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Abstract We investigate the influence that s-dimensional lower and upper Hausdorff
densities have on the geometry of a Radon measure in R

n when s is a real number
between 0 and n. This topic in geometric measure theory has been extensively studied
when s is an integer. In this paper, we focus on the non-integer case, building upon a
series of papers on s-sets by Martín and Mattila from 1988 to 2000. When 0 < s < 1,
we prove that measures with almost everywhere positive lower density and finite
upper density are carried by countably many bi-Lipschitz curves. When 1 ≤ s < n,
we identify conditions on the lower density that ensure the measure is either carried
by or singular to (1/s)-Hölder curves. The latter results extend part of the recent work
of Badger and Schul, which examined the case s = 1 (Lipschitz curves) in depth. Of
further interest, we introduce Hölder and bi-Lipschitz parameterization theorems for
Euclidean sets with “small” Assouad dimension.
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1154 M. Badger, V. Vellis

1 Introduction

The study of the measure-theoretic geometry of Euclidean sets of integral dimension
was initiated by Besicovitch [5,6] in the 1920s and 1930s. Among many original
results, Besicovitch proved that any 1-set E ⊆ R

2 (that is, anH1-measurable set with
0 < H1(E) < ∞) decomposes into a regular set, Er , and an irregular set, E pu , where

lim
r↓0

H1(Er ∩ B(x, r))

2r
= 1 for H1 − a.e. x ∈ Er

and

lim inf
r↓0

H1(E pu ∩ B(x, r))

2r
≤ 3/4 for H1-a.e. x ∈ E pu .

Throughout this paper, Hs denotes s-dimensional Hausdorff measure (see Sect. 6).
When s = 1, H1 extends the Lebesgue measure of subsets of the line to a measure
of “length” on arbitrary subsets of R

n . The result quoted above says that there is a
strict gap between measure-theoretic densities on regular and irregular sets, where the
Lebesgue density theoremholds precisely for regular sets. Besicovitch established sev-
eral striking characterizations of regular and irregular sets in terms of global geometry
(intersection with curves, projections onto lines) and asymptotic geometry (existence
of tangent lines) of sets. In particular, in the first category of results, Besicovitch proved
that regular sets are subsets of countable unions of rectifiable curves plus a set of H1

measure zero, whereas irregular sets are sets which intersect any rectifiable curve in a
set of H1 measure zero. For a modern presentation of Besicovitch’s theory of 1-sets,
see [17, Chapter 3].

Extensions of Besicovitch’s program have now been made in three different direc-
tions: expanding the range of dimensions, broadening the class of measures, and
developing quantitative analogues of the qualitative theory. The decomposition of m-
sets in R

n for arbitrary pairs of integers 1 ≤ m ≤ n − 1 and the characterizations of
regular and irregular sets in terms of measure-theoretic densities, global geometry, and
asymptotic geometry were established over a number of years, with principal contri-
butions by Federer [18], Marstrand [28], Mattila [29], and Preiss [37]. Analogues of
these results for a larger class of “absolutely continuous”measures satisfyingμ � Hm

were developed by Morse and Randolph [34], when m = 1, and by Preiss [37], when
2 ≤ m ≤ n − 1. Very recently, an extension of Morse and Randolph’s results to
arbitrary Radon measures in R

n was completed by Badger and Schul [10]. For related
recent developments in this direction, see [4], [16], and [19]. A parallel quantitative
theory of Ahlfors regular m-sets (and further results) was developed by Jones [23]
and Okikiolu [36], when m = 1, and extensively by David and Semmes [11,12],
when 1 ≤ m ≤ n − 1. A generalization of Jones’ and Okikiolu’s traveling salesman
theorems, which identify subsets of rectifiable curves in R

n , to a theorem identifying
subsets of certain higher-dimensional surfaces in R

n has recently been furnished by
Azzam and Schul [2].
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Geometry of Measures in Real Dimensions 1155

In [31–33], Martín and Mattila initiated a Besicovitch-style study of measure-
theoretic densities, global geometry, and asymptotic geometry of s-sets E ⊆ R

n , with
0 < s < n not necessarily an integer.1 One important finding in [31] is that several
geometric properties, which each characterize regular s-sets when s is an integer, no
longer describe the same classes of s-sets for fractional s.

Definition 1.1 (Rectifiability of s-sets) Let 1 ≤ m ≤ n−1 be integers and 0 ≤ s ≤ m.
Let E ⊆ R

n be an s-set (i.e., an Hs measurable set with 0 < Hs(E) < ∞). We say
that

(1) E is countably (Hs, m) rectifiable if there exist countably many Lipschitz maps
fi : R

m → R
n such that f Hs(E \⋃i fi (R

m)) = 0;
(2) E is countably (Hs, m) graph rectifiable if there are countably many m-

dimensional Lipschitz graphs �i ⊆ R
n (that is, isometric copies of graphs of

Lipschitz functions g : R
m → R

n−m) such that Hs(E \⋃i �i ) = 0; and,
(3) E is countably (Hs, m)C1 rectifiable if there exist countablymanym-dimensional

embedded C1 submanifolds Mi ⊆ R
n such that Hs(E \⋃i Mi ) = 0.

From the definition it is immediate that (3) ⇒ (2) ⇒ (1) for every s-set. When
s = m, the three variations of rectifiability in Definition 1.1 are in fact equivalent and
furthermore hold if and only if E is regular in the sense that

lim
r↓0

Hm(E ∩ B(x, r))

ωmrm
= 1 at Hm-a.e. x ∈ E,

where ωm is the m-dimensional Hausdorff measure on the unit ball in R
m (see [30]).

However, Martín and Mattila (see [31, §§5.3 and 5.4]) constructed compact s-sets in
the plane that show (1) � (2) � (3) when 0 < s < 1.

Another principal result from [31] is that s-sets with positive lower density are
always countably (Hs, m) rectifiable when s < m. This is in stark contrast with the
situation when s ≥ m; see the discussion between Theorems 1.5 and 1.6.

Theorem 1.2 [31, Theorem 4.1(1)] Let 1 ≤ m ≤ n − 1 be integers and let s < m. If
E ⊆ R

n is an s-set and

lim inf
r↓0

Hs(E ∩ B(x, r))

rs
> 0 at Hs -a.e. x ∈ E,

then E is countably (Hs, m) rectifiable.

In [32,33], Martín and Mattila explore a notion of fractional rectifiability based
on images of Hölder continuous maps. Recall that a map f : A → R

n defined over
A ⊆ R

m is (1/γ )-Hölder for some 1 ≤ γ < ∞ if

Höld1/γ f := sup
x,y∈A
x �=y

| f (x) − f (y)|
|x − y|1/γ < ∞.

1 A related investigation on the Hausdorff dimension of projections of s-sets onto lower-dimensional
subspaces was carried out earlier by Marstrand [27].
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1156 M. Badger, V. Vellis

Every (1/γ )-Hölder map defined over A ⊆ R
m admits an extension to a (1/γ )-Hölder

map defined over R
m , and trivially, restrictions of (1/γ )-Hölder maps are (1/γ )-

Hölder. It is also well known that a (1/γ )-Hölder map does not increase Hausdorff
dimension of a set by more than a factor of γ , and moreover,

Hγ t ( f (B)) � Ht (B) for all t ≥ 0 and B ⊆ A,

where the implicit constant depends only on (Höld1/γ f )t and the normalization used in
the definition of theHausdorffmeasuresHt andHγ t . In particular, for any integers 1 ≤
m ≤ n − 1 and s ∈ [m, n], images of (m/s)-Hölder maps f : [0, 1]m → R

n—which
to shorten terminology, we call (m/s)-Hölder m-cubes—are connected, compact sets
with finiteHs measure.WhereBesicovitch used rectifiable curves (images of Lipschitz
maps f : [0, 1] → R

n) as a basis for studying the structure of 1-sets, Martín and
Mattila use (m/s)-Hölder m-cubes as a basis to examine the structure of s-sets when
s ∈ [m, n].

From general considerations (see Appendix 1), it follows that for every s-set E ⊆
R

n , with s ∈ [m, n], we can write E as

E = Em→s ∪ E⊥
m→s, withHs(Em→s ∩ E⊥

m→s) = 0,

where

• Em→s is countably (Hs, m → s) rectifiable in the sense that Em→s is covered up
to a set of Hs measure zero by countably many (m/s)-Hölder m-cubes, and

• E⊥
m→s is purely (Hs, m → s) unrectifiable in the sense that E⊥

m→s intersects any
(m/s)-Hölder m-cube in a set of Hs measure zero.

The decomposition of E into its countably (Hs, m → s) rectifiable and purely
(Hs, m → s) unrectifiable parts is unique up to redefinition of the parts on sets
of Hs measure zero. Note that, when s = m, the countably (Hm, m → m) recti-
fiable m-sets are precisely the countably (Hm, m) rectifiable m-sets, which are by
now well understood (e.g., see [30]). It is an open problem to characterize countably
(Hs, m → s) rectifiable s-sets in terms of projections, measure-theoretic densities,
and/or asymptotic geometry when s > m.

Example 1.3 (Snowflake curves) Let �s ⊆ R
2 be a self-similar snowflake curve of

Hausdorff dimension 1 < s < 2 (see Fig. 1). Then there exists a (1/s)-Hölder
homeomorphism [0, 1] → �s (e.g., see [42, Chapter VII, §2]). In particular, �s is
(Hs, 1 → s) rectifiable.

Example 1.4 (Space-filling curves) The existence of Hölder space-filling (Peano)
curves is well known. For example, see [42, Chapter VII, §3] for a friendly exposition
of the construction of a (1/2)-Hölder surjection [0, 1] � [0, 1]2.More generally, there
exist ( j/k)-Hölder surjections [0, 1] j � [0, 1]k for any pair of integer dimensions
1 ≤ j ≤ k; this follows by taking scaling limits of Stong’s ( j/k)-Hölder bijections
Z

j → Z
k from [43] (for an outline of the argument, see [40, §9.1]). Thus, in the

language above, a k-dimensional cube [0, 1]k × {0}n−k is (Hk, j → k) rectifiable
for all 1 ≤ j ≤ k ≤ n. Precomposing Lipschitz maps g : [0, 1]k → R

n with the
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Geometry of Measures in Real Dimensions 1157

Fig. 1 Generators for a snowflake curve and four-corner Cantor set of Hausdorff dimension s, where
q = 4−1/s

space-filling map [0, 1] j � [0, 1]k , one sees that every countably (Hk, k) rectifiable
set E ⊆ R

n is countably (Hk, j → k) rectifiable whenever 1 ≤ j ≤ k.

The following theorem from [32] provides a necessary condition on the lower
density for an s-set to be countably (Hs, m → s) rectifiable.

Theorem 1.5 [32, Theorem 3.2] Let 1 ≤ m ≤ n − 1 be integers and let s ∈ [m, n],
let A ⊆ R

m be Hm measurable, and let f : A → R
n be (m/s)-Hölder. If E ⊆ f (A)

is Hs measurable, then

lim inf
r↓0

Hs(E ∩ B(x, r))

rs
> 0 for Hs -a.e. x ∈ E .

When s = m, it is well known that not all m-sets with positive lower m-density
are countably (Hm, m) rectifiable. For example, in [22, §5.4], Hutchinson proved that
m-dimensional self-similar sets K with disjoint parts have positive lower density,2 but
intersect images of Lipschitz maps f : R

m → R
n in sets of Hm measure zero. In

[32],Martín andMattila confirm that this behavior persists for self-similar s-sets when
s > m. Also see [33], where Theorem 1.6 is extended to more general sets, including
cylinders K × R

k , where K is a self-similar Cantor set.

Theorem 1.6 [32, Corollary 3.5] Let 1 ≤ m ≤ n − 1 be integers and let s ∈ [m, n].
Let K be a compact self-similar subset of R

n, K =⋃N
i=1 Si (K ), such that the different

parts Si (K ) are disjoint. If A ⊆ R
m is Hm measurable and f : A → R

n is (m/s)-
Hölder, then

Hs(K ∩ f (A)) = 0.

In this paper, we redevelopMartín andMattila’s framework in the general setting of
Radon measures inR

n . In particular, we investigate the connection between lower and

2 In fact, K is Ahlfors regular in the sense thatHm (K ∩ B(x, r)) ∼ rm when x ∈ K and 0 < r ≤ diamK ,
because K is self-similar.
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1158 M. Badger, V. Vellis

upperHausdorff densities of ameasure and its interactionwith (m/s)-Hölderm-cubes.
The main results and methods will be described momentarily. Before continuing, we
first record an extension of Theorem 1.2, which follows from Theorems B and C.

