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Abstract
We study the geometry of domains in complete metric measure spaces equipped with a
doubling measure supporting a 1-Poincaré inequality. We propose a notion of domain
with boundary of positive mean curvature and prove that, for such domains, there is
always a solution to theDirichlet problem for least gradientswith continuous boundary
data. Here least gradient is defined as minimizing total variation (in the sense of BV
functions), and boundary conditions are satisfied in the sense that the boundary trace
of the solution exists and agrees with the given boundary data. This extends the result
of Sternberg et al. (J Reine AngewMath 430:35–60, 1992) to the non-smooth setting.
Via counterexamples, we also show that uniqueness of solutions and existence of
continuous solutions can fail, even in the weighted Euclidean setting with Lipschitz
weights.
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1 Introduction

The work of Giusti [11] showed a close connection between the curvature of the
boundary of a Euclidean domain Ω ⊂ R

n and the existence of a solution to the
Dirichlet problem related to the Plateau problem

div(∇u(1 + |∇u|2)1/2) = H(x, u(x)) for L n-a.e. x ∈ Ω,

with the graph of u a minimal surface (under the constraint that it has prescribed
mean curvature) in R

n+1. The work of Barozzi and Massari [5] studied a related
obstacle problem for BV energy minimizers, where the obstacle is required to have a
certain curvature condition analogous to that of [26].While the conditions in [26] only
considered domains whose boundary is of nonnegative (or positive) mean curvature,
the paper [5] imposed a more general mean curvature condition on the obstacle M ,
namely that if g ∈ L1

loc(Ω) and M ⊂ Ω , then M is of mean curvature at most g if

P(M,Ω ′) ≤ P(F,Ω ′) +
ˆ

M\F
g

whenever Ω ′ � Ω and F � M � Ω ′. The notion of nonnegative mean curvature
of ∂Ω (for Ω whose boundary need not be smooth) as given in [26] is not quite this
condition, but is similar. Following this, the work of [26] showed that the Dirichlet
problem related to the least gradient problem

div
∇u

|∇u| = 0 in Ω, T u = f on ∂Ω,

has a solution if and only if ∂Ω has nonnegative mean curvature (with respect to the
domain Ω) and ∂Ω is nowhere locally area-minimizing. Here T u is the trace of u
to ∂Ω (see the next section for its definition and discussion regarding its existence).
More general notions of Dirichlet problem such as minimizing the energy integral

I (u) = ‖Du‖(Ω)

and the energy functional

J (u) = ‖Du‖(Ω) +
ˆ

∂Ω

|T u − f | dH (1.1)

over all BV functions u on R
n (with u = f on R

n\Ω for the energy I ) were studied
for more general Euclidean domains, for example, in [8], see also the discussions
in [4,12,21,26]. Should we obtain a BV energy minimizer on Ω with the correct trace
f on ∂Ω , then this solution also minimizes I and J . Until the work of Sternberg,
Williams, and Ziemer [26], not much consideration was given to how the trace of the
minimizers fit in with the boundary data.

The recent development of first-order analysis in the metric setting (see [6,16]) led
to the extension of the theory of BV functions and functions of least gradient in the
metric setting, see [1–3,14,17,22] for a sample. The papers [14,18] studied minimizers
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of the energy functionals I and J in the metric setting. The goal of the present paper
is to study the existence of the strongest possible solutions to the Dirichlet problem in
the metric setting, namely that the solution obtains the correct prescribed trace value
on the boundary of the domain of interest.

In addition to Euclidean domains as mentioned above, curvature conditions for the
boundary of the domain also show up in the Heisenberg setting. Extending some of the
results regarding the Plateau problem from the Euclidean space (see for example [10,
12]) to the Heisenberg setting, the recent paper [23] studied a related minimization
problem in the Heisenberg setting, and there too it seems curvature of the boundary
plays a role. More specifically, in [23] it is shown that if Ω ⊂ R

2n is a bounded
Lipschitz domain and ϕ is a Lipschitz function on ∂Ω that is affine on the parts of
the boundary where the domain is not positively curved, then there is a function u on
Ω such that the subgraph of u in R

2n × R, equipped with the Heisenberg metric, is
of minimal boundary surface with the trace of u on ∂Ω equal to ϕ, and furthermore,
u is Lipschitz continuous on Ω . The work of [23] therefore is also concerned with
the minimal graph problem rather than the least gradient problem. Any discussion of
the Dirichlet problem for least gradient functions on domains in the Heisenberg group
itself should be governed by curvature of the boundary of the domain as well.

We propose an analog (Definition 4.1) of the notion of positive mean curvature
from the weak formulation of [26] to the metric setting where the measure is doubling
and supports a 1-Poincaré inequality. The main theorem of this paper, Theorem 4.10,
will demonstrate the existence of such a strong solution to the least gradient problem
for (globally) continuous BV boundary data provided the boundary of the domain is
of positive mean curvature in the sense considered here. We will also show in the
last section of this paper that outside of the Euclidean setting, continuity (inside the
domain) of the solution and uniqueness of the solution can fail; indeed, the examples
we provide can easily be modified to be a domain in a Riemannian manifold. We
point out that our definition of positive mean curvature of the boundary is somewhat
different from that of [26], see Remark 4.2 below.

The focus of [26] was Lipschitz boundary data; for such data, the authors prove
that the solutions obtained are also Lipschitz (up to the boundary). The examples
we provide here show that even with Lipschitz boundary data, Lipschitz continuity
of the solution is not guaranteed in the general setting (not even in the Riemannian
setting). Therefore, we broaden our scope to the wider class of all globally continuous
BV functions as boundary data. We also show that if Ω satisfies some additional
conditions, then it suffices to know that the boundary datum f is merely a continuous
function on the boundary ∂Ω , see Sect. 5.

The primary tool developed in the present paper, “stacking pancakes with minimal
boundary surface,” uses the idea that superlevel sets of functions of least gradient are
of minimal boundary surface (in the sense of [17]). In the Euclidean setting, this was
first proven by Bombieri et al. [7] and was used in that spirit in the work [26], which
inspired our work presented here. In the metric setting this minimality of the layers, or
superlevel sets, was proven in [14].While thismethod of “stacking pancakes” is similar
to the one in [26], the tools available to us in our setting are very limited. In particular,
we do not have the smoothness properties and tangent cones for boundaries of sets
of minimal boundary surfaces, and hence, the construction of “pancakes” (superlevel
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sets) given in [26] is not permitted to us. Furthermore, in the Euclidean setting, it is
shown in [26] that if two sets E1, E2 of minimal boundary surface such that E1 ⊂ E2
have intersecting boundaries, then the two boundaries coincide in a relatively open
set, and hence, it holds that E1 = E2. This property is used to show that the function
constructed from the “stack of pancakes” is necessarily continuous, and thus, issues of
measurability of the constructed functiondonot arise in theEuclidean settingof [26]. In
the metric setting, this property fails (see the examples constructed in the final section
of this paper). Consequentlywe had tomodify our construction of the solution function
from the “stack of pancakes” by considering a countable sub-stack of pancakes.

2 Notations and Definitions in Metric Setting

We will assume throughout the paper that (X , d, μ) is a complete metric space
endowed with a doubling measure μ that satisfies a 1-Poincaré inequality defined
below. We say that the measure μ is doubling on X if there is a constant CD ≥ 1 such
that

0 < μ(B(x, 2r)) ≤ CD μ(B(x, r)) < ∞

whenever x ∈ X and r > 0. Here B(x, r) denotes the open ball with center x and
radius r . Given measurable sets E, F ⊂ X , the symbol E � F will denote that
μ(E\F) = 0 or, in other words, χE ≤ χF μ-a.e.

A complete metric space with a doubling measure is proper, that is, closed and
bounded sets are compact. Since X is proper, given an open set Ω ⊂ X we define
L1
loc(Ω) to be the space of functions that are in L1(Ω ′) for every Ω ′ � Ω , that is,

when the closure of Ω ′ is a compact subset of Ω . Other local spaces of functions are
defined analogously.

Given a function u : X → R, we say that a nonnegative Borel-measurable function
g is an upper gradient of u if

|u(y) − u(x)| ≤
ˆ

γ

g ds (2.1)

whenever γ is a non-constant compact rectifiable curve in X . The endpoints of γ are
denoted by x and y in the above inequality. The inequality should be interpreted to
mean that

´
γ

g ds = ∞ if at least one of u(x), u(y) is not finite.
We say that X supports a 1-Poincaré inequality if there are positive constants CP ,

λ such that  
B

|u − u B | dμ ≤ CP r
 

λB
g dμ

whenever B = B(x, r) is a ball in X and g is an upper gradient of u. Here,
u B :=μ(B)−1

´
B u dμ=: fflB u dμ is the average of u on the ball B, and λB:=B(x, λr).

Throughout this paper, C will denote a constant whose precise value is not of
interest here and depends solely on CD , CP , λ, and perhaps on the domain Ω . As C
stands for such a generic constant, its value could differ at each occurrence.

123
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Let ˜N 1,1(X) be the class of all L1 functions on X for which there exists an upper
gradient in L1(X). For u ∈ ˜N 1,1(X), we define

‖u‖
˜N1,1(X) = ‖u‖L1(X) + inf

g
‖g‖L1(X),

where the infimum is taken over all upper gradients g of u. Now, we define an equiv-
alence relation in ˜N 1,1(X) by u ∼ v if and only if ‖u − v‖

˜N1,1(X) = 0.
The Newtonian space N 1,1(X) is defined as the quotient ˜N 1,1(X)/ ∼, and it

is equipped with the norm ‖u‖N1,1(X) = ‖u‖
˜N1,1(X). One can define analogously

N 1,1(Ω) for an open set Ω ⊂ X . For more on upper gradients and Newtonian spaces
of functions on metric measure spaces, see [6,16].

For u ∈ L1
loc(X), the total variation of u is defined by

‖Du‖(X) = inf

{

lim inf
i→∞

ˆ
X

gui dμ : N 1,1
loc (X)  ui → u in L1

loc(X)

}

,

where gui are upper gradients of ui .
One can define analogously ‖Du‖(Ω) for an open set Ω ⊂ X . If A ⊂ X is an

arbitrary set, we define

‖Du‖(A) = inf{‖Du‖(Ω) : Ω ⊃ A,Ω ⊂ X open}.

A function u ∈ L1(X) is in BV(X) (of bounded variation) if ‖Du‖(X) < ∞. For
such u, ‖Du‖ is a Radon measure on X , see [22, Theorem 3.4]. A μ-measurable set
E ⊂ X is of finite perimeter if ‖DχE‖(X) < ∞. The perimeter of E in Ω is

P(E,Ω):=‖DχE‖(Ω).

