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Abstract

In this article, we introduce a process to reconstruct a Riemann surface with boundary
equipped with a linked conductivity tensor from its boundary and the Dirichlet—
Neumann operator associated with this conductivity. When initial data come from
a two- dimensional real Riemannian surface equipped with a conductivity tensor, this
process recovers its conductivity structure.
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This paper is organized as follows. Section 1 gives a short non-exhaustive history
of the subject and Sect. 2 contains some of our main results. Section 3 is meant
to fix definitions and notation about conductivity structures but also to state some
results which, if not new, are not completely explicit in literature. Nodal manifolds are
inevitably involved in the reconstruction methods proposed here. Section 4.1 contains
what we need about them. Sections 4.2 and 5 are devoted to the proofs of Theorems 5
and 3. Section 6 is about the effective reconstruction of a bordered Riemann surface
from its Dirichlet—-Neumann operator. This is a key case for the inverse conductivity
problem. Our method is based on a new a priori analysis of decompositions of two
variables holomorphic function as a sum of shock waves functions, that is holomorphic
solutions of % = h%. Section 7 enables to link the key number p of these sought

shock waves to the Euler characteristic of a computable complex curve of C.
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away. This paper, which is on a subject he brought, is dedicated to him. The numerous citations from the
articles he authored show the depth of his mathematical thought.
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1 Introduction

We define a (two-dimensional) conductivity structure as a couple (M, o) where M is
a connected real surface with boundary' equipped with a conductivity o : T*M —
T*M, that is a tensor such that

_ — A b
TSM x T 5 (a,b) > anay®

Hp

is a positive symmetric bilinear form, 4 being a fixed volume form for M. In the sequel,
we get rid of brackets for the action of o on a differential form w by writing o w for
o (w), that is the form M 5 p > o (w,). The above definition of a conductivity is
perhaps unusual but is nothing than an intrinsic reformulation® of the one given by
[29]. In this paper, conductivities are assumed to be at least of class C though it is
not mandatory for all statements.

For any continuous function u : bM — R, we denote E,u the unique solution of
the following Dirichlet problem :

Some authors prefer to consider a Riemannian metric g on M and solutions of
the Dirichlet problem (A dU=0& Ulpy = u) , where Ay is the Laplace-Beltrami
operator. Writing in coordinates the equations dodU = 0 and A,U = 0, one sees
that these two formulations are equivalent only when deto, = 1 forall p € M.

The positive function s, = +/det o plays a special role in our subject. We call it the
coefficient of o. In Sect. 3, we establish that o can be uniquely factorized in the form
0 = 5,Co Where ¢, is a conductivity of coefficient 1 and also the conjugation operator
acting on T*M of a complex structure C, uniquely associated with . Thus, the
condition that det o is constant means that (M, o) is nothing more than the Riemann
surface (M, Cy).

The inverse conductivity problem we consider belongs to Electrical Impedance
Tomographic problems ; in physics, U should be considered as an electrical potential,
o (dU) as the electrical current generated by U and dodU = 0 as the Maxwell
divergence equation when there is no time dependence. The EIT problem is generally

1 We think of a surface with boundary M as a dense open subset of an oriented two-dimensional real
manifold with boundary M whose all connected components are bounded by pure one-dimensional real
manifolds ; so the topological boundary bM of M is M\M ; in the sequel dM is bM equipped with the
natural orientation induced by M. A Riemann surface with boundary is a connected complex manifold of
dimension 1 which is also a real surface with boundary.

2 If we fix a point p in ‘M, some coordinates (x, y) around p and we set as in [29] (£, ) = (dy, —dx)

then o (dx) = r§ +tn and o (dy) = ué + sn, fora = aydx + aydy and b = bydx + bydy in T, M,
op (b) = (bxr +byu)& + (bxt + bys)nand

a Aop (b) = (axdx +aydy) A[(bxr + byu)dy — (bxt + bys) dx]
= (raxbx +uayby +tayby + sbxby) dx Ady.
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2778 V. Michel

thought as the reconstruction of (M, o) from dM, the boundary bM of M orientated

by M, Tb*MM = L_bJMT;M, o ‘Tb*MM and the Dirichlet—-Neumann operator associated
pEe

with o. This formulation is somehow ambiguous because it does not tell if M has to
be determined as an abstract manifold, an embedded manifold, or even more precisely
as a particular submanifold of some standard space. Success depends of the chosen
position. Before going into what can be recovered and how it can be, we have to clarify
what is a Dirichlet-Neumann operator.

To do so, one can use a metric (see Sect. 3) but we prefer to use the «differential»
Dirichlet-Neumann operator N whose action on a sufficiently smooth function u :
bM — R is defined by

NGu = [od (Egt)llpy - 2)

Hence, in physics, NJ u is the measurement along b M of the current generated by the
electrical potential Equ.
When M is a domain in R?, the conductivity is often thought as the matrix (a jk) =

(dx2,—dxp)
Mat(d)ﬂ ,dx2)

(dxy, dx») as domain basis to T;‘M with (dx, —dxp) as range basis, (x1, x2) being

(o) which represents at each point p the linear map o, from T;M with

the standard coordinates of R2 ; (1) turns to be

3 U
> e <a,-k—> =0 & Ulpy =u, (3)
f=p Xj 0Xy

and the conditions constraining ¢ as a conductivity translate into the fact that (a jk) is
symmetric and positive.

The task, understood as the reconstruction of (0 jk) from (8M , Ng)’ has no natural
solution because it is known from a remark of Tartar cited by [26], that when ¢ €
C! (M, M) is a diffeomorphism matching identity on bM and @ is the Jacobian
matrix of ¢, (oj’.k) = ﬁ’@ (ojk) ® defines a conductivity o’ such that Nj/ = NJ.
However, Lemma 8 of Sect. 3 shows that ¢ is a btholomorphism between the Riemann
surfaces (M, C,) and (M, C,/) , where Cy, (resp. C,) is the complex structure where
o = sc (resp. o’ = s'c’), s (resp. s”) being a positive function on M and c (resp. ¢’) the
conjugation operator on 7*M associated with C, (resp. Cy/). Though they have the
same underlying set, it is more accurate to see (M, C,) and (M, C,/) as two different
embeddings of the same abstract Riemann surface.

This example leads to consider the two-dimensional inverse conductivity problem
as the reconstruction of M, an abstract Riemann surface with boundary, and of a
function s : M — R from the knowledge of bM, s | , the action on T}, M of the
conjugation operator ¢ of M, and the Dirichlet-Neumann operator

N F(bM) > u+— chS"u|bM’

where F (M) is any reasonable functions space like Cc%(bM), C*® (bM) or
H'Y2 (M), d* = i(3—3),d = d— 9, and 9 is the Cauchy-Riemann operator
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of M. In particular, even if data come from a Riemannian manifold (M, g) equipped
with a conductivity tensor o, we think our inverse problem as the reconstruction of
the Riemann surface (M, C,) and of the coefficient of o. Note that this formulation
does not mention the auxiliary volume form p because as explained in Sect. 3, the
knowledge of the complex structure of M along bM enables to bypass it.

When (M, o) is a two-dimensional conductivity structure embedded in a real or
complex affine space, M can also be endowed the complex structure C induced by
restriction of the ambient space metric. If ¢ denotes the conjugation operator of C
acting on T*M, o is said to be isotropic (relatively to ¢ or C) if there is a function
s M — R% such that o = sc. In other words, to assume that o is isotropic (relatively
to the ambient metric) means to suppose the complex structure C, associated with o is
already known. In such circumstances, the inverse problem we talk about is to recover
the positive function s, = o/c = +/deto.

At this point, one may ask what can happen if the starting point is a known Riemann
surface X embedded in R® whose complex structure C is inherited from the standard
euclidean structure of R3 and o is any conductivity on X. When o is isotropic relatively
toC,C, = C and the reconstruction task is done by the Henkin—Novikov theorem 1. For
a non-isotropic conductivity, should an atlas of the abstract Riemann surface (X, Cy)
be recovered from N, any constructive metric embedding X" of it in R? could be
considered also as recovered from N7 . Of course, X and X’ will be homeomorphic but
(X, C) and X’ will be different Riemann surfaces. Moreover, in practical cases, only
the boundary of X may be known. So it is not necessarily relevant to consider that X
is already embedded in some standard space to which C, would be unrelated. Besides,
in the main theorem of [24] quoted by Theorem 2, (M, o) is given as embedded in R3
but is considered for the proof as embedded in C3 with an anisotropic conductivity
while in [22], M is thought as embedded in CP3.

For a bounded domain M of R? equipped with an isotropic conductivity o, it
is known that o is completely determined by its Dirichlet-Neumann operator. This
uniqueness is established for a real analytic conductivity by Kohn and Vogelius in
[25]. For a smooth isotropic conductivity, an effective reconstruction process has been
given by Novikov in [31] and for a conductivity with a positive lower bound and of
class WP, p > 1, by Nachman in [30]. Another proof of this result has been written
by Gutarts in [12] for a smooth conductivity. When M is a connected Riemann surface
whose genus is known, Henkin and Novikov in [22, Theorem 1.2] generalize and
correct the reconstruction results of an isotropic conductivity of [18]. The necessarily
technical aspect of the main result of [22, Theorem 1.2] limits us to give here only a
sketch of it.

Theorem 1 (Henkin—Novikov, 2011) Let M be a Riemann surface of genus g equipped
with an isotropic conductivity o = sc where s € C3 (M , Ri) and c is the conjugation
operator of M acting on 1-forms. Then s can be recovered from the Dirichlet—Neumann
operator N by solving g Fredholm equations associated with g generic data of Nj
and then by solving g explicit systems which, in the case where M is a domain of
{Z eC? P = 0}, P € Cy [X], are linear systems of N (N — 1) equations with
N (N — 1) unknowns.
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2780 V. Michel

When the conductivity is not isotropic, authors have focused on the injectivity
up to diffeomorphism of o +— N7, that is on the reverse of Tartar’s remark. This
injectivity is proved by Nachman [30] for a bounded domain of class C* in R? and a
conductivity of class C> after Sylvester [34] proved it with additional hypothesis. In
[5], it is established for a conductivity of class L°° but for a simply connected domain
of R2.

In the special case where the conductivity coefficient is constant, the question is
to know if two conformal structures on M are identical when they share the same
Dirichlet-Neumann operator. A positive answer is claimed by Lassas and Uhlmann in
[27] when M is connected and Belishev confirmed it in [6] by showing that M can be
seen as the spectra of the algebra of restrictions to bM of holomorphic on M extending
continuously to M.

In [27] and [6], the complete knowledge of the Dirichlet—-Neumann operator is
necessary to get the uniqueness of the conformal structure. In [17], it is said that it
is determined by the action of the Dirichlet—-Neumann operator on only three generic
functions but the proof provided for this result is correct only if one strengthens a
little the generic conditions required for these functions as it is done in [19]. This
uniqueness can also be obtained by increasing the number of generic functions as in
[21]. Theorem 3 gives a proof with the hypothesis of [17] and at the end of this section,
we propose a new reconstruction of the Riemann surface (M, Cy).

In [23] for a domain of R? and in [24, Theorem 1.1] for the general case of a
real two- dimensional connected manifold M, Henkin and Santacesaria made a major
breakthrough in the theory by proving that the Dirichlet—-Neumann operator determines
the complex structure C, of (M, o) as a nodal Riemann surface nodal with boundary
embedded in C%. We refer to Sect. 4.1 for definitions and notation about nodal surfaces.

Theorem 2 (Henkin—Santacesaria, 2012) Let (M, o) be a conductivity structure, o
being of class C3. Then, there exists in C* a nodal Riemann surface with boundary M
and a C3-normalization F : M — M such that Fyo = tepq, wheret € c? (./\/l, Rj_)
and ¢\ is the conjugation operator of the complex structure induced by C* on M. If
in addition F : M — M’ is another C3-normalization of the same kind, M and M’
are roughly isomorphic in the sense of [19]. Lastly, the boundary value of F and in

particular bM are determined by bM, o Ty, M and the Dirichlet—-Neumann operator
NS of (M, o).

Note that, thanks to Lemma 8, F' is holomorphic in the sense that for any subset V
of M such that F (V) is a branch of M, F is analytic from (V, C,) to C2. Besides,
this theorem’s proof implies that the singularities of M are the points of F (M) with
many preimages by F. So, when M has no singularity, F is a diffeomorphism from
M onto M satisfying the hypothesis of Lemma 8, which makes it an isomorphism of
Riemann surfaces with boundary from (M, C,) onto M.

In [24], itis said that M and M’ are isomorphic without providing a precise meaning
for it. Let us succinctly prove it involves at least rough isomorphism as defined in
Sect. 4.1. Suppose that F : M — M and G : M — M’ are C3-normalizations of

. _ Reg M _ Reg M/
the above kind. Set Free = F F-1(Reg M) Grg =G G- (Reg M’

Hyeg the map from Reg M’ N G (F~! (Reg M)) to Reg M N F (Reg M) defined

) and denotes by
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by Hieg (z) = Freg (Gr_eé (z)). Because F and G are normalizations, Hyeg extends

holomorphically along any branch of M’ as a (multivalued) map H from M’ to M.
By construction, H (M’) and M are complex curves which are different at most at a
finite number of points. Hence, they are equal and in particular, Sing M and Sing M’
have the same cardinal. It follows that M and M’ are roughly isomorphic. The analysis
of Theorem 2 is carried on in the next section.

2 Main Results

The nodal Riemann surfaces M and M’ involved in Theorem 2 are actually isomorphic
in the strong sense of this article. Indeed, by lifting to M, M and M’ induce complex
structures on M which coincide on bM and share the same Dirichlet-Neumann oper-
ator. Then, Theorem 3 enables to tell that these lifted Riemann surfaces with boundary
are isomorphic and hence, that M and M’ are so as nodal Riemann surfaces with
boundary. The proof of Theorem 3 is given in Sect. 3. When n = 2, it completes the
proof of Theorem 1 of [17] whose arguments really had to be corrected. By the way,
as said before, Theorem 3 also proves the isomorphism claim of [24, Theorem 1.1].
In the statement below, [wy : - - - : w,] denotes the standard homogeneous coordi-
nates of CP,. If wy, ..., w, are (1, 0)-forms of CP, without common zero and are
pairwise proportional, we denote by [wy : - - - : w,] or [w] the map defined on each

{wj # 0} by [w] = [C";—? D %’_].Notethatthehypothesisrequiredfor (o, ..., up)

in the theorem below is generically verified within n-uples of smooth functions on the
boundary (see [17,19]).

Theorem 3 (Henkin—-Michel, 2007) Let M and M’, two smooth Riemann surfaces
bordered by the same real curve y. Set 9 = d — 9 (resp. 3’ = d — 9'), 9 (resp.
3') being the Cauchy—Riemann operator of M (resp. M'). If u € C* (y), denote i
(resp. ) the harmonic extension of u to M (resp. M') and set Ou = (0u1) |y (resp.
0'u = (a’ﬁ) |y ); 0 (resp. 0') is also the operator 67 defined by (9) when o is the
conjugation operator of M (resp. M) acting on 1-forms.

Select u = (ug, ..., u,) € C® ()" where n € N*, suppose that for all j €
{0,....n}, Ou; = 0'uj, the map [Ou] = [Qug : ---: Ou,] = [9/14] is well defined,
realizes an embedding of y in {w € CP,; wy # 0} and suppose in addition that
[3u] (resp. [87[]) is well defined on M (resp. M) and extends meromorphically [Ou]
(resp. [9’ u]) to M (resp. M"). Under these conditions, there exists an isomorphism of

Riemann surfaces with boundary from M onto M’ whose restriction to y is identity.

Hence, the regular part of the nodal Riemann surface M produced by the Henkin—
Santacesaria theorem is a model for the complex structure of (M \F~! (Sing M), a).
This model is effectively computable. Indeed, M is a complex curve of C*\bM which
in the sense of currents satisfies d [M] = F, [0 M] where [ M] denotes the integration
current on M and [0 M] the one of bM oriented by M. In this situation, one knows,
essentially since the works of Harvey and Lawson [13,14], that M is computable
thanks to Cauchy type formulas (see e.g., [17, Theorem 2] or [24, Proposition 1]).
More specifically, because M lies in C?, these formulas directly give the symmetric
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2782 V. Michel

functions of the functions whose graphs describes the intersections of M with a chosen
family of complex lines.

Meanwhile, as only the boundary values of F are known, there is an ambiguity on
how to unfold the possible nodes of M. To really know the complex structure C, of
M, one has to know an atlas of it or a true embedding of it in some classical space.
When the coefficient of o is constant, it is the same thing as recovering (M, Cy). This
particular case is studied in [21, Theorem 4] and with the remark made at page 327,
we readily have the result below for which we refer to [21] for the precise meaning
of generic. Note also that though [21] is formally only about Riemann surfaces, the
only part of the theorem which is not explicit in [21] is the isotropy statement but it is
a plain consequence of the fact that ® is a biholomorphism from (M, Cy) to S.

The theorem below introduces operators which play a crucial role in this paper.
When (M, o) is a conductivity structure, we set 3° = d — 9% and d” = i (5" — 8")
where 3 is the Cauchy—Riemann operator of Riemann surface (M, C, ). The operator
07 actsonu € C* (bM) by 67u = (874) |pm » ¥ being the C,-harmonic extension
to M of u. The theorem does not mention the regularity of o because what matters is
that (M, Cy) is a smooth manifold with boundary so that Stokes formula holds.

Theorem 4 (Henkin—-Michel, 2015) Let (M, o) be a conductivity structure. Then for
generic u = (ug, ...,u3) in C*° (bM, R)?, the map [Hfu] = [ngo Teee ng3] is
the boundary value of a map ® which embeds (M, Cy) in CP3 as a Riemann surface
S with boundary. Moreover, ® = [3° ] where U is the C,-harmonic extension of u to
M, and ® .0 is a conductivity isotropic relatively to the complex structure of S.

One should be careful here because the operator 67 cannot be thought as directly
available from N7 . Even if o is the identity on the fibers of T*M along bM, what is
immediately available from NJ are the boundary values of the derivatives of solutions
of Dirichlet problems dodU = 0 and U |ppy = u while what is required to apply
Theorem 4 are the boundary values of the derivatives of solutions of Dirichlet problems
dd°U = 0and U |ppr = u. Unless the coefficient of o is constant, one cannot expect
these boundary values to be the same. To cope with this difficulty, we have Theorem 5
which is a new result.

Before stating it, we explain some notation but complete details and proofs are
written in Sect. 4.2. We say that the conductivity structure (M, ) extends plainly
(M,o0)if M CC M,  is of the same class as o, & |y = o,and & |p = IdT*ﬁ

P
forall p € bM. Let then F , M, and M be as below. The nodal Green function g
we use for the possibly singular curve M = F (M) is defined in Corollary 12 of
Sect. 4.2 but for a rough picture, the reader can think it as a kernel with the usual
logarithmic singularities on the diagonal but with no boundary vanishing condition.
Then the double-layer potential Dou of u € C 0 (b M) is defined for any regular point
q of M\bM by (Dgu) (q) = [} ud®gq where g, = g (q..). When u is sufficiently

smooth, the functions D;'u = (Dgu) Im and Dyu = (Dgu) ‘/\7(\/\/1 extend up to the

boundary into (nodal) C!-functions whose restrictions to b M are denoted as A;,“u and
A u.The conditional Green operator By = Id+N g is defined for any u € C*° (b M)

and p € bM by (N;;W) (p) = 2PV (faM u(q) :71 (p,q) r;) where PV means
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principal value and (v, 7) is a frame for T, ,M, direct and orthonormal with respect
to the ambient Hermitian metric of C2, 7 being tangent to bM.

