

Looping Directions and Integrals of Eigenfunctions over Submanifolds

Emmett L. Wyman1

Received: 5 October 2017 / Published online: 25 June 2018 © Mathematica Josephina, Inc. 2018

Abstract Let (*M*, *g*) be a compact *n*-dimensional Riemannian manifold without boundary and e_{λ} be an L^2 -normalized eigenfunction of the Laplace–Beltrami operator with respect to the metric *g*, i.e.,

$$
-\Delta_g e_\lambda = \lambda^2 e_\lambda \quad \text{and} \quad ||e_\lambda||_{L^2(M)} = 1.
$$

Let Σ be a *d*-dimensional submanifold and d μ a smooth, compactly supported measure on Σ. It is well known (e.g., proved by Zelditch, Commun Partial Differ Equ 17(1– 2):221–260, [1992](#page-17-0) in far greater generality) that

$$
\int_{\Sigma} e_{\lambda} d\mu = O\left(\lambda^{\frac{n-d-1}{2}}\right).
$$

We show this bound improves to $o\left(\lambda^{\frac{n-d-1}{2}}\right)$ provided the set of looping directions,

$$
\mathcal{L}_{\Sigma} = \{(x, \xi) \in \mathbf{SN}^* \Sigma : \Phi_t(x, \xi) \in \mathbf{SN}^* \Sigma \text{ for some } t > 0\}
$$

has measure zero as a subset of $SN^* \Sigma$, where here Φ_t is the geodesic flow on the cosphere bundle S^*M and $SN^*\Sigma$ is the unit conormal bundle over Σ .

Keywords Submanifolds · Eigenfunctions · Kuznecov formulae

Mathematics Subject Classification 58J50 · 35P20

 \boxtimes Emmett L. Wyman ewyman3@math.jhu.edu

¹ Johns Hopkins University, Baltimore, USA

1 Introduction

In what follows, (*M*, *g*) will denote a compact, boundaryless, *n*-dimensional Riemannian manifold. Let Δ*^g* denote the Laplace–Beltrami operator and *e*^λ an *L*2-normalized eigenfunction of Δ_{g} on *M*, i.e.,

$$
-\Delta_g e_\lambda = \lambda^2 e_\lambda \quad \text{and} \quad \|e_\lambda\|_{L^2(M)} = 1.
$$

In [\[7](#page-17-1)], Sogge and Zelditch investigate which manifolds have a sequence of eigenfunctions e_{λ} with $\lambda \rightarrow \infty$ which saturate the standard sup-norm bound

$$
||e_\lambda||_{L^\infty(M)}=O\left(\lambda^{\frac{n-1}{2}}\right).
$$

They show this bound necessarily improves to $o\left(\lambda^{\frac{n-1}{2}}\right)$ if at each *x*, the set of looping directions through *x*,

$$
\mathcal{L}_x = \left\{ \xi \in S_x^* M : \Phi_t(x, \xi) \in S_x^* M \text{ for some } t > 0 \right\}
$$

has measure zero¹ as a subset of S_x^*M for each $x \in M$. Here, Φ_t denotes the geodesic flow on the unit cosphere bundle *S*∗*M* after time *t*.The hypotheses were later weakened by Sogge et al. [\[8\]](#page-17-2), where they showed

$$
\|e_\lambda\|_{L^\infty(M)} = o\left(\lambda^{\frac{n-1}{2}}\right)
$$

provided the set of *recurrent* directions at *x* has measure zero for each $x \in M$.

We are interested in extending the result in [\[7\]](#page-17-1) to integrals of eigenfunctions over submanifolds. Let Σ be a submanifold of dimension *d* with $d \le n$ and a measure $d\mu(x) = h(x) d\sigma(x)$ where $d\sigma$ is the surface measure on Σ and h is a smooth function supported on a compact subset of Σ . In his 1992 paper [\[12\]](#page-17-0), Zelditch proves, among other things, a Kuznecov asymptotic formula

$$
\sum_{\lambda_j \leq \lambda} \left| \int_{\Sigma} e_j \, \mathrm{d}\mu \right|^2 \sim \lambda^{n-d} + O\left(\lambda^{n-d-1}\right),\tag{1.1}
$$

where e_j for $j = 0, 1, 2, \ldots$ form a Hilbert basis of eigenfunctions on *M* with corresponding eigenvalues λ_i . From [\(1.1\)](#page-1-0) follows the standard bound

$$
\int_{\Sigma} e_{\lambda} d\mu = O\left(\lambda^{\frac{n-d-1}{2}}\right)
$$
\n(1.2)

¹ Let $\psi_j : U_j \subset \mathbb{R}^n \to M$ be coordinate charts of a general manifold *M*. We say a set $E \subset M$ has measure zero if the preimage $\psi_j^{-1}(E)$ has Lebesgue measure 0 in \mathbb{R}^n for each chart ψ_j . Sets of Lebesgue measure zero are preserved under transition maps, ensuring this definition is intrinsic to the C^{∞} structure of *M*.

which is sharp² in general. However, it should be noted that (1.1) implies that generic eigenfunctions satisfy much better bounds. Indeed for any function $R(\lambda) \rightarrow +\infty$, an extraction argument shows there exists a density one sequence of eigenfunctions satisfying

$$
\int_{\Sigma} e_{\lambda} d\mu = O\left(\lambda^{-\frac{d}{2}} R(\lambda)\right).
$$

Though [\(1.2\)](#page-1-1) is already well known and has been proven in stronger terms, we state it here as a theorem. We do this for two reasons. First, it provides a baseline with which to compare our main result. Second, we end up providing a direct proof in the form of Proposition [2.1,](#page-5-0) which we will need for our main argument anyway.

Theorem 1.1 Let Σ be a d-dimensional submanifold with $0 \leq d \leq n$, and $d\mu(x) = h(x) d\sigma(x)$ where h is a smooth, real-valued function supported on a compact *neighborhood in* Σ. *Then*,

$$
\sum_{\lambda_j\in[\lambda,\,\lambda+1]}\left|\int_{\Sigma}e_j\,\mathrm{d}\mu\right|^2=O\left(\lambda^{n-d-1}\right).
$$

[\(1.2\)](#page-1-1) *follows.*

We let $SN^* \Sigma$ denote the unit conormal bundle over Σ . We define the set of looping directions through Σ by

$$
\mathcal{L}_{\Sigma} = \{ (x, \xi) \in \mathcal{S} \mathcal{N}^* \Sigma : \Phi_t(x, \xi) \in \mathcal{S} \mathcal{N}^* \Sigma \text{ for some } t > 0 \}.
$$

A covector in \mathcal{L}_{Σ} is the initial data of a geodesic which departs Σ conormally and eventually arrives again at Σ conormally. Our main result is as follows.

