. (3.4)

Also, from (3.3), (1), and (2) in Definition 3.1, and the boundedness of L , one has

 L

B 1
2 r

(x)
|〈∇ f i ,∇ f j 〉 − δi j |

≤
 L

B 1
2 r

(x)
|〈∇hi ,∇u j 〉| + |〈∇ui ,∇h j 〉| + |〈∇hi ,∇h j 〉| + |〈∇ui ,∇u j 〉 − δi j |

≤ C(δ + ε). (3.5)

Now, let φ be a cut-off function supported in B 1
2 r

(x) with φ = 1 in B 1
4 r

(x) and

|∇φ|2 + |�φ| ≤ C
r2

(See Lemma 1.5 in [24]). It is straightforward to check that for
the drifted Laplacian we have the following Bochner’s formula.

�L |∇F |2 = 2|∇2F |2 + 2〈∇�L F,∇F〉 + 2(Ric + ∇2L)(∇F,∇F).

Setting F = f i , it implies that (see e.g., p. 13 in [24])

123



Bounds on Harmonic Radius and Limits of Manifolds with… 2103

r2
 L

B 1
4 r

(x)
|∇2 f i |2 ≤ r2

 L

B 1
2 r

(x)
φ|∇2 f i |2

≤ r2
 L

B 1
2 r

(x)

1

2
φ�L |∇ f i |2 + (n − 1)δ|∇ f i |2

= Cδ + 1

2
r2
 L

B 1
2 r

(x)
(|∇ f i |2 − 1)�Lφ

≤ Cδ + C(1 + δ)

 L

B 1
2 r

(x)

∣∣∣|∇ f i |2 − 1
∣∣∣

≤ C(δ + ε). (3.6)

Here, in the last step, we have used (3.5).
Combining (3.4), (3.5), and (3.6), we have shown that f is an L-drifted Cε1/2-

splitting map on B 1
4 r

(x) for sufficiently small constant δ. ��

Next, recall the concept of the singular scale in [10]:

Definition 3.4 Let u : B2(p) → R
k be a harmonic map. For x ∈ B1(p), δ > 0, the

singular scale sδ
x ≥ 0 is the infimum of radii s such that for all s ≤ r ≤ 1

4 and all
1 ≤ l ≤ k, we have

r2
 
Br (x)

|�|w̃l || ≤ δ

 
Br (x)

|w̃l |, (3.7)

where w̃l = du1 ∧ du2 ∧ · · · ∧ dul .

Replacing harmonicmap andLaplacian� above by L-harmonicmap and the drifted
Laplacian �L , we define similarly

Definition 3.5 Let f : B2(p) → R
k be an L-harmonic map. For x ∈ B1(p), δ > 0,

the L-singular scale sδ
L,x ≥ 0 is the infimum of radii s such that for all s ≤ r ≤ 1

4 and
all 1 ≤ l ≤ k, we have

r2
 L

Br (x)
|�L |wl || ≤ δ

 L

Br (x)
|wl |, (3.8)

where wl = d f 1 ∧ d f 2 ∧ · · · ∧ d f l .

In the proofs of the Transformation and Slicing Theorems, we will use L-singular
scale, but return to ε-splitting maps at the end. Now, we are ready to state the Transfor-
mation Theorem, whose proof essentially follows the idea of [10]. But for the purpose
of deriving the higher-order estimates as in Theorem 1.26 in [10], we first need to work
with the drifted Laplacian and L-drifted ε-splitting maps, and prove certain transfor-
mation theorem under this weighted setting. Then come back to the regular Laplacian
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and ε-splitting maps by using the equivalence between ε-splitting maps and drifted
ε-splitting maps in Lemma 3.3.

It seems that by using a Green’s function argument instead of the heat kernel
argument in [10] for Claim 3 below, and adapting an argument in [3], the original
proof can be shortened. Moreover, a uniformly positive lower bound of the diagonal
entries of the matrices in the conclusion is obtained. More precisely, we have

Theorem 3.6 (Transformation Theorem) Given ρ > 0; for every ε > 0, there exists
a δ = δ(ε |n, ρ) > 0 with the following property. Suppose that a manifold Mn

satisfies Ric + ∇2L ≥ −(n − 1)δ with |∇L| ≤ δ, and Vol(B10(p)) ≥ ρ, and let
f : B2(p) → R

k be an L-drifted δ-splitting map. Then

(a) for any x ∈ B1(p) and r ∈ [sδ
L,x ,

1
4 ], there exists a lower triangular matrix

A = A(x, r) with positive diagonal entries so that A ◦ f : Br (x) → R
k is an

L-drifted ε-splitting map;
(b) there is a constant c0 = c0(n) > 0, such that for any matrix A(x, r) = (ai j )

above, we have

aii ≥ c0, 1 ≤ i ≤ k. (3.9)

Proof Following [10], we prove by induction on k. Unless otherwise specified, the
letter C always denotes some constant depending on n, λ, and ρ. First of all, the proof
of the theorem when k = 1 is analogous to the proof of Lemma 3.34 in [10]. By using
the Bochner’s formula, we get

�L |∇ f | = |∇2 f |2 − |∇|∇ f ||2
|∇ f | + (Ric + ∇2L)(∇ f ,∇ f )

|∇ f | . (3.10)

Notice that since � f =< ∇L,∇ f >, the improved Kato’s inequality becomes

|∇|∇ f ||2 ≤ 2n − 1

2n − 2
|∇2 f |2 + |∇L|2|∇ f |2.

Thus, it follows from (3.10) that

�L |∇ f | ≥ 1

2n − 2

|∇2 f |2
|∇ f | − Cδ|∇ f |.

Then using (3.8) gives

r2
 L

B2r (x)

|∇2 f |2
|∇ f | ≤ Cδ

 L

B2r (x)
|∇ f |,

and hence,

r
 L

B2r (x)
|∇2 f | ≤

(
r2
 L

B2r (x)

|∇2 f |2
|∇ f |

)1/2 ( L

B2r (x)
|∇ f |

)
≤ Cδ1/2

 L

B2r (x)
|∇ f |.

123



Bounds on Harmonic Radius and Limits of Manifolds with… 2105

Thus, by setting v = f
/(ffl L

Br (x)
|∇ f |

)
, we may proceed as in Lemma 3.34 in [10].