Theorem 1.7 Let 1 ≤ m ≤ n − 1 be integers, let s ∈ [m, n], and let t ∈ [0, s). If
E ⊆ R

n is a t-set and

lim inf
r↓0

Ht (E ∩ B(x, r))

r t
> 0 at Ht -a.e. x ∈ E,

then E is countably (Ht , m → s) rectifiable, i.e., there exist countably many (m/s)-
Hölder m-cubes �i such that Ht (E \⋃i �i ) = 0.

Moreover, if t ∈ [0, 1), then E is countably (Ht , 1) bi-Lipschitz rectifiable,
i.e., there exist countably many bi-Lipschitz embeddings fi : [0, 1] → R

n such
that Ht (E \⋃i �i ) = 0.

Example 1.8 (2n-corner Cantor sets) Let Et ⊆ [0, 1]n be the self-similar 2n-corner
Cantor set of Hausdorff dimension 0 < t < n, which is obtained via similarities that
dilate the unit cube by a factor q = 2−n/t (see Fig. 1 for the case n = 2).

• If 1 ≤ m ≤ n −1 and m ≤ t < m +1, then Et is purely (Ht , m → t) unrectifiable
by Theorem 1.6.

• If 1 ≤ m ≤ n − 1 and m ≤ t < m + 1, then Et is countably (Ht , m → s)
rectifiable for all s > t by Theorem 1.7.

• If t < 1, then Et is countably (Ht , 1) bi-Lipschitz rectifiable by Theorem 1.7.

1.1 Main Results and Organization of the Paper

Let 1 ≤ m ≤ n − 1 be integers and let s ∈ [m, n]. Recall that we define a (m/s)-
Hölder m-cube to be the image of a Hölder continuous map f : [0, 1]m → R

n with
exponent (m/s). When m = 1, we refer to a (1/s)-Hölder 1-cube as a (1/s)-Hölder
curve. By Proposition A.2, every Radon measure (that is, a locally finite Borel regular
outer measure) μ on R

n can be written uniquely as

μ = μm→s + μ⊥
m→s,

where

• μm→s is carried by (m/s)-Hölder m-cubes in the sense that there exist countably
many (m/s)-Hölder m-cubes �i ⊆ R

n such that μm→s(R
n \⋃i �i ) = 0, and

• μ⊥
m→s is singular to (m/s)-Hölder m-cubes in the sense that μ(�) = 0 for every

(m/s)-Hölder m-cube � ⊆ R
n .

When m = s = 1, Badger and Schul [10, Theorem A] gave a full characterization
of the 1-rectifiable μ1→1 and purely 1-unrectifiable μ⊥

1→1 parts of a Radon measure.
When s = n, the existence of space-filling curves implies that for everyRadonmeasure
μ onR

n ,μ = μm→n for all 1 ≤ m ≤ n−1.No other case of the following fundamental
problem in geometric measure theory has been completely solved. When s = m is
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Geometry of Measures in Real Dimensions 1159

an integer and the measure a priori satisfies μ � Hm , several solutions to Problem
1.9 have been given by Federer [18], Preiss [37], Azzam and Tolsa [4], and Tolsa and
Toro [44].

Problem 1.9 (Identification problem) Let 1 ≤ m ≤ n − 1 be integers and let s ∈
[m, n]. Find geometric or measure-theoretic characterizations of being carried by or
singular to (m/s)-Hölder m-cubes that identify μm→s and μ⊥

m→s for every Radon
measures μ on R

n .

In our principal result, we show that extreme behavior of the lower s-density is
sufficient to detect that a measure is carried by or singular to (1/s)-Hölder curves.
In the statement, μ E denotes the restriction of the measure μ to the set E ⊆ R

n ,
defined by the rule

μ E(F) = μ(E ∩ F) for all F ⊆ R
n .

Theorem A (Behavior at extreme lower densities) Let μ be a Radon measure on R
n

and let s ∈ [1, n). Then the measure

μs
0

:= μ

{

x ∈ R
n : lim inf

r↓0
μ(B(x, r))

rs
= 0

}

(1.1)

is singular to (1/s)-Hölder curves. At the other extreme, the measure

μs
∞ := μ

{

x ∈ R
n :
∫ 1

0

rs

μ(B(x, r))

dr

r
< ∞ and lim sup

r↓0
μ(B(x, 2r))

μ(B(x, r))
< ∞

}

(1.2)
is carried by (1/s)-Hölder curves.

Remark 1.10 Note that TheoremA extends Theorem 1.5 to arbitrary Radonmeasures;
see Corollary 6.5. In (1.2), if the Dini-type condition

∫ 1
0 [rs/μ(B(x, r))] r−1dr < ∞

holds at some x , then limr↓0 r−sμ(B(x, r)) = ∞. Thus, TheoremA identifies diverse
behaviors of a measure on the points of vanishing lower density and the points of
“rapidly” infinite density. It is possible to remove the doubling condition in (1.2) by
using dyadic cubes; see Theorem 6.9. The special case s = 1 of Theorem A first
appeared in [8,9].

The following corollary of Theorem A is immediate.

Corollary 1 Let μ be a Radon measure on R
n, let s ∈ [1, n), and let t ∈ [0, s). Then

the measure

μt+ := μ

{

x ∈ R
n : 0 < lim inf

r↓0
μ(B(x, r))

r t
≤ lim sup

r↓0
μ(B(x, r))

r t
< ∞

}

(1.3)

is carried by (1/s)-Hölder curves.
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1160 M. Badger, V. Vellis

Our next pair of results gives sharpened versions of Corollary 1, depending on
the values of s and t . Recall that a set � ⊆ R

n is a bi-Lipschitz curve provided that
� = f ([0, 1]) for some map f : [0, 1] → R

n such that

L−1|x − y| ≤ | f (x) − f (y)| ≤ L|x − y| for all x, y ∈ [0, 1], for some 1 ≤ L<∞.

In line with the terminology above, we say that a measure μ is carried by bi-Lipschitz
curves if there exist countably many bi-Lipschitz curves �i such thatμ(Rn \⋃i �i ) =
0. Theorem 1.7 is an immediate consequence of Theorems B and C and the basic fact
that lim supr↓0 r−tHt (E ∩ B(x, r)) ≤ C(t) < ∞ atHt -a.e. x , for every t-set E (e.g.,
see [30]).

Theorem B (Improvement to bi-Lipschitz curves) Let μ be a Radon measure on R
n

and let t ∈ [0, 1). Then the measure μt+ is carried by bi-Lipschitz curves.

Theorem C (Improvement to (m/s)-Hölder m-cubes) Let μ be a Radon measure on
R

n, let 1 ≤ m ≤ n − 1 be an integer, let s ∈ [m, n), and let t ∈ [0, s). Then the
measure μt+ is carried by (m/s)-Hölder m-cubes.

Example 1.11 Garnett, Killip, and Schul [20] examined a family of Radon measures
{μδ : 0 ≤ δ ≤ 1/3} on R

n (n ≥ 2) such that

0 < μδ(B(x, 2r)) ≤ Cδ μδ(B(x, r)) < ∞ for all x ∈ R
n and r > 0 (0 < δ ≤ 1/3),

where μ0 is a discrete measure and μ1/3 is Lebesgue measure. They proved that
there exists δ0 = δ0(n) ∈ (0, 1/3) such that for all 0 < δ ≤ δ0, the measure μδ is
simultaneously carried by Lipschitz curves and singular to bi-Lipschitz curves (see
the introduction of either [8] or [9]). As a consequence, Badger and Schul (see [8,
Example 1.15]) showed that for all 0 < δ ≤ δ0,

lim
r↓0

μδ(B(x, r))

r
= ∞ at μδ-a.e. x ∈ R

n .

By Theorem B, we may conclude in addition that for all 0 < δ ≤ δ0 and for all
0 < t < 1,

lim inf
r↓0

μδ(B(x, r))

r t
∈ {0,∞} or lim sup

r↓0
μδ(B(x, r))

r t
∈ {0,∞} at μδ-a.e. x ∈ R

n .

The remainder of the paper is organized into two parts. In Part I (§§2–5), we
develop several Hölder and bi-Lipschitz parameterization theorems for a variety of
“small” sets, which are of separate interest (see especially Theorems 3.2 and 3.4). In
Part II (§§6–7), we derive Theorems A, B, and C using geometric measure theory
techniques combined with the technology of Part I. Because it is focused on metric
geometry of Euclidean sets, Part I may be read independently from the Introduction
and Part II.
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Part I. Parameterizations

In this part of the paper, we develop several parameterization theorems, which identify
certain “small” sets as subsets of “regular” curves or surfaces. In Sect. 2, we give a
rather simple criterion for the leaves of a tree of sets to be contained in a (1/s)-Hölder
curve. This result (see Theorem 2.3) extends the special case s = 1 (Lipschitz curves),
which was described by Badger and Schul in [9, §3]. In Sects. 3, 4 and 5, we prove
that a Euclidean set with Assouad dimension t strictly less than s is always contained
in a (m/s)-Hölder m-plane, where m = �s�. In other words, sets with small Assouad
dimension are contained in Hölder surfaces (see Theorem 3.2). In addition, we prove
under an a priori quantitative topological assumption that sets with small Assouad
dimension are in fact contained in bi-Lipschitz surfaces (see Theorem 3.4). The proof
of this pair of results incorporates and builds on ideas from MacManus’ construction
of quasicircles in [26].

2 Drawing Hölder Curves Through the Leaves of Summable Trees

Definition 2.1 We define a tree of sets T =⊔∞
k=0 Tk to be a non-empty collection of

bounded sets in R
n with

(i) Unique root: #T0 = 1,
(ii) Parents: for all k ≥ 1 and E ∈ Tk , there is an associated set E↑ ∈ Tk−1 called

the parent of E ,
(iii) Geometric diameters: there exist constants 0 < ρ < 1 and P1, P2 > 0 such that

P1ρ
k ≤ diamE ≤ P2ρ

k

for all k ≥ 0 and E ∈ Tk , and
(iv) Gap-diameter bound: there exists P3 > 0 such that

gap(E, E↑) := inf
x∈E

inf
y∈E↑

|x − y| ≤ P3diamE

for all k ≥ 1 and for all E ∈ Tk .

Let Top(T ) denote the unique set in T0, which we call the top of T . An infinite branch
of T is a sequence (Ek)

∞
k=0 in T with E0 = Top(T ) and E↑

k = Ek−1 for all k ≥ 1.
A point x ∈ R

n is called a leaf of T if there exists an infinite branch (Ek)
∞
k=0 and a

sequence (xk)
∞
k=1 with xk ∈ Ek for all k ≥ 0 such that x = limk→∞ xk . We let

Leaves(T ) = {x ∈ R
n : x is a lea f o f T }

denote the set of leaves of T .

Remark 2.2 Definition 2.1 is loosely modeled on a tree of dyadic cubes, but designed
with additional flexibility for applications (e.g., see Theorem6.7). Axioms (iii) and (iv)
in the definition ensure that every infinite branch admits a unique leaf of T : For every
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1162 M. Badger, V. Vellis

infinite branch (Ek)
∞
k=0 of T , there exists x ∈ Leaves(T ) such that x = limk→∞ xk

for every sequence (xk)
∞
k=0 with xk ∈ Ek for all k ≥ 0.

In the main result of this section, we prove that the leaves of a tree of sets with
summable diameters are contained in a Hölder curve. The special case of Lipschitz
curves (see the proof of [9, Lemma 3.3]) is easier, because of the special fact that
every connected, compact set in R

n of finite H1 measure is necessarily the image of
a Lipschitz map f : [0, 1] → R

n (see [1, Theorem 4.4]). For higher-dimensional
curves, we must construct the Hölder parameterization by hand.

Theorem 2.3 Let T be a tree of sets in the sense of Definition 2.1. If s ≥ 1 and

Ss(T ) :=
∑

E∈T
(diamE)s < ∞, (2.1)

then Hs(Leaves(T )) = 0 and there exists a (1/s)-Hölder map f : [0, 1] → R
n such

that Leaves(T ) ⊆ f ([0, 1]). Moreover, the (1/s)-Hölder constant of f can be taken
to depend only on Ss(T ) and the geometric parameters of the tree (ρ, P1, P2, P3).

