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Abstract We prove mean curvature and volume comparison estimates on smooth
metric measure spaces when their integral Bakry–Émery Ricci tensor bounds, extend-
ing Wei–Wylie’s comparison results to the integral case. We also apply comparison
results to get diameter estimates, eigenvalue estimates, and volume growth estimates
on smooth metric measure spaces with their normalized integral smallness for Bakry–
Émery Ricci tensor. These give generalizations of somework of Petersen–Wei, Aubry,
Petersen–Sprouse, Yau and more.
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1 Introduction and Main Results

In [18], Petersen and Wei generalized the classical relative Bishop–Gromov volume
comparison to a situation where one has an integral bound for the Ricci tensor. Let’s
briefly recall their results. Given an n-dimensional complete Riemannian manifold M ,
for each x ∈ M let λ (x) be the smallest eigenvalue for the Ricci tensor Ric : TxM →
TxM, and
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RicH− (x) := ((n − 1)H − λ(x))+ = max {0, (n − 1)H − λ(x)} ,

where H ∈ R, the amount of Ricci tensor below (n − 1)H . Define

∥
∥RicH−

∥
∥
p(R) := sup

x∈M

(∫

B(x,R)

(

RicH−
)p dv

) 1
p

,

which measures the amount of Ricci tensor lying below (n − 1)H , in the L p sense.
Clearly, ‖RicH−‖p(R) = 0 iff Ric ≥ (n−1)H . Also let r(y) = d(y, x) be the distance
function from x to y, and

ϕ(y) := (�r − mH )+,

where mH is the mean curvature of the geodesic sphere in Mn
H , the n-dimensional

simply connected space with constant sectional curvature H . The classical Laplacian
comparison states that if Ric ≥ (n−1)H , then� r ≤ mH . That is to say, if RicH− ≡ 0,
then ϕ ≡ 0. In fact this comparison result was generalized to integral Ricci tensor
lower bound.

Theorem A (Petersen–Wei [18]) Let M be an n-dimensional complete Riemannian
manifold. For any p > n

2 , H ∈ R (assume r ≤ π

2
√
H

when H > 0),

‖ϕ‖2p(r) ≤
[
(n − 1)(2p − 1)

2p − n

∥
∥RicH−

∥
∥
p(r)

] 1
2

.

Consequently, for any 0 < r ≤ R (assume R ≤ π

2
√
H

when H > 0), there exists a

constant C(n, p, H, R) which is non-decreasing in R, such that

(
V (x, R)

VH (R)

) 1
2p −

(
V (x, r)

VH (r)

) 1
2p ≤ C(n, p, H, R)

(
∥
∥RicH−

∥
∥
p(R)

) 1
2

,

where V (x, R) denotes the volume of ball B(x, R) in M, and VH (R) denotes the
volume of ball B(O, R) in the model space MH , where O ∈ MH.

Petersen andWei [18,19] used these comparison estimates to extendmany classical
results of pointwise Ricci tensor condition to the integral curvature condition, such as
compactness theorems,Colding’s volumeconvergence, andCheeger–Colding splitting
theorems. Petersen and Sprouse [17] extended Petersen–Wei’s comparison results and
generalized Myers’ theorem to a integral Ricci tensor bound. Aubry [1] used integral
comparison estimates on star-shaped domains to improvePetersen–Sprouse’s diameter
estimate. He also got finite fundamental group theorem in the integral Ricci tensor
sense. For more results, see for example [1,2,8–11,19,23].

An n-dimensional smooth metric measure space, denoted by (M, g, e− f dvg), is a
complete n-dimensional Riemannian manifold (M, g) coupled with a weighted vol-
ume e− f dvg for some f ∈ C∞(M), where dvg is the usual Riemannian volume
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element on M . It naturally occurs as the collapsed measured Gromov–Hausdorff limit
[16]. The f -Laplacian � f associated to (M, g, e− f dvg) is given by

� f := � − ∇ f · ∇,

which is self-adjoint with respect to e− f dvg . The associated Bakry–Émery Ricci
tensor, introduced by Bakry and Émery [3], is defined as

Ric f := Ric + Hess f,

whereHess is theHessianwith respect to themetric g, which is a natural generalization
of the Ricci tensor. In particular, if

Ric f = ρ g

for some ρ ∈ R, then (M, g, e− f dvg) is a gradient Ricci soliton. The Ricci soliton
is called shrinking, steady, or expanding, if ρ > 0, ρ = 0, or ρ < 0, respec-
tively, which arises as the singularity model of the Ricci flow [12]. When Ric f is
bounded below, many geometrical and topological results were successfully explored
provided some condition on f is added. For example, Wei and Wylie [22] proved
mean curvature and volume comparisons when Ric f is bounded below and f or ∇ f
is (lower) bounded. And they extended many classical theorems, such as Myers’ theo-
rem, Cheeger–Gromoll splitting theorem, to the Bakry–Émery Ricci tensor. They also
expected volume comparisons to be extended to the case that Ric f is bounded below
in the integral sense, which partly motivates the present paper.

In this paper we not only generalize comparison estimates on manifolds with inte-
gral bounds for the Ricci tensor to smooth metric measure spaces, but also extend
pointwise comparison estimates on smooth metric measure spaces to the integral set-
ting. In our situation, we consider weighted integral bounds for the Bakry–Émery
Ricci tensor instead of usual integral bounds for the Ricci tensor. Our results indicate
that Petersen–Wei’s and Aubry’s type comparison estimates remain true when certain
weighted integral Bakry–Émery Ricci tensor bounds and ∇ f is lower bounded (even
no assumption on f ). We also prove a relative weighted (or f -)volume comparison
for annular regions under the same curvature integral condition. Some applications,
such as diameter estimates, eigenvalue estimates, and volume growth estimates, are
discussed.

Fix H ∈ R, and consider at each point x of an n-dimensional smooth metric
measure space (M, g, e− f dvg)with the smallest eigenvalue λ(x) for the tensor Ric f :
TxM → TxM . We define

RicHf − := [(n − 1)H − λ(x)]+ = max{0, (n − 1)H − λ(x)},
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the amount of Ric f lying below (n − 1)H . To write our results simply, we introduce
a new weighted L p norm of function φ on (M, g, e− f dvg):

‖φ‖p f,a(r) := sup
x∈M

(∫

B(x,r)
|φ|p · A f e

−at dtdθn−1

) 1
p

,

where ∂r f ≥ −a for some constant a ≥ 0, along a minimal geodesic segment
from x ∈ M . Here A f (t, θ) is the volume element of weighted form e− f dvg =
A f (t, θ)dt∧dθn−1 in polar coordinate, and dθn−1 is the volume element on unit sphere
Sn−1. Sometimes it is convenient to work with the normalized curvature quantity

k̄(p, H, a, r) := sup
x∈M

(
1

V f (x, r)
·
∫

B(x,r)

(

RicHf −
)pA f e

−atdtdθn−1

) 1
p

,

where V f (x, r) := ∫

B(x,r) e
− f dv. Obviously, ‖RicHf −‖p

f,a
(r) = 0 (or k̄(p, H, a, r)

= 0) iff Ric f ≥ (n − 1)H . When f = 0 (and a = 0), all above notations recover the
usual integral quantities on manifolds.

Motivated by Wei–Wylie’s mean curvature comparison [22], we need to consider
the error form

ϕ := (m f − mH − a)+,

wherem f = m − ∂r f andm is the mean curvature of the geodesic sphere in the outer
normal direction; and where mH is the mean curvature of the geodesic sphere in the
model space Mn

H . In [22], Wei and Wylie showed that if RicHf − = 0 and ∂r f ≥ −a
(a ≥ 0), then ϕ = 0. We prove that,

Theorem 1.1 (Mean curvature comparison estimate I) Let (M, g, e− f dv) be an n-
dimensional smooth metric measure space. Assume that

∂r f ≥ −a

for some constant a ≥ 0, along a minimal geodesic segment from x ∈ M. For any
p > n/2, H ∈ R (assume r ≤ π

2
√
H

when H > 0),

‖ϕ‖2p f,a(r) ≤
[
(n − 1)(2p − 1)

(2p − n)

∥
∥RicHf −

∥
∥
p f,a

(r)

] 1
2

(1)

and

ϕ2p−1A f e
−ar ≤ (2p − 1)p

(
n − 1

2p − n

)p−1

·
∫ r

0

(

RicHf −
)pA f e

−atdt (2)

along that minimal geodesic segment from x.
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Moreover, if H > 0 and π

2
√
H

< r < π√
H
, then we have

∥
∥
∥ sin

4p−n−1
2p (

√
Ht) · ϕ

∥
∥
∥
2p f,a

(r) ≤
[
(n − 1)(2p − 1)

(2p − n)

∥
∥RicHf −

∥
∥
p f,a

(r)

] 1
2

(3)

and

sin4p−n−1(
√
Hr)ϕ2p−1A f e

−ar ≤ (2p−1)p
(

n−1

2p−n

)p−1

·
∫ r

0

(

RicHf −
)pA f e

−atdt

(4)
along that minimal geodesic segment from x.

Remark 1.2 (1) When f is constant (and a = 0), inequality (1) recovers the Petersen–
Wei’s result [18]; inequalities (2) and (4) recover the Aubry’s results [1]. In
particular, when |∇ f | ≤ a for some constant a ≥ 0 and the diameter of M
is bounded, then f is bounded, and the new weighted norm is equivalent to the
usual norm.

(2) When RicHf − ≡ 0 (i.e., Ric f ≥ (n − 1)H ), we have ϕ ≡ 0 and hence get the
Wei–Wylie’s comparison result [22].

As in the integral volume comparison for manifolds [18], we can apply Theorem
1.1 to prove weighted volume comparisons in the integral sense. Let V f (x, R) :=
∫

B(x,R)
e− f dv be the weighted volume of ball B(x, R) in (M, g, e− f dv). V a

H (R)

denotes the h-volume of the ball B(O, R) in the weighted model space Mn
H,a :=

(Mn
H , gH , e−hdvgH ), where O ∈ Mn

H and h(x) := −a · d(O, x). That is,

V a
H (R) :=

∫ R

0

∫

Sn−1
eatAH (t, θ) dθn−1dt =

∫ R

0
eat AH (t)dt,

where AH denotes the volume element in model space Mn
H , and AH denotes the

volume of the geodesic sphere in Mn
H . For more detailed description about the related

notations, see Sect. 3.