Theorem 1.2 *Assume the hypotheses of Theorem* [1.1](#page-2-0) *and additionally that* \mathcal{L}_{Σ} *has measure zero as a subset of* SN∗Σ. *Then*,

$$
\sum_{\lambda_j\in[\lambda,\,\lambda+\delta]}\left|\int_{\Sigma}e_{\lambda}\,\mathrm{d}\mu\right|^2\leq C\delta\lambda^{n-d-1}+C_{\delta}\lambda^{n-d-2},
$$

where C is a constant independent of δ *and* λ , *and* C_{δ} *is a constant depending on* δ *but not* λ.

Sogge and Zelditch's result [\[7](#page-17-1)] implies the theorem for $d = 0$. We adapt their strategy to provide the proof for the remaining cases $d \geq 1$. The following theorem is an immediate corollary of Theorem 1.2 and shows (1.2) cannot be saturated whenever *L*^Σ has measure zero in SN∗Σ.

² The standard examples take place on the sphere $Sⁿ$. In the $d = 0$ case, this bound is saturated by the highest weight spherical harmonics. In the $d = n - 1$ situation, the bound is saturated by zonal functions around the 'equator.' In this section we show that, for *any* submanifold Σ in S^n , there exists some sequence of eigenfunctions saturating [\(1.2\)](#page-1-1).

Theorem 1.3 *Assume the hypotheses of Theorem*[1.2](#page-2-1)*. Then*,

$$
\int_{\Sigma} e_{\lambda} d\mu = o\left(\lambda^{\frac{n-d-1}{2}}\right).
$$

We illustrate Theorem [1.3](#page-2-2) in three settings: the torus, the sphere, and surfaces with negative sectional curvature.

The torus Let $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ denote the flat, *n*-dimensional torus. Let Σ be a small patch of a sphere centered at 0 in \mathbb{T}^n . Since all geodesics passing through Σ in the conormal direction intersect the origin, the set of looping directions \mathcal{L}_{Σ} is countable by the countability of \mathbb{Z}^n and hence has measure 0. The conclusion of Theorem [1.3](#page-2-2) is easily verified by the result [\[3,](#page-16-0) Proposition 3.5], which provides an essentially optimal bound on the integrals of eigenfunctions over hypersurfaces in the torus.

Proposition 1.4 ([\[3](#page-16-0)]) *Suppose* Σ *has nonvanishing Gaussian curvature in the torus. Then*,

$$
\left|\int_{\Sigma} e_{\lambda} d\mu(x)\right| = O\left(\lambda^{-1/2+\varepsilon}\right)
$$

for all $\varepsilon > 0$ *, where we may set* $\varepsilon = 0$ *if* $n \ge 5$ *.*

Applying this result to spheres yields a much better bound than suggested by Theorem[1.3.](#page-2-2)

On the other hand if Σ is a closed hyperplane in \mathbb{T}^n , neither the hypotheses nor the conclusion of Theorem [1.3](#page-2-2) are satisfied. All geodesics departing Σ conormally arrive again conormally after some fixed, uniform time. At the same time, one can construct a sequence of exponentials which are all identically 1 along Σ .

The sphere Let *Sⁿ* denote the *n*-dimensional sphere equipped with the standard metric. Every geodesic in S^n is periodic, so $\mathcal{L}_{\Sigma} = SN^* \Sigma$ for *every* submanifold Σ . Hence, no submanifold of $Sⁿ$ satisfies the hypotheses of Theorem [1.3.](#page-2-2) As we will find, no submanifold of $Sⁿ$ enjoys the little- o improvement of Theorem 1.3 either.

The functional ideas here are Zelditch's–Kuznecov formula [\(1.1\)](#page-1-0) and the fact that all eigenvalues are of the form

$$
\lambda = \sqrt{k(k+n-1)} \quad \text{for some } k = 0, 1, 2, \dots
$$

(see [\[5,](#page-17-3) Sect. 3.4] or [\[2,](#page-16-1) Theorem 3.1]). Let e_j for $j = 0, 1, 2, \ldots$ denote some Hilbert basis of eigenfunctions on *M* with corresponding eigenvalues λ_j . For each distinct eigenvalue λ , we construct an eigenfunction e_{λ} by

$$
e_{\lambda} = \frac{\sum_{\lambda_j=\lambda} \left(\int_{\Sigma} \overline{e_j} \, \mathrm{d}\sigma \right) e_j}{\left(\sum_{\lambda_j=\lambda} \left| \int_{\Sigma} \overline{e_j} \, \mathrm{d}\sigma \right|^2 \right)^{1/2}}.
$$

 \mathcal{D} Springer

Note $||e_{\lambda}||_{L^2(M)} = 1$ and

$$
\int_{\Sigma} e_{\lambda} d\sigma = \left(\sum_{\lambda_j = \lambda} \left| \int_{\Sigma} e_j d\sigma \right|^2 \right)^{1/2}.
$$
\n(1.3)

By Zelditch's–Kuznecov formula [\(1.1\)](#page-1-0), we have

$$
\sum_{\lambda_j \in [\lambda, \lambda + C]} \left| \int_{\Sigma} e_j \, \mathrm{d}\sigma \right|^2 \ge \lambda^{n - d - 1}
$$

for some large enough constant *C*. Moreover there are no more than $C + 1$ distinct eigenvalues in the interval $[\lambda, \lambda + C]$ for each λ . Hence in every interval of length *C*, there exists λ such that the right-hand side of [\(1.3\)](#page-4-0) is bounded below by $\lambda^{\frac{n-d-1}{2}}/\sqrt{C+1}$, i.e., the bound in [\(1.2\)](#page-1-1) is saturated.