Here notice that the heat kernel Gaussian bounds was used in the proof of Lemma
3.34 in [10]. In our case, it is well known that the Gaussian bounds of the heat kernel
and Green’s function estimates for the drifted Laplacian �L are still valid, since both
|∇L| and |L| are bounded. Or instead, one can use the mean value property.

Now suppose that the theorem holds for k − 1 and fails for k. Then there exists
an ε > 0 such that for some δ j → 0, there is a sequence of pointed manifolds
(Mn

j , g j , p j ) and smooth functions {L j } with

RicM j + ∇2L j ≥ −(n − 1)δ j , |∇L j | ≤ δ j , Vol(B10(p j )) ≥ ρ,

and L j -drifted δ j -splitting maps f j : B2(p j ) → R
k together with points x j ∈ B1(p j )

and r j ∈ [sδ j
L j ,x j

, 1
4 ], such that there is no lower triangular matrix A with positive

diagonal entries so that A ◦ f j : Br j (x j ) → Rk is L j -drifted ε-splitting.
Notice that r j → 0. Indeed, if r j ≥ c > 0, then since r j ≤ 1/4, we have Bc(x j ) ⊆

Br j (x j ) ⊆ B5/4(p j ) ⊆ B3/2(x j ) ⊆ B2(p j ), which means the sizes of all these balls
are comparable. Then the fact that f j : B2(p j ) → R

k is L j -drifted δ j splitting and
the volume doubling property immediately implies that f j : Br j (x j ) → R

k is an
L j -drifted Cδ j -splitting map, which in particular is an L j -drifted ε-splitting when j
is big enough, and hence contradicts to the hypothesis above.

Thus, we may assume that r j is the supremum of the radii for which A ◦ f j :
Br j (x j ) → Rk is not an L j -drifted ε-splitting map for any lower triangular matrix
A. It then follows that there exists a lower triangular matrix A j such that A j ◦ f j :
B2r j (x j ) → R

k is an L j -drifted ε-splitting map. Moreover, since |∇L j | is bounded,
by replacing L j by L j − L j (x j ) whenever necessary, we may assume that |L j | is
bounded in B1(x j ).

Let

v j = r−1
j A j ◦ ( f j − f j (x j )), (3.11)

and use the rescaled metric g′
j = r−2

j g j for the following arguments. Then v j :
B2(x j ) → R

k is L j -drifted ε-splitting, and for any 2 ≤ r ≤ 1
4r

−1
j , there is a lower

triangular matrix Ar with positive diagonal entries such that Ar ◦ v j : Br (x j ) → R
k

is L j -drifted ε-splitting. ��

The following Claims 1 and 2 are directly from [10] (see pp. 1118–1121 for proofs).
The only change caused by the drifted situation is that the volume element dV becomes
dVL j .

Claim 1 For any 2 ≤ r ≤ 1
4r

−1
j , one has

(1 − Cε)A2r ≤ Ar ≤ (1 + Cε)A2r ,
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which implies that for any 1 ≤ a, l ≤ k,

sup
Br (x j )

|∇vaj | ≤ (1 + Cε)rCε, (3.12)

sup
Br (x j )

|wl
j | ≤ (1 + Cε)rCε, (3.13)

r2
 L j

Br (x j )
|∇2vaj |2 ≤ CεrCε . (3.14)

Claim 2 There exists a lower triangular matrix A with positive diagonal entries such
that |A − I | ≤ Cε, A ◦ v j : B2(x j ) → R

k is L j -drifted Cε-splitting, and for each
R > 0, after discarding the last component, the map A ◦ v j : BR(x j ) → R

k−1 is
L j -drifted ε j (R)-splitting. Here ε j (R) → 0 whenever R is fixed.

From now on, let v j represents A ◦ v j in claim 2. Thus, as shown in (3.61) and
(3.63) in [10], we have for any 2 ≤ r ≤ 1

4r
−1
j and 1 ≤ l ≤ k that

r2
 L j

Br (x j )
|∇wl

j |2 ≤ CεrCε, (3.15)

r2
 L j

Br (x j )

∣∣∣�L |wl
j |
∣∣∣ ≤ Cδ j r

Cε, (3.16)

where wl
j = dv1j ∧ dv2j ∧ · · · ∧ dvlj .

From Claim 2, we know that (v1j , . . . , v
k−1
j ) is L j -drifted ε j -splitting on B1(x j ).

To get a contradiction, we also need to show that after transformation, the average of
|dvkj |2 is approaching 1, and dvkj and dv1j , . . . , dvk−1

j tend to be orthogonal.

To show this, we first show that the standard deviation of |dvkj |2 and < dvaj , dvkj >

(1 ≤ a ≤ k − 1) are approaching 0 on scale larger than 1 (Claims 3 and 4 below)
similar to [10]. However, we use another approach to prove these claims. For Claim 3
below, instead of using the heat kernel, the proof uses an argument involving Green’s
function.

Claim 3 For any R ≥ 1, we have

 L j

BR(x j )

∣∣∣∣∣
|wl

j |2 −
 L j

BR(x j )
|wl

j |2
∣∣∣∣∣
≤ ε j (R), ∀1 ≤ l ≤ k, (3.17)

and

 L j

BR(x j )

∣∣∣∣∣
〈dvaj , dvkj 〉 −

 L j

BR(x j )
〈dvaj , dvkj 〉

∣∣∣∣∣
≤ ε j (R), ∀1 ≤ a ≤ k − 1. (3.18)
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Proof of Claim 3 Fix an R ≥ 1. For any x ∈ BR(x j ) and 1 ≤ l ≤ k, let

MR(x) = sup
r≤R

 L j

Br (x)

∣∣∣�L |wl
j |
∣∣∣ .