Theorem 1.3 (Relative volume comparison estimate I) Let (M, g, e− f dv) be an n-
dimensional smooth metric measure space. Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M. Let
H ∈ R and p > n/2. For 0 < r ≤ R (assume R ≤ π

2
√
H

when H > 0),

(
V f (x, R)

V a
H (R)

) 1
2p−1 −

(
V f (x, r)

V a
H (r)

) 1
2p−1 ≤ C(n, p, H, a, R)

(∥
∥RicHf −

∥
∥p
p f,a

(R)
) 1

2p−1
.
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Furthermore, when r = 0, we have an absolute volume comparison estimate:

V f (x, R) ≤
[

e− f (x)
2p−1 + C(n, p, H, a, R)

(∥
∥RicHf −

∥
∥p
p f,a

(R)
) 1

2p−1
]2p−1

V a
H (R).

Here,

C(n, p, H, a, R) :=
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1

∫ R

0
AH (t)

(
t eat

V a
H (t)

) 2p
2p−1

dt.

Remark 1.4 (1) The theorem implies a useful volume doubling property, see Corol-
lary 3.3 below.When f is constant (or furthermore f = 0) and a = 0, the theorem
recovers the Petersen–Wei’s result [18].

(2) When RicHf − ≡ 0, i.e., Ric f ≥ (n − 1)H , we have the Wei–Wylie’s volume
comparison result (see (4.10) in [22]).

(3) Integrating along the direction lies in a star-shaped domain at x , we can obtain the
same volume comparison estimate for the star-shaped domain at x , where RicHf −
only needs to integrate on the same star-shaped set.

We can generalize Theorem 1.3 and get an relative weighted volume comparison
for two annuluses in the integral sense, which is completely new even in the manifold
case. Let V f (x, r, R) be the f -volume of the annulus B(x, R)\B(x, r) ⊆ Mn for
r ≤ R, and V a

H (r, R) be the h-volume of the annulus B(O, R)\B(O, r) ⊆ Mn
H,a .

Theorem 1.5 (Relative volume comparison for annulus) Let (M, g, e− f dv) be an
n-dimensional smooth metric measure space. Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M. Let H ∈ R

and p > n/2. For 0 ≤ r1 ≤ r2 ≤ R1 ≤ R2 (assume R2 ≤ π

2
√
H

when H > 0),

(
V f (x, r2, R2)

V a
H (r2, R2)

) 1
2p−1 −

(
V f (x, r1, R1)

V a
H (r1, R1)

) 1
2p−1 ≤ C ·

(∥
∥RicHf −

∥
∥
p
p f,a

(R2)
) 1

2p−1
,

where C is given by

C = C(n, p, H, a, r1, r2, R1, R2) :=
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1

×
⎡

⎣

∫ r2

r1
AH (R1)

(
R1 eaR1

V a
H (t, R1)

) 2p
2p−1

dt +
∫ R2

R1

AH (t)

(
t eat

V a
H (r2, t)

) 2p
2p−1

dt

⎤

⎦ .
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834 J.-Y. Wu

Besides, we are able to prove a general mean curvature comparison estimate, requir-
ing no assumptions on f . Consequently, we get relative volume comparison estimates
when f is bounded. See these results in Sect. 4.

The integral comparison estimates have many applications. We start to highlight
two extensions of Petersen–Sprouse’s results [17] to the weighted case that ∇ f is
lower bounded. One is the global diameter estimate:

Theorem 1.6 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from any x ∈ M.Given
p > n/2, H > 0 and R > 0, there exist D = D(n, H, a) and ε = ε(n, p, a, H, R)

such that if k̄(p, H, a, R) < ε, then diamM ≤ D.

This theorem shows that a small fluctuation of super gradient shrinkingRicci soliton
(i.e., Ric f ≥ (n − 1)Hg for some constant H > 0) must be compact provided that
the derivative of f has a lower bound. Examples 2.1 and 2.2 in [22] indicate that the
assumption of f is necessary. Petersen and Sprouse [17] have proved the case when
f is constant. For other Myers’ type theorems on smooth metric measure spaces, see
[15,20,22].

The other is a generalization of Cheng’s eigenvalue upper bounds [6]. For any point
x0 ∈ (M, g, e− f dv) and R > 0, let λD

1 (B(x0, R)) denote the first eigenvalue of the
f -Laplacian � f with the Dirichlet condition in B(x0, R). Let λD

1 (n, H, a, R) denote
the first eigenvalue of the h-Laplacian �h , where h(x) := −a · d(x̄0, x), with the
Dirichlet condition in a metric ball B(x̄0, R) ⊆ Mn

H,a , where R ≤ π

2
√
H
. Then, we

have a weighted version of Petersen–Sprouse’s result [17].

Theorem 1.7 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x0 ∈ M.
Given p > n/2, for every δ > 0, there exists an ε = ε(n, p, H, a, R) such that
if k̄(p, H, a, R) ≤ ε, then

λD
1 (B(x0, R)) ≤ (1 + δ) λD

1 (n, H, a, R).

Finally we apply Theorem 1.5 to get a weighted volume growth estimate, general-
izing Yau’s volume growth estimate [24] and Wei–Wylie’s result [22].

Theorem 1.8 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Assume that

∂r f ≥ 0
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along all minimal geodesic segments from any x ∈ M.Given any p > n/2 and R ≥ 2,
there is an ε = ε(n, p, R) such that if k̄(p, 0, 0, R + 1) < ε (here H = 0 and a = 0),
then for any point x0 ∈ M, we have

V f (x0, R) ≥ C R

for some positive constant C = C(n, p, V f (x0, 1)) depending only on n, p and
V f (x0, 1).

Constant function f satisfies ∂r f ≥ 0 and hence the theorem naturally holds
for the ordinary Riemannian manifolds. From Theorem 5.3 in [22], we know that
convex function f with the unbounded set of its critical points, also satisfies ∂r f ≥ 0.
Examples 2.1 and 2.2 in [22] indicate that the hypothesis on f in the theorem is
necessary.

The rest of this paper is organized as follows. In Sect. 2, we will prove Theo-
rem 1.1. In Sect. 3, we will apply Theorem 1.1 to prove Theorem 1.3 and further
get a volume doubling property when the integral Bakry–Émery Ricci tensor bounds
and ∇ f is lower bounded. We also prove relative volume comparison estimates for
annuluses when the integral of Bakry–Émery Ricci tensor bounds. In Sect. 4, we will
discuss a general mean curvature comparison estimates and relative volume compar-
ison estimates for their integral bounds of Bakry–Émery Ricci tensor. In Sect. 5, we
will give some applications of new integral comparison estimates. Precisely, we will
apply Theorems 1.1 and 1.3 to prove Theorems 1.6 and 1.7. Meanwhile we will apply
Theorem 1.5 to prove Theorem 1.8. In Appendix, we give mean curvature and volume
comparison estimates on smooth metric measure spaces when only certain integral of
m-Bakry–Émery Ricci tensor bounds.

From the work of [1,2,13] we expect Aubry’s type diameter estimate, finiteness
fundamental group theorem, first Betti number estimate and Gromov’s bounds on the
volume entropy in the integral sense can be generalized to smooth metric measure
spaces. These will be treated in separate paper.

2 Mean Curvature Comparison Estimate I

In this section, we mainly prove Theorem 1.1, a weighted mean curvature compari-
son estimate on smooth metric measure spaces (M, g, e− f dv) when certain integral
Bakry–Émery Ricci tensor bounds and ∇ f is lower bounded. The proof first modifies
theBochner formula of Bakry–ÉmeryRicci tensor to acquire theODE along geodesics
and then integrates the ODE inequality, similar to the arguments of Petersen and Wei
[18], and Aubry [1].

Proof of Theorem 1.1 Recall the Bochner formula

1

2
�|∇u|2 = |Hess u|2 + 〈∇u,∇(�u〉) + Ric(∇u,∇u)
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836 J.-Y. Wu

for any function u ∈ C∞(M). Letting u = r(y), where r(y) = d(y, x) is the distance
function, then we have

0 = |Hess r |2 + ∂

∂r
(�r) + Ric(∇r,∇r).

Note thatHess r is the second fundamental formof the geodesic sphere and�r = m,
the mean curvature of the geodesic sphere. By the Schwarz inequality, we have the
Riccati inequality

m′ ≤ − m2

n − 1
− Ric(∂r, ∂r).

This inequality becomes equality if and only if the radial sectional curvatures are
constant. So the mean curvature of the n-dimensional model space mH satisfies

m′
H = − m2

H

n − 1
− (n − 1)H.

Since m f := m − ∂r f , i.e., m f = � f r , then m′
f = m′ − ∂r∂r f , and we have

m′
f ≤ − m2

n − 1
− Ric f (∂r, ∂r).

Hence,

(m f − mH − a)′ = m′
f − m′

H

≤ −m2 − m2
H

n − 1
+ (n − 1)H − Ric f

= − (m f + ∂r f )2 − m2
H

n − 1
+ (n − 1)H − Ric f

= − 1

n − 1

[

(m f − mH + ∂r f )(m f + mH + ∂r f )
]

+ (n − 1)H − Ric f

= − 1

n − 1

[

(m f − mH − a + a + ∂r f )(m f − mH − a + 2mH + a + ∂r f )
]

+ (n − 1)H − Ric f .

We recall that ϕ := (m f −mH −a)+. Notice that on the interval wherem f ≤ mH +
a, we have ϕ = 0; on the interval where m f > mH + a, we have m f −mH − a = ϕ.
Moreover, by our assumption of the theorem, we know

(n − 1)H − Ric f ≤ RicHf − .
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Therefore, in any case, we have

ϕ′ + 1

n − 1

[

(ϕ + a + ∂r f )(ϕ + 2mH + a + ∂r f )
]

≤ RicHf −.

Since a + ∂r f ≥ 0, the above inequality implies

ϕ′ + ϕ2

n − 1
+ 2mHϕ

n − 1
≤ RicHf −.

Multiplying this inequality by (2p − 1)ϕ2p−2 · A f , we have

(2p − 1)ϕ2p−2ϕ′A f + 2p − 1

n − 1
ϕ2pA f + 4p − 2

n − 1
ϕ2p−1mHA f

≤ (2p − 1)RicHf − · ϕ2p−2A f .