Negatively curved surfaces We can use recent results to verify Theorem[1.3](#page-2-2) for some examples where *M* is a surface $(n = 2)$ with negative sectional curvature. Chen and Sogge [\[1](#page-16-2)] proved that if Σ is a geodesic in such a manifold M ,

$$
\int_{\Sigma} e_{\lambda} d\mu = o(1).
$$

They consider a lift $\tilde{\Sigma}$ of Σ to the universal cover of M. Using the Gauss–Bonnet theorem, they show for each deck transformation α , there is at most one geodesic which intersects both $\tilde{\Sigma}$ and $\alpha(\tilde{\Sigma})$ perpendicularly. Since there are only countably many deck transformations, \mathcal{L}_{Σ} is at most a countable subset of SN^{*} Σ and so satisfies the hypotheses of Theorem [1.3.](#page-2-2) Since [\[1\]](#page-16-2), Sogge et al. [\[9\]](#page-17-4) have obtained an explicit decay of $O(1/\sqrt{\log \lambda})$ while also allowing the sectional curvature of *M* to vanish of finite order. Recently the author [\[10](#page-17-5)[,11](#page-17-6)] obtained Chen and Sogge's *o*(1) bound, and more recently the explicit bound $O(1/\sqrt{\log \lambda})$, if *M* has nonpositive sectional curvature and the geodesic curvature of Σ avoids that of circles of infinite radius. These curves similarly have countable \mathcal{L}_{Σ} provided they are sufficiently short.

2 Microlocal Tools

The hypotheses on the looping directions in Theorem[1.2](#page-2-1) ensure that the wavefront sets of μ and $e^{it\sqrt{-\Delta_g}}\mu$ have minimal intersection for any given *t* away from 0. We can then use pseudodifferential operators to break the measure μ into two parts, the first which has small essential support and the second whose wavefront set is disjoint from that of $e^{it\sqrt{-\Delta_g}}\mu$. The following propositions will allow us to handle these cases, respectively. The first proposition generalizes both [\[5,](#page-17-3) Lemma 5.2.2] and the standard Theorem [1.1](#page-2-0) and is our main technical result.

Before we proceed, we lay out some Fermi local coordinates which we will return to repeatedly. Fix $p \in \Sigma$, and consider local coordinates $x = (x_1, \ldots, x_n) = (x', \bar{x})$ centered about *p*, where *x'* denotes the first *d* coordinates and \bar{x} the remaining $n - d$ coordinates. We let $(x', 0)$ parametrize Σ on a neighborhood of p in such a way that dx' agrees with the surface measure on Σ . Let *g* denote the metric tensor with respect to our local coordinates. We require

$$
g = \begin{bmatrix} * & 0 \\ 0 & I \end{bmatrix}
$$
 wherever $\bar{x} = 0$,

where *I* here is the $(n - d) \times (n - d)$ identity matrix. This is ensured after inductively picking smooth sections $v_j(x')$ of SN Σ for $j = d + 1, ..., n$ with $\langle v_i, v_j \rangle = \delta_{ij}$, and then using

$$
(x_1, ..., x_n) \mapsto \exp(x_{d+1}v_{d+1}(x') + \dots + x_nv_n(x')) \tag{2.1}
$$

as our coordinate map. In these coordinates we write $d\mu(x) = h(x') dx'$ where *h* is a smooth, compactly supported function on \mathbb{R}^d .

Proposition 2.1 *Let* $b(x, \xi)$ *be smooth for* $\xi \neq 0$ *and homogeneous of degree* 0 *in the* ξ *variable.* We define $b \in \Psi_{\text{cl}}^0(M)$ by

$$
b(x, D) f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i \langle x - y, \xi \rangle} b(x, \xi) \, dy \, d\xi
$$

for x, *y*, *and* ξ *expressed locally according to our coordinates* [\(2.1\)](#page-5-1)*. Then*,

$$
\sum_{\lambda_j \in [\lambda, \lambda+1]} \left| \int_{\Sigma} be_j \, \mathrm{d}\mu \right|^2
$$
\n
$$
\leq C \left(\int_{\mathbb{R}^d} \int_{S^{n-d-1}} |b(x', \, \omega)|^2 h(x')^2 \, \mathrm{d}\omega \, \mathrm{d}x' \right) \lambda^{n-d-1} + C_b \lambda^{n-d-2},
$$

where C is a constant independent of b and λ *and* C_b *is a constant independent of* λ *but which depends on b*.

Note Theorem [1.1](#page-2-0) follows by setting $b \equiv 1$. The proof is based largely on that of [\[5,](#page-17-3) Lemma 5.2.2]. We will come to a point in our argument where it seems like we may have to perform a stationary phase argument involving an eight-by-eight Hessian matrix. Instead, we appeal to [\[4](#page-16-3), Theorem 7.7.6] to break this process into two steps involving two four-by-four Hessian matrices.

Proof For simplicity, we assume without loss of generality that $d\mu$ is a real measure. Let χ be a nonnegative Schwartz-class function on R with χ (0) = 1 and $\hat{\chi}$ supported on a small neighborhood of $0³$ It suffices to show

 3 This reduction is standard and appears in [\[1](#page-16-2)[,7](#page-17-1)], proofs of sup-norm estimates of eigenfunctions and the sharp Weyl law as presented in [\[5](#page-17-3)[,6](#page-17-7)], and in many other related problems.

$$
\sum_{j} \chi(\lambda_{j} - \lambda) \left| \int_{\Sigma} be_{j} d\mu \right|^{2} \sim \left(\int_{\mathbb{R}^{d}} \int_{S^{n-d-1}} |b(y', \omega)|^{2} h(y')^{2} d\omega dy' \right) \lambda^{n-d-1} + O_{b} \left(\lambda^{n-d-2} \right).
$$

We may by a partition of unity assume that $b(x, D)$ has small *x*-support. The left-hand side is

$$
= \sum_{j} \int_{\Sigma} \int_{\Sigma} \chi(\lambda_{j} - \lambda) b(x, D)e_{j}(x) \overline{b(y, D)e_{j}(y)} d\mu(x) d\mu(y)
$$

$$
= \frac{1}{2\pi} \sum_{j} \int_{\Sigma} \int_{\Sigma} \int_{-\infty}^{\infty} \hat{\chi}(t) e^{it(\lambda_{j} - \lambda)} b(x, D)e_{j}(x) \overline{b(y, D)e_{j}(y)} dt d\mu(x) d\mu(y)
$$

$$
= \frac{1}{2\pi} \int_{\Sigma} \int_{\Sigma} \int_{-\infty}^{\infty} \hat{\chi}(t) e^{-it\lambda} b e^{it\sqrt{-\Delta_{g}}} b^{*}(x, y) dt d\mu(x) d\mu(y),
$$
 (2.2)