Then as in (3.65) in [10], since we have (3.16), by the maximal function arguments,
there exists a subset Uj ⊆ BR(x j ) satisfying

VolL j (BR(x j ) \Uj )

VolL j (BR(x j ))
≤ ε j (R), (3.19)

MR(x) ≤ ε j (R), ∀x ∈ Uj . (3.20)

To get (3.17), it suffices to show that

∣∣
∣|wl

j |2(x) − |wl
j |2(y)

∣∣
∣ ≤ ε j (R), ∀x, y ∈ Uj , (3.21)

because it will then follow that

 L j

BR(x j )

∣
∣∣∣∣
|wl

j |2 −
 
BR(x j )

|wl
j |2
∣
∣∣∣∣

≤
 L j

BR(x j )

∣
∣∣|wl

j |2(y) − |wl
j |2(x)

∣
∣∣ dy +

∣∣
∣∣∣

 L j

BR(x j )
|wl

j |2(x) − |wl
j |2(z)dz

∣∣
∣∣∣

≤ 2

VolL j (BR(x j ))

[ˆ
Uj

+
ˆ
BR(x j )\Uj

] ∣∣∣|wl
j |2(y) − |wl

j |2(x)
∣∣∣ e−L j dy

≤ ε j (R) + C
VolL j (BR(x j ) \Uj )

VolL j (BR(x j ))

≤ ε j (R).

Since |wl
j | ≤ C(n), to show (3.21), we only need to show

∣∣∣|wl
j |(x) − |wl

j |(y)
∣∣∣ ≤ ε j (R), ∀x, y ∈ Uj .

First, choose a cut-off function φ such that φ = 1 in B 1
8 r

−1
j

(x j ), φ = 0 in Bc
1
4 r

−1
j

(x j ),

and

|∇φ|2 + |�φ| ≤ Cr2j . (3.22)

Denote by GL j (x, y) the Green’s function for the drifted Laplacian �L j on M j .
Since |L j | is bounded on Br−1

j
(x j ), for the Green’s function for �L j , we still have

that
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|GL j (x, y)| ≤ C

d(x, y)n−2 , and |∇yGL j (x, y)| ≤ C

d(x, y)n−1 , x, y ∈ B 1
4 r

−1
j

(x j ).

(3.23)

Without loss of generality, we may assume that R ≤ 1
16r

−1
j . Thus, for x, y ∈ Uj .

∣∣∣|wl
j |(x) − |wl

j |(y)
∣∣∣ =

∣∣∣φ|wl
j |(x) − φ|wl

j |(y)
∣∣∣

=
∣∣∣
∣∣

ˆ
M j

(
GL j (x, z) − GL j (y, z)

)
�L j (φ|wl

j |) e−L j dz

∣∣∣
∣∣

≤
ˆ
M j

∣∣GL j (x, z) − GL j (y, z)
∣∣ |�L j φ||wl

j |e−L j dz

+2
ˆ
M j

∣∣GL j (x, z) − GL j (y, z)
∣∣ |∇φ|

∣∣∣∇|wl
j |
∣∣∣ e−L j dz

+
ˆ
M j

∣∣GL j (x, z) − GL j (y, z)
∣∣φ

∣∣∣�L j |wl
j |
∣∣∣ e−L j dz

:= I + I I + I I I .

Using (3.13), (3.22), and (3.23), we have

I ≤
ˆ
B 1
4 r

−1
j

(x j )\B 1
8 r

−1
j

(x j )
|∇GL j (x

∗, z)| · d(x, y) · Cr2−2Cε
j e−L j dz

≤ CR

r1−n
j

· r2−2Cε
j · VolL j (B 1

4 r
−1
j

(x j ))

≤ CRr1−Cε
j ≤ ε j (R).

Similarly, from (3.15), (3.22), and (3.23), one gets I I ≤ ε j (R).
Finally, one has

I I I ≤
ˆ
B2R(x j )

(|GL j (x, z)| + |GL j (y, z)|
) ∣∣∣�L j |wl

j |
∣∣∣ e−L j dz

+
ˆ
Mj\B2R(x j )

(|GL j (x, z) − GL j (y, z)|
) ∣∣∣�L j |wl

j |
∣∣∣φe−L j dz

:= (1) + (2),

where, by (3.20) and (3.23),

123



Bounds on Harmonic Radius and Limits of Manifolds with… 2109

(1) ≤
2∑

k=−∞

ˆ
B2k R(x)\B2k−1R(x)

|GL j (x, z)|
∣∣∣�L j |wl

j |
∣∣∣ e−L j dz

+
2∑

k=−∞

ˆ
B2k R(y)\B2k−1R(y)

|GL j (y, z)|
∣∣∣�L j |wl

j |
∣∣∣ e−L j dz

≤
2∑

k=−∞

C VolL j (B2k R(x))
(
2k−1R

)n−2

 L j

B2k R(x)

∣∣∣�L j |wl
j |
∣∣∣ dz

+
2∑

k=−∞

C VolL j (B2k R(y))
(
2k−1R

)n−2

 L j

B2k R(y)

∣∣∣�L j |wl
j |
∣∣∣ dz

≤ CR2ε j (R)

2∑

k=−∞
22k ≤ ε j (R),

while from (3.16), we have

(2) ≤
∞∑

k=2

ˆ
B2k R(x j )\B2k−1R(x j )

|∇GL j (x
∗, z)|d(x, y)

∣∣∣�L j |wl
j |
∣∣∣φe−L j dz

≤
∞∑

k=2

CRVolL j (B2k R(x j ))
(
2k−2R

)−1

 L j

B2k R(x j )

∣∣∣�L j |wl
j |
∣∣∣φ dz

≤ Cδ j

∞∑

k=2

2−k · (2k R)Cε ≤ ε j (R).

