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Abstract Let (M, g) be a compact n-dimensional Riemannian manifold without
boundary and eλ be an L2-normalized eigenfunction of the Laplace–Beltrami operator
with respect to the metric g, i.e.,

−�geλ = λ2eλ and ‖eλ‖L2(M) = 1.

LetΣ be ad-dimensional submanifold anddμ a smooth, compactly supportedmeasure
on Σ. It is well known (e.g., proved by Zelditch, Commun Partial Differ Equ 17(1–
2):221–260, 1992 in far greater generality) that

∫
Σ

eλ dμ = O
(
λ

n−d−1
2

)
.

We show this bound improves to o
(
λ

n−d−1
2

)
provided the set of looping directions,

LΣ = {(x, ξ) ∈ SN∗Σ : Φt (x, ξ) ∈ SN∗Σ for some t > 0}

has measure zero as a subset of SN∗Σ, where here Φt is the geodesic flow on the
cosphere bundle S∗M and SN∗Σ is the unit conormal bundle over Σ.

Keywords Submanifolds · Eigenfunctions · Kuznecov formulae

Mathematics Subject Classification 58J50 · 35P20

B Emmett L. Wyman
ewyman3@math.jhu.edu

1 Johns Hopkins University, Baltimore, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-018-0039-x&domain=pdf


Integrals of Eigenfunctions over Submanifolds 1303

1 Introduction

In what follows, (M, g)will denote a compact, boundaryless, n-dimensional Rieman-
nian manifold. LetΔg denote the Laplace–Beltrami operator and eλ an L2-normalized
eigenfunction of Δg on M, i.e.,

−Δgeλ = λ2eλ and ‖eλ‖L2(M) = 1.

In [7], Sogge and Zelditch investigate which manifolds have a sequence of eigen-
functions eλ with λ → ∞ which saturate the standard sup-norm bound

‖eλ‖L∞(M) = O
(
λ

n−1
2

)
.

They show this bound necessarily improves to o
(
λ

n−1
2

)
if at each x, the set of looping

directions through x,

Lx = {
ξ ∈ S∗

x M : Φt (x, ξ) ∈ S∗
x M for some t > 0

}

has measure zero1 as a subset of S∗
x M for each x ∈ M. Here, Φt denotes the geodesic

flowon the unit cosphere bundle S∗M after time t.Thehypotheseswere laterweakened
by Sogge et al. [8], where they showed

‖eλ‖L∞(M) = o
(
λ

n−1
2

)

provided the set of recurrent directions at x has measure zero for each x ∈ M.

We are interested in extending the result in [7] to integrals of eigenfunctions over
submanifolds. Let Σ be a submanifold of dimension d with d < n and a measure
dμ(x) = h(x)dσ(x)where dσ is the surface measure onΣ and h is a smooth function
supported on a compact subset of Σ. In his 1992 paper [12], Zelditch proves, among
other things, a Kuznecov asymptotic formula

∑
λ j≤λ

∣∣∣∣
∫

Σ

e j dμ

∣∣∣∣
2

∼ λn−d + O
(
λn−d−1

)
, (1.1)

where e j for j = 0, 1, 2, . . . form a Hilbert basis of eigenfunctions on M with
corresponding eigenvalues λ j . From (1.1) follows the standard bound

∫
Σ

eλ dμ = O
(
λ

n−d−1
2

)
(1.2)

1 Letψ j : Uj ⊂ R
n → M be coordinate charts of a general manifold M.We say a set E ⊂ M has measure

zero if the preimage ψ−1
j (E) has Lebesgue measure 0 in Rn for each chart ψ j . Sets of Lebesgue measure

zero are preserved under transition maps, ensuring this definition is intrinsic to the C∞ structure of M.
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1304 E. L. Wyman

which is sharp2 in general. However, it should be noted that (1.1) implies that generic
eigenfunctions satisfy much better bounds. Indeed for any function R(λ) → +∞,

an extraction argument shows there exists a density one sequence of eigenfunctions
satisfying

∫
Σ

eλ dμ = O
(
λ− d

2 R(λ)
)

.

Though (1.2) is already well known and has been proven in stronger terms, we
state it here as a theorem. We do this for two reasons. First, it provides a baseline with
which to compare our main result. Second, we end up providing a direct proof in the
form of Proposition2.1, which we will need for our main argument anyway.

Theorem 1.1 Let Σ be a d-dimensional submanifold with 0 ≤ d < n, and
dμ(x) = h(x)dσ(x)where h is a smooth, real-valued function supported on a compact
neighborhood in Σ. Then,

∑
λ j∈[λ, λ+1]

∣∣∣∣
∫

Σ

e j dμ

∣∣∣∣
2

= O
(
λn−d−1

)
.

(1.2) follows.

We let SN∗Σ denote the unit conormal bundle overΣ.We define the set of looping
directions through Σ by

LΣ = {(x, ξ) ∈ SN∗Σ : Φt (x, ξ) ∈ SN∗Σ for some t > 0}.