Using
(ϕ2p−1A f )

′ = (2p − 1)ϕ2p−2ϕ′ · A f + ϕ2p−1 · A′
f

= (2p − 1)ϕ2p−2ϕ′ · A f + ϕ2p−1 · m fA f ,

the above integral inequality can be rewritten as

(ϕ2p−1A f )
′ − ϕ2p−1(m f − mH − a + mH + a)A f + 2p − 1

n − 1
ϕ2pA f

+ 4p − 2

n − 1
ϕ2p−1mH · A f ≤ (2p − 1)RicHf − · ϕ2p−2A f .

Rearrange some terms of the above inequality by ϕ := (m f − mH − a)+ to get

(ϕ2p−1A f )
′ +

(
2p − 1

n − 1
− 1

)

ϕ2pA f +
(
4p − 2

n − 1
− 1

)

ϕ2p−1 · mHA f

− aϕ2p−1A f ≤ (2p − 1)RicHf − · ϕ2p−2A f .

Notice that the term −aϕ2p−1A f of the above inequality is negative. To deal with
this bad term, we multiply the inequality by the integrating factor e−ar , and get that

(ϕ2p−1A f e
−ar )′ + 2p − n

n − 1
ϕ2pA f e

−ar + 4p − n − 1

n − 1
ϕ2p−1mHA f e

−ar

≤ (2p − 1)RicHf − · ϕ2p−2A f e
−ar .

(5)

Since p > n/2 and the assumption r ≤ π

2
√
H
, we have mH ≥ 0 and

4p − n − 1

n − 1
ϕ2p−1mHA f e

−ar ≥ 0.
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838 J.-Y. Wu

Then we drop this term and have that

(ϕ2p−1A f e
−ar )′ + 2p − n

n − 1
ϕ2pA f e

−ar ≤ (2p − 1)RicHf − · ϕ2p−2A f e
−ar .

We integrate the above inequality from 0 to r . Since

ϕ(0) = (m − mH − ∂r f − a)+
∣
∣
r=0 = 0,

which comes from the theorem assumption: a + ∂r f ≥ 0, then

ϕ2p−1A f e
−ar + 2p − n

n − 1

∫ r

0
ϕ2pA f e

−atdt

≤ (2p − 1)
∫ r

0
RicHf − · ϕ2p−2A f e

−atdt.

This implies

ϕ2p−1A f e
−ar ≤ (2p − 1)

∫ r

0
RicHf − · ϕ2p−2A f e

−atdt. (6)

and
2p − n

n − 1

∫ r

0
ϕ2pA f e

−atdt ≤ (2p − 1)
∫ r

0
RicHf − · ϕ2p−2A f e

−atdt. (7)

By Holder inequality, we also have

∫ r

0
RicHf − · ϕ2p−2A f e

−atdt

≤
[ ∫ r

0
ϕ2pA f e

−atdt

]1− 1
p ·

[ ∫ r

0

(

RicHf −
)pA f e

−atdt

] 1
p

.

(8)

Combining (8) and (7), we immediately get (1). Then applying (1) and (8) to (6)
yields (2).

If H > 0 and π

2
√
H

< r < π√
H
, then mH < 0 in (5). It means that we cannot throw

away the third term of (5) as before. To deal with this obstacle, multiplying by the
integrating factor sin4p−n−1(

√
Hr) in (5) and integrating from 0 to r , we get

sin4p−n−1(
√
Hr) ϕ2p−1A f e

−ar + 2p − n

n − 1

∫ r

0
ϕ2p sin4p−n−1(

√
Ht)A f e

−atdt

≤ (2p − 1)
∫ r

0
RicHf − · ϕ2p−2 sin4p−n−1(

√
Ht)A f e

−atdt.

(9)
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Similar to the above discussion, using the Holder inequality, we have
∫ r

0
RicHf − · ϕ2p−2 sin4p−n−1(

√
Ht)A f e

−atdt

≤
[ ∫ r

0
ϕ2p sin4p−n−1(

√
Ht)A f e

−atdt

]1− 1
p
[ ∫ r

0
sin4p−n−1(

√
Ht)

(

RicHf −
)pA f e

−atdt

] 1
p

.

(10)
Notice that two terms in the left-hand side of (9) are both positive. Then substituting

(10) into (9), we get

∥
∥
∥ sin

4p−n−1
2p (

√
Ht) · ϕ

∥
∥
∥
2p f,a

(r) ≤
[

(n−1)(2p−1)

(2p−n)

∥
∥
∥ sin

4p−n−1
p (

√
Ht) · RicHf −

∥
∥
∥
p f,a

(r)

] 1
2

,

(11)
which implies (3). Then putting (11) and (10) to (9) immediately proves (4) by only

using an easy fact: sin
4p−n−1

p (
√
Ht) ≤ 1. ��

3 Volume Comparison Estimate I

In Sect. 2, we have proved a weighted mean curvature comparison estimate when
certain weighted integral of Bakry–Émery Ricci tensor bounds and ∇ f has a lower
bound, and one naturally hopes a corresponding volume comparison estimate under
the same curvature assumptions. In this section, we will give these desired volume
comparison estimates.

For an n-dimensional smooth metric measure space (Mn, g, e− f dvg), letA f (t, θ)

denote the volume element of the weighted volume form e− f dvg = A f (t, θ)dt ∧
dθn−1 in polar coordinate. That is,

A f (t, θ) = e− fA(t, θ),

where A(t, θ) is the standard volume element of the metric g. We also let

A f (x, r) =
∫

Sn−1
A f (r, θ)dθn−1,

which denotes the weighted volume of the geodesic sphere S(x, r) = {y ∈
M | d(x, y) = r}, and let AH (r) be the volume of the geodesic sphere in the model
space Mn

H . We modify Mn
H to the weighted model space

Mn
H,a := (Mn

H , gH , e−hdvgH , O),

where (Mn
H , gH ) is the n-dimensional simply connected space with constant sectional

curvature H , O ∈ Mn
H , and h(x) = −a · d(x, O). Let Aa

H be the h-volume element
in Mn

H,a . Then

Aa
H (r) = earAH (r),
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where AH is the Riemannian volume element in Mn
H . We also have that

AH (r) =
∫

Sn−1
AH (r, θ)dθn−1;

the corresponding weighted volume of the geodesic sphere in the weighted model
space Mn

H,a is defined by

Aa
H (r) =

∫

Sn−1
Aa

H (r, θ)dθn−1.

Hence,

Aa
H (r) = ear AH (r).

Moreover, the weighted (or f -)volume of the ball B(x, r) = {y ∈ M |d(x, y) ≤ r}
is defined by

V f (x, r) =
∫ r

0
A f (x, t)dt.

We also let V a
H (r) be the h-volume of the ball B(O, r) ⊂ Mn

H :

V a
H (r) =

∫ r

0
Aa
H (t)dt.

Clearly, we have

VH (r) ≤ V a
H (r) ≤ ear VH (r).

Now we prove a comparison estimate for the area of geodesic spheres using the
pointwise mean curvature estimate in Sect. 2.

Theorem 3.1 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M. Let H ∈ R

and p > n/2 be given, and when H > 0 assume that R ≤ π

2
√
H
. For 0 < r ≤ R, we

have

(
A f (x, R)

Aa
H (R)

) 1
2p−1 −

(
A f (x, r)

Aa
H (r)

) 1
2p−1 ≤ C(n, p, H, R)

(∥
∥RicHf −

∥
∥
p f,a

(R)
) p

2p−1
,

(12)

where C(n, p, H, R) :=
(

n−1
(2p−1)(2p−n)

) p−1
2p−1 · ∫ R

0 AH (t)−
1

2p−1 dt .
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Moreover, if H > 0 and π

2
√
H

< r ≤ R < π√
H
, then we have

(
A f (x, R)

Aa
H (R)

) 1
2p−1 −

(
A f (x, r)

Aa
H (r)

) 1
2p−1

≤
(

n−1

(2p−1)(2p−n)

) p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R)
) p

2p−1
∫ R

r

(
√
H)

n−1
2p−1

sin2(
√
Ht)

dt.

(13)

Remark 3.2 When RicHf − ≡ 0, that is, Ric f ≥ (n−1)H , we exactly getWei–Wylie’s
comparison result for the area of geodesic spheres (see (4.8) in [22]).

Proof of Theorem 3.1 We apply

A′
f = m fA f and Aa

H
′ = (mH + a)Aa

H

to compute that

d

dt

(A f (t, θ)

Aa
H (t)

)

= (m f − mH − a)
A f (t, θ)

Aa
H (t)

.

Hence,
d

dt

(
A f (x, t)

Aa
H (t)

)

= 1

Vol(Sn−1)

∫

Sn−1

d

dt

(A f (t, θ)

Aa
H (t)

)

dθn−1

≤ 1

Aa
H (t)

∫

Sn−1
ϕ · A f (t, θ)dθn−1.

Using Holder’s inequality and (2), we have

∫

Sn−1
ϕ·A f (t, θ)dθn−1

≤
(∫

Sn−1
ϕ2p−1A f (x, t)dθn−1

) 1
2p−1 · A f (x, t)

1− 1
2p−1

≤ C(n, p) e
at

2p−1

(∥
∥RicHf −

∥
∥
p f,a

(t)
) p

2p−1 · A f (x, t)
1− 1

2p−1 ,

where C(n, p) =
[

(2p − 1)p
(

n−1
2p−n

)p−1
] 1

2p−1

. Hence, we have

d

dt

(
A f (x, t)

Aa
H (t)

)

≤ C(n, p)

(
A f (x, t)

Aa
H (t)

)1− 1
2p−1

×
(∥
∥RicHf −

∥
∥
p f,a

(t)
) p

2p−1 ·
(

eat

Aa
H (t)

) 1
2p−1

.

(14)
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Separating of variables and integrating from r to R, we obtain

(
A f (x, R)

Aa
H (R)

) 1
2p−1 −

(
A f (x, r)

Aa
H (r)

) 1
2p−1

≤
[

n − 1

(2p − 1)(2p − n)

] p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R)
) p

2p−1 ·
∫ R

r

(
1

AH (t)

) 1
2p−1

dt.