Therefore, we get I I I ≤ ε j (R), and this finishes the proof of (3.17).
The proof of (3.18) is similar. Firstly, for the maximal function argument to work,

by Claim 2, one needs the smallness of r2
ffl L j

Br (x j )

∣∣∣�L j < dvaj , dvkj >

∣∣∣, for any 1 ≤
a ≤ k − 1 and 2 ≤ r ≤ 1

8r
−1
j . To see this, let φ be a cut-off function such that φ = 1

in Br (x j ), φ = 0 outside B2r (x j ), and |∇φ|2 + |�φ| ≤ C
r2
. Then,

r2
 L j

Br (x j )

∣
∣
∣�L j 〈dvaj , dvkj 〉

∣
∣
∣

≤ r2
 L j

B2r (x j )
φ

∣
∣∣�L j 〈dvaj , dvkj 〉

∣
∣∣

= r2
 L j

B2r (x j )
φ

∣∣
∣2〈∇2vaj ,∇2vkj 〉 + 2(RicM j + ∇2L j )(∇vaj ,∇vkj )

∣∣
∣

≤ 2

[

r2
 L j

B2r (x j )
|∇2vaj |2

]1/2 [

r2
 L j

B2r (x j )
|∇2vkj |2

]1/2
+ 2(n − 1)δ j r

2
 L

B2r (x j )
|〈∇vaj ,∇vkj 〉|
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+2r2
 L j

B2r (x j )
φ

∣∣
∣(RicM j + ∇2L j + (n − 1)δ j g j )(∇vaj ,∇vkj )

∣∣
∣

≤ ε j (r) + 2r2
 L j

B2r (x j )
φ

∣∣
∣(RicM j + ∇2L j + (n − 1)δ j g j )(∇vaj ,∇vkj )

∣∣
∣ . (3.24)

Notice that RicM j + ∇2L j + (n − 1)δ j g j is a non-negative bilinear form, and by
Cauchy–Schwartz and Hölder inequalities, one gets

r2
 L j

B2r (x j )
φ

∣∣∣(RicM j + ∇2L j + (n − 1)δ j g j )(∇vaj ,∇vkj )

∣∣∣

≤
(

r2
 L j

B2r (x j )
φ(RicM j + ∇2L j + (n − 1)δ j g j )(∇vaj ,∇vaj )

)1/2

×
(

r2
 L j

B2r (x j )
φ(RicM j + ∇2L j + (n − 1)δ j g j )(∇vkj ,∇vkj )

)1/2

.(3.25)

By Bochner’s formula, it is not hard to see that

r2
 L j

B2r (x j )
φ(RicM j + ∇2L j + (n − 1)δ j g j )(∇vaj ,∇vaj )

= r2
 L j

B2r (x j )
φ�L j |∇vaj |2 − 2φ|∇2vaj |2 + (n − 1)δ jφ|∇vaj |2

≤ ε j (r) + r2
 L j

B2r (x j )
|∇φ||∇|∇vaj |2|

≤ ε j (r) + C

(

r2
 L j

B2r (x j )
|∇2vaj |2

)1/2 ( L j

B2r (x j )
|∇vaj |2

)1/2

≤ ε j (r) (3.26)

and similarly

r2
 L j

B2r (x j )
φ(RicM j + ∇2L j + (n − 1)δ j g j )(∇vkj ,∇vkj ) ≤ Cr2. (3.27)

Plugging above estimates in (3.24), we reach

r2
 L j

Br (x j )

∣
∣∣�L j 〈dvaj , dvkj 〉

∣
∣∣ ≤ ε j (r). (3.28)

Thus, an analogue of the proof of (3.21) gives

|〈dvaj , dvkj 〉(x) − 〈dvaj , dvkj 〉(y)| ≤ ε j (R), ∀x, y ∈ Uj . (3.29)
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For any x ∈ Uj , by (3.19), (3.20), and (3.29), we have

 L j

BR(x j )

∣∣∣〈dvaj , dvkj 〉(x) − 〈dvaj , dvkj 〉(z)
∣∣∣ dz

≤ 1

VolL j (BR(x j ))

[ˆ
Uj

+
ˆ
BR(x j )\Uj

] ∣
∣∣〈dvaj , dvkj 〉(x) − 〈dvaj , dvkj 〉(z)

∣
∣∣ e−L j dz

≤ ε j (R).

Thus, it follows that

 L j

BR(x j )

∣∣∣∣
∣
〈dvaj , dvkj 〉 −

 L j

BR(x j )
〈dvaj , dvkj 〉

∣∣∣∣
∣

≤
 L j

BR(x j )

∣∣
∣〈dvaj , dvkj 〉(y) − 〈dvaj , dvkj 〉(x)

∣∣
∣ dy

+
 L j

BR(x j )

∣∣∣〈dvaj , dvkj 〉(x) − 〈dvaj , dvkj 〉(z)
∣∣∣ dz

≤ ε j (R). (3.30)

This finishes the proof of Claim 3. ��
Next, we follow amethod in [3] to showClaim 4 below and derive the contradiction.

Claim 4 For any R ≥ 1, we have

 L j

BR(x j )

∣∣
∣∣∣
|dvkj |2 −

 L j

BR(x j )
|dvkj |2

∣∣
∣∣∣
≤ ε j (R). (3.31)

The details of the proof of the Claim was not given in [3]. For readers’ convenience,
we give a proof in Appendix A.

Now similar to the arguments on page 101 in [3], let

alj = −
 L j

B2(x j )
〈dvlj , dvkj 〉

/ L j

B2(x j )
|dvlj |2, ∀1 ≤ l ≤ k − 1,

ṽlj = vlj , ṽkj = vkj +
k−1∑

l=1

aljv
l
j .

and

v̂lj = ṽlj , v̂kj = ṽkj

/ L j

B2(x j )
|d ṽkj |2.
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Then (v̂1j , . . . , v̂
k
j ) : B1(x j ) → R

k is an L j -drifted ε j -splitting map, which con-
tradicts to the inductive hypothesis when j is sufficiently large. The details can also
be found in Appendix A.

Hence, this finishes the proof of part a).
To show b), denote by v = (v1, . . . , vk) = A ◦ f the L-drifted ε-splitting map

from Br (x) to R
k . From the definition, we have

 L

Br (x)

∣∣∣|dv1|2 − 1
∣∣∣ ≤ ε2,

which together with the fact that f is an L-drifted δ-splitting map, implies that

1 − ε2 ≤ a211

 L

Br (x)
|d f 1|2 ≤ a211(1 + Cδ),

i.e.,

a11 ≥ 1

2
.

Similarly, since

v2 = a21 f
1 + a22 f

2 = a21
a11

v1 + a22 f
2,

we have

a222(1 + Cδ) ≥
 L

Br (x)
|a22d f 2|2

=
 L

Br (x)
|dv2|2 + a221

a211

 L

Br (x)
|dv1|2 − 2

a21
a11

 L

Br (x)
〈dv1, dv2〉

≥ 1 − ε2 + (1 − ε2)
a221
a211

− ε2
∣∣∣∣
a21
a11

∣∣∣∣

≥ c1.

