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Abstract Given a complex algebraic hypersurface H , we introduce a subset of the
Newton polytope of the defining polynomial for H which is a polyhedral complex and
enjoys the key topological and combinatorial properties of the amoeba of H for a large
class of hypersurfaces. We provide an explicit formula for this polyhedral complex in
the case when the spine of the amoeba is dual to a triangulation of the Newton polytope
of the defining polynomial. In particular, this yields a description of the polyhedral
complex when the hypersurface is optimal (Forsberg et al. in Adv Math 151:45–70,
2000).We conjecture that a polyhedral complexwith these properties exists in general.
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1 Introduction

Amoebas of complex algebraic varieties have attracted substantial attention in the
recent years after their inception in [5]. Being a semi-analytic subset of the real space,
the amoeba carries a lot of geometric, algebraic, topological, and combinatorial infor-
mation on the corresponding algebraic variety [10]. The degeneration of the amoeba of
a complex algebraic variety leads to the concept of a tropical algebraic variety provid-
ing an important link between complex analysis and enumerative algebraic geometry
[11,12]. Amoebas of algebraic hypersurfaces possess rich analytic and combinatorial
structure reflected in their spines, contours, and tentacles. They appear in numerous
applications in real algebraic geometry, complex analysis, mirror symmetry and in
several other areas. Moreover, they are naturally linked to the geometry of Newton
polytopes, which can be seen in particular with Viro’s patchworking principle (i.e.,
tropical localization) based on the combinatorics of subdivisions of convex lattice
polytopes. Also, certain tropical varieties can be seen as a limiting aspect (or “degen-
eration”) of amoebas of algebraic varieties. For example, complex curves viewed as
Riemann surfaces turn to metric graphs (one-dimensional combinatorial objects), and
n-dimensional complex varieties turn to n-dimensional polyhedral complexes with
some properties (see [7] and [9]). Amoebas have their similar objects in the real torus
called coamoebas, which are the projection of algebraic varieties onto the real torus
which have many interesting and nice properties (see [13]).

Despite the simple definition, efficient computation of the amoeba of a given
algebraic variety represents a task of formidable computational complexity. Various
approaches have been recently tried to compute the shape of an amoeba [2,16] or
approximate it by simpler geometric objects [4,15,17]. The fundamental problems
addressed in numerous papers are the detection of the topological type of an amoeba,
the membership problem for a given connected component of an amoeba complement,
and detection of the order [3] of such a component in the case of hypersurface amoebas.

Alongside with the definition of unbounded affine amoeba of an algebraic hyper-
surface, a competing definition of compactified amoeba has been introduced in [5].
While the affine amoeba of a hypersurface is its Reinhardt diagram in the logarithmic
scale, its compactified amoeba is defined to be the image of the hypersurface under
the moment map [6] providing a homeomorphism between the Newton polytope of
the defining polynomial of that hypersurface and the positive orthant of the real vector
space. Being topologically equivalent to the standard affine amoeba, its compactified
counterpart often has the substantial disadvantage of exhibiting complement compo-
nents of very different relative size (see Examples 3.6 and 5.3). This makes it difficult
to work with compactified amoebas in a computationally reliable way and probably
explains the focus of research on affine amoebas.

In the present paper we introduce the definition of an amoeba-shaped polyhedral
complex of an algebraic hypersurface satisfying certain technical assumption on the
Newton polytope of its defining polynomial and its tropical counterpart (see Theorem
3.3). Like the compactified amoeba, this polyhedral complex is a subset of the Newton
polytope of the defining polynomial of the hypersurface. An explicit formula for this
polyhedral complex is provided in the case when the hypersurface H is optimal [1,3].
Furthermore, we give a topological description of the complement of the affine amoe-
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1358 M. Nisse, T. Sadykov

bas of a class of algebraic hypersurfaces in combinatorial terms naturally and strongly
related to their Newton polytopes and the coefficients of their defining polynomials.
We conjecture that such an amoeba-shaped polyhedral complex exists in general and
that the order of a connected component in its complement is the lattice point in this
component.

Pictures of amoebas in the paper have been created in MATLAB R2017a. The
authors thankD.Bogdanov for providing ahelpful online tool for automatedgeneration
of MATLAB code which is available for free public use at http://dvbogdanov.ru/?
page=amoeba.