where here $be^{it}\sqrt{-\Delta_g}b^*(x, y)$ is the kernel

$$
\sum_{j} e^{it\lambda_j} b(x, D) e_j(x) \overline{b(y, D) e_j(y)}
$$

of the half-wave operator $e^{it\sqrt{-\Delta_g}}$ conjugated by *b*. Set $\beta \in C_0^{\infty}(\mathbb{R})$ with small support and where $\beta \equiv 1$ near 0. Then,

$$
\int_{\mathbb{R}^d} b(x',\,D) f(x')h(x') dx'\n= \frac{\lambda^n}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\lambda(x'-w,\eta)} b(x',\,\eta) f(w)h(x') dx' dw d\eta\n= \frac{\lambda^n}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\lambda(x'-w,\eta)} \beta(\log|\eta|) b(x',\,\eta) f(w)h(x') dx' dw d\eta\n+ O\left(\lambda^{-N}\right),
$$
\n(2.3)

where the second line is obtained by a change of variables $\eta \mapsto \lambda \eta$, and the third line is obtained after multiplying in the cutoff $\beta(\log |\eta|)$ and bounding the discrepancy by $O(\lambda^{-N})$ by integrating by parts in *x'*. Additionally,

$$
b^*(z, D)d\mu(z) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\langle z - y', \zeta \rangle} b(y', \zeta) h(y') \, dy' \, d\zeta
$$

=
$$
\frac{\lambda^n}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\lambda \langle z - y', \zeta \rangle} b(y', \zeta) h(y') \, dy' \, d\zeta
$$

=
$$
\frac{\lambda^n}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\lambda \langle z - y', \zeta \rangle} \beta(\log|\zeta|) b(y', \zeta) h(y') \, dy' \, d\zeta + O\left(\lambda^{-N}\right)
$$

² Springer

$$
= \frac{\lambda^n}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^d} e^{i\lambda \langle z - y', \zeta \rangle} \beta(\log|\zeta|) \beta(|z - y'|) b(y', \zeta) h(y') \, dy' \, d\zeta
$$

+ $O\left(\lambda^{-N}\right),$ (2.4)

where the second and third lines are obtained similarly as before and the fourth line is obtained after multiplying by $\beta(\log|z-y'|)$ and integrating the remainder by parts in ζ.

We will use Hörmander's parametrix of the half-wave operator e*it*√−^Δ*^g* on *^M* to treat the integral in t . In local coordinates (2.1) , we have

$$
e^{it\sqrt{-\Delta_g}}(x, y) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\varphi(x, y, \xi) + tp(y, \xi))} q(t, x, y, \xi) d\xi
$$

modulo a smooth kernel where

$$
p(y, \xi) = \sqrt{\sum_{j,k} g^{ij}(y)\xi_i\xi_j},
$$

where *q* is a symbol in ξ satisfying bounds

$$
\left|\partial_{t,x,y}^{\alpha}\partial_{\xi}^{\beta}q(t, x, y, \xi)\right| \leq C_{\alpha,\beta}(1+|\xi|)^{-|\beta|}
$$

for all multiindices α and β , and where φ is homogeneous of degree 1 in ξ and smooth for $\xi \neq 0$ and satisfies

$$
\varphi(x, y, \xi) = \langle x - y, \xi \rangle + O\left(|x - y|^2|\xi|\right). \tag{2.5}
$$

This parametrix is valid only when $|t|$ and $|x - y|$ are small. In fact, we may take *q* to be supported on an arbitrarily small neighborhood of the diagonal $x = y$ of our choosing provided we only consider times *t* on a correspondingly small neighborhood of 0. (See [\[6](#page-17-7), Chap. 4] for a treatment of Hörmander's parametrix.)

Using Hörmander's parametrix,

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\chi}(t) e^{-it\lambda} e^{it\sqrt{-\Delta_g}}(w, z) dt \n= \frac{1}{(2\pi)^{n+1}} \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} e^{i(\varphi(w,z,\xi) + tp(z,\xi) - t\lambda)} \hat{\chi}(t) q(t, w, z, \xi) d\xi dt \n= \frac{\lambda^n}{(2\pi)^{n+1}} \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} e^{i\lambda(\varphi(w,z,\xi) + t(p(z,\xi) - 1))} \hat{\chi}(t) q(t, w, z, \lambda\xi) d\xi dt \n= \frac{\lambda^n}{(2\pi)^{n+1}} \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} e^{i\lambda(\varphi(w,z,\xi) + t(p(z,\xi) - 1))} \beta(\log p(z, \xi)) \hat{\chi}(t) q(t, w, z, \lambda\xi) d\xi \n+ O\left(\lambda^{-N}\right).
$$
\n(2.6)

² Springer

Here the third line comes from a change of coordinates $\xi \mapsto \lambda \xi$. The fourth line follows after applying the cutoff β (log $p(z, \zeta)$) and integrating the discrepancy by parts in *t*. Combining [\(2.3\)](#page-6-0), [\(2.4\)](#page-7-0), and [\(2.6\)](#page-7-1), we write [\(2.2\)](#page-6-1) as

$$
\lambda^{3n} \int \cdots \int e^{i\Phi(t,x',y',w,z,\eta,\zeta,\xi)} a(\lambda; t, x', y', w, z, \eta, \zeta, \xi)
$$

dx'dy'dw dz d\eta d\zeta d\xi + O(\lambda^{-N}) (2.7)

with amplitude

$$
a(\lambda; t, x', y', w, z, \eta, \zeta, \xi) = \frac{1}{(2\pi)^{3n+1}} \hat{\chi}(t) q(t, w, z, \lambda \xi) \beta(\log p(z, \xi)) \beta(\log |\eta|)
$$

$$
\beta(\log |\zeta|) \beta(|z - y'|) b(x', \eta) b(y', \zeta) h(x') h(y')
$$

and phase

$$
\Phi(t, x', y', w, z, \eta, \zeta, \xi) = \langle x' - w, \eta \rangle + \varphi(w, z, \xi) + t(p(z, \xi) - 1) + \langle z - y', \zeta \rangle.
$$