Obviously, when δ is chosen small enough so that Cδ < 1, then we get a22 ≥ c0.
In general, notice that

all f
l = vl − al1 f

1 − al2 f
2 − · · · − al(l−1) f

l−1 = vl − η1v
1 − η2v

2 − · · · − ηl−1v
l−1,

where ηi ’s are constants depending on the entries ai j , 1 ≤ i, j ≤ l.
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Since dv1, . . . , dvl−1, dvl are almost orthonormal under the inner product
ffl L
Br (x)

< ·, · >, it is not hard to see that

 L

Br (x)
a2ll |d f l |2 =

 L

Br (x)

∣∣∣vl − η1v
1 − η2v

2 − · · · − ηl−1v
l−1

∣∣∣
2 ≥ c1,

regardless of the values of η1, . . . , ηl−1. Thus, we get

all ≥ c0,

due to the fact that |d f l |2 ≤ 1 + Cδ.
The proof of the theorem is completed. ��

4 The Slicing Theorem and Proof of Theorem 1.6

Using the Transformation Theorem, we are able to prove the Slicing Theorem. But
before that, we need two more lemmas. Assume that f : B2(p) → R

k is an L-drifted
δ-splitting map. For any open set U and 1 ≤ l ≤ k, define measure

μl
L(U ) =

ˆ
U

|wl |dVL

/ˆ
B 3
2
(p)

|wk |dVL , (4.1)

where wl = d f 1 ∧ d f 2 ∧ · · · ∧ d f l , and dVL = e−LdV is the weighted volume
element.

Using similar arguments as in Lemma 4.1 in [10], we can show a doubling property
for μl

L .

Lemma 4.1 For any x ∈ B1(p), sδ
L,x ≤ r ≤ 1/4, and 1 ≤ l ≤ k, we have

μl
L(B2r (x)) ≤ C(n)μl

L(Br (x)). (4.2)

Moreover, by (3.9) Theorem 3.6 part (b), and following a similar proof, one can
actually derive a slight more general result than Lemma 4.2 in [10], which is needed
for completing the proof of the Slicing Theorem. More explicitly,

Lemma 4.2 For any x ∈ B1(p), sδ
L,x ≤ r ≤ 1/4, and 1 ≤ l ≤ k, we have

| f (Br (x))| ≤ Cr−(n−k)μl
L(Br (x)), (4.3)

where | f (Br (x))| denotes the Euclidean measure of f (Br (x)) ⊆ R
k .

Proof By Theorem 3.6, there is a lower triangular matrix A = (ai j ) ∈ GL(k) with
positive diagonal entries such that

f̄ = A ◦ f : B2r (x) → R
k
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is an ε-splitting, and hence

 L

Br (x)

∣∣
∣|w̄l | − 1

∣∣
∣ ≤ C

 L

B2r (x)

∣∣
∣|w̄l | − 1

∣∣
∣ ≤ Cε, (4.4)

where w̄l = d f̄ 1 ∧ · · · ∧ d f̄ l .
Define

μ̄l
L(U ) =

´
U |w̄l |dVL´

B3/2(p)
|wk |dVL

.

Since f is L-drifted δ-splitting on B2(p), by the volume comparison, it is L-drifted
Cδ-splitting on B3/2(p).

This together with (4.4) implies

μ̄l
L(Br (x)) =

´
Br (x)

|w̄l |dVL´
B3/2(p)

|wk |dVL

≥ (1 − Cε)
VolL(Br (x))

VolL(B3/2(p))

 L

Br (x)
|w̄l |

≥ Crn . (4.5)

On the other hand, since |∇ f̄ | ≤ 1 + ε in B2r (x), it is easy to check that

f̄ (Br (x)) ⊆ B2r ( f̄ (x)).

Thus,

| f̄ (Br (x))| ≤ Crk . (4.6)

Combining (4.5) and (4.6), we get

| f̄ (Br (x))| ≤ Cr−(n−k)μ̄l
L(Br (x)). (4.7)

Notice that

| f̄ (Br (x))| = det(A)| f (Br (x))|, (4.8)

and from (3.9) in Theorem 3.6 part b), one has

μ̄l
L = a11 · · · allμl

L = det(A)μl
L

al+1 l+1 · · · akk ≤ c−(k−l)
0 det(A)μl

L . (4.9)

Plugging (4.8) and (4.9) into (4.7), the lemma follows immediately. ��
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To prove the Slicing theorem, we also need the following higher- order integral
estimates for a δ-splitting map, the proof of which again is similar to Theorem 1.26 in
[10].

Theorem 4.3 Givenρ > 0. For each ε > 0, there exists a δ1 = δ1(ε |n, ρ) > 0with the
following property. Suppose that amanifoldMn satisfies Ric+∇2L ≥ −(n−1)δ1 with
|∇L| ≤ δ1, and Vol(B10(p)) ≥ ρ. Let f : B2(p) → R

k be an L-drifted δ-splitting
map. Then we have:

(1) There exists γ (n, ρ) > 0 such that for each 1 ≤ l ≤ k,

 L

B3/2(p)

|∇2ul |2
|∇ul |1+γ

≤ ε. (4.10)

(2) For any 1 ≤ l ≤ k, the normal mass of �L |wl | satisfies
 L

B3/2(p)

∣∣∣�L |wl |
∣∣∣ ≤ ε. (4.11)

The higher-order estimate (4.11) will be used in the proof of the Slicing Theorem
below, whose proof follows from the Bochner’s formula for the drifted Laplacian �L ,
similar to the proof of (3.24).

Now we are ready to prove the Slicing theorem

Theorem 4.4 (Slicing Theorem) Given ρ > 0. For each ε > 0, there exists a δ̄ =
δ̄(ε |n, ρ) > 0 such that the following is satisfied. Suppose that a manifoldMn satisfies
Ric + ∇2L ≥ −(n − 1)δ̄, |∇L| ≤ δ̄, and Vol(B10(p)) ≥ ρ. Let f : B2(p) → R

n−2

be an L-drifted δ-splitting map. Then there is a subset Gε ⊆ B1(0n−2) such that

(1) Vol(Gε) ≥ Vol(B1(0n−2)) − ε,
(2) f −1(s) �= ∅ for each s ∈ Gε ,
(3) for each x ∈ f −1(Gε) and r ≤ 1/4, there is a lower triangular matrix A with

positive diagonal entries so that A◦ f : Br (x) → R
n−2 is an L-drifted ε-splitting

map.