2 Notation and Preliminaries

Throughout the paper, we denote by n the number of x ∈ C
n variables. For x =

(x1, . . . , xn) and α = (α1, . . . , αn), we denote by xα the monomial xα1
1 . . . xαn

n . By
the support of a polynomial p(x) we will mean the set of the vectors of exponents
of the monomials which appear in p(x). The Newton polytope Np(x) of a Laurent
polynomial p(x) is defined to be the convex hull in R

n of its support. We will often
drop some of the subindices to simplify the notation, e.g. we will denote the Newton
polytope of a polynomial p by Np or even by N instead of Np(x) if there is no
confusion.

Definition 2.1 The amoeba A f of a Laurent polynomial f (x) (or of the algebraic
hypersurface { f (x) = 0}) is defined to be the image of the hypersurface f −1(0)
under the map Log : (x1, . . . , xn) �→ (log |x1|, . . . , log |xn|).

For n > 1, the amoeba of a polynomial is a closed unbounded semi-analytic subset
of the real vector space R

n . Throughout the paper we will often call such amoebas
affine in order to distinguish them from the compactified and theweighted compactified
counterparts.

The following result shows that the Newton polytope Np(x) reflects the structure
of the amoeba Ap(x) [3, Theorem 2.8 and Proposition 2.6].

Theorem 2.2 (see [3]) Let p(x) be a Laurent polynomial and let {M} denote the
family of connected components of the amoeba complement cAp(x). There exists an
injective function ν : {M} → Z

n ∩ Np(x) such that the cone which is dual to Np(x)

at the point ν(M) coincides with the recession cone of M. In particular, the number
of connected components of cAp(x) cannot be smaller than the number of vertices of
Np(x) and cannot exceed the number of integer points in Np(x).

Throughout the paper, the vector ν(M) will be called the order of the connected
component M in the amoeba complement.

Definition 2.3 (see [5,Chapter 6]) The compactified amoebaA f of a Laurent polyno-
mial f (x) = ∑

s∈S as xs (or, equivalently, of the algebraic hypersurface { f (x) = 0})
is defined to be the image of the hypersurface f −1(0) under the moment map

μS(x) :=
∑

s∈S s · |xs |
∑

s∈S |xs | .

123

http://dvbogdanov.ru/?page=amoeba
http://dvbogdanov.ru/?page=amoeba


Amoeba-Shaped Polyhedral Complex 1359

By [5, Chapter 6], the compactified amoeba of a polynomial is a closed subset
of its Newton polytope. The amoeba and the compactified amoeba of a polynomial
are homeomorphic. From the computational point of view both have advantages and
shortcomings. It is in general difficult to locate the position of an affine amoeba in the
real space while the integer convex polytope represents a computationally much more
manageable ambient space. On the other hand, some of the connected components
of the complement to a compactified amoeba can be elusively small as illustrated by
Examples 3.6 and 5.3. Besides, the connected components of the complement to the
compactified amoeba of a polynomial are in general not convex.

Definition 2.4 (cf. [3,Definition 2.9]) An algebraic hypersurface H ⊂ (C∗)n, n ≥ 2,
is called optimal if the number of connected components of its amoeba complement
cAH equals the number of integer points in the Newton polytope of the defining
polynomial of H. We will say that a polynomial (as well as its amoeba) is optimal if
its zero locus is an optimal algebraic hypersurface.

Since the amoeba of a polynomial does not carry any information on the multiplici-
ties of its roots, any one-dimensional amoeba (which is just a finite set of distinct points
in a1, . . . , ak ∈ R) can be treated as the amoeba of the polynomial

∏k
j=1(x − eak ) all

of whose roots are positive and distinct. Thus Definition 2.4 is trivial in the univariate
case. The correct extension of Definition 2.4 to one dimension is to say that all the
roots of the polynomial in question have different absolute values.

Definition 2.5 An algebraic hypersurface H ⊂ (C∗)n, n ≥ 2, is called solid if the
number of connected components of its amoeba complement cAH equals the number
of vertices of the Newton polytope of the defining polynomial of H. We will say
that a polynomial (as well as its amoeba) is solid if its zero locus is a solid algebraic
hypersurface.

3 Explicit Analytic Formula for the Amoeba-Shaped Polyhedral
Complex

To transform the (compactified) amoeba of an algebraic hypersurface into a combina-
torial object, one needs to take into account the relative size of the coefficients of its
defining polynomial. The next definition is central to the paper.

Definition 3.1 Following the ideas of [19], we define theweighted moment map asso-
ciated with the algebraic hypersurface {x ∈ C

n : f (x) := ∑
s∈S as xs = 0} through

μ f (x) :=
∑

s∈S s · |as ||xs |
∑

s∈S |as ||xs | .

