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Abstract We show that elliptic complexes of (pseudo) differential operators on
smooth compact manifolds with boundary can always be complemented to a Fredholm
problem by boundary conditions involving global pseudodifferential projections on
the boundary (similarly as the spectral boundary conditions of Atiyah, Patodi, and
Singer for a single operator). We prove that boundary conditions without projections
can be chosen if, and only if, the topological Atiyah–Bott obstruction vanishes. These
results make use of a Fredholm theory for complexes of operators in algebras of gen-
eralized pseudodifferential operators of Toeplitz type which we also develop in the
present paper.
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1 Introduction

The present paper is concerned with the Fredholm theory of complexes of differential
operators and, more generally, of complexes of operators belonging to pseudodiffer-

B J. Seiler
joerg.seiler@unito.it

B.-W. Schulze
schulze@math.uni-potsdam.de

1 Universität Potsdam, Institut für Mathematik, Potsdam, Germany

2 Dipartimento di Matematica, Università di Torino, Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-018-0014-6&domain=pdf
http://orcid.org/0000-0001-6291-6194


Elliptic Complexes on Manifolds with Boundary 657

ential operator algebras. In particular, we consider complexes of differential operators
on manifolds with boundary and investigate the question in which way one can com-
plement complexes, which are elliptic on the level of homogeneous principal symbols,
with boundary conditions to achieve aFredholmproblem.Aboundary conditionmeans
here a homomorphism between the given complex and a complex of pseudodifferential
operators on the boundary; it is called a Fredholm problem if the associated mapping
cone has finite-dimensional cohomology spaces (see Sects. 2.2 and 3.3 for details).
As we shall show, boundary conditions can always be found, but the character of the
boundary conditions to be chosen depends on the presence of a topological obstruc-
tion, the so-calledAtiyah–Bott obstruction, cf. Atiyah andBott [3], here formulated for
complexes. In case this obstruction vanishes, one may take “standard” conditions (to
be explained below), otherwise one is lead to conditions named generalized Atiyah–
Patodi–Singer conditions, since they involve global pseudodifferential projections on
the boundary, similar as the classical spectral boundary conditions of Atiyah, Patodi
and Singer [4–6] for a single operator. Moreover, given a complex together with such
kind of boundary conditions, we show that its Fredholm property is characterized
by the exactness of two associated families of complexes being made up from the
homogeneous principal symbols and the so-called homogeneous boundary symbols,
respectively.

Essential tools in our approach are a systematic use of Boutet de Monvel’s calculus
(or “algebra”) for boundary value problems [7] (see also Grubb [11], Rempel and
Schulze [16], and Schrohe [17]) and a suitable extension of it due to the first author
[19], as well as the concept of generalized pseudodifferential operator algebras of
Toeplitz type in the spirit of the second author’s work [27]. The results obtained in
Sects. 5 and 6 concerning complexes of such Toeplitz-type operators will play a key
role. Roughly speaking, in these two sections we show how to construct an elliptic
theory for complexes of operators belonging to an operator algebra having a notion of
ellipticity, and then how this theory can be lifted to complexes involving projections
from the algebra.Wewant to point out that these results do not only apply to complexes
of operators on manifolds with boundary, but to complexes of operators belonging to
any “reasonable” pseudodifferential calculus including, for example, the calculi of the
first author formanifoldswith cone-, edge-, and higher singularities [18] andMelrose’s
b-calculus for manifolds with corners [13].

Boutet de Monvel’s calculus was designed for admitting the construction of
parametrices (i.e., inverses modulo “smoothing” or “regularizing” operators) of
Shapiro–Lopatinskij elliptic boundary value problems on amanifold�within an opti-
mal pseudodifferential setting. The elements of this algebra are 2 × 2 block-matrix
operators acting between smooth or Sobolev sections of vector bundles over � and
its boundary ∂�, respectively; see Sect. 3.1 for further details. Boutet de Monvel
also used his calculus to prove an analogue of the Atiyah–Singer index theorem in
K -theoretic terms. There arises the question whether any given elliptic differential
operator A on � (i.e., A has an invertible homogeneous principal symbol) can be
complemented by boundary conditions to yield an elliptic boundary value problem
belonging to Boutet de Monvel’s calculus. The answer is no, in general. In fact, the
so-called Atiyah–Bott obstruction must vanish for A: specifying a normal coordinate
near the boundary, one can associate with A its boundary symbol σ∂(A) which is
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defined on the unit co-sphere bundle S∗∂� of the boundary ∂� and takes values in
the differential operators on the half-axis R+. In case of ellipticity, this is a family of
Fredholm operators between suitable Sobolev spaces of the half-axis, hence generates
an element of the K -group of S∗∂�, the so-called index element. We shall denote
this index element by indS∗∂� σ∂(A). The Atiyah–Bott obstruction asks that the index
element belongs to π∗K (∂�), the pull-back of the K -group of ∂� under the canonical
projection π : S∗∂� → ∂�.

A simple example of an operator violating the Atiyah–Bott obstruction is the
Cauchy–Riemann operator ∂ on the unit disc � in R

2, see Sect. 3.2 for more
details. However, in this case we may substitute the Dirichlet condition u �→ γ0u
by u �→ Cγ0u, where C is the associated Calderón projector, which is a zero-order
pseudodifferential projection on the boundary. One obtains Fredholm operators (in
fact, invertible operators), say from Hs(�) to Hs−1(�) ⊕ Hs−1/2(∂�;C), where
Hs(∂�;C) denotes the range space of C . In [24], Seeley has shown that this works
for every elliptic differential operator on a smooth manifold. Nazaikinskii, Schulze,
Sternin, and Shatalov in [14,23] considered boundary value problems for elliptic dif-
ferential operators A with boundary conditions of the form u �→ PBγ u, where γ

is the operator mapping u to the vector of its first μ − 1 derivatives ∂
j
ν u|∂� in nor-

mal direction, B and P are pseudodifferential operators on the boundary, and P is a
zero-order projection. They showed that the Fredholm property of the resulting oper-
ator, where PBγ is considered as a map into the image of P rather than into the full
function spaces over the boundary, can be characterized by the invertibility of suitably
associated principal symbols. Based on these results, the first author of the present
work has constructed in [19] a pseudodifferential calculus containing such boundary
value problems, extending Boutet de Monvel’s calculus. This calculus permits to con-
struct parametrices of elliptic elements, where the notion of ellipticity is now defined
in a new way, taking into account the presence of the projections; see Sect. 3.1.2 for
details. In [21] the authors realized this concept for boundary value problems without
the transmission property and in [22] they consider operators onmanifolds with edges.

While [19,21] and [22] exclusively dealt with the question of how to incorpo-
rate global projection conditions in a specific pseudodifferential calculus (Boutet
de Monvel’s calculus and Schulze’s algebra of edge pseudodifferential operators,
respectively), the second author in [27] considered this question from a more gen-
eral point of view: Given a calculus of “generalized” pseudodifferential operators (see
Sect. 4.1 for details) with a notion of ellipticity and being closed under construction
of parametrices, how can one build up a wider calculus containing all Toeplitz-type
operators P1AP0, where A, P0, P1 belong to the original calculus and the Pj = P2

j are
projections? It turns out that if the original calculus has some natural key properties,
then the notion of ellipticity and the parametrix construction extend in a canonical
way to the class of Toeplitz-type operators; see Sect. 4.2 for details.

In the present paper, we are not concerned with single operators but with complexes
of operators. There is no need to emphasize the importance of operator complexes in
mathematics and that they have been studied intensely in the past, both in concrete
(pseudo-)differential and more abstract settings; let us only mention the works of
Ambrozie and Vasilescu [1], Atiyah and Bott [2], Brüning and Lesch [8], Rempel
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and Schulze [16], and Segal [25,26]. The Fredholm property of a single operator is
now replaced by the Fredholm property of the complex, i.e., the property of having
finite-dimensional cohomology spaces. In Sect. 2, we shortly summarize some basic
facts on complexes of operators in Hilbert spaces and use the occasion to correct
an erroneous statement present in the literature concerning the Fredholm property of
mapping cones, cf. Proposition 2.6 and the example given before.

A complex of differential operators on a manifold with boundary which is exact
(respectively, acyclic) on the level of homogeneous principal symbols, in general,
will not have the Fredholm property. Again it is natural to ask whether it is possible to
complement the complex with boundary conditions to a Fredholm problem within the
framework of Boutet de Monvel’s calculus. Already Dynin, in his two-page note [9],
observed the presence of a kind of Atiyah–Bott obstruction which singles out those
complexes that can be complemented with trace operators from Boutet de Monvel’s
calculus. Unfortunately, [9] does not contain any proofs and main results claimed
there could not be reproduced later on. One contribution of our paper is to construct
complementing boundary conditions in case of vanishing Atiyah–Bott obstruction,
though of a different form as those announced in [9]. Moreover we show that, in case
of violated Atiyah–Bott obstruction, we can complement the complex with general-
ized Atiyah–Patodi–Singer conditions to a Fredholm complex, see Sect. 3.3. Given a
complexwith boundary conditions, we characterize its Fredholm property on principal
symbolic level.

As is well known, for the classical de Rham complex on a bounded manifold,
the Atiyah–Bott obstruction vanishes; in fact, the complex itself—without any addi-
tional boundary condition—is a Fredholm complex. On the other hand, the Dolbeault
or Cauchy–Riemann complex on a complex manifold with boundary violates the
Atiyah–Bott obstruction; we shall show this in Sect. 3.5 in the simple case of the
two-dimensional unit ball, where calculations are very explicit. Still, by our result,
the Dolbeault complex can be complemented by generalized Atiyah–Patodi–Singer
conditions to a Fredholm problem.

2 Complexes in Hilbert Spaces

In this section, we shall provide some basic material about complexes of bounded
operators and shall introduce some notation that will be used throughout this paper.

2.1 Fredholm Complexes and Parametrices

A Hilbert space complex consists of a family of Hilbert spaces Hj , j ∈ Z, together
with a family of operators A j ∈ L (Hj , Hj+1) satisfying A j+1A j = 0 for any j
(or, equivalently, im A j ⊆ ker A j+1 for any j). More intuitively, we shall represent a
complex as a diagram

A : . . . −→ H−1
A−1−−→ H0

A0−→ H1
A1−→ H2

A2−→ H3 −→ . . .
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660 B.-W. Schulze, J. Seiler

Mainly we shall be interested in finite complexes, i.e., the situation where Hj = {0}
for j < 0 and j > n + 1 for some natural number n. In this case we write

A : 0 −→ H0
A0−→ H1

A1−→ . . .
An−1−−−→ Hn

An−→ Hn+1 −→ 0.

Definition 2.1 The cohomology spaces of the complex A are denoted by

H j (A) = ker A j
/
im A j−1, j ∈ Z.

In case H j (A) is finite-dimensional, the operator A j−1 has closed range. We call
A a Fredholm complex if all cohomology spaces are of finite dimension. In case A is
also finite, we then define the index of A as

indA =
∑

j

(−1) jdimH j (A).

The complex A is called exact in position j , if the j-th cohomology space is trivial; it
is called exact (or also acyclic) if it is exact in every position j ∈ Z.

Definition 2.2 The j-th Laplacian associated with A is the operator

� j := A j−1A
∗
j−1 + A∗

j A j ∈ L (Hj ).

In case dimH j (A) < +∞, the orthogonal decomposition

ker A j = im A j−1 ⊕ ker� j

is valid; in particular, we can write

Hj = (ker A j )
⊥ ⊕ im A j−1 ⊕ ker� j ,

and A is exact in position j if, and only if, � j is an isomorphism.

Definition 2.3 A parametrix of A is a sequence of operators Pj ∈ L (Hj+1, Hj ),
j ∈ Z, such that the following operators are compact:

A j−1Pj−1 + Pj A j − 1 ∈ L (Hj ), j ∈ Z.

Note that in the definition of the parametrix we do not require that Pj Pj+1 = 0
for every j ; in case this property is valid, we also call P a complex and represent it
schematically as

P : . . . ←− H−1
P−1←−− H0

P0←− H1
P1←− H2

P2←− H3 ←− . . .

Theorem 2.4 For A the following properties are equivalent:
(a) A is a Fredholm complex.
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(b) A has a parametrix.
(c) A has a parametrix which is a complex.
(d) All Laplacians � j , j = 0, 1, 2, . . ., are Fredholm operators in Hj .

2.2 Morphisms and Mapping Cones

Given two complexes A and Q, a morphism T : A → Q is a sequence of operators
Tj ∈ L (Hj , L j ), j ∈ Z, such that the following diagram is commutative:

. . . −−−−→ H−1
A−1−−−−→ H0

A0−−−−→ H1
A1−−−−→ H2 −−−−→ . . .

⏐⏐
�T−1

⏐⏐
�T0

⏐⏐
�T1

⏐⏐
�T2

. . . −−−−→ L−1
Q−1−−−−→ L0

Q0−−−−→ L1
Q1−−−−→ L2 −−−−→ . . . ,

i.e., Tj+1A j = Q jTj for every j . Note that these identities imply that A j (ker Tj ) ⊆
ker Tj+1 and Q j (im Tj ) ⊆ im Tj+1 for every j .

Definition 2.5 The mapping cone associated with T is the complex

CT : . . . −→
H−1
⊕
L−2

(−A−1 0
T−1 Q−2

)

−−−−−−−−−−→
H0
⊕
L−1

(−A0 0
T0 Q−1

)

−−−−−−−−−→
H1
⊕
L0

−→ . . .

T is called a Fredholm morphism if its mapping cone is a Fredholm complex.

We can associate with T two other complexes, namely

kerT : . . . −→ ker T−1
A−1−−→ ker T0

A0−→ ker T1
A1−→ ker T2 −→ . . .

and

cokerT : . . . −→ L−1/im T−1
Q−1−−→ L0/im T0

Q0−→ L1/im T1 −→ . . . ,

where for convenience of notation, we use again Q j to denote the induced operator
on the quotient space.

We want to use the occasion to correct an erroneous statement present in the lit-
erature, stating that the Fredholm property of the mapping cone is equivalent to the
Fredholm property of both kernel an cokernel of the morphism. In fact, this is not true,
in general, as can be seen by this simple example: Let H and L be Hilbert spaces and
take T as

0 −−−−→ 0
0−−−−→ H

−1−−−−→ H −−−−→ 0
⏐⏐�0

⏐⏐�T1
⏐⏐�0

0 −−−−→ L
1−−−−→ L

0−−−−→ 0 −−−−→ 0,
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where 1 denotes the identity maps on H and L , respectively. The mapping cone
associated with this morphism is

0 −−−−→ 0
0−−−−→

H
⊕
L

(
1 0
T1 1

)

−−−−−→
H
⊕
L

−−−−→ 0 −−−−→ 0.