BV energy on open sets is lower semicontinuous with respect to L1-convergence, i.e.,
if uk → u in L1

loc(Ω) as k → ∞, where Ω ⊂ X is open, then

‖Du‖(Ω) ≤ lim inf
k→∞ ‖Duk‖(Ω) . (2.2)

The coarea formula in the metric setting [22, Proposition 4.2] says that if u ∈ L1
loc(Ω)

for an open set Ω , then

‖Du‖(Ω) =
ˆ ∞

−∞
P({u > t},Ω) dt, (2.3)

If ‖Du‖(Ω) < ∞, the above holds with Ω replaced by any Borel set A ⊂ Ω .
Given a set E ⊂ X , its Hausdorff measure of codimension 1 is defined by

H(E) = lim
r→0

inf

{ ∞
∑

i=1

μ(B(xi , ri ))

ri
: E ⊂

∞
⋃

i=1

B(xi , ri ), ri ≤ r

}

.
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It is known from [1, Theorem 5.3] and [3, Theorem 4.6] that if E ⊂ X is of finite
perimeter, then for Borel sets A ⊂ X ,

1

C
H(A ∩ ∂m E) ≤ P(E, A) ≤ CH(A ∩ ∂m E),

where ∂m E is the measure theoretic boundary of E , that is, the collection of all points
x ∈ X for which simultaneously

lim sup
r→0+

μ(B(x, r) ∩ E)

μ(B(x, r))
> 0 and lim sup

r→0+

μ(B(x, r)\E)

μ(B(x, r))
> 0.

Given a bounded domain Ω ⊂ X and a function u ∈ BV(Ω), we say that u has a
trace at a point z ∈ ∂Ω if there is a number T u(z) ∈ R such that

lim
r→0+

 
B(z,r)∩Ω

|u(x) − T u(z)| dμ(x) = 0. (2.4)

We know from [19, Theorems 3.4, 5.5] and [20] that if Ω satisfies all of the following
geometric conditions, then every function in BV(Ω) has a traceH-a.e. on ∂Ω:

1. there is a constant C ≥ 1 such that

μ(B(z, r) ∩ Ω) ≥ μ(B(z, r))

C

whenever z ∈ Ω and 0 < r < 2 diam(Ω);
2. there is a constant C ≥ 1 such that

1

C

μ(B(z, r))

r
≤ H(B(z, r) ∩ ∂Ω) ≤ C

μ(B(z, r))

r

whenever z ∈ ∂Ω and 0 < r < 2 diam(Ω);
3. Ω supports a 1-Poincaré inequality.

Furthermore, if Ω satisfies all the above conditions, then the trace class of BV(Ω)

is L1(∂Ω,H).

Definition 2.1 Let Ω ⊂ X be an open set, and let u ∈ BVloc(Ω). We say that u is of
least gradient in Ω if

‖Du‖(V ) ≤ ‖Dv‖(V )

whenever v ∈ BV(Ω) with {x ∈ Ω : u(x) �= v(x)} ⊂ V � Ω . A set E ⊂ Ω is of
minimal boundary surface in Ω , if χE is of least gradient in Ω .

Definition 2.2 Let Ω be a nonempty bounded domain in X with μ(X\Ω) > 0, and
let f ∈ BVloc(X). We say that u ∈ BVloc(X) is a weak solution to the Dirichlet
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problem for least gradients in Ω with boundary data f , or simply, weak solution to
the Dirichlet problem with boundary data f , if u = f on X\Ω and

‖Du‖(Ω) ≤ ‖Dv‖(Ω)

whenever v ∈ BV(X) with v = f on X\Ω .

Definition 2.3 Let Ω be a nonempty domain in X and f : ∂Ω → R. We say that
a function u ∈ BV(Ω) is a solution to the Dirichlet problem for least gradients in
Ω with boundary data f , or simply, solution to the Dirichlet problem with boundary
data f , if T u = f H-a.e. on ∂Ω and whenever v ∈ BV(Ω) with T v = f H-a.e. on
∂Ω we must have

‖Du‖(Ω) ≤ ‖Dv‖(Ω).

Note that solutions and weak solutions to Dirichlet problems on a domain Ω are
necessarily of least gradient in Ω .

Given a function u on X and x ∈ X , we define

u∨(x) = ap-lim sup
y→x

u(y):= inf

{

t ∈ R : lim
r→0+

μ(B(x, r) ∩ {u > t})
μ(B(x, r))

= 0

}

,

and

u∧(x) = ap-lim inf
y→x

u(y):= sup

{

t ∈ R : lim
r→0+

μ(B(x, r) ∩ {u < t})
μ(B(x, r))

= 0

}

.

Then, u∨(x) = u∧(x) for μ-a.e. x ∈ X by the Lebesgue differentiation theorem
provided that u ∈ L1

loc(X).
Points x for which u∨(x) = u∧(x) are said to be points of approximate continuity

of u. Let Su be the set of points x at which u is not approximately continuous. For
u ∈ BV(X), the set Su is of σ -finite codimension 1 Hausdorff measure, see [3,
Proposition 5.2]. If in addition u = χE for some E ⊂ X , then Su = ∂m E . By [3,
Theorem 5.3], the Radon measure ‖Du‖ associated with a function u ∈ BV(X)

permits the following decomposition:

d‖Du‖ = g dμ + d‖D j u‖ + d‖Dcu‖, (2.5)

where g dμ with g ∈ L1(X) gives the part of ‖Du‖ that is absolutely continuous with
respect to the underlying measure μ on X , and ‖D j u‖ is the so-called jump-part of u.
This latter measure lives inside Su and is absolutely continuous with respect toH�Su .
The third measure, ‖Dcu‖, is called the Cantor part of ‖Du‖ and does not charge sets
of σ -finite codimension 1 Hausdorff measure. In the literature, the set Su is called the
jump set of u, see [1–3].

It was shown in [14] that functions of least gradient, after a modification on a set
of measure zero, are continuous everywhere outside their jump sets.
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3 Preliminary Results Related toWeak Solutions

Throughout the rest of this paper, we will assume that X is a complete metric space
equipped with a doubling measure μ supporting a 1-Poincaré inequality, and Ω ⊂ X
is a nonempty bounded domain such that μ(X\Ω) > 0.

We will need the next lemma for functions of the form f = χF for sets F ⊂ X of
finite perimeter.

Lemma 3.1 For every f ∈ BVloc(X) such that ‖D f ‖(X) < ∞ there is a function
u f ∈ BVloc(X) that is a weak solution to the Dirichlet problem in Ω with boundary
data f .

Proof Let

I := inf{‖Du‖(Ω) : u ∈ BVloc(X) and u = f on X\Ω}.

Observe that 0 ≤ I ≤ ‖D f ‖(Ω) < ∞. Let {uk}∞k=1 be a sequence of functions in
BVloc(X) with uk = f on X\Ω such that ‖Duk‖(Ω) → I as k → ∞. Let B ⊂ X
be an open ball that contains Ω . In particular, we can choose B so that μ(B\Ω) > 0.
Hence, the 1-Poincaré inequality yields that

ˆ
B

|uk − f | dμ ≤ CB,Ω‖D(uk − f )‖(Ω) ≤ CB,Ω

(‖Duk‖(Ω) + ‖D f ‖(Ω)
)

≤ 3CB,Ω‖D f ‖(Ω)

for sufficiently large k. Note that the above holds true without subtracting (uk − f )B

on the left-hand side because uk − f = 0 on B\Ω , while μ(B\Ω) is positive,
see for example [17, Lemma 2.2]. Thus, the sequence {uk − f }∞k=1 is bounded in
BV(B) and hence is {uk}∞k=1. By the 1-Poincaré inequality and the doubling property
of μ, the space BV(B) is compactly embedded in Lq(B) for some q > 1, see for
example [13,16] and [22, Theorem3.7]. Therefore, there is a subsequence also denoted
uk , that converges in Lq(B) and pointwise μ-a.e. in B to a function u0 ∈ BV(B).
By the fact that each uk = f on X\Ω , we have that u0 = f on B\Ω and that the
extension of u0 by f to X\B yields a function in BVloc(X). We denote this extended
function by u f .

Finally, note by the lower semicontinuity of BV energy that

‖Du f ‖(Ω)+‖D f ‖(B\Ω) = ‖Du f ‖(B) ≤ lim inf
k→∞ ‖Duk‖(B) = I +‖D f ‖(B\Ω),

that is, ‖Du f ‖(Ω) ≤ I . Since u f = f on X\Ω and u f ∈ BVloc(X), it follows that
‖Du f ‖(Ω) = I . This completes the proof of the lemma. ��

In the following lemma, we will see that the Dirichlet problem in Ω with boundary
data χF for some set F ⊂ X of finite perimeter has a weak solution given as a function
χE for some set E ⊂ Ω ∪ F . Such a set E will be called a weak solution set.
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Lemma 3.2 Let F ⊂ X with P(F, X) < ∞. Then, there is a set E ⊂ X with
P(E, X) < ∞ such that χE is a weak solution to the Dirichlet problem in Ω with
boundary data χF .

Moreover, if uχF is a weak solution to the Dirichlet problem with boundary data
χF , then we can pick any t0 ∈ (0, 1] and choose E to be the set

Et0 = {x ∈ X : uχF (x) ≥ t0}.

Proof By Lemma 3.1, there is a weak solution uχF . Note that 0 ≤ uχF ≤ 1 on X by
the maximum principle proven in [14, Theorem 5.1].

For t ∈ (0, 1], let

Et = {x ∈ X : uχF (x) ≥ t}.

We will first show that χEt is a weak solution to the Dirichlet problem in Ω with
boundary data χF for all t ∈ (0, 1]\N for some negligible set N . We will prove that
N = ∅ later.

The coarea formula (2.3), together with the fact that P(F, X) < ∞, gives that

ˆ 1

0
P(Et , X) dt =

ˆ ∞

−∞
P(Et , X) dt = ‖DuχF ‖(X) ≤ P(F, X) < ∞,

whence P(Et , X) < ∞ for L 1-a.e. t ∈ (0, 1]. Moreover, χEt = χF on X \ Ω for
every t ∈ (0, 1]. Since uχF is a weak solution corresponding to the boundary data χF ,
we have ‖DuχF ‖(Ω) ≤ P(Et ,Ω) for every t ∈ (0, 1].

Let N = {t ∈ (0, 1] : ‖DuχF ‖(Ω) < P(Et ,Ω)}. Then by the coarea formula,

‖DuχF ‖(Ω) =
ˆ 1

0
P(Et ,Ω) dt =

ˆ
(0,1]\N

‖DuχF ‖(Ω) dt +
ˆ

N
P(Et ,Ω) dt

= (1 − L 1(N ))‖DuχF ‖(Ω) +
ˆ

N
P(Et ,Ω) dt .

Therefore, L 1(N )‖DuχF ‖(Ω) = ´
N P(Et ,Ω) dt , which can hold true only if

L 1(N ) = 0.
We have shown that χEt = χF on X\Ω and P(Et ,Ω) = ‖DuχF ‖(Ω) for every

t ∈ (0, 1]\N , whereL 1(N ) = 0. Therefore, for every t ∈ (0, 1]\N , the function χEt

is a weak solution with boundary data χF , and we may choose E to be the set Et .
Let us now show that N is in fact empty. Indeed, taking an arbitrary t ∈ (0, 1] and

a sequence tk ∈ (0, 1]\N such that tk ↗ t , we obtain that Et = ⋂

k Etk and hence
|χEtk

− χEt | → 0 in L1(X) as k → ∞. The lower semicontinuity of the BV energy

with respect to the L1-convergence yields that

P(Et ,Ω) + P(F, X\Ω) = P(Et , X)

≤ lim inf
k→∞ P(Etk , X) = lim inf

k→∞ P(Etk ,Ω) + P(F, X\Ω).
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Hence, P(Et ,Ω) ≤ ‖DuχF ‖(Ω). In other words, t /∈ N . ��
Lemma 3.3 Let F1 ⊂ F2 ⊂ X be sets of finite perimeter in X. Suppose that E1, E2 ⊂
X are chosen such that χE1 and χE2 are weak solutions to the Dirichlet problem in
Ω with boundary data χF1 and χF2 , respectively. Then, χE1∩E2 is a weak solution
corresponding to χF1 , while χE1∪E2 is a weak solution corresponding to χF2 .