It follows from the general theory of moment maps [6] that μ f (C
n) ⊆ N f .

Definition 3.2 By the weighted compactified amoeba of an algebraic hypersurface
H = {x ∈ C

n : f (x) = 0} we will mean the set μ f (H). We denote it by WCA( f ).
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Fig. 1 The affine and the compactified amoebas of the polynomial x + y + x2y2 + xy/2. The polyhedral
complex coincides with the compactified amoeba of this polynomial

Recall that theHadamard power of order r ∈ R of a polynomial f (x) = ∑
s∈S as xs

is defined to be f [r ](x) := ∑
s∈S ars xs .

Theorem 3.3 Let f be a polynomial inC[x±1
1 , . . . , x±1

n ]with the Newton polytopeN
such that |aα| ≥ 1 for every α ∈ Vert(N ). Assume that the function which assigns to
each α ∈ N ∩ Z

n the real number log |aα| is concave, and the subdivision ofN dual
to the tropical hypersurface � associated to the tropical polynomial ftrop defined by:

ftrop(ζ ) = max
α∈N∩Zn

{log |aα| + 〈α, ζ 〉}

is a triangulation. Then the set-theoretical limit

P∞
f := lim

r→∞ WCA( f [r ]) (3.1)

is a polyhedral complex. Moreover, its complement inN has the same topology of the
complement of the amoeba A of f , i.e. π0(R

n \ A) = π0(N \ P∞
f ). In particular, if

n = 2 then P∞
f is a simplicial complex.

The assumptions in Theorem 3.3 are sufficient for the right-hand side of (3.1) to be
a polyhedral complex. However, they are far from being necessary, which is illustrated
by the following examples.

Example 3.4 The connected components of the complement of P∞
f in the Newton

polytope are not necessarily convex. The amoeba, the compactified amoeba and the
associated polyhedral complex for the polynomial x + y + x2y2 + cxy are depicted
in Figs. 1 and 2 for c = 1/2 and c = 2, respectively.

Example 3.5 The amoeba, the compactified amoeba and the associated polyhedral
complex for the polynomial x + y + xy2 + x2y + cxy are depicted in Figs. 3 and 4
for c = 1/2 and c = 5, and respectively.

Example 3.6 The zero locus of the polynomial x + 30xy + 20x2y + x3y + y2 is an
optimal hypersurface. Its amoeba, compactified amoeba and the associated polyhedral
complex are depicted in Fig. 5. Although the compactified amoeba is optimal, the
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Fig. 2 The affine amoeba, the compactified amoeba and the polyhedral complex of the polynomial x +
y + x2y2 + 2xy

Fig. 3 The affine amoeba, the compactified amoeba and the polyhedral complex of the polynomial x +
y + xy2 + x2y + xy/2

Fig. 4 The affine amoeba, the compactified amoeba and the polyhedral complex of the polynomial x +
y + xy2 + x2y + 5xy

three connected components of its complement that correspond to the vertices of the
Newton polytope are very small in comparison with the two bounded components that
fill almost all of the Newton polygon. In fact, these three components are so small that
it is difficult (yet not impossible) to distinguish them by eye on the presented picture.
This and similar examples motivate the search for a better compact counterpart of an
affine amoeba pursued in the present paper.

Example 5.2 shows that the sufficient condition of the theorem is not necessary
for the Hadamard power approach to work. Indeed, the polynomial in this example is
neither dense nor optimal.

Proposition 3.7 If f (x) is a polynomial whose Newton polytopeN f is a simplex and
with nonzero coefficients only on the vertices of N f then P∞

f is given by the convex
hull of the middle points of all 1-dimensional faces of N f .
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Fig. 5 The affine amoeba, the compactified amoeba and the polyhedral complex of the polynomial x +
30xy + 20x2y + x3y + y2

Fig. 6 The polyhedral
complex P∞

f in the
three-dimensional hyperplane
case f (x, y, z) = 1+ x + y + z

Proof Use a monomial change of variables to reduce to the hyperplane case and
employ an argument parallel to that in the proof of [3, Proposition 4.2]. �

Example 3.8 A hyperplane. The polyhedron associated with the hyperplane {1+ x +
y+z = 0} is depicted in Fig. 6 inside the unit simplex. It is combinatorially equivalent
to an octahedron.