Proof Firstly, by a generalization of the results in Sect. 2 in [8] (see e.g., Lemma 5.7
in [24]), we know that there exists a δ2 > 0 such that when the assumptions of the
theorem are satisfied, we have

∣∣∣B1(0
n−2) \ f (B1(p))

∣∣∣ ≤ ε/2. (4.12)

Let δ be the parameter in the Transformation Theorem 3.6. Set

Dδ =
⋃

x∈B1(p), sδL,x>0

BsδL,x
(x).
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Next, we show that for δ̄ small enough, it holds that

| f (Dδ)| ≤ ε/2.

Then, setting Gε = f (B1(p)) \ f (Dδ) will finish the proof of the theorem.

The collection of balls
{
BsδL,x

(x)
}

, x ∈ Dδ forms a covering of Dδ . Therefore,

there exists a subcollection of mutually disjoint balls {Bs j (x j )}, where s j = sδ
L,x j

,
such that

Dδ ⊆
⋃

j

B6s j (x j ).

Since s j is the L-singular scale, the inequality (3.7) reaches equality at wl j for some
1 ≤ l j ≤ n − 2, i.e.,

s2j

 L

Bs j (x j )

∣∣∣�L |wl j |
∣∣∣ = δ

 L

Bs j (x j )
|wl j |. (4.13)

Moreover, we may assume that δ̄ is small enough so that sδ
L,x ≤ 1/32. Then, by

Lemma 4.1 (see (4.2)), Lemma 4.2 (see (4.3)), and (4.13), we have

| f (Dδ)| ≤
∑

j

∣
∣ f (B6s j (x j ))

∣
∣ ≤ C

∑

j

(6s j )
−2μ

l j
L (B6s j (x j ))

≤ C
∑

j

s−2
j μ

l j
L (Bs j )(x j ) = C

∑

j

s−2
j

´
Bs j (x j )

|wl j |dVL´
B3/2(p)

|wn−2|dVL

= Cδ−1´
B3/2(p)

|wn−2|dVL

∑

j

ˆ
Bs j (x j )

∣∣∣�L |wl j |
∣∣∣ dVL . (4.14)

From the fact that f is L-drifted δ-splitting on B2(p), we know that

 L

B3/2(p)
|wn−2| ≥ 1 − Cδ.

Putting this and the fact that {Bs j (x j )} are disjoint into (4.14), we finally reach

| f (Dδ)| ≤ Cδ−1´
B3/2(p)

|wn−2|dVL

∑

j

ˆ
Bs j (x j )

n−2∑

l=1

∣∣∣�L |wl |
∣∣∣ dVL

≤ Cδ−1´
B3/2(p)

|wn−2|e−LdV

ˆ
B3/2(p)

n−2∑

l=1

∣∣∣�L |wl |
∣∣∣ dVL

123



Bounds on Harmonic Radius and Limits of Manifolds with… 2117

≤ Cδ−1
 L

B3/2(p)

n−2∑

l=1

∣∣∣�L |wl |
∣∣∣

≤ ε/2.

The last step above holds since we may choose δ1 = δ1(n, ε
2C

−1δ) in Theorem 4.3.
Therefore, setting δ̄ < min(δ1, δ2, δ) completes the proof. ��
With the Slicing Theorem, we can finish the proof of Theorem 1.6.

Proof of Theorem 1.6 Firstly, we need the lemma below to play the role of Lemma
1.21 in [10], which generalized the corresponding result in [4] to the case where
Bakry–Émery Ricci curvature has a lower bound. ��
Lemma 4.5 Given ρ > 0, for any ε, there exist δ = δ(ε |n, ρ) > 0 such that the
following holds. Assume that Ric+∇2L ≥ −δg, |∇L| ≤ δ, and

Vol(B10(y)) ≥ ρ > 0, ∀y ∈ M. (4.15)

(a) If

dGH (Bδ−1(p), Bδ−1((0k, x∗)) ≤ ε,

where (0k, x∗) ∈ R
k × C(X) with x∗ being the vertex of the metric cone C(X)

over somemetric space X, then for any R ≤ 1, there exists an L-drifted ε-splitting
map f = ( f1, f2, . . . , fk) : BR(p) → R

k .
(b) If f = ( f1, f2, . . . , fk) : B8R(p) → R

k is an L-drifted δ-splitting map for
R ≤ 1, then there is a map � : BR(x) → f −1(0) such that (u,�) : BR(p) →
BR((0k, x∗)) ⊂ R

k × f −1(0) is an ε-Gromov Hausdorff approximation.

For a proof of part (a), see e.g., the proof of Lemma 4.11 in [24]. Part (b) holds
because from Lemma 3.3 there is a Cδ1/2-splitting map u on B2R(p), which implies
that BR(p) is ε close in Gromov Hausdorff sense to a ball in R

k × u−1(0) (see e.g.,
the proof of Proposition 11.1 in [3]). Then the conclusion in (b) follows from the fact
that f and u are close as shown in Lemma 3.3.

Next, as in [10], to rule out the codimension 2 singularity, we only need to show
that R

n−2 × C(S1β), β < 2π , is not the GH limit of sequences of manifolds under
our assumptions. The reason is the following. When the Ricci curvature is bounded,
from Theorem 5.2 in [5], if there is a codimension 2 singularity, then a tangent cone
is a metric cone R

n−2 × Y where Y is a cone over a one-dimensional compact metric
space of diameter ≤ π . Here the diameter means the maximum length of minimal
geodesics. In our setting, the situation is the same by virtue of Theorem 4.3 in [24].