Proof From [22, Proposition 4.7(3)], together with the fact that the perimeter measure
is a Borel regular outer measure, we know that

P(E1 ∩ E2,Ω) + P(E1 ∪ E2,Ω) ≤ P(E1,Ω) + P(E2,Ω). (3.1)

If P(E1 ∩ E2,Ω) > P(E1,Ω), then we would have P(E1 ∪ E2,Ω) < P(E2,Ω).
However, this would violate the minimality of P(E2,Ω) among all BV functions
that equal χF2 outside Ω since (E1 ∪ E2)\Ω = (F1 ∪ F2)\Ω = F2 \ Ω . Hence,
P(E1 ∩ E2,Ω) ≤ P(E1,Ω). Furthermore, (E1 ∩ E2)\Ω = (F1 ∩ F2)\Ω = F1\Ω
and hence χE1∩E2 is a weak solution to the Dirichlet problem with boundary data χF1 .

By a similar argument, we can rule out the inequality P(E1 ∪ E2,Ω) > P(E2,Ω)

as it would violate the fact that χE1 is a weak solution for the boundary data χF1 .
Therefore, P(E1 ∪ E2,Ω) ≤ P(E2,Ω) and we conclude that χE1∪E2 is a weak
solution to the Dirichlet problem with boundary data χF2 . ��
Remark 3.4 If F1 ⊂ F2 are as in Lemma 3.3 and if uχF1

and uχF2
are weak solutions

to the Dirichlet problem with boundary data χF1 and χF2 , respectively, then one can
use the coarea formula to prove that min{uχF1

, uχF2
} and max{uχF1

, uχF2
} are weak

solutions corresponding to boundary data χF1 and χF2 , respectively.

Definition 3.5 A (weak) solution χE to the Dirichlet problem with boundary data χF

is called a minimal (weak) solution to the said problem if every (weak) solution χ
˜E

corresponding to the data χF satisfies E � ˜E , that is, μ(E\˜E) = 0, or alternatively,
χE ≤ χ

˜E μ-a.e. in X .

Remark 3.6 It follows from Lemma 3.2 that if uχF is a weak solution and χE is the
minimal weak solution to the Dirichlet problem with boundary data χF , then uχF ≥ 1
a.e. on E .

Proposition 3.7 Let F ⊂ X be a set of finite perimeter in X. Then, there exists a
unique minimal weak solution χE to the Dirichlet problem in Ω with boundary data
χF .

Here, by uniqueness we mean that two minimal weak solutions agree μ-almost
everywhere in X .

Proof Let α = infE μ(E ∩ Ω), where the infimum is taken over all sets E such that
χE is a weak solution to the Dirichlet problem. Note that there is at least one such
weak solution by Lemma 3.2. Moreover, α < ∞ since μ(Ω) < ∞.

Let {Ek}∞k=1 be a sequence of sets such that χEk solves the Dirichlet problem and
μ(Ek ∩ Ω) → α as k → ∞. Let ˜E1 = E1 and ˜Ek+1 = Ek+1 ∩ ˜Ek , k = 1, 2, . . .. By
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Lemma 3.3, each of the sets ˜Ek gives a weak solution with the same boundary data
χF . Moreover, ˜Ek+1 ⊂ ˜Ek for all k = 1, 2, . . . and μ(˜Ek ∩ Ω) → α.

Let E = ⋂

k
˜Ek . Then, E\Ω = ⋂

k(
˜Ek\Ω) = F \ Ω . As X\Ω is open and

χE = χF = χ
˜Ek

in X\Ω , we have

P(E, X\Ω) = P(F, X\Ω) = P(˜Ek, X\Ω) for every k = 1, 2, . . . .

Since |χ
˜Ek

− χE | → 0 in L1(X), the lower semicontinuity of the BV energy (2.2)
yields that P(E, X) < ∞ and then also

P(E,Ω) = P(E, X) − P(F, X\Ω) ≤ lim inf
k→∞ P(˜Ek, X) − P(F, X\Ω)

= lim inf
k→∞ P(˜Ek,Ω) = inf{‖Du‖(Ω) : u = χF in X\Ω}.

Thus, χE is a weak solution to the Dirichlet problem. If E ′ is another weak solution,
then, by Lemma 3.3, so is E ∩ E ′, and hence α ≤ μ(E ∩ E ′ ∩ Ω) ≤ μ(E ∩ Ω) = α.
Therefore, μ(E\E ′) = 0, that is, E is a minimal weak solution. The uniqueness now
follows from the above argument, which yields that μ(E � E ′) = 0 whenever E ′ is
another minimal weak solution. ��
Lemma 3.8 Let F1 � F2 ⊂ X be sets of finite perimeter in X. Then, the minimal weak
solutions χE1 and χE2 to the Dirichlet problem in Ω with boundary data χF1 and χF2 ,
respectively, satisfy E1 � E2.

Proof By replacing F2 with F2 ∪ F1 if necessary (and in doing so, we only modify F2
on a set of measure zero), we may assume that F1 ⊂ F2. Let E1 and E2 be as in the
statement of the lemma. By Lemma 3.3, E1∩ E2 gives a weak solution to the Dirichlet
problem with boundary data χF1 . Uniqueness of the minimal weak solutions implies
that μ(E1\E2) = μ(E1\(E1 ∩ E2)) = 0. ��

We will see in Proposition 4.8 that for domains with boundary of positive mean
curvature, there is no need to distinguish between solutions and weak solutions for
boundary data χF . Hence, in such domains, there exists a unique minimal solution,
and furthermore, the minimal solutions exhibit the same nesting property for nested
boundary data as in Lemma 3.8.

It is, in fact, also possible to define a maximal (weak) solution χE to the Dirichlet
problem in Ω with boundary data χF by requiring that μ(˜E\E) = 0 for every other
(weak) solution χ

˜E of the said problem. For instance, the set E on the left in Figure 1
gives the maximal (weak) solution.

4 Domains in Metric Spaces with Boundary of Positive Mean
Curvature

In this section, we propose a notion of positive mean curvature of the boundary of a
domain Ω in the metric measure space X and study the Dirichlet problem for such
domains. As explained in the introduction, solutions to Dirichlet problem in the sense
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Fig. 1 Twoweak solutionsχE to the Dirichlet problem inΩ with boundary dataχF , where F is the (closed)
region filled with light red color. The figure on the right shows the minimal weak solution. Each of the arcs
of ∂Ω ∩ ∂ F and ∂Ω\∂ F covers the angle of π/2. Note also that the restriction χE

∣

∣

Ω
is a solution / the

minimal solution (Color figure online)

of Definition 2.3 might not always exist. Given an open set F ⊂ X that intersects ∂Ω ,
let uχF denote a generic weak solution to the Dirichlet problem with boundary data
χF . It is not necessarily true that T uχF = χF H-a.e. on ∂Ω . The classic example is
that of a square. If Ω = [0, 1] × [0, 1] ⊂ R

2, and if F is the disk centered at (1/2, 0)
with radius 1/10, then there is no function u of least gradient in Ω with trace χF on
∂Ω . Notice that the boundary of the square does not have positive mean curvature.

In the definition of positivemean curvature below (Definition 4.1),we tacitly require
that for each z ∈ ∂Ω and almost all 0 < r < r0, the function uχB(z,r)

exists. This is not
an onerous assumption, as seen from Lemma 3.1 and the fact that given x ∈ X , the
ball B(x, r) has finite perimeter in X for almost every r > 0. This latter fact follows
from the coarea formula (2.3).

The main question addressed in this paper is the following.

Question If Ω has a boundary ∂Ω with positive mean curvature (in the sense of
Definition 4.1 below), is it true that for every Lipschitz function f : ∂Ω → R, there
exists an extension of least gradient u : Ω → R such that f is the trace of u, that is,

lim
r→0

 
B(z,r)∩Ω

|u − f (z)|dμ = 0

forH-almost every z ∈ ∂Ω? In other words, does there exist a solution to the Dirichlet
problem in the sense of Definition 2.3 with boundary data f ? If such solutions exist,
can we guarantee that they will be continuous and unique?

We will show that indeed solutions do exist, and by counterexamples we give a
negative answer to the continuity and uniqueness questions.

The hypothesis of positive mean curvature of the boundary seems appropriate in
view of the results of [26] in the Euclidean setting, where existence, continuity and
uniqueness of solutionswere proven for boundedLipschitz domainsΩ ⊂ R

n provided
that:
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1. ∂Ω has nonnegative mean curvature (in a weak sense),
2. ∂Ω is not locally area-minimizing.

Moreover, if ∂Ω is smooth, then these two conditions together are equivalent to the
fact that the mean curvature of ∂Ω is positive on a dense subset of ∂Ω .

To talk about traces of solutions as referred to above, we need to know that such
traces exist. It is not difficult to construct Euclidean domains and BV functions on
the Euclidean domains that fail to have a trace on the boundary of the domain. In the
metric setting (which also includes the Euclidean setting), it was shown in [19] that
there exist traces of BV functions, as defined in (2.4), on the boundary of bounded
domains satisfying the conditions listed on page 5 of the present paper. In this paper,
we do not need to know that every BV function on the domain of interest has a trace
on the boundary. We are only interested in knowing whether the weak solutions we
construct have the correct trace.

Definition 4.1 Given a domain Ω ⊂ X , we say that the boundary ∂Ω has positive
mean curvature if there exists a non-decreasing function ϕ : (0,∞) → (0,∞) and a
constant r0 > 0 such that for all z ∈ ∂Ω and all 0 < r < r0 with P(B(z, r), X) < ∞
we have that u∨

χB(z,r)
≥ 1 everywhere on B(z, ϕ(r)). Since the weak solution uχB(z,r)

need not be unique, the above condition is required to hold for all such solutions.

Note that the requirement on allweak solutionsuχB(z,r))
in the definition above canbe

equivalently expressed as the condition that B(z, ϕ(r)) � EB(z,r), where EB(z,r) ⊂ X
gives the minimal weak solution to the Dirichlet problem with boundary data χB(z,r)

as given by Proposition 3.7.

Remark 4.2 Our definition of ∂Ω being of positive mean curvature is different from
that of [26]. In [26], it is required that

– for each x ∈ ∂Ω there is some ε0 > 0 such that whenever A � B(x, ε0) with
P(A,Rn) < ∞, we must have P(Ω,Rn) ≤ P(Ω ∪ A,Rn), and

– for each x ∈ ∂Ω there is some ε1 > 0 such that whenever 0 < ε < ε1, there is
some Aε � B(x, ε) such that P(Aε,R

n) is finite and P(Ω\Aε,R
n) < P(Ω,Rn).

In the case of ∂Ω being a smooth manifold, the two definitions coincide.

Euclidean balls of radii R > 0 satisfy the above condition, with ϕ(r) = r2
2R , as

can be seen via a simple computation. On the other hand, the square region Ω =
(0, 1) × (0, 1) ⊂ R

2 does not satisfy the criterion of positive mean curvature of
the boundary. Indeed, for z = (1/2, 0) and 0 < r < 1/2, the weak solution is
uχB(z,r)

= χB(z,r)\Ω . For the same reason, the domain obtained by removing a slice
from the disk also does not satisfy the criterion for positive mean curvature of the
boundary, see Fig. 2.