4 Proof of the Main Theorem

Let t be a strictly positive real number and Ht be the self-diffeomorphism of (C∗)n
defined by

Ht : (C∗)n −→ (C∗)n,
(x1, . . . , xn) �−→

(
|x1|

1
log t x1|x1| , . . . , |xn|

1
log t xn|xn |

)
.

which defines a new complex structure on (C∗)n denoted by Jt = (dHt )◦ J ◦(dHt )
−1

where J is the standard complex structure.
A Jt -holomorphic hypersurface Vt is a hypersurface holomorphic with respect to

the Jt complex structure on (C∗)n . It is equivalent to say that Vt = Ht (V ) where
V ⊂ (C∗)n is a holomorphic hypersurface for the standard complex structure J
on (C∗)n .
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Recall that the Hausdorff distance between two closed subsets A, B of a metric
space (E, d) is defined by:

dH(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}.

Herewe take E = R
n×(S1)n , with the distance defined as the product of the Euclidean

metric on R
n and the flat metric on (S1)n .

Definition 4.1 Acomplex tropical hypersurface V∞ ⊂ (C∗)n is the limit (with respect
to the Hausdorff metric on compact sets in (C∗)n) of a sequence of a Jt -holomorphic
hypersurfaces Vt ⊂ (C∗)n when t tends to ∞.

The argument map is the map defined as follows:

Ãrg : (C∗)n −→ (S1)n,
(x1, . . . , xn) �−→ (ãrg(x1), . . . , ãrg(xn)).

We use the following notations: if z = (x1, x2, . . . , xn) ∈ (C∗)n and x j = ρ j eiγ j ,
then Ãrg(z) = (ãrg(x1), ãrg(x2), . . . , ãrg(xn)) := (eiγ1 , eiγ2 , . . . , eiγn ) and
Arg(z) = (arg(x1), arg(x2), . . . , arg(xn)) := (γ1, γ2, . . . , γn).

Let K be the field of the Puiseux series with real exponents, which is the field of
series a(t) = ∑

j∈Aa
ξ j t j with ξ j ∈ C

∗ and Aa ⊂ R is a well-ordered set (which
means that any subset has a smallest element). It is well known that the field K is
algebraically closed and of characteristic zero, and it has a non-Archimedean valuation
val(a) = −min Aa :

{
val(ab) = val(a) + val(b)
val(a + b) ≤ max{val(a), val(b)},

and we put val(0) = −∞.
We complexify the valuation map as follows:

w : K∗ −→ C
∗,

a �−→ w(a) = eval(a)+i arg(ξ−val(a)).

Let Ãrg be the argument map K
∗ → S1 defined by: for any a ∈ K with

a(t) = ∑
j∈Aa

ξ j t j , Ãrg(a) = ei arg(ξ−val(a)) (thismap extends themap Ãrg : C∗ → S1

defined by ρeiθ �→ eiθ ).
Applying this map coordinate-wise we obtain the map

W : (K∗)n −→ (C∗)n .

Using Kapranov’s theorem [8] and degeneration of a complex structure, Mikhalkin
gives an algebraic definition of a complex tropical hypersurface (see [12]) as follows:
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Theorem 4.2 (see [11])The set V∞ ⊂ (C∗)n is a complex tropical hypersurface if and
only if there exists an algebraic hypersurface VK ⊂ (K∗)n such that W (VK) = V∞.

Let LogK(x1, . . . , xn) = (val(x1), . . . , val(xn)), which means that K is equipped
with the norm defined by ‖z‖K = eval(z) for any z ∈ K

∗. Then we have the following
commutative diagram:

(K∗)n W ��

LogK ���
��

��
��

� (C∗)n

Log����
��
��
��

R
n

Theorem 4.3 (see [11,12]) Let f be a polynomial in K[x1, . . . , xn]. Then we have
the following:

lim
t→∞ Ht

(
V f 1

t

)
= W (V f )

with respect to the Hausdorff metric on compact sets in (C∗)n, and where f 1
t
is the

polynomial inC[x1, . . . , xn]where we fixed the variable t � 1 of the coefficients of f .

