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Abstract
In this article, we introduce a process to reconstruct a Riemann surface with boundary
equipped with a linked conductivity tensor from its boundary and the Dirichlet–
Neumann operator associated with this conductivity. When initial data come from
a two- dimensional real Riemannian surface equipped with a conductivity tensor, this
process recovers its conductivity structure.
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This paper is organized as follows. Section 1 gives a short non-exhaustive history
of the subject and Sect. 2 contains some of our main results. Section 3 is meant
to fix definitions and notation about conductivity structures but also to state some
results which, if not new, are not completely explicit in literature. Nodal manifolds are
inevitably involved in the reconstruction methods proposed here. Section 4.1 contains
what we need about them. Sections 4.2 and 5 are devoted to the proofs of Theorems 5
and 3. Section 6 is about the effective reconstruction of a bordered Riemann surface
from its Dirichlet–Neumann operator. This is a key case for the inverse conductivity
problem. Our method is based on a new a priori analysis of decompositions of two
variables holomorphic function as a sum of shockwaves functions, that is holomorphic
solutions of ∂h

∂ y = h ∂h
∂x . Section 7 enables to link the key number p of these sought

shock waves to the Euler characteristic of a computable complex curve of C
2.
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1 Introduction

We define a (two-dimensional) conductivity structure as a couple (M, σ ) where M is
a connected real surface with boundary1 equipped with a conductivity σ : T ∗M →
T ∗M , that is a tensor such that

T ∗
p M × T ∗

p M � (a, b) �→ a ∧ σp (b)

μp

is a positive symmetric bilinear form,μ being a fixed volume form for M . In the sequel,
we get rid of brackets for the action of σ on a differential form ω by writing σω for
σ (ω), that is the form M � p �→ σp

(
ωp
)
. The above definition of a conductivity is

perhaps unusual but is nothing than an intrinsic reformulation2 of the one given by
[29]. In this paper, conductivities are assumed to be at least of class C3 though it is
not mandatory for all statements.

For any continuous function u : bM → R, we denote Eσu the unique solution of
the following Dirichlet problem :

dσdU = 0 & U |bM = u. (1)

Some authors prefer to consider a Riemannian metric g on M and solutions of
the Dirichlet problem

(
�gU = 0 & U |bM = u

)
, where �g is the Laplace–Beltrami

operator. Writing in coordinates the equations dσdU = 0 and �gU = 0, one sees
that these two formulations are equivalent only when det σp = 1 for all p ∈ M .

The positive function sσ = √
det σ plays a special role in our subject. We call it the

coefficient of σ . In Sect. 3, we establish that σ can be uniquely factorized in the form
σ = sσ cσ where cσ is a conductivity of coefficient 1 and also the conjugation operator
acting on T ∗M of a complex structure Cσ uniquely associated with σ . Thus, the
condition that det σ is constant means that (M, σ ) is nothing more than the Riemann
surface (M, Cσ ).

The inverse conductivity problem we consider belongs to Electrical Impedance
Tomographic problems ; in physics, U should be considered as an electrical potential,
σ (dU ) as the electrical current generated by U and dσdU = 0 as the Maxwell
divergence equation when there is no time dependence. The EIT problem is generally

1 We think of a surface with boundary M as a dense open subset of an oriented two-dimensional real
manifold with boundary M whose all connected components are bounded by pure one-dimensional real
manifolds ; so the topological boundary bM of M is M\M ; in the sequel ∂M is bM equipped with the
natural orientation induced by M . A Riemann surface with boundary is a connected complex manifold of
dimension 1 which is also a real surface with boundary.
2 If we fix a point p in M , some coordinates (x, y) around p and we set as in [29] (ξ, η) = (dy,−dx)
then σ (dx) = rξ + tη and σ (dy) = uξ + sη, for a = axdx + aydy and b = bxdx + bydy in Tp M ,
σp (b) = (bx r + byu

)
ξ + (bx t + bys

)
η and

a ∧ σp (b) = (axdx + aydy
) ∧ [(bx r + byu

)
dy − (bx t + bys

)
dx
]

= (rax bx + uax by + taybx + sbx by
)
dx ∧ dy.
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2778 V. Michel

thought as the reconstruction of (M, σ ) from ∂M , the boundary bM of M orientated

by M , T ∗
bM M = ∪

p∈bM
T ∗

p M , σ
∣∣∣T ∗

bM M and the Dirichlet–Neumann operator associated

with σ . This formulation is somehow ambiguous because it does not tell if M has to
be determined as an abstract manifold, an embedded manifold, or even more precisely
as a particular submanifold of some standard space. Success depends of the chosen
position. Before going into what can be recovered and how it can be, we have to clarify
what is a Dirichlet–Neumann operator.

To do so, one can use a metric (see Sect. 3) but we prefer to use the «differential»
Dirichlet–Neumann operator Nσ

d whose action on a sufficiently smooth function u :
bM → R is defined by

Nσ
d u = [σd (Eσu)]|bM . (2)

Hence, in physics, Nσ
d u is the measurement along bM of the current generated by the

electrical potential Eσu.
When M is a domain in R

2, the conductivity is often thought as the matrix
(
σ jk
) =

Mat (dx2,−dx1)
(dx1,dx2)

(σ )which represents at each point p the linear map σp from T ∗
p M with

(dx1, dx2) as domain basis to T ∗
p M with (dx2,−dx1) as range basis, (x1, x2) being

the standard coordinates of R
2 ; (1) turns to be

∑

j,k=1,2

∂

∂x j

(
σ jk

∂U

∂xk

)
= 0 & U |bM = u, (3)

and the conditions constraining σ as a conductivity translate into the fact that
(
σ jk
)
is

symmetric and positive.
The task, understood as the reconstruction of

(
σ jk
)
from

(
∂M, Nσ

d

)
, has no natural

solution because it is known from a remark of Tartar cited by [26], that when ϕ ∈
C1
(
M, M

)
is a diffeomorphism matching identity on bM and 	 is the Jacobian

matrix of ϕ, (σ ′
jk) = 1

det	
t	
(
σ jk
)
	 defines a conductivity σ ′ such that Nσ ′

d = Nσ
d .

However, Lemma 8 of Sect. 3 shows that ϕ is a biholomorphism between the Riemann
surfaces (M, Cσ ) and (M, Cσ ′) , where Cσ (resp. Cσ ′ ) is the complex structure where
σ = sc (resp. σ ′ = s′c′), s (resp. s′) being a positive function on M and c (resp. c′) the
conjugation operator on T ∗M associated with Cσ (resp. Cσ ′ ). Though they have the
same underlying set, it is more accurate to see (M, Cσ ) and (M, Cσ ′) as two different
embeddings of the same abstract Riemann surface.

This example leads to consider the two-dimensional inverse conductivity problem
as the reconstruction of M , an abstract Riemann surface with boundary, and of a
function s : M → R

∗+ from the knowledge of bM , s |bM , the action on T ∗
bM M of the

conjugation operator c of M , and the Dirichlet–Neumann operator

N sc
d : F (bM) � u �→ dc Escu

∣
∣
bM ,

where F (M) is any reasonable functions space like C0 (bM), C∞ (bM) or
H1/2 (bM), dc = i

(
∂ − ∂

)
, ∂ = d − ∂ , and ∂ is the Cauchy–Riemann operator
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The Two-Dimensional Inverse Conductivity Problem 2779

of M . In particular, even if data come from a Riemannian manifold (M, g) equipped
with a conductivity tensor σ , we think our inverse problem as the reconstruction of
the Riemann surface (M,Cσ ) and of the coefficient of σ . Note that this formulation
does not mention the auxiliary volume form μ because as explained in Sect. 3, the
knowledge of the complex structure of M along bM enables to bypass it.

When (M, σ ) is a two-dimensional conductivity structure embedded in a real or
complex affine space, M can also be endowed the complex structure C induced by
restriction of the ambient space metric. If c denotes the conjugation operator of C
acting on T ∗M , σ is said to be isotropic (relatively to c or C) if there is a function
s : M → R

∗+ such that σ = sc. In other words, to assume that σ is isotropic (relatively
to the ambient metric) means to suppose the complex structure Cσ associated with σ is
already known. In such circumstances, the inverse problem we talk about is to recover
the positive function sσ = σ/c = √

det σ .
At this point, one may ask what can happen if the starting point is a known Riemann

surface X embedded in R
3 whose complex structure C is inherited from the standard

euclidean structure ofR3 andσ is any conductivity on X .Whenσ is isotropic relatively
toC,Cσ = C and the reconstruction task is done by theHenkin–Novikov theorem1. For
a non-isotropic conductivity, should an atlas of the abstract Riemann surface (X , Cσ )
be recovered from Nσ

d , any constructive metric embedding X ′ of it in R
3 could be

considered also as recovered from Nσ
d . Of course, X and X ′ will be homeomorphic but

(X , C) and X ′ will be different Riemann surfaces. Moreover, in practical cases, only
the boundary of X may be known. So it is not necessarily relevant to consider that X
is already embedded in some standard space to which Cσ would be unrelated. Besides,
in the main theorem of [24] quoted by Theorem 2, (M, σ ) is given as embedded in R

3

but is considered for the proof as embedded in C
3 with an anisotropic conductivity

while in [22], M is thought as embedded in CP3.
For a bounded domain M of R

2 equipped with an isotropic conductivity σ , it
is known that σ is completely determined by its Dirichlet–Neumann operator. This
uniqueness is established for a real analytic conductivity by Kohn and Vogelius in
[25]. For a smooth isotropic conductivity, an effective reconstruction process has been
given by Novikov in [31] and for a conductivity with a positive lower bound and of
class W 2,p, p > 1, by Nachman in [30]. Another proof of this result has been written
by Gutarts in [12] for a smooth conductivity. When M is a connected Riemann surface
whose genus is known, Henkin and Novikov in [22, Theorem 1.2] generalize and
correct the reconstruction results of an isotropic conductivity of [18]. The necessarily
technical aspect of the main result of [22, Theorem 1.2] limits us to give here only a
sketch of it.

Theorem 1 (Henkin–Novikov, 2011)Let M be a Riemann surface of genus g equipped
with an isotropic conductivity σ = sc where s ∈ C3

(
M,R∗+

)
and c is the conjugation

operator of M acting on 1-forms. Then s can be recovered from the Dirichlet–Neumann
operator Nσ

d by solving g Fredholm equations associated with g generic data of Nσ
d

and then by solving g explicit systems which, in the case where M is a domain of{
z ∈ C

2; P (z) = 0
}
, P ∈ CN [X ], are linear systems of N (N − 1) equations with

N (N − 1) unknowns.
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2780 V. Michel

When the conductivity is not isotropic, authors have focused on the injectivity
up to diffeomorphism of σ �→ Nσ

d , that is on the reverse of Tartar’s remark. This
injectivity is proved by Nachman [30] for a bounded domain of class C3 in R

2 and a
conductivity of class C3 after Sylvester [34] proved it with additional hypothesis. In
[5], it is established for a conductivity of class L∞ but for a simply connected domain
of R

2.
In the special case where the conductivity coefficient is constant, the question is

to know if two conformal structures on M are identical when they share the same
Dirichlet–Neumann operator. A positive answer is claimed by Lassas and Uhlmann in
[27] when M is connected and Belishev confirmed it in [6] by showing that M can be
seen as the spectra of the algebra of restrictions to bM of holomorphic on M extending
continuously to M .

In [27] and [6], the complete knowledge of the Dirichlet–Neumann operator is
necessary to get the uniqueness of the conformal structure. In [17], it is said that it
is determined by the action of the Dirichlet–Neumann operator on only three generic
functions but the proof provided for this result is correct only if one strengthens a
little the generic conditions required for these functions as it is done in [19]. This
uniqueness can also be obtained by increasing the number of generic functions as in
[21]. Theorem 3 gives a proof with the hypothesis of [17] and at the end of this section,
we propose a new reconstruction of the Riemann surface (M, Cσ ).

In [23] for a domain of R
2 and in [24, Theorem 1.1] for the general case of a

real two- dimensional connected manifold M , Henkin and Santacesaria made a major
breakthrough in the theory by proving that theDirichlet–Neumannoperator determines
the complex structure Cσ of (M, σ ) as a nodal Riemann surface nodal with boundary
embedded inC

2.We refer to Sect. 4.1 for definitions and notation about nodal surfaces.

Theorem 2 (Henkin–Santacesaria, 2012) Let (M, σ ) be a conductivity structure, σ
being of class C3. Then, there exists in C

2 a nodal Riemann surface with boundary M
and a C3-normalization F : M → M such that F∗σ = tcM, where t ∈ C3

(M,R∗+
)

and cM is the conjugation operator of the complex structure induced by C
2 on M. If

in addition F : M → M′ is another C3-normalization of the same kind, M and M′
are roughly isomorphic in the sense of [19]. Lastly, the boundary value of F and in

particular bM are determined by bM, σ
∣∣∣T ∗

bM M and the Dirichlet–Neumann operator

Nσ
d of (M, σ ).

Note that, thanks to Lemma 8, F is holomorphic in the sense that for any subset V
of M such that F (V ) is a branch of M, F is analytic from (V , Cσ ) to C

2. Besides,
this theorem’s proof implies that the singularities ofM are the points of F

(
M
)
with

many preimages by F . So, when M has no singularity, F is a diffeomorphism from
M ontoM satisfying the hypothesis of Lemma 8, which makes it an isomorphism of
Riemann surfaces with boundary from (M, Cσ ) onto M.

In [24], it is said thatM andM′ are isomorphicwithout providing a precisemeaning
for it. Let us succinctly prove it involves at least rough isomorphism as defined in
Sect. 4.1. Suppose that F : M → M and G : M → M′ are C3-normalizations of

the above kind. Set Freg = F
∣∣
∣RegM
F−1(Reg M)

, Greg = G
∣∣
∣RegM

′
G−1(RegM′) and denotes by

Hreg the map from RegM′ ∩ G
(
F−1 (RegM)

)
to RegM ∩ F

(
RegM′) defined

123



The Two-Dimensional Inverse Conductivity Problem 2781

by Hreg (z) = Freg

(
G−1

reg (z)
)
. Because F and G are normalizations, Hreg extends

holomorphically along any branch of M′ as a (multivalued) map H from M′ to M.
By construction, H

(M′) andM are complex curves which are different at most at a
finite number of points. Hence, they are equal and in particular, SingM and SingM′
have the same cardinal. It follows thatM andM′ are roughly isomorphic. The analysis
of Theorem 2 is carried on in the next section.

2 Main Results

ThenodalRiemann surfacesM andM′ involved inTheorem2are actually isomorphic
in the strong sense of this article. Indeed, by lifting to M ,M andM′ induce complex
structures on M which coincide on bM and share the same Dirichlet–Neumann oper-
ator. Then, Theorem 3 enables to tell that these lifted Riemann surfaces with boundary
are isomorphic and hence, that M and M′ are so as nodal Riemann surfaces with
boundary. The proof of Theorem 3 is given in Sect. 3. When n = 2, it completes the
proof of Theorem 1 of [17] whose arguments really had to be corrected. By the way,
as said before, Theorem 3 also proves the isomorphism claim of [24, Theorem 1.1].

In the statement below, [w0 : · · · : wn] denotes the standard homogeneous coordi-
nates of CPn . If ω0, . . . , ωn are (1, 0)-forms of CPn without common zero and are
pairwise proportional, we denote by [ω0 : · · · : ωn] or [ω] the map defined on each
{
ω j 
= 0

}
by [ω] =

[
ω0
ω j

: · · · : ωn
ω j

]
. Note that the hypothesis required for (u0, . . . , un)

in the theorem below is generically verified within n-uples of smooth functions on the
boundary (see [17,19]).

Theorem 3 (Henkin–Michel, 2007) Let M and M ′, two smooth Riemann surfaces
bordered by the same real curve γ . Set ∂ = d − ∂ (resp. ∂ ′ = d − ∂ ′), ∂ (resp.
∂ ′) being the Cauchy–Riemann operator of M (resp. M ′). If u ∈ C∞ (γ ), denote ũ
(resp. û) the harmonic extension of u to M (resp. M ′) and set θu = (∂ ũ)

∣∣
γ (resp.

θ ′u = (
∂ ′û
) ∣∣

γ ); θ (resp. θ ′) is also the operator θσc defined by (9) when σ is the
conjugation operator of M (resp. M ′) acting on 1-forms.

Select u = (u0, . . . , un) ∈ C∞ (γ )n+1 where n ∈ N
∗, suppose that for all j ∈

{0, . . . , n}, θu j = θ ′u j , the map [θu] = [θu0 : · · · : θun] = [
θ ′u
]

is well defined,
realizes an embedding of γ in {w ∈ CPn; w0 
= 0} and suppose in addition that
[∂ ũ] (resp.

[
∂ ′û
]
) is well defined on M (resp. M ′) and extends meromorphically [θu]

(resp.
[
θ ′u
]
) to M (resp. M ′). Under these conditions, there exists an isomorphism of

Riemann surfaces with boundary from M onto M ′ whose restriction to γ is identity.

Hence, the regular part of the nodal Riemann surfaceM produced by the Henkin–
Santacesaria theorem is a model for the complex structure of

(
M\F−1 (SingM) , σ

)
.

Thismodel is effectively computable. Indeed,M is a complex curve ofC
2\bMwhich

in the sense of currents satisfies d [M] = F∗ [∂M] where [M] denotes the integration
current on M and [∂M] the one of bM oriented by M . In this situation, one knows,
essentially since the works of Harvey and Lawson [13,14], that M is computable
thanks to Cauchy type formulas (see e.g., [17, Theorem 2] or [24, Proposition 1]).
More specifically, because M lies in C

2, these formulas directly give the symmetric
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2782 V. Michel

functions of the functionswhose graphs describes the intersections ofMwith a chosen
family of complex lines.

Meanwhile, as only the boundary values of F are known, there is an ambiguity on
how to unfold the possible nodes of M. To really know the complex structure Cσ of
M , one has to know an atlas of it or a true embedding of it in some classical space.
When the coefficient of σ is constant, it is the same thing as recovering (M, Cσ ). This
particular case is studied in [21, Theorem 4] and with the remark made at page 327,
we readily have the result below for which we refer to [21] for the precise meaning
of generic. Note also that though [21] is formally only about Riemann surfaces, the
only part of the theorem which is not explicit in [21] is the isotropy statement but it is
a plain consequence of the fact that � is a biholomorphism from (M, Cσ ) to S.

The theorem below introduces operators which play a crucial role in this paper.
When (M, σ ) is a conductivity structure, we set ∂σ = d − ∂σ and dσ = i

(
∂σ − ∂σ

)

where ∂σ is the Cauchy–Riemann operator of Riemann surface (M, Cσ ). The operator
θσc acts on u ∈ C∞ (bM) by θσc u = (∂σ ũ) |bM , ũ being the Cσ -harmonic extension
to M of u. The theorem does not mention the regularity of σ because what matters is
that (M, Cσ ) is a smooth manifold with boundary so that Stokes formula holds.

Theorem 4 (Henkin–Michel, 2015) Let (M, σ ) be a conductivity structure. Then for
generic u = (u0, . . . , u3) in C∞ (bM,R)4, the map

[
θσc u

] = [
θσc u0 : · · · : θσc u3

]
is

the boundary value of a map � which embeds (M, Cσ ) in CP3 as a Riemann surface
S with boundary. Moreover, � = [∂σ ũ] where ũ is the Cσ -harmonic extension of u to
M, and �∗σ is a conductivity isotropic relatively to the complex structure of S.

One should be careful here because the operator θσc cannot be thought as directly
available from Nσ

d . Even if σ is the identity on the fibers of T ∗M along bM , what is
immediately available from Nσ

d are the boundary values of the derivatives of solutions
of Dirichlet problems dσdU = 0 and U |bM = u while what is required to apply
Theorem4 are the boundary values of the derivatives of solutions ofDirichlet problems
ddσU = 0 and U |bM = u. Unless the coefficient of σ is constant, one cannot expect
these boundary values to be the same. To cope with this difficulty, we have Theorem 5
which is a new result.

Before stating it, we explain some notation but complete details and proofs are
written in Sect. 4.2. We say that the conductivity structure (M̃, σ̃ ) extends plainly
(M, σ ) if M ⊂⊂ M̃ , σ̃ is of the same class as σ , σ̃ |M = σ , and σ̃

∣∣p = I d
T ∗

p M̃

for all p ∈ bM̃ . Let then F , M, and M̃ be as below. The nodal Green function g
we use for the possibly singular curve M = F (M) is defined in Corollary 12 of
Sect. 4.2 but for a rough picture, the reader can think it as a kernel with the usual
logarithmic singularities on the diagonal but with no boundary vanishing condition.
Then the double-layer potential Dgu of u ∈ C0 (bM) is defined for any regular point
q of M̃\bM by

(
Dgu

)
(q) = ∫

∂M udcgq where gq = g (q, .). When u is sufficiently

smooth, the functions D+
g u = (Dgu

) |M and D−
g u = (Dgu

) ∣∣∣M̃\M extend up to the

boundary into (nodal) C1-functions whose restrictions to bM are denoted as A+
g u and

A−
g u. The conditional Green operator Bg = I d + N #

g is defined for any u ∈ C∞ (bM)

and p ∈ bM by
(

N #
g u
)
(p) = 2PV

(∫
∂M u (q) ∂g

∂νp
(p, q) τ ∗

q

)
where PV means
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principal value and (ν, τ ) is a frame for TbMM, direct and orthonormal with respect
to the ambient Hermitian metric of C

2, τ being tangent to bM.

Theorem 5 Let (M, σ ) be a conductivity structure,σ being of class C3. Select, which is
always possible, a conductivity structure (M̃, σ̃ ) extending plainly (M, σ ). We denote
F : M̃ → M̃ ⊂ C

2 the normalization obtained by applying Theorem 2 to (M̃, σ̃ )

and we set f = F
∣
∣∣F(bM)
bM . g, D±

g , A±
g and Bg, and τ are defined as above.

Then, I d + A−
g is an endomorphism of C∞ (bM), its kernel and the kernel of Bg

are finite dimensional subspaces of C∞ (bM), and for any u ∈ C∞ (bM,R) such
that

∫
∂M ( f∗u) wτ ∗ = 0 when w ∈ ker Bg, the equation f∗u = w + A−

g w can be

solved in C∞ (bM,R) and for any solution w, θσc u =
(

F∗∂D+
g w
)

|bM .

The main difficulty in the proof of Theorem 5 comes from the fact that harmonic
Dirichlet problems in a nodal curve have unique solutions only if data are specified
for nodal points (see [19, Proposition 2]). By the way, shouldM have no singularity,
there would be nothing to do since M would be already an embedding of (M, Cσ )
in C

2.
Since the boundary values of F are computable from Nσ

d and since the Green
function we use is so fromM andM is computable from Nσ

d , Theorem 5 gives a tool
to compute from Nσ

d as many θσc u as needed to apply Theorem 4 and so, to get the
boundary values of an embedding� of the Riemann surface (M, Cσ ) onto a Riemann
surface S of CP3 for which �∗σ is isotropic.

If S itself is computed, the Henkin–Novikov Theorem 1 enables the reconstruction
of the conductivity coefficient s of�∗σ . Finally, denoting c the conjugation operator of
S, (S, sc) is an explicit solution of the problem posed if it is understood as producing
a conductivity structure, abstract or embedded in a standard space, whose oriented
boundary and Dirichlet–Neumann operator are those specified.

It remains to explain how to recover the above Riemann surface S, or, which is the
same, the conductivity structure (S, c). As S is a complex submanifold of CP3, the
problem is no longer to recover c but to recover S as a set. Without loss of generality, S
is supposed to be a relatively compact domain in an open Riemann surface S̃ of CP3.
For a generic choice of the 4-uple (u0, u1, u2, u3) of functions used in Theorem 4,
we can also assume that the projections π2 : (w0 : w1 : w2 : w3) �→ (w0 : w1 : w2)

and π3 : (w0 : w1 : w2 : w3) �→ (w0 : w1 : w3) immerse S̃ in CP2 on nodal curves
S̃2 and S̃3 such that π

−1
3

(
Sing S̃3

) ∩ π−1
2

(
Sing S̃2

) ∩ S̃ = ∅. Therefore, to obtain an
atlas of S, it is sufficient to get one for Q j = π j (S), j = 2, 3, that is for a nodal
Riemann surface with boundary which is a relatively compact domain Q in an open
nodal Riemann surface Q̃ of CP2 and whose oriented boundary ∂Q is known. This
reconstruction problem is studied in [17, Theorem 2] but the suggested algorithm is
not truly effective since the polynomials Pm arising from a non-empty intersection of
Q with {w0 = 0} cannot be computed as easily as claimed.