A covector in LΣ is the initial data of a geodesic which departs Σ conormally and
eventually arrives again at Σ conormally. Our main result is as follows.

Theorem 1.2 Assume the hypotheses of Theorem1.1 and additionally that LΣ has
measure zero as a subset of SN∗Σ. Then,

∑
λ j∈[λ, λ+δ]

∣∣∣∣
∫

Σ

eλ dμ

∣∣∣∣
2

≤ Cδλn−d−1 + Cδλ
n−d−2,

where C is a constant independent of δ and λ, and Cδ is a constant depending on δ

but not λ.

Sogge and Zelditch’s result [7] implies the theorem for d = 0. We adapt their
strategy to provide the proof for the remaining cases d ≥ 1. The following theorem is
an immediate corollary of Theorem1.2 and shows (1.2) cannot be saturated whenever
LΣ has measure zero in SN∗Σ.

2 The standard examples take place on the sphere Sn . In the d = 0 case, this bound is saturated by the
highest weight spherical harmonics. In the d = n − 1 situation, the bound is saturated by zonal functions
around the ‘equator.’ In this section we show that, for any submanifoldΣ in Sn , there exists some sequence
of eigenfunctions saturating (1.2).
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Theorem 1.3 Assume the hypotheses of Theorem1.2. Then,

∫
Σ

eλ dμ = o
(
λ

n−d−1
2

)
.

We illustrate Theorem1.3 in three settings: the torus, the sphere, and surfaces with
negative sectional curvature.

The torus Let Tn = R
n/2πZn denote the flat, n-dimensional torus. Let Σ be a small

patch of a sphere centered at 0 in T
n . Since all geodesics passing through Σ in the

conormal direction intersect the origin, the set of looping directions LΣ is countable
by the countability of Zn and hence has measure 0. The conclusion of Theorem1.3 is
easily verified by the result [3, Proposition 3.5], which provides an essentially optimal
bound on the integrals of eigenfunctions over hypersurfaces in the torus.

Proposition 1.4 ([3]) Suppose Σ has nonvanishing Gaussian curvature in the torus.
Then,

∣∣∣∣
∫

Σ

eλdμ(x)

∣∣∣∣ = O
(
λ−1/2+ε

)

for all ε > 0, where we may set ε = 0 if n ≥ 5.

Applying this result to spheres yields a much better bound than suggested by Theo-
rem1.3.

On the other hand if Σ is a closed hyperplane in Tn, neither the hypotheses nor the
conclusion of Theorem1.3 are satisfied. All geodesics departing Σ conormally arrive
again conormally after some fixed, uniform time. At the same time, one can construct
a sequence of exponentials which are all identically 1 along Σ.

The sphere Let Sn denote the n-dimensional sphere equipped with the standard metric.
Every geodesic in Sn is periodic, so LΣ = SN∗Σ for every submanifold Σ. Hence,
no submanifold of Sn satisfies the hypotheses of Theorem1.3. As we will find, no
submanifold of Sn enjoys the little-o improvement of Theorem1.3 either.

The functional ideas here are Zelditch’s–Kuznecov formula (1.1) and the fact that
all eigenvalues are of the form

λ = √
k(k + n − 1) for some k = 0, 1, 2, . . .

(see [5, Sect. 3.4] or [2, Theorem 3.1]). Let e j for j = 0, 1, 2, . . . denote someHilbert
basis of eigenfunctions on M with corresponding eigenvalues λ j . For each distinct
eigenvalue λ, we construct an eigenfunction eλ by

eλ =
∑

λ j=λ

(∫
Σ

e j dσ

)
e j

(∑
λ j=λ

∣∣∣∣
∫

Σ

e j dσ

∣∣∣∣
2
)1/2 .
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1306 E. L. Wyman

Note ‖eλ‖L2(M) = 1 and

∫
Σ

eλ dσ =
⎛
⎝ ∑

λ j=λ

∣∣∣∣
∫

Σ

e j dσ

∣∣∣∣
2
⎞
⎠

1/2

. (1.3)

By Zelditch’s–Kuznecov formula (1.1), we have

∑
λ j∈[λ, λ+C]

∣∣∣∣
∫

Σ

e j dσ

∣∣∣∣
2

≥ λn−d−1

for some large enough constant C. Moreover there are no more than C + 1 dis-
tinct eigenvalues in the interval [λ, λ + C] for each λ. Hence in every interval of
length C, there exists λ such that the right-hand side of (1.3) is bounded below by

λ
n−d−1

2 /
√
C + 1, i.e., the bound in (1.2) is saturated.

Negatively curved surfaces We can use recent results to verify Theorem1.3 for some
examples where M is a surface (n = 2) with negative sectional curvature. Chen and
Sogge [1] proved that if Σ is a geodesic in such a manifold M,

∫
Σ

eλ dμ = o(1).