We pause here to make a couple of observations. First, *a* has compact support in all variables, support which we may adjust to be smaller by controlling the supports of $\hat{\chi}$, β, *b*, and the support of *q* near the diagonal. Second, the derivatives of *a* are bounded independently of $\lambda \geq 1$. We are now in a position to use the method of stationary phase—not in all variables at once, though. First, we fix *t*, x' , y' , and ξ , and use stationary phase in w , z , η , and ζ . We have

$$
\nabla_w \Phi = -\eta + \nabla_w \varphi(w, z, \xi),
$$

\n
$$
\nabla_z \Phi = \nabla_z \varphi(w, z, \xi) + t \nabla_z p(z, \xi) + \zeta,
$$

\n
$$
\nabla_\eta \Phi = x' - w,
$$

\n
$$
\nabla_\zeta \Phi = z - y'
$$

which all simultaneously vanish if and only if

$$
(w, z, \eta, \zeta) = (x', y', \nabla_x \varphi(x', y', \xi), -\nabla_y \varphi(x', y', \xi) - t\nabla_y p(y', \xi)).
$$
 (2.8)

At such a critical point we have the Hessian matrix

$$
\nabla_{w,z,\eta,\zeta}^{2} \Phi = \begin{bmatrix} * & * & -I & 0 \\ * & * & 0 & I \\ -I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{bmatrix},
$$

which has determinant -1 . By [\[4,](#page-16-3) Theorem 7.7.6], [\(2.7\)](#page-8-0) is equal to a complex constant times

$$
\lambda^{n} \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{i\lambda \Phi(t, x', y', \xi)} a(\lambda; t, x', y', \xi) dx' dy' d\xi' dt \n+ \lambda^{n-1} \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{i\lambda \Phi(t, x', y', \xi)} R_{N}(\lambda; t, x', y', \xi) dx' dy' d\xi' dt \n+ O\left(\lambda^{-N}\right)
$$
\n(2.9)

where we have phase

$$
\Phi(t, x', y', \xi) = \varphi(x', y', \xi) + t(p(y', \xi) - 1),
$$

amplitude

$$
a(\lambda; t, x', y', \xi) = a(\lambda; t, x', y', w, z, \eta, \zeta, \xi)
$$

with w, *z*, η , and *ζ* subject to the constraints [\(2.8\)](#page-8-1), where R_N is a compactly supported smooth function in *t*, x' , y' , and ξ , whose derivatives are bounded uniformly with respect to λ , and where *N* can be taken to be as large as desired.

Write $\xi = (\xi', \xi)$ and write $\xi = r\omega$ in polar coordinates with $r \ge 0$ and $\omega \in$ S^{n-d-1} . The first integral in [\(2.9\)](#page-9-0) is then written

$$
\lambda^{n} \int_{-\infty}^{\infty} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{S^{n-d-1}} \int_{0}^{\infty} e^{i\lambda \Phi(t, x', y', \xi)} a(\lambda; t, x', y', \xi)
$$

$$
r^{n-d-1} dr d\omega d\xi' dx' dy' dt.
$$

We will fix y' and ω and use the method of stationary phase in the remaining variables *t*, x' , ξ' , and *r* (a total of $2d + 2$ dimensions). We assert that, for fixed *y'* and ω , there is a nondegenerate stationary point at $(t, x', \xi', r) = (0, y', 0, 1)$. $\Phi = 0$ at such a stationary point, and after perhaps shrinking the support of *a* we apply [\[4,](#page-16-3) Theorem 7.7.6] again to write the first integral in (2.9) as constant times

$$
\lambda^{n-d-1}\int_{\mathbb{R}^d}\int_{S^{n-d-1}}a(\lambda; 0, y', y', \omega)\,dy'\,d\omega+O\left(\lambda^{n-d-2}\right).
$$

The proposition will follow after noting $a(\lambda; 0, y', y', \omega) = |b(y', \omega)|^2 h(y')^2$ and applying the same stationary phase argument to the second integral in [\(2.9\)](#page-9-0).

We have

$$
\partial_t \Phi = p(y', \xi) - 1,
$$

\n
$$
\nabla_{x'} \Phi = \nabla_{x'} \varphi(x', y', \xi),
$$

\n
$$
\nabla_{\xi'} \Phi = \nabla_{\xi'} \varphi(x', y', \xi) + t \nabla_{\xi'} p(y', \xi),
$$

\n
$$
\partial_r \Phi = \partial_r \varphi(x', y', \xi) + t \partial_r p(y', \xi).
$$

Note for fixed *y'* and ω , $(t, x', \xi', r) = (0, y', 0, 1)$ is a critical point of Φ . Now we compute the second derivatives at this point. We immediately see that $\partial_t^2 \Phi$, $\partial_t \nabla_{x'} \Phi$,

 $\nabla_{\xi'}^2 \Phi$, $\partial_r \nabla_{\xi'} \Phi$, and $\partial_r^2 \Phi$ all vanish. Moreover, $\partial_r \partial_r \Phi = 1$ since $p(y', \xi) = r$, where $\xi' = 0$. By our coordinates [\(2.1\)](#page-5-1) and the fact that $[g^{ij}]_{i,j \leq d}$ is necessarily positive definite,

$$
p(y',\xi) = \sqrt{\sum_{j,k} g^{jk} \xi_j \xi_k} = \sqrt{r^2 + \sum_{j,k \le d} g^{jk} \xi'_j \xi'_k} \ge r = p(y',\,r\omega).
$$

Hence, $\partial_t \nabla_{\xi'} \Phi = \nabla_{\xi'} p(y', \xi) = 0$. Since φ is homogeneous of degree 1 in ξ , at $\xi' = 0$ and $t = 0$,

$$
\nabla_{x'}\partial_r \Phi = \nabla_{x'}\partial_r \varphi(x', y', \xi) = \nabla_{x'}\varphi(x', y', \omega) = 0
$$

since $\varphi(x', y', \omega) = O(|x'-y'|^2)$ by [\(2.5\)](#page-7-2) and the fact that $\langle x'-y', \omega \rangle = 0$. Finally by [\(2.5\)](#page-7-2),

$$
\nabla_{\xi'}\varphi(x',\ y',\ \xi'+\omega)=x'+O\left(|x'-y'|^2\right)
$$

whence at the critical point

$$
\nabla_{x'}\nabla_{\xi'}\Phi=I,
$$

the $d \times d$ identity matrix. In summary, the Hessian matrix of Φ at the critical point $(t, x', \xi', r) = (0, y', 0, 1)$ is

$$
\nabla^2_{t,x',\xi',r} \Phi = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & * & I & 0 \\ 0 & I & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
$$

which has full rank. This concludes the proof of Proposition 2.1 .