Obviously, this complex is exact for every choice of T1 ∈ L (H, L), since the block-
matrix is always invertible (we see here also that the Fredholmness, respectively,
exactness, of a mapping cone does not imply the closedness of the images im Tj ). The
kernel complex kerT is

0 −−−−→ 0
0−−−−→ ker T1

−1−−−−→ H −−−−→ 0.

It is exact only if T1 = 0, it is Fredholm only when ker T1 has finite codimension in
H , i.e., if im T1 is finite-dimensional. If the range of T1 is closed, then cokerT is the
complex

0 −−−−→ L
π−−−−→ L/im T1

0−−−−→ 0 −−−−→ 0

where π is the canonical quotient map. Thus cokerT is exact only for T1 = 0; it is
Fredholm only when im T1 has finite dimension.

Hence, for the equivalence of the Fredholm properties, additional assumptions are
required. The assumptions employed in the following proposition are optimal, as
shown again by the above (counter-)example.

Proposition 2.6 Assume that, for every j , im Tj is closed and that

dim
Q−1

j (im Tj+1)

ker Q j + im Tj
< +∞. (2.1)

Then the following properties are equivalent:

(a) The mapping cone CT associated with T is Fredholm.
(b) Both complexes kerT and cokerT are Fredholm.

In case the quotient space in (2.1) is trivial, the cohomology spaces satisfy

H j (CT) ∼= H j (kerT) ⊕ H j−1(cokerT). (2.2)

In particular, if the involved complexes are Fredholm and finite,

ind CT = ind kerT − ind cokerT;

moreover, CT is exact if, and only if, both kerT and coker T are exact.
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Proof Let us first consider the case where the quotient space in (2.1) is trivial. Then
there exist closed subspaces Vj of L j such that L j = Vj⊕im Tj and Q j : Vj → Vj+1,
for every j . In fact, choosing a complement V ′

j of im Tj ∩ ker Q j in ker Q j for every

j , take Vj := V ′
j ⊕ Q−1

j (V ′
j+1). It is straightforward to see that the complex

QV : . . . −−−−→ V−1
Q−1−−−−→ V0

Q0−−−−→ V1
Q1−−−−→ V2 −−−−→ . . .

has the same cohomology groups as coker T from above. Then consider the morphism
S : kerT → QV defined by

. . . −−−−→ ker Tj
A j−−−−→ ker Tj+1 −−−−→ . . .

⏐⏐�0
⏐⏐�0

. . . −−−−→ Vj
Q j−−−−→ Vj+1 −−−−→ . . .

(note that in the vertical arrows we could also write the Tj , since they vanish on their
kernel). The mapping cone CS is a subcomplex of CT. The quotient complex CT/CS
is easily seen to be the mapping cone of the morphism

. . . −−−−→ Hj/ker Tj
A j−−−−→ Hj+1/ker Tj+1 −−−−→ . . .

⏐⏐�Tj

⏐⏐�Tj+1

. . . −−−−→ im Tj
Q j−−−−→ im Tj+1 −−−−→ . . .

(2.3)

again by A j and Tj we denote here the inducedmaps on the respective quotient spaces.
Note that all vertical maps are isomorphisms, hence the associated mapping cone is

exact. To see this, note that

(−A j 0
Tj Q j−1

)(
u
v

)
= 0 implies that Tju + Q j−1v = 0,

i.e., u = −T−1
j Q j−1v. Thus

ker

(−A j 0
Tj Q j−1

)
⊆ im

(−T−1
j Q j−1

1

)
= im

(−A j−1T
−1
j−1

1

)

= im

(−A j−1
Tj−1

)
⊆ im

(−A j−1 0
Tj−1 Q j−2

)
⊆ ker

(−A j 0
Tj Q j−1

)
,

showing that H j (CT/CS) = 0. Summing up, we have found a short exact sequence
of complexes,

0 −−−−→ CS
α−−−−→ CT

β−−−−→ CT/CS −−−−→ 0, (2.4)

where α is the embedding and β the quotient map. Since the quotient is an exact
complex, a standard result of homology theory (cf. Corollary 4.5.5 in [28], for instance)
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states that the cohomology of CS and CT coincides. Since the maps defining CS are
just

(−A j 0
0 Q j−1

)
:
ker Tj

⊕
Vj−1

−→
ker Tj+1

⊕
Vj

,

the claimed relation (2.2) for the cohomology spaces follows immediately. The equiv-
alence of (a) and (b) is then evident.

Now let us consider the general case. Choose closed subspaces Uj , V ′
j , and Wj of

Q−1
j (im Tj+1) such that

im Tj = Uj ⊕ (im Tj ∩ ker Q j ),

ker Q j = V ′
j ⊕ (im Tj ∩ ker Q j ),

Q−1
j (im Tj+1) = Wj ⊕ (im Tj + ker Q j ),

and define the spaces Vj := V ′
j ⊕ Q−1

j (V ′
j+1). Then L j = Vj ⊕ im Tj ⊕ Wj and

Q j : Vj → Vj+1. As stated above, consider the complex QV and the morphism
S : kerT → QV ; for the cohomology one finds H j (cokerT) = H j (QV ) ⊕ Wj ;
note that the Wj are of finite dimension. The quotient complex CT/CS is the mapping
cone of the morphism

. . . −−−−→ Hj/ker Tj
A j−−−−→ Hj+1/ker Tj+1 −−−−→ . . .

⏐⏐�Tj

⏐⏐�Tj+1

. . . −−−−→ im Tj ⊕ Wj
Q j−−−−→ im Tj+1 ⊕ Wj+1 −−−−→ . . .

Since it differs from the exact complex (2.3) only by the finite-dimensional spacesWj ,
it is a Fredholm complex. By Theorem 4.5.4 of [28] we now find the exact sequence

. . . −→ H j−1(CT/CS)
∂∗−−→ H j (CS)

α∗−−→ H j (CT)
β∗−−→ H j (CT/CS)

∂∗−−→ . . .

where ∂∗ is the connecting homomorphism for cohomology. Since both spaces
H j−1(CT/CS) and H j (CT/CS) are finite-dimensional, we find that α∗ has finite-
dimensional kernel and finite-codimensional range. ThusH j (CT) is of finite dimen-
sion if, and only if,H j (CS) is. The latter coincides withH j (kerT) ⊕H j−1(QV ),
which differs fromH j (kerT) ⊕H j−1(coker T) only by Wj . This shows the equiv-
alence of (a) and (b) in the general case. ��

Of course, condition (2.1) is void in case all spaces L j are finite-dimensional.
However, for the formula of the index established in the proposition, as well as the
stated equivalence of exactness, one still needs to require that the quotient space in
(2.1) is trivial.
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Remark 2.7 Assume that T : A → Q is an isomorphism, i.e., all operators Tj are
isomorphisms. If P is a parametrix to A, cf. Definition 2.3, then the operators

S j := Tj Pj T
−1
j+1, j ∈ Z,

define a parametrix S of the complex Q.

2.3 Families of Complexes

The concept of Hilbert space complexes generalizes to Hilbert bundle complexes, i.e.,
sequences of maps

A : . . . −→ E−1
A−1−−→ E0

A0−→ E1
A1−→ E2

A2−→ E3 −→ . . . ,

where the E j are finite- or infinite-dimensional smooth Hilbert bundles and the A j are
bundle morphisms. For our purposes it will be sufficient to deal with the case where
all involved bundles have identical base spaces, say a smooth manifold X , and each
A j preserves the fiber over x for any x ∈ X . In this case, by restriction to the fibers,
we may associate with A a family of complexes

Ax : . . . −→ E−1,x
A−1−−→ E0,x

A0−→ E1,x
A1−→ E2,x

A2−→ E3,x −→ . . . , x ∈ X.

For this reason we shall occasionally call A a family of complexes. It is called a
Fredholm family if Ax is a Fredholm complex for every x ∈ X . Analogously we
define an exact family.

Though formally very similar to Hilbert space complexes, families of complexes
are more difficult to deal with. This is mainly due to the fact that the cohomology
spaces H j (Ax ) may change quite irregularly with x .

3 Complexes on Manifolds with Boundary

We shall now turn to the study of complexes of pseudodifferential operators on man-
ifolds with boundary and associated boundary value problems.

3.1 Boutet de Monvel’s Algebra with Global Projection Conditions

The natural framework for our analysis of complexes on manifolds with boundary is
Boutet de Monvel’s extended algebra with generalized APS conditions. In the follow-
ing we provide a concise account on this calculus.

3.1.1 Boutet de Monvel’s Algebra

First we shall present the standard Boutet de Monvel algebra; for details we refer the
reader to the existing literature, for example [11,16,17].
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Let � be a smooth, compact Riemannian manifold with boundary. We shall work
with operators

A =
(
A+ + G K

T Q

)
:

C∞(�, E0)

⊕
C∞(∂�, F0)

−→
C∞(�, E1)

⊕
C∞(∂�, F1)

, (3.1)

where E j and Fj are Hermitian vector bundles over� and ∂�, respectively, which are
allowed to be zero-dimensional. Every such operator has an order, denoted by μ ∈ Z,
and a type, denoted by d ∈ Z.1 In more detail,

• A+ is the “restriction” to the interior of � of a μ-th order, classical pseudod-
ifferential operator A defined on the smooth double 2�, having the two-sided
transmission property with respect to ∂�,

• G is a Green operator of order μ and type d,
• K is a μ-th order potential operator,
• T is a trace operator of order μ and type d,
• Q ∈ Lμ

cl(∂�; F0, F1) is a μ-th order, classical pseudodifferential operator on the
boundary.

We shall denote the space of all such operators by

Bμ,d(�; (E0, F0), (E1, F1)).

The scope of the following example is to illustrate the significance of order and type
in this calculus.

Example 3.1 Let A = A+ be a differential operator on � with coefficients smooth up
to the boundary.

(a) Let A be of order 2. We shall explain how both Dirichlet and Neumann problem
for A are included in Boutet de Monvel’s algebra. To this end let

γ0u := u|∂�, γ1u := ∂u

∂ν

∣∣∣
∂�

denote the operators of restriction to the boundary of functions and their derivative
in direction of the exterior normal, respectively. Moreover, let S j ∈ L3/2− j

cl (∂�),
j = 0, 1, be invertible pseudodifferential operators on the boundary of �. Then

Tj := S jγ j : C∞(�) −→ C∞(∂�)

are trace operators of order 2 and type j + 1. If E0 = E1 := C, F1 := C, and

F0 := {0}, then A j :=
(
A
Tj

)
belongs to B2, j+1(�; (C, 0), (C,C)). In case A j

1 The concept of negative type can be found in [10,11], for example.
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is invertible, the inverses are of the form

A−1
j = (P+ + G j K j

) ∈ B−2,0(�; (C,C), (C, 0));

for the original Dirichlet and Neumann problem one finds

(
A
γ j

)−1

= (P+ + G j K j S j
)
.

(b) Let A now have order 4 and consider A jointly with Dirichlet and Neumann
condition. We define

T :=
(
S0γ0
S1γ1

)
: C∞(�) −→

C∞(∂�)

⊕
C∞(∂�)

∼= C∞(∂�,C2)

with pseudodifferential isomorphisms S j ∈ L7/2− j
cl (∂�). Then T is a trace oper-

ator of order 4 and type 2, and

(
A
T

)
belongs to B4,2(�; (C, 0), (C,C2)). The

discussion of invertibility is similar as in (a).

At first glance, the use of the isomorphisms S j may appear strange but, indeed, is
just a choice of normalization of orders; it could be replaced by any other choice of
normalization, resulting in a straightforward reformulation.

As a matter of fact, withA ∈ Bμ,d(�; (E0, F0), (E1, F1)) as in (3.1) is associated
a principal symbol

σμ(A ) = (σμ
ψ (A ), σ

μ
∂ (A )

)
, (3.2)

that determines the ellipticity of A; the components are

(1) the usual homogeneous principal symbol of the pseudodifferential operator A
(restricted to S∗�, the unit co-sphere bundle of �),

σ
μ
ψ (A ) := σ

μ
ψ (A) : π∗

�E0 −→ π∗
�E1,

where π� : S∗� → � is the canonical projection,
(2) the so-called principal boundary symbol which is a vector bundle morphism

σ
μ
∂ (A ) :

π∗
∂�(S (R+) ⊗ E ′

0)⊕
π∗

∂�F0
−→

π∗
∂�(S (R+) ⊗ E ′

1)⊕
π∗

∂�F1
, (3.3)

where π∂� : S∗∂� → ∂� again denotes the canonical projection and E ′
j =

E j |∂� is the restriction of E j to the boundary.
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3.1.2 Boutet de Monvel’s Algebra with APS Conditions

This extension of Boutet de Monvel’s algebra has been introduced in [19]. Consider
two pseudodifferential projections Pj ∈ L0

cl(∂�; Fj , Fj ), j = 0, 1, on the boundary
of �. We denote by

Bμ,d(�; (E0, F0; P0), (E1, F1; P1))

the space of all operators A ∈ Bμ,d(�; (E0, F0), (E1, F1)) such that

A (1 − P0) = (1 − P1)A = 0, P j :=
(
1 0
0 Pj

)
.

If we denote by

C∞(∂�, Fj ; Pj ) := Pj
(
C∞(∂�, Fj )

)

the range spaces of the projections Pj , which are closed subspaces, then any such A
induces continuous maps

A :
C∞(�, E0)

⊕
C∞(∂�, F0; P0)

−→
C∞(�, E1)

⊕
C∞(∂�, F1; P1)

. (3.4)

For sake of clarity let us point out that A acts also as an operator as in (3.1) but it is
the mapping property (3.4) in the subspaces determined by the projections which is
the relevant one.

The use of the terminology “algebra” originates from the fact that operators can be
composed in the following sense:

Theorem 3.2 Composition of operators induces maps

Bμ1,d1(�; (E1, F1; P1), (E2, F2; P2)) × Bμ0,d0(�; (E0, F0; P0), (E1, F1; P1))
−→ Bμ0+μ1,d(�; (E0, F0; P0), (E2, F2; P2)),

where the resulting is d = max(d0, d1 + μ0).