In this paper, we provide a new approach to this problem with an effective method
of computing these polynomials. How this can be done is described below but details
and technical notation are postponed as most as possible to Sect. 6. Theorem 39
which specifies a linear system to solve to find some crucial auxiliary polynomials
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2784 V. Michel

and Proposition 41 which enables to extract from them functions with geometric
meaning are new and part of our main results. They are written in Sects. 6.4 and 6.5.

What we have at our hand is an oriented real-curve ∂Q which is known to be the
boundary of a complex curve Q of CP2 ; without loss of generality, we assume that
{w0 = 0} ∩ bQ = ∅. In such a situation, it is classical to use the Cauchy–Fantapié
indicators of Q. Denoting U the open subset of C

2 whose elements are points z =
(x, y) of C

2 such that bQ does not meet Lz = {w ∈ CP2; xw0 + yw1 + w2 = 0},
these are the functions Gk , k ∈ N, defined on U by

Gk (z)= 1

2π i

∫

∂Q
�k

z , �
k
z =
(
w1

w0

)k 1

x + y w1
w0

+ w2
w0

d

(
x + y

w1

w0
+ w2

w0

)
. (4)

By Proposition 21, which is a result of Dolbeault and Henkin, we know that for all
k ∈ N, there exists Pk ∈ C (Y )k [X ] such that Gk − Pk is the k-nth Newton symmetric
function Nh,k of locally defined shock waves functions h1, . . . , h p which determine
the intersections of Q with the lines Lz . The polynomials Pk are generated by points
in Q∞ = Q ∩ {w0 = 0}. In the favorable but unlikely case Q∞ = ∅, all Pk are 0,
Q is contained in the affine space {w0 
= 0}, and well-known techniques enable to
compute these functions h j .

When the number q∞ of points in Q∞ is 1 or 2, Agaltsov and Henkin [1] give an
explicit procedure to recover Q and they claim that it should be efficient for any value
of q∞. Meanwhile, they provide no proof of it and it is not clear to us how to cope
with the algebraic systems involved.

The new method we propose below focuses on the number p of the involved shock
waves functions and works for any value of p or q∞. For q∞ ∈ {1, 2}, it is difficult
to compare the Agaltsov–Henkin procedure to ours because fixing p or q∞ to small
values are really different hypothesis; from Corollary 24, p = q∞ + δ where δ ∈ Z

is computed from G1. Our reconstruction process goes in five steps.

1. If G1 is algebraic in y and affine in x , Q is contained, according to Lemma 40, in
a connected algebraic curve K such that K ∩ Lz = Q ∩ Lz for z ∈ Z where as
specified by 24, Z ⊂ U is a domain of the form ∪

|y|>�
D (0, α |y|) × {y}. In this

situation, we choose other coordinates in order that at least one of the lines Lz ,

z ∈ Z , meets Q and K\Q. Thus, we assume that ∂
2G1
∂x2


= 0 on Z for the remaining
of the process.

2. We assume that for some d ∈ N
∗, we have found in C [X ]d a solution μ =

(μ1, . . . , μd) for the differential linear system Sd such that Bμ (0, y) →
y→0∗ 1 and

�μ 
= 0, these three conditions being specified in Theorem 39. Note that Sd

is actually a linear system on the coefficients of μ. According to Theorem 39,
G1 = −s1 + 1 ⊗ A

B + X ⊗ B′
B with A, B ∈ C [Y ], deg A < deg B = r = d − δ,

B (0) = 1, and sk = eH

1⊗B (
∑

k� j�d F j−k
(
μ j ⊗ 1

)
), 1 � k � d, where H is a

function defined on Z+ = Z\ (C × R−) andF is an operator, both being specified
in Definition 30 and computable from G1.
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3. According toCorollary 33, outside an analytic subset of Z , the sk are the symmetric
functions of shock waves functions g1, . . . , gd . Applying to the family

(
g j
)
the

reduction described in the beginning of Sect. 6.5 and applying Proposition 41,
we conclude that d � p where p is the number p of the locally defined shock
waves functions h j we are looking for, r � q∞ and that if

(
g̃ j
)
1� j�p is the set

of functions obtained from
(
g j
)
by reduction,

{
g̃1, . . . , g̃p

} = {
h1, . . . , h p

}
and

P1 = 1 ⊗ A
B + X ⊗ B′

B . Consequently, (Pk)k∈N∗ is the algebraic extension of(
Gk − Ng̃,k

)
k∈N∗ where the Ng̃,k are the Newton symmetric functions of the g̃ j .

4. We know from Proposition 21, that there exists a locally constant function π with
values in N such that for z∗ in Z but outside some analytic subset of Z , there exists
a neighborhood Uz∗ of z∗ in Z and mutually distinct shock waves hz∗

1 , . . . , hz∗
π(z∗)

such that Q contains Qz∗ = ∪
1�k�π(z∗)

{(
1 : hz∗

j (z) : −x − yhz∗
j (z)

)
; z ∈ Uz∗

}

and
(
Gk
∣∣Uz∗

)
k∈N∗ = (

Nhz∗ ,k + Pk
∣∣Uz∗

)
k∈N∗ where the Nhz∗ ,k are the Newton

symmetric functions of the hz∗
j . Thanks to Newton’s formulas (27) and what pre-

cede, we can hence compute the symmetric functions Shz∗ ,k of the hz∗
j . Moreover,

π (z∗) = G0
∣∣Uz∗ −q∞ is known.Wecan hence individually compute the functions

hz∗
j , 1 � j � π (z∗) from

(
Shz∗ ,k

)
1�k�π(z∗).

5. Thanks to Lemma 20, Q ∩ {w0 
= 0} and hence Q are known.

From a practical point of view, it would be very convenient to know a priori p since
it would enable to write directly a relevant system Sd . Inequality (5) of Theorem 6
delivers an upper bound pmax for this number p. Note that data needed to think (5)
as effective, mainlyM, (D∂σ ũ0) |bM , and θσc u0 = ∂σ ũ0 |bM are, as explained in the
proof which is given at the end of Sect. 7, computable from available boundary data. It
would be useful to have a formula delivering X (M)

in terms of Dirichlet–Neumann
boundary data but such a formula is not known and M has to be computed in order
get its Euler characteristic.

Theorem 39 implies that Sd has a non-trivial solution for some d between 1 and
pmax . In addition, with results of Sect. 6.5, we know that from any non- trivial solution
of some Sd , we can extract the sought shock waves. Hence, in the second step of the
above process, we have at most pmax linear systems Sd to solve and this process may
be considered as effective for any value of p or q∞.

In Theorem6, the generic hypothesis that Q ∈ {Q1, Q2} is assumed to satisfy is that
Q is a well-defined nodal open-bordered Riemann surface of CP2 whose boundary is
a smooth real curve such that bQ ⊂ {w0w1w2 
= 0}, (0 : 0 : 1) and (0 : 1 : 0) are not
in Q∞ = Q ∩ {w0 = 0} which is supposed to be transversal and contained in Reg Q.
The number p j is, according to Proposition 21 when Q ∈ {Q1, Q2}, the number of
shock waves functions h j,1, . . . , h j,p j such the function Gk defined by (4) can be

written on the set Z defined by (24) in the form
(
h j,1

)k +· · ·+ (h j,p j

)k + Pj,k where
Pj,k ∈ C (Y )k [X ]. The complex differential operator ∂σ of (M, Cσ ) is defined as
before.

Theorem 6 Let (M, σ ) be a conductivity structure. We equip the bundle �1,0T ∗M of
(1, 0)-forms of (M, Cσ )with an Hermitian metric and a Chern connection D as in The-
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orem 44. Denote by M the nodal Riemann surface designed by Theorem 2 and denote
χ
(M)

the Euler characteristic of M. Assume that u = (u0, u1, u2, u3) ∈ C∞ (bM)4

satisfies the following generic hypothesis : the Cσ -harmonic extension ũ of u is such
that [∂σ ũ] is an embedding of M in CP3 and Q j = [

∂σ ũ0 : ∂σ ũ1 : ∂σ ũ j
]
(M),

j = 2, 3, satisfies the generic hypothesis stated above. Let p = max (p2, p3) and
δ = max (δ2, δ3) where δ j = 1

2π i

∫
∂Q j

d(w1/w0)
w1/w0

is the number δ defined in Lemma 23
and p j is the number of shock waves functions involved in Proposition 21 when z∗ is
in the set Z defined by (24). Then

p � δ + 1

2π i

∫

∂M

D∂σ ũ0

∂σ ũ0
− χ

(M)
. (5)

3 Conductivity Structures andMetrics

Requirements on σ to be a conductivity indicate a metric is involved. It is noticed in
[17] that once a volume form μ is chosen for M , one can design a natural metric gμ,σ
on M by setting for all t, t ′ ∈ T M

gμ,σ
(
t, t ′
) = σ−1 (t �μ) ∧ (t ′ �μ)

μ
.

Its conformal class or complex structure Cσ does not depend on μ and σ factorizes
(see [17]) through Cσ in the sense that there exists a function sσ : M → R

∗+ with
the same regularity as σ , called conductivity coefficient in this article, such that when
(x1, x2) is a couple of local isothermal coordinates for Cσ ,

Mat (dx2,−dx1)
dx (σp) = sσ (p) I2 (6)

for all p in the open subset of M where (x1, x2) is defined, I2 being the 2× 2 identity
matrix, and dx = (dx1, dx2). Denote by det σ the map which to a point p of M
associates the determinant of the linear map σp ; (6) implies sσ = √

det σ . If cσ is the
conductivity defined by

σ = sσ · cσ = √
det σ · cσ , (7)

Cσ is also the conformal class associated with cσ ; when (x1, x2) is a couple of local
isothermal coordinates for Cσ ,

Matdx
dx (cσ ) =

(
0 −1
1 0

)
de f= J .

In other words, cσ is also the conjugation operator acting on 1-forms of M . Moreover,
if dσ = cσd, ∂σ = 1

2 (d − idσ ) is the Cauchy–Riemann operator associated with Cσ
and
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dσdU = dsσdσU

for all functions U ∈ C2
(
M
)
. Note that by definition, ∂σ = ∂cσ , ∂σ = ∂cσ , and

dσ = dcσ ; these operators are associated with the complex structure Cσ .
Let us suppose that C is a complex structure on M , that is an atlas for M which

makes M a Riemann surface with boundary. If x1 and x2 are the real and imaginary
part of a same holomorphic coordinate for M , Jacobian matrices relatives to (x1, x2)
of holomorphic maps commute with J . This means that one can define a tensor c :
T M → T M by the fact that in such coordinates, Matdx

dx (c) = J . By construction, c is

a conductivity whose coefficient is 1, c◦d = i
(
∂ − ∂

) de f= dc and c is the conjugation
operator of C and also the Hodge star operator acting on 1-forms when M is equipped
the metric dual of the one given on each T ∗

p M by 〈a, b〉μ = a ∧∗b = 1√
det σ

a ∧σ (b).
So, decomposition (7) shows a complex structure naturally associated with σ . It

is unique in the sense that if c′ is the conjugation operator of T ∗M associated with

a complex structure C′ and if s′ ∈ (R∗+
)M ′

, the identity σ = s′.c′ forces, because
det cσ = 1 = det c′, first sσ = s′, and then cσ = c′.

Formula (6) shows that for all p ∈ M , σp commute with the orthogonal automor-

phisms of
(

Tp M,
(
gμ,σ

)
p

)
. When M is a submanifold embedded in R

3, in particular

if M is a domain of R
2, and when gμ,σ is induced by the standard metric of R

3,
this means that σ is isotropic in the usual sense (see [29] and [34] for example). The
proposition below sums up what precedes.

Proposition 7 Let M be a real two-dimensional surface with boundary. A complex
structure C on M defines a conductivity tensor with coefficient equal to 1. Reciprocally,
for all conductivity σ on M, there exists a unique complex structure Cσ such that
σ = √

det σcσ where cσ is the conjugation operator associated with Cσ .

Hence, it is natural to say that a complex-valued function f defined on an open set
U of M is σ -holomorphic if ∂σ f = 0, or equivalently, when for all charts z : V → C

of the holomorphic atlas of (M, Cσ ), f ◦ z−1 is holomorphic on z−1 (U ) in the usual
sense.

If
(
M ′, σ ′) is an another conductivity structure, a map f from an open subset U of

M to M ′ is said
(
σ, σ ′)-analytic if for all holomorphic charts z′ : V ′ → C of

(
M ′, Cσ ′

)
,

z′ ◦ f is σ -holomorphic on f −1
(
V ′) ∩ U , that is if z′ ◦ f ◦ z−1 is holomorphic on

z−1
(

f −1
(
V ′) ∩ U

)
in the usual sense for all holomorphic charts z : V → C of

(M, Cσ ). This also can be characterized by the following lemma.

Lemma 8 Let (M, σ ) and
(
M ′, σ ′) be two conductivity structures, U an open subset

of M and f : U → M ′ a differentiable map. Then f is
(
σ, σ ′)-analytic if and only if(

t D f
) ◦ cσ ′ = cσ ◦ (t D f

)
. When f realizes a diffeomorphism ϕ from U to f (U ), ϕ

is
(
σ, σ ′)-analytic if and only if ϕ∗cσ = cσ ′ and in particular if ϕ∗σ = σ ′.

Proof Consider holomorphic charts z : V → C and z′ : V ′ → C of (M, Cσ ) and(
M ′, Cσ ′

)
. Set F = Mat(

dx ′,dy′)
(dx,dy) (D f ) where (x, y) = (Re z, Im z) and

(
x ′, y′) =

(
Re z′, Im z′). Then
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Mat (dx,dy)
(dx ′,dy′)

((t D f
) ◦ cσ ′

) = Mat (dx,dy)
(dx ′,dy′)

(t D f
)

Mat(
dx ′,dy′)

(dx ′,dy′) (cσ ′) = t F J

Mat (dx,dy)
(dx ′,dy′)

(
cσ ◦ (t D f

)) = Mat (dx,dy)
(dx,dy) (cσ ) Mat (dx,dy)

(dx ′,dy′)
(t D f

) = J t F

So, the equality
(

t D f
) ◦ cσ ′ = cσ ◦ (t D f

)
holds if and only if J F = F J . Translating

this on matrix coefficients, this is equivalent to the fact that Re f and Im f satisfy the
Cauchy–Riemann equations, that is ∂ f

∂z = 0.

Suppose now that ϕ = f
∣∣
∣ f (U )
U is a diffeomorphism. Since by definition, ϕ∗cσ =

(
t D f

)−1
ψ

◦(cσ ) ψ ◦t (Dϕ)ψ whereϕ = ψ−1, the preceding point gives thatϕ is
(
σ, σ ′)-

analytic if and only if ϕ∗cσ = cσ ′ . Besides, ϕ∗cσ = (det σ)ψ .ϕ∗cσ = det
(
σψ
)
.ϕ∗cσ .

So, σ ′ = ϕ∗σ = (t D f
)−1
ψ

◦(cσ ) ψ ◦ t (Dϕ) forces det cσ ′ = det
(
σψ
)
and ϕ∗cσ = cσ ′ .

��
This lemma enables to justify our comment in the introduction about Tartar’s

remark. The conductivity σ ′ is defined by Mat (dx2,−dx1)
(dx1,dx2)

(
σ ′) = 1

det	
t	
(
σ jk
)
	

where 	 is the Jacobian matrix of ϕ. But Mat (dx1,dx2)
(dx1,dx2)

(σ ) = J Mat (dx2,−dx1)
(dx1,dx2)

(σ )

and the same holds for σ ′. Since −1
det	 J t	J = 	−1 and J 2 = −I2, we get

Mat (dx1,dx2)
(dx1,dx2)

(
σ ′) = 	−1Mat (dx1,dx2)

(dx1,dx2)
(σ )	 which means σ ′ = ϕ∗σ . Hence, ϕ is

a biholomorphic map between (M, Cσ ) and
(
M ′, Cσ ′

)
.

We now turn our attention to the Dirichlet–Neumann operator itself. Assume again
that M is also equipped with an arbitrary Riemannian metric g ; this in particular the
case when M is a real surface in R

3 with a non-isotropic conductivity. Denote by ν
and τ vector fields defined along bM such that for all p ∈ bM ,

(
νp, τp

)
is a direct

g-orthonormal basis for Tp M and τp ∈ TpbM . The «normal» Dirichlet–Neumann
operator Nσ

ν is then defined for any sufficiently smooth function u : bM → R by

Nσ
ν u = ∂Eσu

∂ν

∣∣
∣∣
bM

(8)

where Eσu is the unique solution of (1). So, when u : bM → R is sufficiently smooth

dEσu = (Eσu · ν) ν∗ + (Eσu · τ) τ ∗ = (Nσ
ν u
)
ν∗ + (du · τ) τ ∗.

This formula shows that data from Nσ
ν which depends of a choice of metric, can be

replaced by data from the «differential» Dirichlet–Neumann operator Nσ
d = σd Eσ

defined by (2).
In the particular case where det σ = 1, σ = cσ and it is noticed in [17] that

∂cσ Ecσ u
∣∣
bM = (

Lcσ
ν u
)
(ν∗ + iτ ∗) where ∂cσ = d − ∂σ and ∂cσ is the Cauchy–

Riemann operator of (M, Cσ ) and where Lcσ
ν u = 1

2

(
N cσ
ν u − i ∂u

∂τ

)
. So, one can

consider in this case the «complex» Dirichlet–Neumann operator θσc defined on suf-
ficiently smooth functions u : bM → R by

θσc u = ∂cσ Ecσ u
∣∣
bM = (Lcσ

ν u
) (
ν∗ + iτ ∗) (9)

123



The Two-Dimensional Inverse Conductivity Problem 2789

For a general det σ , we still let θσc = θ
cσ
c . This means that for u ∈ C∞ (bM), θσc u is

still defined by (9) even if σ and cσ are no longer equal. Hence, θσc and Nσ
d correspond

to Dirichlet problems associated with different operators, namely, dcσd for the first
and dσd = dsσ cσd for the second.

To end this section, we explain how to get rid of the auxiliary volume formμ. As in

the inverse problem studied here, T ∗
bM M and σ

∣
∣∣T ∗

bM M are supposed to be known, the

conjugation operator cσ associated with the complex structure Cσ of (M, σ ) is known
when it acts on T ∗

bM M . Having chosen a smooth generating section τ ∗ of T ∗bM , we
set ν∗

s = − (cσ )s τ
∗
s for any s ∈ bM . By definition of conductivity, bM � s �→ τ ∗

s ∧ν∗
s

is then a smooth section of the volume forms bundle of M and can be extended to a
smooth volume form μ on M . Though this extension is not unique, any tensor which
would be a conductivity for one of these extensions would be so for any.

4 Recovering the Complex Dirichlet–Neumann Operator

Nodal Riemann surfaces are discussed in [19] and the reader can refer to it.Meanwhile,
for sake of simplicity [19] does not consider the case where nodes are allowed in the
boundary. Since the nodal Riemann surface we have to consider is produced as the
solution of a boundary problem for a real smooth curve and since as pointed out in
[14, Sect. 3.2] such complex curves may present this type of singularity, we give some
basics in Sect. 4.1. Then, we prove the existence of nodal Green functions for such
surfaces. At the end of this section, is written the proof of Theorem 5which enables the
recovering of the complex Dirichlet–Neumann operator θσc . This result is new wether
or not nodes at the boundary are present. Besides, existence of such nodes should be
considered as exceptional.

4.1 Nodal Riemann Surfaces and Harmonic Distributions

In this article a nodal Riemann surface with boundary Q is a set of the form(
S/R) \π (bS) where S is a Riemann surface with boundary, R a nodal relation
which means that R is an equivalence relation on S identifying a finite number of
points of S but such that two distinct points of bS are in two different classes and π is
the natural projection of S on S/R. In particular, πbS = π

∣∣bS
bS is a bijection.

We equip S/Rwith the quotient topology so that Q is an open subset, Q = S/R and
bQ = π (bS). One denotes by Reg Q the set of points of Q having only one preimage
by π and we set Sing Q = Q\Reg Q ; Reg Q and Sing Q are defined similarly.

If q ∈ Q (resp. q ∈ bQ), an inner (resp. boundary) branch of Q at q is any subset
B of Q (resp. Q) for which there exists an open connected subset V of S (resp. S) and
s ∈ V ∩ π−1 (q) such that V \ {s} ⊂ π−1

(
Reg Q

)
, π realizes a bijection from V to

B and, if q ∈ bQ, V ∩ bS is a neighborhood of s in bS. A set of inner branches at a
point q of Q is complete if their union with the possible boundary branch of Q at q is
a neighborhood of q in Q.

Q carries a natural (nodal) complex structure which is characterized by the fact that
for any inner branch B of Q, there exists an open connected subset V of S such that π
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is a biholomorphism from V to B. Likewise, one gives a natural meaning to notions
of nodal conductivities (for which considerations of the preceding section apply) and
to nodal function or maps between nodal Riemann surfaces, holomorphic or of class
Ck , 0 � k � ∞. With such definitions, π : S → Q becomes a normalization of Q.

As pointed out in [19, Proposition 2], isomorphisms between nodal Riemann sur-
faces are a little bit trickier since nodes can be mixed. Let us consider another nodal
Riemann surface with boundary Q′ which is the quotient of a Riemann surface with
boundary S′ and denote π ′ the natural projection of S′ to Q′. Take a nodal map
ϕ : Q −→ Q′ ; so, ϕ is univalued on Reg Q and multivalued on Sing Q. We say
that ϕ is an isomorphism of nodal Riemann surfaces with boundary if the following
conditions are satisfied :

(i) ϕ is an homeomorphism from ϕ−1
(
Reg Q′

)
∩Reg Q onto ϕ

(
Reg Q

)∩Reg Q′.
(ii) For all inner (resp. boundary) branches B ′ of Q′, there exists an inner (resp.

boundary) branch B of Q such that ϕ
(
B ∩ Reg Q

) = B ′ ∩ Reg Q′ and the

continuous extension ϕ

∣∣∣B
′

B of the map B ∩ Reg Q → B ′, q �→ ϕ (q), is an

isomorphism of Riemann surfaces (resp. with boundary).
(iii) For all q ∈ Q, the branches of Q′ at ϕ (q) are the images by ϕ of the branches

of Q at q.

If ϕ satisfies only (i) and (ii), we says as in [19, Proposition 2] that ϕ is a rough
isomorphism.

Distributions and currents are defined on nodalRiemann surfaces as usual by duality
and of course, harmonic distributions are by definition those in the kernel of ddc.
According to [19, Proposition 2] whose proof applies without change to the case(
Sing Q

) ∩ bQ 
= ∅, a distribution u on a open set W of Q is harmonic if and only
if it is harmonic in the usual sense on W ∩ Reg Q, continuous on W ∩ Reg Q as well
as in all boundary branches of Q contained in W , and if for any singular point q of Q
the two conditions below are satisfied :

1. for all inner branches B of Q at q sufficiently small so it admits a holomorphic
coordinate z centered at q, there exists cB ∈ C such that u

∣∣Qq, j \{q} − 2cB ln |z|
extends to B as a usual harmonic function.

2.
∑

B∈B cB = 0 where B is a complete set of inner branches of Q at q.

This implies that a same continuous function u on bQ extends to Q in many harmonic
distributions ; the Dirichlet problem for u is well posed only if for the extension U ,
one specifies for all q ∈ Sing Q and all inner branches B of Q at q, the residue cB of
∂U |B at q. In particular, û denoting the harmonic extension of u ◦π−1

bS to S, π∗û is the
only harmonic distribution which is continuous along any branch of Q and coincides
with u on bQ ; we call it the simple harmonic extension of u.