Since the integral

∫ R

r

(
1

AH (t)

) 1
2p−1

dt ≤
∫ R

0

(
1

AH (t)

) 1
2p−1

dt

converges when p > n/2, the conclusion (12) then follows.
For the case H > 0 and π

2
√
H

< r ≤ R < π√
H
, we have

Aa
H (t) = eat

(

sin(
√
Ht)√
H

)n−1

.

Then we use this function and (2) instead of (4) to get (13) by following the above
similar argument. ��

Using (14), we can prove Theorem 1.3, similar to the argument of Petersen andWei
[18].

Proof of Theorem 1.3 Using

V f (x, r)

V a
H (r)

=
∫ r
0 A f (x, t)dt
∫ r
0 Aa

H (t)dt
,

we compute that

d

dr

(
V f (x, r)

V a
H (r)

)

= A f (x, r)
∫ r
0 Aa

H (t)dt − Aa
H (r)

∫ r
0 A f (x, t)dt

(V a
H (r))2

. (15)

On the other hand, integrating (14) from t to r (t ≤ r ) gives

A f (x, r)

Aa
H (r)

− A f (x, t)

Aa
H (t)

≤ C(n, p)
∫ r

t

(
∥
∥RicHf −

∥
∥
p f,a

(s)

) p
2p−1

AH (s)
1

2p−1 · Aa
H (s)1−

1
2p−1

· A f (x, s)
1− 1

2p−1 ds
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≤ C(n, p)

(
∥
∥RicHf −

∥
∥
p f,a

(r)

) p
2p−1

AH (t)
1

2p−1 · Aa
H (t)1−

1
2p−1

·
∫ r

t
A f (x, s)

1− 1
2p−1 ds

≤ C(n, p)

(
∥
∥RicHf −

∥
∥
p f,a

(r)

) p
2p−1

AH (t)
1

2p−1 · Aa
H (t)1−

1
2p−1

· (r − t)
1

2p−1 V f (x, r)
1− 1

2p−1 .

This implies that

A f (x, r)A
a
H (t) − Aa

H (r)A f (x, t)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(r)
) p

2p−1 · Aa
H (r) · e ar

2p−1 · r 1
2p−1 V f (x, r)

1− 1
2p−1 .

Plugging this into (15) gives

d

dr

(
V f (x, r)

V a
H (r)

)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(r)
) p

2p−1 · Aa
H (r) · e ar

2p−1 · r 2p
2p−1 · V f (x, r)

1− 1
2p−1

(V a
H (r))2

= C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(r)
) p

2p−1 · AH (r)

(
r ear

V a
H (r)

) 2p
2p−1

(
V f (x, r)

V a
H (r)

)1− 1
2p−1

.

Separating of variables and integrating from r to R (r ≤ R), we immediately get

(
V f (x, R)

V a
H (R)

) 1
2p−1 −

(
V f (x, r)

V a
H (r)

) 1
2p−1

≤
[

n−1

(2p−1)(2p−n)

] p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R)
) p

2p−1
∫ R

r
AH (t)

(
t eat

V a
H (t)

) 2p
2p−1

dt.

Since the integral

∫ R

r
AH (t)

(
t eat

V a
H (t)

) 2p
2p−1

dt ≤
∫ R

r
AH (t)

(
t eat

VH (t)

) 2p
2p−1

dt

≤
∫ R

0
AH (t)

(
t eat

VH (t)

) 2p
2p−1

dt

converges when p > n/2, the conclusion follows. ��
As the classical case, the volume comparison estimate implies the volume doubling

estimate, which is often useful in various geometric inequalities.
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Corollary 3.3 (Volume doubling estimate) Let (M, g, e− f dv) be an n-dimensional
smooth metric measure space. Assume that

∂r f ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M.Givenα >

1 and p > n/2, there is an ε = ε(n, p, aR, |H |R2, α) such that if R2 ·k̄(p, H, a, R) <

ε, then for all x ∈ M and 0 < r1 < r2 ≤ R (assume R ≤ π

2
√
H

when H > 0), we

have

V f (x, r2)

V f (x, r1)
≤ α

V a
H (r2)

V a
H (r1)

.

Remark 3.4 We remark that R2 ·k̄(p, H, a, R) is the scale invariant curvature quantity.
Hence one can simply scale the metric so that one only need to work under the
assumption that k̄(p, H, a, 1) is small.

Proof of Corollary 3.3 By Theorem 1.3, we get

(
V f (x, r1)

V f (x, r2)

) 1
2p−1 ≥

(
V a
H (r1)

V a
H (r2)

) 1
2p−1

(1 − σ), (16)

where σ := C(n, p, H, a, r2) V a
H (r2)

1
2p−1 · k̄ p

2p−1 (p, H, a, r2). Now we will estimate
the quantity (1− σ). We claim that σ(r) has some monotonicity in r (though it is not
really monotonic). Indeed, since C(n, p, H, a, r) is increasing in r , that is,

σ(r2)V
a
H (r2)

− 1
2p−1 · k̄− p

2p−1 (p, H, a, r2) ≤ σ(R)V a
H (R)

− 1
2p−1 · k̄− p

2p−1 (p, H, a, R).

By the definition of k̄, the above inequality implies

σ(r2)V
a
H (r2)

− 1
2p−1 · V f (x, r2)

1
2p−1 ≤ σ(R)V a

H (R)
− 1

2p−1 · V f (x, R)
1

2p−1 .

Namely,

σ(r2) ≤ σ(R)

(
V f (x, R)

V f (x, r2)

) 1
2p−1 ·

(
V a
H (R)

V a
H (r2)

)− 1
2p−1

. (17)

On the other hand, by Theorem 1.3 again, we have

(
V f (x, r2)

V a
H (r2)

) 1
2p−1 ≥

(
V f (x, R)

V a
H (R)

) 1
2p−1

[

1 − C(n, p, H, a, R)V a
H (R)

1
2p−1 · k̄(R)

p
2p−1

]

,

where k̄(R) = k̄(p, H, a, R) and

C(n, p, H, a, R) :=
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1

∫ R

0
AH (t)

(
t eat

V a
H (t)

) 2p
2p−1

dt.
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We also have

C(n, p, H, a, R)V a
H (R)

1
2p−1 ≤ (eaR)

2p+1
2p−1 R

2p
2p−1 C(n, p, |H |R).

Hence

(
V f (x, r2)

V f (x, R)

) 1
2p−1 ≥

(
V a
H (r2)

V a
H (R)

) 1
2p−1

[

1 − C(n, p, |H |R) · (eaR)
2p+1
2p−1

(

R2k̄(R)

) p
2p−1

]

.

When R2k̄(R) ≤ ε is small enough, which depends only on n, p, aR, and |H |R,
the above inequality becomes

(
V f (x, r2)

V f (x, R)

) 1
2p−1 ≥ 1

3

(
V a
H (r2)

V a
H (R)

) 1
2p−1

.

Substituting this into (17) yields

σ(r2) ≤ 3σ(R).

Combining this with (16) and letting σ(R) arbitrary small (as long as R2k̄(R) ≤ ε

is small enough), the result follows. ��

In the rest of this section, we will study the relative volume comparison estimate
for annular regions and prove Theorem 1.5 in the introduction. The proof idea seems
to be easy, using the twice procedures of proving Theorem 1.3.

Proof of Theorem 1.5 On one hand, using

V f (x, r, R)

V a
H (r, R)

=
∫ R
r A f (x, t)dt
∫ R
r Aa

H (t)dt
,

we have

d

dR

(
V f (x, r, R)

V a
H (r, R)

)

= A f (x, R)
∫ R
r Aa

H (t)dt − Aa
H (R)

∫ R
r A f (x, t)dt

(V a
H (r, R))2

. (18)
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Integrating (14) from t to R (t ≤ R) as before yields

A f (x, R)

Aa
H (R)

− A f (x, t)

Aa
H (t)

≤ C(n, p)

(
∥
∥RicHf −

∥
∥
p f,a

(R)

) p
2p−1

AH (t)
1

2p−1 · Aa
H (t)1−

1
2p−1

·
∫ R

t
A f (x, s)

1− 1
2p−1 ds

≤ C(n, p)

(
∥
∥RicHf −

∥
∥
p f,a

(R)

) p
2p−1

AH (t)
1

2p−1 · Aa
H (t)1−

1
2p−1

· (R − t)
1

2p−1 (V f (x, t, R))
1− 1

2p−1 ,

which gives that

A f (x, R)Aa
H (t) − Aa

H (R)A f (x, t)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(R)
) p

2p−1
Aa
H (R)e

at
2p−1 R

1
2p−1 (V f (x, t, R))

1− 1
2p−1 .

(19)

Substituting this into (18),

d

dR

(
V f (x, r, R)

V a
H (r, R)

)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(R)
) p

2p−1 · AH (R)

×
(

R eaR

V a
H (r, R)

) 2p
2p−1

(
V f (x, r, R)

V a
H (r, R)

)1− 1
2p−1

,

where we used the fact:
∫ R
r V f (x, t, R)dt ≤ V f (x, r, R).

Separating of variables, integrating with respect to the variable R from R1 to R2
(R1 ≤ R2), and changing the variable r to r2 (r2 ≤ R1), we get

(
V f (x, r2, R2)

V a
H (r2, R2)

) 1
2p−1 −

(
V f (x, r2, R1)

V a
H (r2, R1)

) 1
2p−1

≤
[

n−1

(2p−1)(2p−n)

] p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R2)
) p

2p−1
∫ R2

R1

AH (t)

(
t eat

V a
H (r2, t)

) 2p
2p−1

dt.

On the other hand, similar to the above argument, we also have

d

dr

(
V f (x, r, R)

V a
H (r, R)

)

= Aa
H (r)

∫ R
r A f (x, t)dt − A f (x, r)

∫ R
r Aa

H (t)dt

(V a
H (r, R))2

. (20)
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By (19), we also get that

A f (x, t)A
a
H (r) − Aa

H (t)A f (x, r)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(t)
) p

2p−1
Aa
H (t) · e ar

2p−1 · t 1
2p−1 (V f (x, r, t))

1− 1
2p−1

for r ≤ t . Substituting this into (20), and letting R = R1, we have

d

dr

(
V f (x, r, R1)

V a
H (r, R1)

)

≤ C(n, p)
(∥
∥RicHf −

∥
∥
p f,a

(R1)
) p

2p−1 · AH (R1)

×
(

R1 eaR1

V a
H (r, R1)

) 2p
2p−1

(
V f (x, r, R1)

V a
H (r, R1)

)1− 1
2p−1

.