The Riemannian and Hermitian metrics allow us to define L2-spaces (and then L2-
Sobolev spaces) of sections of the bundles over �. Identifying these spaces with their
dual spaces, as usually done for Hilbert spaces, we can associate withA its formally
adjoint operator A ∗. Then the following is true:

Theorem 3.3 Let μ ≤ 0. Taking the formal adjoint induces maps

Bμ,0(�; (E0, F0; P0), (E1, F1; P1)) −→ Bμ,0(�; (E1, F1; P∗
1 ), (E0, F0; P∗

0 )),

where P∗
j is the formal adjoint of the projection Pj .
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Elliptic Complexes on Manifolds with Boundary 669

Let us now describe the principal symbolic structure of the extended algebra. Since
the involved Pj are projections, also their associated principal symbols σ 0

ψ(Pj ) are
projections (as bundle morphisms); thus their ranges define subbundles

Fj (Pj ) := σ 0
ψ(Pj )

(
π∗

∂�Fj
) ⊆ π∗

∂�Fj . (3.5)

Note that, in general, Fj (Pj ) is not a pull-back to the co-sphere bundle of a bundle
over the boundary ∂�.

The principal boundary symbol of A ∈ Bμ,d(�; (E0, F0; P0), (E1, F1; P1)),
which initially is defined as in (3.3), restricts then to a morphism

π∗
∂�(S (R+) ⊗ E0)

⊕
F0(P0)

−→
π∗

∂�(Hs−μ(R+) ⊗ E1)

⊕
F1(P1)

. (3.6)

This restriction we shall denote by σ
μ
∂ (A ; P0, P1) and will call it again the principal

boundary symbol of A ; the principal symbol of A is then the tuple

σμ(A ; P0, P1) = (σμ
ψ (A ), σ

μ
∂ (A ; P0, P1)

)
. (3.7)

The two components of the principal symbol behave multiplicatively under composi-
tion and are compatible with the operation of taking the formal adjoints in the obvious
way.

Definition 3.4 A ∈ Bμ,d(�; (E0, F0; P0), (E1, F1; P1)) is called σψ -elliptic if
σ

μ
ψ (A ) is an isomorphism. It is called elliptic if additionally σ

μ
∂ (A ; P0, P1) is an

isomorphism.

3.1.3 Sobolev Spaces and the Fundamental Theorem of Elliptic Theory

In the following, we let Hs(�, E) and Hs(∂�, F) with s ∈ Z denote the standard
scales of L2-Sobolev spaces of sections in the bundles E and F , respectively.Moreover,
Hs
0 (�, E) denotes the closure of C∞

0 (int�, E) in Hs(�, E).
Let A ∈ Bμ,d(�; (E0, F0; P0), (E1, F1; P1)). The range spaces

Hs(∂�, Fj ; Pj ) := Pj
(
Hs(∂�, Fj )

)

are closed subspaces of Hs(∂�, Fj ), and A induces continuous maps

Hs(�, E0)

⊕
Hs(∂�, F0; P0)

−→
Hs−μ(�, E0)

⊕
Hs−μ(∂�, F1; P1)

, s ≥ d. (3.8)
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Similarly, the principal boundary symbol σμ(A ; P0, P1) induces morphisms

π∗
∂�(Hs(R+) ⊗ E0)

⊕
F0(P0)

−→
π∗

∂�(Hs−μ(R+) ⊗ E1)

⊕
F1(P1)

, s ≥ d. (3.9)

As a matter of fact, in the above Definition 3.4 of ellipticity it is equivalent considering
the principal boundary symbol as a map (3.3) or as a map (3.9) for some fixed integer
s ≥ d.

Theorem 3.5 For A ∈ Bμ,d(�; (E0, F0; P0), (E1, F1; P1)) the following state-
ments are equivalent:
(a) A is elliptic.
(b) There exists an s ≥ max(μ, d) such that the map (3.8) associated with A is

Fredholm.
(c) For every s ≥ max(μ, d) the map (3.8) associated with A is Fredholm.
(d) There is anB ∈ B−μ,d−μ(�; (E1, F1; P1), (E0, F0; P0)) such that

BA − P0 ∈ B−∞,d(�; (E0, F0; P0), (E0, F0; P0)),
AB − P1 ∈ B−∞,d−μ(�; (E1, F1; P1), (E1, F1; P1)).

Any such operator B is called a parametrix of A .

Remark 3.6 By (formally) setting E0 and E1 equal to zero, the above block-
matrices reduce to the entry in the lower-right corner. The calculus thus reduces
to one for pseudodifferential operators on the boundary. We shall use the nota-
tion Lμ

cl(∂�; F0, F1) and Lμ
cl(∂�; (F0; P0), (F1; P1)), respectively. The ellipticity

of Q ∈ Lμ
cl(∂�; (F0; P0), (F1; P1)) is then described by one symbol only, namely,

σ
μ
ψ (Q) : F0(P0) → F1(P1), cf. (3.5).

3.2 Example: The Cauchy–Riemann Operator on the Unit Disc

Let us discuss a simple example. Let � be the unit disc in R
2 and A = ∂ = (∂x +

i∂y)/2 be the Cauchy–Riemann operator. Identify the Sobolev spaces Hs(∂�) with
the corresponding spaces of Fourier series, i.e.,

f ∈ Hs(∂�) ⇐⇒ (|n|s f̂ (n)
)
n∈Z ∈ �2(Z).

The so-called Calderón projector C , defined by

Ĉ f (n) =
{
f̂ (n) : n ≥ 0

0 : n < 0

belongs to L0
cl(∂�) and satisfies C = C2 = C∗. Note that γ0 induces an isomorphism

between the kernel of A acting on Hs(�), s ≥ 1, and Hs−1/2(∂�;C). To unify orders,
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Elliptic Complexes on Manifolds with Boundary 671

let S ∈ L1/2
cl (∂�) be invertible, P := SCS−1, and T0 := Sγ0. Then

(
A
T0

)
: Hs(�) −→

Hs−1(�)

⊕
Hs−1(∂�; P)

(3.10)

is an isomorphism for any integer s ≥ 1.

Lemma 3.7 Let T = Pφγ0 with φ : Hs−1/2(∂�) → Hs−1(∂�) being a bounded
operator. Then the map from (3.10) with T0 replaced by T is Fredholm if, and only if,
Pφ : Hs−1/2(∂�;C) → Hs−1(∂�; P) is Fredholm.

Proof Let
(
B K

)
be the inverse of (3.10). Then the Fredholmness of

(
A
T

)
is equiv-

alent to that of

(
A
T

)
(
B K

) =
(

1 0
T B T K

)
in Hs−1(�) ⊕ Hs−1(∂�; P), i.e., to

that of T K : Hs−1(∂�; P) → Hs−1(∂�; P). But now 1 = T0K = Sγ0K on
Hs−1(∂�; P) implies that T K = PφS−1 on Hs−1(∂�; P). It remains to observe
that S−1 : Hs−1(∂�; P) → Hs−1(∂�;C) isomorphically. ��

Let us now interpret the previous observation within the framework of the Boutet
de Monvel algebra with generalized APS conditions. Let P ∈ L0

cl(∂�) be an arbitrary
projection with P − C ∈ L−1

cl (∂�), i.e., P has homogeneous principal symbol

σ 0
ψ(P)(θ, τ ) = σ 0

ψ(C)(θ, τ ) =
{
1 : τ = 1

0 : τ = −1
,

where we use polar coordinates on ∂� and τ denotes the covariable to θ . By a straight-
forward calculation we find that the boundary symbol of A is

σ 1
∂ (A)(θ, τ ) = −1

2
eiθ (∂t + τ) : S (R+,t ) −→ S (R+,t ), τ = ±1,

and therefore is surjective with kernel

ker σ 1
∂ (A)(θ, τ ) =

{
span e−t : τ = 1

0 : τ = −1
.

Lemma 3.8 Let T = Bγ0 with B ∈ L1/2
cl (∂�) and

A :=
(

A
PT

)
∈ B1,1(�; (C, 0; 1), (C,C; P)).

The following properties are equivalent:
(a) A is elliptic.
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(b) σ
1/2
ψ (B)(θ, 1) �= 0.

(c) PBC ∈ L1/2
cl (∂�; (C;C), (C; P)) is elliptic.

(d) PB : Hs−1/2(∂�;C) → Hs−1(∂�; P) is Fredholm for all s.

Proof Clearly, the homogeneous principal symbol of A never vanishes. The principal
boundary symbol is given by

σ 1
∂ (A )(θ,−1) =

(
σ 1

∂ (A)(θ,−1)
0

)
: S (R+) −→

S (R+)

⊕
{0}

,

σ 1
∂ (A )(θ, 1) =

(
σ 1

∂ (A)(θ, 1)
σ
1/2
ψ (B)(θ, 1)γ0

)

: S (R+) −→
S (R+)

⊕
C

,

where γ0u = u(0) for every u ∈ S (R+). Thus ellipticity of A is equivalent to the
non-vanishing of σ

1/2
ψ (B)(θ, 1). The remaining equivalences are then clear. ��

3.3 Boundary Value Problems for Complexes

In the following we shall consider a complex

A : 0 −→ Hs(�, E0)
A0−→ Hs−ν0(�, E1)

A1−→ . . .
An−→ Hs−νn (�, En+1) −→ 0

(3.11)
with A j = Ã j,+ + G j ∈ Bμ j ,d j (�; E j , E j+1) and ν j := μ0 + . . . + μ j , where s is
assumed to be so large that all mappings have sense (i.e., s ≥ ν j and s ≥ d j + ν j−1
for every j = 0, . . . , n).

Definition 3.9 The complex A is called σψ -elliptic, if the associated family of com-
plexes made up by the homogeneous principal symbols σ

μ j
ψ (A j ), which we shall

denote by σψ(A), is an exact family.

Let us now state one of the main theorems of this section, concerning the existence
and structure of complementing boundary conditions.

Theorem 3.10 Let A as in (3.11) be σψ -elliptic.

(a) There exist bundles F1, . . . , Fn+2 and projections Pj ∈ L0
cl(∂�; Fj , Fj ) such

that the complex A can be completed to a Fredholm morphism (in the sense of
Sect. 2.2)

0 −−−−→ H0
A0−−−−→ H1

A1−−−−→ . . .
An−−−−→ Hn+1 −−−−→ 0

⏐⏐�T0
⏐⏐�T1

⏐⏐�Tn+1

0 −−−−→ L0
Q0−−−−→ L1

Q1−−−−→ . . .
Qn−−−−→ Ln+1 −−−−→ 0
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Elliptic Complexes on Manifolds with Boundary 673

where we use the notation

Hj := Hs−ν j−1(�, E j ), L j := Hs−ν j (∂�, Fj+1; Pj+1),

the Tj are trace operators of order μ j and type 0 and

Q j ∈ L
μ j+1
cl (∂�; (Fj+1; Pj+1), (Fj+2; Pj+2)).

In fact, all but one of the Pj can be chosen to be the identity. Moreover, it is
possible to choose all projections equal to the identity if, and only if, the index
bundle of A satisfies

indS∗∂� σ∂(A) ∈ π∗K (∂�),

where π : S∗∂� → � is the canonical projection.
(b) A statement analogous to (a) holds true with the trace operators Tj substituted

by K j with potential operators K j : L j → Hj of order −μ j

Themain part of the proof will be given in the next Sects. 3.3.1 and 3.3.2. Before, let
us first explainwhy, in fact, it suffices to demonstrate part (b) of the previous theorem in
case all orders μ j , types d j , and the regularity s are equal to zero. Roughly speaking,
this is possible by using order reductions and by passing to adjoint complexes. In
detail, the argument is as follows:

We shall make use of a certain family of isomorphism, whose existence is proved,
for example, in Theorem 2.5.2 of [11]: there are operators �m

j ∈ Bm,0(�; E j , E j ),

m ∈ Z, which are invertible in the algebra with (�m
j )−1 = �−m

j and which induce
isomorphisms Hs(�, E j ) → Hs−m(�, E j ) for every s ∈ R. Their adjoints, denoted
by �

m,∗
j , are then isomorphisms �

m,∗
j : Hm−s

0 (�, E j ) → H−s
0 (�, E j ) for every

s ∈ R and also �
m,∗
j ∈ Bm,0(�; E j , E j ).

Assume now that Theorem 3.10(b) holds true in case μ j = d j = s = 0.
Given the complex A from (3.11), consider the new complex

Ã : 0 −→ L2(�, E0)
Ã0−→ L2(�, E1)

Ã1−→ . . .
Ãn−→ L2(�, En+1) −→ 0,

where Ã j := �
s−ν j
j+1 A j�

ν j−1−s
j . The Ã j have order and type 0 and Ã is σψ -elliptic.

Thus there are projections P̃j and block-matrices

Ã j =
(− Ã j K̃ j+1

0 Q̃ j+1

)
∈ B0,0(�; (E j , Fj+2; P̃j+2), (E j+1, Fj+3; P̃j+3))

(with j = −1, . . . , n) that form a Fredholm complex. Now choose families of
invertible pseudodifferential operators λrj ∈ Lr

cl(∂�; Fj+1, Fj+1), r ∈ R, with
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(λrj )
−1 = λ−r

j . Then also the

A j :=
(

�
ν j−s
j+1 0

0 λ
ν j+2−s
j+2

)(− Ã j K̃ j+1

0 Q̃ j+1

)(
�

s−ν j−1
j 0

0 λ
s−ν j+1
j+1

)

form a Fredholm complex. This shows (b) in the general case with the choice of

K j := �
ν j−1−s
j K̃ jλ

s−ν j
j , (3.12)

the projections Pj = λ
ν j−1−s
j−1 P̃jλ

s−ν j−1
j−1 and

Q j := λ
ν j+1−s
j+1 Q̃ jλ

s−ν j
j ∈ L

μ j+1
cl (∂�; (Fj+1, Pj+1), (Fj+2, Pj+2)).

Now let us turn to (a). In case μ j = d j = s = 0 pass to the adjoint complex

0 −→ L2(�, Ẽ0)
B0−→ L2(�, Ẽ1)

B1−→ . . .
Bn−→ L2(�, Ẽn+1) −→ 0,

with Ẽ j = En+1− j and Bj = A∗
n− j . Apply to this complex part (b) of the Theorem,

with bundles F̃j = Fn+3− j and projections P̃j for 1 ≤ j ≤ n + 2, resulting in a

complex of block-matrices B j =
(−Bj K j+1

0 Q̃ j+1

)
. Then also the A j := B̃∗

n− j , j =
0, . . . , n + 1, form a Fredholm complex and (a) follows with Tj := K ∗

n+1− j , Q j :=
Q̃∗

n+1− j and projections Pj := P̃∗
n+3− j .