For a nodalRiemann surface Q,wedefine the complexDirichlet–Neumannoperator
as the operator θQ

c = θ
cQ
c where cQ is the conjugation operator associated with the

complex structure of Q and where in (9) simple harmonic extensions are used.
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4.2 Recovering of��
c , Proof of Theorem 5

4.2.1 Green Functions in the Smooth Case

This section is about classical facts on Green functions for a smooth open-bordered
Riemann surface S which are generalized to the nodal case in Sect. 4.2.2.

A Green function for S is a function g defined on S × S without its diagonal �S
such that for all q ∈ S, gq = g (q, .) is harmonic on S\ {q}, continuous on S\ {q} and
has an isolated logarithmic singularity at q, which means that given a holomorphic
coordinate z of S defined near q and centered at q, gq − 1

2π ln |z| extends harmonically
around q. g is said principal if it is symmetric, real valued and its partial functions gq

vanishes on bS. The Perronmethod shows that such a function exists and themaximum
principle implies it is unique.

The problem we want to address is the computation from g of the operator θ S
c

which to u ∈ C∞ (bS) associates (∂ ũ) |bS where ũ is the harmonic extension of u to
S. Without loss of generality, we assume that S is a relatively compact domain in an
open Riemann surface S̃ for which g is a Green function. We also assume that g is
symmetric and real valued.

First, one builds the operator Tg which to u ∈ C0 (bS) associates the harmonic
function Tgu defined on S̃\bS by

Tgu : S̃\bS � q �→ 2

i

∫

∂S
u∂gq (10)

and which splits in T ±
g u = (

Tgu
) |S± where S+ = S and S− = S̃\S. Let us choose

an Hermitian metric for S̃ and for T S̃ near bS, a direct orthonormal frame (ν, τ ) such
that τ |bS ∈ TbS S. When f is differentiable function near bS, we can write

∂ f = 1

2

(
∂ f

∂ν
− i

∂ f

∂τ

)
(
ν∗ + iτ ∗) . (11)

Since the pull back of ν∗ by the natural injection of bS into S̃ is 0, we get that for any
u ∈ C1 (bS) and q ∈ S̃\bS,

(
Tgu
)
(q) =

∫

∂S
u
∂gq

∂ν
τ ∗ + i

∫

∂S
u′gqτ

∗ de f= Dgu + i Sgu′ (12)

where u′ = ∂u
∂τ

and where Dgu and Sgu′ are the so called double-layer and single-
layer potentials of u and u′. Since dc = i

(
∂ − ∂

)
, we also get from (11) that for any

u ∈ C0 (bS) and q ∈ S̃\bS,

(
Dgu

)
(q) =

∫

∂S
udcgq (13)
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Like Tg , Dg and Sg split in sided operators D±
g and S±

g . Then it is well known

that for any u ∈ C2 (bS), D±
g u = (

Dgu
) |S± and S±

g u = (
Sgu
) |S± extend to S± as

C1-functions, that Sg is continuous on S̃ and that if u ∈ C2 (bS), the boundary values

A±
g u =

(
D±

g u
)

|bS satisfy

A+
g u − A−

g u = u & A+
g u + A−

g u = Ngu (14)

where Ngu is defined for p ∈ bS by

(
Ngu

)
(p) = 2PV

(∫

∂S
udcgq

)
,

PV standing for principal value. According to (12), when u ∈ C2 (bS), T ±
g u also

extend to S± as C1-functions which verify

A+
g,cu − A−

g,cu = u & A+
g,cu + A−

g,cu = Ng,cu

where A±
g,cu =

(
T ±

g u
)

|bS = A±
g u − i Sgu′ and where Ng,cu is defined for p ∈ bS

by

(
Ng,cu

)
(p) = 2PV

(
2

i

∫

∂S
u∂gq

)

This goes back to the works of Sohotksy in 1873 or, later, of Plemelj and can be found
in many books. The reader can refer for example to [35, Chapter 7, §§11 ] where these
operators and formulas are proven to make sense for u in the distributional sense in
Sobolev spaces. A direct proof for Tg,c and C2-functions can be found as a particular
case in [28] which addresses similar problems in Stein manifolds.

We also use the operator N #
g defined on any Sobolev space Hs (bS) by density of

C∞ (bS) and by, when u ∈ C∞ (bS),

∀p ∈ bS,
(

N #
g u
)
(p) = 2PV

(∫

∂S
u (q)

∂g

∂νp
(p, q) τ ∗

q

)

From [35, Proposition 11.3], we know that in the distributional sense

∀p ∈ bS,
(

N #
g u
)
(p) = u (p) + 2 lim

ε→0+
∂S−u

∂ν

(
p − ενp

)
(15)

Assume that for some u ∈ C∞ (bS) and we have found a solution w ∈ C∞ (bS)
to the equation

u = w + A−
g w, (16)
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that is, u belongs to the range of I d + A−
G . Then D+

g w is a smooth function on S such

that
(

D+
g w
)

|bS = A+
g w = w + A−

g w = u, which entails that D+
g w is the harmonic

extension ũ of u to S and that θ S
c u =

(
∂D+

g w
)

|bS can be computed, which is our

goal. Thus, the question which arises is the characterization of the range of I d + A−
G .

As g is symmetric and real, we know (see e.g., [35, chapter 7, §§11 ]) that for
any real s, I d + A−

g is a Fredholm operator from Hs (bS) to itself and has index 0.
This implies that the obstruction to solve (16) in Hs (bS) for data in Hs (bS) is only
finite dimensional and that I d + A−

g is an isomorphism if it is injective or surjective.
Consider the standard identification H−s (bS) of the dual of Hs (bS) by defining the
duality pairing 〈., .〉 by density of C∞ (bS)2 in Hs (bS) × H−s (bS) and by

〈u, w〉 =
∫

∂S
uwτ ∗

when u, w ∈ C∞ (bS). Then we can define the adjoint L∗ of any operator L of
Hs (bS) and get the identity Im L = (ker L∗)⊥. Since I d + A−

g has a closed range

as a Fredholm operator, we get Im
(

I d + A−
g

)
=
(
ker
(

I d + A−
g

)∗)⊥
. From (14),

it comes I d + A−
g = 1

2

(
I d + Ng

)
and Ng = I + 2A−

g . For w ∈ C∞ (bS), we obtain
that for any p ∈ bS,

(
Ngw

)
(p) = w (p) + 2 lim

ε→0

(
D−

g w
) (

p − ενp
)

in the distributional sense. With (15) and the Fubini theorem, we deduce that for
u, w ∈ C∞ (bS)

〈
u, Ngw

〉 = 〈u, w〉 + 2 lim
ε→0+

∫

∂S
u (p)

(
D−

g w
) (

p − ενp
)
τ ∗

p

= 〈u, w〉 + 2 lim
ε→0+

∫

∂S
u (p)

(∫

∂S
w (q)

∂g

∂νq

(
p − ενp, q

)
τ ∗

p

)
τ ∗

q

= 〈u, w〉 + 2 lim
ε→0+

∫

∂S
w (q)

(∫

∂S
u (p)

∂g

∂νq

(
p − ενp, q

)
τ ∗

q

)
τ ∗

p

=
〈
w, N #

g u
〉
.

This proves that
(
Ng
)∗ = N #

g , which entails ker
(

I d + A−
g

)∗ = ker
(

I d + N #
g

)
. We

summarize the above discussion within the following lemma.

Lemma 9

(1) Let Bg = I d + N #
g . Then ker Bg ⊂ C∞ (bS) and a function u ∈ Hs (bS) is in

the range of I d + A−
g if and only if 〈u, w〉 = 0 for any w ∈ ker Bg.
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(2) Let u ∈ C∞ (bS,R) be orthogonal to ker Bg and w ∈ Hs (bS) such that u =
w + A−

g w. Then w ∈ C∞ (bS,R) and θ S
c u =

(
∂D+

g w
)

|bS .

(3) When G is the principal Green function for of S, T +
G = D+

G and I d + A−
G is an

automorphism of Hs (bS).

Proof (1) and (2) have been already proved except for w ∈ C∞ (bS) and ker Bg ⊂
C∞ (bS). Both are consequences of the fact that N #

g and A−
g are a pseudo-differential

operators of order−1 (see [35]). For a smooth real valued u and its harmonic extension
ũ to S, Stokes Formula applied on S without an arbitrary small conformal disk �ε

around q ∈ S gives

(
T +

G u
)
(q) = 2

i

∫

∂S

(
ũ∂Gq + Gq∂ ũ

)

= 2

i

∫

∂�ε

(
ũ∂Gq + Gq∂ ũ

)+ 2

i

∫

S\�ε

(
∂ ũ ∧ ∂Gq + ∂Gq ∧ ∂ ũ

)

= 2

i

∫

∂�ε

ũ∂Gq + O (ε ln ε) + 0 →
ε→0

ũ (q)

As G and u are real valued,

T +
G u = −2

i

∫

∂S

(
ũ∂Gq + Gq∂ ũ

) = −2

i

∫

∂S

[
d
(
ũGq

)− ũ∂Gq
] = T +

G u

This yields D+
G u = T +

G u = ũ. Thus, A+
G = I d + A−

G is surjective and, because its
index is 0, an isomorphism of Hs (bS) as claimed in (3). ��
Remark It is also known that I d + A−

g is an isomorphism of Hs (bS) when S ⊂ C is
bounded and has a connected complement (see e.g., [35]). In the general case, it is not

difficult to prove that functions in ker
(

I d + A−
g

)
are boundary values of holomorphic

function on S̃\S smooth up to the boundary and that the Dirichlet–Neumann operator

N : C∞ (bS) � u �→ ∂ ũ
∂ν

|bS realizes an isomorphism from ker Bg to ker
(

I d + A−
g

)
.

Thus, to have at hand the principal Green function of S enables to bypass the
resolution of (16). Unhappily, the standard method introduced by Fredholm in 1900 to
build principal Green functions consists precisely in finding for each q ∈ S a function
wq such that gq = wq + A−

g wq and then to set Gq = gq − D+
g wq . Happily, in our

problem it is not necessarily relevant to compute G because we only have to compute
sufficiently many θ S

c u.

As mentioned in the next session, all of these considerations readily apply to the
nodal setting.

4.2.2 Green Functions in the Nodal Case

Definition 10 Let Z be an open complex curve, possibly singular, of an open subset
of C

2. A Green function for Z is a function g defined on (RegZ × RegZ) \�RegZ
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such that for all q∗ ∈ RegZ , gq∗ = g (q∗, .) extends to Z as a current and i∂∂gq∗ is
the Dirac current δq∗ supported by {q∗} - this implies in particular that ∂gq∗ is a weakly
holomorphic (1, 0)-form on Z\ {q∗} in the sense of [32].

When Z is an open nodal Riemann surface, quotient of �, an open Riemann
surface, by an equivalence relation and when π is the canonical projection of �
onto Z , a simple Green function for Z is a is symmetric function g defined on
(RegZ × RegZ) \�RegZ for which there exists a real valued Green function g̃ for
� such that g = π∗g̃ in the following sense : for any branch B of Z at q∗, image by
π of an open subset V of � such that V \ {s∗} ⊂ π−1 (RegZ) where s∗ ∈ π−1 (q∗),
gq |B = π∗

(
g̃s∗ |V

)
in a neighborhood of q∗ in B.

A principal Green function for a nodal bordered Riemann surfaceZ is a symmetric
real valued simple Green function g such that if B is any boundary branch of Z , g

∣∣B
extends continuously to B with the value 0 on B ∩ bZ .

Let us now detail the explicit formula of [20, Proposition 17] establishing the exis-
tence of Green functions for a 1-parameter family of complex curves whose possible
singularities are arbitrary. Consider a complex curve Y in an open subset of C

2, � a
Stein neighborhood ofY inC

2,	 a holomorphic function on� such thatY = {	 = 0}
and d	

∣
∣Y 
= 0 then a strictly pseudoconvex domain �0 of C

2 verifying

Y0 = Y ∩ �0 ⊂ �,

and lastly a symmetric function � ∈ O (� × �,C2
)
such that for all

(
z, z′) ∈ C

2,

	
(
z′)− 	(z) = 〈� (z′, z

)
, z′ − z

〉

where 〈v,w〉 = v1w1 + v2w2 when v,w ∈ C
2. We define on RegY a (1, 0)-form ω

by setting

ω = −dz1
∂	/∂z2

on Y1 = Y ∩ {∂	/∂z2 
= 0}

ω = +dz2
∂	/∂z1

on Y2 = Y ∩ {∂	/∂z1 
= 0}

and we consider

k
(
z′, z

) = det

[
z′ − z

|z′ − z|2 , �
(
z′, z

)
]

.

When q∗ ∈ RegY0, [20, Proposition 17 ] tells that the formula

gc (q∗, q) = gc,q∗ (q) = 1

4π2

∫

q ′∈Y0

k (q ′, q)k
(
q∗, q ′) iω

(
q ′) ∧ ω

(
q ′) . (17)
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defines a Green function for Y0. In addition, the proof of [20, Proposition 17 ] gives
that if q∗ ∈ RegY0

∂gc,q∗ = k̃q∗ω

where k̃q∗ = 1
2π k (., q∗). The proposition below gives a useful complement.

Proposition 11 Suppose Y0 has only nodal singularities. Then, the function

g (q∗, q) = Re gc (q∗, q) = 1

4π2

∫

q ′∈Y0

1

2

(
k (q ′, q)k

(
q∗, q ′)

+k
(
q ′, q

)
k (q∗, q ′)

)
iω
(
q ′) ∧ ω

(
q ′) (18)

is a simple Green function for Y0.

Proof Let us begin by proving that q∗ being fixed in RegY0, gc,q∗ extends as a usual
harmonic function along the branches of Y0\ {q∗}. As gc,q∗ is a harmonic distribution
on Y0\ {q∗}, we already know that gc,q∗

∣∣
(RegY0)\{q∗} is a usual harmonic function and

according to [19, Proposition 2], that for any branch B of Y0 at q, gc,q∗ |B has at most
an isolated logarithmic singularity at q. Equivalently, this means that ∂gc,q∗ has at
most a simple pole at q. Fix q in SingY0 and B a branch of Y0 at q. Decreasing B
and with a possible change of coordinates, we get the case where q = 0 and 	 is in a
neighborhood of 0 of the form

	(z) = (z2 − ϕ (z1))� (z) (19)

with ϕ holomorphic in a sufficiently small disk V = D (0, r) and� |B vanishing only
at 0. In particular, there exists a function holomorphic θ on V such that θ (0) 
= 0 and
�(z1, ϕ (z1)) = zν−1

1 θ (z1) when z1 ∈ V , ν being the number of branches of Y0 at
q. On B\ {q}, we get hence ω = dz1

θ(z1)z
ν−1
1

. Consider then a (0, 1)-form χ compactly

supported in B ; so χ = ξdz1 with ξ ∈ D (V ). Hence, by definition,

〈
∂gc,q∗, χ

〉 = lim
ε↓0+

∫

z1∈V \D(0,ε)

k̂q∗ (z1) ξ (z1)

θ (z1) zν−1
1

idz1 ∧ dz1

where k̂q∗ (z1) = k̃q∗ (z1, ϕ (z1)). Let us write

k̂q∗ (z1) ξ (z1)

θ (z1)
=

∑

α+β<ν−1

cα,β zα1 z1
β

+
∫ 1

0

(1 − t)ν−2

(ν − 2)! Dν−1 (̂kq∗ξ/θ
)∣∣∣

t z1
· zν−2

1 dt idz1 ∧ dz1

where D p f |w · z p is understood has the value taken by the total differential of order p
of f atw on the vector (z, . . . , z). Since

∫ 2π
0 eiθ(α−β−ν+1)dθ = 0whenα+β < ν−1,

we get
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〈
∂gc,q∗, χ

〉 =
∫

z1∈V

∫ 1

0

(1 − t)ν−2

(ν − 2)! Dν−1 (̂kq∗ξ/θ
)∣∣∣

t z1
· 1ν−1dt idz1 ∧ dz1 (20)

Moreover, there exists c ∈ C and h ∈ O (V ) such that the expression of ∂gc,q∗ |B is
c
z1
dz1 + hdz1 in the coordinate z. Hence

〈
∂gc,q∗, χ

〉 = lim
ε↓0+

∫

z1∈V \D(0,ε)

(
c

z1
+ h (z1)

)
ξ (z1) idz1 ∧ dz1

Let us write ξ (z1) = ξ (0)+ ξ1,0z1 + ξ0,1z1 + ∫ 10 (1 − t) D2ξ
∣∣
t z1

· z21dt . Then comes

〈
∂gc,q∗, χ

〉 = πr2ξ1,0c +
∫

z1∈V
h (z1) ξ (z1) idz1 ∧ dz1 (21)

As (20) shows no derivation of the Dirac measure at 0, comparison with (21) forces
c = 0. Hence gc,q∗ |B and gq∗ |B are usual harmonic functions.

Next, we check that i∂∂gc,q∗ is the Dirac current at q∗. Since gc,q∗ has no singularity
in any branch ofY0\ {q0}, we get thanks to the nodal version of Stokes formula that for
that any test function χ on Y0,

〈
i∂∂gc,q∗, χ

〉 = 〈i∂gc,q∗, ∂ f
〉
is the limit when ε → 0+

of 1
i

∫
∂�ε

χ∂gc,q∗ where �ε is a conformal disk of radius ε centered at q∗. Using the
same notation as above with ν = 1 and q replaced by q∗ which we can assume to be
0, we find that

〈
i∂∂gc,q∗, χ

〉 = �2 (0, 0) − ϕ′ (0)�1 (0, 0)

θ (0)
(
1 + |ϕ′ (0)|2) χ (q∗)

From (19) we get by differentiation that �2 (0, 0) = θ (0) and �1 (0, 0) = −ϕ′ (0).
Hence,

〈
i∂∂gc,q∗, χ

〉 = χ (q∗) which means i∂∂gc,q∗ = δq∗ . Since δq∗ is real valued
on real valued test functions, this entails i∂∂gq∗ = δq∗ .

Fix now qs in SingY0. Consider a branch B of Y0 at qs sufficiently small so we
have for it a holomorphic coordinate z centered at qs . Since g is symmetric from (17),
what precedes implies that when q∗ ∈ B\ {qs}, q �→ gq∗ (q)− 1

2π ln |z (q) − z (q∗)| =
gq (q∗)− 1

2π ln |z (q) − z (q∗)| is a usual harmonic function on B. Hence, when q∗ ∈
B\ {qs} tends to qs , gq∗ − 1

2π ln |z − z (q∗)| converges uniformly on B to a harmonic
function of the form gBB,qs

− 1
2π ln |z| where gBB,qs

is harmonic on B\ {qs}. For the
same reason, if B′ is another branch of Y0 at qs or a branch of Y0 relatively compact
in Y0\ {qs}, gq∗ converges uniformly on B′ to a harmonic function gB′

B,qs
when q∗ ∈

B\ {qs} tends to qs . When B′ describes the set of branches of Y0, these functions gB′
B,qs

match into a function gB,qs which is harmonic on B′\bY0 for all branches B′ of Y0\B,
whose restriction to B has a logarithmic singularity at qs and such that gq∗ tends to
gB,qs in the sense of currents when q∗ ∈ B\ {qs} tends to qs . Proceeding so for all
singulars point of Y0, we find that g is a simple Green function for Y0. ��
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We now apply what precedes to the situation of Theorem 5. We recall that F :
M̃ → C

2 is the map obtained by applying Theorem 2 to a plain extension (M̃, σ̃ )

of (M, σ ). We set Y = F(M̃) and we fix a Stein neighborhood � of Y in C
2, that

is a neighborhood of Y which is a Stein manifold. As M = F (M) is relatively
compact in Y , we can pick up in C

2 a strictly pseudoconvex domain �0 verifying
M ⊂⊂ Y0 = Y ∩�0 ⊂ �. We use then Proposition 11 and get a Green function for
M. The corollary below tells it comes from a Green function for M .

Corollary 12 Hypothesis and notation remains as in Theorem 5 and g is the function

defined by (18). Then, gM = F∗g
∣∣∣M×M\�M

is a Green function for (M, Cσ ).

Proof Since F : M → M is a (cσ , cM)-analytic normalization, h = F∗g is well
defined on M reg × M reg\�M reg

where M reg = F−1
(
Reg Q

)
, symmetric and for all

x ∈ M , hx = h (., x) is harmonic on M reg\bM ∪ {x}, continuous on M reg\ {x} and
i∂σ ∂σ h is the Dirac current δx of M at x . When p ∈ F−1

(
SingM) ∩ M and V is

a connected open neighborhood of p in M , B = F (V ) is an inner branch of M at
q = F (p) and we can set gM,p = F∗gp,B . Proposition 11 implies that gM so built is
a Green function for M . ��

Thus, we can apply the methods of Sect. 4.2.1 to gM and then push forward their
results to M. Meanwhile, as in our problem M and θσc have to be computed before
M can be, it is more relevant to apply directly these methods to M and g. As bM is
smooth, Sobolev spaces on bM are defined as usual and the discussion of Sect. 4.2.1
can be readily followed. So the operators Tg , Dg , A±

g , Ng etc., are defined as above
(withM instead of S) and Lemma 9 holds. We are now ready to prove Theorem 5.

Proof of Theorem 5 Consider u ∈ C∞ (bM) and ũ its Cσ -harmonic extension to M .
As d = ∂σ + ∂σ and dσ = i

(
∂σ − ∂σ

)
, we get 2i∂σ ∂σ = ddσ and ũ is the unique

solution in C∞ (M
)
of

i∂σ ∂σU = 0 & U |bM = u.

and θσc u is the restriction to bM of the Cσ -holomorphic (1, 0)-form ∂σ ũ. By definition,
when B is a branch of M, there is a (unique) open subset V of M such that the map
FB = F

∣∣B
V is a (cσ , cM)-biholomorphism. Since ũ is smooth, we deduce that F∗ũ is

smooth along any branch B of M and satisfies
(
i∂∂ (FB) ∗ũ

) |B = (FB) ∗i∂σ ∂σ ũ =
0. Hence, ũ ◦ (FRegM

)−1 harmonically extends along branches of M and define on
M a distribution W which is the unique continuous solution along branches ofM for
the problem

i∂∂W = 0 & W |bM = f∗u (22)

This yields F∗W = ũ which means that ũ |V =
(

F
∣∣∣F(V )
V

)∗
W whenever V ⊂ M is

such that F (V ) is a branch ofM. Lemma 8 yields that F : M → M is a holomorphic
map from (M, cσ ) to (M, cM). Since the complex differential operators of these
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(nodal) Riemann surfaces are ∂σ and ∂ , we get ∂σ ũ = ∂σ F∗W = F∗∂W and W is
the simple harmonic extension f̂∗u of f∗u toM. So, we get θσc u = (F∗∂ f̂∗u) |bM .

The kernel of Bg (in its nodal issue) is a finite dimensional subspace of C∞ (bM)

and when u ∈ C∞ (bM,R) is such that f∗u is orthogonal to it, any solution w of the
equation f∗u = w + A−

g w is in C∞ (bM,R) and delivers f̂∗u under the form T +
g w.

Hence, θσc u =
(

F∗∂T +
g w
)

|bM . ��

Remark The above proof contains the fact that for any u ∈ C∞ (bM), ũ = F∗ f̂∗u
and θσc u = F∗θMc f∗u where ũ is the Cσ -harmonic extension of u to M and f̂∗u is
the simple harmonic extension of f∗u toM.

5 Proof of the Uniqueness Theorem 3

In this section, we prove Theorem 3 and as mentioned in Sect. 2, we complete so the
proof of [17, Theorem 1] and also the isomorphism claim of [24, Theorem 1.1]. One
of the steps of the proof of Theorem 3 uses Lemmas 11 to 14 of [21] which were
initially written by the author of these lines to give a complete proof of Theorem 3.