Proof Assume that (2.1) holds for some s ≥ 1. Replacing each set in T with its
closure, we may assume without loss of generality that the sets in T are closed. By
deleting sets from T if necessary, we may also assume without loss of generality that
every set in T belongs to an infinite branch. For all k ≥ 0 and for all E ∈ Tk , choose
a point xk,E ∈ E . Construct a connected set �◦ by drawing a line segment from xk,E

to xk−1,E↑ for all k ≥ 1 and E ∈ Tk , and let � denote the closure of �◦. By Remark
2.2, � contains Leaves(T ). Our present goal is to show that � admits a (1/s)-Hölder
parameterization by a closed interval. More specifically, for each k ≥ 0 and E ∈ Tk ,
define

Mk,E := 2
∞∑

j=k+1

∑

F∈T j

F↑...=E

|x j,F − x j−1,F↑ |s,

where the sum is over all descendants of E in T . Note that M := M0,Top(T ) < ∞,
because

1

2
M0,Top(T ) ≤

∞∑

j=1

∑

F∈T j

(
diamF + gap

(
F, F↑)+ diamF↑)s

≤
∞∑

j=1

∑

F∈T j

((

1 + P3 + P2

P1ρ

)

diamF

)s

<

(

1 + P3 + P2

P1ρ

)s

Ss(T ) < ∞

by (2.1), where P1, P2, P3, and ρ are the geometric parameters of T (see Definition
2.1). We will construct a (1/s)-Hölder continuous map g : [0, M] → R

n such that
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� = g([0, M]) by defining a sequence gk : [0, M] → R
n of piecewise linear maps

whose limit is g.
For each k ≥ 1, the image of gk is the “truncated tree” �k := ⋃k

j=1
⋃

E∈T j
[x j,E ,

x j−1,E↑]. Roughly speaking, gk is defined by starting at the root x0,Top(T ) and then
touring each of the edges [x j,E , x j−1,E↑] in �k twice (once “down the tree,” once “up
the tree”) at speed

∣
∣x j,E − x j−1,E↑

∣
∣1−s

,

with the additional rule that whenever reaching a point xk,E in the “lowest level” of
�k , we pause for Mk,E time units in the domain of gk before continuing the tour. By
defining the maps g1, g2, . . . inductively, one can ensure that gk(t) = gk+1(t) for all
times t where g′

k(t) �= 0 (that is, for all times where the tour of �k is not paused). Or,
in other words, one can construct gk+1 from gk by modifying the definition of gk only
in the intervals where the tour of �k was paused. We leave it to the reader to give a
precise definition of the maps gk if desired. The salient facts of any such construction
are these:

• gk([0, M]) = �k for all k ≥ 1;
• |gk(x) − gk(y)| ≤ Ak |x − y| for all k ≥ 1 and x, y ∈ [0, M], where

Ak := sup
1≤ j≤k

sup
E∈T j

∣
∣x j,E − x j−1,E↑

∣
∣1−s ≤

(
P2

(
1 + P3 + ρ−1

))1−s
ρk(1−s); and

• |gk(x) − gk+1(x)| ≤ Bk for all k ≥ 1 and x ∈ [0, M], where

Bk := sup
E∈Tk+1

|xk+1,E − xk,E↑ | ≤ P2(ρ + P3ρ + 1)ρk .

Define g : [0, M] → R
n pointwise by g(t) := limk→∞ gk(t) = g1(t) +∑∞

k=1(gk+1(t) − gk(t)). The existence and continuity of g are immediate, since∑∞
k=1 Bk < ∞. From this point, it is a standard exercise to show that g is (1/s)-

Hölder continuous with Hölder constant depending on at most P1, P2, P3, ρ, and M
(hence on Ss(T )); cf. [42, LemmaVII.2.8]. It is also easy to check that g([0, M]) = �.

It remains to show thatHs(Leaves(T )) = 0. If E, E1 ∈ T and E1 is a descendent
of E (i.e., E↑

1 = E), then

sup
x∈E1

dist(x, E) ≤ gap(E1, E) + diamE1 ≤ (P3 + 1)diamE1 ≤ (P3 + 1)
P2

P1
ρdiamE .

More generally, if E, Ek ∈ T and Ek is a kth descendent of E (i.e., E↑
k = Ek−1, …,

E↑
2 = E1, and E↑

1 = E), then

sup
x∈Ek

dist(x, E) ≤ sup
x∈Ek

dist(x, Ek−1) + · · · + sup
x∈E1

dist(x, E)

≤ (P3 + 1)
P2

P1
(ρk + · · · + ρ)diamE .
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Thus, for all E ∈ T , the set

Ẽ :=
{

x ∈ R
n : dist(x, E) ≤ (P3 + 1)

P2

P1

ρ

1 − ρ
diamE

}

contains all descendants of E . Hence Leaves(T ) ⊆ ⋃
T ∈Tk

T̃ for all k ≥ 1. In
particular, we can bound the s-dimensional Hausdorff content

Hs∞(Leaves(T )) ≤
∑

E∈Tk

(diam Ẽ)s ≤ C(P1, P2, P3, ρ)
∑

E∈Tk

(diamE)s for all k ≥ 1.

Letting k → ∞, we obtain Hs(Leaves(T )) = 0, because
∑

E∈T (diamE)s < ∞. ��

3 Drawing Surfaces Through Sets with Small Assouad Dimension

In this section,we present four related parameterization theorems,which draw surfaces
through “small” and/or uniformly disconnected sets; see Theorems 3.2, 3.4, 3.7, and
3.8. The notion of size that we use for this purpose is Assouad dimension; for an
in-depth survey of this concept, see [25].

Definition 3.1 (Assouad dimension) Let X be a metric space, let β > 0, and let
C > 1. We say X is (C, β)-homogeneous (or simply, X is β-homogeneous) if for
every bounded set A ⊆ X and for every δ ∈ (0, 1), there exist sets A1, . . . , AN ⊆ X
such that

A1 ∪ · · · ∪ AN ⊇ A, diamAi ≤ δdiamA, and card{A1, . . . , AN } ≤ Cδ−β.

The Assouad dimension of X , denoted dimA X , is defined by

dimA X := inf{β > 0 : X is β-homogeneous} ∈ [0,∞].

The first parameterization theorem extends [33, Theorem 3.4], a measure-theoretic
condition for an s-set to be contained in a Hölder surface, which is stated without a
proof. For the connection between Assouad dimension and the condition in [33], see
Lemma 7.1. We supply a proof of Theorem 3.2 in Sect. 4.

Theorem 3.2 (Hölder parameterization) Let 1 ≤ m ≤ n − 1 be integers, let s ∈
[m, n), and let E ⊆ R

n. If dimA E < s, then there exists an (m/s)-Hölder continuous
map f : R

m → R
n such that E ⊆ f (Rm).

In order to obtain bi-Lipschitz parameterizations or even bi-Hölder parameteriza-
tions, it is natural to impose topological assumptions on the set. To wit, it is well
known that if E ⊆ R

n is a totally disconnected closed set, then E is homeomorphic to
a subset of the standard ternary Cantor set (e.g., see [24, Theorem 7.8]). Furthermore,
for every positive integer m < n, there exists a topological embedding f : R

m → R
n

whose image contains E (e.g., see [38]). To ensure that f satisfies additional regularity
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properties, we employ a scale-invariant version of total disconnectedness, which was
introduced by David and Semmes [13, §15].

Definition 3.3 (Uniformly disconnected spaces) Let X be a metric space. We say
that X is c-uniformly disconnected for some c ≥ 1 if for all x ∈ X and for all
0 < r ≤ diamX , there exists Ex,r ⊆ X containing x such that diamEx,r ≤ r and
gap(Ex,r , X \ Ex,r ) ≥ r/c. To suppress dependence on c, we may simply say that X
is uniformly disconnected.

The second parameterization theorem states that under the additional assumption
of uniform disconnectedness, the Hölder parameterization in Theorem 3.2 upgrades
to a bi-Lipschitz parametrization. We provide a proof of Theorem 3.4 in Sect. 5.

Theorem 3.4 (bi-Lipschitz parameterization) Let 1 ≤ m ≤ n − 1 be integers. If
E ⊆ R

n is uniformly disconnected and dimA E < m, then there exists a bi-Lipschitz
embedding f : R

m → R
n such that E ⊆ f (Rm).

When dimA E < 1, the set E is uniformly disconnected by [35, Proposition 5.1.7]
(also see [13, Lemma 15.2]). Thus, Euclidean sets of Assouad dimension strictly less
than one are always contained in a bi-Lipschitz line.

Corollary 3.5 Let E ⊆ R
n. If dimA E < 1, then there exists a bi-Lipschitz embedding

f : R → R
n such that E ⊆ f (R).

Remark 3.6 The upper bound on the Assouad dimension in Theorem 3.4 is necessary
in that there do not exist bi-Lipschitz embeddings f : X → R

n when dimA X ≥ n.
This assertion follows from the well-known fact that Assouad dimension is a bi-
Lipschitz invariant (see [25, Theorem A.5]) and the fact that uniformly disconnected
sets inR

n are porous andhaveAssouaddimension strictly less thann (see [25, Theorem
5.2]).

In the event that E is uniformly disconnected and dimA E ≥ m, one may expect
that the bi-Lipschitz embedding of Theorem 3.4 could be replaced by a (1/γ )-bi-
Hölder embedding of R

m provided that dimA E < γ m. However, (1/γ )-bi-Hölder
embeddability of R

m into R
n when γ m < n is a formidable problem, which has been

solved only in special cases such as whenm = 1 [7,39], when 1
γ
is sufficiently close to

1 [14,15], or when n is much bigger than γ m [3]. By modifying the proof of Theorem
3.4 using the snowflaking techniques for polygonal paths from [7,39], one can obtain
the following bi-Hölder variant of the bi-Lipschitz parameterization theorem when
m = 1. Because we do not need Theorem 3.7 for our applications in Part II, we leave
details of the proof of the theorem to the interested reader.

Theorem 3.7 (bi-Hölder parameterization) Let n ≥ 2 be an integer and let s ∈ [1, n).
If E ⊆ R

n is uniformly disconnected and dimA E < s, then there exists a (1/s)-bi-
Hölder embedding f : R → R

n (that is, both f and f −1 are (1/s)-Hölder) such that
E ⊆ f (R).

MacManus [26] proved that if E ⊆ R
n is uniformly disconnected, then there exists

a quasisymmetric3 embedding f : R → R
n whose image contains E . Note that this

3 For the definition of and background on quasisymmetric maps, we refer the reader to [21].
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result does not require a bound on the dimension of E , which is natural in view of the
fact that quasisymmetric maps may increase the dimension of sets. Arguments similar
to ones used in the proof of Theorem 3.4 (also see the proof of [45, Theorem 6.3])
can be used to obtain the following extension of MacManus’ result. We leave details
of the proof of Theorem 3.8 to the interested reader; see Remark 5.4.

Theorem 3.8 (Quasisymmetric parameterization) Let 1 ≤ m ≤ n − 1 be integers.
If E ⊆ R

n is uniformly disconnected, then there exists a quasisymmetric embedding
f : R

m → R
n such that E ⊆ f (Rm).

Remark 3.9 It is natural to ask to what extent do Theorems 3.2, 3.4, 3.7, and 3.8 hold
with other metric spaces. We leave this question open for future research.

In the remainder of this section, we fix some basic notation used in our construction
of the surfaces appearing in Theorems 3.2 and 3.4. Section 4 (the proof of Theorem
3.2) and Sect. 5 (the proof of Theorem 3.4) may be read independently of each other.

Cubes Given l ∈ (0,∞) and integers 0 ≤ k ≤ n, a k-cube of side length l,

K := I1 × · · · × In ⊆ R
n,

is a product of bounded, closed intervals Ii ⊆ R such that the length |Ii | = l for k
indices and |Ii | = 0 for n −k indices. IfK is an n-cube, then the topological boundary
∂K ofK is the union of 2n-many (n − 1)-cubes, which are called the (n − 1)-faces of
K. In general, for all 1 ≤ k ≤ n, every k-face of K is the union of 2k-many (k − 1)-
cubes, which are called the (k − 1)-faces of K. The 0-faces and 1-faces of a cube K
are commonly called the vertices and edges, respectively, ofK. For each (n − 1)-face
F of an n-cube K, there is a unique face F̃ of K such that

F ∩ F̃ = ∅;

we call F̃ the antipodal face of F .
For all x = (x1, . . . , xn) ∈ R

n and r > 0, let Cn(x; r) ⊆ R
n denote the n-cube

centered at x of side length 2r > 0 with edges parallel to the coordinate axes, that is,

Cn(x; r) := [x1 − r, x1 + r ] × · · · × [xn − r, xn + r ].