Finally, consider the general case of (a). First define Ã j = �
s−ν j
j+1 A j�

ν j−1−s
j as

above and then pass to the adjoint complex of the B̃ j := Ã∗
n− j . Using (b), this leads

to a Fredholm complex of operators

B̃ j =
(−B̃ j K̃ j+1

0 Q̃ j+1

)
∈ B0,0(�; (Ẽ j , F̃j+2; P̃j+2), (Ẽ j+1, F̃j+3; P̃j+3)).

Now we define

B j =
(

�̃
s−νn− j−1,∗
j+1 0

0 λ̃
s−νn− j−1,∗
j+3

)(−B̃ j K̃ j+1

0 Q̃ j+1

)(
�̃

νn− j−s,∗
j 0

0 λ̃
νn− j−s,∗
j+2

)

,

where the operators �̃m
j refer to the bundle Ẽ j , while λ̃rj to the bundle F̃j . These B j

then define a Fredholm complex acting as operators

B j :
H

νn− j−s
0 (�, Ẽ j )

⊕
H νn− j−s(∂�, F̃j+2, P ′

j+2)

−→
H

νn− j−1−s
0 (�, Ẽ j+1)

⊕
H νn− j−1−s(∂�, F̃j+3, P ′

j+2)
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with resulting projections P ′
j . Now observe that B∗

j =
(−An− j 0

K ∗
j+1 Q∗

j+1

)
with

Q j+1 = λ̃
s−νn− j−1,∗
j+3 Q̃ j+1̃λ

νn− j−s,∗
j+2 , K j+1 = �̃

s−νn− j−1,∗
j+1 K̃ j+1̃λ

νn− j−s,∗
j+2 ,

and that �̃
s−νn− j−1,∗
j+1 K̃ j+1̃λ

νn− j−1−s,∗
j+2 is a potential operator of order 0, mapping

H νn− j−1−s(∂�, F̃j+2, P
′
j+2) −→ H

νn− j−1−s
0 (�, Ẽ j+1).

We conclude that

Tj := K ∗
n+1− j : Hs−ν j−1(�, E j ) −→ Hs−ν j (∂�, Fj+1, Pj+1), Pj := (P ′

n− j+3)
∗,

is a trace operator of order μ j and type 0 and the result follows by redefining Q∗
n− j+1

as Q j .

Remark 3.11 The use of order reductions in the above discussion leads to the fact that
the operators Tj and Q j constructed in Theorem 3.10(a) depend on the regularity s.
However, once constructed them for some fixed choice s = s0, it is a consequence of
the general theory presented in Sect. 6.3.1, that the resulting boundary value problem
induces a Fredholm morphism not only for the choice s = s0 but for all admissible s.
An analogous comment applies to part (b) of Theorem 3.10.

3.3.1 The Index Element of a σψ -Elliptic Complex

We start out with the σψ -elliptic complex

A : 0 −→ L2(�, E0)
A0−→ L2(�, E1)

A1−→ . . .
An−→ L2(�, En+1) −→ 0,

with A j ∈ B0,0(�; E j , E j+1). The associated principal boundary symbols σ 0
∂ (A j )

form the family of complexes

σ∂(A) : 0 −→ E0
σ 0

∂ (A0)−−−−→ E1
σ 0

∂ (A1)−−−−→ . . .
σ 0

∂ (An)−−−−→ En+1 −→ 0,

where we have used the abbreviation

E j := π∗(L2(R+, E j |∂�

)
, π : S∗∂� −→ ∂�.

Due to the σψ -ellipticity, σ∂(A) is a Fredholm family.

Theorem 3.12 There exist non-negative integers �1, . . . , �n+1 and principal bound-
ary symbols

a j =
(−σ 0

∂ (A j ) k j+1
0 q j+1

)
, j = 0, . . . , n,
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of order and type 0 such that

0 −→
E0
⊕
C

�1

a0−→
E1
⊕
C

�2

a1−→ . . .
an−1−−→

En
⊕

C
�n+1

an−→
En+1
⊕
0

−→ 0

is a family of complexes which is exact in every position but possibly the first, with
finite-dimensional kernel bundle J0 := ker a0. In particular, the index element of A is
given by

indS∗∂� σ∂(A) = [J0] +
n+1∑

j=1

(−1) j [C� j ]. (3.13)

Proof For notational convenience, let us write a j := −σ 0
∂ (A j ). The proof is an itera-

tive procedure that complements, one after the other, the principal boundary symbols
an, an−1, . . . a0 to block-matrices.

Since σ∂(A) is a Fredholm family, an : En −→ En+1 has fiberwise closed range of
finite codimension. It is then a well-known fact, cf. Sect. 3.1.1.2 of [16] for example,
that one can choose a principal potential symbol kn+1 : C�n+1 → En+1 such that

(
an kn+1

) :
En
⊕

C
�n+1

−→ En+1

is surjective. Choosing qn := 0 this defines an . For n = 0 this finishes the proof. So
let us assume n ≥ 1.

Set �n+2 := 0. Let us write Ẽ j := E j ⊕ C
� j+1 and assume that, for an integer

1 ≤ i ≤ n, we have constructed ai , . . . , an such that

Ẽi ai−→ Ẽi+1
ai+1−−→ . . .

an−→ Ẽn+1 −→ 0

is an exact family. Then the families of Laplacians

d j = a j−1a
∗
j−1 + a∗

ja j , i + 1 ≤ j ≤ n + 1,

are fiberwise isomorphisms, i.e., bijective principal boundary symbols. Thus also the
inverses d−1

j are principal boundary symbols. Then the principal boundary symbols

π j := 1 − a∗
jd

−1
j+1a j , i ≤ j ≤ n,

are fiberwise the orthogonal projections in Ẽ j onto the kernel of a j ; we shall verify
this in detail at the end of the proof.

Now consider the morphism

Ei−1
⊕

Ẽi+1

(
ai−1 a∗

i

)

−−−−−−−→ Ẽi ,
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where Ei is considered as a subspace of Ẽi = Ei ⊕ C
�i+1 . Since ai−1 maps into the

kernel of ai , while fiberwise the image of a∗
i is the orthogonal complement of the

kernel of ai , we find that

im
(
ai−1 a∗

i

) = im ai−1 ⊕ (ker ai )
⊥

is fiberwise of finite codimension in Ẽi = ker ai ⊕ (ker ai )⊥. Therefore, there exists
an integer �i and a principal boundary symbol

b =
(
k
q

)
: C�i −→ Ẽi =

Ei
⊕

C
�i+1

(in particular, k is a principal potential symbol) such that

Ei−1
⊕

Ẽi+1
⊕
C

�i

(
ai−1 a∗

i b
)

−−−−−−−−→ Ẽi

is surjective. We now define

(
ki
qi

)
:= πi b : C�i −→ Ẽi =

Ei
⊕

C
�i+1

and claim that

ai−1 :=
(
ai−1 ki
0 qi

)
:
Ẽi−1
⊕
C

�i

−→ ker ai

surjectively. In fact, by construction, ai−1 maps into the kernel of ai .Moreover, given x
in a fiber of ker ai , there exists (u, v, w) in the corresponding fiber of Ei−1⊕Ẽi+1⊕C

�i

such that

x = ai−1u + a∗
i v + bw.

Being πi the orthogonal projection on the kernel of ai , we find

x = πi x = ai−1u + πi bw = ai−1

(
u
w

)
.

Thus we have constructed ai−1 such that

Ẽi−1
ai−1−−→ Ẽi ai−→ Ẽi+1

ai+1−−→ . . .
an−→ Ẽn+1 −→ 0

123



678 B.-W. Schulze, J. Seiler

is an exact complex. Now repeat this procedure until a0 has been modified.
It remains to check that the π j in fact are projections as claimed: Clearly π j = 1

on ker a j . Moreover,

a∗
ja jπ j = a∗

ja j − a∗
ja ja

∗
jd

−1
j+1a j

= a∗
ja j − a∗

j (a ja
∗
j + a∗

j+1a j+1
︸ ︷︷ ︸

=d j+1

)d−1
j+1a j + a∗

ja
∗
j+1︸ ︷︷ ︸

=(a j+1a j )
∗=0

a j+1d
−1
j+1a j = 0.

Hence π j maps into ker a∗
ja j = ker a j . Finally

(1−π j )
2=a∗

jd
−1
j+1a ja

∗
jd

−1
j+1a j

= a∗
jd

−1
j+1(a ja

∗
j + a∗

j+1a j+1
︸ ︷︷ ︸

=d j+1

)d−1
j+1a j − a∗

jd
−1
j+1a

∗
j+1a j+1d

−1
j+1a j = 1 − π j ,

since a j maps into ker a j+1 and d
−1
j+1 : ker a j+1 → ker a j+1, hence a j+1d

−1
j+1a j = 0.

The proof of Theorem 3.12 is complete. ��

3.3.2 The Proof of Theorem 3.10

Let us now turn to the proof of Theorem 3.10(b) in the case of μ j = d j = s = 0. In
fact, the statement is a consequence of the following Theorem 3.13 which is slightly
more precise. In its proof we shall apply some results for complexes onmanifolds with
boundary which we shall provide in Sect. 6.3; these results in turn are a consequence
of our general theory for complexes in operator algebras developed in Sects. 5 and 6.

Theorem 3.13 Let notation be as in Sect. 3.3.1. Then there exist non-negative integers
�0, . . . , �n+1, operators

A j =
(−A j K j+1

0 Q j+1

)
∈ B0,0(�; (E j ,C

� j+1), (E j+1,C
� j+2)), j = 0, . . . , n,

and

A−1 =
(
0 K0
0 Q0

)
∈ B0,0(�; (0,C�0 , P0), (E0,C

�1))

with a projection P0 ∈ L0(∂�;C�0 ,C�0) such that

0 −→
0
⊕

L2(∂�,C�0; P0)
A−1−−→ . . .

A j−→
L2(�, E j+1)

⊕
L2(∂�,C� j+2)

. . .
An−→

L2(�, En+1)

⊕
0

−→ 0

is a Fredholm complex. If, and only if,

indS∗∂� σ∂(A) ∈ π∗K (∂�), (3.14)
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i.e., the index element of the complex A belongs to the pull-back of the K -group of the
boundary under the canonical projection π : S∗∂� → ∂�, we may replace C�0 by a
vector bundle F0 over ∂� and P0 by the identity map.

Proof Repeating the construction in the proof of Theorem 3.12, we can find �0 and a
boundary symbol

a−1 =
(
k0
q0

)
: C�0 −→

E0
⊕
C

�1

, im

(
k0
q0

)
= ker a0 = J0.

Therefore,

C
�0 = ker

(
k0
q0

)
⊕
(
ker

(
k0
q0

))⊥ ∼= ker

(
k0
q0

)
⊕ J0.

Now let P0 be a projection whose principal symbol coincides with the projection onto
J0 (such a projection exists, cf. the appendix in [19], for instance). Then Proposition
6.10 implies the existence of A j as stated, forming a complex which is both σψ - and
σ∂ -elliptic. Then the complex is Fredholm due to Theorem 6.8.

In case (3.14) is satisfied, there exists an integer L such that J0 ⊕C
L is a pull-back

of a bundle F0 over ∂�, i.e., J0 ⊕ C
L ∼= π∗G. Now replace �0 and �1 by �0 + L and

�1 + L , respectively. Extend k0 and k1, q1 by 0 from C
�0 to C

�0 ⊕ C
L and C

�1 to
C

�1 ⊕ C
L , respectively. Moreover, extend q0 to C

�0 ⊕ C
L by letting q0 = 1 on C

L .
After these modifications, rename � j + L by � j for j = 0, 1 as well as the extended
k0 and q0 by k̃0 and q̃0, respectively. We obtain that

W :=
(
ker

(
k̃0
q̃0

))⊥ ∼= J0 ⊕ C
L ∼= π∗F0.

With an isomorphism α : π∗F0 → W we then define the boundary symbol

a−1 =
(
k0
q0

)
:=
(
k̃0
q̃0

) ∣∣∣
W

◦ α

and again argue as above to pass to a Fredholm complex of operators A j . ��

3.3.3 General Boundary Value Problems

Wehave seen in Theorem 3.10 that any σψ -elliptic complex (3.11) can be completed to
a boundary value problem which results to be Fredholm. Vice versa, given a boundary
value problem for A, we can characterize when it is Fredholm.
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Theorem 3.14 Let A as in (3.11).

(a) Assume we are given a boundary value problem

0 −−−−→ H0
A0−−−−→ H1

A1−−−−→ . . .
An−−−−→ Hn+1 −−−−→ 0

⏐⏐
�T0

⏐⏐
�T1

⏐⏐
�Tn+1

0 −−−−→ L0
Q0−−−−→ L1

Q1−−−−→ . . .
Qn−−−−→ Ln+1 −−−−→ 0

with spaces

Hj := Hs−ν j−1(�, E j ), L j := Hs−ν j (∂�, Fj+1; Pj+1),

trace operators of order μ j and type d j , and

Q j ∈ L
μ j+1
cl (∂�; (Fj+1; Pj+1), (Fj+2; Pj+2)).

Then the following statements are equivalent:
(1) The boundary value problem is Fredholm
(2) A is σψ -elliptic and the family of complexes generated by the boundary sym-

bols

(−σ
μ j
∂ (A j ) σ

μ j
∂ (Tj+1; Pj+2)

0 σ
μ j+1
∂ (Q j+1; Pj+2, Pj+3)

)
, j = −1, . . . , n,

associated with the mapping cone is an exact family.
(b) A statement analogous to (a) holds true with the trace operators Tj : Hj → L j

substituted by potential operators K j : L j → Hj of order −μ j .

In fact, this theorem is a particular case of Theorem 6.8 (applied to the associated
mapping cone).

3.4 Example: The deRham Complex

Let dim� = n + 1 and Ek denote the k-fold exterior product of the (complexified)
co-tangent bundle; sections in Ek are complex differential forms of degree k over
�. Let dk denote the operator of external differentiation on k-forms. The de Rham
complex

0 −→ Hs(�, E0)
d0−→ Hs−1(�, E1)

d1−→ . . .
dn−→ Hs−n−1(�, En+1) −→ 0

(s ≥ n + 1) is σψ -elliptic and the associated principal boundary symbols induce
an exact family of complexes. Therefore, the de Rham complex is a Fredholm com-
plex without adding any additional boundary conditions. However, one can also pose
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“Dirichlet conditions,” i.e., consider

· · · d j−1−−−−→ Hs− j (�, E j )
d j−−−−→ Hs− j−1(�, E j+1)

d j+1−−−−→ · · ·
⏐⏐�R j

⏐⏐�R j+1

· · · d j−1−−−−→ Hs− j−1/2(∂�, Fj )
d j−−−−→ Hs− j−3/2(∂�, Fj+1)

d j+1−−−−→ · · ·

where the second row is the de Rham complex on the boundary and the R’s map forms
on � to their tangential part. This is also a Fredholm problem whose index coincides
with the Euler characteristic of the pair (�, ∂�). Note that for meeting the setup of
Theorem 3.14 one needs to replace the Rk by Tk := Sk Rk and the differentials dk−1 on
the boundary by Qk := Skdk−1S

−1
k−1 with some invertible pseudodifferential operators

Sk ∈ L1/2
cl (∂�; Fk, Fk).