Separating of variables and integrating from r1 to r2 (r1 ≤ r2) with respect to the
variable r , we immediately get

(
V f (x, r2, R1)

V a
H (r2, R1)

) 1
2p−1 −

(
V f (x, r1, R1)

V a
H (r1, R1)

) 1
2p−1

≤
[

n−1

(2p−1)(2p−n)

] p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R1)
) p

2p−1
AH (R1)

∫ r2

r1

(
R1 eaR1

V a
H (t, R1)

) 2p
2p−1

dt.

Combining the above two aspects,

(
V f (x, r2, R2)

V a
H (r2, R2)

) 1
2p−1 −

(
V f (x, r1, R1)

V a
H (r1, R1)

) 1
2p−1

≤
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1 (∥

∥RicHf −
∥
∥
p f,a

(R2)
) p

2p−1

×
⎡

⎣

∫ R2

R1

AH (t)

(
t eat

V a
H (r2, t)

) 2p
2p−1

dt +
∫ r2

r1
AH (R1)

(
R1 eaR1

V a
H (t, R1)

) 2p
2p−1

dt

⎤

⎦

for 0 ≤ r1 ≤ r2 ≤ R1 ≤ R2. Hence the result follows. ��

In particular, if f is constant and a = 0, we get volume comparison estimates for
the annuluses on Riemannian manifolds with integral bounds for the Ricci curvature.

Corollary 3.5 Let (M, g) be an n-dimensional complete Riemannian manifold. Let
H ∈ R and p > n/2. For 0 ≤ r1 ≤ r2 ≤ R1 ≤ R2 (assume R2 ≤ π

2
√
H
when H > 0),

we have
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(
V (x, r2, R2)

VH (r2, R2)

) 1
2p−1 −

(
V (x, r1, R1)

VH (r1, R1)

) 1
2p−1

≤
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1 (∥

∥RicH−
∥
∥
p (R2)

) p
2p−1

×
⎡

⎣

∫ R2

R1

AH (t)

(
t

VH (r2, t)

) 2p
2p−1

dt +
∫ r2

r1
AH (R1)

(
R1

VH (t, R1)

) 2p
2p−1

dt

⎤

⎦ .

Remark 3.6 (1) If r1 = r2 = 0, we immediately get the Petersen–Wei’s relative
Bishop–Gromov volume comparison estimate in the integral sense [18].

(2) If RicH− ≡ 0, i.e., Ric ≥ (n − 1)H , then we have a special case of the relative
volume comparison estimate for annuluses on manifolds (see [25]).

4 Mean Curvature and Volume Comparison Estimate II

In this section, we shall prove a very general mean curvature comparison estimate on
smooth metric measure spaces (M, g, e− f dv) when only the integral Bakry–Émery
Ricci tensor bounds (without any assumption on f ), which might be useful in other
applications.

In this case, we consider the following error form

ψ := (m f − mH )+.

Using this, we have

Theorem 4.1 (Mean curvature comparison estimate II) Let (M, g, e− f dv) be an n-
dimensional smooth metric measure space. Let H ∈ R, and r ≤ π

2
√
H

when H > 0.

For any p > n
2 when n ≥ 3 (p > 5

4 when n = 2), we have

(∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ(t)2pA f dt

) 1
p ≤ 2p − 1

2p − n

(

M(r) + N (r)
)

(21)

and

sn2H (r)ψ(r)2p−1e
4p−2
n−1 f (t)A f ≤ (2p − 1)p

(n − 1)(2p − n)p−1

(

M(r) + N (r)
)p

(22)

along that minimal geodesic segment from x, where

M(r) :=
( ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2p

H A f dt

) 1
p
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and

N (r) := (n − 1)

( ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)(RicHf −

)pA f dt

) 1
p

,

and where mH (r) = (n − 1)
sn′

H (r)
snH (r) , and snH (r) is the unique function satisfying

sn′′
H (r) + HsnH (r) = 0, snH (0) = 0, sn′

H (0) = 1.

Moreover, if H > 0 and π

2
√
H

< r < π√
H
, then we have

(∫ r

0
sin4p−n−1(

√
Ht) e

4p−2
n−1 f (t)ψ2pA f dt

) 1
p ≤ 2p−1

2p−n

(

M̃(r) + Ñ (r)
)

(23)

and

sin4p−n−1(
√
Hr) e

4p−2
n−1 f (r)ψ2p−1A f ≤ (2p−1)p

(
n−1

2p−n

)p−1 (

M̃(r) + Ñ (r)
)p

(24)
along that minimal geodesic segment from x, where

M̃(r) :=
(∫ r

0
sin4p−n−1(

√
Ht) e

4p−2
n−1 f (t)m2p

H A f dt

) 1
p

and

Ñ (r) := (n − 1)

( ∫ r

0
sin4p−n−1(

√
Ht) e

4p−2
n−1 f (t)(RicHf −

)pA f dt

) 1
p

.

It is unlucky that our theorem doesn’t recover the classical case when the Ricci
tensor has pointwise lower bound and f is constant. The main reason may be that we
do not nicely deal with the “bad” term in the proof (see (25) below). It is interesting
to know whether one has an improved estimate, which solves this problem.

Proof of Theorem 4.1 The proof’s trick is partly inspired by the work of Wei–Wylie
[22] and Petersen–Wei [18]. Recall that,

(m f − mH )′ ≤ − 1

n − 1
[(m f − mH + ∂r f )(m f + mH + ∂r f )] + RicHf −

= − 1

n − 1

[

(m f − mH )2 + 2(mH + ∂r f )(m f − mH )

+ ∂r f (2mH + ∂r f )
]

+ RicHf −.
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Let ψ := (m f − mH )+. Then

ψ ′ + ψ2

n − 1
+ 2(mH + ∂r f )

n − 1
ψ ≤ − ∂r f

n − 1
(2mH + ∂r f ) + RicHf −.

When ∂r f = 0 and RicHf − = 0, we have ψ = 0, and get the classical mean
curvature comparison. In general, notice that

− ∂r f

n − 1
(2mH + ∂r f ) = − (∂r f + mH )2

n − 1
+ m2

H

n − 1
≤ m2

H

n − 1
. (25)

Therefore,

ψ ′ + ψ2

n − 1
+ 2(mH + ∂r f )

n − 1
ψ ≤ m2

H

n − 1
+ RicHf −.

Multiplying this inequality by (2p − 1)ψ2p−2A f , we have

(2p − 1)ψ2p−2ψ ′A f + 2p − 1

n − 1
ψ2pA f + 4p − 2

n − 1
(mH + ∂r f )ψ

2p−1A f

≤ 2p − 1

n − 1
m2

Hψ2p−2A f + (2p − 1)RicHf − · ψ2p−2A f .

(26)
Notice that

(ψ2p−1A f )
′ = (2p − 1)ψ2p−2ψ ′ A f + ψ2p−1A′

f

= (2p − 1)ψ2p−2ψ ′ A f + ψ2p−1m fA f .

So, (26) can be rewritten as

(ψ2p−1A f )
′ − ψ2p−1m fA f + 2p − 1

n − 1
ψ2pA f + 4p − 2

n − 1
(mH + ∂r f )ψ

2p−1A f

≤ 2p − 1

n − 1
m2

Hψ2p−2A f + (2p − 1)RicHf − · ψ2p−2A f .

Rearranging some terms using ψ := (m f − mH )+, we have

(ψ2p−1A f )
′ + 2p − n

n − 1
ψ2pA f +

(
4p − n − 1

n − 1
mH + 4p − 2

n − 1
∂r f

)

ψ2p−1A f

≤ 2p − 1

n − 1
m2

Hψ2p−2A f + (2p − 1)RicHf − · ψ2p−2A f .
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Multiplying this by the integrating factor sn2H (r)e
4p−2
n−1 f (r), we obtain

[

sn2H (r)e
4p−2
n−1 f (r)ψ2p−1A f

]′ + 2p − n

n − 1
sn2H (r)e

4p−2
n−1 f (r)ψ2pA f

+ 4p − n − 3

n − 1
sn2H (r)e

4p−2
n−1 f (r)mHψ2p−1A f

≤ 2p − 1

n − 1
sn2H (r)e

4p−2
n−1 f (r)m2

Hψ2p−2A f

+ (2p − 1)sn2H (r)e
4p−2
n−1 f (r)RicHf − · ψ2p−2A f ,

(27)

where we used mH (r) = (n − 1)
sn′

H (r)
snH (r) . Since p > n/2 when n ≥ 3, and p > 5/4

when n = 2, then

4p − n − 3

n − 1
sn2H (r)e

4p−2
n−1 f (r)mHψ2p−1A f ≥ 0.

Hence we can throw away this term from the above inequality, and get

[

sn2H (r)e
4p−2
n−1 f (r)ψ2p−1A f

]′ + 2p − n

n − 1
sn2H (r)e

4p−2
n−1 f (r)ψ2pA f

≤ 2p−1

n−1

[

sn2H (r)e
4p−2
n−1 f (r)m2

Hψ2p−2A f + (n−1)sn2H (r)e
4p−2
n−1 f (r)RicHf − · ψn−1A f

]

.

Since

sn2H (t)e
4p−2
n−1 f (t)ψ2p−1A f

∣
∣
∣
t=0

= 0,

integrating the above inequality from 0 to r yields

sn2H (r)e
4p−2
n−1 f (r)ψ2p−1A f + 2p − n

n − 1

∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ2pA f dt

≤ 2p − 1

n − 1

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2

Hψ2p−2A f dt

+ (n − 1)
∫ r

0
sn2H (t)e

4p−2
n−1 f (t)RicHf − · ψ2p−2A f dt

]

.

Since p > n/2, the first two terms of the above inequality are non-negative. Hence,

sn2H (r)e
4p−2
n−1 f (r)ψ2p−1A f

≤ 2p − 1

n − 1

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2

Hψ2p−2A f dt

+ (n − 1)
∫ r

0
sn2H (t)e

4p−2
n−1 f (t)RicHf − · ψ2p−2A f dt

]

.

(28)
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and
2p − n

n − 1

∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ2pA f dt

≤ 2p − 1

n − 1

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2

Hψ2p−2A f dt

+ (n − 1)
∫ r

0
sn2H (t)e

4p−2
n−1 f (t)RicHf − · ψ2p−2A f dt

]

.