Theorem 5 Let (M, o) be a conductivity structure, o being of class C3. Select, which is
always possible, a conductivity structure (M o) extending plainly (M, o). We denote
F: M — M C C? the normalization obtained by applying Theorem 2 to (M o)

and we set f = F ‘F(bM) g, Dgt, A;,t and Bg, and T are defined as above.

Then, I1d + Ay is an endomorphism of C % (bM), its kernel and the kernel of B,
are finite dimensional subspaces of C*° (bM), and for any u € C*® (bM,R) such
that faM (fsu) wt* = 0 when w € ker By, the equation fyu = w + Agw can be

solved in C*™° (bM, R) and for any solution w, 67 u = (F*BD;w) lpar -

The main difficulty in the proof of Theorem 5 comes from the fact that harmonic
Dirichlet problems in a nodal curve have unique solutions only if data are specified
for nodal points (see [19, Proposition 2]). By the way, should M have no singularity,
there would be nothing to do since M would be already an embedding of (M, Cy)
in C2.

Since the boundary values of F are computable from NJ and since the Green
function we use is so from M and M is computable from N7, Theorem 5 gives a tool
to compute from NJ as many 67 u as needed to apply Theorem 4 and so, to get the
boundary values of an embedding ® of the Riemann surface (M, C,) onto a Riemann
surface S of CIP3 for which ®,0 is isotropic.

If S itself is computed, the Henkin—Novikov Theorem 1 enables the reconstruction
of the conductivity coefficient s of ®,.c0. Finally, denoting ¢ the conjugation operator of
S, (S, sc) is an explicit solution of the problem posed if it is understood as producing
a conductivity structure, abstract or embedded in a standard space, whose oriented
boundary and Dirichlet-Neumann operator are those specified.

It remains to explain how to recover the above Riemann surface S, or, which is the
same, the conductivity structure (S, ¢). As S is a complex submanifold of CP3, the
problem is no longer to recover ¢ but to recover S as a set. Without loss of generality, S
is supposed to be a relatively compact domain in an open Riemann surface S of CPs.
For a generic choice of the 4-uple (ug, u1, ua, u3) of functions used in Theorem 4,
we can also assume that the projections 72 : (wp : wy : wy w3) = (wo : wy : wo)
and 3 (wo :wp twy i ws) > (wo : wy : ws) immerse S in CIP, on nodal curves
S, and S3 such that 713_1 (Sing §3) N 712_1 (Sing §2) NS = @. Therefore, to obtain an
atlas of §, it is sufficient to get one for Q; = 7; (S), j = 2, 3, that is for a nodal
Riemann surface with boundary which is a relatively compact domain Q in an open
nodal Riemann surface é of CPP; and whose oriented boundary 9 Q is known. This
reconstruction problem is studied in [17, Theorem 2] but the suggested algorithm is
not truly effective since the polynomials P, arising from a non-empty intersection of
QO with {wg = 0} cannot be computed as easily as claimed.

In this paper, we provide a new approach to this problem with an effective method
of computing these polynomials. How this can be done is described below but details
and technical notation are postponed as most as possible to Sect. 6. Theorem 39
which specifies a linear system to solve to find some crucial auxiliary polynomials
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2784 V. Michel

and Proposition 41 which enables to extract from them functions with geometric
meaning are new and part of our main results. They are written in Sects. 6.4 and 6.5.

What we have at our hand is an oriented real-curve d Q which is known to be the
boundary of a complex curve Q of CPP; ; without loss of generality, we assume that
{wo =0} NbQO = @. In such a situation, it is classical to use the Cauchy—Fantapié
indicators of Q. Denoting U the open subset of C> whose elements are points z =
(x, y) of C? such that 5Q does not meet L. = {w € CP2; xwg + yw; + ws = 0},
these are the functions G, k € N, defined on U by

1 wi k 1 wi wy
Gr ()= of, = (X)) ——d(x ey D 2)
k (2) 27'”/{;(2 z z (wO) x+y$_(l)+ﬂ (-x+yw0+w0 4)

wo

By Proposition 21, which is a result of Dolbeault and Henkin, we know that for all
k € N, there exists Py € C (Y); [X] such that Gy — Py is the k-nth Newton symmetric
function Nj, i of locally defined shock waves functions A1, ..., h, which determine
the intersections of Q with the lines L. The polynomials Py are generated by points
in Q% = Q0 N {wo = 0}. In the favorable but unlikely case Q*° = &, all Py are 0,
Q is contained in the affine space {wg # 0}, and well-known techniques enable to
compute these functions /.

When the number ¢* of points in Q°° is 1 or 2, Agaltsov and Henkin [1] give an
explicit procedure to recover Q and they claim that it should be efficient for any value
of ¢°°. Meanwhile, they provide no proof of it and it is not clear to us how to cope
with the algebraic systems involved.

The new method we propose below focuses on the number p of the involved shock
waves functions and works for any value of p or ¢*°. For ¢*° € {1, 2}, it is difficult
to compare the Agaltsov—Henkin procedure to ours because fixing p or ¢°° to small
values are really different hypothesis; from Corollary 24, p = ¢ + § where § € Z
is computed from G . Our reconstruction process goes in five steps.

1. If G is algebraic in y and affine in x, Q is contained, according to Lemma 40, in
a connected algebraic curve K such that K N L, = Q N L, for z € Z where as

specified by 24, Z C U is a domain of the form U D (0, @ |y]) x {y}. In this

<
|y\>,~,5

situation, we choose other coordinates in order that at least one of the lines L,
z € Z,meets Q and K\ Q. Thus, we assume that a;fz‘
of the process.

2. We assume that for some d € N*, we have found in C [X]d a solution u =
(1, . .., ig) for the differential linear system S, such that B, (0, y) y_—))O* 1 and

# 0 on Z for the remaining

A, # 0, these three conditions being specified in Theorem 39. Note that Sy
is actually a linear system on the coefficients of p. According to Theorem 39,
Gil=-s51+1®4+X®% withA, BeC[Y],degA <degB=r=d 3§,
B(0) =1, and s = IZTHB(ZKJ‘@ Fi7F(uj ®1)), 1 < k < d, where H is a
function defined on Z* = Z\ (C x R_) and F is an operator, both being specified
in Definition 30 and computable from G .
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3. According to Corollary 33, outside an analytic subset of Z, the s; are the symmetric
functions of shock waves functions g, ..., g4. Applying to the family (g j) the
reduction described in the beginning of Sect. 6.5 and applying Proposition 41,
we conclude that d > p where p is the number p of the locally defined shock
waves functions i ; we are looking for, r > g and that if (§J) 1<i<p is the set
of functions obtained from (gj) by reduction, {§1 e §p} = {hl, e h,,} and
Pr=1® % +X® %. Consequently, (Px)en+ 1s the algebraic extension of
(Gk — N3, k) wen+ Where the Nz are the Newton symmetric functions of the g

4. We know from Proposition 21, that there exists a locally constant function 7 with
values in N such that for z, in Z but outside some analytic subset of Z, there exists

aneighborhood U, of z, in Z and mutually distinct shock waves h}*, ..., hfr*(z*)
h that tai - U {(1:#:* L —x — yh ); eU}
such that Q contains Q., e @ imx—yhT () z €U,

and (Gy |u., Jeen = (Nnzek + Pr |u., )ienys Where the Nz i are the Newton
symmetric functions of the hj* Thanks to Newton’s formulas (27) and what pre-
cede, we can hence compute the symmetric functions Sz« ; of the hj* Moreover,
7 (z+) = Go ‘Uz* —q° isknown. We can hence individually compute the functions
W 1< < (ze) from (Shee k)| <o)

5. Thanks to Lemma 20, Q N {wg # 0} and hence Q are known.

From a practical point of view, it would be very convenient to know a priori p since
it would enable to write directly a relevant system S;. Inequality (5) of Theorem 6
delivers an upper bound ppax for this number p. Note that data needed to think (5)
as effective, mainly M, (D37 itg) |ppm , and 67 ug = 9o |pm are, as explained in the
proof which is given at the end of Sect. 7, computable from available boundary data. It
would be useful to have a formula delivering X (m in terms of Dirichlet—Neumann
boundary data but such a formula is not known and M has to be computed in order
get its Euler characteristic.

Theorem 39 implies that S; has a non-trivial solution for some d between 1 and
Pmax - In addition, with results of Sect. 6.5, we know that from any non- trivial solution
of some S, we can extract the sought shock waves. Hence, in the second step of the
above process, we have at most pmax linear systems Sy to solve and this process may
be considered as effective for any value of p or ¢g°.

In Theorem 6, the generic hypothesis that O € {Q1, Q»} is assumed to satisfy is that
Q is a well-defined nodal open-bordered Riemann surface of CIP; whose boundary is
a smooth real curve such that bQ C {wowiwy # 0}, (0:0:1)and (0: 1 :0) are not
in 0% = Q N {wp = 0} which is supposed to be transversal and contained in Reg Q.
The number p; is, according to Proposition 21 when Q € {Q, O}, the number of
shock waves functions h; 1,..., hj, P such the function G defined by (4) can be

written on the set Z defined by (24) in the form (hj’l)k IS (hj,pj)k + P; x where
Pjr € C(Y)[X]. The complex differential operator 9° of (M, Cy) is defined as
before.

Theorem 6 Let (M, o) be a conductivity structure. We equip the bundle AVOT*M of
(1, 0)-forms of (M, Cy ) with an Hermitian metric and a Chern connection D as in The-
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orem 44. Denote by M the nodal Riemann surface designed by Theorem 2 and denote
X (M) the Euler characteristic of M. Assume that u = (ug, u1, uz, uz) € C® (bM)*
satisfies the following generic hypothesis : the Cy-harmonic extension i of u is such
that [3°1] is an embedding of M in CP3 and Q; = [8"[[{) 20%uy 3"[[}] (M),
Jj = 2,3, satisfies the generic hypothesm stated above. Let p = max (pa, p3) and
§ = max (82, 83) where §; = 27” faQ] S}”}‘/Jﬁ)‘)) is the number § defined in Lemma 23
and pj is the number of shock waves functions involved in Proposition 21 when z is
in the set Z defined by (24). Then

I [ D"
p<st— | —=0—x(M). ®)

27i Japm 0%ug

3 Conductivity Structures and Metrics

Requirements on o to be a conductivity indicate a metric is involved. It is noticed in
[17] that once a volume form p is chosen for M, one can design a natural metric g, »
on M by setting forall 7,1 € TM

oty A (1 o)
. .

8o (t’ t/) =

Its conformal class or complex structure C, does not depend on u and o factorizes
(see [17]) through C, in the sense that there exists a function s, : M — Ri with
the same regularity as o, called conductivity coefficient in this article, such that when
(x1, x2) is a couple of local isothermal coordinates for C,

Mat{y> " (0,) = 5o (P) I 6)
for all p in the open subset of ‘M where (x1, x2) is defined, I» being the 2 x 2 identit_y
matrix, and dx = (dxy, dxz). Denote by deto the map which to a point p of M

associates the determinant of the linear map o, ; (6) implies s, = ~/deto. If ¢, is the
conductivity defined by

0 =355 C; =Adeto -cy, (7)

Cy is also the conformal class associated with ¢, ; when (x1, x2) is a couple of local
isothermal coordinates for C,,

Mat$(c,) = <(1) 61) “y.

In other words, ¢, is also the conjugation operator acting on 1-forms of M. Moreover,
if d° = c,d, 09 = % (d — id?) is the Cauchy—Riemann operator associated with C,
and
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dodU =ds,d°U

for all functions U € C2 (m Note that by definition, 3° = 9, 9% = 9%, and
d? = d“; these operators are associated with the complex structure Cy .

Let us suppose that C is a complex structure on M, that is an atlas for M which
makes M a Riemann surface with boundary. If x; and x, are the real and imaginary
part of a same holomorphic coordinate for M, Jacobian matrices relatives to (x1, x2)
of holomorphic maps commute with J. This means that one can define a tensor c :
T™ — TM by the fact that in such coordinates, M atgjc‘ (c) = J. By construction, c is

a conductivity whose coefficientis 1,cod =i (5 - 8) = d¢ and c is the conjugation

operator of C and also the Hodge star operator acting on 1-forms when M is equipped

the metric dual of the one given on each T;‘ﬁ by (a,b) u = an*b = dlem aAno (b).

So, decomposition (7) shows a complex structure naturally associated with o. It
is unique in the sense that if ¢’ is the conjugation operator of T*M associated with

. M’ . .
a complex structure C’ and if s’ € (R’jr) , the identity o = s’.c’ forces, because
detcy, =1 =detc/, first s, = s’, and then ¢, = ¢'.
Formula (6) shows that for all p € M, 0, commute with the orthogonal automor-

phisms of (T,,M, (gu,g)p). When M is a submanifold embedded in R3, in particular

if M is a domain of R2, and when 8u.o 1s induced by the standard metric of R3,
this means that o is isotropic in the usual sense (see [29] and [34] for example). The
proposition below sums up what precedes.

Proposition7 Let M be a real two-dimensional surface with boundary. A complex
structure C on M defines a conductivity tensor with coefficient equal to 1. Reciprocally,
for all conductivity o on M, there exists a unique complex structure Co such that
o = +/detoc, where ¢y is the conjugation operator associated with Cy-.

Hence, it is natural to say that a complex-valued function f defined on an open set
U of M is o-holomorphic if 3 f = 0, or equivalently, when for all charts z : V — C
of the holomorphic atlas of (M, C,), f o z~! is holomorphic on z~! (U) in the usual
sense.

If (M "o’ ) is an another conductivity structure, a map f from an open subset U of
M to M’ is said (U, a’)-analytic if for all holomorphic charts 7’ : V' — Cof (M/, CU/),
' o f is o-holomorphic on f~! (V') N U, thatis if z’ o f o z~! is holomorphic on
77! (f_l (V’) N U) in the usual sense for all holomorphic charts z : V — C of
(M, Cs). This also can be characterized by the following lemma.

Lemma8 Let (M, o) and (M’, (T/) be two conductivity structures, U an open subset
of M and f : U — M’ a differentiable map. Then f is (0, a’)-analytic if and only if
("Df) o cor = co o (' Df). When f realizes a diffeomorphism ¢ from U to f (U), ¢
is (G, U/)—analytic if and only if picy = o and in particular if p,0 = o’

Proof Consider holomorphic charts z : V — Cand 7’ : V' — C of (M, C,) and
dx’,dy’
(M'.Cp). Set F = Marls s> (Df) where (x.y) = (Rez,Im2) and (x', y') =

(Re 7, Im z’). Then
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Mar' 5% ((Df) o cor) = Mat %) (Df) Ml 8D (cpy ="FJ

(dx’,dy”") (dx’,dy") (dx’,dy")
(dx,dy) qt 44y (dx,dy) [t _ gt
Maty,/ gy (co o ('Df)) = at gy ay) (€o) Matyg g (‘Df)y=J'F

So, the equality ("Df) o cy' = co o ("Df) holds if and only if J F = FJ. Translating
this on matrix coefficients, this is equivalent to the fact that Re f and Im f satisfy the
Cauchy—Riemann equations, that is % =0.

’f(U)

Suppose now that ¢ = f |7, is a diffeomorphism. Since by definition, gyc, =

(' Df);1 o(cs) yo! (D), where g = ¥~ the preceding point gives that ¢ is (o, o”)-
analytic if and only if ¢, = c,/. Besides, gxcoy = (deta),/, .pxCo = det (a,/,) PsCq -
So,0’ = ¢y0 = (’Df):b1 o(cq) y o' (Dg) forces det ¢, = det (o) and gy = Co.

o

This lemma enables to justify our comment in the introduction about Tartar’s

remark. The conductivity o’ is defined by Mat((g;f”d_)gfl) (o)) = del@tq) (ojk) @
. . . (dxy,dx2) _ (dxp,—dxy)
where @ is the Jacobian matrix of ¢. But Mat(dx“dxz) (o) = JMat(dXI’dxz) (o)
and the same holds for o¢’. Since ﬁ]tdﬂ = & ! and J? = —I, we get
Ma t((c(ii;]l 3;622)) (o) = @~ "Ma t(((j';{’j;‘j; (o) ® which means ¢’ = ¢,o. Hence, ¢ is

a biholomorphic map between (M, Cy) and (M, Cy/).

We now turn our attention to the Dirichlet—Neumann operator itself. Assume again
that M is also equipped with an arbitrary Riemannian metric g ; this in particular the
case when M is a real surface in R with a non-isotropic conductivity. Denote by v
and t vector fields defined along bM such that for all p € bM, (v P t,,) is a direct
g-orthonormal basis for TI,M and 7, € T,bM. The «normal» Dirichlet-Neumann
operator N is then defined for any sufficiently smooth function u : bM — R by

OE
Nou = 2228 ®)
o pm

where E, u is the unique solution of (1). So, whenu : bM — Ris sufficiently smooth
dEsu = (Equ - v)v '+ (Egu-1)1* = (Nf,’u) Vi 4+ (du- 1) 7"

This formula shows that data from NJ which depends of a choice of metric, can be
replaced by data from the «differential» Dirichlet-Neumann operator N7 = odE,
defined by (2).

In the particular case where deto = 1, 0 = ¢, and it is noticed in [17] that
9 Ecyul,,, = (L u) (v* +it*) where 9 = d — 9° and 5“0 is the Cauchy—
Riemann operator of (M,C,) and where L'y = %( u—igs ) So, one can
consider in this case the «complex» Dirichlet-Neumann operator 6 defined on suf-

ficiently smooth functions u : bM — R by

07u = 9% Eca”’bM (LC” ) (v* + ir*) 9)
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For a general det o, we still let 67 = 6:°. This means that for u € C*® (bM), 0% u is
still defined by (9) even if o and ¢, are no longer equal. Hence, 67 and NJ correspond
to Dirichlet problems associated with different operators, namely, dc,d for the first
and dod = ds,c,d for the second.

To end this section, we explain how to get rid of the auxiliary volume form . As in

the inverse problem studied here, 7}, M and o ‘T* 77 are supposed to be known, the

conjugation operator ¢, associated w1th the complex structure C, of (M, o) is known
when it acts on Tb*MM. Having chosen a smooth generating section 7* of T*bM, we
set vy = — (co ) 7, forany s € bM. By definition of conductivity, bM > s = 1 AV
is then a smooth section of the volume forms bundle of M and can be extended to a
smooth volume form . on M. Though this extension is not unique, any tensor which
would be a conductivity for one of these extensions would be so for any.

4 Recovering the Complex Dirichlet-Neumann Operator

Nodal Riemann surfaces are discussed in [ 19] and the reader can refer to it. Meanwhile,
for sake of simplicity [19] does not consider the case where nodes are allowed in the
boundary. Since the nodal Riemann surface we have to consider is produced as the
solution of a boundary problem for a real smooth curve and since as pointed out in
[14, Sect. 3.2] such complex curves may present this type of singularity, we give some
basics in Sect. 4.1. Then, we prove the existence of nodal Green functions for such
surfaces. At the end of this section, is written the proof of Theorem 5 which enables the
recovering of the complex Dirichlet-Neumann operator 67 . This result is new wether
or not nodes at the boundary are present. Besides, existence of such nodes should be
considered as exceptional.

4.1 Nodal Riemann Surfaces and Harmonic Distributions

In this article a nodal Riemann surface with boundary Q is a set of the form
(E/R) \7 (bS) where S is a Riemann surface with boundary, R a nodal relation
which means that R is an equivalence relation on S identifying a finite number of
points of S but such that two distinct points of bS are in two different classes and 7 is
the natural projection of S on §/R. In particular, 7,5 = 7 |2§ is a bijection.