We omit any details, since all these observations have already been mentioned in
Example 9 of [9].

3.5 Example: The Dolbeault Complex

In this section we show that the Dolbeault complex generally violates the Atiyah–Bott
obstruction.

Complex differential forms of bi-degree (0, k) over Cn ∼= R
2n are sections in the

corresponding vector bundle denoted by Ek . Let ∂k be the dbar operator acting on
(0, k)-forms and let

�ξ =
∑

i

ξ
( ∂

∂zi

)
dzi

denote the canonical projection in the (complexified) co-tangent bundle. The homo-
geneous principal symbol of ∂k is given by

σ 1
ψ(∂k)(ξ)ω = (�ξ) ∧ ω, ξ ∈ T ∗

z R
2n, ω ∈ Ek,z,

with z ∈ C
n . Now let� ⊂ C

n be a compact domain with smooth boundary and restrict
∂k to �. If r : � → R is a boundary defining function for �, the principal boundary
symbol of ∂k is (up to scaling) given by

σ 1
∂ (∂k)(ξ

′)η = �ξ ′ ∧ η − i(�dr) ∧ dη

dr
,

where ξ ′ ∈ T ∗
z′∂� and η ∈ Hs(R+) ⊗ Ek,z′ with z′ ∈ ∂�.

For simplicity let us now take n = 2 and let � = {z ∈ C
2 | |z| ≤ 1} be the unit

ball in C
2. Using the generators dz1 and dz2, we shall identify E0,0 and E0,2 with

C
2 × C and E0,1 with C

2 × C
2. As boundary defining function we take an r with
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r(z) = 2(|z| − 1) near ∂�; then, on ∂�,

∂

∂r
= 1

2

∑

j=1,2

z j
∂

∂z j
+ z j

∂

∂z j
.

Nowwe identify T ∗∂�with those co-vectors from T ∗�|∂� vanishing on ∂/∂r . Hence,
representing ξ ∈ T ∗

z � as ξ =∑ j=1,2 ξ j dz j + ξ j dz j , we find

ξ ∈ T ∗
z ∂� ⇐⇒ Re (ξ1z1 + ξ2z2) = 0.

In other words, we may identify T ∗∂� with

T ∗∂� = {(z, ξ) ∈ C
2 ⊕ C

2 | |z| = 1, Re ξ · z = 0
}
,

where ξ · z = (ξ, z)C2 denotes the standard inner product ofC2; for the unit co-sphere
bundle of ∂� we additionally require |ξ | = 1. Note that for convenience we shall use
notation z and ξ rather than z′ and ξ ′ as above.

Using all these identifications, the principal boundary symbols σ 1
∂ (∂0) and σ 1

∂ (∂1)

can be identified with the operator-families

d0 : Hs+1(R+) −→ Hs(R+,C2), d1 : Hs(R+,C2) −→ Hs−1(R+),

defined on T ∗∂� by

d0(z, ξ)u = (ξ1u − i z1u
′, ξ2u − i z2u

′) = ξu − i zu′,
d1(z, ξ)v = ξ2v1 − ξ1v2 − i(z2v

′
1 − z1v

′
2) = v · ξ⊥ − iv′ · z⊥;

here, u′ = du
dr and similarly v′ and v′

j denote derivatives with respect to the variable

r ∈ R+. Moreover, c⊥ := (c2,−c1) provided that c = (c1, c2) ∈ C
2. Note that

c⊥ · d = −d⊥ · c for every c, d ∈ C
2; in particular, c · c⊥ = 0.

Therefore, the principal boundary symbol of the dbar-complex

D : 0 −→ Hs+1(�, E0,0)
∂0−→ Hs(�, E0,1)

∂1−→ Hs−1(�, E0,2) −→ 0

corresponds to the family of complexes

σ∂(D) : 0 −→ Hs+1(R+)
d0−→ Hs(R+,C2)

d1−→ Hs−1(R+) −→ 0. (3.15)

It is easily seen that D is σψ -elliptic. Hence the boundary symbols form a Fredholm
family. We shall now determine explicitly the index element of D and shall see that
D violates the Atiyah–Bott obstruction.
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Proposition 3.15 The complex (3.15) is exact for all (z, ξ) ∈ S∗∂� with z �= iξ ,
while

dim ker d0(iξ, ξ) = dim
ker d1(iξ, ξ)

im d0(iξ, ξ)
= 1, im d1(iξ, ξ) = Hs−1(R+).

In particular, d1 is surjective in every point of S∗∂�.

Proof We will first study range and kernel of d0: By definition,

im d0(z, ξ) =
{
ξu − i zu′ | u ∈ Hs+1(R+)

}
.

Clearly u belongs to the kernel of d0(z, ξ) if, and only if,

(
ξ1 −i z1
ξ2 −i z2

)(
u
u′
)

=
(
0
0

)
.

In case ξ and z are (complex) linearly independent, this simply means u = 0.
Otherwise there exists a constant c ∈ C with |c| = 1 such that z = cξ . Then

0 = Re z · ξ = Re c shows that c = ±i . In case z = −iξ we obtain

ξ1(u − u′) = ξ2(u − u′) = 0.

Since ξ �= 0 it follows that u is a multiple of er . Hence u = 0 is the only solution in
Hs(R+). Analogously, in case z = iξ we find that u must be a multiple of e−r , which
is always an element of Hs(R+). In conclusion, for (z, ξ) ∈ S∗∂�,

ker d0(z, ξ) =
{
span{e−r } : z = iξ,

{0} : else .

Let us next determine range and kernel of d1: It will be useful to use the operators

L−w = w − w′, L+w = w + w′.

Note that L− : Hs(R+) → Hs−1(R+) is an isomorphism (recall that L± = op+(l±)

with symbol l±(τ ) = 1± iτ being the so-called plus and minus symbols, respectively,
that play an important role in Boutet de Monvel’s calculus).

Let us consider the equation

d1(z, ξ)v = ξ2v1 − ξ1v2 − i(z2v
′
1 − z1v

′
2) = f. (3.16)

We consider three cases:
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(i) Assume that ξ and z are linearly independent, hence δ := i(z1ξ2 − z2ξ1) �= 0.
Let f ∈ Hs−1(R+) be given. If

v := (i z − ξ)L−1− f/δ ∈ Hs(R+,C2),

a direct computation shows that

d1(z, ξ)v = L−1− f − (L−1− f )′ = L−L−1− f = f.

Hence d1(z, ξ) is surjective.
Now let f = 0 and set w = i(z2v1 − z1v2). Then, due to (3.16), w′ =

ξ1v2 − ξ2v1. In particular, w,w′ ∈ Hs(R+), i.e., w ∈ Hs+1(R+). Moreover,

(
w

w′
)

=
(−i z2 i z1

−ξ2 ξ1

)(
v1
v2

)
,

which is equivalent to

v = (v1, v2) = (ξ1w − i z1w
′, ξ2w − i z2w

′)/δ = (ξw − i zw′)/δ,

hence ker d1(z, ξ) = im d0(z, ξ).
(ii) Consider the case z = −iξ . Then, setting w = ξ2v1 − ξ1v2, (3.16) becomes

L−w = f . Then, using that |ξ | = 1, (3.16) is equivalent to

ξ2(v1 − ξ2L
−1− f ) − ξ1(v2 + ξ1L

−1− f ) = 0.

Since the orthogonal complement of the span of ξ⊥ = (ξ2,−ξ1) is just the span
of ξ , we find that the solutions of (3.16) are precisely those v with

v = (v1, v2) =
(
ξ1λ + ξ2L

−1− f, ξ2λ − ξ1L
−1− f

)
, λ ∈ Hs(R+).

Since ξλ = ξL−u = ξ(u − u′) = ξu − i zu′ for ξ = i z with u = L−1− λ, we
conclude that d1(z, ξ) is surjective with ker d1(z, ξ) = im d0(z, ξ).

(iii) It remains to consider the case z = iξ . Similarly as before, setting w = ξ2v1 −
ξ1v2, (3.16) becomes L+w = w + w′ = f . Note that the general solution is

w = ce−r + w f , w f (r) = e−r
∫ r

0
es f (s) ds =

∫ r

0
e−t f (r − t) dt,

where f �→ w f : Hs−1(R+) → Hs(R+) is a continuous right inverse of L+.
Then (3.16) is equivalent to

ξ2
(
v1 − ξ2(ce

−r + w f )
)− ξ1

(
v2 + ξ1(ce

−r + w f )
) = 0
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we find that the solutions of (3.16) are precisely those v with

v = (v1, v2) =
(
ξ1λ + ξ2(ce

−r + w f ), ξ2λ − ξ1(ce
−r + w f )

)
, λ ∈ Hs(R+).

Since L+ : Hs+1(R+) → Hs(R+) surjectively, we can represent any ξλ as
ξL+u = ξ(u+u′) = ξu− i zu′ and thus conclude that d1(z, ξ) is surjective with

ker d1(z, ξ) = im d0(z, ξ) ⊕ span{ξ⊥e−r }.

This finishes the proof of the proposition. ��
In the previous proposition, including its proof, we have seen that d1(z, ξ) is sur-

jective for every (z, ξ) ∈ S∗∂� with

ker d1(z, ξ) =
{
im d0(z, ξ) ⊕ span{ξ⊥e−r } : z = iξ,

im d0(z, ξ) : else .

Now let ϕ ∈ C∞(R) be a cut-off function with ϕ ≡ 1 near t = 0 and ϕ(t) = 0 if
|t | ≥ 1/2. Then define φ ∈ C∞(S∗∂�) by

φ(z, ξ) = ϕ(|ξ + i z|2/2) = ϕ(1 + i z · ξ);

for the latter identity recall that z · ξ = Im z · ξ for (z, ξ) ∈ S∗∂�. Obviously, φ is
supported near the skew diagonal {(iξ, ξ) | |ξ | = 1} ⊂ S∗∂�.

Lemma 3.16 With the above notation define

v(z, ξ) = φ(z, ξ)ξ⊥e−ir/z·ξ ∈ S (R+,C2), (z, ξ) ∈ S∗∂�

(recall that r denotes the variable of R+). Then we have

ker d1(z, ξ) = im d0(z, ξ) + span{v(z, ξ)} ∀ (z, ξ) ∈ S∗∂�.

Proof Obviously, v(iξ, ξ) = ξ⊥e−r . Moreover, for z �= iξ ,

d1(z, ξ)v(z, ξ) = v(z, ξ) · ξ⊥ − i
dv(z, ξ)

dr
· z⊥ = 0,

using c⊥ · d⊥ = d · c. Hence v(z, ξ) ∈ ker d1(z, ξ) = im d0(z, ξ). ��
If we now define

k0 ∈ C∞(S∗∂�,L (C, Hs(R+,C2))
)
, c �→ k0(z, ξ)c := cv(z, ξ)

123



686 B.-W. Schulze, J. Seiler

then

0 −→
Hs+1(R+)

⊕
C

d̃0:=(d0 k0)−−−−−−−→ Hs(R+,C2)
d1−−→ Hs−1(R+) −→ 0 (3.17)

is a family of complexes, which is exact in the second and third position. The index
element of D is generated by the kernel bundle of d̃0.

Lemma 3.17 The kernel bundle of d̃0 is one-dimensional with

ker d̃0(z, ξ) =
{
span{(e−r , 0)} : z = iξ,

span
{(

φ(z, ξ)
(z,ξ)

(z,ξ⊥)
e−ir/(z,ξ),−1

)}
: else .

Proof In case z = iξ , the ranges of k0 and a0 have trivial intersection; hence

ker d̃0(iξ, ξ) = ker d0(iξ, ξ) ⊕ ker k0(iξ, ξ) = span {e−r } ⊕ {0}.

In case z �= ±iξ , we find that d0(z, ξ) has the left inverse

d0(z, ξ)−1v = 1

(ξ, z⊥)
(v, z⊥),

since if v = d0(z, ξ)u = ξu − i zu′ then d0(z, ξ)−1v = u by simple computation.
Thus

d̃0(z, ξ)

(
u
c

)
= 0 ⇐⇒ u = −c d0(z, ξ)−1v(z, ξ),

which immediately yields the claim. ��
Proposition 3.18 If π : S∗∂� → � denotes the canonical projection, then

indS∗∂�σ∂(D) /∈ π∗K (∂�),

i.e., the Atiyah–Bott obstruction does not vanish forD.

In order to show this result we need to verify that the kernel bundle E := ker d̃0 is
not stably isomorphic to the pull-back under π of a bundle on ∂� = S3. Since vector
bundles on the 3-sphere are always stably trivial, we only have to show that E is not
stably trivial.

To this end let z0 = (1, 0) ∈ ∂� be fixed and let E0 denote the restriction of E to

S∗
z0∂� = {ξ ∈ C

2 | (z0, ξ) ∈ S∗D} = {ξ ∈ C
2 | |ξ | = 1, Re ξ1 = 0} ∼= S2.

We shall verify that E0 is isomorphic to the Bott generator bundle on S2, hence is not
stably trivial; consequently, also E cannot be.
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In fact, write S∗
z0∂� as the union S+ ∪ S− of the upper and lower semi-sphere,

S± = {ξ ∈ S∗
z0∂� | 0 ≤ ±Im ξ1 ≤ 1}. Specializing Lemma 3.17 to the case z = z0,

and noting that then z · ξ = ξ1 and z · ξ⊥ = ξ2, we find that

s+(ξ) = (0, 1), ξ ∈ S+,

s−(ξ) =
(

− φ(z0, ξ)ξ1e
−ir/ξ1 , ξ2

)
, ξ ∈ S−,

define two non-vanishing sections of E0 over S+ and S−, respectively. Note that
s−(ξ) = (0, ξ2) near the equator {ξ = (0, ξ2) | |ξ2| = 1} ∼= S1. In other words, the
bundle E0 is obtained by clutching together the trivial one-dimensional bundles over
S+ and S−, respectively, via the clutching function f : S1 → C \ {0}, f (ξ2) = ξ2.
Thus E0 coincides with the Bott generator.