Example 4.3 Consider Ω = B(0, 1) ⊂ R
2 with the weighted measure dμ = w dL 2.

Define the following distance

d̂(x, y) = inf
γ

ˆ
γ

w1/2 ds,
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Fig. 2 (Euclidean) domain on the left has boundary of positive mean curvature, unlike the domain on the
right. The regions shaded light red in color are weak solution sets of the respective Dirichlet problems
(Color figure online)

where the infimum is taken over all the curves γ connecting x and y.
IfΩ is the disk with the Euclidean metric and weighted measure, then the boundary

will have positive mean curvature in the sense of Riemannian geometry but might not
be of positive mean curvature in our sense.

If we consider (Ω, d̂), then ∂Ω might not have positive mean curvature in the
Riemannian geometric sense either. Indeed, it will fail to be of positive mean curvature
if the weight function decreases rapidly toward the boundary of the disk.

If Ω is the “flattened disk” as in Fig. 2 and the weight function increases rapidly
toward the flattened part of the boundary of that domain, then even though this bound-
ary is not of positive mean curvature in the Riemannian sense, it would be of positive
mean curvature in our sense. Thus, the notion of curvature is intimately connected
with the interaction between the metric and the measure.

Example 4.4 Assume that X is the unit sphere S2, equipped with the spherical metric
and the 2-dimensional Hausdorff measure. Let x0 ∈ X , and consider ΩR = B(x0, R)

for 0 < R < π . We show that ΩR has boundary of positive mean curvature (in our
sense) precisely when 0 < R < π/2.

Let z ∈ ∂ΩR and 0 < r < diamΩR . Then weak solutions uχB(z,r)
of the Dirichlet

problem inΩR with boundary dataχB(z,r) have superlevel sets Et = {x : uχB(z,r)
(x) >

t} of minimal boundary surface. For any 0 < t < 1, ∂ Et consists of the shortest path
in ΩR which connects the two points in ∂ B(z, r) ∩ ∂ΩR .

Suppose that R < π/2. Then the shortest path γ in ΩR connecting the two
components (points) of ∂ B(z, r) ∩ ∂ΩR is part of a great circle. It is clear from
the geometry that there exists a positive function ϕ(r), independent of z, such that
B(z, ϕ(r)) ∩ ΩR ∩ γ = ∅. Hence, Et ⊃ B(z, ϕ(r)) for any 0 < t < 1, which implies
uχB(z,r)

≥ 1 on B(z, ϕ(r)). This shows that the boundary of ΩR has positive mean
curvature.

If instead R ≥ π/2, then the shortest path in ΩR connecting the two components
of ∂ B(z, r) ∩ ∂ΩR lies entirely in ∂ΩR . Hence, Et ∩ ΩR = ∅ for any 0 < t < 1.
This implies that the weak solution uχB(z,r)

is exactly χB(z,r)\ΩR . Hence, there is no
positive function ϕ(r) as in Definition 4.1, so ΩR is not of positive mean curvature.
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Observe that, for R ≥ π/2, the weak solution u = χB(z,r)\ΩR is not a solution.
Indeed, T u ≡ 0 �= χB(z,r) on ∂ΩR . In fact, there is no solution for such a boundary data
since inf{‖Du‖(ΩR) : T u = χB(z,r) on ∂ΩR} = H(B(z, r) ∩ ∂ΩR) is not attained
by any function u ∈ BV(ΩR).

To prove the main result of this paper, Theorem 4.10, we need the following tools.

Lemma 4.5 Assume that ∂Ω has positive mean curvature. Let F ⊂ X be a set of finite
perimeter in X. Suppose that x ∈ ∂Ω and 0 < r < r0 such that B(x, r)\Ω ⊂ F with
P(B(x, r), X) < ∞. Assume that uχF is a weak solution to the Dirichlet problem in Ω

with boundary data χF . Then, B(x, ϕ(r)) ⊂ {u∨
χF

≥ 1}, where ϕ : (0,∞) → (0,∞)

is the function of the condition of positive mean curvature from Definition 4.1.

Proof By Lemma 3.2, there is a set G ⊂ X of finite perimeter such that χG is a weak
solution to the Dirichlet problemwith boundary dataχB(x,r). Furthermore, Lemma 3.2
yields that E1:={x ∈ X : uχF ≥ 1} is a weak solution set corresponding to boundary
data χF .

By Lemma 3.3, χE1∩G is a weak solution corresponding to boundary data χB(x,r).
Then, B(x, ϕ(r)) � E1∩G by the definition of positive mean curvature. In particular,
B(x, ϕ(r)) � E1. Therefore, u∨

χF
≥ 1 everywhere on B(x, ϕ(r)). ��

Combining Lemma 3.2 with the lemma above tells us that there is at least one
weak solution set to the Dirichlet problem with boundary data χF and that every weak
solution set to this boundary data contains the ball B(x, ϕ(r)) whenever x ∈ ∂Ω and
0 < r < r0 such that B(x, r)\Ω ⊂ F .

Corollary 4.6 Suppose that ∂Ω is of positive mean curvature, and let F ⊂ X be open
with P(F, X) < ∞ and H(∂Ω ∩ ∂ F) = 0. Suppose that uχF is a weak solution to
the Dirichlet problem with boundary data χF . Then, T uχF = χF H-a.e. on ∂Ω .

Proof By the maximum principle [14, Theorem 5.1], we know that 0 ≤ uχF ≤ 1. For
every x ∈ ∂Ω ∩ F , there is rx > 0 such that B(x, rx )\Ω ⊂ F\Ω . Thus, we can apply
Lemma 4.5 to find a ball B(x, ϕ(rx )) such that u∨

χF
≥ 1 everywhere on B(x, ϕ(rx )).

Hence, T uχF (x) = 1.
Note that 1 − uχF is a weak solution to the Dirichlet problem with boundary data

χX\F . Hence, for every x ∈ ∂Ω\F , Lemma 4.5 provides us with a ball B(x, ϕ(rx ))

such that 1−u∧
χF

≥ 1, i.e., u∧
χF

≤ 0 everywhere on B(x, ϕ(rx )). Hence, T uχF (x) = 0.
Finally, even thoughwe lack any control of T uχF on ∂Ω∩∂ F , the proof is complete

since we assumed that H(∂Ω ∩ ∂ F) = 0. ��
Lemma 4.7 Suppose that H(∂Ω) < ∞. Let F ⊂ X be an open set such that H(∂Ω ∩
∂ F) = 0 and P(F, X) < ∞. If v ∈ BV(Ω) with 0 ≤ v ≤ 1 and T v = χF H-a.e. in
∂Ω , then the extension of v to X\Ω obtained by defining v = χF in X\Ω lies in
BVloc(X) and ‖Dv‖(∂Ω) = 0.

Proof Let v be extended to X\Ω by setting it to be equal to χF there. A priori, we
know only that v ∈ BV(Ω), and so we need to show that the extended function, also
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denoted v, belongs to BV(X). To this end, we employ the coarea formula. Recall that
0 ≤ v ≤ 1. For 0 < t < 1, let Et = {x ∈ X : v(x) > t}. Then

Et = (Et ∩ Ω) ∪ (F\Ω).

Observe that χF\Ω = χFχX\Ω , and hence P(F\Ω, X) < ∞ by the assumptions
that H(∂Ω) < ∞ (which implies that P(Ω, X) < ∞) and P(F, X) < ∞. Thus, in
order to gain control over P(Et , X), we only need to control P(Et ∩Ω, X). For every
ε > 0, we can cover the compact set ∂Ω by finitely many balls Bi , i = 1, · · · , k, with
radii ri < ε such that

(1) P(Bi , X) ≤ 2CD
μ(Bi )

ri
for each i ,

(2)
∑

i
μ(Bi )

ri
≤ CD(1 + ε)H(∂Ω).

We now show how to find such a cover.
An application of the coarea formula applied to the function u(x) = d(z, x) for

some fixed z ∈ X gives that if r > 0, then

μ(B(z, 2r)) ≥ ‖Du‖(B(z, 2r)) =
ˆ 2r

0
P({u > t}, B(z, 2r)) dt

≥
ˆ 2r

r
P(B(z, t), X) dt ≥ r P(B(z, r0), X) (4.1)

for some r0 ∈ [r , 2r ]. In order to find balls Bi of the desired properties, we cover ∂Ω

by finitely many balls B(zi , Ri ) with radius Ri < ε/2 so that

∑

i

μ(B(zi , Ri ))

Ri
< (1 + ε)H(∂Ω).

By (4.1), there is ri ∈ [Ri , 2Ri ] such that

P(B(zi , ri ), X) ≤ μ(B(zi , 2Ri ))

Ri
≤ 2CDμ(B(zi , ri ))

ri
.

Setting Bi = B(zi , ri ) yields that
∑

i
μ(Bi )

ri
≤∑i

μ(B(zi ,2Ri ))
Ri

≤ CD(1 + ε)H(∂Ω).

We now set Uε,t = (Et ∩ Ω)\⋃k
i=1 Bi . Note that as ri < ε,

μ

(

⋃

i

Bi

)

≤
∑

i

μ(Bi ) ≤ ε
∑

i

μ(Bi )

ri
≤ εCD(1 + ε)H(∂Ω) → 0 as ε → 0+.

Therefore χUε,t → χEt in L1(X) as ε → 0+. Since Uε,t is compactly contained in Ω ,
we can estimate
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P(Uε,t , X) = P(Uε,t ,Ω) ≤ P(Et ,Ω) +
k
∑

i=1

P(Bi , X)

≤ P(Et ,Ω) + C
k
∑

i=1

μ(Bi )

ri

≤ P(Et ,Ω) + C(1 + ε)H(∂Ω).

The lower semicontinuity of the BV energy with respect to L1-convergence gives that

P(Et ∩ Ω, X) ≤ lim inf
ε→0+ P(Uε,t , X) ≤ P(Et ,Ω) + C H(∂Ω).

Thus by the coarea formula,

‖Dv‖(X) =
ˆ 1

0
P(Et , X) dt ≤

ˆ 1

0
[P(Et ∩ Ω, X) + P(F\Ω, X)] dt

≤
ˆ 1

0
[P(Et ,Ω) + CH(∂Ω) + P(F\Ω, X)] dt

≤ ‖Dv‖(Ω) + CH(∂Ω) + P(F\Ω, X) < ∞.

Hence, v ∈ BV(X).
Finally, since T v = χF H-a.e. on ∂Ω , the jump set Sv of v satisfies H(∂Ω ∩

Sv\∂ F) = 0 and henceH(Sv∩∂Ω) ≤ H(∂ F ∩∂Ω) = 0. Therefore, ‖Dv‖(∂Ω) = 0,
recall the decomposition (2.5) and the discussion after it. ��

Nowwe compare weak solutions and solutions for bounded domains whose bound-
ary has positive mean curvature.

Proposition 4.8 Suppose that ∂Ω is of positive mean curvature and that H(∂Ω) is
finite. Let F ⊂ X be open with P(F, X) < ∞ and H(∂ F ∩ ∂Ω) = 0. Then, all weak
solutions uχF are also solutions, so that if v ∈ BV(Ω) with T v = χF H-a.e. on ∂Ω ,
then

‖DuχF ‖(Ω) ≤ ‖Dv‖(Ω).

Note that if f is a continuous BV function on X , then for almost every t ∈ R, the
set F = {x ∈ X : f (x) > t} satisfies the hypotheses of the above proposition. This
follows from the coarea formula and the fact that H(∂Ω) < ∞.