We equip S /R with the quotient topology so that Q is an open subset, @ = S/R and
bQ =7 (bS). One denotes by Reg Q the set of points of Q having only one preimage
by 7 and we set Sing Q = Q\Reg Q ; Reg O and Sing Q are defined similarly.

IfgeQ (resp. g € bQ), an inner (resp. boundary) branch of 0 at g is any subset
B of Q (resp. Q) for which there exists an open connected subset V of S (resp. S) and
s € VNl (g) such that V\ {s} c = ~! (Reg_), 7 realizes a bijection from V to
B and,if g € bQ, V N bS is a neighborhood of s in bS. A set of inner branches at a
point ¢ of Q is complete if their union with the possible boundary branch of Q at ¢ is
a neighborhood of ¢ in Q.

Q carries a natural (nodal) complex structure which is characterized by the fact that
for any inner branch B of Q, there exists an open connected subset V of S such that 7
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is a biholomorphism from V to B. Likewise, one gives a natural meaning to notions
of nodal conductivities (for which considerations of the preceding section apply) and
to nodal function or maps between nodal Riemann surfaces, holomorphic or of class
ck , 0 < k < co. With such definitions, 7 : S — E becomes a normalization of E

As pointed out in [19, Proposition 2], isomorphisms between nodal Riemann sur-
faces are a little bit trickier since nodes can be mixed. Let us consider another nodal
Riemann surface with boundary Q" which is the quotient of a Riemann surface with
boundary §’ and denote 7’ the natural projection of S’ to Q. Take a nodal map
¢ : Q0 — Q;so, ¢ is univalued on Reg Q and multivalued on Sing Q. We say
that ¢ is an isomorphism of nodal Riemann surfaces with boundary if the following
conditions are satisfied :

(i) ¢ is an homeomorphism from ¢! (Reg @) NReg Q onto ¢ (Reg Q) NReg 0.

(ii) For all inner (resp. boundary) branches B’ of @,_there exists an inner (resp.
boundary) branch B of Q such that ¢ (B N Reg Q) = B’ N Reg Q' and the

continuous extension ¢ )g/ of the map BN Reg Q — B, ¢ — ¢(q), is an

isomorphism of Riemann surfaces (resp. with boundary).
(iii) For all ¢ € Q, the branches of Q' at ¢ (¢) are the images by ¢ of the branches

of Q atgq.

If ¢ satisfies only (i) and (ii), we says as in [19, Proposition 2] that ¢ is a rough
isomorphism.

Distributions and currents are defined on nodal Riemann surfaces as usual by duality
and of course, harmonic distributions are by definition those in the kernel of dd°.
According to [19, Proposition 2] whose proof applies without change to the case
(Sing a) NbQ # @, adistribution u on a open set W of Q is harmonic if and only
if it is harmonic in the usual sense on W N Reg Q, continuous on W N Reg Q as well
as in all boundary branches of Q contained in W, and if for any singular point ¢ of Q
the two conditions below are satisfied :

1. for all inner branches B of Q at g sufficiently small so it admits a holomorphic
coordinate z centered at ¢, there exists cg € C such that u ‘Q siMay — 2cpIn|z|
extends to B as a usual harmonic function.

2. Y pencp = 0 where B is a complete set of inner branches of Qatq.

This implies that a same continuous function u on b Q extends to Q in many harmonic
distributions ; the Dirichlet problem for u is well posed only if for the extension U,
one specifies for all ¢ € Sing Q and all inner branches B of Q at g, the residue cp of
oU |p atq. In particular, # denoting the harmonic extension of u o JTL:SI to S, 7wyt is the
only harmonic distribution which is continuous along any branch of Q and coincides
with u on bQ ; we call it the simple harmonic extension of u.

For anodal Riemann surface Q, we define the complex Dirichlet—-Neumann operator
as the operator QCQ = 62 where ¢ is the conjugation operator associated with the
complex structure of Q and where in (9) simple harmonic extensions are used.
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4.2 Recovering of 8¢, Proof of Theorem 5
4.2.1 Green Functions in the Smooth Case

This section is about classical facts on Green functions for a smooth open-bordered
Riemann surface S which are generalized to the nodal case in Sect. 4.2.2.

A Green function for S is a function g defined on S x S without its diagonal As
such that for allg € S, g, = g (¢, .) is harmonic on S\ {g}, continuous on S\ {g} and
has an isolated logarithmic singularity at g, which means that given a holomorphic
coordinate z of S defined near g and centered at g, g, — % In |z| extends harmonically
around ¢. g is said principal if it is symmetric, real valued and its partial functions g,
vanishes on bS. The Perron method shows that such a function exists and the maximum
principle implies it is unique.

The problem we want to address is the computation from g of the operator QCS
which to u € C*® (bS) associates (01) |5 where % is the harmonic extension of u to
S. Without loss of generality, we assume that S is a relatively compact domain in an
open Riemann surface S for which g is a Green function. We also assume that g is
symmetric and real valued.

First, one builds the operator Ty whichtou € C 0 (bS) associates the harmonic
function T,u defined on S\bS by

~ 2
Teu: S\bS>q 7/ udgy (10)
L Jas

and which splits in T;"u = (Tgu) |s+ where ST = Sand §~ = S\S. Let us choose

an Hermitian metric for S and for T'S near bS, a direct orthonormal frame (v, 7) such
that 7 |p5 € TpsS. When f is differentiable function near S, we can write

1/d 0 .
8f=§<£—18—{>(v +it¥). (11)

Since the pull back of l)* by the natural injection of oS into Sis0, we get that for any
ueC'(bS)and g € S\bS,

a .
(Tou) () = / e i/ Wggt* Y Dou+iSgu (12)
as oy as
where u’ = g—‘; and where Dgu and S,u’ are the so called double-layer and single-

layer potentials of # and u’. Since d¢ = i (5 - 3), we also get from (11) that for any
ueCObS)and g € S\bS,

(Dgu) (q) = / ud“g, (13)
as
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Like Ty, Dg and S, split in sided operators D;,t and S;,'E. Then it is well known
that for any u € C? (bS), Dgiu = (Dgf) |+ and S;,Eu = (Squ) |5+ extend to S* as
C!-functions, that S ¢ 1s continuous on § and thatifu € C 2 (bS), the boundary values
A:gtu = (Dgiu> s satisfy

Afu—Aju=u & Afu+ Aju= Nyu (14)

where Ngu is defined for p € bS by

(Ngu) (p) =2PV (/ds udcgq> ,

PV standing for principal value. According to (12), when u € C? (bS), Tgiu also
extend to S* as C'-functions which verify

A;Cu —Agu=u & A;Cu + Ay = Ngcu
where A;Cu = (Tgiu) lps = A?u — ngu/ and where Ng cu is defined for p € bS
by

(Ng.cu) (p) =2PV (%/ uagq>
L Jas

This goes back to the works of Sohotksy in 1873 or, later, of Plemelj and can be found
in many books. The reader can refer for example to [35, Chapter 7, §§11 ] where these
operators and formulas are proven to make sense for « in the distributional sense in
Sobolev spaces. A direct proof for Ty . and C 2_functions can be found as a particular
case in [28] which addresses similar problems in Stein manifolds.

We also use the operator N gf defined on any Sobolev space H* (bS) by density of
C® (bS) and by, when u € C*® (bS),

9
Vp € bS, (Ngu) (p) =2PV (/asu(q) % (p,q)r;)

From [35, Proposition 11.3], we know that in the distributional sense

S u

(p—evp) (15)

Assume that for some u € C* (bS) and we have found a solution w € C* (bS)
to the equation

u=w+A;w, (16)
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that is, u belongs to the range of /d + A ;. Then D;w is a smooth function on S such
that (D;w) lbs = A;,"w = w + Ay w = u, which entails that D;‘w is the harmonic

extension u# of u to S and that GCS U = <8D;w> |ps can be computed, which is our

goal. Thus, the question which arises is the characterization of the range of Id + A ;.

As g is symmetric and real, we know (see e.g., [35, chapter 7, §§11 ]) that for
any real s, Id + A is a Fredholm operator from H 5 (bS) to itself and has index O.
This implies that the obstruction to solve (16) in H* (bS) for data in H* (bS) is only
finite dimensional and that /d + A, is an isomorphism if it is injective or surjective.
Consider the standard identification H ~* (bS) of the dual of H* (bS) by defining the
duality pairing (., .) by density of C*° (bS)? in H* (bS) x H™* (bS) and by

(u, w) =/ uwt*
N

when u, w € C* (bS). Then we can define the adjoint L* of any operator L of
H*® (bS) and get the identity Im L = (ker L*)L. Since Id + Ag has a closed range

%\ L
as a Fredholm operator, we get Im (Id + A;) = (ker <1d + A;) ) . From (14),

itcomes Id + A, = 5 (Id + Ng)and Ny = I +2A, . Forw € C* (bS), we obtain
that for any p € bS,

(Ngw) (p) = w (p) + 281i_r)1}) (D;w) (p—evp)

in the distributional sense. With (15) and the Fubini theorem, we deduce that for
u,w € C® (bS)

(u,Ngw>= (u, w) +2 lim u(p) (D;w) (p—evp) t;
s

e—0t Jy

= (u, w) +2 lim u(p) / w(q)a—g(p—avp,q) o)
e—=>0% Jos aS 3Uq p q
= (u, w) +2 lim w (q) [ u(p)a—g(p—av,,,q) o)
e—=>0T Jys 39S vy a)r
= <w,N§u>

*
This proves that (Ng)>k = Ng, which entails ker (Id + A;) = ker (Id + sz)_ We
summarize the above discussion within the following lemma.

Lemma9

(1) Let By = Id + sz. Then ker B, C C*° (bS) and a function u € H* (bS) is in
the range of 1d + A, if and only if (u, w) = 0 for any w € ker B,.
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(2) Let u € C* (bS,R) be orthogonal to ker By and w € H* (bS) such that u =
W Ay w. Then w € € (bS, R) and 651 = (0DFw) Iys.

(3) When G is the principal Green function for of S, TS = Dg and Id + A is an
automorphism of H* (bS).

Proof (1) and (2) have been already proved except for w € C* (bS) and ker By C
C®° (bS). Both are consequences of the fact that sz and A" are a pseudo-differential
operators of order —1 (see [35]). For a smooth real valued u and its harmonic extension
i to S, Stokes Formula applied on S without an arbitrary small conformal disk A,
around g € § gives

2 ~ =~
(1gw) @ =2 /83 (#G, + G,07)

2

= T/ (#0G, + G4ou) + %/ (90U A 3Gy + 0Gy A Jik)
v Jaa, L Js\aA,

2 ~ ~
:7/ udGy+ O (elneg) +0 — u(q)
L Jan, e—0

As G and u are real valued,

Thu= _E/ (0G4 + G4 0m) = _E/ [d (#G,) — 5G] =T u
aS as

l 1

This yields Dgu = TG+ u = u. Thus, AJ(; =I1d + Ag is surjective and, because its
index is 0, an isomorphism of H* (bS) as claimed in (3). O

Remark 1t is also known that Id + A&T is an isomorphism of H* (bS) when S C Cis
bounded and has a connected complement (see e.g., [35]). In the general case, it is not

difficult to prove that functions inker ( /d + A, ) are boundary values of holomorphic

function on §\§ smooth up to the boundary and that the Dirichlet-Neumann operator
N:C®bS)su— g—z |ps realizes an isomorphism from ker B, to ker (Id + AE).

Thus, to have at hand the principal Green function of S enables to bypass the
resolution of (16). Unhappily, the standard method introduced by Fredholm in 1900 to
build principal Green functions consists precisely in finding for each g € S a function
wgy such that g, = wy + A, wy and then to set Gy = g4 — D;wq. Happily, in our
problem it is not necessarily relevant to compute G because we only have to compute
sufficiently many 9,;? u.

As mentioned in the next session, all of these considerations readily apply to the
nodal setting.

4.2.2 Green Functions in the Nodal Case

Definition 10 Let Z be an open complex curve, possibly singular, of an open subset
of C2. A Green function for Z is a function g defined on (Reg Z x Reg Z) \AReg 2
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such that for all g, € Reg Z, g,, = g (¢+, .) extends to Z as a current and iaggq* is
the Dirac current §,, supported by {g.} - this implies in particular that dg,, is a weakly
holomorphic (1, 0)-form on Z\ {g,} in the sense of [32].

When Z is an open nodal Riemann surface, quotient of X, an open Riemann
surface, by an equivalence relation and when 7 is the canonical projection of X
onto Z, a simple Green function for Z is a is symmetric function g defined on
(Reg Z x Reg Z) \ Ageg z for which there exists a real valued Green function g for
¥ such that g = m,g in the following sense : for any branch B of Z at g, image by
7 of an open subset V of ¥ such that V\ {s,} C 7! (Reg Z) where s, € 77! (¢),
8q B = 14 (Q}* |V) in a neighborhood of ¢, in B.

A principal Green function for a nodal bordered Riemann surface Z is a symmetric
real valued simple Green function g such that if B is any boundary branch of Z, g |E

extends continuously to B with the value 0 on BN b2Z.

Let us now detail the explicit formula of [20, Proposition 17] establishing the exis-
tence of Green functions for a 1-parameter family of complex curves whose possible
singularities are arbitrary. Consider a complex curve ) in an open subset of C2, Q a

Stein neighborhood of ) in C2,da holomorphic function on 2 suchthat Y = {® = 0}
and d® ‘y # 0 then a strictly pseudoconvex domain £ of C? verifying

Yo=YN C L,
and lastly a symmetric function ¥ € O (2 x €, C?) such that for all (z,z’) € C?,
P () - @) =(¥(<.2).7 —2)

where (v, w) = viw] + vowyr when v, w € C2. We define on Reg )Y a (1, 0)-form w
by setting

N —le 1 _
a)_a T0%3 on)Y =YN{0d/dzy # 0}
w = Y on Y- =YN{ad/dz; # 0}

and we consider

k(2. z) = det [ﬁ v (7, z)i| )

2/ — z|*

When ¢, € Reg ), [20, Proposition 17 ] tells that the formula

1 -
0@ d) =80 @ = 53 [ K@Dk (gnd) i0(@) A5 (). (1)
4 q'€do
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defines a Green function for ). In addition, the proof of [20, Proposition 17 ] gives
that if g, € Reg )

08c.q. = ’kvq*a)
where %q* = %k (-, g+)- The proposition below gives a useful complement.

Proposition 11 Suppose Yy has only nodal singularities. Then, the function

1
4m? e 2

+k(q'.9)k(@e a)) i (q) AT () (1)

8 (@) = Rege (¢, 9) = (K" 0k (+.4)

is a simple Green function for ).

Proof Let us begin by proving that ¢ being fixed in Reg ), g¢ 4. extends as a usual
harmonic function along the branches of o\ {¢+}. As gc 4, is a harmonic distribution
on Yo\ {¢.}, we already know that gc ¢, |(Reg J1)\(q,} is @ usual harmonic function and
according to [19, Proposition 2], that for any branch B of ) at q, gc 4, |5 has at most
an isolated logarithmic singularity at g. Equivalently, this means that dg. 4, has at
most a simple pole at g. Fix ¢ in Sing )y and B a branch of )} at g. Decreasing B
and with a possible change of coordinates, we get the case where ¢ = 0 and ® isina
neighborhood of 0 of the form

P (2) = (22— ¢ (21)) O (2) 19)

with ¢ holomorphic in a sufficiently small disk V = D (0, r) and ® |5 vanishing only
at 0. In particular, there exists a function holomorphic 6 on V such that 8 (0) # 0 and
O (21,9 (z1)) = 2}7'0 (z1) when z; € V, v being the number of branches of ) at

q.On B\ {¢q}, we get hence w = Q(Zd)zzlv_] . Consider then a (0, 1)-form x compactly
al ‘1

supported in B ; so x = £dzy with & € D (V). Hence, by definition,

(98,4 x) = lim kg, (z1) & (z1)

idzy Adzy
el0t Jz1ev\D(0,¢) 9(11)1‘1’_1

where ’k\q* (z1) = E]* (z1, @ (z1)). Let us write

kg, (20 E (1) b
—9 @) = Z Ca,p2121

a+pf<v—1
1 (11— t)U*Z Dufl (75 5/9)‘ v_2dt ider Adzr
—_— . l
o (v=2) 45 g, 1 TR AT
where D? f|,, -z” is understood has the value taken by the total differential of order p
of f atw onthe vector (z, ..., z). Since f()z” e0@=B—v+hdg = Owhena+p8 < v—1,
we get
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L —¢ v—2
<3gc e X> = / # pV! @q*E/Q)‘ 1y idzi Adzy (20)
’ z1€V JO (v —=2)! 1z1

Moreover, there exists c € C and i € O (V) such that the expression of dg. 4, |5 is
idzl + hdz; in the coordinate z. Hence

C
(agCﬂ*’ X)Z lim <_+h(zl))§(zl)ld21 /\dﬁ
el0t Jz1ev\D(.e) \ 21

Letus write & (z1) = & (0) + &1 021 +§o,1ﬂ+f01 1-1 Dzé‘m ~z%dt. Then comes

<%MWM=nﬂam+/’ h(21) € (z1)idzy A dZT @1

z1€V

As (20) shows no derivation of the Dirac measure at 0, comparison with (21) forces
¢ = 0. Hence gc 4, |5 and g, |5 are usual harmonic functions.

Next, we check thati 99 g, g 1s the Dirac current at g,.. Since g 4, has no singularity
in any branch of )\ {go}, we get thanks to the nodal version of Stokes formula that for
that any test function x on Yy, (i39gc.q, x) = (idgc.q.. 8 f) is the limit when & — 0T
of % f an, X 08c.q, Where A, is a conformal disk of radius ¢ centered at g. Using the

same notation as above with v = 1 and ¢ replaced by g, which we can assume to be
0, we find that

W, (0,0) — ¢’ (0) ¥ (0, 0)
0.(0) (1 + l¢’ (0)%)

(998,40 x) = X (q4)

From (19) we get by differentiation that W, (0, 0) = 6 (0) and W; (0, 0) = —¢’ (0).
Hence, (i90gc.q,. X) = x (g+) which means i99g. 4, = 8,,. Since 8, is real valued
on real valued test functions, this entails i90g,, = 8, .

Fix now ¢y in Sing )j. Consider a branch B of )) at ¢, sufficiently small so we
have for it a holomorphic coordinate z centered at g;. Since g is symmetric from (17),
what precedes implies that when g, € B\ {¢;},q — g4, (q) — % In|z(q) —z(g«)| =
8q (gx) — % In|z (¢) — z (g«)| is a usual harmonic function on 5. Hence, when ¢, €
B\ {gs} tends to g, g4, — % In |z — z (g4)| converges uniformly on B to a harmonic
function of the form gg 4 1 In |z| where gg is harmonic on B\ {g¢;}. For the
same reason, if B’ is another branch of Vo at g5 or a branch of ) relatlvely compact
in o\ {¢s}, g4, converges uniformly on B’ to a harmonic function g B.q when q*

B\ {g;} tends to g;. When B’ describes the set of branches of ), these functlons g B,qs

match into a function g5 4, which is harmonic on B"\b)), for all branches B of Yo\,
whose restriction to B has a logarithmic singularity at g, and such that g,, tends to
8B.q, in the sense of currents when ¢, € B\ {g;} tends to g;. Proceeding so for all
singulars point of ), we find that g is a simple Green function for ). O
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We now apply what precedes to the situation of Theorem 5. We recall that F :
M — C2is the map obtained by applying Theorem 2 to a plain extension (M o)
of (M,0). Weset) = F (M ) and we fix a Stein neighborhood € of ) in C2, that
is a neighborhood of ) which is a Stein manifold. As M = F (M) is relatively
compact in ), we can pick up in C? a strictly pseudoconvex domain ¢ verifying
M CC Yo=Y Ny C Q2. We use then Proposition 11 and get a Green function for
M. The corollary below tells it comes from a Green function for M.