They consider a lift Σ̃ of Σ to the universal cover of M. Using the Gauss–Bonnet
theorem, they show for each deck transformation α, there is at most one geodesic
which intersects both Σ̃ and α(Σ̃) perpendicularly. Since there are only countably
many deck transformations,LΣ is at most a countable subset of SN∗Σ and so satisfies
the hypotheses of Theorem 1.3. Since [1], Sogge et al. [9] have obtained an explicit
decay of O(1/

√
log λ) while also allowing the sectional curvature of M to vanish

of finite order. Recently the author [10,11] obtained Chen and Sogge’s o(1) bound,
and more recently the explicit bound O(1/

√
log λ), if M has nonpositive sectional

curvature and the geodesic curvature of Σ avoids that of circles of infinite radius.
These curves similarly have countable LΣ provided they are sufficiently short.

2 Microlocal Tools

The hypotheses on the looping directions in Theorem1.2 ensure that the wavefront

sets of μ and ei t
√−Δgμ have minimal intersection for any given t away from 0. We

can then use pseudodifferential operators to break the measure μ into two parts, the
first which has small essential support and the second whose wavefront set is disjoint

from that of ei t
√−Δgμ.The following propositions will allow us to handle these cases,

respectively. The first proposition generalizes both [5, Lemma 5.2.2] and the standard
Theorem1.1 and is our main technical result.

Before we proceed, we lay out some Fermi local coordinates which we will return
to repeatedly. Fix p ∈ Σ, and consider local coordinates x = (x1, . . . , xn) = (x ′, x̄)
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Integrals of Eigenfunctions over Submanifolds 1307

centered about p, where x ′ denotes the first d coordinates and x̄ the remaining n − d
coordinates. We let (x ′, 0) parametrize Σ on a neighborhood of p in such a way that
dx ′ agrees with the surface measure on Σ. Let g denote the metric tensor with respect
to our local coordinates. We require

g =
[∗ 0
0 I

]
wherever x̄ = 0,

where I here is the (n−d)× (n−d) identity matrix. This is ensured after inductively
picking smooth sections v j (x ′) of SNΣ for j = d + 1, . . . , n with 〈vi , v j 〉 = δi j ,

and then using

(x1, . . . , xn) �→ exp
(
xd+1vd+1(x

′) + · · · + xnvn(x
′)
)

(2.1)

as our coordinate map. In these coordinates we write dμ(x) = h(x ′) dx ′ where h is a
smooth, compactly supported function on R

d .

Proposition 2.1 Let b(x, ξ) be smooth for ξ �= 0 and homogeneous of degree 0 in
the ξ variable. We define b ∈ Ψ 0

cl(M) by

b(x, D) f (x) = 1

(2π)n

∫
Rn

∫
Rn

ei〈x−y,ξ〉b(x, ξ) dy dξ

for x, y, and ξ expressed locally according to our coordinates (2.1). Then,

∑
λ j∈[λ, λ+1]

∣∣∣∣
∫

Σ

be j dμ

∣∣∣∣
2

≤ C

(∫
Rd

∫
Sn−d−1

|b(x ′, ω)|2h(x ′)2 dω dx ′
)

λn−d−1 + Cbλ
n−d−2,

where C is a constant independent of b and λ and Cb is a constant independent of λ

but which depends on b.

Note Theorem1.1 follows by setting b ≡ 1. The proof is based largely on that
of [5, Lemma 5.2.2]. We will come to a point in our argument where it seems like we
may have to perform a stationary phase argument involving an eight-by-eight Hessian
matrix. Instead, we appeal to [4, Theorem7.7.6] to break this process into two steps
involving two four-by-four Hessian matrices.

Proof For simplicity, we assume without loss of generality that dμ is a real measure.
Let χ be a nonnegative Schwartz-class function on R with χ(0) = 1 and χ̂ supported
on a small neighborhood of 0.3 It suffices to show

3 This reduction is standard and appears in [1,7], proofs of sup-norm estimates of eigenfunctions and the
sharp Weyl law as presented in [5,6], and in many other related problems.
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1308 E. L. Wyman

∑
j

χ
(
λ j − λ

) ∣∣∣∣
∫

Σ

be j dμ

∣∣∣∣
2

∼
(∫

Rd

∫
Sn−d−1

|b(y′, ω)|2h(y′)2 dω dy′
)

λn−d−1 + Ob

(
λn−d−2

)
.