For all x ∈ R
n and 0 < r < R, letAn(x; r, R) ⊆ R

n denote the closed annular region
between Cn(x; r) and Cn(x; R),

An(x; r, R) := Cn(x; R) \ Cn(x; r).

Grids For all δ > 0, let Gδ denote the grid of cubes of side length δ,

Gδ := {[m1δ, (m1 + 1)δ] × · · · × [mnδ, (mn + 1)δ] : m1, . . . , mn ∈ Z}.
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For all integers 0 ≤ k < n, define the k-skeleton of Gδ ,

G k
δ :=

⋃
{F : F is a k − face of some K ∈ Gδ} .

For instance, G 0
δ is the set of all vertices of cubes in Gδ , while G 1

δ is the union of all
edges of cubes in Gδ .

Remark 3.10 (Length bound) Suppose that M is a union of cubes inGd with diamM =
Dδ and γ ⊆ G 1

δ is an arc with endpoints in G 0
δ such that γ ⊆ M . Then M is formed

from at most Dn distinct cubes in Gδ , each of which has n2n−1-many edges. Thus,
since an arc contained in G 1

δ traverses each edge at most once,

H1(γ ) ≤ Dn2n−1nδ = C(n)
[
δ−1diamM

]n
δ.

Tubes Given 0 < ε ≤ δ and an oriented polygonal arc γ ⊆ G 1
δ with initial endpoint

y1 ∈ G 0
δ and terminal endpoint y2 ∈ G 0

δ , define

Tubeε(γ ) =
⋃{

Cn(x; ε/2) : x ∈ γ and dist(x, {y1, y2}) ≥ ε/2
}
,

the tube around γ of width ε, where the union is taken over all points x ∈ γ whose
distance from the endpoints of γ are at least ε/2. Distinguishing between the initial
endpoint y1 and terminal endpoint y2 of γ , we can split the topological boundary ∂T
of T = Tubeε(γ ) into three distinguished pieces:

• Entrance(T ) is the (n − 1)-cube in ∂T of side length ε that contains y1;
• Exit(T ) is the (n − 1)-cube in ∂T of side length ε that contains y2; and
• Side(T ) is closure of the remainder of ∂T , i.e.,

Side(T ) := ∂T \ (Entrance(T ) ∪ Exit(T )).

Lemma 3.11 (Straightening tubes) Let 0 < ε ≤ δ/(8
√

n), let γ ⊆ G 1
δ be a simple

oriented polygonal arc with distinct endpoints in G0
δ , and let T denote Tubeε(γ ). Then

there exists L = L(n, δ−1H1(γ )) > 1 and an L-bi-Lipschitz orientation preserving
map

φ : T → [0,H1(γ )] × [−ε/2, ε/2]n−1

such that the restrictions of φ to Entrance(T ) and Exit(T ) are isometries with

φ(Entrance(T )) = {0} × [−ε/2, ε/2]n−1,

φ(Exit(T )) = {H1(γ )} × [−ε/2, ε/2]n−1.
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Fig. 2 Proof of Lemma 3.11

Proof We start by breaking up T into canonical tubes. Consider the two arcs

�1 := [0, 1
2

]× {0}n−1 and �2 :=
([
0, 1

2

]× {0}n−1
)

∪
({ 1

2

}× [0, 1
2

]× {0}n−2
)

.

Then γ can be written as a concatenation of consecutive arcs (see Fig. 2) γ 1, . . . , γ m

such that for each i = 1, . . . , m either γ i is congruent to �1 and H1(γ i ) = 1
2δ or γ i

is congruent to �2 andH1(γ i ) = δ. Thus, we can decompose T as an almost disjoint
union of consecutive tubes

Tubeε(γ
1), Tubeε(γ

2), . . . , Tubeε(γ
m−1), Tubeε(γ

m),

intersecting in (n − 1)-cubes congruent to {0} × [−ε/2, ε/2]n−1 (see Fig. 2).
In viewof the possible, simple geometric configurations, there exists L0 = L0(n) >

1 such that for each Tubeε(γ
j ), there exists an L0-bi-Lipschitz map

φ j : Tubeε(γ
j ) → [λ j−1, λ j ] × [−ε/2, ε/2]n−1,

where λ0 = 0 and λ j − λ j−1 = H1(γ j ) for all 1 ≤ j ≤ m. Moreover, working
sequentially, we are plainly free to choose the maps so that

• φ j maps Entrance(Tubeε(γ
j )) and Exit(Tubeε(γ

j )) isometrically onto

{λ j−1} × [−ε/2, ε/2]n−1 and {λ j } × [−ε/2, ε/2]n−1,

respectively, for all 1 ≤ j ≤ m, and
• φ j |Entrance(Tubeε(γ j )) = φ j−1|Exit(Tubeε(γ j−1)) for all 2 ≤ j ≤ m.

Thus, we can define a map

φ : Tubeε(γ ) → [0,H1(γ )] × [−ε/2, ε/2]n−1

by setting φ|Tubeε(γ j ) = φ j for all 1 ≤ j ≤ m.
To see that φ is bi-Lipschitz, let x, y ∈ T . If there exists j ∈ {2, . . . , m} such

that x, y ∈ Tubeε(γ
j−1) ∪ Tubeε(γ

j ), then—once again—in view of the possible,
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simple geometric configurations, the restriction of φ to Tubeε(γ
j ) ∪ Tubeε(γ

j ) is
L1-bi-Lipschitz for some L1 = L1(n) > 1. Alternatively, if x ∈ Tubeε(γ

j ) and
y ∈ Tubeε(γ

i ) for some j > i + 1, then

|x − y| ≥ gap(Tubeε(γ
j ),Tubeε(γ

i )) ≥ gap(γ i , γ j ) − √
nε ≥ δ/2 − δ/4 = δ/4,

because γ has distinct endpoints and 0 < ε ≤ δ/(8
√

n). Hence

|φ(x) − φ(y)| ≤
√

H1(γ )2 + nε2 < 1.5H1(γ ) ≤ 6

δ
H1(γ )|x − y|,

again because 0 < ε ≤ δ/(8
√

n). A similar argument shows that |φ(x)−φ(y)| ≥ δ/2
and

|x − y| ≤ 3

δ
H1(γ )|φ(x) − φ(y)|.

Therefore, φ is L-bi-Lipschitz for some L = L(n, δ−1H1(γ )). ��

4 Proof of Theorem 3.2 (Hölder Surfaces)

We first treat the case that m = n − 1 of Theorem 3.2 in Proposition 4.1. Afterwards,
we derive the proof of Theorem 3.2 in general codimension.

Proposition 4.1 (Hölder parametrization in codimension one) For every choice of
n ≥ 2, s ∈ [n − 1, n), C > 1, and 0 ≤ β < s, there exist constants

C ′(n, s, C, β) > 1 and L = L(n, s, C, β) > 1

such that for every (C, β)-homogeneous, closed set E ⊆ R
n, there exists a (C ′, (n −

1)β/s)-homogeneous, closed set E ′ ⊆ R
n−1 and a (n−1)/s-Hölder map f : E ′ → E

such that

Höld(n−1)/s f ≤ L and f (E ′) = E .

Proof of Proposition 4.1 Let us abbreviate (n − 1)/s =: α. Since E is (C, β)-
homogeneous, there exists C0 = C0(n, C, β) with the following property:

For all k ∈ N, x ∈ R
n , and r > 0, if the cube Q := Cn(x; r) is divided into kn

essentially disjoint subcubes Q1, . . . , Qkn of side length 2r/k, then

card{i ∈ {1, . . . , kn} : Qi ∩ E �= ∅} ≤ C0kβ.

Fix a number ε ∈ (0, 1) so that ε−1 is an integer and

ε ≤ (3n−1C0)
1

β−s .
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Finally, set N = 1 + �C0ε
−β�. We split the argument into two steps.

Step 1 Assume that E is bounded. Composing with appropriate similarities on the
domain and target of f , we may assume that E ⊆ [−1, 1]n . Our goal is to construct
a (C ′, βα)-homogeneous, closed set E ′ ⊆ [−1, 1]n−1 and a α-Hölder map f : E ′ →
R

n with f (E ′) = E .

Define M∅ := [−1, 1]n . By way of induction, assume that a cube Mw has been
defined for some finite word w with letters drawn from {1, . . . , N }. Divide Mw into
ε−n-many subcubes with side lengths 2ε|w|+1 and mutually disjoint interiors; label
the subcubes that intersect E as Mw1, . . . , MwNw . Note that Nw ≤ N . Let W denote
the set of all words, for which Mw has been defined.

Define M ′
∅ = [−1, 1]n−1. Inductively, given a cube M ′

w = Cn−1(zw; ε|w|/α), the
upper bound of Nw and the choice of ε allow us to find cubes

M ′
wi = Cn−1(zwi ; ε(|w|+1)/α) ⊆ M ′

w (i ∈ {1, . . . , Nw})

such that for all distinct i, j ∈ {1, . . . , Nw},

gap(M ′
wi , M ′

w j ) ≥ ε(|w|+1)/α.

Set

E ′ :=
⋂

k∈N

⋃

w∈W,|w|=k

M ′
w.

Then E ′ is compact and (C ′, αβ)-homogeneous for some C ′ = C ′(n, s, C, β).
For each x ∈ E ′, there exists a growing sequence (wk) of words inW (i.e., for each

k, the word wk+1 = wki for some i ∈ {1, . . . , N }) such that

⋂

k∈N
M ′

wk
= {x}.

Given a point x ∈ E ′ and an associated sequence (wk), define f (x) to be the unique
point in

⋂
k∈N Mwk . To show that f is α-Hölder continuous, fix x, y ∈ E ′ and let w

denote the longest word such that x, y ∈ M ′
w. Then

| f (x) − f (y)| ≤ diamMw = 2
√

nε|w| ≤ ε−1(gap(M ′
wi , M ′

w j ))
α ≤ ε−1|x − y|α.

Thus, f is α-Hölder continuous and f (E ′) ⊆ E . In fact, because every point in E can
be represented as the unique point in

⋂
k∈N Mwk for some growing sequence (wk) of

words inW , we have f (E ′) = E .

Step 2 Assume that E is unbounded. For each k ≥ 0, let

Ek := E ∩ [−ε−k, ε−k]n,
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where ε continues to denote the parameter chosen above. By adding the origin to the
set E if necessary, we may assume that Ek �= ∅ for all k ≥ 0. Each set Ek is (C, β)-
homogeneous, because E is (C, β)-homogeneous and homogeneity is inherited by
subsets.

By Step 1, there exists a (C ′, αβ)-homogeneous set E ′
0 ⊆ R

n−1, a constant L0 =
L0(n, s, C, β) > 1, and a α-Hölder continuous map f0 : E0 → R

n such that

Höldα f ≤ L0 and f0(E ′
0) = E0.

Inductively, suppose that for some k ≥ 0, we have defined a (C ′, αβ)-homogeneous
set E ′

k ⊆ [−ε−k/α, ε−k/α]n−1 and a α-Hölder map fk : E ′
k → R

n such that
Höldα f ≤ L and fk(E ′

k) = Ek . Divide Qk+1 = [−ε−k−1, ε−k−1]n into ε−n-many
cubes with mutually disjoint interiors and side lengths 2ε−k and denote byQk+1 this
collection of cubes. Let Qk,1, . . . Qk,mk be those cubes in Qk+1 that intersect with
E . Set Qk,1 = [−ε−k, ε−k]n . Since mk ≤ N , we can find, cubes Q′

k,1, . . . , Q′
k,mk

in

Q′
k+1 = [−ε−(k+1)/α, ε−(k+1)/α]n−1 such that Q′

k,1 = [−ε−k/α, ε−k/α]n−1 and

gap(Q′
k,i , Q′

k, j ) ≥ (2ε)−k/α for i �= j.

Set E ′
k,1 = E ′

k . For each i ∈ {2, . . . , mk} (if any) let ζk,i be a similarity of R
n

that maps Qk,i onto [−1, 1]n and ζ ′
k,i be a similarity of R

n−1 that maps Q′
k,i onto

[−1, 1]n−1. Let also E ′′
k,i and gk,i : E ′′

k,i → R
n be the (C ′, αβ)-homogeneous subset

of [−1, 1]n−1 and α-Hölder map, respectively, of Case 1 for ζk,i (Qk,i ∩ E). Set
E ′

k,i = (ζ ′
k,i )

−1(E ′′
k,i ) and

E ′
k+1 =

mk⋃

i=1

E ′
k,i .

Define fk+1 : E ′
k+1 → R

n with fk+1|E ′
k,1

= fk |E ′
k,1

and for i = 2, . . . , mk (if any)

fk+1|E ′
k,i

= (ζk,i )
−1 ◦ gk,i ◦ ζ ′

k,i |E ′
k,i

.