We note (U�) and
(
U ′
�

)
the harmonic extensions of u to M and M ′ respectively. By

hypothesis F = [∂U ] : M −→ CPn and F ′ = [∂U ′] : M ′ −→ CPn are well defined,
coincide on γ and f = F

∣∣
γ = F ′ ∣∣

γ embeds γ in {w0 
= 0}wherew0, . . . , wn are the
standard homogeneous coordinates of CPn . We equip δ = f (γ ) with the orientation
of γ brought by f . The regularity hypothesis made on M and M ′ implies that F and
F ′ are of class C1. We set

Y = F (M) \δ, � = F−1 (δ) ,

M̃ = M\�, F̃ = F
∣∣
∣CPn\δ
M\� ,

Mr = {d F 
= 0} & Ms = {d F = 0}

Since f is an embedding of γ in {w0 
= 0} which is isomorphic to C
n , there exists an

open neighborhood G of γ in M such that FG = F |G is an embedding of G inC
2; the

orientation of δ is hence also induced by the natural one of G. When A is a topological
space, we note CC (A) the set of the connected components of A. If A ⊂ M and
B ⊂ F (A), we denote ν (F, A, B) the degree of F

∣
∣B

A if it exists. We agree for M ′
similarly notation to those for M . Dp,q (U ) stands for the space of (p, q)-forms of
class C∞ compactly supported in an open subset U of a complex manifold. Hd (E)
denotes the Hausdorff d-dimensional measure of a set E when this is meaningful.

Lemma 13 �\γ is a compact of M and Y is a complex curve of CPn\δ.

Proof Since FG is embeds G in C
2, � ∩ G = γ and �\γ = � ∩ (M\G

)
is a compact

of M . In particular, M̃ = M\� is an open surface Riemann. By construction, F̃ is
proper because if L is a compact of CPn\δ, F̃−1 (L) is a compact of M which does
not meet � and hence is a compact of M̃ . By a theorem of Remmert, unnecessary in
the very simple case n = 1, Y = F̃(M̃) is an analytic subset of CPn\δ. ��
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Lemma 14 F∗ [M] is a normal positive current supported by Y and d F∗ [M] = [δ].

Proof If χ is a compactly supported smooth form of CPn ,

〈F∗ [M] , χ〉 =
∫

M
F∗χ.

F∗ [M] is thus a current of bidegree (1, 1) supported by F (M), that is Y . It is positive
because if χ ∈ D1,1 (CPn) is positive, (F∗χ) |M is a positive (1, 1)-form of M since
F is holomorphic and hence 〈F∗ [M] , χ〉 � 0. Let ξ ∈ C∞ (CPn) be such that
χ = ξωF S where and ωF S = i

2π ∂∂ ln |w|2 is the (1, 1)-form defining the Fubini–
Study metric. We get then

|〈F∗ [M] , χ〉| �
∫

M
|ξ | F∗ωF S � ‖ξ‖∞

∫

M
F∗ωF S

As ‖χ‖ = sup
p∈CPn

∥
∥χp

∥
∥ and

∥
∥χp

∥
∥ = max

s,t∈TpCPn , ‖s‖F S=‖t‖F S=1

∣
∣χp. (s, t)

∣
∣

= |ξ (p)| max
s,t∈TpCPn , ‖s‖F S=‖t‖F S=1

∣∣(ωF S)p . (s, t)
∣∣ = |ξ (p)| ,

we get that the mass of F∗ [M] is finite and at most
∫

M F∗ωF S . If χ ∈ D (CPn),

〈d F∗ [M] , χ〉 = 〈F∗ [M] , dχ〉 =
∫

M
F∗dχ =

∫

M
d F∗χ =

∫

γ

F∗χ = 〈F∗
[
γ
]
, χ
〉

In other words, d F∗ [M] = F∗
[
γ
] = [δ]. In particular, the mass of d F∗ [M] is finite ;

F∗ [M] is a normal current supported by Y . ��
Lemma 15 F∗ [M]

∣∣CPn\δ is a positive holomorphic chain of CPn\δ supported by Y .

Proof Given that T = F∗ [M] is supported by Y and that Y = Y\δ, S = T
∣∣CPn\δ

is a normal, and hence locally rectifiable, current of CPn\δ, without boundary and
supported by Y . According to the Structure Theorem 2.1 of [14], there exists hence(
n j
)
1� j�N ∈ Z

N such that S =
∑

1� j�N
n j
[
Y j
]
where

(
Y j
)
is the family of irre-

ducible components of Y . S beingmoreover a positive current according to Lemma 14,
the n j are natural integers. ��
Lemma 16 F∗ [M] = F∗

[
M ′] and Y ′ = Y .

Proof According to Lemma 14, the current T = F∗ [M] − F ′∗
[
M ′] is a bound-

ary less normal current of bidegree (1, 1) supported by Y ∪ Y ′. It is hence of the
form

∑

1� j�N
n j
[
Z j
]
where

(
n j
) ∈ (Z∗)N and the Z j are irreducible compact com-

plex curves of CPn lying in Y ∪ Y ′. Let Z one of these curves. Z ∩ δ 
= ∅ because
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The Two-Dimensional Inverse Conductivity Problem 2801

otherwise F−1 (Z) is a compact complex curve lying in M or M ′, which is excluded.
One of the connected components of δ, says β, is hence contained in Z ; we equip β
of the orientation induce by δ. β being smooth, there exists in Z a Riemann (smooth)
surface B such that B\β is included in (CPn\δ) ∩ Reg Y ∩ Reg Y ′ and has only two
connected components, B− and B+.

By construction, B− is an open connectedRiemann surface included in the complex
curve Y ∪Y ′ and hence, at least one of the two numbersH2

(
B− ∩ Y

)
orH2

(
B− ∩ Y ′)

is positive, says H2
(
B− ∩ Y

)
> 0. As B− is connected, this implies3 that B− ⊂ Y .

Given that β is a subset of the boundaries of Y and B, we infer that after decreasing
B if necessary, Y ∩ B ⊂ Z and hence Y ∩ B ⊂ B− ∪ B+.

Suppose thatH2
(
B+ ∩ Y

) = 0. Then, as B ⊂ Reg Y , B+ ∩ Y = ∅, Y ∩ B = B−
and, by force, B+ ⊂ Y ′. Suppose in addition thatH2

(
B− ∩ Y ′) = 0, then, decreasing

B if necessary, we get as before Y ′ ∩ B = B+ and so d [Y ] = −d
[
Y ′] near β. This

does not match the fact that F∗ [M] and F ′∗
[
M ′] are two positive holomorphic chains

of CPn\δ supported respectively by Y and Y ′. So, H2
(
B− ∩ Y ′) > 0 and hence,

B− ⊂ Y ′. Hence B ⊂ Y ′ and Z ⊂ Y ′, which is again a contradiction. Going back
to our first assumption, we get that H2

(
B+ ∩ Y

)
> 0 and hence B ⊂ Y , still an

impossibility. The lemma is proven. ��
Lemma 17 When y ∈ Y , My = F−1 ({y}) is a finite set and ν : Y : y �→ Card M y is
bounded.

Proof Suppose that F−1 ({y}) is infinite for some y ∈ Y . If F−1 ({y}) has an accumu-
lation point in M , F = y on a connected component of M and hence on a non-empty
open subset of γ . In the contrary case , F−1 ({y}) has an accumulation point in γ and
d F vanishes at this point. In both cases, this contradicts that F

∣∣
γ is an embedding.

Suppose that ν is unbounded. There exists then (ym) ∈ Y
N
such that (νm) =

(ν (ym)) admits +∞ as limit and (ym) converges to y∗ ∈ Y . Since M is compact,

there exists in M
N
a convergent sequence with limit x0∗ ∈ F−1 ({y∗}) and a strictly

increasing ϕ : N → N such that yϕ(m) = F (xm) for all m ∈ N. If d F
∣∣∣x0∗ 
= 0, there

exists an open neighborhoodU0 of x0∗ in M such thatV0 = F (U0) is aRiemann surface

(with boundary if x0∗ ∈ γ ) and F
∣∣∣V0
U0

is a biholomorphism (of Riemann surfaces with

boundary if x0∗ ∈ γ ) ; we set m0∗ = 1 in this case. If d F
∣∣∣x0∗ = 0, x∗

0 /∈ γ and we

can choose in a neighborhood of y∗ in CPn , holomorphic coordinates (ζ1, . . . , ζn)

such that the vanishing order m∗ of (d (ζ1 ◦ F) , . . . , d (ζn ◦ F)) at x0∗ is also the one
of d (ζ1 ◦ F) at x0∗ . In this case, there exists an open neighborhood U0 of x0∗ in M
such that if y ∈ V0 = F (U0), ζ1 (F (y)) has exactly m0∗ preimages by ζ1 ◦ F in U0,
mutually distinct if y 
= y∗ ; if y ∈ V0 = F (U0), y has at least one preimage by F in
U0 and at most m0∗.

Suppose that we have got k +1 mutually distinct points x0∗, . . . , xk∗ in F−1 (y∗) and
open neighborhoods U0, . . . ,Uk of these points in M such that for all j ∈ {1, . . . , k},
3 Since B− ∩ δ = ∅, B− = (B− ∩ Y

)∪ (B−\Y
)
. B− ∩ Y is an open subset B− because by construction,

B− ⊂ Reg Y ∩ RegY ′. It is non-empty by hypothesis. Hence B− = B− ∩ Y ⊂ Y .
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2802 V. Michel

1 � Card F−1 (y∗) ∩ U j � m j∗ and U j ⊂ M\Vj−1 where Vj−1 = ∪
1��� j−1

U�. Then

Card F−1 (y∗) ∩ Vk �
∑

0� j�k m j∗ and since M\Vk+1 is compact, we can find a

strictly increasing ϕ : N → N such that for all m ∈ N, F−1
(
yϕ(m)

) ∩ (M\Vk+1
)

contains at least a point xk+1
m which tends, when m goes to infinity, toward a point

xk+1∗ ∈ F−1 ({y∗}). As before, we can then find an integer mk+1∗ and a neighborhood
Uk+1 of xk+1∗ in M such that 1 � Card F−1 (y∗) ∩ Uk � mk∗.

The values of the sequence
(
xk∗
)

k∈N so built are mutually distinct points of M y ,
which is impossible. ν is hence bounded. ��
Lemma 18 Consider h ∈ O (M) ∩ C0

(
M
)
. Then F∗h is holomorphic and bounded

on Reg Y . In addition, F ′∗F∗h = (F∗h) ◦ F ′ ∈ O (M ′) ∩ C0
(

M ′
)

Proof By definition F∗h is the function defined on Y by (F∗h) (y) =∑x∈F−1(y) h (x).

Let y∗ ∈ (Reg Y ) \F ({d F = 0}). Set F−1 (y∗) = {x∗1, . . . x∗k} where k = ν (y).
There exists a neighborhood B of y in Reg Y such that for all j ∈ {1, . . . , k}, there
exists a neighborhood A j of x∗ j in M for which Fj = F

∣∣
∣BA j

is a biholomorphism.

Suppose that (yν) ∈ BN converges to y∗ and Card F−1 {yn} � k for all n. Then, for

each n ∈ N there exists an ∈ M\
{

F−1
1 (yn) , . . . , F−1

k (yn)
}
such that F (an) = yn .

Possibly after extracting a subsequence, (an) converges to a point a of M which
satisfies F (a) = y∗. Given that y ∈ Y = F (M) \F (bM), a /∈ bM and there
exists j ∈ {1, . . . , k} such that a = x∗ j . For n big enough, an and F−1

j (yn) are
then two distinct points of A j sharing the same image yn by F . This is absurd. Hence,
F∗h =∑1� j�k h◦F−1

j is holomorphic in a neighborhood of y. Furthermore, |F∗h| �
k ‖h‖∞ and k = ν (y). F∗h is thus bounded according to Lemma 17. Given that
(Reg Y )∩ F ({d F = 0}) is finite, F∗h extends holomorphically to Reg Y . This implies
that F ′∗F∗h = (F∗h) ◦ F ′ is holomorphic and is bounded on M ′\F ′−1 (Sing Y ). As
F ′−1 (Sing Y ) is a finite set, F ′∗F∗h extends holomorphically to M ′. ��

Lemma 19 If ω′ ∈ C1,0
(

M ′
)

∩ �1,0
(
M ′), there exists ω ∈ C1,0

(
M
) ∩ �1,0 (M)

such that ω
∣∣
γ = ω′ ∣∣

γ .

Proof We have to check that ω′ ∣∣
γ verifies the moment condition when γ is seen as

the boundary of M . So, let h ∈ O (M) ∩ C0
(
M
)
. According to Lemma 18, g =

F ′∗F∗h ∈ O (M ′) ∩ C0
(

M ′
)
. Since f∗

[
γ
] = [δ],

∫

γ

hω′ =
∫

γ

F∗F∗
(
hω′) =

∫

δ

F∗
(
hω′)

=
∫

γ

(
F ′∗F∗

) (
hω′) =

∫

M ′
d
(
F ′∗F∗

) (
hω′) = 0.

because F ′∗F∗h ∈ O (M ′) ∩ C0
(

M ′
)
and ω′ ∈ �1,0

(
M ′). ��
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Proof of Theorem 3 Since by hypothesis
[
(∂U�)0���n

]
is a well defined map from M

to CPn , we can use the Adjonction Lemma 12 of [21] which, though written for the
particular case n = 2, applieswithout any change for arbitrary n inN

∗ : there exists har-
monic functionsUn+1, . . . ,UN on M and continuous on M such that

[
(∂U�)0���N

]
is

an embedding of M inCPN . Similarly, there exists harmonic functionsU ′
N+1, . . . ,U ′

N ′

on M ′ and continuous on M ′ such that
[(
∂U ′

�

)
�∈{0,...,n,N+1,...,N ′}

]
is an embed-

ding of M ′ in CPn+N ′−N . When � ∈ {
N + 1, . . . , N + N ′}, Lemma 19 gives

that
(
∂U ′

�

) ∣∣
γ ′ extends to M as a (1, 0)-form holomorphic ��. Also, when � ∈

{n + 1, . . . , N }, (∂U�)
∣∣
γ extends to M ′ as a (1, 0)-form holomorphic �′

�. Consider
then

� = (∂U0, . . . , ∂Un, ∂Un+1 . . . , ∂UN , �N+1, . . . , �N+N ′
) de f= (��)0���L

�′ =
(
∂U ′

0, . . . , ∂U ′
n, �

′
n+1, . . . , �

′
N ′ , ∂U ′

N+1, . . . , ∂U ′
N+N ′

)
de f= (

�′
�

)
0���L

By construction � and �′ coincide on γ . Note (w�)0���L the natural coordinates
of C

L+1. When 0 � �∗ � n, [�]
∣∣{∂U� 
=0} can be written

(
∂U�/∂U�∗

)
� 
=�∗ in the

natural coordinates of C
L identified to

{
w�∗ 
= 0

}
. Note p�∗ the natural projection

of C
L on C

N , (z�)� 
=�∗ �→ (z�)0���N , � 
=�∗ . The map
(
∂U�/∂U�∗

)
0���N , � 
=�∗ is by

construction an embedding of {∂U� 
= 0} in C
N . [�] is moreover injective because

M = ∪
0���n

{∂U� 
= 0} and because a relation of the form [�] (x) = [�] (y) impose

y ∈ ∩
(∂U�)x 
=0

{∂U� 
= 0}. [�] is thus an embedding of M in CPL . Also,
[
�′] is an

embedding of M ′ in CPL . Noting that the proof of Lemma 14 does not use that F is
a canonical map, that is of the form [∂U ], or noting that Lemma 8 of [21] shows that
� and �′ are necessarily of this kind, we conclude that � (M) = �′ (M ′) then that
M and M ′ are isomorphic through a map whose restriction to γ is the identity. ��

6 Reconstruction of a Riemann Surface

As explained in Sect. 2, one of the steps in the reconstruction of a general conductivity
structure is the particular case of the reconstruction of a Riemann surface from its
Dirichlet–Neumann operator which itself comes down to the reconstruction from its
oriented boundary ∂Q of a relatively compact domain Q of an open nodal Riemann
surface Q̃ of CP2.

This last job is done in this section with the help of the Cauchy–Fantapié indicators
of Q defined by Formula (4). Theorem 39 and Proposition 41which are the main result
of this Sect. 6.5 are novelties about characterization and uniqueness of decomposition
in sums of shock waves of these indicators.

For the reader’s convenience, we list here some of the notation used in this section.
U , Lz and Gk are defined with (4); Q∞, q∞, bq , E∞,Ureg, Z , Zreg, Z+, Z+

reg, ρ, ρ̃ are
defined at the beginning of Sect. 6.1; Nh,k and Sh,k : (25); C [X ,Y ) and Ck [X ,Y ) :
Proposition 21; N Q

k and SQ
k : end of Sect. 6.1; Pk : (29); B∞ and pk,ν : (31); δ, Gk,m
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2804 V. Michel

and G̃k,m : Lemma 23; (∂Q)0 : beginning of Sect. 6.2; em , κm , κr
m , L : (38); Sk,r and

P : Definition 28; H , E , �, F : Definition 30; Fk : Corollary 33.

6.1 Decomposition of Cauchy–Fantapié Indicators

This section specifies background notation for Section 6 and recall a result of Dol-
beault and Henkin which gives a decomposition of the Cauchy–Fantapié related to
intersections of the lines Lz with the nodal Riemann surface Q to be reconstructed.

Without loss of generality, we suppose that bQ ⊂ {w0w1w2 
= 0}. From now, we
also assume the generic hypothesis and so little restrictive, that

(0 : 0 : 1) , (0 : 1 : 0) /∈ Q∞ = Q � {w0 = 0} ⊂ Reg Q

where � denotes a transverse intersection. In this situation, u0 = w0
w2

can be taken
as a coordinate for Q in a neighborhood of points of Q∞ and there exists for each
q ∈ Q∞ a function gq holomorphic near 0 in C such that in a neighborhood of q
in CP2, Q coincide with {(u0 : u1 : 1) ; u1 = gq (u0)}. We note then (�gq

ν uν0) the
Taylor expansion of gq at 0. So, for q ∈ Q∞,

q = (0 : gq
0 : 1) de f= (

0 : bq : 1) .

We also set

E∞ = C × {−1/bq ; q ∈ Q∞} .

In this section, U is the open subset of C
2 where the Gk are defined. For any subset X

ofU , we denote Xreg the subset of C
2 made by points z = (x, y) of X such that Q and

Lz = {w ∈ CP2; xw0 + yw1 + w2 = 0} meet transversely at each point of Q ∩ Lz ;
we set Xsing = X\Xreg so that Using is an analytic subset of U .

Though U may be complicated, it contains a convenient open subset. Let us define

ρ = max

⎛

⎝max
w∈bQ

|w2/w1| , 5
max
w∈bQ

|w2/w0|
min
w∈bQ

|w1/w0|

⎞

⎠ , ρ̃ = max
{
ρ,
∣∣1/bq

∣∣ ; q ∈ Q∞}

(23)

and pick a real α such that 0 < α < 1
4 min
w∈bQ

|w1/w0|. Then the sets defined below are

contained in U and play a crucial role :

Z =
{
(x, y) ∈ C

2; ρ < |y| & |x | < α |y|
}

& Z+ = Z\ (C × R−)

Z̃ =
{
(x, y) ∈ C

2; ρ̃ < |y| & |x | < α |y|
}

& Z̃+ = Z̃\ (C × R−) (24)
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Remark The hypothesis (0 : 1 : 0) , (0 : 0 : 1) /∈ Q (which ensures Q∞ ⊂ {w1w2

= 0}) and Q∞ ⊂ Reg Q simplifies some statements and calculus but are not all
mandatory. We indicate for some formulas a version for the case Q∞ ∩ Sing Q 
= ∅.

The lemmabelowensures that the reconstruction process initiated byProposition 21
ends to a complete knowledge of Q ; thorough this paper D, is the unit open disk of
C.

Lemma 20 For all w∗ ∈ Q ∩ {w0 
= 0} and all R ∈ R
∗+, there exists z ∈ Ureg ∩(

C × C\RD

)
such that w∗ ∈ Lz.

Proof Let R ∈ [ρ̃, + ∞ [ and w∗ ∈ Q such that w∗0 
= 0. Set ζ∗ =
(
w∗1
w∗0 ,

w∗2
w∗0

)
.

The points z = (x, y) of C
2 such that w∗ ∈ Lz form the line L∗

w∗ of equation

x + yζ∗1 + ζ∗2 = 0. If L∗
w∗ (R) = L∗

w∗ ∩
(
C × C\RD

)
does not meet U , for

all y ∈ C\RD, there exists in bQ an element w = (1 : ζ1 : ζ2) which is also in
L(−yζ∗1−ζ∗2,y) so that y = − ζ∗2−ζ2

ζ∗1−ζ1
. Given that bQ is a real curve, C\RD cannot be

contained in the image of bQ by ζ �→ − ζ∗2−ζ2
ζ∗1−ζ1

. Hence, L∗
w∗ (R) ∩ U is a non-empty

open subset of L∗
w∗ .

Cover Q ∩{w0 
= 0} by a locally finite family B of branches of Q. For each B ∈ B,
we pick a function f holomorphic in an open subset VB of C

2 such that

B = {(1 : ζ1 : ζ2) ; (ζ1, ζ2) ∈ VB & fB (ζ1, ζ2) = 0}

and d fB does not vanish in B. Denote E (R) the set of points z ∈ L∗
w∗ (R) such that

Lz and Q are tangential at some point of Lz ∩ Q. A point z = (x, y) ∈ C
2 belongs to

E (R) when |y| > R and there exists B ∈ B and ζ ∈ VB verifying the conditions

fB (ζ ) = 0, x + yζ∗1 + ζ∗2 = 0, x + yζ1 + ζ2 = 0,

∂ fB

∂ζ2
(ζ ) 
= 0, y = ∂ fB/∂ζ1

∂ fB/∂ζ2
(ζ ) , x = −∂ fB/∂ζ1

∂ fB/∂ζ2
(ζ ) ζ∗1 − ζ∗2

When ζ 
= ζ∗, this forces ζ∗1 
= ζ1 and− ∂ fB/∂ζ1
∂ fB/∂ζ2

(ζ ) = ζ∗2−ζ2
ζ∗1−ζ1

. The points ζ satisfying
this equation form an analytic subset CB of B. For this reason, CB is either discrete,
or equal to B.

Suppose that CB = B for an element B of B. Then ∂ fB/∂ζ2 does not vanish in
VB and we can find locally a holomorphic function ϕ such that fB (ζ ) = 0 if and
only if ζ2 = ϕ (ζ1). The function ϕ verifies then ϕ′ (ζ1) + 1

ζ∗1−ζ1
ϕ (ζ1) = ζ∗2

ζ∗1−ζ1
,

that is
(

1
ζ∗1−ζ1

ϕ (ζ1)
)′ =

(
ζ∗2

ζ∗1−ζ1

)′
. Hence ϕ (ζ1) = (ζ1 − ζ∗1) c + ζ∗2 where c

is a constant. In this case, B is an open subset of the line defined by the equation
ζ2 = (ζ1 − ζ∗1) c + ζ∗2. Since Q is connected and has only nodal singularities, this
implies that Q itself lies in this line. It suffices then to pick any y sufficiently large
to get that L(−yζ∗1−ζ∗2,y) meets Q only not tangentially. When CB is a discrete subset
of B, the set E (R, B) of elements z in L∗

w∗ (R) such that Lz are B are tangential
at some point of Lz ∩ B is contained, because of the above relations, in a discrete
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set. Since B is locally finite, the study of these two cases shows that L∗
w∗ (R) meets

Ureg ∩
(
C × C\RD

)
. ��

The starting point of all this section is Proposition 21 about the Cauchy–Fantapié
indicators of Q defined by (4). This result can be extracted as a particular case from
Theorem II and Lemma 4.2.2 obtained by Dolbeault and Henkin in [10]; their proof
applies without change when some knots of Q are in Q∞. In this statement and after,
we use the following notation when h1, . . . , h p are complex-valued functions and
k ∈ N,

Nh,k =
∑

1� j�p

hk
j & Sh,k =

∑

1� j1<···< jp�k

h j1 · · · h jk . (25)

The Newton identities state that for all k ∈ N
∗,

Nh,k = (−1)k−1 kSh,k +
∑

1� j�k−1

(−1)k− j−1 Sh, j Nh,k− j (26)

Sh,k = (−1)k−1

k
Nh,k + 1

k

∑

1� j�k−1

(−1) j−1 Sh, j Nh,k− j (27)

We denote C [X ,Y ) the set of elements of C (X ,Y ) which are polynomials in X .
Ck [X ,Y ) = C (Y )k [X ] denotes the ring of polynomials in X of degree at most
k whose coefficients are algebraic fractions in Y . A shock wave is by definition a
holomorphic function h on an open subset of C

2 such that in the standard coordinates
system (x, y)

∂h

∂ y
= h

∂h

∂x
(28)

Proposition 21 (Dolbeault–Henkin, 1997) Let z∗ ∈ Ureg\E∞ and p = Card(
Lz∗ ∩ Q

)
. If U∗ is a sufficiently small neighborhood of z∗ in Ureg, there exists shock

waves h1, . . . , h p on U∗ whose images are mutually disjoint such that for all z ∈ U∗,

Lz ∩ Q = {(1 : h j (z) : −x − yh j (z)
) ; 1 � j � p

}
.