Wemay by a partition of unity assume that b(x, D) has small x-support. The left-hand
side is

=
∑
j

∫
Σ

∫
Σ

χ
(
λ j − λ

)
b(x, D)e j (x)b(y, D)e j (y) dμ(x) dμ(y)

= 1

2π

∑
j

∫
Σ

∫
Σ

∫ ∞

−∞
χ̂ (t)ei t (λ j−λ)b(x, D)e j (x)b(y, D)e j (y) dt dμ(x) dμ(y)

= 1

2π

∫
Σ

∫
Σ

∫ ∞

−∞
χ̂ (t)e−i tλbeit

√−Δg b∗(x, y) dt dμ(x) dμ(y), (2.2)

where here bei t
√−Δg b∗(x, y) is the kernel

∑
j

ei tλ j b(x, D)e j (x)b(y, D)e j (y)

of the half-wave operator ei t
√−Δg conjugated by b. Set β ∈ C∞

0 (R) with small
support and where β ≡ 1 near 0. Then,

∫
Rd

b(x ′, D) f (x ′)h(x ′) dx ′

= λn

(2π)n

∫
Rn

∫
Rn

∫
Rd

eiλ〈x ′−w,η〉b(x ′, η) f (w)h(x ′) dx ′ dw dη

= λn

(2π)n

∫
Rn

∫
Rn

∫
Rd

eiλ〈x ′−w,η〉β(log |η|)b(x ′, η) f (w)h(x ′) dx ′ dw dη

+ O
(
λ−N

)
, (2.3)

where the second line is obtained by a change of variables η �→ λη, and the third line
is obtained after multiplying in the cutoff β(log |η|) and bounding the discrepancy by
O(λ−N ) by integrating by parts in x ′. Additionally,

b∗(z, D)dμ(z) = 1

(2π)n

∫
Rn

∫
Rd

ei〈z−y′,ζ 〉b(y′, ζ )h(y′) dy′ dζ

= λn

(2π)n

∫
Rn

∫
Rd

eiλ〈z−y′,ζ 〉b(y′, ζ )h(y′) dy′ dζ

= λn

(2π)n

∫
Rn

∫
Rd

eiλ〈z−y′,ζ 〉β(log |ζ |)b(y′, ζ )h(y′) dy′ dζ + O
(
λ−N

)
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Integrals of Eigenfunctions over Submanifolds 1309

= λn

(2π)n

∫
Rn

∫
Rd

eiλ〈z−y′,ζ 〉β(log |ζ |)β(|z − y′|)b(y′, ζ )h(y′) dy′ dζ

+ O
(
λ−N

)
, (2.4)

where the second and third lines are obtained similarly as before and the fourth line
is obtained after multiplying by β(log |z − y′|) and integrating the remainder by parts
in ζ.

We will use Hörmander’s parametrix of the half-wave operator ei t
√−Δg on M to

treat the integral in t. In local coordinates (2.1), we have

ei t
√−Δg (x, y) = 1

(2π)n

∫
Rn

ei(ϕ(x,y,ξ)+tp(y,ξ))q(t, x, y, ξ) dξ

modulo a smooth kernel where

p(y, ξ) =
√∑

j,k

gi j (y)ξiξ j ,

where q is a symbol in ξ satisfying bounds

∣∣∣∂α
t,x,y∂

β
ξ q(t, x, y, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ |)−|β|

for all multiindices α and β, and where ϕ is homogeneous of degree 1 in ξ and smooth
for ξ �= 0 and satisfies

ϕ(x, y, ξ) = 〈x − y, ξ 〉 + O
(
|x − y|2|ξ |

)
. (2.5)

This parametrix is valid only when |t | and |x − y| are small. In fact, we may take q
to be supported on an arbitrarily small neighborhood of the diagonal x = y of our
choosing provided we only consider times t on a correspondingly small neighborhood
of 0. (See [6, Chap. 4] for a treatment of Hörmander’s parametrix.)

Using Hörmander’s parametrix,

1

2π

∫ ∞

−∞
χ̂ (t)e−i tλei t

√−Δg (w, z) dt

= 1

(2π)n+1

∫ ∞

−∞

∫
Rn

ei(ϕ(w,z,ξ)+tp(z,ξ)−tλ)χ̂(t)q(t, w, z, ξ) dξ dt

= λn

(2π)n+1

∫ ∞

−∞

∫
Rn

eiλ(ϕ(w,z,ξ)+t (p(z,ξ)−1))χ̂ (t)q(t, w, z, λξ) dξ dt

= λn

(2π)n+1

∫ ∞

−∞

∫
Rn

eiλ(ϕ(w,z,ξ)+t (p(z,ξ)−1))β(log p(z, ξ))χ̂(t)q(t, w, z, λξ) dξ

+ O
(
λ−N

)
. (2.6)
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1310 E. L. Wyman

Here the third line comes from a change of coordinates ξ �→ λξ. The fourth line
follows after applying the cutoff β(log p(z, ζ )) and integrating the discrepancy by
parts in t. Combining (2.3), (2.4), and (2.6), we write (2.2) as

λ3n
∫

· · ·
∫

eiΦ(t,x ′,y′,w,z,η,ζ,ξ)a(λ; t, x ′, y′, w, z, η, ζ, ξ)

dx ′ dy′ dw dz dη dζ dξ + O
(
λ−N

)
(2.7)

with amplitude

a(λ; t, x ′, y′, w, z, η, ζ, ξ) = 1

(2π)3n+1 χ̂(t)q(t, w, z, λξ)β(log p(z, ξ))β(log |η|)
β(log |ζ |)β(|z − y′|)b(x ′, η)b(y′, ζ )h(x ′)h(y′)

and phase

Φ(t, x ′, y′, w, z, η, ζ, ξ) = 〈x ′ − w, η〉 + ϕ(w, z, ξ) + t (p(z, ξ) − 1) + 〈z − y′, ζ 〉.