It is easy to see that the map fk+1 : E ′
k+1 → R

n is α-Hölder with Höldα f =
L1(n, C, β, s). Furthermore, the set E ′

k+1 is (C1, αβ)-homogeneous for some constant
C1 = C1(n, C, β, s).

Thus, we construct a nested sequence of (C1, αβ)-homogeneous sets E ′
1 ⊆ E ′

2 ⊆
· · · in R

n−1 and a sequence of α-Hölder maps fk : E ′
k → R

n such that for each
k ∈ N,

Höldα fk = L1, fk+1|E ′
k

= fk |E ′
k
, and fk(E ′

k) = Ek .

Set E ′ =⋃k∈N Ek . Since the Hölder constant is uniform, the sequence fk converges
uniformly on compact sets to a map f : E ′ → R

n which is α-Hölder. Moreover, E ′
is (C1, αβ)-homogeneous and f (E ′) = E .
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1172 M. Badger, V. Vellis

Now we are ready to show Theorem 3.2.

Proof of Theorem 3.2 Let us abbreviate m/s =: α. Since Hölder maps extend to
the closure of their domains with the same Hölder constant, and since dimA(E) =
dimA(E)wemayassume for the rest that E is closed.ByMcShane’s extension theorem
(see e.g., [41, VI 2.2, Theorem 3]), it is enough to construct a set E ′ ⊆ R

m and a α-
Hölder map f : E ′ → E such that E = f (E ′). Let k = �s� be the smallest integer,
bigger or equal to s. Fix β ∈ (k − 1, s) such that β > dimA(E). Then there exists
C > 1 such that E is (C, β)-homogeneous.

If k < n then by Proposition 4.1 there exists a β-homogeneous set A1 ⊆ R
n−1 and

a Lipschitz surjective map g1 : A1 → E . Proceeding inductively, for i = 2, . . . , n −k
there exists β-homogeneous sets Ai ⊆ R

n−i and Lipschitz surjective maps gi : Ai →
Ai−1. Thus, g = g1 ◦ · · · ◦ gn−m is a Lipschitz map of An−k ⊆ R

k onto E and it
remains to produce a αβ-homogeneous set E ′′ ⊆ R

m and a α-Hölder surjective map
f : E ′′ → An−k . Hence, we may assume for the rest that k = n.
Suppose that k = n. Fix a number α1 ∈ (0, 1) such that

n − 1

s
< α1 <

n − 1

β
.

Inductively, assuming we have defined numbers α1, . . . , αi ∈ (0, 1) for some i ∈
{1, . . . , n − m − 1}, fix a number ai+1 ∈ (0, 1) such that

n − i − 1

n − i
< αi+1 < min

{

1,
n − i − 1

α1 · · ·αiβ

}

.

An inductionon i shows that eachαi iswell defined and that for each i ∈ {1, . . . , n−m}

n − i

s
< α1 · · · αi <

n − i

β
.

Applying Proposition 4.1, there exists a α1β-homogeneous set E1 ⊆ R
n−1 and a α1-

Hölder map f1 : R
n−1 → R

n with f1(E1) = E . Inductively, for i = 2, . . . , n − m
there exists a α1 · · ·αiβ-homogeneous set Ei ⊆ R

n−i and a αi -Hölder map fi : Ei →
Ei−1 such that fi (Ei ) = Ei−1. Let φ : R

m → R
m with

φ(x) = |x |α/(α1···αn−m )−1x .

Set E ′ = φ−1(En−m) and f : E ′ → E with

f = f1 ◦ · · · ◦ fn−m ◦ φ|E ′ .

Since φ is α/(α1 · · · αn−m)-Hölder, it follows that f is α-Hölder and f (E ′) = E .
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5 Proof of Theorem 3.4 (bi-Lipschitz Surfaces)

To lay the groundwork for the proof of Theorem 3.4, we first recallMacManus’ cubical
approximation of uniformly disconnected sets. For every compact set E ⊆ R

n and
δ > 0, let Dδ(E) denote the collection of n-manifolds with boundary Mn ⊆ R

n such
that

∂ M ⊆ G n−1
δ and gap(∂ M, E) = inf

x∈∂ M
inf
y∈E

|x − y| ≥ δ,

where G n−1
δ denotes the union of (n − 1)-faces of cubes of side length δ defined in

Sect. 3. MacManus stated and proved the following lemma in the case n = 2 on [26,
p. 272], and then commented on the general case in the first paragraph of [26, p. 276].

Lemma 5.1 [26, Lemma 2.3] For all n ≥ 2 and c > 1, there exists a constant
C = C(n, c) > 1 with the following property. If E ⊆ R

n is compact and c-uniformly
disconnected, then for all δ > 0, there exists a finite collection M ⊆ Dδ(E) of
pairwise disjoint manifolds intersecting E such that

E ⊆
⋃

M∈M
M,

δ ≤ diamM ≤ Cδ for all M ∈ M, and

δ ≤ dist(x, E) ≤ Cδ for all M ∈ M and x ∈ ∂ M.

Corollary 5.2 For all n ≥ 2 and c > 1, there exist constants C0 = C0(n, c) > 1
and ε0 = ε0(n, c) > 0 with the following property. If E ⊆ R

n is compact and c-
uniformly disconnected, then for all ε ∈ (0, ε0), with ε−1 ∈ N, there is an integer
N = N (n, c, ε) ≥ 1, a set W of finite words in {1, . . . , N }, and a family {Mw : w ∈
W} of n-manifolds with boundary such that

(1) The empty word is inW , and for every word w ∈ W , there exists Nw ∈ {1, . . . , N }
such that wi ∈ W for all i ∈ {1, . . . , Nw}.

(2) For all w ∈ W , the associated manifold Mw ∈ Dε|w|diamE (E) and

diamMw ≤ C0ε
|w|diamE,

where |w| denotes the length of w.
(3) For all distinct w,w′ ∈ W with |w| = |w′|,

gap(Mw, Mw′) ≥ ε|w|diamE .

(4) For all w ∈ W and for all i ∈ {1, . . . , Nw}, we have Mwi ⊆ Mw and

gap(Mwi , ∂ Mw) ≥ C−1
0 ε|w|diamE .

(5) For all w ∈ W , the intersection E ∩ Mw �= ∅ and gap(∂ Mw, E) ≥ ε|w|diamE.
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1174 M. Badger, V. Vellis

(6) The set E is the limit of the k-th level approximations:

E =
⋂

k≥0

⋃

w∈W|w|=k

Mw.

Proof Let n ≥ 2 and c > 1. We will prove that the corollary holds with

ε0 = (2C)−1, C0 = 10
√

nC and N = (�C0�ε−1)n,

where C is the constant in Lemma 5.1.
Let E ⊆ R

n be compact and c-uniformly disconnected, and let ε ∈ (0, ε0). To
ease notation, we may assume without loss of generality that diamE = 1. Choose an
n-cube M∅ ⊆ D1(E) of side length 10 such that M∅ contains E and

gap(E, ∂ M∅) ≥ 1.

Then M∅ satisfies properties (2) and (5).
Suppose that Mw has been defined for some word w so that Mw satisfies both

properties (2) and (5). Applying Lemma 5.1 to E ∩ Mw with δ = ε|w|+1, we can find
a finite collection {Mw1, . . . , MwNw } ⊆ Dε|w|+1(E ∩ Mw) such that

E ∩ Mw ⊆
Nw⋃

i=1

Mwi , (5.1)

ε|w|+1 ≤ diamMwi ≤ Cε|w|+1 for all 1 ≤ i ≤ Nw, and (5.2)

ε|w|+1 ≤ dist(x, E ∩ Mw) ≤ Cε|w|+1 for all 1 ≤ i ≤ Nw and x ∈ ∂ Mwi .

(5.3)

By property (2), Mw consists of at most �C0�n cubes in Gε|w|diamE . Since ε−1 is an
integer, each cube inGε|w|diamE consists of exactly ε−n cubes inGε|w|+1diamE . Therefore,
there are at most (�C0�ε−1)n cubes Q ∈ Gε|w|+1diamE contained in Mw. Since each
Mwi is a union of cubes Q ∈ Gε|w|+1diamE contained in Mw, and Mw1, . . . , MwNw are
mutually disjoint, we have Nw ≤ N .

Furthermore, for each Mwi , property (2) follows from (5.2) and property (3) follows
from the fact that the sets Mwi are disjoint and belong in Dε|w|+1(E ∩ Mw). Since
ε < (2C)−1, by (5.3)

gap(Mwi , ∂ Mw) ≥ gap(∂ Mw, E ∩ Mw) − sup
x∈∂ Mwi

dist(x, E ∩ Mw)

≥ gap(∂ Mw, E) − sup
x∈∂ Mwi

dist(x, E ∩ Mw)

≥ ε|w| − Cε|w|+1 >
1

2
ε|w|
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and property (4) holds. For property (5),

gap(∂ Mwi , E) = min{gap(∂ Mwi , E ∩ Mw), gap(∂ Mwi , E \ Mw)}
≥ min{gap(∂ Mwi , E ∩ Mw), gap(Mwi , ∂ Mw)} ≥ ε|w|+1.

Finally, each Mw intersects E and by (5.1), E ⊆⋃ w∈W|w|=k
Mw. Therefore, property (6)

holds and the proof is complete. ��
We first prove Theorem 3.4 in the special case that m = n − 1 and E is compact.

Proposition 5.3 (bi-Lipschitz parameterization for compact sets, in codimension one)
For all n ≥ 2, c > 1, C > 1, and 0 ≤ s < n − 1, there exists a constant L =
L(n, c, C, s) ≥ √

2 with the following property. If E ⊆ R
n is compact, c-uniformly

disconnected, and (C, s)-homogeneous, then there is an L-bi-Lipschitz embedding
f : R

n−1 → R
n such that E ⊆ f ([−1, 1]n−1) and f |Rn−1\[−1,1]n is an isometric

embedding.

Proof Let n ≥ 2, c > 1, C > 1, s ∈ [0, n − 1), and assume that E ⊆ R
n is

compact, c-uniformly disconnected, and (C, s)-homogeneous. Applying similarities
to the domain and range of the embedding, we may assume without loss of generality
that E contains the origin and has diameter 1. For the rest of the proof, fix an integer
k0 such that

2k0 ≥ 8
√

n.

The proof now breaks up into three steps. In Step 1, we construct a surface containing
the set E . In Step 2, we build a homeomorphism between the surface and R

n−1. Then,
in Step 3, we verify that the homeomorphism is bi-Lipschitz.

Step 1 We will use Corollary 5.2 to build a tree-like surface4 S that contains E . Set

ε−1 := 1 + max
{
�(3n−1(2C0)

βC)
1

n−1−β �, �ε−1
0 �
}

,

where ε0 and C0 are the constants of Corollary 5.2. By the (C, β)-homogeneity of E
and choice of ε,

C

(
2C0ε

k

εk+1

)β

= C(2C0)
βε−β ≤ (3ε)1−n . (5.4)

Let {Mw : w ∈ W} be the family of manifolds with boundary associated to ε given
by Corollary 5.2. By our assumption on the size and position of E , we may assume
without loss of generality that the initial manifold M∅ = [−5, 5]n (see the proof of
Corollary 5.2). Define

A∅ := [−5, 5]n−1 × {5} ⊆ ∂ M∅,

4 Constructions of tree-like surfaces are by now classical. For instance, see [38, Figure 2.4.16].
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1176 M. Badger, V. Vellis

and for each word w ∈ W with |w| ≥ 1, choose an (n − 1)-cube

Aw ⊆ G n−1
ε|w| ∩ ∂ Mw

of side length ε|w| andboundary inG n−2
ε|w| . Let xw denote the center of Aw . Byproperties

(2) and (6) of {Mw : w ∈ W}, the set

E = lim
l→∞

⋃

w∈W|w|=l

Aw

in the Hausdorff topology. Thus, we aim to constructing a sequence of intermediate
surfaces that pass through successive generations of the (n − 1)-cubes Aw.

Base Case Define

x∅ := (0, . . . , 0, 5) and y∅ := (0, . . . , 0, 10).

Note that x∅ is the center of A∅. Let γ∅ denote the line segment from y∅ to x∅ and let
τ∅ denote the tube around γ∅ of width δ∅ = 2−k0

τ∅ = Tubeδ∅(γ∅) = [−2−k0−1, 2−k0−1]n−1 × [5, 10].