Corollary 12 Hypothesis and notation remains as in Theorem 5 and g is the function
defined by (18). Then, gy = F*g MxM\Ay 1S4 Green function for (M, Cy).

Proof Since F : M — M is a (cy, cAq)-analytic normalization, h = F*g is well
defined on Mreg X Mreg\AMreg where Mreg = F~! (Reg a), symmetric and for all
x € M, hy = h (., x) is harmonic on Mreg\bM U {x}, continuous on Mreg\ {x} and
079 is the Dirac current 8, of M at x. When p € F~! (Sing M) N M and V is
a connected open neighborhood of p in M, B = F (V) is an inner branch of M at

g = F (p) and we can set gy, , = F*gp p. Proposition 11 implies that g, so built is
a Green function for M. O

Thus, we can apply the methods of Sect. 4.2.1 to gj; and then push forward their
results to M. Meanwhile, as in our problem M and 67 have to be computed before
M can be, it is more relevant to apply directly these methods to M and g. As b M is
smooth, Sobolev spaces on b M are defined as usual and the discussion of Sect. 4.2.1
can be readily followed. So the operators Ty, Dy, Aigt, Ny etc., are defined as above
(with M instead of S) and Lemma 9 holds. We are now ready to prove Theorem 5.

Proof of T;heoremS Consider u € C ® (bM) and u its  Co-harmonic extension to M.
Asd =0° +9° andd’ =i (8" — 3“), we get 2i3°9° = dd° and U is the unique
solution in C*® ( ) of

i3°9°U =0 & Ulpy = u.

and 67 u is the restriction to bM of the C,-holomorphic (1, 0)-form 8% #%. By definition,
when B is a branch of M, there is a (unique) open subset V of M such that the map
Fp=F |€ is a (¢, ¢ Aq)-biholomorphism. Since % is smooth, we deduce that F,ii is
smooth along any branch B of M and satisfies (190 (Fp) +i) |3 = (Fp) xi0° 9% =
0. Hence, i o (Freg M)_l harmonically extends along branches of M and define on
M a distribution W which is the unique continuous solution along branches of M for
the problem

i00W =0 & W lppm = fau (22)

*
This yields F*W = u which means that & |y = (F )s(V) W whenever V C M is

such that F' (V) is a branch of M. Lemma 8 yields that F : M — M is a holomorphic
map from (M, ¢s) to (M, crq). Since the complex differential operators of these
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(nodal) Riemann surfaces are 3% and 3, we get 3°u = 3° F*W = F*0W and W is
the simple harmonic extension ﬁ of fiu to M. So, we get 07 u = (F*aﬁ) loa -
The kernel of B, (in its nodal issue) is a finite dimensional subspace of C* (bM)
and when u € C* (bM, R) is such that f,u is orthogonal to it, any solution w of the
equation fiu = w+ A wisin C * (bM, R) and delivers f:u under the form Tg+w

Hence, 07u = (F*E)Tg+w) lba - =

Remark The above proof contains the fact that for any u € C*® (bM), i = F* f*u
and 67u = F*QMf*u where 1 is the C,-harmonic extension of u to M and f*u is
the s1mple harmonic extension of fyu to M.

5 Proof of the Uniqueness Theorem 3

In this section, we prove Theorem 3 and as mentioned in Sect. 2, we complete so the
proof of [17, Theorem 1] and also the isomorphism claim of [24, Theorem 1.1]. One
of the steps of the proof of Theorem 3 uses Lemmas 11 to 14 of [21] which were
initially written by the author of these lines to give a complete proof of Theorem 3.

We note (Uy) and (U é) the harmonic extensions of u to M and M’ respectively. By
hypothesis F = [0U]: M —> CP, and F' = [dU'] : M’ —> CP, are well defined,
coincideony and f = F |y =F |y embeds y in {wg # 0} where wy, . .., w, are the
standard homogeneous coordinates of CIP,,. We equip § = f () with the orientation
of y brought by f. The regularity hypothesis made on M and M’ implies that F and
F’ are of class C!. We set

Y=FM)\8, I =F (),
M=Mmr. F=F[n’,

M, = {(dF #0} & M, = {(dF =0}

Since f is an embedding of y in {wg 7% 0} which is isomorphic to C”, there exists an
open neighborhood G of y in M such that Fg = F | is an embedding of G in C?; the
orientation of § is hence also induced by the natural one of G. When A is a topological
space, we note CC (A) the set of the connected components of A. If A ¢ M and
B C F (A), we denote v (F, A, B) the degree of F !ﬁ if it exists. We agree for M’
similarly notation to those for M. D, , (U) stands for the space of (p, g)-forms of
class C* compactly supported in an open subset U of a complex manifold. H? (E)
denotes the Hausdorff d-dimensional measure of a set E when this is meaningful.

Lemma 13 I'\y is a compact of M and Y is a complex curve of CP,\4.

Proof Since F isembeds GinC>,I’'NG =y and'\y =T'N (M\G) is a compact
of M. In particular, M=M \I" is an open surface Riemann. By construction, F is
proper because if L is a compact of CP,\d, F ~1(L) is a compact of M which does
not meet I" and hence is a compact of M. By a theorem of Remmert, unnecessary in
the very simple case n = 1, Y = F(M) is an analytic subset of CIP,\§. O
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Lemma 14 F, [M] is a normal positive current supported by Y and dF. [M] = [5].

Proof 1If x is a compactly supported smooth form of CP,,
(Fe[M], x) = / Fx.
M

F, [M] s thus a current of bidegree (1, 1) supported by F (M), thatis Y. It is positive
because if x € D1 (CP,) is positive, (F*x) |y is a positive (1, 1)-form of M since
F' is holomorphic and hence (Fi[M], x) > 0. Let & € C* (CP,) be such that

X = Ewrs where and wps = ﬁagln |w|? is the (1, 1)-form defining the Fubini—

Study metric. We get then
(L [M], 1)l <f &] Frops < ||§||oof Frors
M M

As|lx|l = sup ||Xp|| and
peCP,

Ixp ] = |Xp- (s, 0)]

max
S,tETp(C]P)ns HS“FS:Ht”Fszl

=& (p)| [(@Fs), - (s, D] =& (p)I,

ax
5,teTpCPy, |Isllps=ltlrs=1

we get that the mass of F, [M] is finite and at most fM Fr*orps. If x € D (CP,),
(dF«[M], x) = (F«[M],dx) =f F*dy =/ dF*x =/F*x =(Fe[r]. x)
M M 14

In other words, d Fx, [M] = F, [y] = [8]. In particular, the mass of d F, [ M] is finite ;
F, [M] is a normal current supported by Y. O

Lemma 15 F, [M] }Cpn\g is a positive holomorphic chain of CP,\8 supported by Y.

Proof Given that T = F, [M] is supported by ¥ and that Y = Y\8, S = T CP,\$
is a normal, and hence locally rectifiable, current of CIP,\§, without boundary and
supported by Y. According to the Structure Theorem 2.1 of [14], there exists hence

(nl)lgjgN € Z" such that § = ZlgjgNn/ [YJ] where (YJ) is the family of irre-
ducible components of Y. S being moreover a positive current according to Lemma 14,
the n; are natural integers. O

Lemma16 F,[M]= F,[M']andY =Y.

Proof According to Lemma 14, the current 7 = F,[M] — F, [M’ ] is a bound-

ary less normal current of bidegree (1, 1) supported by ¥ U Y’. It is hence of the
N . .

formX:1 gjgNn j [Z j] where (n j) € (Z*)" and the Z; are irreducible compact com-

plex curves of CP, lying in ¥ U Y’. Let Z one of these curves. Z N § # & because
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otherwise F~! (Z) is a compact complex curve lying in M or M’, which is excluded.
One of the connected components of §, says 8, is hence contained in Z; we equip S
of the orientation induce by §. 8 being smooth, there exists in Z a Riemann (smooth)
surface B such that B\f is included in (CP,\8) N Reg ¥ N Reg Y’ and has only two
connected components, B~ and B +,

By construction, B~ is an open connected Riemann surface included in the complex
curve YUY’ and hence, at least one of the two numbers H? (B~NY)or H? (B~ nY)
is positive, says H> (B N Y) > 0. As B~ is connected, this implies’ that B~ C Y.
Given that $ is a subset of the boundaries of Y and B, we infer that after decreasing
B if necessary, YN B C Zandhence YN B C B~ U BT.

Suppose that H*> (B* N Y) = 0. Then,as B C RegY, B*NY =2,YNB = B~
and, by force, B™ C Y’. Suppose in addition that H? (B_ N Y’) = 0, then, decreasing
B if necessary, we get as before Y’ N B = Bt andsod [Y] = —d [Y’] near . This
does not match the fact that F, [M] and F, [M ! ] are two positive holomorphic chains
of CP,\8 supported respectively by ¥ and Y’. So, H? (B’ N Y’) > 0 and hence,
B~ C Y'.Hence B C Y' and Z C Y/, which is again a contradiction. Going back
to our first assumption, we get that 7> (B+ ny ) > 0 and hence B C Y, still an
impossibility. The lemma is proven. O

Lemma17 Wheny €Y, V} = F~Y({y)) is a finite set and v : Y : y — Cardﬁy is
bounded.

Proof Suppose that F~! ({y}) is infinite for some y € Y. If F~! ({y}) has an accumu-
lation point in M, F = y on a connected component of M and hence on a non-empty
open subset of . In the contrary case , F~! ({y}) has an accumulation point in y and
d F vanishes at this point. In both cases, this contradicts that F |,, is an embedding.

Suppose that v is unbounded. There exists then (y,) € YN such that (vy,) =
(v (yn)) admits +oo as limit and (y,,) converges to y, € Y. Since M is compact,

.. —N o e .
there exists in M a convergent sequence with limit x,? e F~1({y,}) and a strictly
x0 # 0, there

exists an open neighborhood Uy of xS in M suchthat Vy = F (Up) is a Riemann surface

increasing ¢ : N — N such that yyu) = F (x,) forallm € N. If dF

(with boundary if x,? ey)and F [‘;‘; is a biholomorphism (of Riemann surfaces with

boundary if x? € y) ; we set m¥ = 1 in this case. If dF ‘x;’ =0, x5 ¢ y and we
can choose in a neighborhood of y, in CP,, holomorphic coordinates ({1, ..., ;)
such that the vanishing order m, of (d ({1 0 F),...,d ({0 F)) at xg is also the one
of d(¢; o F) at xfk). In this case, there exists an open neighborhood Uy of x,? in M
such thatif y € Vo = F (Uy), ¢1 (F (y)) has exactly mg preimages by ¢1 o F in Uy,
mutually distinct if y # y, ;if y € Vo = F (Up), y has at least one preimage by F' in
Uy and at most m?.

Suppose that we have got k 4 1 mutually distinct points x?, ..., xX in F~! (y,) and
open neighborhoods Uy, . . ., Uy of these points in ‘M such that for all jell,... k},

3 Since B~ N8 =@, B~ = (B_ al Y) U (B_\ﬂ. B~ NY is an open subset B~ because by construction,
B~ C RegY NRegY’. It is non-empty by hypothesis. Hence B~ = B~ NY C Y.
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1< Card F~' (yo) NU; <mi and U; € M\V;_; where V,;_; = Y Us.Then
St/ —

Card F~1 (ye) NV < Zogjgk mi and since H\Vk_H is compact, we can find a
strictly increasing ¢ : N — N such that for all m € N, F~! (y(p(m)) N (M\ Vk+1)

contains at least a point x,’;“ which tends, when m goes to infinity, toward a point

K+ e F=1 ({y4}). As before, we can then find an integer m**! and a neighborhood

Ui+1 of x*T1in M such that 1 < Card F~! (y,) N Uy < mk.

The values of the sequence (x’,:) reny SO built are mutually distinct points of My,

which is impossible. v is hence bounded. O

Lemma 18 Consider h € O (M) N co (M) Then Fh is holomorphic and bounded
onRegY. In addition, F"*Fyuh = (Fyh) o F' € O (M/) Ao (W)

Proof By definition Fi/ is the function defined on Y by (Fih) (y) = D cp-1 o) h(x).

Let y, € (RegY)\F ({dF =0}). Set F~! (y,) = {x41,... x4} where k = v (y).
There exists a neighborhood B of y in Reg Y such that for all j € {1, ..., k}, there
exists a neighborhood A; of x,; in M for which F; = F ‘fj is a biholomorphism.
Suppose that (y,) € BN converges to y, and Card F~! {y,} > k for all n. Then, for
each n € N there exists a, € M\ {Fl_l n)yeens Fk_1 (y,,)} such that F (a,) = yj.
Possibly after extracting a subsequence, (a,) converges to a point a of M which
satisfies F (a) = y.. Giventhat y € ¥ = F(M)\F (bM), a ¢ bM and there
exists j € {1,...,k} such that a = x,;. For n big enough, a, and Fj_l (y,) are
then two distinct points of A ; sharing the same image y, by F. This is absurd. Hence,
F.h = ZK i<k hoF j*] is holomorphic in a neighborhood of y. Furthermore, | F,.h| <
k|lhlls and kK = v (y). Fih is thus bounded according to Lemma 17. Given that
(Reg Y)NF ({dF = 0}) is finite, Fi.h extends holomorphically to Reg Y. This implies
that F™*F,h = (F,h) o F' is holomorphic and is bounded on M’\ F'~! (Sing V). As
F'~1(SingY) is a finite set, F’* F,h extends holomorphically to M’. a

Lemma19 Ifo e C10 (W) N QYO (M), there exists » € C'0 (M) N Q10 (M)

such that o |y =o Iy.

Proof We have to check that o' |y verifies the moment condition when y is seen as
the boundary of M. So, let h € O (M) N C° (M) According to Lemma 18, g =

F*Fuhe O (M) n O (). since £, [y] = 8],

/th’:/yF*F* (ho) =/6F* (ho')

_ /y (F*E) () = | 4 (F*F.) (hef) = 0.

because F**F,h € O (M') N C° (W) and o' € Q10 (M"). m]
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Proof of Theorem 3 Since by hypothesis [(9U¢)o< <, ] is a well defined map from M
to CP,, we can use the Adjonction Lemma 12 of [21] which, though written for the
particular case n = 2, applies without any change for arbitrary n in N* : there exists har-
monic functions Uy 41, . .., Uy on M and continuous on M such that [(8 Ug)oggN] is
anembedding of M in CPy . Similarly, there exists harmonic functions U 1/\/ IRIREEE U I’V,

on M’ and continuous on M’ such that [(aUé/)ee{o AN+ N,}] is an embed-

ding of M’ in CP,4n—y. When £ € {N+1,...,N+N'}, Lemma 19 gives
that (BUZ/) ‘y/ extends to M as a (1, 0)-form holomorphic %,. Also, when ¢ €
{n+1,...,N}, (0Up) |y extends to M’ as a (1, 0)-form holomorphic X;. Consider
then

d
S = (U, ... 00U, 0Uns1 ... 0UN. Sxg1s s Snaw) L (So)ocecs

’ def
v = (aU(;,...,aU,;, T aU;v+1,...,au;v+N,) 2 (Z)ocrer

By construction % and X%’ coincide on y. Note (w¢)o<¢<y, the natural coordinates

of CET1. When 0 < ¢, < n, [2]|{au, 20 can be written (0U¢/dUy,), 4 in the

natural coordinates of C% identified to {we, # 0}. Note pg, the natural projection

of CL on CV, (z0)ese, P (Z0)o<e<n, e, The map (aUﬁ/aU&)ogegN,z;ﬁe* is by

construction an embedding of {dU; # 0} in CV. [£] is moreover injective because

M = <Lg< {0U; # 0} and because a relation of the form [X] (x) = [¥] (y) impose
n

tx

y € (BUF)\ 0 {dU; # 0}. [Z] is thus an embedding of M in CP; . Also, [E’] is an
L)x

embedding of M’ in CP;,. Noting that the proof of Lemma 14 does not use that F is
a canonical map, that is of the form [dU], or noting that Lemma 8 of [21] shows that
% and X’ are necessarily of this kind, we conclude that ¥ (M) = X/ (M ’) then that
M and M’ are isomorphic through a map whose restriction to y is the identity. O

6 Reconstruction of a Riemann Surface

As explained in Sect. 2, one of the steps in the reconstruction of a general conductivity
structure is the particular case of the reconstruction of a Riemann surface from its
Dirichlet—-Neumann operator which itself comes down to the reconstruction from its
oriented boundary d Q of a relatively compact domain Q of an open nodal Riemann
surface é of CPP,.

This last job is done in this section with the help of the Cauchy—Fantapié indicators
of Q defined by Formula (4). Theorem 39 and Proposition 41which are the main result
of this Sect. 6.5 are novelties about characterization and uniqueness of decomposition
in sums of shock waves of these indicators.

For the reader’s convenience, we list here some of the notation used in this section.
U, L. and Gy are defined with (4); 0%, ¢, b, E®, Ureg, Z, Zreg, Z, Zfeg, p, p are
defined at the beginning of Sect. 6.1; Nj x and Sy : (25); C[X,Y) and Cr [X, V) :
Proposition 21; NkQ and SkQ end of Sect. 6.1; Py : (29); B® and pi.p : 31); 8, Gim
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and ék,m : Lemma 23; (0 Q) : beginning of Sect. 6.2; e, ki, k;,, L : (38); S, and
‘P : Definition 28; H, £, I1, F : Definition 30; F: Corollary 33.

6.1 Decomposition of Cauchy-Fantapié Indicators

This section specifies background notation for Section 6 and recall a result of Dol-
beault and Henkin which gives a decomposition of the Cauchy—Fantapié related to
intersections of the lines L, with the nodal Riemann surface Q to be reconstructed.

Without loss of generality, we suppose that bQ C {wowjwy # 0}. From now, we
also assume the generic hypothesis and so little restrictive, that

0:0:1),(0:1:0) ¢ 0 =0 h{wy=0} CRegQ

where M denotes a transverse intersection. In this situation, ug = % can be taken
as a coordinate for Q in a neighborhood of points of Q° and there exists for each
q € Q% a function g holomorphic near 0 in C such that in a neighborhood of ¢
in CP,, Q coincide with {(ug : uy : 1); uy = g9 (up)}. We note then (Eggu(‘;) the
Taylor expansion of g4 at 0. So, forg € O,

def

gq=(0:gl:1)'= (0:67:1).
We also set

E* =Cx {-1/b7; q € 0%}
In this section, U is the open subset of C> where the G, are defined. For any subset X
of U, we denote X, the subset of C? made by points z = (x, y) of X such that Q and
L, ={w € CPs; xwo + yw; + wr = 0} meet transversely at each pointof Q N L, ;
we set Xsing = X\ Xreg 50 that Uging is an analytic subset of U.

Though U may be complicated, it contains a convenient open subset. Let us define

max |wz/wol
we

1/b4

p:max max |w2/w1|75 ’ ﬁ:max{pv ’quoo}
webQ

ugre% [wi/wol
(23)

and pick areal @ such that 0 < o < zlL m})nQ |w1/wol|. Then the sets defined below are
we

contained in U and play a crucial role :

z={@ et p<pl&lxl<abl} & 28 =2\ CxR)

Z={w e <l &l <all} & ZF=2\CxR) @4
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Remark The hypothesis (0:1:0),(0:0:1) ¢ Q (which ensures Q*° C {wjw,
# 0}) and Q°° C Reg Q simplifies some statements and calculus but are not all
mandatory. We indicate for some formulas a version for the case Q°° N Sing Q # &.