(29)

By Holder inequality, we also have

∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2

Hψ2p−2A f dt

≤
[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ2pA f dt

]1− 1
p ·

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2p

H A f dt

] 1
p

(30)

and

∫ r

0
sn2H (t)e

4p−2
n−1 f (t)RicHf − · ψ2p−2A f dt

≤
[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ2pA f dt

]1− 1
p ·

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)(RicHf −

)pA f dt

] 1
p

.

(31)
Finally, combining (30), (31), and (29), we obtain

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)ψ2pA f dt

] 1
p ≤ 2p − 1

2p − n

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)m2p

H A f dt

] 1
p

+ (n − 1)(2p − 1)

2p − n

[ ∫ r

0
sn2H (t)e

4p−2
n−1 f (t)(RicHf −

)pA f dt

] 1
p

,

(32)
which implies (21). Combining (21), (30), (31), and (28) yields (22).

When H > 0 and π

2
√
H

< r < π√
H
, we see that mH < 0 in (27). Similar to those

discussion as before, multiplying by the integrating factor sin4p−n−3(
√
Hr) in (27)

and integrating from 0 to r , we get

sin4p−n−1(
√
Hr) · e 4p−2

n−1 f (r)ψ2p−1A f

+ 2p − n

n − 1

∫ r

0
sin4p−n−1(

√
Ht) · e 4p−2

n−1 f (t)ψ2pA f dt

≤ 2p − 1

n − 1

[ ∫ r

0
sin4p−n−1(

√
Ht) · e 4p−2

n−1 f (t)m2
Hψ2p−2A f dt

+ (n − 1)
∫ r

0
sin4p−n−1(

√
Ht) · e 4p−2

n−1 f (t)RicHf − · ψ2p−2A f dt

]

.

(33)
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Using Holder inequality as before we get

[ ∫ r

0
sin4p−n−1(

√
Ht)e

4p−2
n−1 f (t)ψ2pA f dt

] 1
p

≤ 2p − 1

2p − n

[ ∫ r

0
sin4p−n−1(

√
Ht)e

4p−2
n−1 f (t)m2p

H A f dt

] 1
p

+ (n − 1)(2p − 1)

2p − n

[ ∫ r

0
sin4p−n−1(

√
Ht)e

4p−2
n−1 f (t)(RicHf −

)pA f dt

] 1
p

,

which is (23). Finallywe substitute (23) into (33) gives (24) using theHolder inequality
as before. ��

In the following, we will apply mean curvature comparison estimate II to derive
another weighted volume comparison estimate in the integral sense. At first, the
weightedmean curvature comparison estimate II implies a tedious volume comparison
estimate of geodesic spheres.

Theorem 4.2 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Let H ∈ R and p > n

2 when n ≥ 3 (p > 5
4 when n = 2) be given, and when H > 0

assume that R ≤ π

2
√
H
. For 0 < r ≤ R, we have

(
A f (x, R)

AH (R)

) 1
2p−1 −

(
A f (x, r)

AH (r)

) 1
2p−1

≤ C(n, p)
∫ R

r

(

M(t) + N (t)
) p

2p−1
sn

− 2
2p−1

H (t) e− 2 f (t)
n−1 A

− 1
2p−1

H (t) dt,

(34)

where

C(n, p) :=
(
2p−n

n−1

) 1
2p−1

(
2p−1

2p−n

) p
2p−1

,

M(t) :=
( ∫ t

0
sn2H (s) e

4p−2
n−1 f (s)m2p

H A f ds

) 1
p

,

and

N (t) := (n − 1)

( ∫ t

0
sn2H (s) e

4p−2
n−1 f (s)(RicHf −

)pA f ds

) 1
p

.

In particular, if further assume | f | ≤ k for some constant k ≥ 0; and n
2 < p < n

2+1
when n ≥ 3 (when n = 2, we assume 5

4 < p < 2). For 0 < r ≤ R, we have

(
A f (x, R)

AH (R)

) 1
2p−1 −

(
A f (x, r)

AH (r)

) 1
2p−1

≤ C(n, p) e
4k
n−1

(

P(R) + Q(R)

) p
2p−1

∫ R

r
sn

− 2
2p−1

H (t) A
− 1

2p−1
H (t)dt,

(35)
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where

P(R) :=
( ∫ R

0
sn2H (t)m2p

H A f dt

) 1
p

and

Q(R) := (n − 1)

( ∫ R

0
sn2H (t)

(

RicHf −
)pA f dt

) 1
p

.

Remark 4.3 We remark that P(R) converges when n
2 < p < n

2 + 1, n ≥ 3 (when
5
4 < p < 2, n = 2). However, for such p, if r → 0, the integral

∫ R

r
sn

− 2
2p−1

H (t) A
− 1

2p−1
H (t)dt

blows up.

Proof of Theorem 4.2 We apply A′
f = m fA f and A′

H = mHAH to compute that

d

dt

(A f (t, θ)

AH (t)

)

= (m f − mH )
A f (t, θ)

AH (t)
.

Hence,
d

dt

(
A f (x, t)

AH (t)

)

= 1

Vol(Sn−1)

∫

Sn−1

d

dt

(A f (t, θ)

AH (t)

)

dθn−1

≤ 1

AH (t)

∫

Sn−1
ψ · A f (t, θ)dθn−1.

Using Holder’s inequality and (22), we have

∫

Sn−1
ψ · A f (t, θ)dθn−1

≤
(∫

Sn−1
ψ2p−1A f (x, t)dθn−1

) 1
2p−1

A f (x, t)
1− 1

2p−1

≤ C(n, p) sn
− 2

2p−1
H (t) e− 2 f (t)

n−1 ·
(

M(t) + N (t)

) p
2p−1

A f (x, t)
1− 1

2p−1 ,

where

C(n, p) :=
(
2p − n

n − 1

) 1
2p−1

(
2p − 1

2p − n

) p
2p−1

,

M(t) :=
( ∫ t

0
sn2H (s) e

4p−2
n−1 f (s)m2p

H A f ds

) 1
p

,
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and

N (t) := (n − 1)

( ∫ t

0
sn2H (s) e

4p−2
n−1 f (s)(RicHf −

)pA f ds

) 1
p

.

Hence,

d

dt

(
A f (x, t)

AH (t)

)

≤ C(n, p) sn
− 2

2p−1
H (t) e− 2 f (t)

n−1 ·
(
A f (x, t)

AH (t)

)1− 1
2p−1

×
(

M(t) + N (t)

) p
2p−1

(
1

AH (t)

) 1
2p−1

.

(36)

Separating of variables and integrating from r to R, we obtain

(
A f (x, R)

AH (R)

) 1
2p−1 −

(
A f (x, r)

AH (r)

) 1
2p−1

≤ C(n, p)

2p − 1

∫ R

r

(

M(t) + N (t)
) p

2p−1
sn

− 2
2p−1

H (t) e− 2 f (t)
n−1 A

− 1
2p−1

H (t)dt.

Therefore we prove the first part of conclusions.
If we further assume | f | ≤ k for some constant k ≥ 0, then

(
A f (x, R)

AH (R)

) 1
2p−1 −

(
A f (x, r)

AH (r)

) 1
2p−1

≤ C(n, p)

2p − 1
e

4k
n−1

(

P(R) + Q(R)

) p
2p−1

∫ R

r
sn

− 2
2p−1

H (t) A
− 1

2p−1
H (t)dt,

where

P(R) :=
( ∫ R

0
sn2H (t)m2p

H A f dt

) 1
p

and

Q(R) := (n − 1)

( ∫ R

0
sn2H (t)

(

RicHf −
)pA f dt

) 1
p

.

Notice that P(R) converges when n
2 < p < n

2 + 1 if n ≥ 3 (if n = 2, we assume
5
4 < p < 2). Hence the result follows. ��

Similar to the first case of discussions (the case ∂r f ≥ −a), we can apply (36) to
obtain the following volume comparison estimate when f is bounded.

Theorem 4.4 (Relative volume comparison estimate II) Let (M, g, e− f dv) be an n-
dimensional smooth metric measure space. Assume that
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| f (x)| ≤ k

for some constant k ≥ 0. Let H ∈ R and n
2 < p < n

2 + 1 when n ≥ 3 (when n = 2,
we assume 5

4 < p < 2) be given, and when H > 0 assume that R ≤ π

2
√
H
. For

0 < r ≤ R, we have

(
V f (x, R)

VH (R)

) 1
2p−1 −

(
V f (x, r)

VH (r)

) 1
2p−1

≤ C(n, p) e
4k
n−1

(

P(R) + Q(R)

) p
2p−1

∫ R

r
AH (t)

(

t1−
1
p

VH (t)

) 2p
2p−1

dt.

(37)

Here,

C(n, p) := 4p − 2

p − 1

(

(n − 1)−
1

p−1

(2p − 1)(2p − n)

) p−1
2p−1

,

P(R) :=
( ∫ R

0
sn2H (t)m2p

H A f dt

) 1
p

and

Q(R) := (n − 1)

( ∫ R

0
sn2H (t)

(

RicHf −
)pA f dt

) 1
p

.

Remark 4.5 We remark that P(R) converges when n
2 < p < n

2 + 1, n ≥ 3 (when
5
4 < p < 2, n = 2). However, for such p, if r → 0, then the integral

∫ R

r
AH (t)

(

t1−
1
p

VH (t)

) 2p
2p−1

dt

blows up.

Proof of Theorem 6.2 We use the formula

V f (x, r)

VH (r)
=

∫ r
0 A f (x, t)dt
∫ r
0 AH (t)dt

,

to compute that

d

dr

(
V f (x, r)

VH (r)

)

= A f (x, r)
∫ r
0 AH (t)dt − AH (r)

∫ r
0 A f (x, t)dt

(VH (r))2
. (38)
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On the other hand, integrating (36) from t to r , and using the Holder inequality, we
get

A f (x, r)

AH (r)
− A f (x, t)

AH (t)

≤ C(n, p, k)
∫ r

t

(P(s) + Q(s)
) p
2p−1

sn
2

2p−1
H (s) · AH (s)

1
2p−1

·
(
A f (x, s)

AH (s)

)1− 1
2p−1

ds

≤ C(n, p, k)

(P(r) + Q(r)
) p
2p−1

AH (t)
·
∫ r

t
sn

− 2
2p−1

H (s) · A f (x, s)
1− 1

2p−1 ds

≤ C(n, p, k)

(P(r) + Q(r)
) p
2p−1

AH (t)
·
(∫ r

t
sn−2

H (s)ds

) 1
2p−1 · V f (x, r)

1− 1
2p−1

≤ C(n, p, k)

(P(r) + Q(r)
) p
2p−1

AH (t)
·
(
4

t

) 1
2p−1 · V f (x, r)

1− 1
2p−1 ,

where

C(n, p, k) :=
(
2p − n

n − 1

) 1
2p−1

(
2p − 1

2p − n

) p
2p−1

e
4k
n−1 .