With the specified orientation on γ∅,

Entrance(τ∅) = [−2−k0−1, 2−k0−1]n−1 × {10},
Exit(τ∅) = [−2−k0−1, 2−k0−1]n × {5} = A∅.

Next, define the punched-out plane,

P := (Rn−1 \ [−1, 1]n−1) × {10} (5.5)

and an auxiliary (n − 1)-cube, S∅ := [−1, 1]n−1 × {10}. The union

S(0) := P ∪ (S∅ \ Entrance(τ∅)) ∪ ∂τ∅

denotes the 0th level approximation of surface S.
Inductive Step Let w ∈ W and assume that we have defined τw = Tubeδw (γw) for
some arc γw and δw < ε|w|/3 such that

τw ∩ Mw = Exit(τw) ⊆ Aw ⊆ ∂ Mw.

First, divide Aw into 3n−1 congruent (n − 1)-cubes of side length 1
3ε

|w|, and let Âw

denote the central subcube in the division.DefineKw to be the unique n-cube contained
in Mw, which has Âw as an (n − 1)-face. Let Ãw denote the (n − 1)-face inKw that is
antipodal to Âw. Second, divide Ãw into (3N )n−1-many (n − 1)-cubes of side length
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Fig. 3 The subtree of S inside Mw

(1/9N )ε|w|, and choose subcubes Sw1, . . . , SwNw in the division that are mutually
disjoint and satisfy Swi ∩ (∂Kw \ Ãw) = ∅. Thus, the (n − 1)-cubes Swi lie on the
relative interior of Ãw,

gap(Swi , Sw j ) ≥ 1

9N
ε|w| when i �= j, and

gap(Swi , ∂ Ãw) ≥ 1

9N
ε|w| for all i ∈ {1, . . . , Nw}.

For each i = 1, . . . , Nw, let ywi denote the center of Swi .
We now select a sequence of arcs connecting the points ywi to the centers xwi

of the next generation (n − 1)-cubes Awi ; see Fig. 3. First, choose a polygonal arc
γw1 ⊆ G 1

ε|w|+1/2
with endpoints in G 0

ε|w|+1/2
that lies (except at its endpoints) in the

interior of the manifold

Mw

∖
⎛

⎝Kw ∪
Nw⋃

j=1

Mw j

⎞

⎠

and joins yw1 to xw1. Proceeding inductively, for each i = 2, . . . , Nw, choose a
polygonal arc γwi ⊆ G 1

2−i−1ε|w|+1 with endpoints in G 0
2−i−1ε|w|+1 that lies (except at its

endpoints) in the interior of the manifold

Mw

∖
⎛

⎝Kw ∪
Nw⋃

j=1

Mw j ∪
i−1⋃

j=1

γw j

⎞

⎠

and joins ywi to xwi . Since each γwi ⊆ G 1
2−N−1ε|w|+1 , γwi ⊆ Mw and diamMw ≤

C0ε
|w|, by Remark 3.10, the length of each γwi is uniformly bounded:
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1178 M. Badger, V. Vellis

H1(γwi ) ≤ C1ε
|w| (5.6)

for some C1 > 0 depending only on ε, N , and C0 (thus, only on n, c, C , and s).
For each i = 1, . . . , Nw, let δwi = 2−N−k0ε|w|+1 and τwi = Tubeδwi (γwi ), oriented

so that Entrance(τwi ) lies on Swi , while Exit(τwi ) lies on ∂ Mwi . Define �w to be a
punched-out (n − 1)-cube, with Nw-many (n − 1)-cubical holes, say

�w := Ãw

∖ Nw⋃

i=1

Swi . (5.7)

Also, define the topological (n − 1)-annulus,

Aw := (Sw \ Entrance(τw)) ∪ Side(τw) ∪ (∂Kw \ ( Ãw ∪ Exit(τw))). (5.8)

The k-th level approximation of S is

S(k) := P ∪
⋃

w∈W|w|≤k

(�w ∪ Aw).

End Step Define S to be the closure of
⋃∞

k=0 S(k); that is,

S := E ∪ P ∪
⋃

w∈W
(�w ∪ Aw).

See (5.5), (5.7), and (5.8).

Step 2 Wewill construct a homeomorphism f : R
n−1 → S that mapsR

n \[−1, 1]n−1

onto the punched-out plane P , isometrically, and maps [−1, 1]n−1 onto S \P . After-
wards, in Step 3, we verify that f is actually bi-Lipschitz.

Let us decompose [−1, 1]n into subsets corresponding to the preimages of parts of
S\P . First, assign M ′

∅ := [−1, 1]n−1.We proceed by induction. Suppose that for some
w ∈ W , we have defined sets M ′

w = Cn−1(zw; ε|w|). By (C, β)-homogeneity of E and
(5.4), we have Nw ≤ (3ε)1−n . Thus, we can locate cubes M ′

wi := Cn−1(zwi ; ε−|w|−1)

for all i = 1, . . . , Nw so that for all distinct i, j ∈ {1, . . . , Nw},
• M ′

wi ⊆ M ′
w,

• gap(M ′
wi , M ′

w j ) ≥ ε|w|+1, and

• gap(M ′
wi , ∂ M ′

w) ≥ ε|w|+1.

For each w ∈ W , let

�′
w = (M ′

w

∖
A′

w)
∖ Nw⋃

i=1

M ′
wi and A′

w = An−1
(

zw; ε|w| − 1

2
ε|w|+1, ε|w|

)

.

Finally, define E ′ :=⋂∞
n=0

⋃
w∈W,|w|=n M ′

w.
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By (5.6) and Lemma 3.11 (replacing n with n − 1), there exists L1 =
L1(n, c, C, β) > 1 such that for every w ∈ W , there exists a homeomorphism
φw : An−1(0; 1 − ε

2 , 1) → Aw such that

• ε−|w|φw is L1-bi-Lipschitz and orientation preserving;
• φw|∂Cn−1(0;1) is a similarity that maps ∂Cn−1(0; 1) onto the relative boundary of

Sw;
• φw|∂Cn−1(0;1− ε

2 )
is a similarity that maps ∂Cn−1

(
0; 1 − ε

2

)
onto Aw ∩ �w.

Now define f |A′
w

: A′
w → Aw by setting

f |A′
w
(x) := φw(ε−|w|(x − zw)).

Then f |A′
w
is an L1-bi-Lipschitz orientation preserving homeomorphism ofA′

w onto
Aw. Applying a standard extension argument (e.g., see [46, Proposition 3.6]), one can
show that there exists L2 = L2(n, c, C, β) > 1 so that f extends to a L2-bi-Lipschitz
map on each �′

w, with f (�′
w) = �w. Finally, since E is contained in the closure of

S, the map f extends uniquely on E ′ as a homeomorphism and maps E ′ onto E .
Therefore, we have obtained a homeomorphism f : R

n−1 → S such that
f ([−1, 1]n−1) = S \ P and f (E ′) = E . For each w ∈ W , define

Sw := Aw ∪ �w and S ′
w := A′

w ∪ �′
w.

By construction, f (S ′
w) = Sw.

Step 3 It remains to show that f is L-bi-Lipschitz for some L = L(n, c, C, β) > 1.
By the previous steps, there exists L0 = L0(n, c, C, β) > 1 such that for all w ∈ W
and distinct i, j ∈ {1, . . . , Nw}:
(1) The restrictions f |S ′

w∪S ′
wi

and f |
Rn−1\⋃N∅

i=1 M ′
i
are L0-bi-Lipschitz.

(2) L−1
0 ε|w| ≤ diamS ′

w ≤ L0ε
|w| and L−1

0 ε|w| ≤ diamSw ≤ L0ε
|w|.

(3) L−1
0 ε|w| ≤ diamM ′

w ≤ L0ε
|w| and L−1

0 ε|w| ≤ diamMw ≤ L0ε
|w|.

(4) L−1
0 ε|w| ≤ gap(M ′

wi , M ′
w j ) ≤ L0ε

|w| and L−1
0 ε|w| ≤ gap(Mwi , Mw j ) ≤ L0ε

|w|.

Below, we say that two points x, y ∈ R
n−1 are separated by S ′

w for some w ∈ W if
neither x nor y is contained in S ′

w and any curve in R
n−1 joining x and y intersects

S ′
w. Also, given a, b > 0, we write a � b to denote that a ≤ C∗b for some C∗ =

C∗(n, c, C, β) > 1 and a ∼ b to denote that a � b and b � a.
To show that f is bi-Lipschitz, fix x, y ∈ R

n−1. First suppose that x ∈ R
n−1 \

[−1, 1]n−1. On one hand, if y ∈ S ′
∅, then

|x − y| ∼ | f (x) − f (y)|

by (1). On the other hand, if y ∈⋃N∅
i=1 M ′

i , then

|x − y| ∼ 1 + dist(x, M ′
∅) ∼ 1 + dist( f (x), M∅) ∼ | f (x) − f (y)|
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by (2). In both cases, | f (x) − f (y)| ∼ |x − y|. Therefore, to complete the proof, we
may assume that x, y ∈ [−1, 1]n−1. There are two alternatives.

Case 1 Suppose that x and y are not separated S ′
w for any w ∈ W . Then there exists

w ∈ W and i ∈ {1, . . . , Nw} such that x, y ∈ S ′
w ∪ S ′

wi . Hence

| f (x) − f (y)| ∼ |x − y|

by (1).

Case 2 Suppose that x and y are separated by Sw for some w ∈ W . Let w0 be the
minimal word with the property that Sw0 separates x and y. That is, if Sw separates x
and y, then w = w0u. Since x, y ∈ [−1, 1]n−1, we have w0 �= ∅. Hence

|x − y| ∼ ε|w0| ∼ | f (x) − f (y)|

by (2), (3), and (4). This completes the proof that f is bi-Lipschitz. ��
We now derive Theorem 3.4 from Proposition 5.3.

Proof of Theorem 3.4 Let E ⊆ R
n be c-uniformly disconnected and (C, β)-

homogeneous for some n, m ∈ N, C > 1, c > 1, and β < m ≤ n − 1.
Since bi-Lipschitz maps extend to the closure of their domain and E is also (C, β)-
homogeneous, E can be assumed closed.

Suppose first that m = n − 1. By Proposition 5.3 we may assume that E is
unbounded. Fix distinct points x1, x2 ∈ E . For each k ∈ N, let Ek be the set
Ex1,2k |x1−x2| appearing in the definition of uniform disconnectedness. Note that each
Ek is compact, c-uniformly disconnected, and (C, β)-homogeneous. For each k ∈ N,
by Proposition 5.3, there exists an L-bi-Lipschitz embedding fk : R

n−1 → R
n with

L = L(n, c, C, β) > 1 and Ek ⊆ fk(R
n−1). Applying appropriate similarities, we

may assume that fk(0, . . . , 0) = x1 for all k ∈ N. By the Arzelà–Ascoli Theorem,
there exists a subsequence fk j that converges uniformly on compact sets to an L-

bi-Lipschitz embedding f : R
n−1 → R

n . For each x ∈ E , the sequence f −1
k j

(x)

converges to a point f −1(x) in R
n−1, and consequently, E ⊆ f (Rn−1).

Suppose now that m < n − 1. Set c0 = c and C0 = C . By the codimension
1 case, for each k = 1, . . . , n − m, there exist Lk = Lk(n, ck−1, Ck−1, s) > 1,
ck = ck(n, ck−1, Ck−1, s) > 1, Ck = Ck(n, ck−1, Ck−1, s) > 1, an Lk-bi-Lipschitz
embedding fk : R

n−k → R
n−k+1, and a ck-uniformly disconnected and (Ck, β)-

homogeneous set Ek ⊆ R
n−k such that f (Ek) = Ek−1. The map f : R

m → R
n with

f = f1 ◦ · · · ◦ fn−m is (Ln−m · · · L1)-bi-Lipschitz and maps En−m onto E .

Remark 5.4 Assume that E ⊆ R
n is compact and c-uniformly disconnected. It is

possible to modify the proof of Proposition 5.3 to produce a quasisymmetric map
f : R

n−1 → R
n whose image contains E . To carry this out, first repeat the construction

of the surface in Step 1 with the alternative parameter

ε−1 := 1 + max{�2C0 + 1�, �ε−1
0 �}.
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Then use arguments similar to [26] or [45, Theorem 6.3] to parameterize the surface
containing E by a quasisymmetric map. To extend the proof to unbounded sets, apply
an the Arzelà–Ascoli Theorem for quasisymmetric maps [21, Corollary 10.30]. The-
orem 3.8 may be derived from the codimension 1 case in the same way that Theorem
3.4 is derived from Proposition 5.3.