Proof For the sake of ease of notation, set u = uχF . Note that as ∂Ω is of positivemean
curvature, T uχF = χF H-a.e. in ∂Ω by Corollary 4.6. Moreover, by the maximum
principle [14, Theorem 5.1], we know that 0 ≤ u ≤ 1. Hence by Lemma 4.7 we have
u ∈ BVloc(X) (which comes for free as u is a weak solution) with ‖Du‖(∂Ω) = 0.

If v ∈ BV(Ω) with T v = χF H-a.e. in ∂Ω , then we can assume that 0 ≤ v ≤ 1,
since truncations do not increase BV energy and the truncation min{1,max{0, v}} also
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has the correct trace χF on ∂Ω . By Lemma 4.7 again we know that the extension of
v to X\Ω by χF gives a function in BVloc(X) with ‖Dv‖(∂Ω) = 0. Now,

‖Du‖(Ω) ≤ ‖Dv‖(Ω)

by the fact that u is a weak solution to the Dirichlet problem on Ω with boundary data
χF . Then,

‖Du‖(Ω) = ‖Du‖(Ω) − ‖Du‖(∂Ω) ≤ ‖Dv‖(Ω) − ‖Du‖(∂Ω)

= ‖Dv‖(Ω) − ‖Dv‖(∂Ω) = ‖Dv‖(Ω).

��
The previous proposition tells us that in using weak solutions we do obtain (strong)
solutions. The next proposition completes the picture regarding the relationship
between the notions of solutions and weak solutions to the Dirichlet problem, by
showing that the only way to obtain (strong) solutions is through weak solutions.

Proposition 4.9 Suppose that H(∂Ω) < ∞. Let F ⊂ X be an open set such that
H(∂Ω ∩ ∂ F) = 0 and P(F, X) < ∞. If v ∈ BV(Ω) is a solution to the Dirichlet
problem with boundary data χF , then the extension of v by χF outside Ω is a weak
solution to the said Dirichlet problem.

Proof Let v ∈ BV(Ω) be a solution to the Dirichlet problem with boundary data
χF . Then T v = χF H-a.e. in ∂Ω , and so by Lemma 4.7, the extension of v by
χF to X\Ω , also denoted v, lies in BVloc(X) with ‖Dv‖(∂Ω) = 0. In particular,
‖Dv‖(Ω) = ‖Dv‖(Ω).

Let E ⊂ X be a weak solution set for the boundary data χF . The existence of such
a set is guaranteed by Lemma 3.2. Then, T χE = χF H-a.e. in ∂Ω by Corollary 4.6.
Since v is a solution to the Dirichlet problem on Ω with boundary data χF , it follows
that

‖Dv‖(Ω) = ‖Dv‖(Ω) ≤ ‖DχE‖(Ω) ≤ ‖DχE‖(Ω).

The fact that χE is a weak solution to the Dirichlet problem on Ω with boundary data
χF tells us that v is also a weak solution, since ‖Dv‖(Ω) ≤ ‖DχE‖(Ω) ≤ ‖Dw‖(Ω)

whenever w ∈ BVloc(X) with w = χF on X\Ω . ��
If Ω ⊂ X is a bounded domain such that H(∂Ω) < ∞ and with ∂Ω of positive

mean curvature, then Propositions 4.8 and 4.9 together tell us that weak solutions to the
Dirichlet problem with boundary data χF are solutions to the said Dirichlet problem
and vice versa, provided that F ⊂ X is an open set of finite perimeter in X such that
H(∂Ω ∩ ∂ F) = 0. Hence, there is no need to distinguish between weak solutions and
solutions for such type of Dirichlet boundary data.

Nowwe are ready to prove themain theorem of this paper, the existence of solutions
for continuous boundary data. While [26] focuses on Lipschitz boundary data, we
consider the larger class, BVloc(X) ∩ C(X), of boundary data. The reason why [26]
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focused on Lipschitz data was because for such data, in the Euclidean setting, it was
also possible to show that there is a globally Lipschitz solution as well. We will show
in the final section of this paper that even in the most innocuous setting of weighted
Euclidean spaces, such Lipschitz continuity fails; therefore, there is no reason for us
to restrict ourselves to the study of Lipschitz boundary data.

Theorem 4.10 Suppose that H(∂Ω) < ∞ and that ∂Ω has positive mean curvature.
Let f ∈ BVloc(X) ∩ C(X). Then, there is a solution u ∈ BVloc(X) to the Dirichlet
problem in Ω . Furthermore,

lim
Ωy→x

u(y) = f (x)

whenever x ∈ ∂Ω . Moreover, u is a weak solution to the given Dirichlet problem.

Proof Recall from our standing assumptions, listed at the beginning of Sect. 3, that
Ω is bounded. Hence, we can find a ball B ⊂ X such that Ω ⊂ B, and we can find
a Lipschitz function ϕ : X → [0, 1] such that ϕ = 1 on B and ϕ = 0 on X\2B.
Replacing f with f ϕ in the above theorem will not change the class of solutions
inside Ω . Therefore, we will assume without loss of generality that f is compactly
supported and hence bounded, and f ∈ BV(X) ∩ C(X).

For t ∈ R, define Ft = {x ∈ X : f (x) > t}. Then, Ft is open by continuity of f .
Moreover, Ft = ∅ for sufficiently large t , while Ft = X for sufficiently small t .

As f ∈ BV(X), the coarea formula (2.3) yields that P(Ft , X) < ∞ for a.e.
t ∈ R. Since ∂ Ft ∩ ∂ Fs = ∅ whenever s �= t , the finiteness of H(∂Ω) implies that
H(∂Ω ∩ ∂ Ft ) = 0 for all but (at most) countably many t ∈ R. Let

J = {t ∈ R : P(Ft , X) < ∞ and H(∂Ω ∩ ∂ Ft ) = 0}.

For every t ∈ J , we can apply Proposition 3.7 to find a set ˜Et ⊂ X that is the minimal
weak solution set to the Dirichlet problem on Ω with boundary data χFt . We set
Et = {x ∈ X : χ ∨̃

Et
(x) > 0}. Then, χEt is also a minimal solution.

By Lemma 3.8, the family of sets {Et : t ∈ J } is nested in the sense that Es ⊂ Et

whenever s, t ∈ J with s > t , since Fs ⊂ Ft . As L 1(R\J ) = 0, we can pick a
countable set I ⊂ J so that I is dense in R. Now, we can define u : X → R by

u(x) = sup{s ∈ I : x ∈ Es}, x ∈ X ,

and show that it satisfies the conclusion of the theorem. Observe that u is measurable
because

{x ∈ X : u(x) ≥ t} =
⋂

Iσ<t

Eσ , t ∈ R,

i.e., all superlevel sets can be expressed as countable intersections of measurable sets.
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For t ∈ J , i.e., for a.e. t ∈ R, we have

Kt :={x ∈ X : u(x) > t} =
⋃

Is>t

Es ⊂ Et ⊂ {x ∈ X : u(x) ≥ t} =
⋂

Iσ<t

Eσ .

(4.2)
Since μ is σ -finite on X , we have μ

({x ∈ X : u(x) = t}) = 0 for all but (at most)
countably many t ∈ R. In particular, μ(Kt � Et ) = 0 for a.e. t ∈ J , whence for such
t , the set Kt is a weak solution set for the Dirichlet problem with boundary data χFt .
Considering the fact that χFt is one of the competitors in the definition of a solution
to a Dirichlet problem with boundary data χFt , the coarea formula yields that

‖Du‖(X) =
ˆ
R

P({u > t}, X) dt =
ˆ
R

P(Kt , X) dt

≤
ˆ
R

P(Ft , X) dt = ‖D f ‖(X) < ∞.

Since u = f in X\Ω , it follows that u ∈ BV(X). Note that up to this point, we did
not need the positive mean curvature property of ∂Ω .

Next, we show that limΩy→z u(y) = f (z) for z ∈ ∂Ω and that T u = f on ∂Ω .
To this end, note that if z ∈ ∂Ω and t ∈ I with t > f (z), then there is some rz,t > 0
such that B(z, rz,t ) ⊂ X\Ft . Then, B(z, ϕ(rz,t )) ∩ Ω ⊂ Ω\Et similarly as in the
proof of Corollary 4.6. Thus, u ≤ t on B(z, ϕ(rz,t )) ∩ Ω for each I  t > f (z).
Hence,

lim sup
Ωy→z

u(y) ≤ f (z).

Also, for every t ∈ I , t < f (z), there is ρz,t > 0 such that B(z, ρz,t ) ⊂ Ft . Hence,
B(z, ϕ(ρz,t )) ∩ Ω ⊂ Et for such t . Consequently, u ≥ t on B(z, ϕ(ρz,t )) ∩ Ω . Thus,

lim inf
Ωy→z

u(y) ≥ f (z).

Considering that limΩy→z u(y) = f (z), we can conclude that T u(z) = f (z) directly
from the definition of the trace, see (2.4).

Next, we show that u is a solution to the Dirichlet problem inΩ with boundary data
f . We have already proven that T u = f on ∂Ω . Let v ∈ BV(Ω) such that T v = f
H-a.e. on ∂Ω . Then, T χ{v>t} = χFt H-a.e. on ∂Ω for almost every t ∈ R. Since Kt

is a solution to the Dirichlet problem with boundary data χFt for a.e. t ∈ J , for such t
we can estimate P(Kt ,Ω) ≤ P({v > t},Ω). By the coarea formula, we obtain that

‖Du‖(Ω) =
ˆ
R

P(Kt ,Ω) dt ≤
ˆ
R

P({v > t},Ω) dt = ‖Dv‖(Ω).

Thus, u is a solution to the Dirichlet problem in Ω with boundary data f .
Finally, we show that u is a weak solution. This part also does not need the positive

mean curvature assumption of ∂Ω . Note that by construction of u and by the continuity
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of f , we have u = f on X\Ω . Assume that w ∈ BVloc(X) satisfies w = f in X\Ω .
In order to prove that u is a weak solution to the Dirichlet problem, we need to verify
that ‖Du‖(Ω) ≤ ‖Dw‖(Ω). Recall that for almost every t ∈ R, the set Kt gives a
weak solution set for the Dirichlet problem with boundary data χFt , see the discussion
following (4.2). In particular, P(Kt ,Ω) ≤ P({w > t},Ω). The coarea formula then
yields that

‖Du‖(Ω) =
ˆ
R

P(Kt ,Ω) dt ≤
ˆ
R

P({w > t},Ω) dt = ‖Dw‖(Ω) ,

which concludes the proof that u is a weak solution to the Dirichlet problem with
boundary data f . ��

It might seem at a first casual glance at the proof above that it suffices to assume
that the boundary data f are semicontinuous. The reader should note that this is
not the case; our proof does not work for non-continuous but semicontinuous f , for
we need openness of both { f > t} and { f < t} for all t ∈ R. This will fail for
non-continuous semicontinuous functions. It might be that the theorem holds also for
semicontinuous functions, but our method of proof will not work for them. The paper
of [25] also shows that even in the simple setting of the Euclidean plane, there are
functions f ∈ BV(R2) for which the (strong) solution to the Dirichlet problem for
least gradient in the Euclidean disk with boundary data f does not exist. Thus, it is
reasonable to restrict our attention to continuous boundary data.