This implies that

A f (x, r)AH (t) − AH (r)A f (x, t)

≤ 4C(n, p, k)
(P(r) + Q(r)

) p
2p−1 · AH (r) · t −1

2p−1 V f (x, r)
1− 1

2p−1 .

Plugging this into (38) gives

d

dr

(
V f (x, r)

VH (r)

)

≤ 4(2p−1)

2p−2
C(n, p, k)

(P(r) + Q(r)
) p
2p−1 AH (r) · r 2p−2

2p−1 · V f (x, r)
1− 1

2p−1

(VH (r))2

= 4(2p−1)

2p−2
C(n, p, k)

(P(r) + Q(r)
) p
2p−1 AH (r)

(

r1−
1
p

VH (r)

) 2p
2p−1 (

V f (x, r)

VH (r)

)1− 1
2p−1

.

Separating of variables and integrating from r to R,

(
V f (x, R)

VH (R)

) 1
2p−1 −

(
V f (x, r)

VH (r)

) 1
2p−1

≤ 2C(n, p, k)

p − 1

(P(R) + Q(R)
) p
2p−1

∫ R

r
AH (t)

(

t1−
1
p

VH (t)

) 2p
2p−1

dt.
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Then the conclusion follows. ��

5 Applications of Comparison Estimates

In this section, we mainly apply mean curvature comparison estimate I and volume
comparison estimate I to prove the global diameter estimate, eigenvalue upper estimate
and the volume growth estimate when the normalized new L p-norm of Bakry–Émery
Ricci tensor below (n − 1)H is small.

We first prove Theorem 1.6 in the introduction.

Proof of Theorem 1.6 Let p1, p2 are twopoints inM , and x0 be amiddle point between
p1 and p2. We also let e(x) be the excess function for the points p1 and p2, i.e.,

e(x) := d(p1, x) + d(p2, x) − d(p1, p2).

By the triangle inequality, we have

e(x) ≥ 0 and e(x) ≤ 2r

on a ball B(x0, r), where r > 0. In the following, we will prove our result by contra-
diction. That is, if there exist two points p1, p2 in M , such that d(p1, p2) > D for any
sufficient large D, then we can show that excess function e is negative on B(x0, r),
which is a contradiction. The detail discussion is as follows.

By the mean curvature estimate (1), using a suitably large comparison sphere we
may choose any large D enough so that if d(p1, p2) > D, then

� f e ≤ −K + ψ1

on B(x0, r), where K is a large positive constant to be determined, and ψ1 is an error
term controlled by C1(n, p, a, H, r) · k̄(p, H, a, r).

Following the nice construction of Lemma 1.4 in Colding’s paper in [7], let � j ⊆
B(x0, r) be a sequence of smooth star-shaped domains which converges to B(x0, r)−
Cut(x0). Also let ui be a sequence of smooth functions such that

|ui − e| < i−1, |∇ui | ≤ 2 + i−1, and � f ui ≤ � f e + i−1

on B(x0, r). Set h := d2(x0, ·) − r2, and then h is a negative smooth function on � j .
So by Green’s formula with respect to the weighted measure e− f dv, we have

∫

� j

(� f ui )h −
∫

� j

ui (� f h) =
∫

∂� j

h(ν ui ) −
∫

∂� j

ui (ν h),

where ν is the outward unit normal direction to � j . We notice that

� f ui ≤ −K + ψ1 + i−1
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and
ui (� f h) ≤ (e + i−1)(2d � f d + 2)

≤ (e + i−1)(2n + 2ad + ψ2)

≤ 3r(2n + 2ar + ψ2),

where ψ2 is another error term still controlled by C2(n, p, a, H, r) · k̄(p, H, a, r).
Therefore, we have

∫

� j

(−K + ψ1 + i−1)h − 3r
∫

� j

(2n + 2ar + ψ2) ≤
∫

∂� j

h(2+ i−1) −
∫

∂� j

ui (ν h).

Since ui → e when i → ∞, by the dominated convergence theorem, the above
inequality implies

∫

� j

(−K + ψ1)h − 3r
∫

� j

(2n + 2ar + ψ2) ≤ 2
∫

∂� j

h −
∫

∂� j

e(ν h). (39)

We also notice that

∫

B(x0,r)
(−K + ψ1)h ≥

∫

B(x0,
r
2 )

−Kh −
∫

B(x0,r)
r2ψ1

≥
∫

B(x0,
r
2 )

3

4
r2K −

∫

B(x0,r)
r2ψ1

= 3

4
r2K · V f

(

x0,
r

2

)

−
∫

B(x0,r)
r2ψ1

and hence,

∫

B(x0,r)
(−K + ψ1)h − 3r

∫

B(x0,r)
(2n + 2ar + ψ2)

≥ 3

4
r2K · V f

(

x0,
r

2

)

− 6(nr + ar2)V f (x0, r) −
∫

B(x0,r)
(r2ψ1 + 3rψ2).

By relative volume comparison estimate, if k̄(p, r, H, a) is small enough, we then
have

V f

(

x0,
r

2

)

≥ 2−1e−ar
(
sin( r2 )

sin r

)n

· V f (x0, r).

Moreover, if k̄(p, H, a, r) is small enough, we also have

∫

B(x0,r)
(r2ψ1 + 3rψ2) ≤ (nr + r2)V f (x0, r).
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Thus, if we choose

K >
8

3
(7nr−1 + 6a + 1)ear

(
sin r

sin( r2 )

)n

,

then
∫

B(x0,r)
(−K + ψ1)h − 3r

∫

B(x0,r)
(2n + 2ar + ψ2) > 0.

Combining this and (39) immediately yields

2
∫

∂� j

h −
∫

∂� j

e(ν h) > 0

as j → ∞. However, the first integral of the above inequality goes to zero as j → ∞;
while in the second integral of the above inequality: ν h ≥ 0 on ∂� j for all j , as � j

is star-shaped. This forces that the excess function e must be negative on B(x0, r),
which is a contradiction to the fact: e ≥ 0. Hence d(p1, p2) ≤ D for some D. ��

Next we apply the similar argument of Petersen–Sprouse [17] to prove Theorem
1.7 in the introduction.

Proof of Theorem 1.7 The proof is easy only by some direct computation. Recall that
B(x̄0, R) is a metric ball in the weighted model space Mn

H,a , where R ≤ π

2
√
H
.

Let λD
1 (n, H, a, R) be the first eigenvalue of the h-Laplacian �h with the Dirichlet

condition inMn
H,a ,whereh(x) := −a·d(x̄0, x), andu(x) = φ(r)be the corresponding

eigenfunction, which satisfies

φ′′ + (mH + a)φ′ + λD
1 (n, H, a, R)φ = 0, φ(0) = 1, φ(R) = 0.

It is easy to see that 0 ≤ φ ≤ 1, since φ′ < 0 on [0, R]. Now we consider the
Rayleigh quotient of the function u(x) = φ(d(x0, x)). In the course of the proof,
we will use the relative volume comparison estimate when volume normalization of
some integral Bakry–Émery Ricci tensor is sufficient small. Now, a direct computation
yields that

∫

B(x0,R)

|∇u|2e− f dv =
∫

Sn−1

∫ R

0
(φ′)2A f (t, θ) dtdθn−1

=
∫

Sn−1

(

φφ′A f
∣
∣R
0 −

∫ R

0
φ(φ′A f )

′ dt
)

dθn−1

= −
∫

Sn−1

∫ R

0
φ(φ′′ + m f φ

′)A f dtdθn−1

= −
∫

Sn−1

∫ R

0
φ(φ′′ + (mH + a)φ′)A f dtdθn−1
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−
∫

Sn−1

∫ R

0
(m f − mH − a)φφ′A f dtdθn−1

≤ λD
1 (n, H, a, R)

∫

Sn−1

∫ R

0
φ2A f dtdθn−1

+
∫

Sn−1

∫ R

0
(m f − mH − a)+|φ′|A f dtdθn−1.

Hence the Rayleigh quotient satisfies

Q =
∫

B(x0,R)
|∇u|2e− f dv

∫

B(x0,R)
u2e− f dv

≤ λD
1 (n, H, a, R) +

∫

Sn−1

∫ R
0 (m f −mH−a)+ |φ′|A f dtdθn−1
∫

Sn−1

∫ R
0 φ2A f dtdθn−1

.

Now choose the first value r = r(n, H, a, R) such that φ(r) = 1/2. Then the last
error term can be estimated:

∫

Sn−1

∫ R
0 (m f −mH−a)+ |φ′|A f
∫

Sn−1

∫ R
0 φ2A f

≤
( ∫

Sn−1

∫ R
0 (m f −mH−a)2+ A f

) 1
2 ·

( ∫

Sn−1

∫ R
0 |φ′|2A f

) 1
2

1
2V

1
2
f (x0, r) ·

( ∫

Sn−1

∫ R
0 φ2A f

) 1
2

≤ 2

(∫

Sn−1

∫ R
0 (m f −mH−a)2+ A f

V f (x0, r)

) 1
2
√

Q.

On the other hand, if k̄(p, H, a, R) is very small, thenwe have the following volume
doubling estimate (see Corollary 3.3):

V f (x0, R)

V f (x0, r)
≤ 4

V a
H (R)

V a
H (r)

.

Putting this into the above error estimate, we have

∫

Sn−1

∫ R
0 (m f −mH−a)+ |φ′|A f
∫

Sn−1

∫ R
0 φ2A f

≤ 4

(
V a
H (R)

V a
H (r)

)1/2
(∫

Sn−1

∫ R
0 (m f −mH−a)2+ A f

V f (x0, R)

) 1
2
√

Q.
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By the Holder inequality, we observe that

∫

Sn−1

∫ R

0
(m f −mH−a)2+ A f ≤

(∫

Sn−1

∫ R

0
(m f −mH−a)

2p
+ A f e

−at
) 1

p

×
(∫

Sn−1

∫ R

0
A f e

at
)1− 1

p

≤ ea(1− 1
p )R · V f (x0, R)

1− 1
p

(∫

Sn−1

∫ R

0
(m f −mH−a)

2p
+ A f e

−at
) 1

p

.