Moreover, for all k ∈ N, there exists Pk ∈ Ck [X ,Y ) such that for all z ∈ U∗

Gk (z) = Nh,k (z) + Pk (z) . (29)

In addition,η denoting the natural injection of Q in CP2, Pk =∑q∈Q∞ Res
(
η∗�k

z , q
)

and

∂Pk

∂Y
= k

k + 1

∂Pk+1

∂X
.
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In practical terms, the difficulty to extract from theEqs. (29) the symmetric functions
of the h j comes from the polynomials Pk . [1] contains a method when q∞ ∈ {1, 2}.
For the one proposed in this paper, the first step is to get precision on (Pk).

Lemma 22 P0 = −q∞ where q∞ = Card Q∞ and setting Pk =∑0�ν�k Xν ⊗ pk,ν

when k ∈ N
∗,

pk,k = 1

(k − 1)! p(k−1)
1,1 & pk,ν = k

ν! (k − ν)
p(ν)k−ν,0, ν ∈ {0, . . . , k − 1} (30)

Moreover, if we set

B∞ =
∏

q∈Q∞

(
1 + Y bq) (31)

Then

p1,1 =
∑

q∈Q∞

bq

1 + Y bq
= B∞′

B∞ (32)

p1,0 = −
∑

q∈Q∞

gq
1

1 + Y bq

de f= A∞

B∞ (33)

pk,0 =
k∑

j=1

∑

q∈Q∞

pq
k,0, j

(1 + Y bq) j
=

k∑

j=1

pk,0, j

(B∞) j
, k ∈ N (34)

where the pq
k,0, j are universal polynomials in the coefficients of the jet of order k− j+1

of Q at q and pk,0, j =∑q pq
k,0, j �

q ′ 
=q

(
1 + Y bq ′) j

. In particular, Pk does not depend

on z∗ and is entirely determined by the k (q∞ + 1) numbers bq , pq
k,0, j , (q, j) ∈

Q∞ × {1, . . . , k}.
Furthermore, Pk admits a Laurent series expansion of the form

∑
m�−1 Pk,m ⊗Y m

where Pk,m ∈ Ck−1 [X ] when −1 � m > −k and Pk,m ∈ Ck [X ] when −k � m.

Remark In the case where Q∞ ∩ Sing Q 
= ∅, Formula (31) becomes B∞ =∏

q∈Q∞
(1 + Y bq)ν(q) where ν (q) denotes the number of branches of Q at q, (32)

stay unchanged and in (33), gq
1 has to replaced by

∑
B gB,q

1 where the sum is done

on a complete set of inner branches of Q at q and gB,q
1 = (gB

)′
(0), gB denoting the

holomorphic function such that in a neighborhood of 0, an equation of the branch B
is u1 = gB (u0).
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Proof Suppose that (30) is verified for a positive integer k. Then

Pk+1 = Pk+1 (0,Y ) + k + 1

k

⎛

⎝
∑

0�m�k−1

p′
k,m

Xm+1

m + 1
+ p′

k,k
Xk+1

k + 1

⎞

⎠

= pk+1,0 +
∑

0�m�k−1

k + 1

(m + 1)! (k − m)
p(m+1)

k−m,0Xm+1 + 1

k! p(k)1,1Xk+1

= pk+1,0 +
∑

1�m�k

k + 1

(m + 1)! (k + 1 − m)
p(m)

k+1−m,0Xm + 1

k! p(k)1,1

which proves (30) with a recurrence.
Let now k ∈ N and z = (x, y) ∈ U\E∞. In the affine coordinates (u0, u1) =(

w0
w2
, w1
w2

)
of CP2, �k

z has the form

�k
z =

(
u1

u0

)k d xu0+yu1+1
u0

xu0+yu1+1
u0

=
(

u1

u0

)k ( xdu0 + ydu1

xu0 + yu1 + 1
− du0

u0

)
.

We fix a point q in Q∞ and in order to simplify the scripts, we write g instead of gq

(an so, gν stands for gq
ν ) and u in place of u0. In a neighborhood of q in Q, the form

η∗�k
z written in the coordinate u is

η∗�k
z =

( (
x + yg′) gk

uk (1 + xu + yg)
− gk

uk+1

)

du.

Denoting by 〈 f , uν〉 the coefficient of uν in the Taylor expansion at 0 of a function f
holomorphic in a neighborhood of 0, one gets

Pq
k (z)

de f= Res
(
η∗�k

z , q
)

= Res

( (
x + yg′) gk

(1 + xu + yg) uk
, 0

)

−
〈
gk, uk

〉
.

In particular Pq
0 (z) = −1 and hence P0 = −Card Q∞. Suppose now k � 1. Then

yg′gk

1 + xu + yg
=
(
1 − 1 + xu

1 + xu + yg

)
g′gk−1

and if g′gk−1 =∑n∈N αnun , 1
k

(
gk − gk

0

) =∑n∈N∗ αn−1
n un , which gives

Res

(
gk

uk+1 du, 0

)
= k

αk−1

k
= Res

(
g′gk−1

uk
du, 0

)
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This entails,

Pq
k (z) = Res

(
xgk

(1 + xu + yg) uk
, 0

)
− Res

(
1 + xu

(1 + xu + yg) uk
g′gk−1, 0

)

= Res

(
x
(
g − ug′)− g′

(1 + xu + yg) uk
gk−1, 0

)

.

Since g − g0 = O (u) and (x, y) /∈ E∞, 1 + yg0 
= 0 and it comes furthermore that
for u small enough

1

1 + xu + yg
= (1 + yg0)−1

1 + xu+y(g−g0)
1+yg0

=
∑

n∈N∗

(−1)n−1

(1 + yg0)n
[xu + y (g − g0)]

n−1 .

Burt for all n ∈ N
∗

[
x
(
g − ug′)− g′] gk−1 [xu + y (g − g0)]

n−1

=
n−1∑

m=0

Cm
n−1gk−1

(
xm+1yn−1−m

(
g − ug′) (g − g0)n−1−m um

−g′xm yn−1−m (g − g0)n−1−m um

)

=

n∑

m=1
Cm−1

n−1 xm yn−m gk−1
(
g − ug′) (g − g0)n−m um−1

−
n−1∑

m=0
Cm

n−1xm yn−1−m g′gk−1 (g − g0)n−1−m um

=
−yn−1g′gk−1 (g − g0)n−1 + xngk−1

(
g − ug′) un−1

+
n−1∑

m=1
xm yn−1−m

(
yCm−1

n−1 gk−1
(
g − ug′) (g − g0)

−Cm
n−1g′gk−1u

)
(g − g0)n−1−m um−1

So,

Pq
k (z) = −

k∑

n=1

(−1)n

(1 + yg0)n

⎛

⎝
−yn−1

〈
g′gk−1 (g − g0)n−1 , uk−1

〉+ xn
〈
gk−1

(
g − ug′) , uk−n

〉

+
n−1∑

m=1
xm yn−1−m

〈(
yCm−1

n−1 gk−1
(
g − ug′) (g−g0)

−Cm
n−1g′gk−1u

)
(g − g0)n−1−m , uk−m

〉
⎞

⎠

Hence Pq
k (z) =∑k

m=0 pq
k,m (y) xm with

pq
k,0 =

k∑

n=1

(−1)n Y n−1

(1 + Y g0)n

〈
g′gk−1 (g − g0)

n−1 , uk−1
〉
, pq

k,k = (−1)k+1 gk
0

(1 + Y g0)k
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and for 1 � m � k − 1,

pq
k,m = −

k∑

n=m+1

(−1)n Y n−1−m

(1 + Y g0)n

〈(
Y Cm−1

n−1 gk−1 (g − ug′) (g − g0) + Cm
n−1g′gk−1u

)
(g − g0)

n−1−m , uk−m
〉

In particular,

pq
1,0 = −g1

1 + Y g0
& pq

1,1 = g0
1 + Y g0

.

Furthermore, for all n ∈ N,

(−1)n Y n−1

(1 + Y g0)n
= (−1)n

gn−1
0 (1 + Y g0)

(
1 − 1

1 + Y g0

)n−1

= (−1)n
n∑

j=1

(−1) j−1 C j−1
n−1g−(n−1)

0

(1 + Y g0) j
,

Hence

pq
k,0 =

k∑

j=1

(−1) j−1

(1 + Y g0) j

k∑

n= j

(−1)n C j−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)

n−1 , uk−1
〉

= −gk
1

(1 + Y g0)k
+

k−1∑

j=1

(−1) j−1

(1 + Y g0) j

k∑

n= j

(−1)n C j−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)

n−1 , uk−1
〉

Note that
〈
g′gk−1 (g − g0)k−1 , uk−1

〉 = g1gk−1
0 gk−1

1 = gk
1gk−1

0 and

〈
g′gk−1 (g − g0)

k−2 , uk−1
〉

=
(

g1 + 2g2u + O
(

u2
))

(
g0 + g1u + O

(
u2
))k−1 (

g1u + g2u2 + O
(

u3
))k−2

= (g1 + 2g2u)
(

gk−1
0 + (k − 1) gk−2

0 g1u
)

(
gk−2
1 uk−2 + (k − 2) gk−3

1 g2uk−1
)

+ O
(

uk
)

=
(

g1gk−1
0 +

(
2g2gk−1

0 + (k − 1) gk−2
0 g2

1

)
u
)

(
gk−2
1 uk−2 + (k − 2) gk−3

1 g2uk−1
)

+ O
(

uk
)

= gk−1
1 gk−1

0 uk−2
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+
[
g1gk−1

0 (k − 2) gk−3
1 g2 +

[
2g2gk−1

0 + (k − 1) gk−2
0 g2

1

]
gk−2
1

]
uk−1

+ O
(

uk
)

= gk−1
1 gk−1

0 uk−2 +
[
kgk−1

0 gk−2
1 g2 + (k − 1) gk−2

0 gk
1

]
uk−1

+ O
(

uk
)

which gives

(−1)k Ck−1
k−1

gk−1
0

〈
g′gk (g − g0)

n−1 , uk−1
〉
= (−1)k gk

1

and

k∑

n=k−1

(−1)n Ck−2
n−1

gn−1
0

〈
g′gk (g − g0)

n−1 , uk−1
〉

= (−1)k (k − 1)

gk−1
0

〈
g′gk (g − g0)

k−1 , uk−1
〉
+ (−1)k−1

gk−2
0

〈
g′gk (g − g0)

k−2 , uk−1
〉

= (−1)k (k − 1) gk
1 + (−1)k−1

gk−2
0

[
kgk−1

0 gk−2
1 g2 + (k − 1) gk−2

0 gk
1

]

= (−1)k
(
(k − 1) gk

1 −
[
kg0gk−2

1 g2 + (k − 1) gk
1

])
= −k (−1)k g0gk−2

1 g2

So,

pq
k,0 = −gk

1

(1 + Y g0)k
+ −kg0gk−2

1 g2

(1 + Y g0)k−1 +
k−2∑

j=1

pq
k,0, j

(1 + Y g0) j

with

pq
k,0, j = (−1) j−1

k∑

n= j

(−1)n C j−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)

n−1 , uk−1
〉

Summing on the elements q of Q∞ the above equalities, we get the relations claimed
in the statement.

Writing the Laurent series at infinity of pk,ν , 0 � ν � k, in the form∑
m�−1

〈
pk,νY m

〉
Y m , we get Pk = ∑

m�−1 Pk,m ⊗ Y m and Pk,m = ∑
0�ν�k〈

pk,ν ,Y m
〉

Xν for any m. Since (30) implies
〈
pk,k,Y m

〉 = 0 when m > −k, we

obtain that Pk,m = ∑
0� j<k

〈
pm

k, j ,Y m
〉

X j ∈ Ck−1 [X ] for −1 � m > −k and that

Pk,m =∑0� j�k

〈
pm

k, j ,Y m
〉

X j ∈ Ck [X ] for −k � m. ��
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6.2 Expansion of Indicators

The form of fractions Pk given by Lemma 22 suggests to study the functions Gk on the
domain Z defined by (24). In this section and after, (∂Q)0 stands for the real orientated

curve of C
2 which is the image of ∂Q by the coordinates map w �→

(
w1
w0
, w2
w0

)
.

Lemma 23 We note δ the integer 1
2π i

∫
∂Q

d(w1/w0)
w1/w0

. G0 is constant on Z and for all
k ∈ N

∗, Gk admits on Z a Laurent expansion of the form

Gk (x, y) =
∑

n∈N∗

Gk,−n (x)

yn
= (−1)k δ

xk

yk
+
∑

n∈N∗

G̃k,−n (x)

yn
(35)

with normal convergence on Z and where for all n ∈ N
∗, G̃k,−n =∑0�ν<n Gν

k,−n Xν

is a polynomial of degree at most n − 1. In particular, Gk,0 = δk,0δ, Gk,−n =
δk,n (−1)n δXn + G̃k,−n ∈ Cn−1+δk,n [X ] and

G1 (x, y) = G0
1,−1 − δx

y
+
∑

n�2

G1,−n (x)

yn
(36)

with G0
1,−1 = −1

2π i

∫
∂Q

w2
w1

d w1
w0

.

Proof Fix k in N
∗. Let (x, y) ∈ Z . Then for all (z1, z2) ∈ (∂Q)0,

∣∣
∣ x+z2

yz1

∣∣
∣ < 1

2 since by

definition of ρ, |x + z2| � α |y| + max |ζ2|
(ζ1,ζ2)∈(∂Q)0

< 1
2 |y| min |ζ1|

(ζ1,ζ2)∈(∂Q)0

� 1
2 |yz1|. Hence

Gk (x, y) = 1

2π i

∫

(∂Q)0

zk−1
1 dz1 + 1

2π i

∫

(∂Q)0

zk−1
1

z1dz2 − (x + z2) dz1
x + yz1 + z2

= 0 + 1

2π i

∫

(∂Q)0

zk−2
1

y

z1dz2 − (x + z2) dz1
1 + x+z2

yz1

= 1

2π i

∫

(∂Q)0

∑

ν∈N

(−1)ν zk−2−ν
1

yν+1 (x + z2)
ν (z1dz2 − (x + z2) dz1)

=
∑

n∈N∗

Gk,−n (x)

yn

with normal convergence on Z and for any n ∈ N
∗

Gk,−n (x) = (−1)n−1

2π i

∫

(∂Q)0

zk−n−1
1 (x + z2)

n−1 (z1dz2 − (x + z2) dz1) .

123



The Two-Dimensional Inverse Conductivity Problem 2813

Hence, Gk,−n is a polynomial of degree at most n. Let us write it
∑

0�ν�n Gν
k,−n Xn .

The coefficient Gn
k,−n of Xn in Gk,−n is given by the formula

Gn
k,−n = (−1)n

2π i

∫

(∂Q)0

zk−n−1
1 dz1 = δk,n (−1)n δ.

With G̃k,−n =∑0�ν<n Gν
k,−n Xν , we get

Gk (x, y) =
∑

n∈N∗

δk,n (−1)n δxn + G̃k,−n (x)

yn
= (−1)k δ

xk

yk
+
∑

n∈N∗

G̃k,−n (x)

yn

Besides,

G1,−1 (x) = 1

2π i

∫

(∂Q)0

z−1
1 (z1dz2 − (x + z2) dz1) = G0

1,−1 + xG1
1,−1

with G0
1,−1 = 0 + −1

2π i

∫
w∈(∂Q)0

w2
w1

d w1
w0

and G1
1,−1 = −1

2π i

∫
(∂Q)0

z−1
1 dz1 = −δ.

By definition, G0 is the function U � (x, y) �→ 1
2π i

∫
∂Q

d[(xw0+yw1+w2)/w0)]
xw0+yw1+w2/w0

.

Hence, it is continuous and integer valued. So it is constant on Z and equal to its limit
value when x = 0 and y → ∞, that is δ. Thus, G0,−n = 0 for all n ∈ N

∗. ��
Corollary 24 The number p of functions h1, . . . , h p involved in Proposition 21 is the
same for all points of Zreg\E∞ : p = δ + q∞ where q∞ = Card Q∞.

Proof Denote temporarily p (z) the number of functions h1, . . . , h p(z) involved in
Proposition 21 when z ∈ Ureg. Since P0 = −q∞, we know that G0 (z) = p (z)− q∞
and so that p is an integer valued function continuous on the connected set Zreg\E∞.

It is thus constant and since G0 (x, y) = δ +∑m∈N∗
G0,m (x)

ym when (x, y) ∈ Zreg, we
conclude that δ = p − q∞. ��
Remark In the case where Q∞ ∩ Sing Q 
= ∅, q∞ =∑q∈Q∞ ν (q). Corollary 45 of
Sect. 7 gives a formula linking q∞ and the genus of Q via the Dirichlet–Neumann
operator.

Corollary 25 Notation and hypothesis remains as stated in Proposition 21. For all
k ∈ N

∗, Nh,k extends to Z\E∞ as a holomorphic function N Q
k which does not

depend of z∗ and which expands in Laurent series on Z̃ in the form N Q
k (x, y) =

∑
n∈N∗

N Q
k,n(x)
yn where the N Q

k,n are polynomials of degree at most n. Moreover, for

all z ∈ Zreg, there exists shock waves hz
1, . . . , hz

p whose images are mutually dis-

tinct and such for z′ sufficiently close to z,
(

N Q
k

(
z′)
)

k∈N
= (

Nhz ,k
(
z′))

k∈N and

Lz′ ∩ Q = {(1 : h j
(
z′) : −x − yh j

(
z′)) ; 1 � j � p

}
.

Proof Let k ∈ N. We know that Nh,k = Gk − Pk on U∗ and thanks to Lemma 22
that Pk is an algebraic fraction which does not depend on z∗ and which is defined
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on Z\E∞. Hence, N Q
k = Gk − Pk extends Nh,k as a holomorphic function on Z .

Applying Proposition 21 and Corollary 24 with an arbitrary point z of Zreg\E∞, we
obtain shock waves hz

1, . . . , hz
p with the claimed properties. Furthermore, Lemma 22

also gives that

Pk =
∑

0�ν�k

pk,ν Xν = 1

(k − 1)! p(k−1)
1,1 Xk +

∑

0�νw<k

k

ν! (k − ν)
p(ν)k−ν,0Xν

with p1,1 =∑q∈Q∞ bq

1+Y bq and pν,0 =∑ν
j=1

∑

q∈Q∞

pq
ν,0, j

(1+Y bq ) j . For |y| > ρ̃, one get

p1,1 (y) =
∑

n∈N∗

(−1)n−1

y

∑

q∈Q∞

(
bq) n−1 =

∑

n∈N∗

(−1)n−1 Sb,n−1

yn

pν,0 (y) =
ν∑

j=1

∑

n∈N∗

( j − 1)! (−1)n+ j−1

yn+ j−1

∑

q∈Q∞
bq pq

ν,0, j =
∑

m∈N∗

p∞,m
ν,0

ym

with p∞,m
ν,0 = (−1)m

∑
(n, j)∈N∗×{1,...,ν}, n+ j=m+1 ( j − 1)!∑q∈Q∞ (bq)−n pq

ν,0, j . It
suffices then to combine these formulas with Lemma 23 in order to get the announced
statements. ��
Corollary 26 Notation and hypothesis remain as stated in Proposition 21. Denote by

SQ
k , k ∈ N

∗, the functions obtained from (26) and
(

N Q
k

)

k∈N∗ which is defined in

Corollary (25); locally the SQ
k are the symmetric functions of the functions h1, . . . , h p

of Proposition 21. Then for all k ∈ N
∗, SQ

k expands in Laurent series on Z̃ .

6.3 A Genesis of Multiple ShockWave

Let A, B ∈ C [Y ] with deg A < r = deg B, B (0) = 1. Define P ∈ C [X ,Y ) and N
by

P (X ,Y ) = A (Y )

B (Y )
+ B ′ (Y )

B (Y )
X & N = G1 − P.

In this section, we look for a characterization of when N is a multiple shock wave,
that is a sum of shock waves. Theorem 4 of [17] gives a characterization of such sums
but in this article, we use one which is more adapted to the present situation. This two
characterizations correspond more or less to emphasize one of the variables x or y and
rely on the following lemma whose proof is omitted since it follows easily from [17,
Lemma 16] and the proof of [17, Proposition 17]

Lemma 27 (Henkin–Michel, 2007)
Let D be a domain of C

2, N ∈ O (D) and d ∈ N
∗. There exists mutually distinct

local shock waves h1, . . . , hd such that N = h1 + · · · + hd if and only if there exists
s1, . . . , sd ∈ O (D) such that s1 = −N and
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− sd
∂N

∂x
+ ∂sd

∂ y
= 0, −sk

∂N

∂x
+ ∂sk

∂ y
= ∂sk+1

∂x
, 1 � k � d − 1, (37)

and if the discriminant of the polynomial � = T d + s1T d−1 + · · · + sd ∈ O (D) [T ]
is not identically zero on D. In this case, we say that N is a d-shock waves.

In order to define integro-differential operators adapted to the resolution of the
system (37), we introduce notation linked to Laurent series and their primivitization.
For m ∈ Z, we set

em : C
∗ � y �→ (−1)|m|−1 (|m| − 1)! ym if m � −1

em : C
∗ � y �→ 1

m! ym if m � 0 (38)

and we denote by κm = em
em
1
the real number such that em (y) = κm ym for any y ∈ C

∗.
We also make use of the notation κr

m = κrκm−r
κm

when 0 � r � m. The main reason
of this normalization is that for any m ∈ Z\ {−1}, em+1 is a primitive of em . Note
that κ1 = κ−1 = 1. We denote by L the principal determination of the logarithm on
C\R−.

Definition 28 For (k, r) ∈ Z × N, we denote by Sk,r the set of holomorphic functions
F on Z+ such that there exists a family

(
cm,s

)
m�k, 0�s�r of entire functions such that

for each s ∈ {0, . . . , r}, the series (∑m�k cm,s ⊗em) is normally convergent on subsets
of Z whose first projection is bounded and such that F =∑m�k, 0�s�r cm,s ⊗ em Ls

on Z+.
Wedefine anoperatorP on S∗,∗ = ∪

(k,r)∈Z×N
Sk,r by settingPF =∑m�k, 0�s�r cm,s

⊗ P (em Ls) when F = ∑

m�k, 0�s�r
cm,s ⊗ em Ls ∈ Sk,r , the action of P on em Ls

being defined by

P (em) = em+1 if m 
= −1, Pe−1 = L
P (em Ls) = (−1)0 A0

s a0
mem+1Ls + · · · + (−1)s As

sas
mem+1L0 if m 
= −1,

P (e−1Ls) = 1
s+1 Ls+1 = 1

s+1e0Ls+1

where am = −m if m � −2 and am = 1
m+1 if m � 0.

Lemma 29 For any F =∑m�k, 0�s�r cm,s ⊗ em Ls ∈ Sk,r , PF ∈ ck,r ⊗ ek+1Lr +
c−1,r
r+1 ⊗ Lr+1 + Sk,r and PF is a partial primitive of F in the sense that ∂

∂ yPF = F.