Part II. Geometry of measures

In this part of the paper, we prove Theorems A, B, and C, which identify conditions on
the lower and upper Hausdorff densities that guarantee a Radon measure is either car-
ried by or singular to Hölder curves or surfaces. For the statements of these theorems,
see Sect. 1.1 in the introduction. The main tools that we use are three parameterization
theorems from Part I: Theorems 2.3, 3.2, and 3.4 (in the form of Corollary 3.5). The
proof of Theorem A is given in Sect. 6 and the proof of Theorems B and C is given in
Sect. 7.

6 Points of Extreme Lower Density (Proof of Theorem A)

The proof of the first part of Theorem A—Radon measures are singular to Hölder
curves on sets of vanishing lower density—uses the relationship between lower Haus-
dorff densities and packing measures. The argument that we present below closely
follows [8, §2], which focused on Lipschitz images. To fix conventions, we recall the
definition of s-dimensional Hausdorff measure Hs and s-dimensional packing mea-
sure Ps , each of which are Borel regular metric outer measures on R

n . In the top
dimension (s = n), the measures Hn and Pn coincide and are a constant multiple of
Lebesgue measure on R

n . For a proof of these facts and further background, see [17]
or [30].

Definition 6.1 (Hausdorff and packing measures in R
n) Let s ≥ 0 be a real number.

Let E, E1, E2, . . . denote sets in R
n . The s-dimensional Hausdorff measure Hs is

defined by Hs(E) = limδ→0Hs
δ(E), where

Hs
δ(E) = inf

{
∑

i

(diamEi )
s : E ⊆

⋃

i

Ei , diamEi ≤ δ

}

.

The s-dimensional packing premeasure Ps is defined by Ps(E) = limδ→0 Ps
δ (E),

where

Ps
δ (E) = sup

{
∑

i

(2ri )
s : xi ∈ E, 2ri ≤ δ, i �= j ⇒ B(xi , ri ) ∩ B(x j , r j ) = ∅

}

.

The s-dimensional packing measure Ps is defined by

Ps(E) = inf

{
∑

i

Ps(Ei ) : E =
⋃

i

Ei

}

.
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1182 M. Badger, V. Vellis

Lemma 6.2 (see [17, Proposition 2.2]) Let A ⊆ R
n be a Borel set, let ν be a finite

Borel measure on R
n, and let 0 < λ < ∞.

• If lim supr↓0
ν(B(x, r))

rs
≤ λ for all x ∈ E, then Hs(E) ≥ ν(E)/λ.

• If lim supr↓0
ν(B(x, r))

rs
≥ λ for all x ∈ E, then Hs(E) ≤ 2sν(E)/λ.

• If lim infr↓0
ν(B(x, r))

rs
≤ λ for all x ∈ E, then Ps(E) ≥ 2sν(E)/λ.

• If lim infr↓0
ν(B(x, r))

rs
≥ λ for all x ∈ E, then Ps(E) ≤ 2sν(E)/λ.

It is well known that Hölder continuous maps do not increase Hausdorff measures
too severely. The same phenomenon is also true for packing measures. We include a
proof of the following lemma for the reader’s convenience.

Lemma 6.3 Let E ⊆ R
m. If f : E → R

n is (1/s)-Hölder, then

Pst ( f (E)) ≤ 2(s−1)t (Höld1/s f )st Pt (E) and

Pst ( f (E)) ≤ 2(s−1)t (Höld1/s f )st P t (E),

where Höld1/s f denotes the (1/s)-Hölder constant of f .

Proof Assume that Pt (E) < ∞ and f : E → R
n satisfies | f (x) − f (y)| ≤ H |x −

y|1/s for all x, y ∈ E . Given ε > 0, pick η > 0 such that Pt
η(E) ≤ Pt (E) + ε. Fix

δ > 0 such that

21−s
(

δ

H

)s

≤ η

and let {Bn( f (xi ), ri ) : i ≥ 1} be an arbitrary disjoint collection of balls inR
n centered

in f (E) such that 2ri ≤ δ for all i ≥ 1. By the Hölder condition on f ,

f (Bm(xi , (ri/H)s)) ⊆ Bn( f (xi ), ri ) for all i ≥ 1.

Thus {Bm(xi , (ri/H)s) : i ≥ 1} is a disjoint collection of balls with centers in E with

2
( ri

H

)s ≤ 21−s
(

δ

H

)s

≤ η.

Hence

∞∑

i=1

(2ri )
st = 2(s−1)t Hst

∞∑

i=1

(
2
( ri

H

)s)t

≤ 2(s−1)t Hst Pt
η(E) ≤ 2(s−1)t Hst (Pt (E) + ε).

Taking the supremum over all δ-packings of f (E), we obtain

Pst
δ ( f (E)) ≤ 2(s−1)t Hst (Pt (E) + ε).
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Therefore, letting δ → 0 and ε → 0, Pst ( f (E)) ≤ 2(s−1)t Hst Pt (E). The cor-
responding inequality for the packing measure Ps follows immediately from the
inequality for Ps . ��

The following lemma contains the first half of Theorem A. The special case s = m
appeared previously in [8, Lemma 2.7]. When the measure is of the formμ = Hs E
for some s-set E ⊆ R

n , this result also follows from [32, Theorem 3.2].

Lemma 6.4 Let 1 ≤ m ≤ n − 1 be integers and let s ∈ [m, n]. If μ is a Radon
measure on R

n, then

μs
0

:= μ

{

x ∈ R
n : lim inf

r↓0
μ(B(x, r))

rs
= 0

}

is singular to (m/s)-Hölder m-cubes.

Proof For a large radius R > 0, let AR = {x ∈ B(0, R) : lim infr↓0 r−sμ(B(x, r)) =
0} and νR = μ AR . Then νR is a finite Borel measure. Let f : [0, 1]m → R

n be an
arbitrary (m/s)-Hölder continuous map. By Lemma 6.3,

Ps( f ([0, 1]m)) ≤ 2((s/m)−1)m(Höldm/s f )s Pm([0, 1]m) < ∞.

Let λ > 0. Because lim infr↓0 r−sμ(B(x, r)) = 0 ≤ λ for all x ∈ AR ∩ f ([0, 1]m),
we have

2sμ(AR ∩ f ([0, 1]m)) ≤ λPs(AR ∩ f ([0, 1]m)) ≤ λPs( f ([0, 1]m))

by Lemma 6.2. Then, letting λ → 0, we obtain νR( f ([0, 1]m)) = μ(AR ∩
f ([0, 1]m)) = 0. Therefore, since measures are continuous from below,

μs
0
( f ([0, 1]m)) = lim

R↑∞ νR( f ([0, 1]m)) = 0

for every (m/s)-Hölder continuous map f : [0, 1]m → R
n . In other words, the

measure μs
0
is singular to (m/s)-Hölder m-cubes. ��

Corollary 6.5 Let 1 ≤ m ≤ n − 1 be integers, let s ∈ [m, n], and let μ be a Radon
measure on R

n. If μ is carried by (m/s)-Hölder m-cubes, then

lim inf
r↓0

μ(B(x, r))

rs
> 0 for μ-a.e. x ∈ R

n .

Proof Let μ = μm→s + μ⊥
m→s denote the decomposition of μ given by Proposi-

tion A.2, where μm→s is carried by (m/s)-Hölder m-cubes and μ⊥
m→s is singular to

(m/s)-Hölder m-cubes. Then μ is carried by (m/s)-Hölder m-cubes if and only if
μ⊥

m→s(R
n) = 0. Hence

μ

({

x ∈ R
n : lim inf

r↓0
μ(B(x, r))

rs
= 0

})

= μs
0
(Rn) ≤ μ⊥

m→s(R
n) = 0,
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1184 M. Badger, V. Vellis

where the inequality holds by Lemma 6.4. Thus, the lower s-density is positive at
μ-almost every x ∈ R

n . ��
We now switch focus to the second half of Theorem A—points of rapidly infinite

density of a Radon measure are carried by Hölder curves. To that end, for every Radon
measure μ on R

n and 1 ≤ s < ∞, define the quantity

Ss(μ, x) :=
∫ 1

0

rs

μ(B(x, r))

dr

r
∈ [0,∞] for all x ∈ R

n .

Note that if Ss(μ, x) < ∞, then limr↓0 r−sμ(B(x, r)) = ∞.

Lemma 6.6 Let μ be a Radon measure on R
n. Given parameters 1 ≤ s ≤ n, 0 ≤

N < ∞, 1 ≤ P < ∞, θ > 0, and x0 ∈ R
n, consider the sets

A := {x ∈ B(x0, 1/2) : Ss(μ, x) ≤ N and μ(B(x, 3r)) ≤ Pμ(B(x, r)) for all 0 < r ≤ 1
}

and

A′ := {x ∈ A : μ(A ∩ B(x, r)) ≥ θμ(B(x, r)) for all 0 < r ≤ 1} .

Then there exists a tree of sets T whose elements are balls centered in A′ such that

Leaves(T ) ⊇ A′

and

∑

E∈T
(diamE)s ≤ 2s+1s N Pμ(A)

θ
< ∞.

Proof For each k ≥ 0, let A′
k be a maximal 2−k separated subset of A′ and define

Tk := {B(y, 2−k) : y ∈ A′
k}.

For each k ≥ 1 and each B(y, 2−k) ∈ Tk , choose y↑ ∈ A′
k−1 such that |y − y↑| <

2−(k−1) and set B(y, 2−k)↑ = B(y↑, 2−(k−1)). Then T =⋃∞
k=0 Tk is a tree of sets in

the sense of Definition 2.1 and Leaves(T ) ⊇ A′.
To estimate the sum of diameters, note that

Nμ(A) ≥
∫

A
Ss(μ, x) dμ(x) =

∫

A

∫ 1

0

rs

μ(B(x, r))

dr

r
dμ(x)

=
∞∑

k=0

∫ 2−k

2−(k+1)
rs
∫

A

1

μ(B(x, r))
dμ(x)

dr

r
,

(6.1)
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where we used Tonelli’s theorem to exchange the order of integration. Our task will be
to bound the right-hand side of (6.1) from below by a constant times

∑
E∈T (diamE)s .

To that end, fix an integer k ≥ 0 and r ∈ [2−(k+1), 2−k]. Since A′
k is a 2−k separated

set in A′ and A′ ⊆ A, it follows that

∫

A

1

μ(B(x, r))
dμ(x) ≥

∑

y∈A′
k

∫

A∩B(y,2−(k+1))

1

μ(B(x, 2−k))
dμ(x).

By the triangle inequality, B(x, 2−k) ⊆ B(y, 3·2−(k+1))whenever x ∈ B(y, 2−(k+1)).
Hence

μ(B(x, 2−k)) ≤ μ(B(y, 3 · 2−(k+1))) ≤ Pμ(B(y, 2−(k+1))),

where the P is the doubling parameter. Thus,

∫

A

1

μ(B(x, r))
dμ(x) ≥

∑

y∈A′
k

1

P

∫

A∩B(y,2−(k+1))

1

μ(B(y, 2−(k+1)))
dμ(x) ≥

∑

y∈A′
k

θ

P
.

(6.2)
We have shown that (6.2) holds for all integers k ≥ 0 and r ∈ [2−(k+1), 2−k]. Com-
bining (6.1) and (6.2), we obtain

P Nμ(A)

θ
≥

∞∑

k=0

∑

y∈A′
k

∫ 2−k

2−(k+1)
rs dr

r
= 1 − 2−s

s

∞∑

k=0

∑

y∈A′
k

(2−k)s ≥ 1

2s

∑

E∈T

(
diamE

2

)s

,

as desired. ��
The second half of Theorem A is contained in the following theorem.

Theorem 6.7 Let μ be a Radon measure on R
n and let 1 ≤ s ≤ n. Then

μs
∞ := μ

{

x ∈ R
n : Ss(μ, x) < ∞ and lim sup

r↓0
μ(B(x, 2r))

μ(B(x, r))
< ∞

}

is carried by (1/s)-Hölder curves. Moreover, there exist countably many (1/s)-Hölder
curves �i ⊆ R

n and compact sets Ki ⊆ �i with Hs(Ki ) = 0 such that μs
∞(Rn \

⋃
i Ki ) = 0.