Using this, we further have

∫

Sn−1

∫ R
0 (m f −mH−a)+ |φ′|A f
∫

Sn−1

∫ R
0 φ2A f

≤ 4e
(p−1)a

2p R
(
V a
H (R)

V a
H (r)

) 1
2
(∫

Sn−1

∫ R
0 (m f −mH−a)

2p
+ A f e−at

V f (x0, R)

) 1
2p

√

Q

≤ C(n, p, H, a, R)(k̄(p, H, a, R))
1
2
√

Q.

Therefore,

Q ≤ λD
1 (n, H, a, R) + C(n, p, H, a, R)(k̄(p, H, a, R))

1
2p

√

Q,

which implies the desired result. ��

Finally, we use Theorem 1.5 to prove Theorem 1.8. The proof method is similar to
the classical case.

Proof of Theorem 1.8 Since a = 0 and H = 0, Theorem 1.5 in fact can be simply
written as

(
V f (x, r2, R2)

V0(r2, R2)

) 1
2p−1 −

(
V f (x, r1, R1)

V0(r1, R1)

) 1
2p−1 ≤ C ·

(∥
∥Ric0f −

∥
∥
p
p f,0

(R2)
) 1

2p−1
,

for any 0 ≤ r1 ≤ r2 ≤ R1 ≤ R2, where

C := C(n, p)

⎡

⎣

∫ r2

r1
Rn−1
1

(
R1

(R1 − t)n

) 2p
2p−1

dt +
∫ R2

R1

tn−1
(

t

(t − r2)n

) 2p
2p−1

dt

⎤

⎦

≤ 2C(n, p) Rn
2

(
R2

(R1 − r2)n

) 2p
2p−1

.
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Let x ∈ M be a point with d(x0, x) = R ≥ 2. Letting r1 = 0, r2 = R − 1, R1 = R
and R2 = R + 1 in the above inequality, then

V f (x, R + 1) − V f (x, R − 1)

(R + 1)n − (R − 1)n

≤
⎡

⎣

(
V f (x, R)

Rn

) 1
2p−1 + 2C(n, p)(R+1)n+ 2p

2p−1

(
∥
∥Ric0f −

∥
∥p
p f,0

(R+1)

) 1
2p−1

⎤

⎦

2p−1

.

Using the inequality (a + b)m ≤ 2m−1(am + bm) for all a > 0 and b > 0 with
m = 2p − 1, we have the following inequality

V f (x, R + 1) − V f (x, R − 1)

(R + 1)n − (R − 1)n

≤ C̃(n, p)
V f (x, R)

Rn
+ C̃(n, p)(R + 1)n(2p−1)+2p

∥
∥Ric0f −

∥
∥p
p f,0

(R + 1)

for some constant C̃(n, p). Multiplying this inequality by (R+1)n−(R−1)n

V f (x,R+1) , by the def-

inition of k̄, we hence have

V f (x, R + 1) − V f (x, R − 1)

V f (x, R + 1)

≤ D(n, p)

R
+ D(n, p)(R + 1)n(2p−1)+2p · k̄ p(p, 0, 0, R + 1).

for some constant D(n, p). Now we choose ε = ε(n, p, R) small enough with
k̄(p, 0, 0, R + 1) < ε, such that

V f (x, R + 1) − V f (x, R − 1)

V f (x, R + 1)
≤ 2D(n, p)

R
.

Since B(x0, 1) ⊂ B(x, R+1)\ B(x, R−1) and B(x, R+1) ⊂ B(x0, 2R+1), hence
we have

V f (x0, 2R + 1) ≥ V f (x, R + 1) ≥ V f (x0, 1)

2D(n, p)
R

for the R ≥ 2. ��

Appendix: Comparison Estimates for Integral Bounds of m-Bakry–
Emery Ricci Tensor

In this section, we will state f -mean curvature comparison estimates and relative
f -volume comparison estimates when only the weighted integral bounds of the m-
Bakry–Émery Ricci tensor. Since the proof is almost the same as the manifold case,
we omit these proofs here.
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Recall that another natural generalization of the Ricci tensor associated to smooth
metric measure space (M, g, e− f dvg) is called m-Bakry–Émery Ricci tensor, which
is defined by

Ricmf := Ric f − 1

m
d f ⊗ d f

for some numberm > 0. This curvature tensor is also introduced by Bakry and Émery
[3]. Here m is finite, and we have the Bochner formula for the m-Bakry–Émery Ricci
tensor

1

2
� f |∇u|2 = |Hessu|2 + 〈∇� f u,∇u〉 + Ric f (∇u,∇u)

≥ (� f u)2

m + n
+ 〈∇� f u,∇u〉 + Ricmf (∇u,∇u)

(40)

for some u ∈ C∞(M), which is regarded as the Bochner formula of the Ricci curvature
of an (n+m)-dimensionalmanifold.Hencemany classical geometrical and topological
results formanifoldswithRicci tensor boundedbelowcanbe easily extended to smooth
metricmeasure spaceswithm-Bakry–ÉmeryRicci tensor bounded below (without any
assumption on f ), see for example [4,5,14,21] for details.

Let (M, g, e− f dvg) be an n-dimensional smooth metric measure space. For each
x ∈ M , m > 0 and let λ (x) denote the smallest eigenvalue for the tensor Ricmf :
TxM → TxM . We define

Ricm H
f − := (

(n + m − 1)H − λ(x)
)

+,

where H ∈ R, which measures the amount of m-Bakry–Émery Ricci tensor below
(n+m−1)H .We also introduce a L p

f -norm of functionφ, with respect to theweighted

measure e− f dvg:

‖φ‖p f (r) := sup
x∈M

( ∫

Bx (r)
|φ|p · e− f dvg

) 1
p
.

Clearly, ‖Ricm H
f −‖p

f
(r) = 0 iff Ricmf ≥ (n + m − 1)H . Notice that when f is

constant, all above notations are just as the usual quantities on manifolds.
Let r(y) = d(y, x) be the distance function from x to y, and define

ϕ := (� f r − mn+m
H )+,

the error from weighted mean curvature comparison in [5]. Here mn+m
H denotes the

mean curvature of the geodesic sphere in Mn+m
H , the n +m-dimensional simply con-

nected spacewith constant sectional curvature H . Theweighted Laplacian comparison
states that if Ricmf ≥ (n + m − 1)H , then � f r ≤ mm+n

H (see for example [5,21]).
Using (40), following the discussion in Sect. 2, we can similarly generalize Petersen–
Wei’s and Aubry’s comparison results to the case of smooth metric measure spaces
with only the m-Bakry–Émery Ricci tensor integral bounds.

123



Comparison Geometry for Integral Bakry–Émery Ricci Tensor Bounds 865

Theorem 6.1 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
For any p > n+m

2 , m > 0, H ∈ R (assume r ≤ π

2
√
H

when H > 0), then

‖ϕ‖2p f (r) ≤
[
(n + m − 1)(2p − 1)

2p − n − m

∥
∥Ricm H

f −
∥
∥
p f

(r)

] 1
2

and

ϕ2p−1A f ≤ (2p − 1)p
(

n + m − 1

2p − n − m

)p−1

·
∫ r

0

(

Ricm H
f −

)pA f dt

along that minimal geodesic segment from x.
Moreover, if H > 0 and π

2
√
H

< r < π√
H
, then

∥
∥
∥ sin

4p−n−m−1
2p (

√
Ht) · ϕ

∥
∥
∥
2p f

(r) ≤
[
(n + m − 1)(2p − 1)

2p − n − m

∥
∥Ricm H

f −
∥
∥
p f

(r)

] 1
2

and

sin4p−n−m−1(
√
Hr)ϕ2p−1A f ≤ (2p − 1)p

(
n + m − 1

2p − n − m

)p−1

·
∫ r

0

(

Ricm H
f −

)pA f dt

along that minimal geodesic segment from x.

Using Theorem 6.1, we have the corresponding volume comparison estimate when
only the weighted integral bounds of Ricmf .

Theorem 6.2 Let (M, g, e− f dv) be an n-dimensional smooth metric measure space.
Let H ∈ R and p > n+m

2 , m > 0. For 0 < r ≤ R (assume R ≤ π

2
√
H

when H > 0),

(

V f (x, R)

V n+m
H (R)

) 1
2p−1

−
(

V f (x, r)

V n+m
H (r)

) 1
2p−1

≤ C(n,m, p, H, R)
(∥
∥RicHf −

∥
∥p
p f

(R)
) 1

2p−1
.

Here,

C(n,m, p, H, R) :=
(

n+m−1

(2p−1)(2p−n−m)

) p−1
2p−1

∫ R

0
An+m
H (t)

(

t

V n+m
H (t)

) 2p
2p−1

dt,

where V n+m
H (t) = ∫ t

0 An+m
H (s)ds, An+m

H (t) = ∫

Sn−1 An+m
H (t, θ)dθn−1, and An+m

H is
the volume element in the model space Mn+m

H .

Similar to the manifolds case, comparison estimates for the weighted integral
bounds of Ricmf have many applications, which will be not treated here. Recall that
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(40) allows one to extend many classical results for manifolds of pointwise Ricci
tensor condition to smooth metric measure spaces of pointwise Ricmf condition, such
as [4,5,14,21]. In a similar fashion, because Theorems 6.1 and 6.2 for n-dimensional
smooth metric measure spaces are essentially the same as the usual (n+m)-manifolds
case. We believe that many geometrical and topological results for the integral Ricci
tensor, such as Myers’ type theorems [1,17], finiteness fundamental group theorems
[1,13], the first Betti number estimate [13], Gromov’s bounds on the volume entropy
[2], compactness theorems [18], heat kernel estimates [9], isoperimetric inequalities
[11,17], Colding’s volume convergence and Cheeger–Colding splitting theorems [19],
local Sobolev constant estimates [10], etc. are all possibly extended to the case where
the weighted integral of Ricmf bounds.
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