The lemma below ensures that the reconstruction process initiated by Proposition 21

ends to a complete knowledge of Q ; thorough this paper D, is the unit open disk of
C.

Lemma20 For all we € Q N{wo # 0} and all R € R, there exists z € Upeg N
((C X C\Rﬁ) such that w, € L.

Proof Let R € [p, + oo[ and wy € Q such that wyy # 0. Set & = (M M)

Wy ” Wi ) °
The points z = (x,y) of C? such that w, € L, form the line L}, of equation

X Y6 + G2 = 0.1 Lj, (R) = Lj, N (Cx C\RD) does not meet U, for

all y € C\RD), there exists in bQ an element w = (1:¢;: &) which is also in
L(—y¢,1—¢,y) SO that y = —gf—:?. Given that bQ is a real curve, C\ RD cannot be

contained in the image of bQ by { —%. Hence, L}, (R) N U is a non-empty
open subset of L7, .

Cover Q N{wp # 0} by alocally finite family B of branches of Q. Foreach B € B,
we pick a function f holomorphic in an open subset V of C? such that

B={(1:01:0); (1,8) € Ve & fp(81,5) =0}

and dfp does not vanish in B. Denote E (R) the set of points z € L}, (R) such that

L, and Q are tangential at some point of L, N Q. A point z = (x, y) € C? belongs to
E (R) when |y| > R and there exists B € B and ¢ € Vp verifying the conditions

fB@)=0, x+y8u1+C02=0, x+yi1+ =0,

/B _0fB/3G __9fB/3&
T ) #0 = 315/00 @), x=- 3 7a/002 () &s1 —

When ¢ # ¢, this forces £, # ¢ and — gﬁ; ?gg (€)= g*?ff The points ¢ satisfying
this equation form an analytic subset Cp of B. For this reason, Cp is either discrete,
or equal to B.

Suppose that Cp = B for an element B of B. Then 0 fg/d¢ does not vanish in
Vp and we can find locally a holomorphic function ¢ such that fp (¢) = O if and

only if & = ¢ (£1). The function ¢ verifies then ¢’ (£1) + 4*11—_5190 (¢1) =

8s2
, , G1—21’
that is (770 () = (22 Hence ¢ (¢1) = (61 = &) e + G where ¢
is a constant. In this case, B is an open subset of the line defined by the equation
& = (&1 — &41) ¢ + &42. Since Q is connected and has only nodal singularities, this
implies that Q itself lies in this line. It suffices then to pick any y sufficiently large
to get that L(_y¢,, —¢,,,y) meets Q only not tangentially. When Cjp is a discrete subset
of B, the set E (R, B) of elements z in Ly, (R) such that L, are B are tangential
at some point of L, N B is contained, because of the above relations, in a discrete
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2806 V. Michel

set. Since B is locally finite, the study of these two cases shows that Ly, (R) meets
Ureg N ((C x @\Rﬁ). O

The starting point of all this section is Proposition 21 about the Cauchy—Fantapié
indicators of Q defined by (4). This result can be extracted as a particular case from
Theorem II and Lemma 4.2.2 obtained by Dolbeault and Henkin in [10]; their proof
applies without change when some knots of Q are in Q. In this statement and after,

we use the following notation when hy, ..., h, are complex-valued functions and
k e N,
k
Nog= Y h' & Spu= " > hj-ehy, (25)
1<j<p 1< <jp<k

The Newton identities state that for all £k € N*,

Npg = (=D kSp e + Z (=D Sy i Npk—j (26)
1< j<k—1
(—D*! 1 i1
Shi = TNh,k + % Z (=D Sp,jNpk—j 27
1<ji<k—1

We denote C[X, Y) the set of elements of C (X, Y) which are polynomials in X.
Cr[X,Y) = C(Y); [X] denotes the ring of polynomials in X of degree at most
k whose coefficients are algebraic fractions in Y. A shock wave is by definition a
holomorphic function & on an open subset of C? such that in the standard coordinates
system (x, y)

oh oh
=h

— —h— 28
ay ax (28)

Proposition 21 (Dolbeault-Henkin, 1997) Let z. € Uwg\E™ and p = Card
(L N Q). If Uy is a sufficiently small neighborhood of 7 in Uyeg, there exists shock
waves hi, ..., h, on Us whose images are mutually disjoint such that for all z € Ui,

L:nQ={(1:h;@:—x—yhj@@): 1<j<p}.
Moreover, for all k € N, there exists P, € Cy [X, Y) such that for all z € U,
Gi (2) = Nk (2) + P (2) . (29)

Inaddition, n denoting the natural injection of Q inCPy, P, = Y
and

geQ™® Res (T)*Q]z(, q)

0P k0P
Y  k+1 ax
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In practical terms, the difficulty to extract from the Eqs. (29) the symmetric functions
of the i ; comes from the polynomials Py. [1] contains a method when ¢*° € {1, 2}.
For the one proposed in this paper, the first step is to get precision on (Py).

Lemma22 Py = —q® where ¢* = Card Q°° and setting P = 3 o< ,<; X" ® prv
when k € N*,

k )

(k—1 p
! (k — v) k0

Pia ) & Pky =

Dk = vef0,...,k—1} (30)

k—1)!

Moreover, if we set

B® = ]_[ (1+vb7) (31)
qeQ™®
Then
bl B>
_ __Z 32
P11 Z T3 vh ~ B (32)
qeQ™
q 00
81 def A
S 2 = 33
PLO== 2 Ty - Bm %3)
qeQ™
Plo.; - Pk.0.j
U, sUsJ
= - = -, keN 34
Pro ;qgw (1 + Ybi)] ;(B"O)J .

where the pZ’Oy jare universal polynomials in the coefficients of the jet of orderk— j+1

/ .]
of Qatq and pi,; = Zq pZ 0.j 2 (1 + Yb4 ) . In particular, Py does not depend
] q/ q
on 7y and is entirely determined by the k (¢> + 1) numbers b4, pZ,O,j’ (g.)) €
0% x {1,...,k}.
Furthermore, Py admits a Laurent series expansion of the form ng_ 1 Pem®@Y™
where Py, € Cxk—1 [X]when —1 > m > —k and Py, € Cy [X] when —k > m.

Remark In the case where Q°° N Sing Q # &, Formula (31) becomes B* =
[T a+Y bq)”(‘” where v (¢) denotes the number of branches of Q at ¢, (32)

qeQ>®

stay unchanged and in (33), gi’ has to replaced by ) gf’q where the sum is done

on a complete set of inner branches of Q at ¢ and gf’q = (gB )/ (0), g8 denoting the

holomorphic function such that in a neighborhood of 0, an equation of the branch B

: B

is u = g% (uo).
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2808 V. Michel

Proof Suppose that (30) is verified for a positive integer k. Then

k+1 Xm-H Xk+l

Piyt = Pey1 (0,Y) + —— > Pem— F Pha—

k1 k+1(0,Y) + 3 o Pem 1 + Priy, 1
— ot Y Kl o)yt o Lo e

’ (m + D! (k —m) " k=m0 Kl
0<m<k—1
= Xm —
Pk+1,0+1<zm<k o+ DLk 1=y Pert=mo T P

which proves (30) with a recurrence.
Let now k € Nand z = (x,y) € U\E®. In the affine coordinates (uq, u;) =

(42, 28) of CP2, % has the form
1
o _ u kd’% (m k xdug + ydu _%
z = uo xu0+uyu1+l - uo xug + yup +_1 "o .
0
We fix a point ¢ in Q°° and in order to simplify the scripts, we write g instead of g4

(an so, g, stands for gi) and u in place of ug. In a neighborhood of ¢ in Q, the form
n*Q’Z‘ written in the coordinate u is

N Lk k
n*szk=< (r+y8)8 g )du.

z uk (14 xu + yg)  ukt!

Denoting by (f, u") the coefficient of u" in the Taylor expansion at 0 of a function f
holomorphic in a neighborhood of 0, one gets

k
def k (x+yg) g ko k
P =Res(*sz, ):Res B A —( , >
¢ @ 1 ((1+xu+yg)u" £t

In particular Poq (z) = —1 and hence Py = —Card Q. Suppose now k > 1. Then
vg'g" _ <1 4 xu ) 1 k=1
14+ xu+yg 14+ xu+yg

n—1

andif g'¢" 1 =3, yaau”, 1 (85— 88) = X e “Lu, which gives

k ! ok—1
8 Ok—1 88
Res (Wdu,0> :kT = Res ( uk du,O)
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This entails,

k
1
P,? (z) = Res (%,0) — Res (%g/gk_l,O)
+xu+ygu (I +xu+yg)u

_ / _ /
= Res (_x (g ug) gkgk],0>.

(I+xu+yg)u

Since g — go = O (u) and (x,y) ¢ E®, 1 + ygo # 0 and it comes furthermore that
for u small enough

1 (1+yg0)~! =" -
= T = D 7 lxu+y (g = g0)]
Itxu+yg 14 2pgeee eo (4 ygo)

Burt for all n € N*

[x (g —ug') —g'|&" " xu+y(g— g0

n—1 1 11—
gk—l xm+1yn 1—m (g_ug/) (g_go)n 1 m,m
1 _g/xmynflfm (g_go)nflfm u™

Il
[

Q
e

n
> Oty gt (g —ug') (g — go)" T u !
_ Cy_lxmynflfmg/gkfl (g _ go)nflfm u™

m
_yn—lg/gk—l (g — go)n 1 +xngk 1 (g _ ug/) u1
- 1
= +n21 xmyn—l m ( C,T 1gk ! (g - Mg/) (g _80))
m=1

—_cm 1g/gk—lu gO)n_l_m um!
n—

(g —

So,

k

A o &
@@= ;(1+ygo)"

_yn—l <g/gk—l (g _ go)n—l - >+xn <gk—l (g _ ug/) , uk—n)
n—1 m—1_k—1 /
myn—1—m ycn_l 8 (g —ug ) (g_g()) _ n—1—m k—m
+m§1 x™y <<_C;1n_1 P (& — o) LU

Hence P{ () = Y5,_o P}, (v) x™ with

(_ 1)k+1 gk

a ( 1)n Y- ! k—1 1 k—1 q
y < N Gy _

E gg (g—g0)" u > Pl =
Pio —~ KR 04 vgo)

(14 Ygo)"
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2610 V. Michel

andfor 1l <m <k —1,
k

PP o i
m n
n=m+1 (1 + YgO)

(rers'e=" (s — ug’) (g = g0) + Ci1g'e"u) (g = o)™™' k™)
In particular,

— —81 & pq _ 80
1+7Ygo L 1y vg

q
P10

Furthermore, for all n € N,

oyt e ( ! )"1
(1+Yg0)" g~ (1 + Ygo) 1+ Ygo
i—1 ~j—1_—(@m—1)
1+ Ygo)’

Jj=l1

(_l)j—l k (—1)" Cj*l

I n-l ( "kl (g — go)" ! k—1>
a j 0", u
pk,O Z 1+ Ygo)j Z g;(/)l—l 88 8§ — 8

k—1 P k i—1
= —g’f /! =n" Cr]zfl / k=1 n—1 k-1
(14 Ygo) Z 1+ Yeo)! =1 g8 (g—g0)" .u
Note that {g'g“~! (¢ — g0)* ™", u* ") = g1g5 "¢ " = gfe; ™" and

<8/8k71 (g —g0)' 2, uk’1>
= (81 +2gu + O (u2>)
N , =

(80 tau+0 (u )) (glu + gu”+ 0 (u ))

= (g1 +2g2u) (g'é_l + k-1 g’g—zglu)
(52 4 =2 g e ) + 0 ()

= (186" + (20285~ + (6 = D gf ) u)
(81f_2uk*2 + (k—2) g’f_3gzu"") +0 (uk)

k—1 _k—1 k-2
=8 8 U
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+ 187 k=288 g2+ [20288 ! + (6 — 1) g2} gh 2t

+0 <uk)

—g/f 18’5 k=2 4 [kgk 1g/1c 2g2+(k_1)gk 2 k]uk
+0<uk)

which gives

(—Dk e o
k—lk 1 < "ok (g — go)" !, uk 1>: (—1)k gk
80
and
k k—2
=" C,— B B
> T”l<g’g"(g—go)" ok 1)
n=k—1 80
(—DF k-1 1 g\ (=D PR
T< “g =gt it >+—<gg (g —go)' 2. ut 1)
80 gO
(— D!
= 0= D+ kel e e (- D gh el
0

= (=DF (k= D gt = [keogh g2+ k = 1) gt |) = =k (=1 g0g} 22

So,
— k-2 q
. —gk —kgoglf g n Pro,;
Yt (Yt S (L4 Yeo)
with

1
—)"C)” _
Pko,_(l)JIZ = lnl(/k](g g1, uk 1>

Summing on the elements g of O the above equalities, we get the relations claimed
in the statement.
Writing the Laurent series at infinity of pg,, 0 < v < k, in the form

Yo 1 (PR Y™ Y™, we get P = Y, Pewm @Y™ and Prw = Yoc,<k
(pk Vs Y’")X" for any m. Since (30) implies (pk ks Y'") = 0 when m > —k, we

obtain that Py, = ZO<;<k <Pk]» Ym>XJ € Cr_1[X]for =1 > m > —k and that

Pem = Yo jex (Pl ¥") X € Ce[X] for —k > m. D
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6.2 Expansion of Indicators

The form of fractions Py given by Lemma 22 suggests to study the functions G on the
domain Z defined by (24). In this section and after, (9 Q) stands for the real orientated
curve of C? which is the image of 8 Q by the coordinates map w > (5—(‘), 3—3)

Lemma 23 We note § the integer ﬁ fag %. Gy is constant on Z and for all
k € N*, Gy admits on Z a Laurent expansion of the form

n G —n
Grx.y)= Y. y(x)—< st gy G (35)

neN* neN* y

with normal convergence on Z and where for alln € N¥, ék,,n = Z(KK,! GZ’_nX"
is a polynomial of degree at most n — 1. In particular, Gxo = 8k,08, Gk,—n =
Sk (=" 8X" + Gi,—n € Cy—145,, [X] and

G}y —bx G1n (1)
Gi(x,y) = — +y — (36)
n>=2 Y
. 0
with G} _| = 5 fag
Proof Fix kin N*. Let (x, y) € Z. Then forall (z1, z2) € (8Q)g, x;;z < %Since by
definition of p, |x + z2| < @ |y|+ max || < Z |y| min || < 5 |yz1]. Hence
(£1,£2)€(3Q)o (¢1,62)€(3 Q)9
1 _121dza — (x +z2) dzy
G (x,y) = “ldzy + &1
2mi Jagy, 27i Jiag), x+yz+2
o4 1 Z’f_z z1dz2 — (x + z2) dzy
27‘[1 @0y Y 1+XVJ;ZIz

( l)v Zk727v
/ L (x +22)" (z1dz2 — (x + 22) dz1)
27‘[1 @0)o veN

T
_ Z Gk —n ()C)

neN*

with normal convergence on Z and for any n € N*

—1 n—1
Gi,—n (x) = %/ A (20" (z1dza — (x + 22) dz).
Tl (30)o
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Hence, G, —, is a polynomial of degree at most n. Let us write it Zogugn G, _, X"
The coefficient G}, _, of X" in Gy, is given by the formula

e

- 2mi

Gt / A ey = 8 (1)1 5.
(00)o

With ék,,n = Zo<u<n Gz’an“, we get

1)\ Sy ~ k ~
Gy (X,y) _ Z 5k,n( 1)" 6x +Gk,—n (x) — (—1)k5x—k + Z Gk,_z (x)

n
neN* Y neN* Y
Besides,
1 -1 0 1
Gi-1(x) = — 7; (z1dza — (x + z22)dz1) = G| | +xG|
27i J 50, ’ ’
N0 -1 1 1 “ly.
with G _; =0+ 77 [Lcr0), wod e and Gy _ = 55 [0, 21 d21 = =8

dl(xwo+ywi +wy) /wo)]
Xwo+ywi+wz/wy
Hence, it is continuous and integer valued. So it is constant on Z and equal to its limit

value when x = 0 and y — oo, that is §. Thus, Gg,—, = 0 for all n € N*, 0

By definition, Gy is the function U > (x,y) — % faQ

Corollary 24 The number p of functions hy, . .., h, involved in Proposition 21 is the
same for all points of Zeg\E® : p = 8 + q* where ¢> = Card Q.

Proof Denote temporarily p (z) the number of functions A1, ..., hp() involved in
Proposition 21 when z € Upeg. Since Py = —q°°, we know that G (z) = p (z) — g
and so that p is an integer valued function continuous on the connected set Zyeg\ E™.

It is thus constant and since Gg (x, y) = 6 + ZmeN* % when (x, y) € Zpeg, we

conclude that § = p — ¢g*°. O

Remark In the case where Q°° N Sing Q # @, g™ =}, g v (¢). Corollary 45 of
Sect. 7 gives a formula linking ¢ and the genus of Q via the Dirichlet-Neumann
operator.

Corollary 25 Notation and hypothesis remains as stated in Proposition 21. For all
k € N* Npi extends to Z\E*> as a holomorphic function NkQ which does not

depend of z, and which expands in Laurent series on 7 in the Sform NkQ (x,y) =

0
N () .
Y nen k‘y”n where the Nan are polynomials of degree at most n. Moreover, for

all 7 € Zyeg, there exists shock waves h3, ..., h3, whose images are mutually dis-
tinct and such for 7' sufficiently close to z, (NkQ (z’)) = (Npek (z’))keN and
LynQ={(1:h;():—x—yh;(z)); 1<j<p}

Proof Let k € N. We know that N, y = Gy — Py on U, and thanks to Lemma 22
that Py is an algebraic fraction which does not depend on z, and which is defined

keN

@ Springer



2814 V. Michel

on Z\E*. Hence, NkQ = Gy — Py extends Nj i as a holomorphic function on Z.
Applying Proposition 21 and Corollary 24 with an arbitrary point z of Zez\ E, we
obtain shock waves hf, A h;, with the claimed properties. Furthermore, Lemma 22
also gives that

1

_ - (k Dy (v) v
Z Pk X" = _1) £+ Z v'(k U)Pk 00X
o<v<k 0<vw<k
q
. q Poo. ~
with p1.1 =Y, o~ Tpr and puo =Y\ XQ: ﬁ For |y| > p, one get
qeQ™®
(GO 1 D" Spu-i
Pam=2, 2 )=
neN* geQ>® neN*
oo, m
(=D (= ga  _x Pug
P =33 ST 2 ble = 2 e
j=1neN* qeQ>® meN*

with p5" = (=D" X henex(t,.v), ntjmmt1 G = DD gegee 0D 7" pl o 0 It
suffices then to combine these formulas with Lemma 23 in order to get the announced
statements. O

Corollary 26 Notation and hypothesis remain as stated in Proposition 21. Denote by
SkQ, k € N*, the functions obtained from (26) and (NkQ>k N which is defined in
IS *

Corollary (25); locally the S kQ are the symmetric functions of the functions hy, ..., hp
of Proposition 21. Then for all k € N*, SkQ expands in Laurent series on Z.

6.3 A Genesis of Multiple Shock Wave

Let A,B € C[Y] withdegA <r =degB, B(0) =1.Define P € C[X,Y)and N
by

AY) +B/(Y)
B(Y) B(Y)

PX,Y) = X & N=G; —

In this section, we look for a characterization of when N is a multiple shock wave,
that is a sum of shock waves. Theorem 4 of [17] gives a characterization of such sums
but in this article, we use one which is more adapted to the present situation. This two
characterizations correspond more or less to emphasize one of the variables x or y and
rely on the following lemma whose proof is omitted since it follows easily from [17,
Lemma 16] and the proof of [17, Proposition 17]

Lemma 27 (Henkin—Michel, 2007)

Let D be a domain of C*, N € O (D) and d € N*. There exists mutually distinct
local shock waves hy, ..., hg such that N = hy + - - - 4+ hg if and only if there exists
Sty...,8¢ € O(D) such that sy = —N and
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oN 0 oN 0 0
—Sd—+ﬁ=0, —Sk—+izﬂ
ax ay ax ay ax

cI<k<d-1, @37
and if the discriminant of the polynomial & = T4 + ;T ' + ... 4+ 55 € O (D)[T]
is not identically zero on D. In this case, we say that N is a d-shock waves.