The second proposition, below, allows us to deal with the partition of μ whose wavefront set is disjoint from that of $e^{it\sqrt{-\Delta_g}}\mu$ for $t > 0$.

Proposition 2.2 *Let u and* v *be distributions on M for which*

$$
WF(u) \cap WF(v) = \emptyset.
$$

Then

$$
t \mapsto \int_M e^{it\sqrt{-\Delta_g}} u(x) \overline{v(x)} dx
$$

is a smooth function of t on some neighborhood of 0.

Proof Using a partition of unity, we write

$$
I = \sum_j A_j
$$

modulo a smoothing operator where $A_j \in \Psi_{\text{cl}}^0(M)$ with essential supports in small conic neighborhoods. We then write, formally,

$$
\int_M e^{it\sqrt{-\Delta_g}} u(x) \overline{v(x)} dx = \sum_{j,k} \int_M A_j e^{it\sqrt{-\Delta_g}} u(x) \overline{A_k v(x)} dx.
$$

We are done if for each *i* and *j*,

$$
\int_M A_j e^{it\sqrt{-\Delta_g}} u(x) \overline{A_k v(x)} dx \text{ is smooth for } |t| \ll 1.
$$
 (2.10)

If the essential supports of A_j and A_k are disjoint, then $A_j^*A_k$ is a smoothing operator, and so $A_j^*A_k v$ is a smooth function and the contributing term

$$
\int_M u(x) e^{it\sqrt{-\Delta_g}} A_j^* A_k v(x) dx
$$

is smooth is *t*. Assume the essential support of A_j is small enough so that for each j there exists a small conic neighborhood Γ_i which fully contains the essential support of A_k if it intersects the essential support of A_j . We in turn take Γ_j small enough so that for each *j*, $\overline{\Gamma_i}$ either does not intersect WF(*u*) or does not intersect WF(*v*). In the latter case, $A_k v$ is smooth and we have (2.10) as before. In the former case,

$$
\overline{\varGamma_j} \cap \text{WF}\left(e^{it\sqrt{-\Delta_g}}u\right) = \emptyset \quad \text{for } |t| \ll 1
$$

since both sets above are closed and the geodesic flow is continuous. Then *A*_i $e^{it\sqrt{-\Delta_g}} u(x)$ is smooth as a function of *t* and *x*, and we have [\(2.10\)](#page-11-0). □

3 Proof of Theorem [1.2](#page-2-1)

We make a few convenient assumptions. First, we take the injectivity radius of *M* to be at least 1 by scaling the metric *g*. Second, we assume the support of $d\mu$ has diameter less than 1/2 by a partition of unity. We reserve the right to further scale the metric *g* and restrict the support of $d\mu$ as needed, finitely many times.

As before, we set $\chi \in C^{\infty}(\mathbb{R})$ with $\chi(0) = 1$, $\chi \ge 0$, and supp $\hat{\chi} \subset [-1, 1]$. It suffices to show

$$
\sum_{j} \chi \left(T (\lambda_j - \lambda) \right) \left| \int_{\Sigma} e_{\lambda} d\mu \right|^{2} \leq C T^{-1} \lambda^{n-d-1} + C_T \lambda^{n-d-2}
$$

 \mathcal{D} Springer

for $T > 1$. Similar to the reduction in the proof of Proposition [2.1,](#page-5-0) the left-hand side is equal to

$$
\sum_{j} \int_{\Sigma} \int_{\Sigma} \chi \left(T(\lambda_{j} - \lambda) \right) e_{j}(x) \overline{e_{j}(y)} d\mu(x) d\mu(y)
$$

\n
$$
= \frac{1}{2\pi} \sum_{j} \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} \hat{\chi}(t) e^{itT(\lambda_{j} - \lambda)} e_{j}(x) \overline{e_{j}(y)} d\mu(x) d\mu(y) dt
$$

\n
$$
= \frac{1}{2\pi T} \sum_{j} \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} \hat{\chi}(t/T) e^{-it\lambda} e^{it\lambda_{j}} e_{j}(x) \overline{e_{j}(y)} d\mu(x) d\mu(y) dt
$$

\n
$$
= \frac{1}{2\pi T} \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} \hat{\chi}(t/T) e^{-it\lambda} e^{it\sqrt{-\Delta_{g}}}(x, y) d\mu(x) d\mu(y) dt.
$$

Hence, it suffices to show

$$
\left| \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} \hat{\chi}(t/T) e^{-it\lambda} e^{it\sqrt{-\Delta_g}}(x, y) d\mu(x) d\mu(y) dt \right|
$$

$$
\leq C\lambda^{n-d-1} + C_T \lambda^{n-d-2}.
$$
 (3.1)

Let $\beta \in C_0^{\infty}(\mathbb{R})$ be supported on a small interval about 0 with $\beta \equiv 1$ near 0. We cut the integral in [\(3.1\)](#page-12-0) into $\beta(t)$ and $1 - \beta(t)$ parts. Since $\beta(t)\hat{\chi}(t/T)$ and its derivatives are all bounded independently of $T \geq 1$,

$$
\left| \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} \beta(t) \hat{\chi}(t/T) e^{-it\lambda} e^{it\sqrt{-\Delta_g}}(x, y) d\mu(x) d\mu(y) dt \right| \leq C \lambda^{n-d-1}
$$

by the arguments in Proposition [2.1.](#page-5-0) Hence, it suffices to show

$$
\left| \int_{-\infty}^{\infty} \int_{\Sigma} \int_{\Sigma} (1 - \beta(t)) \hat{\chi}(t/T) e^{-it\lambda} e^{it\sqrt{-\Delta_g}}(x, y) d\mu(x) d\mu(y) dt \right|
$$

$$
\leq C \lambda^{n-d-1} + C_T \lambda^{n-d-2}.
$$
 (3.2)

Here we shrink the support of μ so that $\beta(d_g(x, y)) = 1$ for $x, y \in \text{supp }\mu$. We now state and prove a useful decomposition based off of those in [\[7](#page-17-1),[8\]](#page-17-2), and [\[5,](#page-17-3) Chap. 5]. We let \mathcal{L}_Σ (supp μ , *T*) denote the subset of \mathcal{L}_Σ relevant to the support of μ and the timespan $[1, T]$, specifically

$$
\mathcal{L}_{\Sigma}(\text{supp }\mu, T) = \{(x, \xi) \in \text{SN}^* \Sigma : \Phi_t(x, \xi) = (y, \eta) \in \text{SN}^* \Sigma
$$

for some $t \in [1, T]$ and where $x, y \in \text{supp }\mu\}$.