4 Generalized Pseudodifferential Operator Algebras

The aim of this section is to introduce an abstract framework in which principal facts
and techniques known from the theory of pseudodifferential operators (on manifolds
with andwithout boundary and also onmanifoldswith singularities) can be formalized.
We begin with two examples to motivate this formalization.

Example 4.1 Let M be a smooth closed Riemannian manifold. We denote by G the
set of all g = (M, F), where F is a smooth Hermitian vector bundle over M . Let

H(g) := L2(M, F), g = (M, F),

be the Hilbert space of square integrable sections of F . If g = (g0, g1) with g j =
(M, Fj ) we let

Lμ(g) := Lμ
cl(M; F0, F1), μ ≤ 0,

denote the space of classical pseudodifferential operators of order μ acting from L2-
sections of F0 to L2-sections of F1. Note that there is a natural identification

Lμ
cl(M; F0 ⊕ F1, F

′
0 ⊕ F ′

1) =
{(

A00 A01
A10 A11

) ∣∣∣∣ Ai j ∈ Lμ(M; Fj , F
′
i )

}
.

With π : S∗M → M being the canonical projection of the co-sphere bundle to the
base, we let

E(g) := π∗F, g = (M, F),

and then for A ∈ L0(g), g = (g0, g1), the usual principal symbol is a map

σ 0
ψ(A) : E(g0) −→ E(g1);
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it vanishes for operators of negative order. Obviouslywe can compose operators (only)
if the bundles they act in fit together and, in this case, the principal symbol behavesmul-
tiplicatively. Taking the L2-adjoint induces a map Lμ

cl(M; F0, F1) → Lμ
cl(M; F1, F0)

well behaved with the principal symbol, i.e., σ 0
ψ(A∗) = σ 0

ψ(A)∗, where the ∗ on the
right indicates the adjoint morphism (obtained by passing fiberwise to the adjoint).

Example 4.2 Considerations analogous to that of Example 4.1 apply to Boutet de
Monvel’s algebra for manifolds with smooth boundary. Here the weights are g =
(�, E, F), where E and F are Hermitian bundles over � and ∂�, respectively, and

Lμ(g) = Bμ,0(�; (E0, F0), (E1, F1)), 0 ≤ −μ ∈ Z,

H(g) = L2(�, E) ⊕ L2(∂�, F),

for g = (�, E, F) and g = (g0, g1) with g j = (�, E j , Fj ). The principal symbol
has two components, σμ(A) = (σ

μ
ψ (A), σ

μ
∂ (A)).

4.1 The General Setup

Let G be a set; the elements of G we will refer to as weights. With every weight
g ∈ G there is associated a Hilbert space H(g). There is a weight such that {0} is the
associated Hilbert space. With any g = (g0, g1) ∈ G × G there belong vector spaces
of operators

L−∞(g) ⊂ L0(g) ⊂ L (H(g0), H(g1));

0 and −∞ we shall refer to as the order of the operators, those of order −∞ we
shall also call smoothing operators. We shall assume that smoothing operators induce
compact operators in the corresponding Hilbert spaces and that the identity operator
is an element of L0(g) for any pair g = (g, g).

Remark 4.3 Let us point out that in this abstract setup the operators have order at most
0. This originates from the fact that in applications the use of order reductions often
allows to reduce general order situations to the zero-order case (see for example the
corresponding reduction in the proof of Theorem 3.10).

Two pairs g0 and g1 are called composable if g0 = (g0, g1) and g1 = (g1, g2), and
in this case we define

g1 ◦ g0 = (g0, g2).

We then request that composition of operators induces maps

Lμ(g1) × Lν(g0) −→ Lμ+ν(g1 ◦ g0), μ, ν ∈ {−∞, 0},

whenever the involved pairs of weights are composable.
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Definition 4.4 With the previously introduced notation let

L• = ∪
g∈G×G

L0(g).

By abuse of language, we shall speak of the algebra L•.

For a pair of weights g = (g0, g1) its inverse pair is defined as g(−1) = (g1, g0).
We shall assume that L• is closed under taking adjoints, i.e., if A ∈ Lμ(g) then the
adjoint of A : H(g0) → H(g1) is realized by an operator A∗ ∈ Lμ(g(−1)).

Definition 4.5 Let A ∈ L0(g). Then B ∈ L0(g(−1)) is called a parametrix of A if
AB − 1 ∈ L−∞(g ◦ g(−1)) and BA − 1 ∈ L−∞(g(−1) ◦ g).

In other words, a parametrix is an inverse modulo smoothing operators.

4.1.1 The Fredholm Property

It is clear that if A ∈ L0(g) has a parametrix then A induces a Fredholm operator in
the corresponding Hilbert spaces.

Definition 4.6 We say that L• has the Fredholm property if, for every A ∈ L0(g),
g = (g0, g1), the following holds true:

A has a parametrix ⇐⇒ A : H(g0) → H(g1) is a Fredholm operator.

It is well known that Boutet de Monvel’s algebra has the Fredholm property, see
Theorem 7 in Sect. 3.1.1.1 of [16], for example.

4.1.2 The Block-Matrix Property

We shall say that the algebra L• has the block-matrix property if there exists a map

(g0, g1) �→ g0 ⊕ g1 : G × G → G

which is associative, i.e., (g0 ⊕ g1) ⊕ g2 = g0 ⊕ (g1 ⊕ g2), such that

H(g0 ⊕ g1) = H(g0) ⊕ H(g1), (g0, g1) ∈ G × G,

and such that

Lμ(g), g = (g00 ⊕ . . . ⊕ g0� , g
1
0 ⊕ . . . ⊕ g1k ),
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can be identified with the space of (k + 1) × (� + 1)-matrices

⎛

⎜
⎝

A00 · · · A0�
...

...

Ak0 · · · Ak�

⎞

⎟
⎠ :

H(g00)⊕
...

⊕
H(g0� )

−→

H(g01)⊕
...

⊕
H(g1k )

, Ai j ∈ Lμ((g0j , g
1
i )).

4.1.3 Classical Algebras and Principal Symbol Map

An algebra L• will be called classical, and then for clarity denoted by L•
cl, if there

exists a map, called principal symbol map,

A �→ σ(A) = (σ1(A), . . . , σn(A)
)

assigning to each A ∈ L0
cl(g), g = (g0, g1), an n-tuple of bundle morphisms

σ�(A) : E�(g
0) −→ E�(g

1)

between (finite- or infinite-dimensional)Hilbert space bundles E�(g j ) over some base
B�(g j ), such that the following properties are valid:

(i) The map is linear, i.e.,

σ(A + B) = σ(A) + σ(B) := (σ1(A) + σ1(B), . . . , σn(A) + σn(B)
)

whenever A, B ∈ L0(g).
(i i) The map respects the composition of operators, i.e.,

σ(BA) = σ(B)σ (A) := (σ1(B)σ1(A), . . . , σn(B)σn(A)
)

whenever A ∈ L0(g0) and B ∈ L0(g1) with composable pairs g0 and g1.
(i i i) The map is well behaved with the adjoint, i.e., for any �,

σ�(A
∗) = σ�(A)∗ : E�

1(g1) −→ E�
0(g0),

where σ�(A)∗ denotes the adjoint morphism (obtained by taking fiberwise the
adjoint); for brevity, we shall also write σ(A∗) = σ(A)∗.

(iv) σ (R) = (0, . . . , 0) for every smoothing operator R.

Definition 4.7 A ∈ L0
cl(g) is called elliptic if its principal symbol σ(A) is invertible,

i.e., all bundle morphisms σ1(A), . . . , σn(A) are isomorphisms.

Besides the above properties (i) − (iv) we shall assume

(v) A ∈ L0
cl(g) is elliptic if, and only if, it has a parametrix B ∈ L0

cl(g
(−1)).
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Finally, in case L•
cl has the block-matrix property, we shall also assume that the

identification with block-matrices from Sect. 2.2 has an analogue on the level of
principal symbols.

4.2 Operators of Toeplitz Type

In the following let g = (g0, g1) and g j = (g j , g j ) for j = 0, 1. Let Pj ∈ L0(g j ) be
projections, i.e., P2

j = Pj . We then define, for μ = 0 or μ = −∞,

Tμ(g; P0, P1) :=
{
A ∈ Lμ(g) | (1 − P1)A = 0, A(1 − P0) = 0

}

=
{
P1A

′P0 | A′ ∈ Lμ(g)
}
.

If we set
H(g j , Pj ) := im Pj = Pj

(
H(g j )

)
,

then H(g j , Pj ) is a closed subspace of H(g j ) and we have the inclusions

T−∞(g, P0, P1) ⊂ T 0(g, P0, P1) ⊂ L
(
H(g0, P0), H(g1, P1)

)
.

Clearly, smoothing operators are not only bounded but again compact.
The union of all these spaces (i.e., involving all weights and projections) we shall

denote by T •. We shall call T • a Toeplitz algebra and refer to elements of T • as
Toeplitz-type operators.

Definition 4.8 Let A ∈ T 0(g; P0, P1). Then B ∈ T 0(g(−1); P1, P0) is called a
parametrix of A if

AB − P1 ∈ T−∞(g ◦ g(−1); P1, P1), BA − P0 ∈ T−∞(g(−1) ◦ g; P0, P0).

4.2.1 Classical Operators and Principal Symbol

The previous definitions extend, in an obvious way, to classical algebras; again we
shall use the subscript cl to indicate this, i.e., we write T •

cl. We associate with A ∈
T 0
cl(g; P0, P1) a principal symbol in the following way: Since the Pj are projections,

the associated symbols σ�(Pj ) are projections in the bundles E�(g j ) and thus define
subbundles

E�(g
j , Pj ) := im σ�(Pj ) = σ�(Pj )(E�(g

j )).

For A ∈ T 0
cl(g; P0, P1) we then define

σ(A; P0, P1) = (σ1(A; P0, P1), . . . , σn(A; P0, P1)
)

by
σ�(A; P0, P1) = σ�(A) : E�(g

0, P0) −→ E�(g
1, P1); (4.1)
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note that σ�(A) maps into E�(g1, P1) in view of the fact that (1 − P1)A = 0.

Remark 4.9 The principal symbol map defined this way satisfies the obvious ana-
logues of properties (i), (i i), and (iv) from Sect. 4.1.3. Concerning property (i i i) of
the adjoint, observe that there is a natural identification of the dual of H(g, P) with
the space H(g, P∗). This leads to maps

A �→ A∗ : Tμ

(cl)(g; P0, P1) −→ Tμ

(cl)(g
(−1); P∗

1 , P∗
0 ),

and (i i i) generalizes correspondingly.

Definition 4.10 An operator A ∈ T 0
cl(g; P0, P1) is called elliptic if its principal

symbol σ(A; P0, P1) is invertible, i.e., all bundle morphisms σ1(A; P0, P1), . . . ,
σn(A; P0, P1) from (4.1) are isomorphisms.

Property (v) from Sect. 4.1.3, whose validity was amere assumption for the algebra
L•
cl, can be shown to remain true for the Toeplitz algebra T •

cl, see Theorem 3.12 of
[27].

Theorem 4.11 For A ∈ T 0
cl(g; P0, P1), the following properties are equivalent:

a) A is elliptic (in the sense of Definition 4.10),
b) A has a parametrix (in the sense of Definition 4.8).

Similarly, theFredholmproperty in L• is inherited by the respectiveToeplitz algebra
T •, as has been shown in Theorem 3.7 of [27].

Theorem 4.12 Let L• have the Fredholm property. For A ∈ T 0(g; P0, P1) the fol-
lowing properties are equivalent:
(a) A has a parametrix (in the sense of Definition 4.8).
(b) A : H(g0, P0) → H(g1, P1) is a Fredholm operator.

5 Complexes in Operator Algebras

In this section, we study complexes whose single operators belong to a general algebra
L•. So let

A : . . .
A−1−−→ H(g0)

A0−→ H(g1)
A1−→ H(g2)

A2−→ H(g3)
A3−→ . . . , (5.1)

be a complex with operators A j ∈ L0(g j ), g j = (g j , g j+1). Of course, A is also a
Hilbert space complex in the sense of Sect. 2. Note that the Laplacians associated with
A satisfy � j ∈ L0((g j , g j )), j ∈ Z.

5.1 Fredholm Complexes and Parametrices

The notion of parametrix of a Hilbert space complex has been given in Definition 2.3.
In the context of operator algebras the definition is as follows.
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Definition 5.1 A parametrix in L• of the complex A is a sequence of operators Bj ∈
L0(g

(−1)
j ), j ∈ Z, such that

A j−1Bj−1 + Bj A j − 1 ∈ L−∞((g j , g j )), j ∈ Z.

In case Bj B j+1 = 0 for every j we call such a parametrix a complex.

Clearly, a parametrix in L• is also a parametrix in the sense of Definition 2.3, but
not vice versa.

Proposition 5.2 Let L• have the Fredholm property. Then A is a Fredholm complex
if, and only if, A has a parametrix in L•.

Proof IfA has a parametrix it is a Fredholm complex by Theorem 2.4. Vice versa, the
Fredholmness of A is equivalent to the simultaneous Fredholmness of all Laplacians
� j . By assumption on L•, this in turn is equivalent to the existence of parametrices
Dj ∈ L0((g j , g j )) to � j for every j . Then Bj := Dj A∗

j is a parametrix in L•. In
fact, the identity A j� j = � j+1A j implies that Dj+1A j ≡ A j D j , where ≡ means
equality modulo smoothing operators. Therefore,

Bj A j + A j−1Bj−1 = Dj A
∗
j A j + A j−1Dj−1A

∗
j−1

≡ Dj A
∗
j A j + Dj A j−1A

∗
j−1 = Dj� j ≡ 1.

This finishes the proof. ��
The parametrix constructed in the previous definition is, in general, not a complex.

To assure the existence of a parametrix that is also a complex one needs to pose an
additional condition on L• (as discussed below, it is amild condition, typically satisfied
in applications).

Definition 5.3 L• is said to have the extendedFredholmproperty if it has the Fredholm
property and for every A ∈ L0(g), g = (g, g), with A = A∗ and which is a Fredholm
operator in H(g), there exists a parametrix B ∈ L0(g) such that

AB = BA = 1 − π

with π ∈ L (H(g)) being the orthogonal projection onto ker A.