In order to define integro-differential operators adapted to the resolution of the
system (37), we introduce notation linked to Laurent series and their primivitization.
For m € 7Z, we set

em:C* 3y > (=DM (m| = D! y" ifm < —1

1
em:C*ByH—’ym if m>0 (38)
m!

and we denote by «,,, = ;% the real number such that e, (y) = «;, ™ for any y € C*.
1

We also make use of the notation «,, = K'/’i# when 0 < r < m. The main reason

of this normalization is that for any m € Zri {—1}, e;+1 1s a primitive of e,,. Note
that k1 = k_1 = 1. We denote by L the principal determination of the logarithm on
C\R_.

Definition 28 For (k, r) € Z x N, we denote by S the set of holomorphic functions
F on Z such that there exists a family (cm,s)m <k, 0<s<r of entire functions such that
foreachs € {0, ..., r},theseries (ngk ¢m,s @€ ) is normally convergent on subsets
of Z whose first projection is bounded and such that F = 3, <, o< <, Cm.s ® €L’
onZ"t.

We define an operator P on Sy . = « r)LeJZxNSk’r by setting PF = ngk, 0<s<r Cm.s
® P (e, L%) when F = 3 Cms ® emLS € Sk, the action of P on e, L*

m<k, 0<s<r
being defined by

Plem) =emy1 if m#—1,Pe_; =1L

Penl®) = (=1 A%0 e 1 L + - 4 (=1)° Adad eyt LO if m # —1,
Ple_iL*) = g7 L = 7eoL*™!

where a,, = —m if m < =2 and a,, = 17 if m > 0.

Lemma29 Forany F = ngk, 0<s<r Cm,s @ emL® € S, PF € cir @ k1L +
% ® L't + Sy, and PF is a partial primitive of F in the sense that %PF =F.

Proof We only need to check that for a given (m, s) € Z x N, [73 (em LS)]’ =e,L".

The cases m = —1 or (s =0 & m # —1) are quite evident. Assume s # 0 and
m # —1. Then
/ (enL’) (W dt = [ems1L°]] — / ems1 () SL1 (2 dr
[1;y] [1;y] T
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Ifm < =2, emy1 (1) £ L — " mjit™ = —me,, and if m > 0, ey (r)% =
1 m 1

—T" = e Thus

(m+1)! mF1cm:

/ (emLS) (t)dt = ep41L° — sap /
[1;y]

[Ly
=A%%¢, L+ + (=) AT @ e, LY

m
+ (=1)* Ala;, / en (T)dt
[1;y]

| (emLsfl) (r)dt

= A% ey L+ - (=1 Alaemi LY =P (enL®)
and P (e, L*) is indeed a primitive of e, L®. O

Definition 30 Let H be the function defined on Z™ by

9G -
H= P—‘=—3®L+Z Ll e = 8@ L+ H

m<—1 Km—1
We then define operators D, £ and F on S,  in the following way

] 9 0H
D=ell—el = — 41— E£=PoD & F=TIE (39)
ox 0x 0x

. . . s .
where IT is the operator which to F' = ngk, 0<s<r Cm.s ® enL® € Sk, associates
ngk Cm,0 @ en.

The lemma below collects some basic facts about the crucial function H.

Lemma3l H=1+J where for any (x, y) € Z,

L y) = 1 z1dza — (x + z2) dzy
= omi 00, XTtyzitz
X+ yz1+z2
J(x,y)= G T dz;
27i Jao), yzi

:—5®L+Zm< | Hn ® e with Hy, € Cyyy -1 [X] for any m < —1 and

oH 9G
& (40)
ay ax
H extends holomorphically to Z and
= (1 ®e1—3) et (41)
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so that D is in fact defined on O (Z). Furthermore, § is given for all x € C by the
formula

In[e=H )|

5= 42)

lyl>+oo  InJy]

Proof Formula (40) is the main purpose of setting H = Pai (41) just takes
in account that 6 € 7Z and (42) follows from (41 ). For any m < -1, H, =
- 1 G’ tm—1 € Cim—11—2[X] = Cy—1 [X]. To prove that H = I + J, we note
that for (x,y)eU,

361( ) = -1 / yz1dz1 + z1dz2
i 00y (x + yz1 + 22)
—_1 dz; L (x +z2)dz1 — z1dz2
2ti Jogy, X+ ¥zt 2mi ooy, (x4 yz+22)°
-1 dz;

al
— _— 4 — (X, .
27‘[1 0@0) X +yz1+ 22 8y ( y)

When (z1, 22) € (0Q)o, x+yyzzll+zz e R* onlyif y €]0; == Zz] which cannot happen

—X—22

< —mear— Iyl + max|g| < 3lyail < yzil. Hence J is well
(¢1:¢22)€(30Q)g (61,¢22)€(0Q)o

since ‘

defined on Z and

aJ —1 < 1 1 )d 1) + —1 dz;
— = — _— 71 = — _— _—
dy  2mi Jpo), \X+yz1+22  ya 2mi Jpy, ¥ +yz1 +22

Thus, 8(18;“1) = ay H and since both H (x,.) and (1 + J) (x, .) have limit O at infinity
when x is fixed, we get [ + J = O

The operator F enables to design a machinery adapted to the system (37).

Proposition32 Let sy, ...,s55 € O(Z\E®). Then (sy, ..., sq) is a solution of (37)
with N = G| — P if and only if each (1 ® B) s; extends holomorphically to Z and
there exists i1, ..., g € O (C) which satisfy the system below on Z+,

(1@ B) s = |FGu@ep) 4+ F ™ qu@en)| e d > k=1 @3)

Proof Since N = G —%—Id®%,wenotethatifse(’)(Z) and B=1Q® B

~ oN as ~0G1 ~0s
B|l—s—+ — Ba—+B +BB_

ax ay X y
~ . 98G, 9B de=HB
——(Bs) Sy o
ox ay ay
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2818 V. Michel

As e extends holomorphically to Z, (s1, ..., sq) € O (Z\Eoo)d is a solution of (37)
if and only if the equations

de B de B 3B
v PY _ ¢ & uzg—Hﬂ’ 1<k<d-—1 (44)
ay ay ox

are satisfied on Z\ E®. The first one is equivalent to the existence of a function pg
defined on C such that for all (x, y) € Z\E°,

B (y)sq (x,y) = pta (x) T (45)

Such a function w4 is actually holomorphic on C since for all y € C\ pD, it would be
HEY)
~ B(y)

Bs; holomorphically extends to Z. Suppose thatfork € {1,...,d — 1}, ug, ..., ik €

O (C) satisfy on Z\E*®

givenon D (0, « |y|) by the formula g = s4 (., ¥) . Hence, (45) also implies that

Esj- = []:O (/Lj ®60) +"'+.7:dij (Md®60)]eH

when d > j > k + 1 and that each of these Bs j extends holomorphically to Z.

The equation 3% (Eske’H )=e" % (EskH) is then equivalent to the existence of a

function p; defined on C such that for all (x, y) € ZT\E®,
—H(x,y) —H 0
B(y)sk(x,y)e = (x) +P (e 5xmﬁn(nw. (46)

Since §sk+1 and e~ extends holomorphically to Z, the only logarithmic term (46)
may have comes from P applied to some elements of O (C)®@e_;. As §ske_H expands
in usual Laurent series in Z , theses logarithmic terms have to compensate. Hence, it
turns out that the right side of (46) expands in usual Laurent series in Z, which yields
that Bsy holomorphically extends to Z and u; € O (C). We also get

~ ~ 0~
Bsge 1 =TI ((1 ® B) ske_H) = i @ eo + IIP (e_Ha (Bsk+1)>

9 .
=@+ 3 P (ﬂ’a (" F " (@ eo)))
k+1<j<d

= Z FIH 1 (1 @ eo) .

1<j<d
O

We derive from Proposition 32 a process to construct a priori some functions which
may be multiple shock wave.
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Corollary 33 For wuy,...,pnuqa € O(C), we define on Z holomorphic functions
sp (u, B), 1 <k <d, by

H d

H
e -
= F () & Fi(w) =) FI (1, ®e0) , 1<k<d.
l®eiB =

Sk (1, B) =

LetCg[Y] = {B € C[Y]; B(0) = 1}. Then the map O (C)¢ x Cg[Y]> (i, B) >
(sk (1, B))1<k<a Is injective. Moreover, —si (i, B) is a d-shock waves on Z if and
only if

—s1(u, By =G =P

and the discriminant A (u, B) of S (u, B) = T¢+s1 (u, BY T '+ . 4s4 (1, B) €
O (Z) [T] is not identically zero.

Proof Suppose that (i, B) and (v, C) are two elements of O (©)? x Cp[Y] such
that (sk (14, B))1<kcn = (sk (0, ©))1<pca- Then on Z\E™®, g ® 3 = va ® .
As B,C € Cg|[Y], this implies B = C and g = vg. Suppose that p; = v;
whend > j > k > 1. The relation sx_1 (1, B) = sr—1 (v, C) can be then written
Fik—1 (1) = Fk—1 (v) and this gives immediately pr—1 = vx—1. Hence, u = v.
Since el = (1 ® el_‘s> eﬁ, Proposition 32 gives that (sx (1, B))gkgq Verifies
system (37). When —s1 (u, B) = G1 — P, A (u, B) # 0 ensures that —s (i, B)
is the sum of d shock waves mutually distinct whose symmetric functions are the
(=D sk (1, B). al

The proposition below shows that the system (43) can be seen as a classical differ-
ential system with unknowns 1, ..., ug.

Proposition 34 We define holomorphic functions Fy i, ..., Fro on Z for all k € N
by the following relations

oH
Frk=1®ek, Fit1.0= ]—"“HPW, Fiv1,j =0OPF j1+FFrj, 1 <j<k
where Fi, = 0ifv < 0. Then for all f € O (C),

Frewm= Y (f9oe«)f,

0<j <k

Proof By definition, for all f € O (C), D(f Qey) = f' ® ep + (f ® ep) % and
hence F (f ® eg) = IPD (f ® eg) = (f' ® e0) F1,1 + (f @ eg) Fi,0 with Fi | =
1 ® ey and F1,0 = [TPH. Suppose lemma’s result true for a given k € N*. Then for
fe0@©

@ Springer



2820 V. Michel

FH(f @ eo)
Z HP (f(/)®e0) }—k + TP 88_[; Z (f(j)®€0) ]:k,j
0<j<k 0<j<k
j ; 0Fk,
= 1'[7)( FUTD @ e Frj+ fP®e ,./>
Ogjz'gk ( 0) k. ( 0) 0x
i oH
+ fP®e) TP <]—" , —)
ogjzék ( 0) “ox
-y (f<j+1) ® eo) MPF+ Y. <f<j> ® eo)
0<j<k 0<ji<k
i oH
+ fP®eo) TP (]—' , —)
O£k< 0) kj 0x

which gives the expected formula with

Firrhr1t =NPF i =TNIP (1 Qer) = 1@ ey,

0Fr, oH
.7:]{4_1’]':1-[7)]:]{,]'_1"‘“73( 9x l+]:kja )
_H,P]:kjl‘i‘}—}—kj, g]\k,
a.F H
7k+1,o=H73( ak0+7:k 8_>
k—1 oH oH
=FFro=FF NIP— = Fknp—.
ox ax

Going further in the analysis of (37), we are about to prove that the functions u ;
are polynomials. We start by two elementary lemmas.

Lemma35 Letk €e Nand F = ngk cm ® em € Sk,r. Then FF € ¢ ® exy1 + Sk.r
and (FF,ey) =0.

Proof Let k and F be as above. Since F F = [IPDF and (73 (ejLS) , eo) = 0 for any
(j,s), we get (FF, eo) = 0. Furthermore,

oF
73—— Zc ® Pey € ¢; ® ex+1 + Sk.r-

m<k
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As H_ is constant, a T = = Y H, ® ey and the expected relation follows from
m<—2
Ky
m>< ) Py Y e,
Jj<kv<=2
=TIIP Z Z K]j-_H)CjH‘; R ey
0<k—2 vt+j=t
v<—2'& j<k

= Z Z j+vc/H Rey € S,f”f.

0#£m<k—1 v+ j=m—1
v<-2 & j<k

m}

Lemma 36 Denote by By the leading coefficient of B. Then, there exists (A,) €
C[X1% such that

H
e 1 e
= — E A ® —= 47

m<0 ep/K[’

with Ao = 1 and deg Ay, < |m| — 1 forallm € Z* .

1 K400

Proof For a suitable family (B,l)m) e CZ-, 5 = Bozm Y m<o B=1,mem with
q q =
B_ip=1.Since H = —§L + Zm<_1 H, ®ey,,

n

e H = K—‘S 1+Z —ZHU(X)eU Zh ® em

neN* ’ v<—1 m<0

. D"
with ip = 1 and for m € N*, h,,, = Zlgnglml % Zue(Zi)"; NAI— . AR

H,, € Cpy—1 [X] because if v € (Z*)" and vy + -+ + v, = m, deg H,, --- H,, <

Yicicn (il =1) = Iml = n < |ml = 1. As p = 6 + ¢, F2 = 7 and we

get (47) with A9 = 1 and for all m € Z*, A, = > hyB_1 s which is a
r+s=m, 0>r,s

polynomial of degree at most max deg#h,, thatis |m| — 1. O

0=>r>m

Proposition 37 Ler f € O (C) and k € N*. Then,

Friree)=r"ea+ Y. Pm(H)®en=Y Pum(f)®en

m<k—2 m<k
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with Py, = il Pir—1 = Pro = 0 and for m € ZN] —oco, k — 1], Pxm =

axi’
+Z ijmé—]. where for any j, ij,m € Cj_m—11[X] which means that
(m+1)" < j<k—1

km—OwhenJ <m+ 1.

Proof Note thatifv € Z* ,deg H) = (Jv|—1) =1 = |[v| —2.Set F = f ® ¢( and for
m € Z,(F*F, en) = cim. By definitionof F, F' F = f'®e1+Y,,« | H,_, f®en.
def PO def

*
As whenm € Z*, P Lm

fork = 1.

Let k£ € N\ {0, 1} be such that ¢t ,, = O whenm € ZN [k, + o[, ckkx =
f®, cr k1 = cro = 0 whereas for m € ZN] — oo,k — 11, ckm = Pem (f) with
Pem = ZO<j<k 1 PkJm;X—J] and Pk]m € Cj_m—1[X]forall j. Since H' | = 0, with

r _ KrKkm—r
K =~ —» We get

H, _, has degree |m| — 1, the claims are true

FHF=NEFF= Y ¢, 1®em+0PO ca,®e)| Y H ®e

Om<k+1 r<k s<—2
= Z Chm_1 ® em + TP Z Z khckrHy_, | ®em
0m<k+1 m<k—2 \m+2<r<k

/ /
= Chx D ekt1 +Cppg ®ek

+ Z Cem—1 T Z -1k Hy 1y | ® em

0#£m<k—1 m+1<r<k

Thus Cxi1 k41 = Cfp = fUtD, Chpik = Chgy =0and ey =0ifm >k +1
where m = 0. For m € Z*N ] —00, k], it comes

/ ’
Cht1m = C 1 + Z K;1—1Hm—1—rck,f (48)
m+1<r<k

Let m € Z*ﬂ] — 00, k — 1]. Formula (48) and the induction hypothesis give

’
CkJrlv’":( Z P/g,mlf(j)) + Z Z Kr 1Pkr m—1— rf(j)

(m+1)T<j<k—1 m+1<r<k (m+1)" < j<k—1

— Z (ij.m—lf(j)),

(m+1)F<j<k—1

+ > [Z K,;_IP;!,,H,;_I_Jf(-">=Pk+1,m<f)

m+D)TLj<k—1 | mH1<r<k
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; — J d
with Pk.;,_l’m = Z(m+l)+—l<j<k Pk+l,mE and

k k—1
Pk+],m = Pk,m—l (49)
J— J + .
Plim = Plmr (Pk,mfl) + Y Kk PLHL L m DT <<k
r=m+1
(50)
(m+1)t—1 m+1)*T-1) (m+1)+—1
P, T = (Pk,mm—l ) + Y kP Hy,__, (5D
m+1<r<k
/
Assume 1 < m < k — 1. Then (51) becomes Pk”«lH,m = (Pk’f’mfl) +
> Knr17]PI:’,1rHr/n717r' We know that deg P, | = m —(m—1)—1 =0
m+1<r<k
and that whenm +1 <r <k, Pk’flr =0sincem <r—1 < r+1.Hence P]Zli-l,m =0.

Whenm +1 < j <k-—1ldegpP,  <j—1-m-1)~1=j—m-1,
. /
deg<P,j‘m71) <G-m—-1)—=1)—1=j—m—1landform+1<r <Kk,

deg ijrH”n_l_r <G—-r—0)+E+1—-—m)—2=j—m—2.Thus, (50) gives that
deg ij_qu < j—m — 1. Lastly, deg P,f_H’m = deg P,f’;l_l <k—1l-(m-1)—-1=
k—m—1. _

Assume now m < —1. Degree computations for P]f—‘,—l,m and Pk] +1.m When

/
. . . 0 _ 0
1 < j < k — 1 are still valid. Formula (51) becomes Pk+1,m = (Pk’mfl) +
Zm+1<r<k K:nflPI?,rHr,nflfr and gives deg P,?H’m < 0 — m — 1 because deg
/

(1) < O-m=D=D~1=-m—Tadform+1<r<k
deg P,?rHr/nflfr <O—-r—1)+@+1—m)—2=—m—2.The proof is complete.

O

Proposition 38 Assume that (s, ...,sq) € O (Z\Eoo)d is a solution of (37) with

—s1 =G| — Pyandlet (11, ..., pna) € O(C)? satisfies the system (43). Thend = p,

Wp is a polynomial of degree p and ,ug,p) = p!By~ where Byo = % b is the
qeQ™>®

leading coefficient of B. Moreover, for all j € {1, ..., p — 1}, u; is a polynomial of

degree at most p — 1.