We argue by contradiction, and assume that there is a sequence of pointed
Riemannian manifolds (Mn

j , g j , p j ) and smooth functions L j ∈ C∞(M j ) with

|RicM j + ∇2L j | ≤ (n − 1)δ j → 0 and |∇L j | ≤ δ j → 0, and Vol(B10(p j )) ≥ ρ

satisfying

(M j , d j , p j )
dGH−−→ (Rn−2 × C(S1β), d, p),
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where S1β is a circle of circumference β < 2π and p is a vertex of the cone.
Let ε j → 0, and f j : B

ε−1
j

(p) → B
ε−1
j

(p j ) the ε j -Gromov–Hausdorff approxi-

mation. Denote by S j = f j (S). Since away from S j the balls inM j are close to balls
in R

n in Gromov–Hausdorff sense, as shown in the proof of Theorem 1.2, the W 1,q

(q > 2n) harmonic radius rh(x) is continuous. In particular, we have rh(x) ≥ τ
2 for

any x ∈ B1(p j ) \ Tτ (S j ).
Then we can choose δ j small enough so that there is an L j -drifted δ j -splitting map

u j : B2(p j ) → R
n−2 satisfying Theorem 4.4. Hence, it is possible to pick a s j ∈

Gε j ∩ B1/10(p j ) and choose the smallest W 1,q harmonic radius on the submanifold

u−1
j (s j ) ∩ B1(p j ), namely, let

r j = min{rh(x) : x ∈ u−1
j (s j ) ∩ B1(p j )}.

Assume that r j is achieved at some point x j , i.e., r j = rh(x j ). Then it is not hard to
see that x j → S j ∩ B1/10(p j ) and r j → 0.

ByTheorem3.6, there is a lower triangularmatrix A j with positive diagonal entries,
such that v j = A j ◦ (u j − s j ) : B2r j (x j ) → R

n−2 is an L j -drifted ε j -splitting map.
Proceeding as in [10], by passing to a subsequence, the blow-up sequence

(Mn
j , r

−1
j d j , x j )

dGH−−→ (X , dX , x), where X splits off an R
n−2 factor. Moreover,

ṽ j = r−1
j v j : B2(x j ) → R

n−2 is an L j -drifted ε j -splitting map. By the proof of

Claim 2 in Theorem 3.6, one can see that ṽ j : BR(x j ) → R
n−2 is an L j -drifted

C(n, ρ, R)ε j -splitting map for any R > 2. In particular, it implies that ṽ j → v for
some v : X → R

n−2. Then Lemma 4.5 implies that

X = R
n−2 × v−1(0n−2).

Since for any y ∈ ṽ−1
j (0), the W 1,q radius rh(y) ≥ 1, by Theorem 2.3, we know

that X is Cα ∩ W 1,s in a neighborhood of v−1(0). Hence X is a Cα ∩ W 1,s manifold

with rh ≥ 1, and (M j , r
−2
j g j , x j )

Cα∩W 1,s−−−−−→ (X , gX , x) in Cheeger–Gromov sense. In

particular, since the W 1,q harmonic radius is continuous, we have rh(x) = 1.
On the other hand, the expression of the Ricci curvature tensor in harmonic coor-

dinates is

gab
∂2gi j

∂va∂vb
+ Q(∂g, g) = −2Ri j

= −2(Ri j + ∇i∇ j L) + 2∇i∇ j L, (4.16)

where {v1, v2, . . . , vn} is a local harmonic coordinate chart. Since |Ric + ∇2L| ≤
(n−1)r2j → 0 and |∇L| ≤ r j → 0, and the sequence ofmetrics {r−2

j g j } is converging
in W 1,s norm on compact sets, one can see that the limit metric gX is a weak solution
of the equation

gab
∂2gi j

∂va∂vb
+ Q(∂g, g) = 0.
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Therefore, by the standard elliptic regularity theory, it follows that gX is smooth
and Ricci flat, and hence X is a flat manifold since the dimension of v−1(0n−2) is
2. Moreover, by volume continuity under Gromov–Hausdorff convergence (see e.g.,
Theorem 4.10 in [24]), we have Vol(Br (x)) ≥ Cρrn for any r > 0. Thus, it follows
that X = R

n .
Especially, we have rh(x) = ∞ and contradicts to rh(x) = 1. Therefore, the

singular set has codimension at least 3.
Finally, to rule out the codimension 3 singularity, again we can use a similar argu-

ment as in [10]. One just needs to notice that by Lemmas 4.5 and 3.3, the ε-splitting
map u j : B2(p j ) → R

n−3 still exists. Then since the metrics converge in Cα norm
and u j are harmonic functions, we can still get the bounds on the gradient and hessian
of u j . Also, the Poisson approximation h j of the square of the distance function exists
by Lemmas 2.3 and 2.4 in [24] (See also the proof of Theorem 6.3 in [26]). Since
�h j = 2n and the metrics g j have uniform Cα bound, the standard elliptic regularity
theory implies that h j have C2 bound.

Therefore, this completes the proof. ��
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Appendix A

In this section, we prove Claim 4 and finish the proof of Theorem 3.6 part a).

Proof of Claim 4 We first show that

 L j

BR(x j )

∣
∣∣∣∣
|〈wk−1

j , dvkj 〉|2 −
 L j

BR(x j )
|〈wk−1

j , dvkj 〉|2
∣
∣∣∣∣
≤ ε j (R). (A.1)

Here, as usual, define

〈wk−1
j , dvkj 〉 =

k−1∑

a=1

〈dvaj , dvkj 〉dv1j ∧ · · · ∧ d̂vaj ∧ · · · ∧ dvk−1
j .

Thus,
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∣
∣∣〈wk−1

j , dvkj 〉
∣
∣∣
2

=
k−1∑

a,b=1

〈dvaj , dvkj 〉〈dvbj , dvkj 〉

× 〈dv1j ∧ · · · ∧ d̂vaj ∧ · · · ∧ dvk−1
j , dv1j ∧ · · · ∧ d̂vbj ∧ · · · ∧ dvk−1

j 〉.

Since (v1j , . . . , v
k−1
j ) is an ε j (R)-splitting on BR(x j ) by Claim 2, it is not hard to see

that

 L j

BR (x j )

∣∣∣
∣〈dv1j ∧ · · · ∧̂dvaj ∧ · · · ∧ dvk−1

j , dv1j ∧ · · · ∧̂dvbj ∧ · · · ∧ dvk−1
j 〉

−
 L j

BR (x j )
〈dv1j ∧ · · · ∧̂dvaj ∧ · · · ∧ dvk−1

j , dv1j ∧ · · · ∧̂dvbj ∧ · · · ∧ dvk−1
j 〉

∣∣∣∣ ≤ ε j (R). (A.2)

Therefore, (A.1) follows from (3.18) and (A.2) immediately.
Notice that wk

j = wk−1
j ∧ dvkj , and

|wk
j |2 = |wk−1

j |2|dvkj |2 − |〈wk−1
j , dvkj 〉|2.