Remark 4.11 A study of the proof of Theorem 4.10 gives the following generalization
of this theorem to a wider class of domains. Given a bounded domain Ω ⊂ X with
μ(X\Ω) > 0 and a point z ∈ ∂Ω , we say that ∂Ω has positive mean curvature at
z if there is a non-decreasing function ϕz : (0,∞) → (0,∞) and rz > 0 such that
u∨

χB(z,r)
≥ 1 on B(z, ϕz(r)) for every r ∈ (0, rz) with P(B(z, r), X) < ∞.

Now, suppose thatH(∂Ω) < ∞, I ⊂ ∂Ω , and that ∂Ω has positivemean curvature
at each z ∈ I , and suppose that f ∈ BVloc(X)∩ C(X). Then, there is a weak solution
u ∈ BVloc(X) to the Dirichlet problem in Ω with boundary data f such that for all
z ∈ I ,

lim
Ωy→z

u(y) = f (z).

Note that the planar domain

Ω = {(x, y) ∈ R
2 : x2 + y2 < 1, and |y| > x2 when x > 0}

has the property that ∂Ω has positive mean curvature at every z ∈ ∂Ω\{(0, 0)}.
Hence, even though ∂Ω does not have positive mean curvature, the conclusion of
Theorem 4.10 applies to each point in ∂Ω\{(0, 0)}. On the other hand, if ∂Ω is not
of positive mean curvature at some z ∈ ∂Ω , then it is possible to find a Lipschitz
function f on X and a weak solution u to the Dirichlet problem on Ω with boundary
data f such that limΩy→z u∧(y) either does not exist or is different from f (z). Thus,
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positive mean curvature of ∂Ω at a point z ∈ ∂Ω determines whether that point is a
regular point or not.

Remark 4.12 Given a Lipschitz function f defined on ∂Ω , we can apply the McShane
extension theorem and then use Theorem 4.10 to obtain a solution to the Dirichlet
problem in Ω with boundary data f .

It is in fact possible to further relax the assumptions on the boundary data provided
thatΩ satisfies some further geometric conditions. For such domains, we will show in
the next section that given f ∈ C(∂Ω), one can apply the results of [20] to construct
a bounded continuous BV extension of f to X so that Theorem 4.10 may be used.

Proposition 4.13 Under the assumptions of Theorem 4.10, every weak solution to the
Dirichlet problem in Ω with boundary data f is a solution to the said problem, and
conversely, every solution, when extended by f outside Ω , is a weak solution.

Proof Let Ft , Kt , and u be as in the proof of Theorem 4.10.
Let w be a weak solution to the Dirichlet problem in Ω with boundary data f .

Then, ‖Dw‖(Ω) = ‖Du‖(Ω). Define Gt = {x ∈ X : w(x) > t} for t ∈ R. Then,
χGt = χFt in X\Ω for every t ∈ R. In particular, P(Kt ,Ω) ≤ P(Gt ,Ω) for a.e.
t ∈ R since Kt is a minimal weak solution set for the boundary data χFt for a.e. t ∈ R,
as seen from the discussion following (4.2). By the coarea formula, we have

ˆ
R

P(Gt ,Ω) dt = ‖Dw‖(Ω) = ‖Du‖(Ω) =
ˆ
R

P(Kt ,Ω) dt .

Consequently, P(Gt ,Ω) = P(Kt ,Ω) for a.e. t ∈ R. Hence, Gt is a weak solution
set for the boundary data χFt for all such t ∈ R. Observe also that

P(Gt ,Ω) = P(Gt ,Ω) = P(Kt ,Ω) = P(Kt ,Ω)

for a.e. t ∈ R by Proposition 4.8 together with Lemma 4.7. In particular, invoking the
coarea formula yields that ‖Dw‖(Ω) = ‖Du‖(Ω).

Next, for x ∈ ∂Ω , if t ∈ R such that f (x) > t , then there is some r > 0 such
that B(x, r) ⊂ Ft . Then, B(x, ϕ(r)) ∩ Ω � Gt by Lemma 4.5, which allows us to
conclude that T w(x) ≥ t . It follows that T w ≥ f on ∂Ω and in fact,

lim inf
Ωy→x

w∧(y) ≥ f (x)

for every x ∈ ∂Ω . Reverse inequality follows in a similar manner. Therefore, w is a
solution to the Dirichlet problem for boundary data f since T w = T u = f in ∂Ω and
‖Dw‖(Ω) = ‖Du‖(Ω) as shown above, while u is a solution to the said problem.

Finally, let v ∈ BV(Ω) be a solution to the Dirichlet problem in Ω with boundary
data f . Let ṽ be defined as the extension of v to X by setting it equal to f outside
Ω . By Lemma 4.7, we see that P({ṽ > t},Ω) = P({v > t},Ω) for a.e. t ∈ R. The
coarea formula then yields that ṽ ∈ BVloc(X) and

‖Dṽ‖(Ω) =
ˆ
R

P({ṽ > t},Ω) =
ˆ
R

P({v > t},Ω) dt = ‖Dv‖(Ω).
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Since u is a solution to the Dirichlet problem with boundary data f , we obtain that

‖Dṽ‖(Ω) = ‖Dv‖(Ω) = ‖Du‖(Ω) ≤ ‖Du‖(Ω).

As u is also a weak solution to the Dirichlet problem with boundary data f , it follows
that so is ṽ. ��

Remark 4.14 In [18], the followingmodifiedminimization problemwas studied.Given
aLipschitz function f with a compact support in X , the goal therewas to find a function
u ∈ BV(Ω) such that

J+(u):=‖Du‖(Ω) +
ˆ

∂Ω

|T u − f | d P+(Ω, ·) ≤ J+(v)

for all v ∈ BV(Ω). If the domain Ω has finite perimeter and satisfies an exterior
measure density condition (that is, lim supr→0+ μ(B(x, r)\Ω)/μ(B(x, r)) > 0 for
H-a.e. x ∈ ∂Ω), as well as all three conditions required for the existence of a bounded
trace operator as listed on page 5, then the desired function u ∈ BV(Ω) can be
constructed by solving the Dirichlet problem for p-energy minimizers on Ω and then
letting p → 1+, see [18, Theorem 7.7]. In fact, the solution obtained this way belongs
to the global class BV(X) with u = f on X\Ω . The functional J+ is related to
the functional J defined in (1.1), but unlike there, the Radon measure P+ associated
with J+ is the internal perimeter measure of Ω . It was shown in [18, Theorem 6.9]
that P(Ω, ·) ≤ P+(Ω, ·) ≤ C P(Ω, ·) for some C ≥ 1. If, in addition to the above
conditions on Ω , the boundary ∂Ω has positive mean curvature, then we can use
Theorem 4.10 to find a weak solution u to the Dirichlet problem in Ω with boundary
data f . Then, by [18, Proposition 7.5],

‖Du‖(Ω) = ‖Du‖(Ω) +
ˆ

∂Ω

|T u − f | d P(Ω, ·) ≤ J+(u) ≤ J+(u) = ‖Du‖(Ω)

= ‖Du‖(Ω).

It follows that u is a weak solution to the Dirichlet problem in Ω with boundary data
f . Subsequently, by Proposition 4.13, u is a (strong) solution as well, that is, T u = f .
Therefore,

J+(u) = ‖Du‖(Ω) = ‖Du‖(Ω) = J+(u),

and so it follows that a (strong) solution to the Dirichlet problem in Ω with boundary
data f is also a minimizer of the functional J+.

In conclusion, the class of weak solutions, the class of strong solutions, and the
class of minimizers of the functional J+ coincide for domains Ω that satisfy all the
hypotheses given above.
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5 General Continuous Boundary Data

The main theorem of the paper, Theorem 4.10, assumes that the boundary data are
given as a restriction of a globally continuous BV(X) function to ∂Ω . In this section,
we will prove that under certain circumstances, every f ∈ C(∂Ω) can be extended to
a globally continuous BV function in the whole space X , and hence, Theorem 4.10
applies in such a case as well.

To this end, wewill slightly modify a construction from [20] to find a BV extension.

Further assumptions on Ω In order to obtain a bound on the total variation of the
extended function, one needs to assume thatH(∂Ω) < ∞,H�∂Ω is doubling on ∂Ω ,
and that the codimension 1 Hausdorff measure on ∂Ω is lower codimension 1 Ahlfors
regular, i.e., there is C > 0 such that

H(B(x, r) ∩ ∂Ω) ≥ C
μ(B(x, r))

r
(5.1)

for every x ∈ ∂Ω and 0 < r < 2 diam(∂Ω). On the other hand, apart from the last
theorem of this section, we do not need the assumption μ(X\Ω) > 0 from the list of
standing assumptions given at the beginning of Sect. 3.

The paper [20] further assumes that a localized converse of (5.1) holds true and
that μ satisfies a local measure density property, i.e., μ(B ∩ Ω) ≥ Cμ(B) whenever
B has center in Ω . These two properties are, however, used only to prove that the
trace of the extended function coincides with the given boundary data. Since we only
deal with continuous functions f , we will prove directly that the extended function is
continuous in X , and so we can get by without these additional assumptions.

Given a set Z ⊂ X and a (locally) Lipschitz function f : Z → R, we define

LIP( f , Z) = sup
x,y∈Z : x �=y

| f (y) − f (x)|
d(y, x)

.

When x is a point in the interior of Z ⊂ X , we set

Lip f (x) = lim sup
y→x

| f (y) − f (x)|
d(y, x)

.

Note that if f is a (locally) Lipschitz function on X , then Lip f is an upper gradient
of f ; see for example [15]. In particular, ‖D f ‖(X) ≤ ‖Lip f ‖L1(X).

By [16, Proposition 4.1.15], there is a countable collectionW = {B(p j,i , r j,i )} of
balls in X\∂Ω so that

–
⋃

j,i B j,i = X\∂Ω ,

–
∑

j,i χ2B j,i ≤ C ,

– 2 j−1 < r j,i ≤ 2 j for all i , and

– r j,i = 1
8 dist(p j,i , ∂Ω),

where the constant C depends solely on the doubling constant of μ.
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By [16, Theorem 4.1.21], there is a Lipschitz partition of unity subordinate to the
Whitney decomposition W , that is,

∑

j,i φ j,i = χX\∂Ω , 0 ≤ φ j,i ≤ χ2B j,i , and φ j,i

is C/r j,i -Lipschitz continuous.
Let f : ∂Ω → R be a Lipschitz continuous function. Given the center of a

Whitney ball p j,i ∈ X\∂Ω , we choose a closest point q j,i ∈ ∂Ω and define U j,i =
B(q j,i , r j,i ) ∩ ∂Ω . Then, we define a linear extension E f by setting

E f (x) =
∑

j,i

( 
U j,i

f (y) dH(y)

)

φ j,i (x), x ∈ X\∂Ω.

We can now proceed as in [20, Sect. 4] and build up a (nonlinear) extension for
general continuous boundary data.

Since f ∈ C(∂Ω), there is a sequence of Lipschitz continuous functions { fk}∞k=1
such that ‖ fk − f ‖L∞(∂Ω) < 2−k for k > 1 (by the Stone–Weierstrass theorem as
∂Ω is compact) and ‖ fk+1 − fk‖L1(∂Ω) ≤ 22−k‖ f ‖L1(∂Ω). For technical reasons, we
choose f1 ≡ 0. Then, we pick a decreasing sequence of real numbers {ρk}∞k=1 such
that:

– ρ1 < diam(Ω)/2,
– 0 < ρk+1 ≤ ρk/2, and
–
∑

k ρk LIP( fk+1, ∂Ω) ≤ C‖ f ‖L1(∂Ω).