It was shown by Mikhalkin that if f and f ′ are polynomials inK[x1, . . . , xn] such
that the coefficients of f ′ are the leading monomials of the coefficients of f (the
coefficients are elements in the field of Puiseux seriesK and every element inK has a
leading term by definition of the field of Puiseux series) thenW (V f ) = W (V f ′). Also,
if ζ is a point in LogK(V f ) andUζ is an open neighborhood of ζ , andUζ ∩LogK(V f ) is
a cone centered at ζ (i.e., for every x ∈ Uζ ∩LogK(V f )we have [ζ, x] ⊂ LogK(V f )),
then the dualNζ of the stratum containing ζ is well defined andW (V f )∩Log−1(Uζ )

is equal to W (V
fNζ ) ∩ Log−1(Uζ ), where f Nζ denotes the truncation of f toNζ (in

case of plane curves see Proposition 6.1 of [12] for more detail, in case of hypersurface
of higher dimension the proof is the same).

By Viro’s Theorem 4.4 there exists U ∈ R
n such that for t sufficiently large

Log−1(Uζ ) ∩ Ht (V f 1
t
) is isotopic to Log−1(Uζ ) ∩ eU Ht (V fNζ ) and we have the

following diagram:

Log−1(Uζ ) ∩ Ht (V f 1
t
)

� ��

t→∞
��

Log−1(Uζ ) ∩ eU Ht (V fNζ )

t→∞
��

Log−1(Uζ ) ∩ W (V f )
= �� Log−1(Uζ ) ∩ eUW (V fNζ ).

Theorem 4.4 (see [18]) Let f = ∑
a j z j be a polynomial in K[x1, . . . , xn] where

a j (t) = ∑
ξ
j
r tr . Let ζ be a point in LogK(V f ) and Uζ be an open neighborhood of ζ

such thatUζ ∩LogK(V f ) is a cone centered at ζ . LetNζ be a cell of the subdivision that
is dual toLogK(V f ) and contains ζ , and let f Nζ (z) be the polynomial inC[x1, . . . , xn]
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defined as follows:

f Nζ (z) =
∑

j∈Nζ

ξ
j
−val(a j )

z j .

Then there exists U ∈ R
n such that for any sufficiently large t, Log−1(Uζ )∩ Ht (V f 1

t
)

is isotopic to Log−1(Uζ ) ∩ eU Ht (V fNζ ).

Let now f be a polynomial in C[x±1
1 , . . . , x±1

n ] with the Newton polytope N and
amoeba A with the spine � f . Moreover, assume that the subdivision τ f of N dual
to � f is a triangulation.

The moment map μ f is an embedding whose image is the interior of N , and we
have the following commutative diagram:

(C∗)n
Log ��

μ f ���
��

��
��

� R
n

� f����
��
��
��

N

The maps Log andμ f both have orbits (S1)n as fibers, and we obtain a reparametriza-
tion of Rn which we denote by � f (see [5]).

We can now finish the proof of main Theorem 3.3. The fact that the function
α �−→ log |aα| is concave implies that the same hypothesis holds for any Hadamard
product f [r ] and any positive number r . Moreover, the subdivisions of N dual to the
tropical hypersurfaces �[r ] associated to f [r ] are all the same (because the �[r ]’s have
all the same combinatorial type). More precisely, this means that the complement
in R

n of A and Ar have the same number of connected components. In particular, it
means that if the amoeba A of f is optimal then all amoebas Ar of f [r ] are optimal.
Moreover, we know that any lattice simplex can be identifiedwith the standard simplex
by an element of the group AGLn(Z) of affine linear transformations of Rn whose
linear part belongs to GLn(Z). This means that when we pass to the limit as r tends
to infinity of (3.1), and we take the truncation of the polynomial to an element of
the subdivision τ (which is a simplex by our hypothesis) dual to � we obtain, up
to a linear transformation, the polyhedron corresponding to the standard hyperplane.
For simplicity, let ζ be a vertex of �[r ] for sufficiently large r , and Uζ be an open
neighborhood of ζ . Then byViro’s Theorem 4.4 we have Log−1(Uζ )∩V f [r ] is isotopic

to Log−1(Uζ ) ∩ eUV
f [r ];Nζ for some U ∈ R

n where f [r ];Nζ is the truncation of f [r ]
to the dualNζ of the vertex ζ , which is a simplex by hypothesis. But this last set is, up
to an affine transformation, the polyhedral complex corresponding to a hyperplane.

When r tends to ∞, the Newton polytopes stay the same because |aα| > 1 for
every α a vertex of the Newton polytope, and then Viro’s patchwork is used to obtain
a polyhedral complex.