We pause here to make a couple of observations. First, a has compact support in all
variables, support which we may adjust to be smaller by controlling the supports of χ̂ ,

β, b, and the support of q near the diagonal. Second, the derivatives of a are bounded
independently of λ ≥ 1. We are now in a position to use the method of stationary
phase—not in all variables at once, though. First, we fix t, x ′, y′, and ξ, and use
stationary phase in w, z, η, and ζ. We have

∇wΦ = −η + ∇wϕ(w, z, ξ),

∇zΦ = ∇zϕ(w, z, ξ) + t∇z p(z, ξ) + ζ,

∇ηΦ = x ′ − w,

∇ζ Φ = z − y′

which all simultaneously vanish if and only if

(w, z, η, ζ ) = (
x ′, y′, ∇xϕ(x ′, y′, ξ), −∇yϕ(x ′, y′, ξ) − t∇y p(y

′, ξ)
)
. (2.8)

At such a critical point we have the Hessian matrix

∇2
w,z,η,ζ Φ =

⎡
⎢⎢⎣

∗ ∗ −I 0
∗ ∗ 0 I

−I 0 0 0
0 I 0 0

⎤
⎥⎥⎦ ,

which has determinant−1.By [4, Theorem 7.7.6], (2.7) is equal to a complex constant
times
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Integrals of Eigenfunctions over Submanifolds 1311

λn
∫ ∞

−∞

∫
Rn

∫
Rd

∫
Rd

eiλΦ(t, x ′, y′, ξ)a(λ; t, x ′, y′, ξ) dx ′ dy′ dξ ′ dt

+ λn−1
∫ ∞

−∞

∫
Rn

∫
Rd

∫
Rd

eiλΦ(t,x ′,y′,ξ)RN (λ; t, x ′, y′, ξ) dx ′ dy′ dξ ′ dt

+ O
(
λ−N

)
(2.9)

where we have phase

Φ(t, x ′, y′, ξ) = ϕ(x ′, y′, ξ) + t (p(y′, ξ) − 1),

amplitude

a(λ; t, x ′, y′, ξ) = a(λ; t, x ′, y′, w, z, η, ζ, ξ)

withw, z, η, and ζ subject to the constraints (2.8), where RN is a compactly supported
smooth function in t, x ′, y′, and ξ, whose derivatives are bounded uniformly with
respect to λ, and where N can be taken to be as large as desired.

Write ξ = (ξ ′, ξ̄ ) and write ξ̄ = rω in polar coordinates with r ≥ 0 and ω ∈
Sn−d−1. The first integral in (2.9) is then written

λn
∫ ∞

−∞

∫
Rd

∫
Rd

∫
Rd

∫
Sn−d−1

∫ ∞

0
eiλΦ(t,x ′,y′,ξ)a(λ; t, x ′, y′, ξ)

rn−d−1 dr dω dξ ′ dx ′ dy′ dt.

Wewill fix y′ and ω and use the method of stationary phase in the remaining variables
t, x ′, ξ ′, and r (a total of 2d + 2 dimensions). We assert that, for fixed y′ and ω,

there is a nondegenerate stationary point at (t, x ′, ξ ′, r) = (0, y′, 0, 1). Φ = 0
at such a stationary point, and after perhaps shrinking the support of a we apply [4,
Theorem 7.7.6] again to write the first integral in (2.9) as constant times

λn−d−1
∫
Rd

∫
Sn−d−1

a(λ; 0, y′, y′, ω) dy′ dω + O
(
λn−d−2

)
.

The proposition will follow after noting a(λ; 0, y′, y′, ω) = |b(y′, ω)|2h(y′)2 and
applying the same stationary phase argument to the second integral in (2.9).

We have

∂tΦ = p(y′, ξ) − 1,

∇x ′Φ = ∇x ′ϕ(x ′, y′, ξ),

∇ξ ′Φ = ∇ξ ′ϕ(x ′, y′, ξ) + t∇ξ ′ p(y′, ξ),

∂rΦ = ∂rϕ(x ′, y′, ξ) + t∂r p(y
′, ξ).