Note that, with A ∈ L0(g) and π as in the previous definition, we have the orthog-
onal decomposition H(g) = im A ⊕ ker A and A : im A → im A is an isomorphism.
If T denotes the inverse of this isomorphism, then the condition of Definition 5.3 can
be rephrased as follows: It is asked that there exists a B ∈ L0(g) with

Bu = T (1 − π)u for all u ∈ H(g). (5.2)

Theorem 5.4 Let L• have the extended Fredholm property. Then A is a Fredholm
complex if, and only if, A has a parametrix in L• which is a complex.

123



694 B.-W. Schulze, J. Seiler

Proof Let A be a Fredholm complex. By assumption, there exist parametrices Dj ∈
L0((g j , g j )) of the complex Laplacians � j with � j D j = Dj� j = 1 − π j , where
π j ∈ L (H(g j )) is the orthogonal projection onto the kernel of� j . Now define Bj :=
Dj A∗

j . As we have shown in the proof of Proposition 5.2, the Bj define a parametrix.

Since Dj+1 maps im A∗
j+1 = (ker A j+1)

⊥ into itself, and im A∗
j+1 ⊂ ker A∗

j , we
obtain A∗

j D j+1A∗
j+1 = 0, hence Bj B j+1 = 0. ��

The following theorem gives sufficient conditions for the validity of the extended
Fredholm property.

Theorem 5.5 Let L• have the Fredholm property and assume the following:
(a) If A = A∗ ∈ L0(g), g = (g, g), is a Fredholm operator in H(g), then the

orthogonal projection onto the kernel of A is an element of L−∞(g).
(b) R1T R0 ∈ L−∞(g), g = (g, g), whenever R0, R1 ∈ L−∞(g) and T ∈ L (H(g)).

Then L• has the extended Fredholm property.

In other words, condition b) asks that sandwiching a bounded operator T (not
necessarily belonging to the algebra) between two smoothing operators always results
in being a smoothing operator. A typical example are pseudodifferential operators on
closed manifolds, where the smoothing operators are those integral operators with a
smooth kernel, and sandwiching any operator which is continuous in L2-spaces results
again in an integral operator with smooth kernel. Similarly, also Boutet de Monvel’s
algebra and many other algebras of pseudodifferential operators are covered by this
theorem.

Proof of Theorem 5.5 Let A = A∗ ∈ L0(g), g = (g, g), be a Fredholm operator in
H(g). Let B = T (1 − π) ∈ L (H(g)) be as in (5.2); initially, B is only a bounded
operator in H(g), but we shall show now that B in fact belongs to L0(g).

By assumption we find a parametrix P ∈ L0(g) to A, i.e., R1 := 1 − PA and
R0 := 1 − AP belong to L−∞(g). Then, on H(g),

B − P = (PA + R1)(P − B) = P(π − R0) + R1(P − B),

B − P = (P − B)(AP + R0) = (π − R1)P + (P − B)R0.

Substituting the second equation into the first and rearranging terms yields

B − P = P(π − R0) + R1(π − R1)P + R1(P − B)R0.

The right-hand side belongs to L−∞(g) by assumptions (a) and (b). Since P belongs
to L0(g), then so does B. ��

5.2 Elliptic Complexes

Let us now assume that we deal with a classical algebra L•
cl and the complex A from

(5.1) is made up of operators A j ∈ L0
cl(g j ), g j = (g j , g j+1). If A �→ σ(A) =
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(
σ1(A), . . . , σn(A)

)
is the associated principal symbol map, cf. Sect. 4.1.3, then we

may associate with A the families of complexes

σ�(A) : . . .
σ�(A−1)−−−−→ E�(g

0)
σ�(A0)−−−−→ E�(g

1)
σ�(A1)−−−−→ E�(g

2)
σ�(A2)−−−−→ . . . , (5.3)

for � = 1, . . . , n; here we shall assume that, for each �, all bundles E�(g), g ∈ G, have
the same base space and that σ�(A) is a family of complexes as described in Sect. 2.3.

Definition 5.6 The complex A in L•
cl is called elliptic if all the associated families of

complexes σ�(A), � = 1, . . . , n, are exact families (in the sense of Sect. 2.3).

Theorem 5.7 For a complex A in L•
cl the following properties are equivalent:

(a) A is elliptic.
(b) All Laplacians � j , j ∈ Z, associated with A are elliptic.

These properties imply

(c) A has a parametrix in L•
cl.

(d) A is a Fredholm complex.

In case L•
cl has the Fredholm property, all four properties are equivalent. In presence

of the extended Fredholm property, the parametrix can be chosen to be a complex.

Proof The equivalence of (a) and (b) is simply due to the fact that the principal symbol
σ�(� j ) just coincides with the j-th Laplacian associated with σ�(A) and therefore
simultaneous exactness of σ�(A), 1 ≤ � ≤ n, in the j-th position is equivalent to the
invertibility of all σ�(� j ), i.e., the ellipticity of � j . The rest is seen as in Proposition
5.2 and Theorem 5.4. ��

The complex A induces the families of complexes σ�(A). The following theorem
is a kind of reverse statement, i.e., starting from exact families of complexes we may
construct a complex of operators. For a corresponding result in the framework of
Boutet de Monvel’s algebra see Lemma 1.3.10 in [15] and Theorem 8.1 in [12].

Theorem 5.8 Assume that L•
cl has the extended Fredholm property. Let N ∈ N and

A j ∈ L0(g j ), g j = (g j , g j+1), j = 0, . . . , N, be such that the associated sequences
of principal symbols form exact families of complexes

0 −→ E�(g
0)

σ�(A0)−−−−→ E�(g
1)

σ�(A1)−−−−→ E�(g
2) . . .

σ�(AN )−−−−→ E�(g
N+1) −→ 0,

� = 1, . . . , n. Then there exist operators Ã j ∈ L0(g j ), j = 0, . . . , N, with σ( Ã j ) =
σ(A j ) and such that

Ã : 0 −→ H(g0)
Ã0−→ H(g1)

Ã1−→ H(g2) . . .
ÃN−−→ H(gN+1) −→ 0

is a complex. In case A j+1A j is smoothing for every j , the operators Ã j can be chosen
in such a way that Ã j − A j is smoothing for every j .
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Proof We take ÃN = AN and then apply an iterative procedure, first modifying the
operator AN−1 and then, subsequently, the operators AN−2, . . . , A0.

Consider the Laplacian �N+1 = AN A∗
N ∈ L0

cl(g
N+1, gN+1). Since, by assump-

tion, any σ�(AN ) is (fiberwise) surjective, σ�(�N+1) = σ�(AN )σ�(AN )∗ is an
isomorphism. Hence �N+1 is elliptic. By the extended Fredholm property we find a
parametrix DN+1 ∈ L0((gN+1, gN+1)) of�N+1 with�N+1DN+1 = DN+1�N+1 =
1−πN+1, whereπN+1 ∈ L−∞(gN+1, gN+1) is the orthogonal projection in H(gN+1)

onto the kernel of�N+1, i.e., onto the kernel of A∗
N . Then it is straightforward to check

that �N := 1 − A∗
N DN+1AN is the orthogonal projection in H(gN ) onto the kernel

of AN . Then let us set

ÃN−1 := �N AN−1 = AN−1 + RN−1, RN−1 = −A∗
N DN+1AN AN−1.

Since σ(AN AN−1) = σ(AN )σ (AN−1) = 0 we find that σ(RN−1) = 0. Obviously, if
AN AN−1 is smoothing then so is RN−1. This finishes the first step of the procedure.

Next we are going to modify AN−2. For notational convenience redefine AN−1 as
ÃN−1. Similarly as given above, the n-th Laplacian �N = A∗

N AN + ÃN−1 Ã∗
N−1 is

elliptic, due to the exactness of the symbol complexes.We then let DN be a parametrix
with �N DN = DN�N = 1 − πN , where πN ∈ L−∞(gN , gN ) is the orthogonal
projection in H(gN ) onto the kernel of �N . Then set �N−1 = 1 − A∗

N−1DN AN−1.
Now observe that

(1 − �N−1)
2 = A∗

N−1DN AN−1A
∗
N−1DN AN−1

= A∗
N−1DN�N DN AN−1AN−1 − A∗

N−1DN A∗
N AN DN AN−1

= 1 − �N−1,

since DN�N DN = DN (1−πN ) = DN and DN maps im (AN−1) into itself, hence the
second summand vanishes in view of im (AN−1) ⊂ ker (AN ). Similarly one verifies
that im (�N−1) = ker (AN−1). In other words, �N−1 is the orthogonal projection in
H(gN−1) onto the kernel of AN−1. Then proceed as stated above, setting ÃN−2 =
�N−1 ÃN−1. Repeat this step for AN−3, and so on. ��
Remark 5.9 Let notations and assumptions be as in Theorem 5.8. Though the A j do
not form a complex, the compositions A j+1A j have vanishing principal symbols and
thus can be considered as “small.” In the literature such kind of almost-complexes are
known as essential complexes, cf. [1], or quasi-complexes, cf. [12]; for a comment on
the latter paper see [20]. In this spirit, Theorem 5.8 says that any elliptic quasi-complex
in L•

cl can be “lifted” to an elliptic complex.

6 Complexes in Toeplitz Algebras

After having developed the theory for complexes in an operator algebra L•
(cl), let us

now turn to complexes in the associated Toeplitz algebra T •
(cl). These have the form

AP : . . .
A−1−−→ H(g0; P0) A0−→ H(g1; P1) A1−→ H(g2; P2) A2−→ . . . , (6.1)

123



Elliptic Complexes on Manifolds with Boundary 697

with operators A j ∈ L0
(cl)(g j ; Pj ; Pj+1), g j = (g j , g j+1); we use the subscriptP to

indicate the involved sequence of projections Pj , j ∈ Z. Of course, if all projections
are equal to the identity, we obtain a usual complex in L•.

As we shall see, the basic definitions used for complexes in L• generalize straight-
forwardly to the Toeplitz case. However, the techniques developed in the previous
section do not apply directly to complexes in Toeplitz algebras. Mainly, this is
due to the fact that Toeplitz algebras behave differently under application of the adjoint,
i.e.,

A �→ A∗ : T 0(g; P0, P1) −→ T 0(g; P∗
1 , P∗

0 ).

As a consequence, it is for instance not clear which operators substitute the Laplacians
that played a decisive role in the analysis of complexes in L•.

To overcome this difficulty, we shall develop a method of lifting a complexAP to a
complex in L•, which preserves the essential properties of AP. To the lifted complex
we apply the theory of complexes in L• and then arrive at corresponding conclusions
for the original complex AP.

For clarity, let us state explicitly the definitions of parametrix and ellipticity.

Definition 6.1 A parametrix in T • of the complex AP is a sequence of operators

Bj ∈ L0(g
(−1)
j ; Pj+1, Pj ), j ∈ Z, such that

A j−1Bj−1 + Bj A j − Pj ∈ L−∞((g j , g j ); Pj , Pj ) j ∈ Z.

In case Bj B j+1 = 0 for every j we call such a parametrix a complex.

Let, additionally, L• = L•
cl be classical with principal symbol map A �→ σ(A) =

(σ1(A), . . . , σn(A)). Then we associate with AP the families of complexes

σ�(AP) : . . . E�(g
0, P0)

σ�(A0;P0,P1)−−−−−−−→ E�(g
1, P1)

σ�(A1;P1,P2)−−−−−−−→ E�(g
2, P2) . . . ,

(6.2)
cf. (4.1).

Definition 6.2 A complex AP in T •
cl is called elliptic if all σ�(AP), 1 ≤ � ≤ n, are

exact families of complexes.

We shall now investigate the generalization of Proposition 5.2 and Theorems 5.4,
5.7 and 5.8 to the setting of complexes in Toeplitz algebras.

6.1 Lifting of Complexes

Consider an at most semi-infinite complex AP in T •, i.e.,

AP : 0 −→ H(g0; P0) A0−→ H(g1; P1) A1−→ H(g2; P2) A2−→ . . . (6.3)
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with operators A j ∈ L0
(cl)(g j ; Pj ; Pj+1), g j = (g j , g j+1) for j ≥ 0. Moreover,

assume that L• has the block-matrix property described in Sect. 2.2.
Let us define the weights

g[ j] := g j ⊕ g j−1 ⊕ . . . ⊕ g0 ∈ G, j = 0, 1, 2, . . . .

Then we have

H(g[ j]) = H(g j ) ⊕ H(g j−1) ⊕ . . . ⊕ H(g0).

We then define

A[ j] ∈ L0(g[ j]), g[ j] := (g[ j], g[ j+1]),

by

A[ j](u j ,u j−1, . . . , u0)

= (A ju j , (1 − Pj )u j , Pj−1u j−1, (1 − Pj−2)u j−2, Pj−3u j−3, . . .
)
.

(6.4)

In other words, the block-matrix representation of A[ j] is

A[ j] = diag(A j , 0, 0, 0, . . .) + subdiag(1 − Pj , Pj−1, 1 − Pj−2, Pj−3, . . .).

Since A j+1A j = 0 as well as (1 − Pj+1)A j = 0, it follows immediately that
A[ j+1]A[ j] = 0. Therefore,

A∧
P : 0 −→ H(g[0])

A[0]−−→ H(g[1])
A[1]−−→ H(g[2])

A[2]−−→ H(g[3])
A[3]−−→ . . . , (6.5)

defines a complex in L•. Inserting the explicit form of H(g[ j]), this complex takes the
form

A∧
P : 0 −→ H(g0)

A[0]−−→ H(g1)
⊕

H(g0)

A[1]−−→ H(g2)
⊕

H(g1)
⊕

H(g0)

A[2]−−→ H(g3)
⊕

H(g2)
⊕

H(g1)
⊕

H(g0)

A[3]−−→ . . .

Definition 6.3 The complex A∧
P defined in (6.5) is called the lift of the complex AP

from (6.3).
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Proposition 6.4 Let A∧
P be the lift of AP as described above. Then

ker A[ j] = ker
(
A j : H(g j , Pj ) → H(g j+1, Pj+1)

)⊕
⊕ ker Pj−1 ⊕ im Pj−2 ⊕ ker Pj−3 ⊕ . . . ,

im A[ j] = im
(
A j : H(g j , Pj ) → H(g j+1, Pj+1)

)⊕
⊕ ker Pj ⊕ im Pj−1 ⊕ ker Pj−2 ⊕ . . . .

Here, image and kernel of the projections Pk refer to the maps Pk ∈ L (H(gk)).
Therefore, both complexes have the same cohomology spaces,

H j (AP) ∼= H j (A
∧
P), j = 0, 1, 2, . . .