Proof The proof relies on a downward induction starting on p and on the comparison
of the Laurent series of s, series we have to compute, to the expansion of —G| + P

which we know because of Lemmas 23 and 22 : G| = Z Glm ® e, and
m<—1 Km
Pr=Y" g, withGy_i =G}, ~6x,Gim € Cpmi—1 [X]whenm < —2,

m<—1 Km
P11 =q®X+(p1,0.e—1)and Py, € C;[X] for all m. Thanks to Proposition 37 and
to (47), we get

@ Springer



2824 V. Michel

H

f= i X o) =15y ¥ Y Prals)oe

1<j<d 1<]<dm<]71

1
=Bq_oo Z/\ Z Z Piim (1)) | ® e

m<0 m<d—1 \mt+1<<p

=2 2 > kPt (1) | ®

ep/Kp

—_

B ep/Kk
T m<d—1m—d+1<r<0 \(m—r)*+1<,<d p/kp
1 Km ~

S — Sl,m®em7p
By

o] Km—
m<d—1"""P

withform < p—1,51m = 2 _a41<r<0 2oimoryt+1<j<d KimPr Pj—1,m—r (j)-In
particular, when 0 < m < d — 1,

St = Z Z "rrn)”rdj—l,m—r (“/) = Z Pl m (“1)

m+1<j<d m—j+1<r<0 m+1<j<d

where form + 1 < j < d,

pJ r 0 ’
Pl,m = Z Kphr Pj—1m—r = K Pj—1,m + Z Ky Pj—1,m—r
m—j+1<r<0 m—j+1<r<—1

Thus, Iglmr;fl (Um+1) = K%Pm’m (Um+1) = /Lm+l since K =1.So

M;(;:21 + Z P o (147) (52)
m+2<j<d

Moreover,

t —Jj+l
> P’,lmui)—k/c,'f] T k=1 P11 (1))
0<r<j-2

D DD DR

m—j+2<r<—1 0<t<j72

m—j+1 (-
= Km Am— JHIM

t )
+ 2 (Pt X P | K
0<I<j—2 m—j42<r<—1

Formula (52) implies 5] 4—1 = uflp so that s; € = lufld l)ed,pq + Sa—p—2,0-

Yet, sy = —N;1 = —G1 + P1, G| € <G1’1 —3](1) ®e_1+ S0 and P; €
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(qoold +<p1,o, e_1)) ®e_1 + S_20. So, d — p — 1 has to be equal to —1, that
isd = p, and

By

-1

,ug,p ) _1( Id — G11 (plyo,e,1>> = p!By~1d
Kp

—(p = D!Bg= [ G, = [pro.e-1)]

In particular, u,, € C,, [X] and /L(pp) = p!By.
Assume now that 0 < m < p — 2 and that @y, ..., (42 are polynomials. Then
form+2<j < p, ﬁ]],m (14) is of the same kind and as

deg i J+1M] G em =)~ degpy —j 41 =degp; —m— 1
(1)

deg lm:u’] g(t_m—l)ﬁ-degﬂj—t:deguﬂ_m_l
degArPj ,uﬁ” (rl—=D) 4+ —m+r)+degpu; —t =degp; —m—1
we get
deg P/, (1) < degpuj—m—1

Thus, 57, is polynomial and there exists a polynomial R,, such that

degi,m = M;(vTJZI + R, & degR, < max degu; —m—1

m+2<j<p
Moreover,
1 Km ~
_Gl,m—p+Pl,m—p =Slm—p = 55— S1,m>»
Byoo km—p

Gim—p € Cpy—1 [X] sincem — p < =2 and Py, € Cy [X]. From

Km—
/’Linm_:l = Bq°° Z : (_Gl,m—p + Pl,m—p) + Ry,
m

we first recover that the functions p ; are all polynomials then, with m = p — 2 that

deg i’ P <max{p—(p—-2)—1,1,degu, — (p—-2) — 1} =1

and hence thatdeg 1 < p—1. Assumingdegu; < p—1whenm+2 < j < p—1,
we obtain
deguﬁnmil max{p—-m—1,1,p—m—1}=p—m—1

and thus deg w,,+1 < p — 1, which end this induction proof. O
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6.4 A Linear System

According to Proposition 21, Lemma 22, and Corollary 25, there exists A®, B® €
C[Y] withdeg A < deg B* = ¢ and B*® (0) = 1 such that on Z\ E*°,

Q oo/ AOO
Gl:Nl +X®B°°+1®Bf’°
where NIQ is locally the sum of the shock wave functions £, ..., h), involved in

Proposition 21. According to Lemma 27, Corollary 25, Propositions 32, and 38, these
local functions define on Z\ E®° global symmetric functions (—l)k st , 1 <k <p,
which can be written in the form

H

°o__° g ( Q) >k>1
Sk 1®B°o k\ ML , P =2 =1,
where u¢ = (MIQ ...,ug) € C[X]? is such that and degujQ < degug = p when

1 < j < p. In the above formula, Fj is defined for any u € C[X ]d and arbitrary
(d, k) € N* x Nby

Fow) =FF () & Frw= Y FH(uj®e), k=1,  (53)
k<j<d

where F is the operator defined by (39).

In Theorem 39, the system S, defined by the Egs. (54) to (58) is a linear system
whose nature is to have infinitely many solutions when the zero function is not the
only one. The first part of Theorem 39 says in other words that, because bM is known
to be the boundary of a Riemann surface, O is not the only solution of S, at least
when d = g™ + § = p. The second part of Theorem 39 is a kind of reverse. If we
manage to find a non-zero solution to S; where d is some positive integer, one gets
a decomposition (62) of the kind we are looking for. Meanwhile, it is not clear that
such a decomposition is really meaningful. The next section clarifies this point : the
right decomposition can be deduced from (62) by tossing some parasite terms.

Theorem 39 Assume that a;% # 0, fix d in N*, set r = d — § and consider © =
(U1, ..., na) € CXV such that for j € {1,...,d — 1}, degp; < deguq =d.

1. Assume thatd = p and pu = n2. Then r = ¢™ and

3 N PR B | S s
9y \92G /ox2ay |© ax O ]) T
9 4 OH/ox 0 [ _py 0
o’ TOMW T e by [e PIRAACY
9 I 9
H —H
0 B B Ry —0 55
¢ ax <82G1/8x2 dy [e ox O(M)D (53)
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82G1 8r+1 H 8r+leH 9 y 9
ox2 oyl [6’ Fo (M)] - (W) 7y |:6’ 7270 (,U«):| =0 (56)
32Gy 9"
Tt gy [ GRG0+ F )]
3eHGy d [ 48
EF(w) = NEF (W) = FF1 (1) = Fo (1) (58)

H I 9 ,-HJd ;
and B, = " (Fo ) — 317 e ﬁfO(“))m”sﬁ“B“(o’y)c*Seo .

2. Assume that | satisfies the differential linear system Sy defined by the equations
(54) to (58) and that B, (0, y) - — o 1. Then there exists (co, A, B) € O (C) x
*Sy—

C,_1[Y] x C, [Y] with B (0) = 1 and such that

1 d d
l=————¢ 1 — 59
©®1= 56 a0y’ ax oW (59)
1®B=(Fo(n) —co®@1)e (60)
1QA=(1Q®B)G +e"Fl(uw)—-XB (61)

Moreover, taking in account that e extends holomorphically to Z, s{‘ = 1%THB]-] ()
define a holomorphic function on Z\ E* such that

G| = +X®B/+1®A (62)
1= =5 3 B

and which is a d-shock waves outside the zero locus of the discriminant A, of T +

H
sk T4  where (s') = (e—]: - ) .
Z]gkgd k (k) e~ d k(1) d=k>1

Proof 1Set (A, B) = (A®, B®). According to the results quoted in the beginning of
this section, we know that

1QA=(1QB) G+l Fi(w)—X® B (63)
In particular, the right member of (63) is independent of X. Since % = %—I;, we get
_gd(1®A)  _y oH g 0
0= =" = 1B)— — (1@ B’ HZ Hr.
¢ 9x ¢ [( ® B) dy (1® )]+e ax i ()
d(1® B)e 1
==, DA W (64)
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Hence

—H
% = DF1 (i) and we get an entire function cg such that

9
PDF,; (u)zpa(l B e T=1@B e+ 1. (65)

As e~ H has a usual Laurent series on Z, PDF 1 (1) cannot have any logarithmic term,
which means that (58) is satisfied. Then, (65) implies that B is given by (60) though
we do not know yet cp. As B does not depend on x, we obtain

3 OH
0= aero (w) —(co® 1) aeH —(cp®1)e? (66)
As % = %, this entails
0= Lt L Ry — oo 1) 29!
=——e " — —(c -
Ay ax” O 0 9x2

which implies that ¢ is actually defined by (59). With this value of ¢, (54) is the state-
ment that cg does not depend on y and (66) become the compatibility equation (55).
As the right member 60) have to be in C, [Y], we also get

r+1 r+1

8r+leH
SN

[Fo e | = e S

0 8yr+l

Fow e = 7o

which become (56) when (59) is used for co. Moreover, as the right member of (63)
have to be in C,_ [Y], deg B < r and as (59 ) has been already proven, we also get

0= 0 [(1®B)G1 —X®B/+eH.7-"1(/L)]

ay’
81‘

=7 (1@ B G +e 7 ()]
81‘

= 57 [Fo 0 —co® DG+ M7 ()]
0" 0"

=57 [ G+ Fi ()] =~ @e b 52 6]

which becomes (57) when (59) is used for cg. Note that S; is a differential linear
system because of Proposition 34.

2 Conversely, assume that aaz)gl # 0 and that the system Sy is satisfied by . Then,
thanks to (54), the right member of (59) depends only of its first variable so it defines
a function cg. As % [(]-'o (W) —co®1) eH] is equal to the right member of (66), (55)
means that (Fop (1) — co ® 1) e does not depend on x so that (60) defines correctly
a function B. Since
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8:1 [(Fow —evene]= L [Awe"] - @en aH

(56) tells that B is a polynomial of degree at mostr. As B, = e (Fouw) —co®1) =
1® B, B(0) = lir% B, (0, y) = 1. Denote by A the right member of (61). Then
y—>0%*

*HaA_ _H oH / 7H8 H
A |:(1®B)E—(1®B)}+e [ F )]
d(1® B)e
_DF (- 8B eT
ay
d (F - 1 0
— DF () — (O(“; ©®D _prw-Lrw
y dy

so that 33%‘ = 0 because of (58). Hence (61) defines correctly a function A, which
because of (57), is a polynomial of degree at most r — 1. The other claims of (2) are
now consequences of Corollary 33. O

Remark If ¢ € C*, (cA, ¢B) € C[Y]? also verifies G| = —s; + Mgl@m. Hence,
the condition B, (0, y) c — o 1 canbe seen as a kind of normalization of B. However,
*3y—

the theorem does not address uniqueness.

For a given d, the system S; can be explicitly written thanks to Proposition 34
which gives formulas for the coefficients of the operators F* and Fo. The case d = 0
is impossible when 32G/dx? # 0. The case d = 1 corresponds to the case where the
complex lines L., z € Z, meets Q only one time. In this case, S is an over determined
system on the coefficients of only one affine function ;. It can easily be written but
is already space consuming. For example, (54) which means that some function of the
two variables x and y actually depends only on one of them, takes some space even
ford = p = 1. Inthis case ¢*° =1 — §, § € ZN] — o0, 1] and taking in account 53,

o, . ., . _H _ -~ 1 _
Definition 30, writing e = ngqm—lhm ®e,; and 76,70 = ngzgl'm Renm,
we get after some calculus that

1 0 0
92G1/9x by [e ax 7o )]
/

(l’LlGl s— 2) ~

q>°-3
Z Z Z lm—t——— 2 ht—i—l—s & em

mLgP—1t=m—2 \ s=t—q>°+2

So the vanishing of the y-derivative of the left member of the above equation yields
infinitely many linear equations on the two coefficients of 1. Certainty O is not the
only solution comes only from the fact that we have assumed that p is equal to 1. Fora
general p, the number of 1 ; increases but also their degree. Hence, Theorem 6 which
gives an upper bound for p is of practical importance. In this article, we spare space
by avoiding to write out completely explicitly S;.
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6.5 Uniqueness of Shock Wave Decompositions

2
Assume that aasz‘ # 0and let R = dLIJ\I Rag where Ry is the set of u =
e *

(Ui, ..., 1a) € CIX]¢ with deguj < d = degugq for j € {1,...,d} such that
w is a solution of Sy, By, (0, y) 0 1 and A, # 0 where B, and A, are defined
y—0*

in Theorem 39 . This theorem tells that R, # @ and thatif u € Ry, u produces by

explicit formulas a decomposition of G in the form —s; + X ® % +1® % where
—s1 is a d-shock waves function in Z\ (E°° U {Au = 0}) and where A, B € C[Y]
withdeg A < deg B =r — § and B (0) = 1. Thus, we know thanks to Proposition 33
that for z, € Z outside a proper analytic subset S of Z and for a sufficiently small
neighborhood U, of z., there exists shock waves g1, ..., g4 on U, whose images are
mutually distinct such that for all z € U,

—s51(2) = Ng,1(2)
Ng1(@)+P@)=G1(2)=Np1 @)+ P1(2) =Ngp1(2+ P

where the functions 4 are the shock waves h* defined in Corollary 25, that is the
shock waves generated by the collision of Q with the lines L., z € U,.

A priori, nothing guaranties that {gy, ..., g4} = {hl, .. h p} because for example,
it may happen that there exists a finite non-empty subset J of {1, ..., d} such that
>_jes & extends as an element of the space C (Y); [X] of rational functions which

are affine in X. In this case, G1 = Ng1 — PwithP =P — Zie! g € C(Y), [X]
and {21, ..., 25} where d=d—CardJ € {0,...,d — 1}. Tterating this reduction,
arrises the situation where

v/eP{l,...,dh\{o}, Zgjgé(C(Y)l[X]. 67)
jeJ

The case d = 0 happens at the end of these iterations only if at the beginning,
Zlgjgd gj and so G, extends as an element of C (¥); [X]. The lemma below studies
this case.

Lemma 40 We use notation of Corollary 25. G| extends as an element of C (Y){ [X]
if and only if Q is a domain in a compact connected curve K such that for all z, in
Zreg and z in a sufficiently small neighborhood Uy of 74 in Zieg,

KmLZ={(1:hj*(z):—x—yhj.*(z)); 1<j<p]=QﬂLZ.

Proof Suppose at first that K is a compact curve with the above properties. Fix z, and
U. as in the statement. Since K is an algebraic curve, we know from Abel’s work that
Zlgjgp hj* e C(Y) [X] (see e.g., [15]). It follows that G| = Njz= 1 + Py is, on
U, and so on Z, rational in y and affine in x.

Conversely, suppose that G; € C(Y); [X]. Then Npz 1 = G1 — P; is on U,
algebraic in y and affine at x. Since {(1 : hj* () : —x — yhjﬁ* (z)) 1 1<j< p} =
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QO N L, for all z € Uy, a theorem of Wood [37] states the existence of a compact
algebraic curve K of degree p containing Q. Since the degree of K is p, K N L, =
{(1:hj@@:—x—yhj(): 1< j<A}=QNL_ forallz e U. o

In case G is algebraic in y and affine in x, the algebraic curve K of Lemma 40 is
known in a neighborhood of b Q. We can then pick generically homogeneous coordi-
nates w in order at least one line L,, z € U, meets K\ Q. We are thus brought back to
the general case since Lemma 40 ensures then that even after reduction, d is not zero.

With Proposition 41 which is proved thanks to results of Henkin [15] and of Collion
[8], we know that when this reduction ends, the remaining shock waves functions are
those we are looking for.

Proposition 41 Notation remains as stated in this section and we suppose (67) verified.
For the case where Q is contained in an algebraic curve, Q denoting then the smallest
one with this property, we suppose that (0 : 1:0) ¢ @ and at least one of the lines L.,
z € U, meets Q and @\Q That being so, {g1, ..., g4} = {h], ... ,hp} and P = Py.

Proof After a possible renumbering, we assume that g, = 4,, 1 < v <t € N and
{gt-‘rlv ey gd} N {hl-'rls ceey hp} = .

1. Suppose that Q is not contained in an algebraic curve. Then d € N* because
otherwise, N1 € C(Y); [X] and G, which is the sum of N, 1 and P;, appears
to be the restriction to U of an element of C (Y); [X]. According to Lemma 40,
this would contradict our hypothesis.

Suppose t < min (p, d). Up to a change of the reference point z, and a decrease
of Uy, we suppose that the curves H, = {(1: hy, (2) : —x — yhy, (2)); z € Uy},
t+l<v<pandC, ={(1:8 (@) :—x—yg(@); zelUs,t+1<v<d
are smooths and mutually disjoint. We then denote ¢ the differential form defined
on the union C of these curves by ¢ |g, = dﬁ—é whent 4+ 1 < v < p and

¢lc, =—d $—(‘) when r + 1 < v < d. We note AR the Abel-Radon transform of
the current ¢ A [C]. By definition (see [15], [8] or [16]),

AR=d| Y - > e

1+1<v<p 1+1<v<g
But hypothesis imply,
Z hy — Z & = Np1—Ng1=R—Pr.
1+1<vsp 1+1<vsyg

AR is hence algebraic in the sense of [8] so that Theorem 1.2 of [8] applies and
gives in particular the existence of an algebraic curve A containing C. Since Q is
not contained in A, the connectedness of Q entails that none of the curves H,, is
contained in A and thus that {hl, R h,,} c {g1,...,ga}. Hence, Zp<v<d gy is
an algebraic function affine in x, which is impossible due to the reduction made

on (gj)lgjgd' So, t = min (p, d).
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Ift =d < p, the relation Ny | + P = Nj 1 + Py reads also Ay + -+ h)p =
Py — P € C(Y); [X] and the theorem of Wood implies, since Q is connected,
that Q is contained in an algebraic curve which is excluded by hypothesis. If
t=p<d, g1+ --+gi=Ng1—Np1+P—P € C)[X]whichis
excluded by to the reduction made on the family (g j).
Finally r = p =d, {hl,...,hp} ={g1,...,g4}and P| =

2. Suppose now that Q is contained in an algebraic curve @, minimal with respect
to inclusion. By hypothesis (0 : 1 : 0) ¢ Q, and Q\Q is bounded by —0 Q. Up to
a change of reference point z, and a decrease of Uy, we can suppose that for all
z € Uy, L; meets transversely Q We note then /111, .. ., h,A, the shock waves on
U, such that for all z € U,

(O\QNL,={(1:hy(z): —x —yhy (2)); p+1<v <P}

. I~ . de de =,
Since Q is an algebraic curve, Ng ; < &) Npni+ Nupyyooonp =) Npi+ Nyis

algebraic and affine in x. Hence

.....

Ngi+Ni=Ngi—Np1+ Ny, =P —R+Ng, €C(Y)[X]

The sum Ng 1 + ﬁl can be writtenzlgk@ ¢y fo where f1, ... f; are the mutu-
ally distinct functions of the union of {g,; 1 < v <g}and {h,; p+1<v < p}
and where ¢, = 2 if f; is in the intersection of this two sets and 1 other-
wise. As previously we can choose z, and U, in order that the functions f3
has images mutually disjoint. We can then introduce the form i which on

={1: /@ :—x—y/@); z€ U}isd%ifcx =1 andzdl'jj—éifcx =2.
The form Zlgxgs c,df is the Abel-Radon transform ¥ A [F] where F = UFj,.
This one being algebraic, the principal theorem of Henkin in [15] applies and gives
in particular the existence of an algebraic curve F and an algebraic form W such
that for all A, ¥ |Fx = andforall 7 € Uy, I?OLZ = UL, N F). Given that Qﬂ F

contains (@\Q) L{j L., Q CF.IfF =~ @, Q\f is an algebraic curve whose
zeUx

intersections with the L;, z € Uy, are parametrized with a sub-family of the g;.
This is impossible since because of hypothe51s d 75 0 and no sub- famlly of (g ])
has a sum algebraic in y and affine in x. Thus, Q F and when z € Uy, Q NL;is
the union of (Q\ Q) N L, and of {(1:8j (@) :—x —yg1(2)): 1 <j<d} This
entails{hl,...,hp}={g1,...,gd}andP1:R. O

7 Genus of a Riemann Surface with Boundary

Formula (71) of Theorem 44 links the genus g (M) of M to data associated with the
complex structure C, of (M, o). It is probably well known to specialists but we did
not find a reference for it. The link with the complex Dirichlet-Neumann operator 67
comes from Corollary 45. The formula so obtained is not yet effective because we do
not know the Euler characteristic of M. But as explained in Theorem 6 whose proof

@ Springer



The Two-Dimensional Inverse Conductivity Problem 2833

is given at the end of this section, Theorem 2 and Lemma 47 enable to deduce from
Corollary 45 an effective bound for the key number p of unknown shock waves sought
in the reconstruction process described in Sect. 2.