This sequence of numbers can be used to define layers in X\∂Ω . Let

ψk(x) = max

{

0,min

{

1,
ρk − dist(x, ∂Ω)

ρk − ρk+1

}}

, x ∈ X\∂Ω.

Then, we define

Ext f (x) =
{

∑∞
k=2

(

ψk−1(x) − ψk(x)
)

E fk(x) when x ∈ X\∂Ω,

f (x) when x ∈ ∂Ω.

Note that supt(ψk−1 − ψk) = {x ∈ X : ρk+1 ≤ dist(x, ∂Ω) ≤ ρk−1}, and
n
∑

k=2

(

ψk−1(x) − ψk(x)
) = ψ1(x) − ψn(x) → ψ1(x)

for every x ∈ X\∂Ω as n → ∞.

Lemma 5.1 Let f ∈ C(∂Ω) and z ∈ ∂Ω . Then,

lim
X\∂Ωx→z

Ext f (x) = f (z).

Proof Fix z ∈ ∂Ω and ε > 0. For m ∈ N with m ≥ 2 and x ∈ X\Ω with
dist(x, ∂Ω) < ρm , we see that
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|Ext f (x) − f (z)| ≤
∣

∣

∣

∣

∞
∑

k=m

(

ψk−1(x) − ψk(x)
)(

E fk(x) − f (z)
)

∣

∣

∣

∣

≤
∞
∑

k=m

(

ψk−1(x) − ψk(x)
)∣

∣E fk(x) − f (z)
∣

∣ .

Suppose that x ∈ 2B j,i for some ball B j,i = B(p j,i , r j,i ) ∈ W with q j,i being a
closest point to p j,i in ∂Ω . Then,

8r j,i = d(p j,i , q j,i ) = dist(p j,i , ∂Ω) ≤ d(p j,i , z) ≤ d(p j,i , x)

+ d(x, z) < 2r j,i + d(x, z).

Hence, r j,i < 1
6d(x, z). Thus,

d(z, q j,i ) ≤ d(z, x) + d(x, p j,i ) + d(p j,i , q j,i ) < d(z, x)+2r j,i +8r j,i <
8

3
d(z, x).

Consequently, every y ∈ U j,i = B(q j,i , r j,i ) ∩ ∂Ω satisfies d(z, y) ≤ 17
6 d(z, x).

As f is continuous, there is δ > 0 such that | f (y) − f (z)| < ε whenever y ∈ ∂Ω

with d(z, y) < δ. In particular, if x ∈ 2B j,i and d(z, x) < 6
17δ, then | f (y)− f (z)| < ε

whenever y ∈ U j,i . Hence, we obtain for every x ∈ B(z, 6
17δ)\∂Ω that

|E fk(x) − f (z)| ≤
∑

j,i

 
U j,i

| fk(y) − f (z)| dH(y) φ j,i (x)

≤
∑

j,i

 
U j,i

(| fk(y) − f (y)| + | f (y) − f (z)|) dH(y) φ j,i (x)

≤
∑

j,i

(‖ fk − f ‖L∞(∂Ω) + ε
)

φ j,i (x)

= ‖ fk − f ‖L∞(∂Ω) + ε.

Therefore, if d(x, z) < min{ρm, 6
17δ}, we have that

|Ext f (x) − f (z)| ≤
∞
∑

k=m

(

ψk−1(x) − ψk(x)
)(‖ fk − f ‖L∞(∂Ω) + ε

)

≤ sup
j≥m

(‖ f j − f ‖L∞(∂Ω) + ε
)

∞
∑

k=m

(

ψk−1(x) − ψk(x)
)

≤ sup
j≥m

‖ f j − f ‖L∞(∂Ω) + ε .
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Choosing m > 1 such that 2−m < ε then yields for x ∈ B(z,min{ρm, 6
17δ})\∂Ω that

|Ext f (x) − f (z)| ≤ sup
j≥m

‖ f j − f ‖L∞(∂Ω) + ε < 2−m + ε < 2ε,

which completes the proof. ��
Proposition 5.2 For f ∈ C(∂Ω), we have Ext f ∈ C(X) ∩ BV(X). Moreover, Ext f
is compactly supported and

‖Ext f ‖L∞(X) ≤ ‖ f ‖L∞(∂Ω) + 1 and

‖D Ext f ‖(X) ≤ C
(

1 + H(∂Ω)
)(‖ f ‖L1(∂Ω) + ‖ f ‖L∞(∂Ω) + 1

)

.

Proof Ext f is locally Lipschitz in X\∂Ω by its construction. Lemma 5.1 shows
that Ext f is continuous on X . The fact that Ext f is compactly supported follows
from supt Ext f ⊂ suptψ1, which is bounded and hence compact. The estimate
‖Ext f ‖L∞(X) ≤ ‖ f ‖L∞(∂Ω)+1 follows directly from the definition of Ext f together
with the requirements on the functions fk that went into its definition.

It follows from [20, Proposition 4.2] that Ext f ∈ BV(X\∂Ω) with the estimate

‖Lip(Ext f )‖L1(X\∂Ω) ≤ C
(

1 + H(∂Ω)
)‖ f ‖L1(∂Ω). (5.2)

Fix n ∈ N. We can cover ∂Ω by finitely many balls {D� : � = 1, 2, . . .} of radii
ρ� < 1

n so that

∑

�

μ(D�)

ρ�

< H(∂Ω) + 1

n
.

Let

ηn(x) = min

{

1,
dist(x, D�)

ρ�

: � = 1, 2, . . .

}

, x ∈ X .

Then,

Lip ηn ≤
∑

�

1

ρ�

χ2D�\D�
.

Set Fn = ηn Ext f . Since Fn = 0 in a neighborhood of ∂Ω , it follows that Fn is
Lipschitz continuous. The Leibniz rule for (locally) Lipschitz functions yields that

Lip Fn ≤ ηn Lip(Ext f ) + |Ext f |Lip ηn

≤ χX\⋃� D�
Lip(Ext f ) + (‖ f ‖L∞(∂Ω) + 1)

∑

�

χ2D�\D�

ρ�

.

123



Domains with Positive Mean Curvature and Dirichlet Problem for Least Gradient 3203

Thus

‖DFn‖(X) ≤
ˆ

X
Lip Fn dμ

≤ ‖Lip(Ext f )‖L1(X\∂Ω) + (‖ f ‖L∞(∂Ω) + 1)
∑

�

μ(2D�\D�)

ρ�

≤ C
(

1 + H(∂Ω)
)‖ f ‖L1(∂Ω) + C2

D(‖ f ‖L∞(∂Ω) + 1)

(

H(∂Ω) + 1

n

)

by (5.2).
Direct computation shows that Fn → Ext f in L1(X) as n → ∞. The lower

semicontinuity of BV energy as in (2.2) then implies that

‖D(Ext f )‖(X) ≤ lim inf
n→∞ ‖DFn‖(X)

≤ C
(

1 + H(∂Ω)
)

(‖ f ‖L1(∂Ω) + ‖ f ‖L∞(∂Ω) + 1).

��
Recall that we assume Ω and X to satisfy all the standing assumptions listed in

Sect. 3 and the further assumptions listed at the beginning of the current section.

Theorem 5.3 Suppose that ∂Ω has positive mean curvature. Let f ∈ C(∂Ω). Then,
there is a function u ∈ BV(Ω) that is a solution to the Dirichlet problem in Ω with
boundary data f . Furthermore,

lim
Ωx→z

u(x) = f (z)

whenever z ∈ ∂Ω .

Proof By Proposition 5.2, there is a bounded function Ext f ∈ C(X) ∩ BV(X) such
that f = (Ext f )

∣

∣

∂Ω
. Hence, we can apply Theorem 4.10 to the boundary data Ext f .

��

6 Counterexamples

Unlike in [26], solutions to the Dirichlet problem may fail to be continuous even if
the boundary data are Lipschitz continuous. Moreover, uniqueness of the solutions
cannot be guaranteed either. In this section, we illustrate these issues with a series of
examples in the plane with a weighted Lebesgue measure dμ = w dL 2 on a domain
Ω ⊂ R

2. The two principal examples are Examples 6.6 and 6.8 with continuous
weights w, the first demonstrating the failure of continuity of the solution all the way
up to the boundary, and the second demonstrating non-uniqueness. To make these two
examples easier to visualize, we also provide preliminary examples with piecewise
constant weights, giving simpler illustrations of discontinuity and non-uniqueness.
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In the settings considered in this section, sets whose characteristic functions are
of least gradient have boundaries which are shortest paths with respect to a weighted
distance. Hence, we first investigate shortest paths. This is the aim of the next subsec-
tion. Once this is done, we continue on in the subsequent subsection to describe the
examples.

6.1 Minimal Perimeter of Sets inWeighted Euclidean Setting, and Length with
Respect toWeights

Suppose w > 0 is a continuous weight onR2 for which dμ = w dL 2 is doubling and
satisfies a 1-Poincaré inequality. According to Corollary 2.2.2 and Theorem 3.2.3 of
[9], if E ⊂ Ω is measurable, then

Pw(E,Ω) =
ˆ

Ω∩∂m E
w dH1,

where Pw indicates perimeter with respect to μ and ∂m E is the measure theoretic
boundarywith respect to dL 2.While someof theweights considered in this section are
not continuous, they are piecewise continuous, and the discontinuity set is contained in
a piecewise smooth 1-dimensional set, where theweightwill be lower semicontinuous.
Hence, a simple argument shows that the above-stated conclusion of [9] holds here as
well.

For a weight w on R2 and a Lipschitz path φ : [0, 1] → R
2, the weighted length of

φ is

I (φ,w):=
ˆ 1

0
|φ′(t)|w(φ(t)) dt .

By the discussion above, this weighted length is the perimeter measure of the set
whose boundary is given by the trajectory of φ; note that such φ is injective L 1-a.e.
in [0, 1]. In this setting, the shortest path is one that minimizes weighted length. For
every open set G ⊂ Ω where the weight function w is constant and each set E of
minimal boundary surface, the connected components of ∂m E ∩ G are straight line
segments. This follows because the shortest paths (with respect to weighted length)
inside G are Euclidean geodesics.

We next consider a simple weight.
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Example 6.1 (Ibn Sahl–Snell’s law).

First suppose w1, w2 > 0 and 0 < y1 < y2. Let w be a weight function with
w(x, y) = w1 if −y1 ≤ y < 0 while w(x, y) = w2 if −y2 < y < −y1. We seek the
shortest path with respect to μ joining (0, 0) to a point (x2,−y2). Since the weight is
piecewise constant, the shortest path is the concatenation of line segments L1 and L2
in the regions −y1 < y < 0 and −y2 < y < y1, respectively. If these lines meet the
line y = −y1 at a point (x,−y1), then the weighted length is

d(x) = w1

√

x2 + y21 + w2

√

(

x − x2
)2 + (y2 − y1

)2
.

The derivative of this length is then

d ′(x) = w1x
√

x2 + y21

+ w2(x − x2)
√

(x − x2)2 + (y2 − y1)2
.