Lemma 3.1 *Fix* $T > 1$ *and* $\varepsilon > 0$ *. There exists b,* $B \in \Psi_{\text{cl}}^{0}(M)$ *supported on a neighborhood of* supp μ with the following properties.

(1) $b(x, D) + B(x, D) = I$ *on* supp μ .

(2) *Using coordinates* [\(2.1\)](#page-5-1),

$$
\int_{\mathbb{R}^d}\int_{S^{n-d-1}}|b(x',\,\omega)|^2\,\mathrm{d}\omega\,\mathrm{d} x'<\varepsilon,
$$

where b(x , ξ) *is the principal symbol of b*(x , *D*). (3) *The essential support of* $B(x, D)$ *contains no elements of* \mathcal{L}_Σ (supp μ , *T*).

Proof As shorthand, we write

$$
SN_{\text{supp}\,\mu}^* \Sigma = \{(x, \,\xi) \in SN^* \Sigma : x \in \text{supp}\,\mu\}.
$$

We first argue that \mathcal{L}_{Σ} (supp μ , *T*) is closed for each $T > 1$. However, \mathcal{L}_{Σ} (supp μ , *T*) is the projection of the set

$$
\{(t, x, \xi) \in [1, T] \times SN_{\text{supp}\,\mu}^* \Sigma : \Phi_t(x, \xi) \in SN_{\text{supp}\,\mu}^* \Sigma\}
$$
 (3.3)

onto $SN_{\text{supp }\mu}^* \Sigma$, and since [1, *T*] is compact it suffices to show that [\(3.3\)](#page-13-0) is closed. However, [\(3.3\)](#page-13-0) is the intersection of $[1, T] \times SN_{\text{supp }\mu}^* \Sigma$ with the preimage of $\text{SN}_{\text{supp}\,\mu}^* \Sigma$ under the continuous map

$$
(t, x, \xi) \mapsto \Phi_t(x, \xi).
$$

Since $SN_{\text{supp }\mu}^* \Sigma$ is closed, [\(3.3\)](#page-13-0) is closed.

Since \mathcal{L}_Σ (supp μ , *T*) is closed and has measure zero, there is $\tilde{b} \in C^\infty(S^*M)$ supported on a neighborhood of $SN_{\text{supp }\mu}^* \Sigma$ with $0 \le b(x, \xi) \le 1$, $b(x, \xi) \equiv 1$ on an open neighborhood of \mathcal{L}_Σ (supp μ , *T*), and

$$
\int_{\mathbb{R}^d} \int_{S^{n-d-1}} |\tilde{b}(x',\,\omega)|^2 \,d\omega \,dx' < \varepsilon. \tag{3.4}
$$

We set $\psi \in C_0^{\infty}(\Sigma)$ to be a cutoff function supported on a neighborhood of supp μ in *M* with $\psi \equiv 1$ on supp μ . We use the coordinates in [\(2.1\)](#page-5-1) and define symbols

$$
b(x, \xi) = \psi(x)\overline{b}(x, \xi/|\xi|)
$$

and

$$
B(x, \xi) = \psi(x)(1 - \tilde{b}(x', \xi/|\xi|)),
$$

along with their associated operators

$$
b(x, D) f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i\langle x - y, \xi \rangle} b(x, \xi) f(y) \, dy \, d\xi
$$

and

$$
B(x, D) f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i\langle x - y, \xi \rangle} B(x, \xi) f(y) \, dy \, d\xi.
$$

By construction,

$$
B(x, D) + b(x, D) = \psi(x),
$$

whose restriction to supp μ is 1, yielding (1). (2) Follows from the definition of $b(x, D)$ and [\(3.4\)](#page-13-1). We have (3) since the support of $1 - \tilde{b}(x, \xi)$ contains no elements of \mathcal{L}_{Σ} (support u, T). \mathcal{L}_Σ (supp μ , *T*).

Returning to the proof of Theorem 1.2, let X_T denote the function with

$$
\hat{X}_T(t) = (1 - \beta(t)) \hat{\chi}(t/T),
$$

and let $X_{T,\lambda}$ denote the operator with kernel

$$
X_{T,\lambda}(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}_T(t) e^{-it\lambda} e^{it\sqrt{-\Delta_g}}(x, y) dt.
$$

We use part (1) of Lemma [3.1](#page-12-1) to write the integral in (3.2) as

$$
\int_{\Sigma} \int_{\Sigma} X_{T,\lambda}(x, y) d\mu(y) d\mu(x) = \int_{\Sigma} \int_{\Sigma} BX_{T,\lambda} B^*(x, y) d\mu(y) d\mu(x)
$$

$$
+ \int_{\Sigma} \int_{\Sigma} BX_{T,\lambda} b^*(x, y) d\mu(y) d\mu(x)
$$

$$
+ \int_{\Sigma} \int_{\Sigma} bX_{T,\lambda} B^*(x, y) d\mu(y) d\mu(x)
$$

$$
+ \int_{\Sigma} \int_{\Sigma} bX_{T,\lambda} b^*(x, y) d\mu(y) d\mu(x).
$$

We claim the first three terms on the right are $O_T(\lambda^{-N})$ for $N = 1, 2, ...$ We will only prove this for the first term—the argument is the same for the second term and the bound for the third term follows since $X_{T,\lambda}$ is self-adjoint. Interpreting μ as a distribution on *M*, we write formally

$$
\int_{\Sigma} \int_{\Sigma} BX_{T,\lambda} B^*(x, y) d\mu(y) d\mu(x)
$$
\n
$$
= \int_M \int_M X_{T,\lambda}(x, y) B^* \mu(y) \overline{B^* \mu(x)} dx dy
$$
\n
$$
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}_T(t) e^{-it\lambda} \int_M e^{it\sqrt{-\Delta_g}} (B^* \mu)(x) \overline{B^* \mu(x)} dx dt. \qquad (3.5)
$$