Note for fixed y′ and ω, (t, x ′, ξ ′, r) = (0, y′, 0, 1) is a critical point of Φ. Now we
compute the second derivatives at this point. We immediately see that ∂2t Φ, ∂t∇x ′Φ,
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1312 E. L. Wyman

∇2
ξ ′Φ, ∂r∇ξ ′Φ, and ∂2r Φ all vanish. Moreover, ∂r∂rΦ = 1 since p(y′, ξ) = r , where

ξ ′ = 0. By our coordinates (2.1) and the fact that [gi j ]i, j≤d is necessarily positive
definite,

p(y′, ξ) =
√∑

j,k

g jkξ jξk =
√
r2 +

∑
j,k≤d

g jkξ ′
jξ

′
k ≥ r = p(y′, rω).

Hence, ∂t∇ξ ′Φ = ∇ξ ′ p(y′, ξ) = 0. Since ϕ is homogeneous of degree 1 in ξ, at
ξ ′ = 0 and t = 0,

∇x ′∂rΦ = ∇x ′∂rϕ(x ′, y′, ξ) = ∇x ′ϕ(x ′, y′, ω) = 0

since ϕ(x ′, y′, ω) = O(|x ′ − y′|2) by (2.5) and the fact that 〈x ′ − y′, ω〉 = 0. Finally
by (2.5),

∇ξ ′ϕ(x ′, y′, ξ ′ + ω) = x ′ + O
(
|x ′ − y′|2

)

whence at the critical point

∇x ′∇ξ ′Φ = I,

the d × d identity matrix. In summary, the Hessian matrix of Φ at the critical point
(t, x ′, ξ ′, r) = (0, y′, 0, 1) is

∇2
t,x ′,ξ ′,rΦ =

⎡
⎢⎢⎣
0 0 0 1
0 ∗ I 0
0 I 0 0
1 0 0 0

⎤
⎥⎥⎦

which has full rank. This concludes the proof of Proposition 2.1. ��
The second proposition, below, allows us to deal with the partition of μ whose

wavefront set is disjoint from that of ei t
√−Δgμ for t > 0.

Proposition 2.2 Let u and v be distributions on M for which

WF(u) ∩ WF(v) = ∅.

Then

t �→
∫
M
ei t

√−Δg u(x)v(x) dx

is a smooth function of t on some neighborhood of 0.
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Proof Using a partition of unity, we write

I =
∑
j

A j

modulo a smoothing operator where A j ∈ Ψ 0
cl(M) with essential supports in small

conic neighborhoods. We then write, formally,

∫
M
ei t

√−Δg u(x)v(x) dx =
∑
j,k

∫
M

A je
i t
√−Δg u(x)Akv(x) dx .

We are done if for each i and j,

∫
M

A je
i t
√−Δg u(x)Akv(x) dx is smooth for |t | � 1. (2.10)

If the essential supports of A j and Ak are disjoint, then A∗
j Ak is a smoothing operator,

and so A∗
j Akv is a smooth function and the contributing term

∫
M
u(x)ei t

√−Δg A∗
j Akv(x) dx

is smooth is t. Assume the essential support of A j is small enough so that for each j
there exists a small conic neighborhood Γ j which fully contains the essential support
of Ak if it intersects the essential support of A j . We in turn take Γ j small enough so
that for each j, Γ j either does not intersect WF(u) or does not intersect WF(v). In the
latter case, Akv is smooth and we have (2.10) as before. In the former case,

Γ j ∩ WF
(
ei t

√−Δg u
)

= ∅ for |t | � 1

since both sets above are closed and the geodesic flow is continuous. Then

A je
i t
√−Δg u(x) is smooth as a function of t and x, and we have (2.10). ��

3 Proof of Theorem 1.2

Wemake a few convenient assumptions. First, we take the injectivity radius of M to be
at least 1 by scaling the metric g. Second, we assume the support of dμ has diameter
less than 1/2 by a partition of unity. We reserve the right to further scale the metric g
and restrict the support of dμ as needed, finitely many times.

As before, we set χ ∈ C∞(R) with χ(0) = 1, χ ≥ 0, and supp χ̂ ⊂ [−1, 1]. It
suffices to show

∑
j

χ
(
T

(
λ j − λ

)) ∣∣∣∣
∫

Σ

eλ dμ

∣∣∣∣
2

≤ CT−1λn−d−1 + CT λn−d−2
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1314 E. L. Wyman

for T > 1. Similar to the reduction in the proof of Proposition 2.1, the left-hand side
is equal to

∑
j

∫
Σ

∫
Σ

χ
(
T

(
λ j − λ

))
e j (x)e j (y) dμ(x) dμ(y)

= 1

2π

∑
j

∫ ∞

−∞

∫
Σ

∫
Σ

χ̂(t)ei tT (λ j−λ)e j (x)e j (y) dμ(x) dμ(y) dt

= 1

2πT

∑
j

∫ ∞

−∞

∫
Σ

∫
Σ

χ̂(t/T )e−i tλei tλ j e j (x)e j (y) dμ(x) dμ(y) dt

= 1

2πT

∫ ∞

−∞

∫
Σ

∫
Σ

χ̂(t/T )e−i tλei t
√−Δg (x, y) dμ(x) dμ(y) dt.