Proof We only need to check that for a given (m, s) ∈ Z × N,
[P (em Ls)

]′ = em Ls .
The cases m = −1 or (s = 0 & m 
= −1) are quite evident. Assume s 
= 0 and
m 
= −1. Then

∫

[1;y]

(
em Ls) (τ ) dτ = [em+1Ls]y

1 −
∫

[1;y]
em+1 (τ )

s

τ
Ls−1 (τ ) dτ
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2816 V. Michel

If m � −2, em+1 (τ )
1
τ

= (−1)|m| |m|!τm = −mem and if m � 0, em+1 (τ )
1
τ

=
1

(m+1)!τ
m = 1

m+1em . Thus

∫

[1;y]

(
em Ls) (τ ) dτ = em+1Ls − sam

∫

[1;y]

(
em Ls−1

)
(τ ) dτ

= A0
s a0

mem+1Ls + · · · + (−1)s−1 As−1
s as−1

m em+1L1

+ (−1)s As
sas

m

∫

[1;y]
em (τ ) dτ

= A0
s a0

mem+1Ls + · · · + (−1)s As
sas

mem+1L0 = P (em Ls)

and P (em Ls) is indeed a primitive of em Ls . ��
Definition 30 Let H be the function defined on Z+ by

H = P ∂G1

∂x
= −δ ⊗ L +

∑

m�−1

G ′
1,m−1

κm−1
⊗ em = −δ ⊗ L + H̃

We then define operators D, E and F on S∗,∗ in the following way

D = e−H ∂

∂x
eH = ∂

∂x
+ ∂H

∂x
, E = P ◦ D & F = �E (39)

where � is the operator which to F = ∑
m�k, 0�s�r cm,s ⊗ em Ls ∈ Sk,r associates∑

m�k cm,0 ⊗ em .

The lemma below collects some basic facts about the crucial function H .

Lemma 31 H̃ = I + J where for any (x, y) ∈ Z,

I (x, y) = 1

2π i

∫

(∂Q)0

z1dz2 − (x + z2) dz1
x + yz1 + z2

J (x, y) = −1

2π i

∫

(∂Q)0

L

(
x + yz1 + z2

yz1

)
dz1

H = −δ ⊗ L +∑m�−1 Hm ⊗ em with Hm ∈ C|m|−1 [X ] for any m � −1 and

∂H

∂ y
= ∂G1

∂x
. (40)

eH extends holomorphically to Z and

eH =
(
1 ⊗ e−δ

1

)
eH̃ (41)
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so that D is in fact defined on O (Z). Furthermore, δ is given for all x ∈ C by the
formula

δ = lim|y|→+∞
ln
∣∣e−H(x,y)

∣∣

ln |y| . (42)

Proof Formula (40) is the main purpose of setting H = P ∂G1
∂x , (41) just takes

in account that δ ∈ Z and (42) follows from (41 ). For any m � −1, Hm =
− 1

κ−2
G ′

1,m−1 ∈ C|m−1|−2 [X ] = C|m|−1 [X ]. To prove that H̃ = I + J , we note
that for (x, y) ∈ U ,

∂G1

∂x
(x, y) = −1

2π i

∫

(∂Q)0

yz1dz1 + z1dz2
(x + yz1 + z2)2

= −1

2π i

∫

(∂Q)0

dz1
x + yz1 + z2

+ 1

2π i

∫

(∂Q)0

(x + z2) dz1 − z1dz2
(x + yz1 + z2)2

= −1

2π i

∫

(∂Q)0

dz1
x + yz1 + z2

+ ∂ I

∂ y
(x, y) .

When (z1, z2) ∈ (∂Q)0,
x+yz1+z2

yz1
∈ R

∗− only if y ∈] 0; −x−z2
z1

]
, which cannot happen

since
∣
∣∣−x−z2

z1

∣
∣∣ � α

min|ζ1|
(ζ1,ζ z2)∈(∂Q)0

|y| + max |ζ2|
(ζ1,ζ z2)∈(∂Q)0

� 1
2 |yz1| < |yz1|. Hence J is well

defined on Z and

∂ J

∂ y
= −1

2π i

∫

(∂Q)0

(
1

x + yz1 + z2
− 1

yz1

)
dz1 = δ

y
+ −1

2π i

∫

(∂Q)0

dz1
x + yz1 + z2

Thus, ∂(I+J )
∂ y = ∂ H̃

∂ y and since both H (x, .) and (I + J ) (x, .) have limit 0 at infinity

when x is fixed, we get I + J = H̃ . ��
The operator F enables to design a machinery adapted to the system (37).

Proposition 32 Let s1, . . . , sd ∈ O (Z\E∞). Then (s1, . . . , sd) is a solution of (37)
with N = G1 − P if and only if each (1 ⊗ B) s j extends holomorphically to Z and
there exists μ1, . . . , μd ∈ O (C) which satisfy the system below on Z+,

(1 ⊗ B) sk =
[
F0 (μk ⊗ e0) + · · · + Fd−k (μd ⊗ e0)

]
eH , d � k � 1 (43)

Proof Since N = G1 − A
B − I d ⊗ B′

B , we note that if s ∈ O (Z) and B̃ = 1 ⊗ B

B̃

(
−s

∂N

∂x
+ ∂s

∂ y

)
= s

(
−B̃

∂G1

∂x
+ B̃ ′

)
+ B̃

∂s

∂ y

= − (B̃s
) ∂G1

∂x
+ ∂ B̃s

∂ y
= eH ∂e−H B̃s

∂ y
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2818 V. Michel

As eH extends holomorphically to Z , (s1, . . . , sd) ∈ O (Z\E∞)d is a solution of (37)
if and only if the equations

∂e−H B̃sd

∂ y
= 0 &

∂e−H B̃sk

∂ y
= e−H ∂ B̃sk+1

∂x
, 1 � k � d − 1 (44)

are satisfied on Z\E∞. The first one is equivalent to the existence of a function μd

defined on C such that for all (x, y) ∈ Z\E∞,

B (y) sd (x, y) = μd (x) eH(x,y) (45)

Such a function μd is actually holomorphic on C since for all y ∈ C\ρ̃D, it would be

given on D (0, α |y|) by the formulaμd = sd (., y) eH(.,y)

B(y) . Hence, (45) also implies that

B̃sd holomorphically extends to Z . Suppose that for k ∈ {1, . . . , d − 1},μd , . . . , μk ∈
O (C) satisfy on Z\E∞

B̃s j =
[
F0 (μ j ⊗ e0

)+ · · · + Fd− j (μd ⊗ e0)
]

eH

when d � j � k + 1 and that each of these B̃s j extends holomorphically to Z .
The equation ∂

∂ y

(
B̃ske−H

) = e−H ∂
∂x

(
B̃sk+1

)
is then equivalent to the existence of a

function μk defined on C such that for all (x, y) ∈ Z+\E∞,

B (y) sk (x, y) e−H(x,y) = μk (x) + P
(

e−H ∂

∂x
(Bsk+1)

)
(x, y) . (46)

Since B̃sk+1 and e−H extends holomorphically to Z , the only logarithmic term (46)
may have comes fromP applied to some elements ofO (C)⊗e−1.As B̃ske−H expands
in usual Laurent series in Z̃ , theses logarithmic terms have to compensate. Hence, it
turns out that the right side of (46) expands in usual Laurent series in Z , which yields
that B̃sk holomorphically extends to Z and μk ∈ O (C). We also get

B̃ske−H = �
((
1 ⊗ B̃

)
ske−H

)
= μk ⊗ e0 + �P

(
e−H ∂

∂x

(
B̃sk+1

))

= μk ⊗ e0 + �
∑

k+1� j�d

P
(

e−H ∂

∂x

(
eHF j−k−1 (μ j ⊗ e0

)))

=
∑

1� j�d

F j−k−1 (μ j ⊗ e0
)
.

��
We derive from Proposition 32 a process to construct a priori some functions which

may be multiple shock wave.

123



The Two-Dimensional Inverse Conductivity Problem 2819

Corollary 33 For μ1, . . . , μd ∈ O (C), we define on Z holomorphic functions
sk (μ, B), 1 � k � d, by

sk (μ, B) = eH̃

1 ⊗ eδ1B
Fk (μ) & Fk (μ) =

d∑

j=k

F j−k (μ j ⊗ e0
)
, 1 � k � d.

Let CB [Y ] = {B ∈ C [Y ] ; B (0) = 1}. Then the map O (C)d ×CB [Y ] � (μ, B) �→
(sk (μ, B))1�k�d is injective. Moreover, −s1 (μ, B) is a d-shock waves on Z if and
only if

−s1 (μ, B) = G1 − P

and the discriminant�(μ, B) of S (μ, B) = T d +s1 (μ, B) T d−1+· · ·+sd (μ, B) ∈
O (Z) [T ] is not identically zero.

Proof Suppose that (μ, B) and (ν,C) are two elements of O (C)d × CB [Y ] such
that (sk (μ, B))1�k�n = (sk (ν,C))1�k�d . Then on Z\E∞, μd ⊗ 1

B = νd ⊗ 1
B .

As B,C ∈ CB [Y ], this implies B = C and μd = νd . Suppose that μ j = ν j

when d � j � k > 1. The relation sk−1 (μ, B) = sk−1 (ν,C) can be then written
Fk−1 (μ) = Fk−1 (ν) and this gives immediately μk−1 = νk−1. Hence, μ = ν.

Since eH =
(
1 ⊗ e−δ

1

)
eH̃ , Proposition 32 gives that (sk (μ, B))1�k�d verifies

system (37). When −s1 (μ, B) = G1 − P , �(μ, B) 
= 0 ensures that −s1 (μ, B)
is the sum of d shock waves mutually distinct whose symmetric functions are the
(−1)k sk (μ, B). ��

The proposition below shows that the system (43) can be seen as a classical differ-
ential system with unknowns μ1, . . . , μd .

Proposition 34 We define holomorphic functions Fk,k, . . . ,Fk,0 on Z for all k ∈ N

by the following relations

Fk,k = 1 ⊗ ek, Fk+1,0 = Fk�P ∂H

∂x
, Fk+1, j = �PFk, j−1 + FFk, j , 1 � j � k

where Fk,ν = 0 if ν < 0. Then for all f ∈ O (C),

Fk ( f ⊗ e0) =
∑

0� j�k

(
f ( j) ⊗ e0

)
Fk, j .

Proof By definition, for all f ∈ O (C), D ( f ⊗ e0) = f ′ ⊗ e0 + ( f ⊗ e0)
∂H
∂x and

hence F ( f ⊗ e0) = �PD ( f ⊗ e0) = (
f ′ ⊗ e0

)F1,1 + ( f ⊗ e0)F1,0 with F1,1 =
1 ⊗ e1 and F1,0 = �PH . Suppose lemma’s result true for a given k ∈ N

∗. Then for
f ∈ O (C)
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Fk+1 ( f ⊗ e0)

=
∑

0� j�k

�P ∂

∂x

(
f ( j) ⊗ e0

)
Fk, j + �P

⎛

⎝∂H

∂x

∑

0� j�k

(
f ( j) ⊗ e0

)
Fk, j

⎞

⎠

=
∑

0� j�k

�P
((

f ( j+1) ⊗ e0
)
Fk, j +

(
f ( j) ⊗ e0

) ∂Fk, j

∂x

)

+
∑

0� j�k

(
f ( j) ⊗ e0

)
�P

(
Fk, j

∂H

∂x

)

=
∑

0� j�k

(
f ( j+1) ⊗ e0

)
�PFk, j +

∑

0� j�k

(
f ( j) ⊗ e0

)
�P ∂Fk, j

∂x

+
∑

0� j�k

(
f ( j) ⊗ e0

)
�P

(
Fk, j

∂H

∂x

)

which gives the expected formula with

Fk+1,k+1 = �PFk,k = �P (1 ⊗ ek) = 1 ⊗ ek+1,

Fk+1, j = �PFk, j−1 + �P
(
∂Fk, j

∂x
+ Fk, j

∂H

∂x

)

= �PFk, j−1 + FFk, j , 1 � j � k,

Fk+1,0 = �P
(
∂Fk,0

∂x
+ Fk,0

∂H

∂x

)

= FFk,0 = FFk−1�P ∂H

∂x
= Fk�P ∂H

∂x
.

��

Going further in the analysis of (37), we are about to prove that the functions μ j

are polynomials. We start by two elementary lemmas.

Lemma 35 Let k ∈ N and F =∑m�k cm ⊗ em ∈ Sk,r . Then FF ∈ c′
k ⊗ ek+1 + Sk,r

and 〈FF, e0〉 = 0.

Proof Let k and F be as above. Since FF = �PDF and
〈P (e j Ls

)
, e0
〉 = 0 for any

( j, s), we get 〈FF, e0〉 = 0. Furthermore,

P ∂F

∂x
=
∑

m�k

c′
m ⊗ Pem ∈ c′

k ⊗ ek+1 + Sk,r .
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As H−1 is constant, ∂H
∂x = ∑

m�−2
H ′

m ⊗ em and the expected relation follows from

�P
(

F
∂H

∂x

)
= �P

∑

j�k

∑

ν�−2

c j H ′
ν ⊗ κ jκν

κ j+ν

eν+ j

= �P
∑

��k−2

⎛

⎜⎜
⎝

∑

ν+ j=�
ν�−2 & j�k

κ
j
j+ν c j H ′

ν

⎞

⎟⎟
⎠⊗ e�

=
∑

0 
=m�k−1

⎛

⎜⎜
⎝

∑

ν+ j=m−1
ν�−2 & j�k

κ
j
j+νc j H ′

ν

⎞

⎟⎟
⎠⊗ em ∈ Sρ,δk,r .

��
Lemma 36 Denote by Bq∞ the leading coefficient of B. Then, there exists (λm) ∈
C [X ]Z− such that

eH

1 ⊗ B
= 1

Bq∞

∑

m�0

λm ⊗ em

ep/κp
(47)

with λ0 = 1 and deg λm � |m| − 1 for all m ∈ Z
∗−.

Proof For a suitable family
(
B−1,m

) ∈ C
Z− , 1

B = κq∞
Bq∞ eq∞

∑
m�0 B−1,mem with

B−1,0 = 1. Since H = −δL +∑m�−1 Hm ⊗ em ,

e−H = κδ

eδ

⎡

⎣1 +
∑

n∈N∗

1

n!

⎛

⎝−
∑

ν�−1

Hν ⊗ eν

⎞

⎠

n⎤

⎦ = κδ

eδ

∑

m�0

hm ⊗ em

with h0 = 1 and for m ∈ N
∗, hm = ∑

1�n�|m|
(−1)n

n!
∑

ν∈(Z∗−)
n; ν1+···+νn=m Hν1 · · ·

Hνn ∈ C|m|−1 [X ] because if ν ∈ (Z∗−
)n and ν1 + · · · + νn = m, deg Hν1 · · · Hνn �

∑
1� j�n

(∣∣ν j
∣∣− 1

) = |m| − n � |m| − 1. As p = δ + q∞,
κδκq∞
eδeq∞ = κp

ep
and we

get (47) with λ0 = 1 and for all m ∈ Z
∗−, λm = ∑

r+s=m, 0�r ,s
hr B−1,s which is a

polynomial of degree at most max
0�r�m

deg hr , that is |m| − 1. ��

Proposition 37 Let f ∈ O (C) and k ∈ N
∗. Then,

Fk ( f ⊗ e0) = f (k) ⊗ ek +
∑

m�k−2

Pk,m ( f ) ⊗ em =
∑

m�k

Pk,m ( f ) ⊗ em
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with Pk,k = ∂k

∂xk
, Pk,k−1 = Pk,0 = 0 and for m ∈ Z∩] −∞, k − 1], Pk,m =

∑

(m+1)+� j�k−1

P j
k,m

∂ j

∂x j where for any j , P j
k,m ∈ C j−m−1 [X ] which means that

P j
k,m = 0 when j < m + 1.

Proof Note that if ν ∈ Z
∗−, deg H ′

ν = (|ν|− 1)− 1 = |ν|− 2. Set F = f ⊗ e0 and for
m ∈ Z,

〈Fk F, em
〉 = ck,m . By definition ofF ,F1F = f ′⊗e1+∑m�−1 H ′

m−1 f ⊗em .

As when m ∈ Z
∗−, P1,m

def= P0
1,m

def= H ′
m−1 has degree |m| − 1, the claims are true

for k = 1.
Let k ∈ N\ {0, 1} be such that ck,m = 0 when m ∈ Z ∩ [k, + ∞ [ , ck,k =

f (k), ck,k−1 = ck,0 = 0 whereas for m ∈ Z∩] − ∞, k − 1], ck,m = Pk,m ( f ) with

Pk,m = ∑0� j�k−1 P j
k,m

∂ j

∂x j and P j
k,m ∈ C j−m−1 [X ] for all j . Since H ′−1 = 0, with

κr
m = κrκm−r

κm
, we get

Fk+1F = �EFk F =
∑

0 
=m�k+1

c′
k,m−1 ⊗ em + �P(

∑

r�k

ck,r ⊗ er )

⎛

⎝
∑

s�−2

H ′
s ⊗ es

⎞

⎠

=
∑

0 
=m�k+1

c′
k,m−1 ⊗ em + �P

∑

m�k−2

⎛

⎝
∑

m+2�r�k

κr
mck,r H ′

m−r

⎞

⎠⊗ em

= c′
k,k ⊗ ek+1 + c′

k,k−1 ⊗ ek

+
∑

0 
=m�k−1

⎛

⎝c′
k,m−1 +

∑

m+1�r�k

κr
m−1ck,r H ′

m−1−r

⎞

⎠⊗ em

Thus ck+1,k+1 = c′
k,k = f (k+1), ck+1,k = c′

k,k−1 = 0 and ck+1,m = 0 if m � k + 1
where m = 0. For m ∈ Z

∗∩] −∞, k], it comes

ck+1,m = c′
k,m−1 +

∑

m+1�r�k

κr
m−1H ′

m−1−r ck,r (48)

Let m ∈ Z
∗∩]− ∞, k − 1]. Formula (48) and the induction hypothesis give

ck+1,m =
⎛

⎝
∑

(m+1)+� j�k−1

P j
k,m−1 f ( j)

⎞

⎠

′
+

∑

m+1�r�k

∑

(m+1)+� j�k−1

κr
m−1P j

k,r H ′
m−1−r f ( j)

=
∑

(m+1)+� j�k−1

(P j
k,m−1 f ( j))′

+
∑

(m+1)+� j�k−1

⎡

⎣
∑

m+1�r�k

κr
m−1P j

k,r H ′
m−1−r

⎤

⎦ f ( j) = Pk+1,m ( f )
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with Pk+1,m =∑(m+1)+−1� j�k P j
k+1,m

∂
∂x j

and

Pk
k+1,m = Pk−1

k,m−1 (49)

P j
k+1,m = P j−1

k,m−1 +
(

P j
k,m−1

)′ +
k∑

r=m+1

κr
m−1P j

k,r H ′
m−1−r , (m + 1)+ � j < k

(50)

P(m+1)+−1
k+1,m =

(
P(m+1)+−1

k,m−1

)′ +
∑

m+1�r�k

κr
m−1P(m+1)+−1

k,r H ′
m−1−r (51)

Assume 1 � m � k − 1. Then (51) becomes Pm
k+1,m =

(
Pm

k,m−1

)′ +
∑

m+1�r�k
κr

m−1Pm
k,r H ′

m−1−r . We know that deg Pm
k,m−1 = m − (m − 1) − 1 = 0

and that when m +1 � r � k, Pm
k,r = 0 since m � r −1 < r +1. Hence Pm

k+1,m = 0.

When m + 1 � j � k − 1, deg P j−1
k,m−1 � j − 1 − (m − 1) − 1 = j − m − 1,

deg
(

P j
k,m−1

)′
� ( j − (m − 1) − 1) − 1 = j − m − 1 and for m + 1 � r � k,

deg P j
k,r H ′

m−1−r � ( j − r − 1)+ (r + 1 − m)−2 = j −m −2. Thus, (50) gives that

deg P j
k+1,m � j − m − 1. Lastly, deg Pk

k+1,m = deg Pk−1
k,m−1 � k − 1− (m − 1)− 1 =

k − m − 1.
Assume now m � −1. Degree computations for Pk

k+1,m and P j
k+1,m when

1 � j � k − 1 are still valid. Formula (51) becomes P0
k+1,m =

(
P0

k,m−1

)′ +
∑

m+1�r�k κ
r
m−1P0

k,r H ′
m−1−r and gives deg P0

k+1,m � 0 − m − 1 because deg
(

P0
k,m−1

)′
� (0 − (m − 1) − 1) − 1 = −m − 1 and for m + 1 � r � k,

deg P0
k,r H ′

m−1−r � (0 − r − 1)+ (r + 1 − m)−2 = −m −2. The proof is complete.
��

Proposition 38 Assume that (s1, . . . , sd) ∈ O (Z\E∞)d is a solution of (37) with
−s1 = G1 − P1 and let (μ1, . . . , μd) ∈ O (C)d satisfies the system (43). Then d = p,
μp is a polynomial of degree p and μ

(p)
p = p!Bq∞ where Bq∞ = �

q∈Q∞bq is the

leading coefficient of B. Moreover, for all j ∈ {1, . . . , p − 1}, μ j is a polynomial of
degree at most p − 1.

Proof The proof relies on a downward induction starting on p and on the comparison
of the Laurent series of s1, series we have to compute, to the expansion of −G1 + P1

which we know because of Lemmas 23 and 22 : G1 =
∑

m�−1

G1,m
κm

⊗ em and

P1 =
∑

m�−1

P1,m
κm

⊗em with G1,−1 = G0
1,1−δx , G1,m ∈ C|m|−1 [X ] whenm � −2,

P1,1 = q∞ X + 〈p1,0, e−1
〉
and P1,m ∈ C1 [X ] for all m. Thanks to Proposition 37 and

to (47), we get
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s1 = eH

1 ⊗ B

∑

1� j�d

F j−1 (μ j ⊗ e0
) = eH

1 ⊗ B

∑

1� j�d

∑

m� j−1

Pj−1,m
(
μ j
)⊗ em

= 1

Bq∞

⎛

⎝
∑

m�0

λm ⊗ em

ep/κp

⎞

⎠
∑

m�d−1

⎛

⎝
∑

m++1� j�p

Pj−1,m
(
μ j
)
⎞

⎠⊗ es

= 1

Bq∞

∑

m�d−1

∑

m−d+1�r�0

⎛

⎝
∑

(m−r)++1� j�d

κr
mλr Pj−1,m−r

(
μ j
)
⎞

⎠⊗ em

ep/κp

= 1

Bq∞

∑

m�d−1

κm

κm−p
s̃1,m ⊗ em−p

with for m � p − 1, s̃1,m =∑m−d+1�r�0
∑

(m−r)++1� j�d κ
r
mλr Pj−1,m−r

(
μ j
)
. In

particular, when 0 � m � d − 1,

s̃1,m =
∑

m+1� j�d

∑

m− j+1�r�0

κr
mλr d j−1,m−r

(
μ j
) =

∑

m+1� j�d

P̃ j
1,m

(
μ j
)

where for m + 1 � j � d,

P̃ j
1,m =

∑

m− j+1�r�0

κr
mλr Pj−1,m−r = κ0m Pj−1,m +

∑

m− j+1�r�−1

κr
mλr Pj−1,m−r

Thus, P̃m+1
1,m (μm+1) = κ0m Pm,m (μm+1) = μ

(m)
m+1 since κ

0
m = 1. So

s̃1,m = μ
(m)
m+1 +

∑

m+2� j�d

P̃ j
1,m

(
μ j
)

(52)

Moreover,

P̃ j
1,m

(
μ j
) =

∑

0�t� j−2

Pt
j−1,mμ

(t)
j + κ

m− j+1
m λm− j+1Pj−1, j−1

(
μ j
)

+
∑

m− j+2�r�−1

∑

0�t� j−2

κr
mλr P(t)

j−1,m−rμ
(t)
j

= κ
m− j+1
m λm− j+1μ

( j−1)
j

+
∑

0�t� j−2

⎛

⎝Pt
j−1,m +

∑

m− j+2�r�−1

κr
mλr Pt

j−1,m−r

⎞

⎠μ
(t)
j

Formula (52) implies s̃1,d−1 = μ
(p−1)
d so that s1 ∈ κd−1

Bq∞ μ
(d−1)
d ed−p−1 + Sd−p−2,0.