From (3.17), we have

ε j (R) ≥
 L j

BR(x j )

∣∣∣∣∣
|wk

j |2 −
 L j

BR(x j )
|wk

j |2
∣∣∣∣∣

≥
 L j

BR(x j )

∣∣
∣∣∣
|wk−1

j |2|dvkj |2 −
 L j

BR(x j )
|wk−1

j |2|dvkj |2
∣∣
∣∣∣

−
 L j

BR(x j )

∣∣∣∣
∣
|〈wk−1

j , dvkj 〉|2 −
 L j

BR(x j )
|〈wk−1

j , dvkj 〉|2
∣∣∣∣
∣
.

This, together with (A.1), implies that

 L j

BR(x j )

∣∣∣
∣|wk−1

j |2|dvkj |2 −
 L j

BR(x)
|wk−1

j |2|dvkj |2
∣∣∣
∣ ≤ ε j (R). (A.3)

Combining this with the fact that (v1j , . . . , v
k−1
j ) is an L j -drifted ε j (R)-splitting map

on BR(x j ), we have

 L j

BR (x j )

∣
∣∣
∣∣
|dvkj |2 −

 L j

BR (x j )
|dvkj |2

∣
∣∣
∣∣

≤
 L j

BR (x j )

∣
∣∣|dvkj |2 − |wk−1

j |2|dvkj |2
∣
∣∣+

 L j

BR (x j )

∣∣
∣∣
∣
|wk−1

j |2|dvkj |2 −
 L j

BR (x j )
|wk−1

j |2|dvkj |2
∣∣
∣∣
∣
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+
∣
∣∣
∣∣

 L j

BR (x j )
|wk−1

j |2|dvkj |2 −
 L j

BR (x j )
|dvkj |2

∣
∣∣
∣∣

≤ ε j (R).

Therefore, it finishes the proof of Claim 4. ��
Recall that

alj = −
 L j

B2(x j )
〈dvlj , dvkj 〉

/ L j

B2(x j )
|dvlj |2, ∀1 ≤ l ≤ k − 1,

and

ṽlj = vlj , ṽkj = vkj +
k−1∑

l=1

aljv
l
j .

Since (v1j , . . . , v
k
j ) : B2(x j ) → R

k is L j -driftedCε-splitting, and (v1j , . . . , v
k−1
j ) :

B2(x j ) → R
k−1 is L j -drifted ε j -splitting, it follows that

∣∣
∣∣∣

 L j

B2(x j )
〈dvlj , dvkj 〉

∣∣
∣∣∣
≤ Cε, and

 L j

B2(x j )

∣
∣∣|dvlj |2 − 1

∣
∣∣ ≤ ε2j .

Hence,

|alj | ≤ Cε. (A.4)

The above facts and (3.18) imply that

 L j

B2(x j )

∣∣
∣〈d ṽlj , d ṽkj 〉

∣∣
∣

≤
 L j

B2(x j )

∣∣
∣∣
∣
〈dvlj , dvkj 〉 −

 L j

B2(x j )
〈dvlj , dvkj 〉

∣∣
∣∣
∣
+
 L j

B2(x j )

∣∣
∣∣
∣
alj |dvlj |2 − alj

 L j

B2(x j )
|dvlj |2

∣∣
∣∣
∣

+
k−1∑

m �=l

 L j

B2(x j )
|amj ||〈dvlj , dvmj 〉|

≤ ε j , (A.5)

and

 L j

B2(x j )
|d ṽkj |2

=
 L j

B2(x j )
|dvkj |2 +

k−1∑

l=1

|alj |2
 L j

B2(x j )
|dvlj |2
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+
k−1∑

l �=m

alj a
m
j

 L j

B2(x j )
〈dvlj , dvmj 〉 +

k−1∑

l=1

2alj

 L j

B2(x j )
〈dvlj , dvkj 〉

≥ 1 − Cε. (A.6)

Setting

v̂lj = ṽlj , v̂kj = ṽkj

/ L j

B2(x j )
|d ṽkj |2,

one has

 L j

B2(x j )

∣∣∣|d v̂kj |2 − 1
∣∣∣ =

( L j

B2(x j )
|d ṽkj |2

)−1  L j

B2(x j )

∣
∣∣∣∣
|d ṽkj |2 −

 L j

B2(x j )
|d ṽkj |2

∣
∣∣∣∣

≤ ε j ,

where we have used (3.31), (A.4), and the fact that (v1j , . . . , v
k−1
j ) is an L j -drifted

ε j -splitting map. Therefore, by using the similar technique as in Lemma 3.34 in [10]
(or mean value inequality), one can get

sup
B1(x j )

|d v̂kj | ≤ 1 + ε j , ∀1 ≤ a ≤ k, (A.7)

and

 L j

B1(x j )
|∇2v̂kj |2 ≤ ε j . (A.8)

Finally, (A.5) and (A.6) give

 L j

B1(x j )
|〈d v̂aj , d v̂kj 〉| ≤ ε j , 1 ≤ a ≤ k − 1. (A.9)

It is obvious that (A.7), (A.8), and (A.9) together with the fact that (v1j , . . . , v
k−1
j )

is L j -drifted ε j -splitting imply that (v̂1j , . . . , v̂
k
j ) : B1(x j ) → R

k is an L-drifted

ε j -splitting map. Since B1(x j ) in the metric r−2
j g j is exactly the ball Br j (x j ) in the

metric g j and ε j → 0, this means that before rescaling (v̂1j , . . . , v̂
k
j ) : Br j (x j ) → R

k

is L j -drifted ε-splitting when j is sufficiently large, which contradicts to the inductive
hypothesis that there is nomatrix A such that A◦u is L j -drifted ε-splitting on Br j (x j ).

Hence, this finishes the proof of Theorem 3.6 part a).
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