Let us recall that g (M) is by definition the genus of the compact manifold obtained
by gluing « (pairwise disjoint) conformal disks along the ¥ connected components of
bM. In [6], Belishev gives for a connected boundary the formula

2¢ (M) = 1g (T + (N ) T)

where T is the tangential derivation, N is the Dirichlet-Neumann operator of (M, Cy)
in its metric issue, that is the one which to u € C* (bM) associates the normal deriva-
tive along bM of the harmonic extension of u to M and J is the natural primitivization
operator defined on the space of function u whose integral over 9 M is 0. However, a
priori calculus of the rank of T + (NVJ )2 T is not easy and this formula is limited to
connected boundaries. To bypass this difficulty, [7] and [33] propose to use Dirichlet—
Neumann operators acting on forms. This gives simple formulas for g (M) when the
conductivity reduces to a complex structure but it is not clear that these operators have
physics meaning.

To produce formulas whose ingredients are computable from NJ, we use special
volume forms for M and special metrics for the bundle AYOT*M of the (1, 0)-forms
on M.

Definition 42 Let M be a Riemann surface with boundary and p a defining function
of bM, which means that p € C* (M R) issuch that p |y < 0, plpyy = 0 and
(dp), # 0 for any s € bM. Under these conditions, any section w of AP9T*M of
class CK, k > 1,onan open subset U of ‘M can be written in the form wo + pw where
wj, j =0, 1,1s a section of AP4 T*M on U of class C¥—/ the couple (wf)o), a)g)) =
(wo lunpm > @1 lunbam ) being the same for all (wg, w1) such that ® = wy + pwi. The
fact that a)E,l) vanishes does not depend of the choice of the chosen defining function

0. w is said tangent to bM when wl(jl) =0.

The existence of a decomposition w = wo + pw; follows from the fact that p
can be chosen as part of a system of real coordinates for M near bM. Uniqueness of
(a)g)), a)g)) proceed from the same reason and if p’ is another defining function of
bM, one can write p’ = Ap where A is a never vanishing function, so that vanishing

@1 _ (@) ()] :
ofw,” =Aly wp” and @, are simultaneous.

Note that when M is equipped with a Hermitian metric and p is the distance to

bM, a),(ol) = g—;) |pm 1s nothing else that the derivative of @ with respect to the unitary

vector directing the exterior normal to M at points of bM. The lemma below ensures
the existence of volume forms satisfying the hypothesis of this section’s main theorem.

Lemma 43 Let (M, o) be a conductivity structure. Then M admits a volume form of

class C? tangential to its boundary and whose restriction to bM is computable from
boundary data associated with (M, o).
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Proof As it is pointed out at the end of Sect. 3, we can design from boundary data a
smooth section y over bM of the bundle of volume forms of M. Let M be the double
of M (see the proof of Theorem 44 for a detailed construction), V' an arbitrary volume
form of class C2 on M and pE C°°(M R) such that M = {p < 0}, bM = {p = 0}
and (dp); # 0 for any s € bM. Using the Whitney extension theorem (see [3,4,
Proposmon 2.2]), one can constructs a section V of AT M of class C2 such that
1% lpm = o and V/§ ) = % s = 0. By continuity, there exists a neighborhood ¥ of

bM in M such that V |5 is a volume form. Choose x € C* (M, [0, 1])Squal tolina
neighborhood of bM in ¥ and whose support is containedin X. W = y V+(1 — x) V

is a volume form W of class C2 on M such that W;(Jl) = %—‘Z lobm = 0. O

Let (M, o) be a conductivity structure and . a volume form for M as in Lemma 43.
Denote % and A97*M the conjugation operator and the bundle of (1, 0)-forms asso-
ciated with (M, Cy). For simplicity of notation, we set in this section d = 97 = d — Fl
where d = 9 is the Cauchy—Riemann operator of (M, Cs). We equip AOT*M with
the metric 1* defined for s € M and &, B € ALOT*M by

Bt (@, B) = 20%P (68)

N

Denote by D the Chern connection of 4. A definition can be found in [9], [11, p.
73] or [36] but we recall here some basics. Consider a fixed non- vanishing smooth
section e of ALOT*M over an open set W of M, holomorphic in W N M, and let
le|,» = /I* (e, €) be the point wise norm of e with respect to h*. Then,

=0dInh* (e, e) (69)

is the connection form of D associated with the holomorphic frame e, the curvature
® =dn. = 5176 of D does not depend of e and if @ = re, A € C® (W), is any
smooth section of AI’OTS*M over W, Dw is the 1-form valued in A I’OTV”{,M given by
Dw = (dA) e + new. If w is also holomorphic in W N M, we get % = BT)‘ + 7. Note

that in particular, n, = %.

When o ‘T* 77 1s assumed to be known, so it is for 2« |;,5 when wis a (1, 0)-form

near bM . Indeed, thanks to Theorem 5, we know that w1th the nodal Riemann surface
M designed by Theorem 2, we can find smooth non-vanishing sections of A7}, M
which extends holomorphically to M by computing 67 u for adequate u € C* (bM).
For such an u and its C,-harmonic extension to M, du is a holomorphic frame for
AI’OT;{,M where W = {9u # 0} and (69) becomes

Dou
ou

AU A *0U
— ngi = 8 Inh* (9T, 97) = 9 In (”T*”> (70)
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Since the complex structure of M is known along bM and since 31 is holomorphic,
the Cauchy—Riemann equations enable to compute the normal derivative of du from
its tangential derivative. This means that in (70), derivatives coming from 9u are
computable on bM from available boundary data. As the volume form w is tangential
to bM, its normal derivative is zero on bM and its tangential derivative is known on
bM. Hence =<* D 3“ |pM » that is na7 |par , 1S computable from available boundary data,
what we had to check.

Note that for the computation of a connection form along b M, it is not mandatory to
use a holomorphic frame of the form 9. Indeed, let F : M — M be the normalization
of the nodal complex curve M of C? designed by Theorem 2 and let ¥ be an open
subset of b M. We can choose any non-vanishing smooth section ¢ of AI’OT)jk M
which extends into a (1, 0)-form ¢ smooth on W and holomorphic on W\bM where

W is an open subset of M containing y and such that W\bM C Reg M. Let W =

%
F-rovyu f_1 (y) where f = F ‘Z'//l\,,/l . Then(F ’l/vv\\blfwM) @, which we abbreviate

into F*@, is a holomorphic (1, 0)-form of (M, C,) which extends smoothly to W and
whose restriction to f ! (y) is F*g. The connection form n g+ = 3 In h* (F*¢, F*)
associated with F*@ is computable on bM from available boundary data as before.

Moreover, since F is holomorphic from (M, C ) to M, we can also make computation
on M C C? and then pull back the result to bM by F :

P A %09
nF*(;:F*E)ln—(p L
Fyp
where here d = d — 9 and 9 is the Cauchy—Riemann operator of M and x its Hodge
star operator.
We can now state Theorem 44. It is more about the Riemann surface (M, C,) than
(M, o).

Theorem 44 Let (M, o) be a conductivity structure and k the number of connected
components of bM. Choose a volume form p as in Lemma 43, equip the bundle
AVYOT*M of (1, 0)-forms of (M, Cy) with the metric h* defined by (68) and denote
by D its Chern connection. Then, when  is a Cy-meromorphic (1, 0)-form on M,
without pole or zero on bM and

1 Dw
— | TS =N@) - Ny @) +2-2g (M)~ (71)
278 Jay o

where N, (w) and Np (w) are respectively the number of zeros and of poles of w
counted with their multiplicity or order.

Remark Suppose that 11/ is a volume form for M with the same properties as .
The function A : M — IR{ such that u = e?* ' satisfies D, = D,, — A, which

gives faM L faM b — [oar Jiy @A (71) indicates then [, ji,04 = 0. To
check this a priori, let us consider a defining functlon p of bM. From the relation

on aou XN

3, = €"5,; + w55 which holds on bM, we get |bM 0. Equip M with a
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Hermitian metric and consider a smooth section (v, 7) of (Tb MM)2 such that for any
s € bM, (v, T5) is an orthonormal direct basis of T; M. Then, forall s € bM, (1) =
1 ((v)»)Y i (TA)g ) (r +iv} ) where ( T, g) is the dual basis of (v, 7). When s €
bM the fact that (s) = 0 indicates that (dA), € Rt and hence (v)»)s = 0, which
gives (1), = 5 (rx)s (rf — iv¥). Thus, ji, 00 = & (TA) T |y = 5 jiydAr. So,
Jpy 02 is exact and its integral over 0 M is zero.

With Formula (74), we obtain Corollary 45 as a particular case of Theorem 44.

Corollary 45 Hypothesis and notation remains as in Theorem 44. Let u € C*° (bM),
il its Cx-harmonic extension to M and q the number N, (0°%) of zeros of 3% U counted

with multiplicity where 3° = d — 3° and 3° is the Cauchy—Riemann operator of
(M, Cy). We assume that 3° i has no zero on bM. Then

1 Do%u

— —x (M). (72)

= 27 aM 990

Proof of Theorem 44 Let us begin by detailing a construction of the double Mof M
which for example can be found in [2]. Let U/ be an atlas of M. We use the following
notation : for v € {—1, +1}and X C M, X, =X x {v}and1f(s v) e M UM_q,
w(s,v) = s ; when s € bM, the points of M = M; U M_; of the form (s, —1)
and (s, 1) are 1dent1ﬁed and form the real curve y. M| is equipped with the complex
structure associated with the atlas U/; formed by the maps ¢ : U1 3 p — ¢ (7 (p))
where ¢ : U — C is arbitrary Y. For M_;, we use the atlas /_; of the maps
o—1 :U_1 2 p —p@@(p), e : U — C arbitrary in Y. One gets an atlas
U= Uy UU, UU_ giving to Ma complex structure by letting 4, be the set of maps
@p defined as follows : consider a boundary chart for M thatis ¢ € C* (U, C) where
U is an open subset of M such byM = U N bM is open in bM, ¢ (U\M) = Dt =
DN {Im >0} and ¢ (byM) =] — 1, 1[; ¢p is the map from Up, = Uy UU_; to C
obtained by setting ¢p (s, 1) = ¢ (s) and @5 (s, —1) = ¢ (s) forany s € U.

We define volume forms 1 and —1 on My and M_, by letting when ¢ : U — C
is a chart of M,

(‘Pl*ﬂl)z = (%M)z = )Wp (z)idzAndz, z€ U
(P—151=1)y = (Ps) 55 = Ap (W) idw ANdw, —w e U

This definition is obviously coherent for 1. Suppose ¢ : V — C is another chart of
M and Yt = Ayidz Adz.Denote @ : y (UNV) >z ¢ (xp—l (z)) the change of

chart from v to ¢. Hence, Ay, = |<I>/ |2A¢o¢>.The transition map fromy_; : V_; — C
tog_1 : U_1 — Cisthen the map ®_; definedony_; (Vo1 NU_1) = -y (UNV)
by

S ) =91 (W w) =t (v D). 1)

(v D) =-d ).
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Thus,

O e e I (=)
=y (D (=) | @' (—w)|* idw A dw
=y (—W) idw A dw,

which proves the coherency of the definition of 1_;.

The forms ) and w—_; continuously glue along y in a volume form & for M.
Indeed, consider a boundary chart ¢ : U — C and M and the chart g, : Up > C
defined as above. Set g, = Ayidz Adz . Whens € U, ¢, (s, —1) = ¢ (s) and
¢_1(s,—1) = —¢ (s). Hence, the transition map from ¢, to ¢_; is U — —U,
z +—> —z. Thus,

((@p)s 1), = Xy (2) idz A dZ = (@1511)7

forall z € ]D)_U]— 1, 1[ where D™ = DN{Im > 0}. Giventhat ¢ (by M) =]—1, 1,
this shows that 1 = 1 ateach point of y NU . Develop in a neighborhood in D U] —
1, 1[ the function A, under the form Ay 0 (x) + Ap 1 (X) ¥ + Ay 2 (X) y2 +o0 (yz). As
W is tangential to bM by hypothesis, 0 = A, 1 on bM and it appears that 1z is of class
c2.

One can now equip AI’OT[’,"I\//} , D€ M, with the metric ﬁi defined by

7 =2

p

foralla, B € A 1 ’OT;‘M . The Chern connection D of i* is thus of class C2. Consider a

meromorphic (1, 0)-form w on M without pole nor zero on bM . As recalled previously,
when ¢ is a local holomorphic frame for A'7*M and » = re, 22 = €% | 5 where
7 is the connection form of D associated with e. Since A has to be meromorphic with
same zeros and poles as w where the formula @ = Ae is valid and since d7 is the
curvature © of D, the Stokes formula, applied to the domains obtained by removing

from M arbitrary small conformal disks around the zeros and poles of w, gives

1 Dw 1 Dw

1 ~
— —_— = — =N — N - — 1S 73
27i Joy o 2i Jom, @ 2 (@) p @ 2 /Ml ! (73)

If one agrees that 5 f My i0= 2n / My i©®, (71) results from (73) and (74) because,

since M is compact and D of class C2, we get then 5 [,/ i0 =1L [-i0 =

%61(1\7) = g(ﬁ) — 1 where cl(ﬂ) is the first Chern class of M. A proof of the last
equality can be found for example in [35, Theorem 9.1 p. 284 of Ist ed.] or in [9, p.
319] where it is called Hurwitz’s formula.
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Denote j the natural symmetry of M with respect to y and ¢ the conjugation of
C. When ¢ : U — C is a chart of M, the expression of j in the charts ¢; and ¢_

isg_10jo(p) ! thatis —c )g Thus, j exchange the orientations of M| and M_;

/ O—-— / *®.
M M_q

Wheny : V — Cis achart of M, the map 1// Jj (V) — Cdefined by 1// Yoji is
also a chart of M. ThlS enables (see [2] for example) starting with a section w of A T*M
on a subset X of M, to define a section & of AT*M on J (X) by setting for any chart
vV - C of M such that VN X # J, (I/I*w)w = B (w) dw+o (w) dw when Y, =
adz + BdzZ and W € ¥ (V N X). In particular, o being a fixed section of AL0T*M
without zero on M, holomorphic on bM and of class C ®on M, w; = m*w (resp.
w_1 = @) is a section of AL OT*M without zero on X 1 (resp. X 1) holomorphlc
on X (resp. X_1) and of class C* on (resp. X_1). Setting f, = Ink (wy)?, we then
knows that

which gives

O |m, =ddf,, v==LI

Fix a chart ¢ : U — C and set gx0 = adz. Then (¢)), @1 = adz and (¢1), w—1 =
o (w)dw. Since * acts on (0, 1)-forms as multiplication by 5, one gets

(@), (@_1 A%TT) = & @dw A %a @) dw = |a @)[? %dw A dw

Set u = )\w%dz A dz. Inthe chart ¢_j, 1 writes as ¢_jxpt—1 = Ay (—2) %dz A dz.
@1 is also a chart defined on j (U;) = = U_ and the transition map from Q110 @_1 is
the map @ which to w € ¢; (U_1) = U associates the number ® (w) defined by

&) =i (-0~ ) = @ro ) (¢~ <M, 1)
=017 (—w). 1) =9 (¢~ (—w)) = —

Thus, forw e D~ U[—1, 1],

(@D 1)y = ((ﬁl) _1)*¢i1¢-1*u—1 = (rp-l o (@)_1)*90—1*#-1

_ (¢—1)* i = (q)—1>* (M (—7) %dz A dZ)

i —
= LAy (W) Edw Adw = (P11
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and hence

~ T C(@Ds (0 Ak e )]
(@D« (@-1)) (w) = o (w) = o

= (¢1)y (7 (1)) @)

We infer 7t (w—1) o @1 ™' = (w1) o (1) "' ocand 50 (§1), f-1 = (¢1), f1 o (which

gives also f_1 = fi o j). Derivating twice this relation and using dd = —dd, one
gets finally J*O = —O and hence / M 0= f I ©, which ends the proof provided
Lemma 46 is proved. O

Lemma46 Let M be a Riemann surface with boundary. Denote k_the number of
connected components of bM and M the double of M. The genus g(M) of M and the
Euler characteristic x ( ) of M are linked to the genus g (M) of M by the formulas

g(M)=2g(M)+k —1 & x (M) =2-2g (M) —«. (74)

Proof Consider atriangulation T of M. When « is in the set C of connected components
of y = bM, we denote X, the set of vertices of elements of 7 which lie on y and A,,
the one of the edges of elements of T which are contained in y. We set £” = U M

yeC
and A = Y 2,| = |A,| and assuming, up to a change of
triangulation, that the sets U are pairwise disjoint when y describes C,

teT, TNM, #2
one gets |Eb | = |Ab | Lastly, denotes by o (T') the number of vertices of 7', a (T) the
number of edges of 7', f (T') the number of faces of 7" and set M = M \M. Denotes

T the triangulation of M obtained by symmetrization of 7', that is the one obtained by

letting act on T the natural involution of M. T = T U T is then a triangulation of M.

Par definition of the Euler characteristic, one gets then
X(A?):a(f)—a(ﬂ-l—f(f)

[2 (0 (T) — Eb> + 2”] _ [2 (a (T) — Ab) + Ab] +27(T)

- [20 (T) — zb] - [Za (T) — Ab] +27(T)

=20 (T) —2a(T)+2f(T) =2x (M).

Thz/lpks to the usual theory of compact Riemann surfaces, x (]l’/f )=2-— 2g(ﬁ ). Thus,
gM)=1—-y ( ) Denotes M’ the surface obtained by gluing « conformal disks

along connected components of y. Then x (M ) =X (_ ) + « and by definition,
gM)=¢g (M’). Thus,

x(M)=x(M)—k=2-2¢g(M)—«
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and

g(M)=1—2—2g (M) —k)=2g M)+« — 1.

We need one last lemma before proving Theorem 6.

Lemma 47 Let Q be a nodal Riemann surface with boundary which is a quotient of
a Riemann surface with boundary S. For q € Sing 0, denote by v (q) the number
of branches of Q at q. Then the Euler characteristics of S and Q are linked by the
relation

x®=x(@+ Y. v@-D.

qeSing Q

Proof Let 7 be the natural projection of S onto Q and consider a triangulation 7' of
S such that any point of X = 7! (Sing @) is a vertex of 7. We can also assume
that 7 is sufficiently refined so that a same triangle of T contains at most one point
of X. Denote by V the set of vertices of T, E its sets of edges and F its set of faces.
Then 7 and T induce a natural triangulation 7, 7T of ‘0 whose set ..V of its vertices
st (VAX)U (Sing E) As any triangle of T contains at most one point of X, m, T
and T have the same number of

|7 V| = Im (VAX)| + [Sing Q| = [V| — |X]|
+[Sing Q[ =VI- Y w@-1D
geSing Q

Lemma 46 gives that x (S) = 1 — g (S) — «. Thus,

x(S)=1IVI—I|E| +|F|
=lmVI—IEI+IFl+ Y 0@-D=x(Q)+ Y. @-1.
geSing Q g€Sing Q
O

Proof of Theorem 6 Let j € {1,2} and q = Card Q; N {wo = 0}. Then, p; =
8§ +q> <8;+N; (0119). Thus, Formula (72) gives

- x (M)

As M is a nodal quotient of M by the nodal relation induced by F, we can apply
Lemma 47. So, x (_ ) > x (m and we get the sought inequality. As mentioned
after Theorem 2, M is computable from boundary data and as explained above in this
section with Formula (70), D a “" |pm 1s computable from available boundary data.
The proof is complete. O

1 D% i
PO+ — =
2mi oM 8"140
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