Proof By writing the set

{

x ∈ R
n : Ss(μ, x) < ∞ and lim sup

r↓0
μ(B(x, 2r))

μ(B(x, r))
< ∞

}

as a countable union of sets of the form

A := {x ∈ B(x0, 1/2) : Ss(μ, x) ≤ N and μ(B(x, 3r)) ≤ Pμ(B(x, r)) for all 0 < r ≤ 1
}
,
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1186 M. Badger, V. Vellis

we see that it suffices to prove μ A is carried by compactHs null subsets of (1/s)-
Hölder curves for each choice of parameters 0 ≤ N < ∞, 1 ≤ P < ∞, and x0 ∈ R

n .
Fix values for N , P , and x0, and for all θ ∈ (0, 1) define

A′
θ := {x ∈ A : μ(A ∩ B(x, r)) ≥ θμ(B(x, r)) for all 0 < r ≤ 1} .

By a standard density theorem for Radon measures (e.g., see [30, Corollary 2.14]),

lim
r↓0

μ(A ∩ B(x, r))

μ(B(x, r))
= 1 for μ-a.e. x ∈ A.

Note that

{

x ∈ A : lim
r↓0

μ(A ∩ B(x, r))

μ(B(x, r))
= 1

}

⊆
∞⋃

k=1

A′
1/k .

Hence μ(A \⋃∞
k=1 A′

1/k) = 0, and so to prove μ A is carried by compact Hs null
subsets of (1/s)-Hölder curves, it suffices to prove μ A′

θ has that same property for
all θ ∈ (0, 1). Fix θ ∈ (0, 1) and apply Lemma 6.6 to find a tree of sets T such that
Leaves(T ) ⊇ A′

θ and

∑

E∈T
(diamE)s < ∞.

By Theorem 2.3, Hs(Leaves(T )) = 0 and there exists a (1/s)-Hölder curve � such
that

� ⊇ Leaves(T ) ⊇ A′
θ .

It follows that

μ A′
θ (R

n\�) ≤ μ A′
θ (R

n\Leaves(T )) ≤ μ A′
θ (R

n\A′
θ ) = μ(A′

θ\A′
θ ) = 0.

Thus, μ A′
θ is carried by a compactHs null subset (Leaves(T )) of a (1/s)-Hölder

curve. The theorem follows by taking a suitable choice of countably many parameter
values. ��

We now observe that it is possible to remove the doubling condition from Theorem
6.7 by working with dyadic density ratios instead of spherical density ratios. For every
Radon measure μ on R

n and 1 ≤ s < ∞, define the quantity

Ss
�(μ, x) :=

∑

Q∈�

(diamQ)s

μ(Q)
χQ(x) ∈ [0,∞] for all x ∈ R

n,

where � denotes a system of half-open dyadic cubes in R
n of side length at most 1.

The following localization lemma is a particular instance of [10, Lemma 5.6].

123



Geometry of Measures in Real Dimensions 1187

Lemma 6.8 Let μ be a Radon measure on R
n. Given a cube Q0 ∈ � of side length

1 such that η := μ(Q0) > 0, N < ∞, and 0 < ε < 1/η, there exists a subtree G of
the tree of dyadic cubes {Q ∈ � : Q ⊆ Q0} with the following properties.

(1) The sets A := {x ∈ Q0 : Ss
�(μ, x) < N } and A′ := A ∩ Leaves(G) have

comparable measure:

μ(A′) ≥ (1 − εη)μ(A).

(2) The tree G is s-summable:

Ss(G) =
∑

Q∈G
(diamQ)s < ∞.

Proof Either modify the proof of [9, Lemma 3.2] or apply [10, Lemma 5.6] with
T := {Q ∈ � : Q ⊆ Q0}, the tree of dyadic cubes contained in Q0, and the function
b(Q) := (diamQ)s for all Q ∈ T . ��

Using Lemma 6.8 in conjunction with Theorem 2.3, one can verify the following
variant of Theorem 6.7. The case s = 1 first appeared in [9, Theorem 3.1].

Theorem 6.9 Let μ be a Radon measure on R
n and let 1 ≤ s ≤ n. Then

ν := μ
{

x ∈ R
n : Ss

�(μ, x) < ∞}

is carried by (1/s)-Hölder curves. Moreover, there exist countably many (1/s)-Hölder
curves �i ⊆ R

n and compact sets Ki ⊆ �i with Hs(Ki ) = 0 such that ν(Rn \⋃
i Ki ) = 0.

7 Densities and Assouad Dimension (Proof of Theorems B and C)

TheoremsB andC follow from the bi-Lipschitz andHölder parameterization theorems
in Sect. 3 and the following connection between Hausdorff densities and Assouad
dimension.

Lemma 7.1 Let μ be a Radon measure on R
n and let t ∈ [0, n]. If E ⊆ R

n and

ar t ≤ μ(B(x, r)) ≤ br t for all 0 < r ≤ 2diamE and x ∈ E, (7.1)

for some constants 0 < a ≤ b < ∞, then the Assouad dimension of E is at most t .
Additionally, if μ(Rn \ E) = 0, then the Assouad dimension of E is t .

Proof Let A ⊆ E be bounded and let δ ∈ (0, 1). Consider the cover B of A by closed
balls of diameter δdiamA centered in A; that is,

B = {B
(
x, 1

2δdiamA
) : x ∈ A

}
.
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1188 M. Badger, V. Vellis

By theBesicovitch covering theorem (see e.g., [30, Theorem2.7]), there exist a positive
integer Q = Q(n) and disjoint subfamilies B1, . . . ,BQ of B such that

B ⊆
Q⋃

i=1

Bi .

For each 1 ≤ i ≤ Q, we have

cardBi · a
( 1
2 δdiamA

)t ≤
∑

B∈Bi

μ(B) = μ
(⋃

Bi

)
≤ μ(B(xi , 2diamA)) ≤ b(2diamA)t ,

where xi denotes an arbitrarily chosen point in A∩⋃Bi . Hence cardBi ≤ δ−t2t (b/a)

for all 1 ≤ i ≤ Q. Thus, B′ = ⋃Q
i=1 Bi is a cover of A by sets of diameter δdiamA

with

cardB′ ≤ C(n, t, a, b)δ−t .

We have shown the set E is (C, t)-homogenous (see Definition 3.1), where C =
C(n, t, a, b). Therefore, the Assouad dimension of E is at most t .

Suppose in addition to (7.1) that μ(Rn \ E) = 0. Consider A = E ∩ B(x, r) for
some fixed x ∈ E and 0 < r < diamE . Fix δ ∈ (0, 1) and let {A1, . . . , Ak} be any
cover of A with Ai ⊂ E and diamAi ≤ δdiamA. Let V be a maximal subset of A such
that |v − v′| ≥ 2δdiamA for all distinct v, v′ ∈ A. Cleary, cardV ≤ k. By maximality
of V , the collection {B(v, 4δr) : v ∈ V } covers A, and thus,

ar t ≤ μ(B(x, r)) = μ(A) ≤
∑

v∈V

μ(B(v, 4δr)) ≤ cardV · b4t r tδt ,

where the equality holds since μ(Rn \ E) = 0. In particular, k ≥ C ′(n, t, a, b)δ−t .
Because δ ∈ (0, 1) was arbitrary, E is not β-homogeneous for any β < t . Therefore,
the Assouad dimension of E is exactly t . ��
Corollary 7.2 Let μ be a Radon measure on R

n and let t ∈ [0, n]. Then

μt+ := μ

{

x ∈ R
n : 0 < lim inf

r↓0
μ(B(x, r))

r t
≤ lim sup

r↓0
μ(B(x, r))

r t
< ∞

}

is carried by sets of Assouad dimension at most t .

We are ready to prove Theorems B and C.

Proof of Theorem B Let μ be a Radon measure on R
n and let t ∈ [0, 1). By Corollary

7.2, we can find countably many sets Ei ⊆ R
n with dimA Ei ≤ t < 1 such that

μt+

(

R
n∖
⋃

i

Ei

)

= 0.
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For each set Ei , there exists a bi-Lipschitz embedding fi : R → R
n such that Ei ⊆

fi (R) by Corollary 3.5. Hence

μt+

(

R
n∖
⋃

i

⋃

k∈Z
fi ([k, k + 1])

)

= μt+

(

R
n∖
⋃

i

fi (R)

)

= 0.

Therefore, μt+ is carried by bi-Lipschitz curves.

Proof of Theorem C Repeat the proof of TheoremBmutatis mutandis, using Theorem
3.2 in place of Corollary 3.5.

Appendix A: Decomposition of σ -Finite Measures

The following definition encodes commonly used definitions of countably rectifiable
and purely unrectifiable measures, including the variants in Definition 1.1.

Definition A.1 Let (X,M) be a measurable space, let N ⊆ M be a non-empty
collection of measurable sets, and let μ be a measure defined on (X,M). We say that
μ is carried by N provided there exists a countable family {�i : i ≥ 1} ⊆ N of sets
with

μ

(

X \
∞⋃

i=1

�i

)

= 0.

We say that μ is singular to N if μ(�) = 0 for every � ∈ N .

The “correctness” of Definition A.1 is partially justified by the following proposi-
tion, which should be considered a standard exercise in measure theory. The proof is a
slight variation of [10, Proposition 1.1] (or [30, Theorem 15.6]), which is specialized
to the decomposition of Radon measures (sets) in R

n into countably m-rectifiable
and purely m-unrectifiable components. We present details for the convenience of the
reader.

Proposition A.2 (Decomposition) Let (X,M) be a measurable space and let N ⊆
M be a non-empty collection of sets. If μ is a σ -finite measure on (X,M), then μ

can be written uniquely as
μ = μN + μ⊥

N , (A.1)

where μN is a measure on (X,M) that is carried by N and μ⊥
N is a measure on

(X,M) that is singular to N .

Proof Let Ñ denote the collection of finite unions of sets in N . Given a σ -finite
measure μ on (X,M), expand X =⋃∞

j=1 X j , where

X1 ⊆ X2 ⊆ · · ·
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is an increasing chain of sets in M with μ(X j ) < ∞ for all j ≥ 1. For each j ≥ 1,
define

M j := sup
N∈Ñ

μ(X j ∩ N ) ≤ μ(X j ) < ∞.

By the approximation property of the supremum, we may choose a sequence (N j )
∞
j=1

of sets in Ñ such that μ(X j ∩ N j ) > M j − 1/j for all j ≥ 1. Fix any such (N j )
∞
j=1

and define

μN := μ

∞⋃

j=1

N j and μ⊥
N := μ X \

∞⋃

j=1

N j .

Then μN and μ⊥
N are measures on (X,M) with μ = μN + μ⊥

N and it is clear that
μN is carried by N .

To see that μ⊥
N is singular to N , assume for contradiction that μ⊥

N (S) > 0 for
some S ∈ N . First pick an index j0 such that μ(X j0 ∩ S) > 0. Next, pick j ≥ j0
sufficiently large such that μ(X j0 ∩ S) > 1/j . Note that T := N j ∪ S ∈ Ñ , since
N j ∈ Ñ and S ∈ N . It follows that

M j ≥ μ(X j ∩ T ) ≥ μN (X j ∩ N j ) + μ⊥
N (X j ∩ S) > (M j − 1/j) + 1/j = M j ,

where in the last inequality we used the fact that X j0 ⊆ X j . We have a reached a
contradiction. Therefore, μ⊥

N is singular to N .
Next we want to show that the decomposition of μ as the sum of a measure that is

carried byN and a measure that is singular toN is unique. Suppose thatμ = μc +μs ,
where μc and μs are measures such that μc is carried by N and μs is singular to N .
To show that μc = μN and μs = μ⊥

N , it suffices to prove the former. Suppose for
contradiction that μc(A) < μN (A) for some A ∈ M. Replacing A with A ∩ X j for j
sufficiently large, we may assume without loss of generality that μN (A) < ∞. Since
μc and μN are both carried byN , we can find a set N , which is a countable union of
sets in N such that

μc(A ∩ N ) = μc(A) < μN (A) = μN (A ∩ N ).

Then μs(A ∩ N ) = μ(A ∩ N ) − μc(A ∩ N ) > μ(A ∩ N ) − μN (A ∩ N ) =
μ⊥
N (A ∩ N ) = 0. This contradicts that μs is singular toN . Therefore, μc = μN , and

thus, μs = μ⊥
N . ��

Example A.3 Let μ and ν be measures on a measurable space (X,M), and let

N := {A ∈ M : ν(A) = 0}

denote the null sets of ν. If μ is σ -finite, then by Proposition A.2, the measure μ can
be uniquely expanded μ = μN + μ⊥

N , where μN is carried by null sets of ν and
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μ⊥
N is singular to null sets of ν. Thus, writing μs := μN and μac := μ⊥

N , we can
decompose μ = μs + μac, where μs ⊥ ν and μac � ν.
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