In particular, AP is a Fredholm complex or an exact complex if, and only if, its lift
A∧
P is a Fredholm complex or an exact complex, respectively.

Proof Let us define the map

Tj : H(g j ) → H(g j+1) ⊕ H(g j ), Tju = (A ju, (1 − Pj )u).

Then it is clear that

ker A[ j] = ker Tj ⊕ ker Pj−1 ⊕ im Pj−2 ⊕ ker Pj−3 ⊕ . . . ,

im A[ j] = im Tj ⊕ im Pj−1 ⊕ ker Pj−2 ⊕ im Pj−3 ⊕ . . . .

Nowobserve that Tju = 0 if, and only if, u ∈ ker (1−Pj ) = H(g j , Pj ) and A ju = 0.
This shows

ker Tj = ker
(
A j : H(g j , Pj ) → H(g j+1, Pj+1)

)
.

Moreover, writing u = v + w with v ∈ H(g j , Pj ) and w ∈ ker Pj , we obtain
Tju = (A jv,w). This shows

im Tj = im
(
A j : H(g j , Pj ) → H(g j+1, Pj+1)

)⊕ ker Pj

and completes the proof. ��

6.2 Fredholmness, Parametrices, and Ellipticity of Toeplitz Complexes

The next theorem shows that a parametrix of the lift induces a parametrix of the original
complex.

Theorem 6.5 Let A∧
P be the lift of AP as described above. If A∧

P has a parametrix
in L• then AP has a parametrix in T •.
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Proof LetA∧
P have aparametrixB in L•,madeupof the operators B[ j] ∈ L0(g

(−1)
[ j] ) =

L0((g[ j+1], g[ j])). Let us represent B[ j] as a block-matrix,

B[ j] =

⎛

⎜⎜
⎝

B[ j]
j+1, j B

[ j]
j, j B

[ j]
j−1, j · · · B[ j]

0, j
...

...
...

...

B[ j]
j+1,0 B[ j]

j,0 B[ j]
j−1,0 · · · B[ j]

0,0

⎞

⎟⎟
⎠ , B[ j]

k,� ∈ L0((gk, g�)).

Since B is a parametrix to A∧
P, we have

A[ j−1]B[ j−1] + B[ j]A[ j] = 1 + C[ j], C[ j] ∈ L−∞((g[ j], g[ j])). (6.6)

Similarly as before, let us write C[ j] = (
C [ j]
k,�

)
with C [ j]

k,� ∈ L−∞((gk, g�)). Inserting
in (6.6) the block-matrix representations and looking only to the upper left corners,
we find that

A j−1B
[ j−1]
j, j−1 + B[ j]

j+1, j A j + B[ j]
j, j (1 − Pj ) = 1 + C [ j]

j, j .

Multiplying this equation from the left and the right with Pj and defining

Bj := Pj B
[ j]
j+1, j Pj+1 ∈ T 0((g j+1, g j ); Pj+1, Pj )

we find

A j−1Bj−1 + Bj A j − Pj ∈ T−∞((g j , g j ); Pj , Pj ), j = 0, 1, 2, . . .

Thus the sequence of the Bj is a parametrix in T • of AP. ��
In case the parametrix of A∧

P is also a complex, the resulting parametrix for AP

will, in general, not be a complex. We must leave it as an open question whether (or
under which conditions) it is possible to find a parametrix of AP which is a complex.

Theorem 6.6 Let L• have both the block-matrix property and the Fredholm property.
For an at most semi-infinite complexAP in T • as in (6.3), the following are equivalent:
(a) AP is a Fredholm complex.
(b) AP has a parametrix in T • (in the sense of Definition 6.1).

If L• = L•
cl is classical, these properties are equivalent to

(c) AP is an elliptic complex (in the sense of Definition 6.2).

Proof Clearly, (b) implies (a). If (a) holds, the lifted complex A∧
P is a Fredholm

complex. According to Proposition 5.2 it has a parametrix. By Theorem 6.5 we thus
find a parametrix in T • of AP. Thus (a) implies (b).

Now let L• be classical. If A∧
P is the lifted complex, then the family of complexes

σ�(A
∧
P) in the sense of (5.3) is the lift of the family of complexes σ�(AP) from (6.2).
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Thus, due to Theorem 6.5 (applied in each fiber), AP is elliptic if, and only if, A∧
P is.

By Theorem 5.7, the latter is equivalent to the Fredholmness of A∧
P which, again by

Theorem 6.5, is equivalent to the Fredholmness of AP. This shows the equivalence
of (a) and (c). ��

Now we generalize Theorem 5.8 to complexes in Toeplitz algebras.

Theorem 6.7 Assume that L•
cl has both the block-matrix property and the extended

Fredholm property. Let N ∈ N and A j ∈ T 0(g j ; Pj , Pj+1), g j = (g j , g j+1), j =
0, . . . , N, be such that the associated sequences of principal symbols form exact
families of complexes

0 −→ E�(g
0, P0)

σ�(A0;P0,P1)−−−−−−−→ . . .
σ�(AN ;PN ,PN+1)−−−−−−−−−−→ E�(g

N+1, PN+1) −→ 0,

� = 1, . . . , n. Then there exist operators Ã j ∈ T 0(g j ; Pj , Pj+1), j = 0, . . . , N, with
σ( Ã j ; Pj , Pj+1) = σ(A j ; Pj , Pj+1) and such that

ÃP : 0 −→ H(g0, P0)
Ã0−→ H(g1, P1) . . .

ÃN−−→ H(gN+1, PN+1) −→ 0

is a complex. In case A j+1A j is smoothing for every j , the operators Ã j can be chosen
in such a way that Ã j − A j is smoothing for every j .

Proof Consider the finite complex as a semi-infinite one, i.e., for j > N we let g j = g
be the weight such that H(g) = {0} and denote by A j be the zero operator acting in
{0}. Then we let

A[ j] ∈ L0(g[ j]), g[ j] := (g[ j], g[ j+1]),

as defined in (6.4). This defines a series of operators A[0], A[1], A[2], . . . which, in
general, is infinite, i.e., the operators A[ j] with j > N need not vanish. However, by
construction, we have that

A[ j+1]A[ j] = 0 ∀ j ≥ N . (6.7)

Moreover, the associated families of complexes of principal symbols are exact families
due to Proposition 6.4. We now modify the operator A[N−1] using the procedure
described in the proof of Theorem 5.8 (due to (6.7), the operators A[ j] with j ≥ N
need not be modified).

Thus let �[N ] be the orthogonal projection in H(g[N ]) onto

ker A[N ] = ker
(
AN : H(gN , PN ) → H(gN+1, PN+1)

)⊕
⊕ ker PN−1 ⊕ im PN−2 ⊕ ker PN−3 ⊕ . . .

and Ã[N−1] := �[N ]A[N−1] = A[N−1] + R[N−1] with R[N−1] ∈ L0(g[N−1]) having
vanishing principal symbol. If we write �[N ] in block-matrix form, the entry �11[N ] ∈
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L0(gN ) in the upper left corner is the orthogonal projection of H(gN ) onto ker
(
AN :

H(gN , PN ) → H(gN+1, PN+1)
)
. Thus �N := PN�11[N ]PN ∈ T 0(gN ; PN , PN ) is

the orthogonal projection of H(gN , PN ) onto the same kernel. Comparing the upper
left corners of A[N−1] and Ã[N−1] = �[N ]A[N−1] we find that

(
�11[N ]AN−1 + �12[N ](1 − PN−1)

)
− AN−1 = R11[N−1].

Multiplying by PN from the left and by PN−1 from the right yields that AN−1 differs
from ÃN−1 := �N AN−1 ∈ T 0(gN ; PN , PN ) by

RN−1 := PN R11[N−1]PN−1 ∈ T 0(gN ; PN−1, PN ).

Moreover, RN−1 has vanishing symbol σ(RN−1; PN−1, PN ) and AN ÃN−1 = 0, since
�N maps into the kernel of AN .

Now we replace AN−1 by ÃN−1 and repeat this procedure to modify AN−2, and
so on until modification of A0. ��

6.3 Complexes on Manifolds with Boundary Revisited

Let us now apply our results to complexes on manifolds with boundary, i.e., to com-
plexes in Boutet de Monvel’s algebra and its APS version. In particular, we shall
provide details we already have made use of in Sect. 3.3 on boundary value problems
for complexes.

In the following we work with the operators

A j ∈ Bμ j ,d j (�; (E j , Fj ; Pj ), (E j+1, Fj+1; Pj+1)), j = 0, . . . , n.

6.3.1 Complexes in Boutet’s Algebra with APS Type Conditions

Assume A j+1A j = 0 for every j . For convenience we introduce the notation

Hs
j := Hs(�, E j ) ⊕ Hs(∂�, Fj ; Pj )

and the numbers ν j := μ0 + . . . + μ j . Then we obtain finite complexes

AP : 0 −→ Hs
0

A0−→ Hs−ν0
1

A1−→ Hs−ν1
2

A2−→ . . .
An−→ Hs−νn

n+1 −→ 0 (6.8)

for every integer s ≥ smin with

smin := max
{
ν j , d j + ν j−1 | j = 0, . . . , n

}
(with ν−1 := 0).

The complexAP is called elliptic if both associated families of complexes σψ(AP)

and σ∂(AP), made up of the associated principal symbols and principal boundary
symbols, respectively, are exact. In fact, ellipticity is independent of the index s.
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Theorem 6.8 The following statements are equivalent:
(a) AP is elliptic.
(b) AP is a Fredholm complex for some s ≥ smin.
(c) AP is a Fredholm complex for all s ≥ smin.

In this case, AP has a parametrix made up of operators belonging to the APS version
of Boutet de Monvel’s algebra. Moreover, the index of the complex does not depend
on s.

Proof We shall make use of order reductions

Rm
j :=

(
�m

j 0
0 λmj

)
∈ Bm,0(�; (E j , Fj ), (E j , Fj )),

as already described in the discussion following Theorem 3.10, i.e., Rm
j is invertible

with inverse given by R−m
j .

Let A be elliptic. Define

A ′
j = R

smin−ν j
j+1 A j R

ν j−1−smin
j , P ′

j = λ
smin−ν j−1
j Pj λ

ν j−1−smin
j .

Then

A ′
j ∈ B0,0(�; (E j , Fj ; P ′

j ), (E j+1, Fj+1; P ′
j+1))

and A ′
j+1A

′
j = 0 for every j , i.e., the A ′

j induce a complex A′
P′ in the respective

L2-spaces, which remains elliptic. By Theorem 6.6 (with L•
cl = B•,0 as described in

Example 4.2) there exists a parametrix of A′
P′ , made up by operators

B′
j ∈ B0,0(�; (E j+1, Fj+1; P ′

j+1), (E j , Fj ; P ′
j )).

Then

B j := R
ν j−1−smin
j B′

j R
smin−ν j
j+1 ∈ B0,e j (�; (E j+1, Fj+1; Pj+1), (E j , Fj ; Pj )),

with e j := smin − ν j and we obtain that

A j−1B j−1 + B jA j − 1 ∈ B−∞,e j (�; (E j , Fj ; Pj ), (E j , Fj ; Pj )).

Thus the induced operatorsB j : Hs−ν j
j+1 → H

s−ν j−1
j give a parametrix of (6.8) when-

ever s ≥ smin. Summing up, we have verified that (a) implies (c).
Now assume that (b) holds for one s = s0. Similarly as before, we pass to a new

Fredholm complex A′
P′ made up by the operators A ′

j = R
s0−ν j
j+1 A j R

ν j−1−s0
j , which

have order and type 0. By Theorem 6.6 this complex is elliptic, and hence also the
original complex AP is. Hence (a) holds.
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It remains to verify the independence of s of the index. However, this follows from
the fact that the index of AP coincides with the index of its lifted complex A∧

P (cf.
Proposition 6.4). The index of the latter is known to be independent of s, see for
instance Theorem 2 on p. 283 of [16]. ��

6.3.2 From Principal Symbol Complexes to Complexes of Operators

Theorem 6.7 in the present situation takes the following form:
Theorem 6.9 Assume that both the sequence of principal symbols σ

μ j
ψ (A j ) and the

sequence of principal boundary symbols σ
μ j
ψ (A j ; Pj , Pj+1) induce exact families of

complexes. Then there exist operators

˜A j ∈ Bμ j ,smin−ν j−1(�; (E j , Fj ; Pj ), (E j+1, Fj+1; Pj+1)), j = 0, . . . , n,

with ˜A j+1 ˜A j = 0 for every j and such that

A j − ˜A j ∈ Bμ j−1,smin−ν j−1(�; (E j , Fj ; Pj ), (E j+1, Fj+1; Pj+1)).

Proof Define operators A ′
j as in the beginning of the proof of Theorem 6.8. These

have order and type 0 and satisfy the assumptions of the Theorem. Then by Theorem
6.7 there exist

˜A ′
j ∈ B0,0(�; (E j , Fj ; P ′

j ), (E j+1, Fj+1; P ′
j+1))

with ˜A ′
j+1

˜A ′
j = 0 and

A ′
j − ˜A ′

j ∈ B−1,0(�; (E j , Fj ; P ′
j ), (E j+1, Fj+1; P ′

j+1)).

By choosing ˜A j := R
ν j−smin
j+1

˜A ′
j R

smin−ν j−1
j , the claim follows. ��

We conclude this section with a particular variant of Theorem 6.9, which we need
for completing the proof of Theorem 3.13.

Proposition 6.10 Let theA j be as in Theorem 6.9 of order and type 0. Furthermore,

assume that A j =
(
A j K j

0 Q j

)
and that A j+1A j = 0 for every j . Then the ˜A j from

Theorem 6.9 can be chosen in the form ˜A j =
(
A j K̃ j

0 Q̃ j

)
.

Proof To prove this result we recall from the proof of Theorem 6.7 that the ˜A j are con-
structed by means of an iterative procedure, choosing ˜An := An and then modifying
An−1, . . . ,A0 one after the other. In fact, if ˜An, . . . , ˜Ak+1 are constructed and have
the form as stated, then ˜Ak := πk+1Ak with πk+1 being the orthogonal projection in
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L2(�, Ek+1)⊕L2(∂�, Fk+1; Pk+1) onto the kernel of ˜Ak+1. Now let u ∈ L2(�, Ek)

be arbitrary. Since Ak+1Ak = 0, it follows that (Aku, 0) belongs to ker ˜Ak+1 and thus

˜Ak

(
u
0

)
= πk+1

(
Aku
0

)
=
(
Aku
0

)
.

Hence the block-matrix representation of ˜Ak has the desired form. ��
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