Hence, it suffices to show

∣∣∣∣
∫ ∞

−∞

∫
Σ

∫
Σ

χ̂(t/T )e−i tλei t
√−Δg (x, y) dμ(x) dμ(y) dt

∣∣∣∣
≤ Cλn−d−1 + CT λn−d−2. (3.1)

Let β ∈ C∞
0 (R) be supported on a small interval about 0 with β ≡ 1 near 0. We cut

the integral in (3.1) into β(t) and 1−β(t) parts. Since β(t)χ̂(t/T ) and its derivatives
are all bounded independently of T ≥ 1,

∣∣∣∣
∫ ∞

−∞

∫
Σ

∫
Σ

β(t)χ̂(t/T )e−i tλei t
√−Δg (x, y) dμ(x) dμ(y) dt

∣∣∣∣ ≤ Cλn−d−1

by the arguments in Proposition2.1. Hence, it suffices to show

∣∣∣∣
∫ ∞

−∞

∫
Σ

∫
Σ

(1 − β(t))χ̂(t/T )e−i tλei t
√−Δg (x, y) dμ(x) dμ(y) dt

∣∣∣∣
≤ Cλn−d−1 + CT λn−d−2. (3.2)

Here we shrink the support of μ so that β(dg(x, y)) = 1 for x, y ∈ suppμ. We now
state and prove a useful decomposition based off of those in [7,8], and [5, Chap. 5].
We let LΣ(suppμ, T ) denote the subset of LΣ relevant to the support of μ and the
timespan [1, T ], specifically

LΣ(suppμ, T ) = {
(x, ξ) ∈ SN∗Σ : Φt (x, ξ) = (y, η) ∈ SN∗Σ

for some t ∈ [1, T ] and where x, y ∈ suppμ}.

Lemma 3.1 Fix T > 1 and ε > 0. There exists b, B ∈ Ψ 0
cl(M) supported on a

neighborhood of suppμ with the following properties.

(1) b(x, D) + B(x, D) = I on suppμ.
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(2) Using coordinates (2.1),

∫
Rd

∫
Sn−d−1

|b(x ′, ω)|2 dω dx ′ < ε,

where b(x, ξ) is the principal symbol of b(x, D).

(3) The essential support of B(x, D) contains no elements of LΣ(suppμ, T ).

Proof As shorthand, we write

SN∗
suppμΣ = {(x, ξ) ∈ SN∗Σ : x ∈ suppμ}.

Wefirst argue thatLΣ(suppμ, T ) is closed for each T > 1.However,LΣ(suppμ, T )

is the projection of the set

{
(t, x, ξ) ∈ [1, T ] × SN∗

suppμΣ : Φt (x, ξ) ∈ SN∗
suppμΣ

}
(3.3)

onto SN∗
suppμΣ, and since [1, T ] is compact it suffices to show that (3.3) is closed.

However, (3.3) is the intersection of [1, T ] × SN∗
suppμΣ with the preimage of

SN∗
suppμΣ under the continuous map

(t, x, ξ) �→ Φt (x, ξ).

Since SN∗
suppμΣ is closed, (3.3) is closed.

Since LΣ(suppμ, T ) is closed and has measure zero, there is b̃ ∈ C∞(S∗M)

supported on a neighborhood of SN∗
suppμΣ with 0 ≤ b̃(x, ξ) ≤ 1, b̃(x, ξ) ≡ 1 on an

open neighborhood of LΣ(suppμ, T ), and

∫
Rd

∫
Sn−d−1

|b̃(x ′, ω)|2 dω dx ′ < ε. (3.4)

We set ψ ∈ C∞
0 (Σ) to be a cutoff function supported on a neighborhood of suppμ

in M with ψ ≡ 1 on suppμ. We use the coordinates in (2.1) and define symbols

b(x, ξ) = ψ(x)b̃(x, ξ/|ξ |)

and

B(x, ξ) = ψ(x)(1 − b̃(x ′, ξ/|ξ |)),

along with their associated operators

b(x, D) f (x) = 1

(2π)n

∫
Rn

∫
Rn

ei〈x−y,ξ〉b(x, ξ) f (y) dy dξ
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1316 E. L. Wyman

and

B(x, D) f (x) = 1

(2π)n

∫
Rn

∫
Rn

ei〈x−y,ξ〉B(x, ξ) f (y) dy dξ.

By construction,

B(x, D) + b(x, D) = ψ(x),

whose restriction to suppμ is 1,yielding (1). (2) Follows from the definition ofb(x, D)

and (3.4). We have (3) since the support of 1 − b̃(x, ξ) contains no elements of
LΣ(suppμ, T ). ��

Returning to the proof of Theorem1.2, let XT denote the function with

X̂T (t) = (1 − β(t))χ̂(t/T ),

and let XT,λ denote the operator with kernel

XT,λ(x, y) = 1

2π

∫ ∞

−∞
X̂T (t)e−i tλei t

√−Δg (x, y) dt.