² Springer

Once we show

$$
\text{WF}\left(e^{it\sqrt{-\Delta_g}}B^*\mu\right) \cap \text{WF}(B^*\mu) = \emptyset \quad \text{for all } t \in \text{supp }\hat{X}_T,\tag{3.6}
$$

the integral over *M* will be smooth in *t* by Proposition [2.2.](#page-10-0) Integration by parts in *t* then gives the desired bound of $O_T(\lambda^{-N})$. By the calculus of wavefront sets and pseudodifferential operators,

$$
\mathrm{WF}(B^*\mu) \subset \mathrm{esssupp}\, B \cap N^*_{\mathrm{supp}\,\mu} \Sigma.
$$

To prove [\(3.6\)](#page-15-0), suppose (x, ξ) is a unit covector in WF($B^*\mu$). By part (3) of Lemma [3.1,](#page-12-1) $\Phi_t(x, \xi)$ is not in $SN_{\text{supp }\mu}^* \Sigma$ for any $1 \leq |t| \leq T$. By propagation of singularities,

$$
\operatorname{WF}\left(e^{it\sqrt{-\Delta_g}}B^*\mu\right)=\varPhi_t\operatorname{WF}(B^*\mu),
$$

hence

$$
\operatorname{WF}\left(e^{it\sqrt{-\Delta_g}}B^*\mu\right) \cap \operatorname{WF}(B^*\mu) = \emptyset \quad \text{for } 1 \le |t| \le T. \tag{3.7}
$$

Since the support of μ has been made small, if there is $(x, \xi) \in SN_{supp \mu}^* \Sigma$ and some *t* > 0 in the support of $(1 - \beta(t))\hat{\chi}(t/T)$ for which $\Phi_t(x, \xi) \in SN_{supp \mu}^* \Sigma$, then $t \ge 1$ since the diameter of supp μ is small and the injectivity radius of \vec{M} is at least 1. We now have (3.6) , from which follows (3.5) as promised.

What remains is to bound

$$
\left| \int_{\Sigma} \int_{\Sigma} b X_{T,\lambda} b^*(x, y) \, d\mu(x) \, d\mu(y) \right| \leq \lambda^{n-d-1} + C_{T,b} \lambda^{n-d-2}.
$$
 (3.8)

We have

$$
bX_{T,\lambda}b^*(x, y) = \sum_j X_T(\lambda_j - \lambda) be_j(x) \overline{be_j(y)},
$$

and so we write the integral in (3.8) as

$$
\sum_{j} X_{T} \left(\lambda_{j} - \lambda\right) \left| \int_{\Sigma} b(x, \, D) e_{j}(x) \, d\mu(x) \right|^{2}.
$$
 (3.9)

Note X_T satisfies bounds

$$
|X_T(\tau)| \le C_{T,N}(1+|\tau|)^{-N} \quad \text{for } N = 1, \ 2, \dots \tag{3.10}
$$

We dominate $|X_T|$ by a step function

$$
\sum_{k\in\mathbb{Z}} a_{T,k}\chi_{[k,k+1)}
$$

satisfying similar bounds as $|X_T|$ with coefficients

$$
a_{T,k} = \sup_{[k,k+1]} |X_T|.
$$

Now,

$$
\left| \sum_{j} X_{T} \left(\lambda_{j} - \lambda \right) \left| \int_{\Sigma} b(x, D) e_{j}(x) d\mu(x) \right|^{2} \right|
$$

$$
\leq \sum_{k \in \mathbb{Z}} a_{T,k} \sum_{\lambda_{j} - \lambda \in [k, k+1)} \left| \int_{\Sigma} b(x, D) e_{j}(x) d\mu(x) \right|^{2}.
$$
 (3.11)

Using Proposition [2.1](#page-5-0) and part (2) of Lemma [3.1,](#page-12-1) we write

$$
\sum_{\lambda_j - \lambda \in [k, k+1)} \left| \int_{\Sigma} b(x, D) e_j(x) d\mu(x) \right|^2
$$

$$
\leq \varepsilon (|\lambda + k| + 1)^{n-d-1} + C_b (|\lambda + k| + 1)^{n-d-2}.
$$

Hence, (3.11) is bounded by

$$
\leq C_T \sum_{k \in \mathbb{Z}} a_{T,k} \left(\varepsilon (|\lambda + k| + 1)^{n-d-1} + C_b (|\lambda + k| + 1)^{n-d-2} \right)
$$

$$
\leq \varepsilon C_T \lambda^{n-d-1} + C_{T,b} \lambda^{n-d-2} \quad \text{for } \lambda \geq 1
$$

by the bounds [\(3.10\)](#page-15-2). Taking ε in part (2) of Lemma [3.1](#page-12-1) small enough so that $\varepsilon C_T \leq 1$ yields (3.8) . This concludes the proof of Theorem 1.2.

Acknowledgements The author would like to thank Yakun Xi for pointing out an error in an earlier draft of this paper.

References

- 1. Chen, X., Sogge, C.D.: On integrals of eigenfunctions over geodesics. Proc. Am. Math. Soc. **143**(1), 151–161 (2015)
- 2. Helgason, S.: Geometric Analysis on Symmetric Spaces. American Mathematical Society, Providence (2014)
- 3. Hezari, H., Riviere, G.: Equidistribution of toral eigenfunctions along hypersurfaces (01 2018)
- 4. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I, 2nd edn. Springer, Berlin (1990)
- 5. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies, vol. 188. Princeton University Press, Princeton (2014)
- 6. Sogge, C.D.: Fourier Integrals in Classical Aanalysis. Cambridge Tracts in Mathematics, 2nd edn, vol 210. Cambridge University Press, Cambridge (2017)
- 7. Sogge, C.D., Zelditch, S.: Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. **114**(3), 387–437 (2002)
- 8. Sogge, C.D., Toth, J.A., Zelditch, S.: About the blowup of quasimodes on Riemannian manifolds. J. Geom. Anal. **21**(1), 150–173 (2011)
- 9. Sogge, C.D., Xi, Y., Zhang, C.: Geodesic period integrals of eigenfunctions on Riemannian surfaces and the Gauss–Bonnet theorem. Camb. J. Math. **5**(1), 123–151 (2017)
- 10. Wyman, E.: Explicit bounds on integrals of eigenfunctions over curves in surfaces of nonpositive curvature (preprint, 2017)
- 11. Wyman, E.: Integrals of eigenfunctions over curves in surfaces of nonpositive curvature (preprint, 2017)
- 12. Zelditch, S.: Kuznecov sum formulae and Szegő limit formulae on manifolds. Commun. Partial Differ. Equ. **17**(1–2), 221–260 (1992)