Yet, s1 = −N1 = −G1 + P1, G1 ∈
(

G0
1,1 − δ I d

)
⊗ e−1 + S−2,0 and P1 ∈
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(
q∞ I d + 〈p1,0, e−1

〉) ⊗ e−1 + S−2,0. So, d − p − 1 has to be equal to −1, that
is d = p, and

μ
(p−1)
p = Bq∞

κp−1

(
pI d − G0

1,1 − 〈p1,0, e−1
〉) = p!Bq∞ I d

− (p − 1)!Bq∞
[
G0

1,1 − 〈p1,0, e−1
〉]

In particular, μp ∈ Cp [X ] and μ(p)
p = p!Bq∞ .

Assume now that 0 � m � p − 2 and that μp, …, μm+2 are polynomials. Then

for m + 2 � j � p, P̃ j
1,m

(
μ j
)
is of the same kind and as

deg λm− j+1μ
( j−1)
j � ( j − m − 1) − 1 + degμ j − j + 1 = degμ j − m − 1

deg Pt
j−1,mμ

(t)
j � (t − m − 1) + degμ j − t = degμ j − m − 1

deg λr Pt
j−1,m−rμ

(t)
j � (|r | − 1) + (t − m + r) + degμ j − t = degμ j − m − 1

we get

deg P̃ j
1,m

(
μ j
)

� degμ j − m − 1

Thus, s̃1,m is polynomial and there exists a polynomial Rm such that

deg s̃1,m = μ
(m)
m+1 + Rm & deg Rm � max

m+2� j�p
degμ j − m − 1

Moreover,

−G1,m−p + P1,m−p = s1,m−p = 1

Bq∞
κm

κm−p
s̃1,m,

G1,m−p ∈ C|m|−1 [X ] since m − p � −2 and P1,m ∈ C1 [X ]. From

μ
(m)
m+1 = Bq∞

κm−p

κm

(−G1,m−p + P1,m−p
)+ Rm,

we first recover that the functions μ j are all polynomials then, with m = p − 2 that

degμ(p−2)
p−1 � max

{
p − (p − 2) − 1, 1, degμp − (p − 2) − 1

} = 1

and hence that degμp−1 � p−1. Assuming degμ j � p−1whenm+2 � j � p−1,
we obtain

degμ(m)
m+1 � max {p − m − 1, 1, p − m − 1} = p − m − 1

and thus degμm+1 � p − 1, which end this induction proof. ��
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6.4 A Linear System

According to Proposition 21, Lemma 22, and Corollary 25, there exists A∞, B∞ ∈
C [Y ] with deg A < deg B∞ = q∞ and B∞ (0) = 1 such that on Z\E∞,

G1 = N Q
1 + X ⊗ B∞′

B∞ + 1 ⊗ A∞

B∞

where N Q
1 is locally the sum of the shock wave functions h1, . . . , h p involved in

Proposition 21. According to Lemma 27, Corollary 25, Propositions 32, and 38, these
local functions define on Z\E∞ global symmetric functions (−1)k s Q

k , 1 � k � p,
which can be written in the form

s Q
k = eH

1 ⊗ B∞Fk

(
μQ
)
, p � k � 1,

where μQ =
(
μ

Q
1 , . . . , μ

Q
p

)
∈ C [X ]p is such that and degμQ

j < degμQ
p = p when

1 � j � p. In the above formula, Fk is defined for any μ ∈ C [X ]d and arbitrary
(d, k) ∈ N

∗ × N by

F0 (μ) = FF1 (μ) & Fk (μ) =
∑

k� j�d

F j−k (μ j ⊗ e0
)
, k � 1, (53)

where F is the operator defined by (39).
In Theorem 39, the system Sd defined by the Eqs. (54) to (58) is a linear system

whose nature is to have infinitely many solutions when the zero function is not the
only one. The first part of Theorem 39 says in other words that, because bM is known
to be the boundary of a Riemann surface, 0 is not the only solution of Sd at least
when d = q∞ + δ = p. The second part of Theorem 39 is a kind of reverse. If we
manage to find a non-zero solution to Sd where d is some positive integer, one gets
a decomposition (62) of the kind we are looking for. Meanwhile, it is not clear that
such a decomposition is really meaningful. The next section clarifies this point : the
right decomposition can be deduced from (62) by tossing some parasite terms.

Theorem 39 Assume that ∂2G1
∂x2


= 0, fix d in N
∗, set r = d − δ and consider μ =

(μ1, . . . , μd) ∈ C [X ]d such that for j ∈ {1, . . . , d − 1}, degμ j < degμd = d.

1. Assume that d = p and μ = μQ. Then r = q∞ and

∂

∂ y

(
1

∂2G1/∂x2
∂

∂ y

[
e−H ∂

∂x
F0 (μ)

])
= 0 (54)

∂

∂x
eHF0 (μ) − ∂H/∂x

∂2G1/∂x2
eH ∂

∂ y

[
e−H ∂

∂x
F0 (μ)

]

−eH ∂

∂x

(
1

∂2G1/∂x2
∂

∂ y

[
e−H ∂

∂x
F0 (μ)

])
= 0 (55)
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∂2G1

∂x2
∂r+1

∂ yr+1

[
eHF0 (μ)

]
−
(
∂r+1eH

∂ yr+1

)
∂

∂ y

[
e−H ∂

∂x
F0 (μ)

]
= 0 (56)

∂2G1

∂x2
∂r

∂ yr

[
eH (G1F0 (μ) + F1 (μ))

]

−∂r eH G1

∂ yr

∂

∂ y

[
e−H ∂

∂x
F0 (μ)

]
= 0 (57)

EF1 (μ) = �EF1 (μ) = FF1 (μ) = F0 (μ) (58)

and Bμ = eH
(
F0 (μ) − 1

∂2G1/∂x2
∂
∂ y e−H ∂

∂x F0 (μ)
)

satisfies Bμ (0, y) →
C∗�y→0

1.

2. Assume that μ satisfies the differential linear system Sd defined by the equations
(54) to (58) and that Bμ (0, y) →

C∗�y→0
1. Then there exists (c0, A, B) ∈ O (C)×

Cr−1 [Y ] × Cr [Y ] with B (0) = 1 and such that

c0 ⊗ 1 = 1

∂2G1/∂x2
∂

∂ y
e−H ∂

∂x
F0 (μ) (59)

1 ⊗ B = (F0 (μ) − c0 ⊗ 1) eH (60)

1 ⊗ A = (1 ⊗ B)G1 + eHF1 (μ) − X ⊗ B ′ (61)

Moreover, taking in account that eH extends holomorphically to Z, sμ1 = eH

1⊗BF1 (μ)

define a holomorphic function on Z\E∞ such that

G1 = −s1 + X ⊗ B ′

B
+ 1 ⊗ A

B
(62)

and which is a d-shock waves outside the zero locus of the discriminant �μ of T d +
∑

1�k�d sk T d−k where
(
sμk
) =

(
eH

1⊗BFd−k (μ)
)

d�k�1
.

Proof 1 Set (A, B) = (A∞, B∞). According to the results quoted in the beginning of
this section, we know that

1 ⊗ A = (1 ⊗ B)G1 + eHF1 (μ) − X ⊗ B ′ (63)

In particular, the right member of (63) is independent of X . Since ∂G1
∂x = ∂H

∂ y , we get

0 = e−H ∂ (1 ⊗ A)

∂x
= e−H

[
(1 ⊗ B)

∂H

∂ y
− (1 ⊗ B ′)

]
+ e−H ∂

∂x
eHF j (μ)

= −∂ (1 ⊗ B) e−H

∂ y
+ DF1 (μ) (64)
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Hence ∂(1⊗B)e−H

∂ y = DF1 (μ) and we get an entire function c0 such that

PDF1 (μ) = P ∂

∂ y
(1 ⊗ B) e−H = (1 ⊗ B) e−H + c0 ⊗ 1. (65)

As e−H has a usual Laurent series on Z̃ ,PDF1 (μ) cannot have any logarithmic term,
which means that (58) is satisfied. Then, (65) implies that B is given by (60) though
we do not know yet c0. As B does not depend on x , we obtain

0 = ∂

∂x
eHF0 (μ) − (c0 ⊗ 1)

∂H

∂x
eH − (c′

0 ⊗ 1
)

eH (66)

As ∂H
∂ y = ∂G1

∂x , this entails

0 = ∂

∂ y
e−H ∂

∂x
F0 (μ) − (c0 ⊗ 1)

∂2G1

∂x2
,

which implies that c0 is actually defined by (59).With this value of c0, (54) is the state-
ment that c0 does not depend on y and (66) become the compatibility equation (55).
As the right member 60) have to be in Cr [Y ], we also get

0 = ∂r+1

∂ yr+1

[
(F0 (μ) − c0 ⊗ 1) eH

]
= ∂r+1

∂ yr+1

[
F0 (μ) eH

]
− (c0 ⊗ 1)

∂r+1eH

∂ yr+1

which become (56) when (59) is used for c0. Moreover, as the right member of (63)
have to be in Cr−1 [Y ], deg B < r and as (59 ) has been already proven, we also get

0 = ∂r

∂ yr

[
(1 ⊗ B)G1 − X ⊗ B ′ + eHF1 (μ)

]

= ∂r

∂ yr

[
(1 ⊗ B)G1 + eHF1 (μ)

]

= ∂r

∂ yr

[
(F0 (μ) − c0 ⊗ 1) eH G1 + eHF1 (μ)

]

= ∂r

∂ yr

[
eH (G1F0 (μ) + F1 (μ))

]
− (c0 ⊗ 1)

∂r

∂ yr

[
eH G1

]

which becomes (57) when (59) is used for c0. Note that Sd is a differential linear
system because of Proposition 34.

2 Conversely, assume that ∂2G1
∂x2


= 0 and that the system Sd is satisfied by μ. Then,
thanks to (54), the right member of (59) depends only of its first variable so it defines
a function c0. As ∂

∂x

[
(F0 (μ) − c0 ⊗ 1) eH

]
is equal to the right member of (66), (55)

means that (F0 (μ) − c0 ⊗ 1) eH does not depend on x so that (60) defines correctly
a function B. Since
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∂r+1

∂ yr+1

[
(F0 (μ) − c0 ⊗ 1) eH

]
= ∂r

∂ yr

[
F0 (μ) eH

]
− (c0 ⊗ 1)

∂r eH

∂ yr
,

(56) tells that B is a polynomial of degree at most r . As Bμ = eH (F0 (μ) − c0 ⊗ 1) =
1 ⊗ B, B (0) = lim

y→0∗ Bμ (0, y) = 1. Denote by A the right member of (61). Then

e−H ∂A
∂x

= e−H
[
(1 ⊗ B)

∂H

∂ y
− (1 ⊗ B ′)

]
+ e−H ∂

∂x

[
eHF1 (μ)

]

= DF1 (μ) − ∂ (1 ⊗ B) e−H

∂ y

= DF1 (μ) − ∂ (F0 (μ) − c0 ⊗ 1)

∂ y
= DF1 (μ) − ∂

∂ y
F0 (μ)

so that ∂A
∂x = 0 because of (58). Hence (61) defines correctly a function A, which

because of (57), is a polynomial of degree at most r − 1. The other claims of (2) are
now consequences of Corollary 33. ��
Remark If c ∈ C

∗, (cA, cB) ∈ C [Y ]2 also verifies G1 = −s1 + X⊗B′+1⊗A
B . Hence,

the condition Bμ (0, y) →
C∗�y→0

1 canbe seen as a kindof normalizationof B.However,

the theorem does not address uniqueness.

For a given d, the system Sd can be explicitly written thanks to Proposition 34
which gives formulas for the coefficients of the operators Fk and F0. The case d = 0
is impossible when ∂2G1/∂x2 
= 0. The case d = 1 corresponds to the case where the
complex lines Lz , z ∈ Z , meets Q only one time. In this case, S1 is an over determined
system on the coefficients of only one affine function μ1. It can easily be written but
is already space consuming. For example, (54) which means that some function of the
two variables x and y actually depends only on one of them, takes some space even
for d = p = 1. In this case q∞ = 1 − δ, δ ∈ Z∩] − ∞, 1] and taking in account 53,
Definition 30, writing e−H =

∑

m�q∞−1
h̃m ⊗em and 1

∂2G1/∂x2
=
∑

m�2
g1,m ⊗em ,

we get after some calculus that

1

∂2G1/∂x2
∂

∂ y

[
e−H ∂

∂x
F0 (μ)

]

=
∑

m�q∞−1

q∞−3∑

t=m−2

⎛

⎜
⎝

−1∑

s=t−q∞+2

g1,m−t

(
μ1G ′′

1,s−2

)′

κs−2
h̃t+1−s

⎞

⎟
⎠⊗ em

So the vanishing of the y-derivative of the left member of the above equation yields
infinitely many linear equations on the two coefficients of μ1. Certainty 0 is not the
only solution comes only from the fact that we have assumed that p is equal to 1. For a
general p, the number of μ j increases but also their degree. Hence, Theorem 6 which
gives an upper bound for p is of practical importance. In this article, we spare space
by avoiding to write out completely explicitly Sd .
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6.5 Uniqueness of ShockWave Decompositions

Assume that ∂2G1
∂x2


= 0 and let R = ∪
d∈N∗Rd where Rd is the set of μ =

(μ1, . . . , μd) ∈ C [X ]d with degμ j < d = degμd for j ∈ {1, . . . , d} such that
μ is a solution of Sd , Bμ (0, y) →

y→0∗ 1 and �μ 
= 0 where Bμ and �μ are defined

in Theorem 39 . This theorem tells that Rp 
= ∅ and that if μ ∈ Rd , μ produces by

explicit formulas a decomposition of G1 in the form −s1 + X ⊗ B′
B + 1 ⊗ A

B where
−s1 is a d-shock waves function in Z\ (E∞ ∪ {�μ = 0

})
and where A, B ∈ C [Y ]

with deg A < deg B = r − δ and B (0) = 1. Thus, we know thanks to Proposition 33
that for z∗ ∈ Z outside a proper analytic subset S of Z and for a sufficiently small
neighborhood U∗ of z∗, there exists shock waves g1, . . . , gd on U∗ whose images are
mutually distinct such that for all z ∈ U∗,

−s1 (z) = Ng,1 (z)

Ng,1 (z) + P (z) = G1 (z) = Nh,1 (z) + P1 (z) = NQ,1 (z) + P1

where the functions h j are the shock waves hz∗
j defined in Corollary 25, that is the

shock waves generated by the collision of Q with the lines Lz , z ∈ U∗.
A priori, nothing guaranties that {g1, . . . , gd} = {h1, . . . , h p

}
because for example,

it may happen that there exists a finite non-empty subset J of {1, . . . , d} such that∑
j∈J g j extends as an element of the space C (Y )1 [X ] of rational functions which

are affine in X . In this case, G1 = Ng̃,1 − P̃ with P̃ = P −∑ j∈J g j ∈ C (Y )1 [X ]

and
{
g̃1, . . . , g̃d̃

}
where d̃ = d − Card J̃ ∈ {0, . . . , d − 1}. Iterating this reduction,

arrises the situation where

∀J ∈ P ({1, . . . , d}) \ {∅} ,
∑

j∈J

g j /∈ C (Y )1 [X ] . (67)

The case d = 0 happens at the end of these iterations only if at the beginning,∑
1� j�d g j and so G1, extends as an element ofC (Y )1 [X ]. The lemma below studies

this case.

Lemma 40 We use notation of Corollary 25. G1 extends as an element of C (Y )1 [X ]
if and only if Q is a domain in a compact connected curve K such that for all z∗ in
Zreg and z in a sufficiently small neighborhood U∗ of z∗ in Zreg,

K ∩ Lz =
{(

1 : hz∗
j (z) : −x − yhz∗

j (z)
)

; 1 � j � p
}

= Q ∩ Lz .

Proof Suppose at first that K is a compact curve with the above properties. Fix z∗ and
U∗ as in the statement. Since K is an algebraic curve, we know from Abel’s work that∑

1� j�p hz∗
j ∈ C (Y )1 [X ] (see e.g., [15]). It follows that G1 = Nhz∗ ,1 + P1 is, on

U∗ and so on Z , rational in y and affine in x .
Conversely, suppose that G1 ∈ C (Y )1 [X ]. Then Nhz∗ ,1 = G1 − P1 is on U∗

algebraic in y and affine at x . Since
{(

1 : hz∗
j (z) : −x − yhz∗

j (z)
)

; 1 � j � p
}

=
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Q ∩ Lz for all z ∈ U∗, a theorem of Wood [37] states the existence of a compact
algebraic curve K of degree p containing Q. Since the degree of K is p, K ∩ Lz ={(
1 : h j (z) : −x − yh j (z)

) ; 1 � j � λ
} = Q ∩ Lz for all z ∈ U . ��

In case G1 is algebraic in y and affine in x , the algebraic curve K of Lemma 40 is
known in a neighborhood of bQ. We can then pick generically homogeneous coordi-
nates w in order at least one line Lz , z ∈ U , meets K\Q. We are thus brought back to
the general case since Lemma 40 ensures then that even after reduction, d is not zero.

With Proposition 41 which is proved thanks to results of Henkin [15] and of Collion
[8], we know that when this reduction ends, the remaining shock waves functions are
those we are looking for.

Proposition 41 Notation remains as stated in this section and we suppose (67) verified.
For the case where Q is contained in an algebraic curve, Q̂ denoting then the smallest
one with this property, we suppose that (0 : 1 : 0) /∈ Q̂ and at least one of the lines Lz,
z ∈ U, meets Q and Q̂\Q. That being so, {g1, . . . , gd} = {h1, . . . , h p

}
and P = P1.

Proof After a possible renumbering, we assume that gν = hν , 1 � ν � t ∈ N and
{gt+1, . . . , gd} ∩ {ht+1, . . . , h p

} = ∅.

1. Suppose that Q is not contained in an algebraic curve. Then d ∈ N
∗ because

otherwise, Nh,1 ∈ C (Y )1 [X ] and G1, which is the sum of Nh,1 and P1, appears
to be the restriction to U of an element of C (Y )1 [X ]. According to Lemma 40,
this would contradict our hypothesis.
Suppose t < min (p, d). Up to a change of the reference point z∗ and a decrease
of U∗, we suppose that the curves Hν = {(1 : hν (z) : −x − yhν (z)) ; z ∈ U∗},
t + 1 � ν � p and Cν = {(1 : gν (z) : −x − ygν (z)) ; z ∈ U∗}, t + 1 � ν � d
are smooths and mutually disjoint. We then denote ϕ the differential form defined
on the union C of these curves by ϕ

∣∣Hν = d w1
w0

when t + 1 � ν � p and

ϕ
∣
∣Cν = −d w1

w0
when t + 1 � ν � d. We note AR the Abel–Radon transform of

the current ϕ ∧ [C]. By definition (see [15], [8] or [16]),

AR = d

⎛

⎝
∑

t+1�ν�p

hν −
∑

t+1�ν�q

gν

⎞

⎠ .

But hypothesis imply,

∑

t+1�ν�p

hν −
∑

t+1�ν�q

gν = Nh,1 − Ng,1 = R − P1.

AR is hence algebraic in the sense of [8] so that Theorem 1.2 of [8] applies and
gives in particular the existence of an algebraic curve � containing C . Since Q is
not contained in �, the connectedness of Q entails that none of the curves Hν is
contained in� and thus that

{
h1, . . . , h p

} ⊂ {g1, . . . , gd}. Hence,∑p<ν�d gν is
an algebraic function affine in x , which is impossible due to the reduction made
on
(
g j
)
1� j�d . So, t = min (p, d).
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If t = d < p, the relation Ng,1 + P = Nh,1 + P1 reads also ht+1 + · · · + h p =
P1 − P ∈ C (Y )1 [X ] and the theorem of Wood implies, since Q is connected,
that Q is contained in an algebraic curve which is excluded by hypothesis. If
t = p < d, gt+1 + · · · + gd = Ng,1 − Nh,1 + P − P1 ∈ C (Y )1 [X ] which is
excluded by to the reduction made on the family

(
g j
)
.

Finally t = p = d,
{
h1, . . . , h p

} = {g1, . . . , gd} and P1 = R.
2. Suppose now that Q is contained in an algebraic curve Q̂, minimal with respect

to inclusion. By hypothesis (0 : 1 : 0) /∈ Q̂, and Q̂\Q is bounded by −∂Q. Up to
a change of reference point z∗ and a decrease of U∗, we can suppose that for all
z ∈ U∗, Lz meets transversely Q̂. We note then h p+1, . . . , h p̂ the shock waves on
U∗ such that for all z ∈ U ,

(Q̂\Q) ∩ Lz = {(1 : hν (z) : −x − yhν (z)) ; p + 1 � ν � p̂} .

Since Q̂ is an algebraic curve, NQ̂,1 <
de f= Nh,1 + Nh p+1,...,h p̂

de f= Nh,1 + N̂1 is
algebraic and affine in x . Hence

Ng,1 + N̂1 = Ng,1 − Nh,1 + NQ̂,1 = P1 − R + NQ̂,1 ∈ C (Y )1 [X ]

The sum Ng,1 + N̂1 can be written
∑

1�λ�s cλ fλ where f1, . . . fs are the mutu-
ally distinct functions of the union of {gν; 1 � ν � q} and {hν; p + 1 � ν � p̂}
and where cλ = 2 if fλ is in the intersection of this two sets and 1 other-
wise. As previously we can choose z∗ and U∗ in order that the functions fλ
has images mutually disjoint. We can then introduce the form ψ which on
Fλ = {(1 : fλ (z) : −x − y fλ (z)) ; z ∈ U } is d w1

w0
if cλ = 1 and 2d w1

w0
if cλ = 2.

The form
∑

1�λ�s cλd fλ is the Abel–Radon transform ψ ∧ [F] where F = ∪Fλ.
This one being algebraic, the principal theorem of Henkin in [15] applies and gives
in particular the existence of an algebraic curve F̃ and an algebraic form � such
that for all λ,�

∣∣Fλ = ψ and for all z ∈ U∗, F̃ ∩ Lz = ∪Lz ∩ Fλ. Given that Q̂ ∩ F̃

contains (Q̂\Q) ∪
z∈U∗

Lz , Q̂ ⊂ F̃ . If F̃ 
= Q̂, Q̂\F̃ is an algebraic curve whose

intersections with the Lz , z ∈ U∗, are parametrized with a sub-family of the g j .
This is impossible since because of hypothesis, d 
= 0 and no sub-family of

(
g j
)

has a sum algebraic in y and affine in x . Thus, Q̂ = F̃ and when z ∈ U∗, Q̂ ∩ Lz is
the union of (Q̂\Q) ∩ Lz and of

{(
1 : g j (z) : −x − ygλ (z)

) ; 1 � j � d
}
. This

entails
{
h1, . . . , h p

} = {g1, . . . , gd} and P1 = R. ��

7 Genus of a Riemann Surface with Boundary

Formula (71) of Theorem 44 links the genus g (M) of M to data associated with the
complex structure Cσ of (M, σ ). It is probably well known to specialists but we did
not find a reference for it. The link with the complex Dirichlet–Neumann operator θσc
comes from Corollary 45. The formula so obtained is not yet effective because we do
not know the Euler characteristic of M . But as explained in Theorem 6 whose proof
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is given at the end of this section, Theorem 2 and Lemma 47 enable to deduce from
Corollary 45 an effective bound for the key number p of unknown shock waves sought
in the reconstruction process described in Sect. 2.

Let us recall that g (M) is by definition the genus of the compact manifold obtained
by gluing κ (pairwise disjoint) conformal disks along the κ connected components of
bM . In [6], Belishev gives for a connected boundary the formula

2g (M) = rg
(

T + (N ν J
)2

T
)

where T is the tangential derivation, N ν is theDirichlet–Neumann operator of (M, Cσ )
in its metric issue, that is the one which to u ∈ C∞ (bM) associates the normal deriva-
tive along bM of the harmonic extension of u to M and J is the natural primitivization
operator defined on the space of function u whose integral over ∂M is 0. However, a
priori calculus of the rank of T + (N ν J )2 T is not easy and this formula is limited to
connected boundaries. To bypass this difficulty, [7] and [33] propose to use Dirichlet–
Neumann operators acting on forms. This gives simple formulas for g (M) when the
conductivity reduces to a complex structure but it is not clear that these operators have
physics meaning.