In particular, if n = 2, we obtain a simplicial complex, because the polyhedron
corresponding to the line is a 2-dimensional simplex (i.e. a triangle in this case). �
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Fig. 7 The affine amoeba, the compactified amoeba and the polyhedral complex of the polynomial 1 +
3x + 3y + x2y + 4x3y + xy2 + 10x2y2 + 4xy3

5 The Polyhedral Complex of a General Algebraic Hypersurface

The explicit analytic formula (3.1) for the polyhedral complexof an algebraic hypersur-
face cannot work in the general case. Indeed, if (the absolute values of) all coefficients
of its defining polynomial f are equal to 1, then the Hadamard power in (3.1) yields
nothing new and P∞

f will in general remain curved. Example 5.2 shows however
that the condition in Theorem 3.3 is far from being necessary. Numerous computer
experiments suggest the following conjecture.

Conjecture 5.1 Let f (x1, . . . , xn) ∈ C[x±1
1 , . . . , x±1

1 ] be a Laurent polynomial.
Denote by A f ⊂ N f its compactified amoeba and by {M} the set of (nonempty)
connected components of the complement of A f in the Newton polytope N f . We
furthermore denote by ν(M) ∈ N f ∩ Z

n the order [3] of such a component.
There exists a polyhedral complex P f ⊂ N f with the following properties:

1. The polyhedral complex P f is a deformation retract of the compactified
amoeba A f .

2. For any complement component M ofN f \A f the only integer point that belongs
to this component is its order: M ∩ Z

n = ν(M).

Example 5.2 Consider the bivariate polynomial f (x, y) = 1 + 3x + 3y + x2y +
4x3y+ xy2 +10x2y2 +4xy3. The amoebaA f , the compactified amoebaA f , and the
polyhedral complex P∞

f are shown in Fig. 7. We observe that this polynomial is not
dense as the integer point (1, 1)does to belong to its support.Moreover, this polynomial
is not optimal since the complement of its amoeba lacks bounded components of orders
(1, 1), (1, 2) and (2, 1).The set of integer points in theNewton polygonN f that do not
belong to the polyhedral complexP∞

f consists of the orders of connected components

in N f \ A f . In this example, the polyhedral complex P∞
f has been computed as the

limit of the weighted compactified amoebas of the Hadamard powers of f (x, y).

Another deformation retract of an amoeba, its spine, has been defined and studied
in [14]. The spine of the (affine) amoeba of a polynomial can be defined as the set
where certain piecewise linear approximation of the Ronkin function [14] associated
with this polynomial is nonsmooth. The spine of an amoeba is a proper subset of the
amoeba itself and thus inherits all the problems that arise when one needs to determine
the topological type of an amoeba or its position in the ambient affine space.
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Fig. 8 The affine amoeba, the compactified amoeba, the weighted compactified amoebas of the 1st, 2nd
and 3rd Hadamard powers of the polynomial x + x2 + y+ xy3 + x4y2 +3x3y+10xy+10x2y+10xy2 +
15x2y2 + 10x3y2, and a bounded component of its deformation vanishing at the lattice point (2, 2)

Polyhedral complexes related to amoebas have also beenused in [11] for the analysis
of topology of nonsingular algebraic hypersurfaces in projective spaces. The approach
developed in [11] is based on Viro’s patchworking and allows one to treat a complex
algebraic hypersurface as a singular fibration over a polyhedral complex, the generic
fiber being isomorphic to a smooth torus. This polyhedral complex is a subset of
the Newton polytope of the defining polynomial of the algebraic hypersurface and is
dual to a certain lattice subdivision of this polytope. However, it is generally different
from (3.1) and has a different dimension (see Example 1 and Section 6.7 in [11]).
Besides, it is defined through patchworking rather than the explicit formula (3.1).

Example 5.3 The zero locus of the polynomial p(x, y) = x + x2 + y+ xy3 + x4y2 +
3x3y + 10xy + 10x2y + 10xy2 + 15x2y2 + 10x3y2 is an optimal hypersurface. The
computation of its affine amoeba requires considerable accuracy due to the very differ-
ent relative size of the bounded connected components of its complement (see Fig. 8).
The compactified amoeba of this polynomial is also a difficult set to compute since
the vertex components are mapped by the moment map to very small regions inside
the Newton polygon. Figure 8 features the evolution of the weighted compactified
amoeba of the Hadamard powers of the polynomial p(x, y) as the exponent ranges
from 1 to 3. The rightmost down picture in Fig. 8 shows the weighted compactified
amoeba of the 3rd Hadamard power of a deformation of p(x, y). The small bounded
component of the complement to this set shrinks and vanishes precisely at its order,
that is, at the point (2, 2) ∈ Np.
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