We use part (1) of Lemma3.1 to write the integral in (3.2) as

∫
Σ

∫
Σ

XT,λ(x, y) dμ(y) dμ(x) =
∫

Σ

∫
Σ

BXT,λB
∗(x, y) dμ(y) dμ(x)

+
∫

Σ

∫
Σ

BXT,λb
∗(x, y) dμ(y) dμ(x)

+
∫

Σ

∫
Σ

bXT,λB
∗(x, y) dμ(y) dμ(x)

+
∫

Σ

∫
Σ

bXT,λb
∗(x, y) dμ(y) dμ(x).

We claim the first three terms on the right are OT (λ−N ) for N = 1, 2, . . . We will
only prove this for the first term—the argument is the same for the second term and
the bound for the third term follows since XT,λ is self-adjoint. Interpreting μ as a
distribution on M, we write formally

∫
Σ

∫
Σ

BXT,λB
∗(x, y) dμ(y) dμ(x)

=
∫
M

∫
M
XT,λ(x, y)B∗μ(y)B∗μ(x) dx dy

= 1

2π

∫ ∞

−∞
X̂T (t)e−i tλ

∫
M
ei t

√−Δg (B∗μ)(x)B∗μ(x) dx dt. (3.5)
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Once we show

WF
(
ei t

√−Δg B∗μ
)

∩ WF(B∗μ) = ∅ for all t ∈ supp X̂T , (3.6)

the integral over M will be smooth in t by Proposition2.2. Integration by parts in
t then gives the desired bound of OT (λ−N ). By the calculus of wavefront sets and
pseudodifferential operators,

WF(B∗μ) ⊂ esssupp B ∩ N∗
suppμΣ.

To prove (3.6), suppose (x, ξ) is a unit covector in WF(B∗μ). By part (3) of
Lemma3.1, Φt (x, ξ) is not in SN∗

suppμΣ for any 1 ≤ |t | ≤ T . By propagation
of singularities,

WF
(
ei t

√−Δg B∗μ
)

= Φt WF(B∗μ),

hence

WF
(
ei t

√−Δg B∗μ
)

∩ WF(B∗μ) = ∅ for 1 ≤ |t | ≤ T . (3.7)

Since the support of μ has been made small, if there is (x, ξ) ∈ SN∗
suppμΣ and some

t > 0 in the support of (1−β(t))χ̂(t/T ) for whichΦt (x, ξ) ∈ SN∗
suppμ�, then t ≥ 1

since the diameter of suppμ is small and the injectivity radius of M is at least 1. We
now have (3.6), from which follows (3.5) as promised.

What remains is to bound

∣∣∣∣
∫

Σ

∫
Σ

bXT,λb
∗(x, y) dμ(x) dμ(y)

∣∣∣∣ ≤ λn−d−1 + CT,bλ
n−d−2. (3.8)

We have

bXT,λb
∗(x, y) =

∑
j

XT
(
λ j − λ

)
be j (x)be j (y),

and so we write the integral in (3.8) as

∑
j

XT
(
λ j − λ

) ∣∣∣∣
∫

Σ

b(x, D)e j (x) dμ(x)

∣∣∣∣
2

. (3.9)

Note XT satisfies bounds

|XT (τ )| ≤ CT,N (1 + |τ |)−N for N = 1, 2, . . . (3.10)
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1318 E. L. Wyman

We dominate |XT | by a step function

∑
k∈Z

aT,kχ[k,k+1)

satisfying similar bounds as |XT | with coefficients

aT,k = sup
[k,k+1]

|XT | .

Now,

∣∣∣∣∣∣
∑
j

XT
(
λ j − λ

) ∣∣∣∣
∫

Σ

b(x, D)e j (x) dμ(x)

∣∣∣∣
2
∣∣∣∣∣∣

≤
∑
k∈Z

aT,k

∑
λ j−λ∈[k,k+1)

∣∣∣∣
∫

Σ

b(x, D)e j (x) dμ(x)

∣∣∣∣
2

. (3.11)

Using Proposition2.1 and part (2) of Lemma 3.1, we write

∑
λ j−λ∈[k,k+1)

∣∣∣∣
∫

Σ

b(x, D)e j (x) dμ(x)

∣∣∣∣
2

≤ ε(|λ + k| + 1)n−d−1 + Cb(|λ + k| + 1)n−d−2.

Hence, (3.11) is bounded by

≤ CT

∑
k∈Z

aT,k

(
ε(|λ + k| + 1)n−d−1 + Cb(|λ + k| + 1)n−d−2

)

≤ εCT λn−d−1 + CT,bλ
n−d−2 for λ ≥ 1

by the bounds (3.10). Taking ε in part (2) of Lemma3.1 small enough so that εCT ≤ 1
yields (3.8). This concludes the proof of Theorem1.2.
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