To produce formulas whose ingredients are computable from Nσ
d , we use special

volume forms for M and special metrics for the bundle �1,0T ∗M of the (1, 0)-forms
on M .

Definition 42 Let M be a Riemann surface with boundary and ρ a defining function
of bM , which means that ρ ∈ C∞ (M,R

)
is such that ρ |M < 0, ρ |bM = 0 and

(dρ)s 
= 0 for any s ∈ bM . Under these conditions, any section ω of �p,q T ∗M of
class Ck , k � 1, on an open subset U of M can be written in the form ω0 +ρω1 where
ω j , j = 0, 1, is a section of�p,q T ∗M on U of class Ck− j , the couple (ω(0)

ρ , ω
(1)
ρ ) =

(ω0 |U∩bM , ω1 |U∩bM ) being the same for all (ω0, ω1) such that ω = ω0 + ρω1. The
fact that ω(1)

ρ vanishes does not depend of the choice of the chosen defining function

ρ. ω is said tangent to bM when ω(1)
ρ = 0.

The existence of a decomposition ω = ω0 + ρω1 follows from the fact that ρ
can be chosen as part of a system of real coordinates for M near bM . Uniqueness of
(ω

(0)
ρ , ω

(1)
ρ ) proceed from the same reason and if ρ′ is another defining function of

bM , one can write ρ′ = λρ where λ is a never vanishing function, so that vanishing
of ω(1)

ρ′ = λ |M ω
(1)
ρ and ω(1)

ρ are simultaneous.
Note that when M is equipped with a Hermitian metric and ρ is the distance to

bM , ω(1)
ρ = ∂ω

∂ρ
|bM is nothing else that the derivative of ω with respect to the unitary

vector directing the exterior normal to M at points of bM . The lemma below ensures
the existence of volume forms satisfying the hypothesis of this section’s main theorem.

Lemma 43 Let (M, σ ) be a conductivity structure. Then M admits a volume form of
class C2 tangential to its boundary and whose restriction to bM is computable from
boundary data associated with (M, σ ).
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Proof As it is pointed out at the end of Sect. 3, we can design from boundary data a
smooth section μ0 over bM of the bundle of volume forms of M . Let M̂ be the double
of M (see the proof of Theorem 44 for a detailed construction), V an arbitrary volume
form of class C2 on M̂ and ρ ∈ C∞(M̂,R) such that M = {ρ < 0}, bM = {ρ = 0}
and (dρ)s 
= 0 for any s ∈ bM . Using the Whitney extension theorem (see [3,4,
Proposition 2.2]), one can constructs a section Ṽ of �1,1T M̂ of class C2 such that
Ṽ |bM = μ0 and V (1)

ρ = ∂ Ṽ
∂ρ

|bM = 0. By continuity, there exists a neighborhood� of

bM in M̂ such that Ṽ |� is a volume form. Choose χ ∈ C∞ (M, [0, 1]) equal to 1 in a
neighborhood of bM in� andwhose support is contained in�. W = χ Ṽ +(1 − χ) V
is a volume form W of class C2 on M̂ such that W (1)

ρ = ∂W
∂ρ

|bM = 0. ��

Let (M, σ ) be a conductivity structure andμ a volume form for M as in Lemma 43.
Denote ∗ and�1,0T ∗M the conjugation operator and the bundle of (1, 0)-forms asso-
ciated with (M, Cσ ). For simplicity of notation, we set in this section ∂ = ∂σ = d − ∂

where ∂ = ∂σ is the Cauchy–Riemann operator of (M, Cσ ). We equip�1,0T ∗M with
the metric h∗ defined for s ∈ M and α, β ∈ �1,0T ∗

s M by

h∗
s (α, β) = α ∧ ∗sβ

μs
(68)

Denote by D the Chern connection of h. A definition can be found in [9], [11, p.
73] or [36] but we recall here some basics. Consider a fixed non- vanishing smooth
section e of �1,0T ∗M over an open set W of M , holomorphic in W ∩ M , and let
|e|h∗ = √

h∗ (e, e) be the point wise norm of e with respect to h∗. Then,

ηe = ∂ |e|2h∗

|e|2h∗
= ∂ ln h∗ (e, e) (69)

is the connection form of D associated with the holomorphic frame e, the curvature
� = dηe = ∂ηe of D does not depend of e and if ω = λe, λ ∈ C∞ (W ), is any
smooth section of�1,0T ∗

s M over W , Dω is the 1-form valued in�1,0T ∗
W M given by

Dω = (dλ) e + ηeω. If ω is also holomorphic in W ∩ M , we get Dω
ω

= ∂λ
λ

+ ηe. Note
that in particular, ηe = De

e .

When σ
∣
∣∣T ∗

bM M is assumed to be known, so it is for Dω
ω

|bS when ω is a (1, 0)-form

near bM . Indeed, thanks to Theorem 5, we know that with the nodal Riemann surface
M designed by Theorem 2, we can find smooth non-vanishing sections of�1,0T ∗

bM M
which extends holomorphically to M by computing θσc u for adequate u ∈ C∞ (bM).
For such an u and its Cσ -harmonic extension to M , ∂ ũ is a holomorphic frame for
�1,0T ∗

W M where W = {∂ ũ 
= 0} and (69) becomes

D∂ ũ

∂ ũ
= η∂ ũ = ∂ ln h∗ (∂ ũ, ∂ ũ) = ∂ ln

(
∂ ũ ∧ ∗∂ ũ

μ

)

(70)
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Since the complex structure of M is known along bM and since ∂ ũ is holomorphic,
the Cauchy–Riemann equations enable to compute the normal derivative of ∂ ũ from
its tangential derivative. This means that in (70), derivatives coming from ∂ ũ are
computable on bM from available boundary data. As the volume form μ is tangential
to bM , its normal derivative is zero on bM and its tangential derivative is known on
bM . Hence D∂ ũ

∂ ũ |bM , that is η∂ ũ |bM , is computable from available boundary data,
what we had to check.

Note that for the computation of a connection form along bM , it is not mandatory to
use a holomorphic frame of the form ∂ ũ. Indeed, let F : M → M be the normalization
of the nodal complex curve M of C

2 designed by Theorem 2 and let γ be an open
subset of bM. We can choose any non-vanishing smooth section ϕ of �1,0T ∗

γ M
which extends into a (1, 0)-form ϕ̃ smooth onW and holomorphic onW\bM where
W is an open subset of M containing γ and such that W\bM ⊂ RegM. Let W =
F−1 (W) ∪ f −1 (γ ) where f = F

∣
∣∣bMbM . Then

(
F
∣
∣∣W\BM
W\bM

)∗
ϕ̃, which we abbreviate

into F∗ϕ̃, is a holomorphic (1, 0)-form of (M, Cσ ) which extends smoothly to W and
whose restriction to f −1 (γ ) is F∗ϕ. The connection form ηF∗ϕ̃ = ∂ ln h∗ (F∗ϕ̃, F∗ϕ̃)
associated with F∗ϕ̃ is computable on bM from available boundary data as before.
Moreover, since F is holomorphic from (M, Cσ ) toM, we can alsomake computation
onM ⊂ C

2 and then pull back the result to bM by F :

ηF∗ϕ̃ = F∗∂ ln ∂ϕ̃ ∧ ∗∂ϕ̃
F∗μ

where here ∂ = d − ∂ and ∂ is the Cauchy–Riemann operator of M and ∗ its Hodge
star operator.

We can now state Theorem 44. It is more about the Riemann surface (M, Cσ ) than
(M, σ ).

Theorem 44 Let (M, σ ) be a conductivity structure and κ the number of connected
components of bM. Choose a volume form μ as in Lemma 43, equip the bundle
�1,0T ∗M of (1, 0)-forms of (M, Cσ ) with the metric h∗ defined by (68) and denote
by D its Chern connection. Then, when ω is a Cσ -meromorphic (1, 0)-form on M,
without pole or zero on bM and

1

2π i

∫

∂M

Dω

ω
= Nz (ω) − Np (ω) + 2 − 2g (M) − κ (71)

where Nz (ω) and Np (ω) are respectively the number of zeros and of poles of ω
counted with their multiplicity or order.

Remark Suppose that μ′ is a volume form for M with the same properties as μ.
The function λ : M → R such that μ = e2λμ′ satisfies Dμ = Dμ′ − ∂λ, which

gives
∫
∂M

Dμω

ω
= ∫

∂M
Dμ′ω
ω

− ∫
∂M j∗bM∂λ. (71) indicates then

∫
∂M j∗bM∂λ = 0. To

check this a priori, let us consider a defining function ρ of bM . From the relation
∂μ
∂ρ

= eλ ∂μ
′

∂ρ
+ μ′ ∂λ

∂ρ
which holds on bM , we get ∂λ

∂ρ
|bM = 0. Equip M with a
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Hermitian metric and consider a smooth section (ν, τ ) of
(
TbM M

)2
such that for any

s ∈ bM , (νs, τs) is an orthonormal direct basis of Ts M . Then, for all s ∈ bM , (∂λ)s =
1
2

(
(νλ)s − i (τλ)s

) (
τ ∗

s + iν∗
s

)
where

(
τ ∗

s , ν
∗
s

)
is the dual basis of (νs, τs). When s ∈

bM , the fact that ∂λ
∂ρ

(s) = 0 indicates that (dλ)s ∈ Rτ ∗
s and hence (νλ)s = 0, which

gives (∂λ)s = 1
2i (τλ)s

(
τ ∗

s − iν∗
s

)
. Thus, j∗bM∂λ = 1

2i (τλ) τ
∗ |M = 1

2i j∗bM dλ. So,
j∗bM∂λ is exact and its integral over ∂M is zero.

With Formula (74), we obtain Corollary 45 as a particular case of Theorem 44.

Corollary 45 Hypothesis and notation remains as in Theorem 44. Let u ∈ C∞ (bM),
ũ its Cσ -harmonic extension to M and q the number Nz (∂

σ ũ) of zeros of ∂σ ũ counted
with multiplicity where ∂σ = d − ∂σ and ∂σ is the Cauchy–Riemann operator of
(M, Cσ ). We assume that ∂σ ũ has no zero on bM. Then

q = 1

2π i

∫

∂M

D∂σ ũ

∂σ ũ
− χ

(
M
)
. (72)

Proof of Theorem 44 Let us begin by detailing a construction of the double M̂ of M
which for example can be found in [2]. Let U be an atlas of M . We use the following
notation : for ν ∈ {−1,+1} and X ⊂ M , Xν = X × {ν} and if (s, ν) ∈ M1 ∪ M−1,
π (s, ν) = s ; when s ∈ bM , the points of M̂ = M1 ∪ M−1 of the form (s,−1)
and (s, 1) are identified and form the real curve γ . M1 is equipped with the complex
structure associated with the atlas U1 formed by the maps ϕ1 : U1 � p �→ ϕ (π (p))
where ϕ : U → C is arbitrary U . For M−1, we use the atlas U−1 of the maps
ϕ−1 : U−1 � p �→ −ϕ (π (p)), ϕ : U → C arbitrary in U . One gets an atlas
Û = U1 ∪ Ub ∪ U−1 giving to M̂ a complex structure by letting Ub be the set of maps
ϕb defined as follows : consider a boundary chart for M that is ϕ ∈ C∞ (U ,C) where
U is an open subset of M such bU M = U ∩ bM is open in bM , ϕ (U\M) = D

+ =
D ∩ {Im > 0} and ϕ (bU M) =] − 1, 1 [ ;ϕb is the map from Ub = U1 ∪ U−1 to C

obtained by setting ϕb (s, 1) = ϕ (s) and ϕb (s,−1) = ϕ (s) for any s ∈ U .
We define volume forms μ1 and μ−1 on M1 and M−1 by letting when ϕ : U → C

is a chart of M ,

(ϕ1∗μ1)z = (ϕ∗μ)z = λϕ (z) idz ∧ dz, z ∈ U

(ϕ−1∗μ−1)w = (ϕ∗μ)−w = λϕ (−w) idw ∧ dw, − w ∈ U

This definition is obviously coherent for μ1. Suppose ψ : V → C is another chart of
M and ψ∗μ = λψ idz ∧ dz. Denote	 : ψ (U ∩ V ) � z �→ ϕ

(
ψ−1 (z)

)
the change of

chart fromψ toϕ. Hence,λψ = ∣∣	′∣∣2 λϕ◦	. The transitionmap fromψ−1 : V−1 → C

to ϕ−1 : U−1 → C is then the map	−1 defined onψ−1 (V−1 ∩ U−1) = −ψ (U ∩ V )

by

	−1 (w) = ϕ−1

(
(ψ−1)

−1w
)

= ϕ−1

(
ψ−1 (−w) ,−1

)

= −ϕ
(
ψ−1 (−w)

)
= −	(−w).
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Thus,

	∗−1

(
λϕ (−z) idz ∧ dz

)=λϕ (	 (−w)) i

(

−∂	 (−w)

∂w
dw

)

∧
((

−∂	 (−w)

∂w
dw

))

=λϕ (	 (−w))
∣∣	′ (−w)

∣∣2 idw ∧ dw

=λψ (−w) idw ∧ dw,

which proves the coherency of the definition of μ−1.
The forms μ1 and μ−1 continuously glue along γ in a volume form μ̂ for M̂ .

Indeed, consider a boundary chart ϕ : U → C and M and the chart ϕb : Ub → C

defined as above. Set ϕ∗μ = λϕidz ∧ dz . When s ∈ U , ϕb (s,−1) = ϕ (s) and
ϕ−1 (s,−1) = −ϕ (s). Hence, the transition map from ϕb to ϕ−1 is U → −U ,
z �→ −z. Thus,

((ϕb)∗ μ−1)z = λϕ (z) idz ∧ dz = (ϕ1∗μ1)z

for all z ∈ D
−∪]−1, 1 [ whereD

− = D∩{Im > 0}. Given that ϕ (bU M) =]−1, 1 [ ,
this shows thatμ−1 = μ1 at each point of γ∩U . Develop in a neighborhood in D

+∪]−
1, 1 [ the function λϕ under the form λϕ,0 (x)+ λϕ,1 (x) y + λϕ,2 (x) y2 + o

(
y2
)
. As

μ is tangential to bM by hypothesis, 0 = λϕ,1 on bM and it appears that μ̂ is of class
C2.

One can now equip �1,0T ∗
p M̂ , p ∈ M̂ , with the metric ĥ∗

p defined by

ĥ∗
p (α, β) = α ∧ ∗β

μ̂p

for all α, β ∈ �1,0T ∗
p M̂ . The Chern connection D of ĥ∗ is thus of class C2. Consider a

meromorphic (1, 0)-formω on M without pole nor zero on bM . As recalled previously,
when e is a local holomorphic frame for�1,0T ∗M̂ and ω = λe, Dω

ω
= dλ

λ
+ η̂ where

η̂ is the connection form of D associated with e. Since λ has to be meromorphic with
same zeros and poles as ω where the formula ω = λe is valid and since dη̂ is the
curvature �̂ of D, the Stokes formula, applied to the domains obtained by removing
from M1 arbitrary small conformal disks around the zeros and poles of ω, gives

1

2π i

∫

∂M

Dω

ω
= 1

2π i

∫

∂M1

Dω

ω
= Nz (ω) − Np (ω) − 1

2π

∫

M1

i�̂ (73)

If one agrees that 1
2π

∫
M1

i�̂ = 1
2π

∫
M−1

i�̂, (71) results from (73) and (74) because,

since M̂ is compact and D of class C2, we get then 1
2π

∫
M1

i�̂ = 1
2

1
2π

∫
M̂ i�̂ =

1
2c1(M̂) = g(M̂) − 1 where c1(M̂) is the first Chern class of M̂ . A proof of the last
equality can be found for example in [35, Theorem 9.1 p. 284 of 1st ed.] or in [9, p.
319] where it is called Hurwitz’s formula.
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Denote j the natural symmetry of M̂ with respect to γ and c the conjugation of
C. When ϕ : U → C is a chart of M , the expression of j in the charts ϕ1 and ϕ−1

is ϕ−1 ◦ j ◦ (ϕ1)−1 that is −c
∣
∣∣UU . Thus, j exchange the orientations of M1 and M−1

which gives

∫

M1

�̂ = −
∫

M−1

j∗�̂.

Whenψ : V → C is a chart of M̂ , the map ψ̃ : j (V ) → C defined by ψ̃ = ψ ◦ j is
also a chart of M̂ . This enables (see [2] for example) startingwith a sectionω of�T ∗M̂
on a subset X of M̂ , to define a section ω̃ of �T ∗M̂ on j (X) by setting for any chart
ψ : V → C of M̂ such thatV ∩X 
= ∅,

(
ψ̃∗ω̃

)
w

= β (w) dw+α (w) dwwhenψ∗ω =
αdz + βdz and w ∈ ψ (V ∩ X). In particular, ω being a fixed section of �1,0T ∗M
without zero on M , holomorphic on bM and of class C∞ on M , ω1 = π∗ω (resp.
ω−1 = ω̃1) is a section of �1,0T ∗M̂ without zero on X1 (resp. X−1), holomorphic
on X1 (resp. X−1) and of class C∞ on (resp. X−1). Setting fν = ln ĥ (ων)2, we then
knows that

�̂
∣∣Mν = d∂ fν, ν = ±1.

Fix a chart ϕ : U → C and set ϕ∗ω = αdz. Then (ϕ1)∗ ω1 = αdz and (ϕ̃1)∗ ω−1 =
α (w)dw. Since ∗ acts on (0, 1)-forms as multiplication by i

2 , one gets

(ϕ̃1)∗ (ω−1 ∧ ∗ω−1) = α (w)dw ∧ i

2
α (w) dw = |α (w)|2 i

2
dw ∧ dw

Set μ = λϕ
i
2dz ∧ dz. In the chart ϕ−1, μ−1 writes as ϕ−1∗μ−1 = λϕ (−z) i

2dz ∧ dz.
ϕ̃1 is also a chart defined on j (U1) = U−1 and the transition map from ϕ̃1 to ϕ−1 is
the map 	 which to w ∈ ϕ̃1 (U−1) = U associates the number 	(w) defined by

	(w) = ϕ̃1

(
(ϕ−1)

−1 (w)
)

= (ϕ1 ◦ j)
(
ϕ−1 (−w) ,−1

)

= ϕ1
(
ϕ−1 (−w) , 1

) = ϕ
(
ϕ−1 (−w)

) = −w.

Thus, for w ∈ D
− ∪ [−1, 1],

((ϕ̃1)∗ μ−1)w =
(
(ϕ̃1)

−1
)∗

ϕ∗−1ϕ−1∗μ−1 =
(
ϕ−1 ◦ (ϕ̃1)−1

)∗
ϕ−1∗μ−1

=
(
	−1

)∗
ϕ−1∗μ−1 =

(
	−1

)∗ (
λϕ (−z)

i

2
dz ∧ dz

)

= λϕ (w)
i

2
dw ∧ dw = (ϕ1∗μ1)w
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and hence

(
(ϕ̃1)∗ ĥ (ω−1)

)
(w) = (ϕ̃1)∗ (ω−1 ∧ ∗ω−1)

ϕ−1∗μ−1
(w) = |α (w)|2

λ (w)

= (ϕ1)∗
(̂
h (ω1)

)
(w)

We infer ĥ (ω−1)◦ ϕ̃1−1 = ĥ (ω1)◦ (ϕ1)−1 ◦c and so (ϕ̃1)∗ f−1 = (ϕ1)∗ f1 ◦c (which
gives also f−1 = f1 ◦ j). Derivating twice this relation and using d∂ = −d∂ , one
gets finally j∗�̂ = −�̂ and hence

∫
M1

�̂ = ∫
M−1

�̂, which ends the proof provided
Lemma 46 is proved. ��

Lemma 46 Let M be a Riemann surface with boundary. Denote κ the number of
connected components of bM and M̂ the double of M. The genus g(M̂) of M̂ and the
Euler characteristic χ

(
M
)

of M are linked to the genus g (M) of M by the formulas

g(M̂) = 2g (M) + κ − 1 & χ
(
M
) = 2 − 2g (M) − κ. (74)

Proof Consider a triangulation T of M .Whenα is in the setC of connected components
of γ = bM , we denote �γ the set of vertices of elements of T which lie on γ and Aγ

the one of the edges of elements of T which are contained in γ . We set �b = ∪
γ∈C

Mγ

and Ab = ∪
γ∈C

Tγ . For each γ ∈ C, ∣∣�γ

∣∣ = ∣∣Aγ

∣∣ and assuming, up to a change of

triangulation, that the sets ∪
t∈T , T ∩Mγ 
=∅

are pairwise disjoint when γ describes C,
one gets

∣∣�b
∣∣ = ∣∣Ab

∣∣. Lastly, denotes by σ (T ) the number of vertices of T , a (T ) the
number of edges of T , f (T ) the number of faces of T and set M̃ = M̂\M . Denotes
T̃ the triangulation of M̃ obtained by symmetrization of T , that is the one obtained by
letting act on T the natural involution of M̂ . T̂ = T ∪ T̃ is then a triangulation of M̂ .
Par definition of the Euler characteristic, one gets then

χ(M̂) = σ
(
T̂
)− a

(
T̂
)+ f

(
T̂
)

=
[
2
(
σ (T ) − �b

)
+ �b

]
−
[
2
(

a (T ) − Ab
)

+ Ab
]

+ 2 f (T )

=
[
2σ (T ) − �b

]
−
[
2a (T ) − Ab

]
+ 2 f (T )

= 2σ (T ) − 2a (T ) + 2 f (T ) = 2χ
(
M
)
.

Thanks to the usual theory of compact Riemann surfaces, χ(M̂) = 2− 2g(M̂). Thus,
g(M̂) = 1 − χ

(
M
)
. Denotes M ′ the surface obtained by gluing κ conformal disks

along connected components of γ . Then χ
(
M ′) = χ

(
M
) + κ and by definition,

g (M) = g
(
M ′). Thus,

χ
(
M
) = χ

(
M ′)− κ = 2 − 2g (M) − κ
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and

g(M̂) = 1 − (2 − 2g (M) − κ) = 2g (M) + κ − 1.

��
We need one last lemma before proving Theorem 6.

Lemma 47 Let Q be a nodal Riemann surface with boundary which is a quotient of
a Riemann surface with boundary S. For q ∈ Sing Q, denote by ν (q) the number
of branches of Q at q. Then the Euler characteristics of S and Q are linked by the
relation

χ
(
S
) = χ

(
Q
)+

∑

q∈Sing Q

(ν (q) − 1) .

Proof Let π be the natural projection of S onto Q and consider a triangulation T of
S such that any point of X = π−1

(
Sing Q

)
is a vertex of T . We can also assume

that T is sufficiently refined so that a same triangle of T contains at most one point
of X . Denote by V the set of vertices of T , E its sets of edges and F its set of faces.
Then π and T induce a natural triangulation π∗T of Q whose set π∗V of its vertices
is π (V \X) ∪ (Sing Q

)
. As any triangle of T contains at most one point of X , π∗T

and T have the same number of

|π∗V | = |π (V \X)| + ∣∣Sing Q
∣∣ = |V | − |X |

+ ∣∣Sing Q
∣∣ = |V | −

∑

q∈Sing Q

(ν (q) − 1)

Lemma 46 gives that χ
(
S
) = 1 − g (S) − κ . Thus,

χ
(
S
) = |V | − |E | + |F |

= |π∗V | − |E | + |F | +
∑

q∈Sing Q

(ν (q) − 1) = χ
(
Q
)+

∑

q∈Sing Q

(ν (q) − 1) .

��
Proof of Theorem 6 Let j ∈ {1, 2} and q∞

j = Card Q j ∩ {w0 = 0}. Then, p j =
δ j + q∞ � δ j + Nz (∂ ũ0). Thus, Formula (72) gives

p � δ + 1

2π i

∫

∂M

D∂σ ũ0

∂σ ũ0
− χ

(
M
)

As M is a nodal quotient of M by the nodal relation induced by F , we can apply
Lemma 47. So, χ

(
M
)

� χ
(M)

and we get the sought inequality. As mentioned
after Theorem 2,M is computable from boundary data and as explained above in this
section with Formula (70), D∂σ ũ0

∂σ ũ0
|bM is computable from available boundary data.

The proof is complete. ��
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