Let θ1 and θ2 be the acute angles L1 and L2 make with the vertical at (x,−y1). Let

A1 and A2 be the Euclidean lengths of L1 and L2, that is, A1 =
√

x2 + y21 and

A2 = √(x − x2)2 + (y2 − y1)2. Then the equation d ′(x) = 0 gives

w1A1 sin(θ1)

A1
− w2A2 sin(θ2)

A2
= 0.

123



3206 P. Lahti et al.

Either θ1 = θ2 = 0 or rearranging gives the Ibn Sahl–Snell Law [24]:

w1

w2
= sin(θ2)

sin(θ1)
.

Now suppose 0 < y1 < y2 < · · · < yn and w is a weight with w(x, y) = wk

if −yk < y ≤ −yk−1. We seek the shortest path joining (0, 0) to a point (xn,−yn).
This is a concatenation of lines L1, . . . , Ln , where Lk is the segment in the region
−yk < y < −yk−1. Let θk be the acute angle the line Lk makes with the vertical.
Applying the previous case gives

sin(θk)

sin(θk−1)
= wk−1

wk
for 2 ≤ k ≤ n.

Hence,

sin(θn)

sin(θ1)
= sin(θn)

sin(θn−1)
· sin(θn−1)

sin(θn−2)
· · · sin(θ2)

sin(θ1)
= wn−1

wn
· wn−2

wn−1
· · · w1

w2
= w1

wn
.

The situation is similar for weights which linearly interpolate between two values.

Example 6.2 (Ibn Sahl–Snell’s law for continuous weights) Let us suppose that 0 <

z1 < z2 < z3 and w is a weight with w(x, y) = w1 for −z1 < y < 0, w(x, y) = w2
for −z3 < y < −z2, and

w(x, y) = w1

(

y + z2
z2 − z1

)

− w2

(

y + z1
z2 − z1

)

for −z2 < y < −z1. We seek the path γ which minimizes the weighted length
I (φ,w), over Lipschitz paths φ with φ(0) = 0 and φ(1) = (x3,−z3) for a fixed point
x3.

One can choose a natural family of weights wn of the type considered in Exam-
ple 6.1, agreeing with w for y > −z1 and y < −z2, with wn → w uniformly. Choose
Lipschitz curves fn : [0, 1] → R

2 which minimize I (φ,wn) among Lipschitz curves
φ with φ(0) = 0 and φ(1) = (x3,−z3). Then I ( fn, wn) ≤ I (φ,wn) for any competi-
tor φ. The curves fn converge to a Lipschitz curve f joining the desired points and
I ( f , w) ≤ I (φ,w) for any competitor φ, so f minimizes the weighted length with
respect to w.

Since w and wn agree and are constant for y > −z1 and y < −z2, the path f
consists of straight lines L1 and L2 in those regions. Applying Example 6.1 to each
wn and letting n → ∞, we see that if θ1 and θ2 are the acute angles made between
the vertical and L1, L2, respectively, then

sin(θ2)

sin(θ1)
= w1

w2
,

regardless of what happens in the region −z2 < y < −z1.
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6.2 Examples of Discontinuity and Non-uniqueness

We now illustrate the failure of continuity and uniqueness of solutions. In a series of
examples, we consider the domain Ω = B(0, 1) in the Euclidean plane R2 endowed
with various weighted Lebesgue measures of the form dμ = w dL 2.

In Examples 6.3–6.8, Dirichlet boundary data are defined as f (x, y) = y + 1, i.e.,
the vertical distance from the lowest point of ∂Ω .

We applied the main idea of the proof of Theorem 4.10 to construct a function
u : Ω → [0, 2] that is a solution to the Dirichlet problem in Ω with boundary data
f . For each t ∈ [0, 2], we constructed a set Et of minimal boundary surface in Ω so
that T χEt = χ{ f >t} on ∂Ω . Moreover, we ensured that the sets Et are nested so that
Et ⊂ Es whenever s < t . In the proof of Theorem 4.10, the desired nesting of the
sets Et was achieved by choosing minimal weak solution sets for χ{ f >t}. However,
that need not be the only way to obtain the nesting to be able to construct a solution
(cf. commentary on maximal weak solution sets at the end of Sect. 3).

The principal part of the work in these examples is to identify ∂ Et , as Et is the
connected component ofΩ lying above ∂ Et . Since Et is of minimal boundary surface,
∂ Et is the shortest path that connects the points of ∂{z ∈ ∂Ω : f (z) > t}, which
turns out to be the points of ∂Ω with y-coordinate equal to t − 1. For piecewise
constant weights w, the superlevel set (which is of minimal boundary surface) has as
its boundary a concatenation of straight line segments in Ω . The weighted length of
this concatenated path is the shortest among all paths in Ω with the same endpoints.
This follows from the Ibn Sahl–Snell law described above.

Discontinuous Solutions for the Least Gradient Problem: The Eye of Horus

Example 6.3 Having fixed a constant α > 1, let the weight be given by

w(x, y) =
{

α if |x | + |y| < 1
2 ,

1 otherwise.

For the sake of brevity, let K = {(x, y) ∈ Ω : |x | + |y| < 1
2 }.

(a) First, we consider the case when α ≥ 3/
√
5.

We start by finding the superlevel set E1 of the solution, which corresponds to the
value of the boundary data f (x, y) = y + 1 at (−1, 0) (or equivalently at (1, 0)). The
boundary of this superlevel set is a path obtained as a concatenation of line segments
in Ω . If the line segment from (−1, 0) intersects the left-hand side of the boundary
of K at the point (t − 1/2, t) for some 0 < t < 1/2, then the path continues inside
K . By considerations of symmetry, it is clear that the part of the path inside K is then
parallel to the x-axis and then exits K at the point (1/2 − t, t) to continue on to the
point (1, 0). In this case, the weighted length of this path, and hence the perimeter
measure of the superlevel set, is
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Fig. 3 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.3 (a) are shown on the left. A graph of
the solution u constructed by stacking the sets Et as in Theorem 4.10 is shown on the right (Color figure
online)

g(t) = 2

√

t2 +
(

t + 1

2

)2

+ α(1 − 2t).

Note that

g′(t) = 4t + 1
√

t2 + (t + 1
2

)2
− 2α,

and if α ≥ 3/
√
5, then g′(t) < 0 for all t ∈ (0, 1/2). Thus, one reduces weighted

length by moving the point where the path intersects K up to (0, 1/2). Similarly, if the
path intersects the boundary of K at (−t − 1/2, t) for some t < 0, then the weighted
length is reduced by moving the point where the path intersects K down to (0,−1/2).

Hence, the boundary of the superlevel set E1 of the solution is given by two paths.
Each path is a concatenation of two line segments, one connecting (−1, 0) to (0,±1/2)
and the other connecting (0,±1/2) to (1, 0). This identifies ∂ E1. Clearly ∂ E1/2 and
∂ E3/2, respectively, are the pieces of the line segments y = −1/2 and y = 1/2 inside
Ω . Analysis similar to the above enables us to identify all the superlevel sets of the
solution to the Dirichlet problem with boundary data f .

Having identified ∂ Et , we can construct the solution by stacking the sets Et as in
Theorem 4.10. See the figure. The exact value of α ≥ 3/

√
5 plays no role here (Fig. 3).

(b) Consider now the case where 1 < α < 3/
√
5.

The boundary of the superlevel set with endpoints (−1, 0) and (1, 0) still consists
of two shortest paths, each a concatenation of line segments in Ω . Suppose the upper
shortest path first meets the diamond at a point (t − 1/2, t) for some 0 ≤ t ≤ 1/2.
Since α < 3/

√
5, the function g′ above is no longer always decreasing, so the shortest

path actually enters the diamond (i.e., t < 1/2). The angle under which the shortest
path enters the diamond is determined by the Ibn Sahl–Snell law, i.e., by the relation
sin θ/ sin π

4 = α, where θ is the angle of incidence on the contour of the diamond.
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Fig. 4 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.3 (b), with α = √
3/2, are shown on

the left. A graph of the solution u constructed by stacking the sets Et as in Theorem 4.10 is shown on the
right. Note that the displacement of the level sets from the center depends on α (Color figure online)

Since α > 1, it follows θ > π/4 and hence t > 0. By symmetry with respect to the
x-axis, the lower shortest path meets the diamond at a point (−1/2− t, t) with t < 0.

Hence, the boundary of the superlevel set E1 consists of two paths, one in the upper
half-disk and the other in the lower half-disk, both passing parallel to the x-axis while
moving through the central diamond region. These paths form an oblique hexagonal
region in which the solution function is constant. The solution remains continuous in
this region, but again exhibits a jump at the top and bottom tips of the central diamond
region, see the figure (Fig. 4).

In the example above, the set of points of discontinuity for the solution consisted
of two points, so had Hausdorff dimension 0. The following example gives a weight
for which the set of points of discontinuity has Hausdorff dimension 1.

Example 6.4 Having fixed a constant α ≥ π/2, let the weight be given by

w(x, y) =
{

α if |x |2 + |y|2 ≤ 1
4 ,

1 otherwise.

For the sake of brevity, let K = {(x, y) ∈ Ω : |x |2 + |y|2 ≤ 1
4 }.

Observe that the choice of α guarantees that the shortest path that connects two
points on ∂K is an arc lying entirely in ∂K . Indeed, let z1, z2 ∈ ∂K ⊂ C and
θ = | arg z1

z2
|. Then, the line segment going straight through K that connects these two

points has length 2α sin θ
2 whereas the shorter arc in ∂K has length θ ≤ 2α sin θ

2 and
the inequality is strict unless θ = 0 (i.e., z1 = z2) or θ = π (i.e., z1 = −z2) and
α = π

2 .
If |t −1| ≥ 1

2 , then the shortest path connecting the two points of {z ∈ ∂Ω : f (z) =
t} is a horizontal straight line segment. If |t −1| < 1

2 , then the shortest path connecting
the two points of {z ∈ ∂Ω : f (z) = t} reaches ∂K tangentially, then follows the arc of
∂K to the highest/lowest point of ∂K and then continues symmetrically with respect
to the axis x = 0 (Fig. 5).
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Fig. 5 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.4, with α = 2 > π/2, are shown on
the left. A graph of the solution u constructed by stacking the sets Et is shown on the right (Color figure
online)

A natural question is whether the discontinuity of solutions could perhaps be caused
by the discontinuity of the weight function. The next example shows that that is not
the case. The following example serves a second purpose as well. Note that the above
examples are of domains where the space is positively curved (for example, in the
sense of Alexandrov) inside the domain. In the next example, the space is negatively
curved inside the domain.

Example 6.5 Having fixed a constant α ∈ (0, 1), let the weight be given by

w(x, y) =

⎧

⎪

⎨

⎪

⎩

α if |x | + |y| ≤ 0.5,

α + 1−α
0.05 (|x | + |y| − 0.5) if 0.5 < |x | + |y| ≤ 0.55,

1 otherwise.

We now check that for t with t − 1 > 0 sufficiently small, the t-level sets Et intersect
on the central horizontal line of the inner diamond. This will result in discontinuity
of the corresponding solution on this horizontal segment. Toward this end, suppose
γ is the level set for some t > 1. Then γ is a minimizing curve (with respect to the
length induced by w) joining the two points on ∂Ω with y-coordinate t − 1 > 0. By
symmetry, the portion of γ in the inner diamond is a horizontal line. We now consider
two cases.

If γ meets the line y = 0 then, by symmetry, this first occurs at a point (x, 0) with
x ≤ −0.5. It then stays horizontal and follows the central horizontal line of the inner
diamond until the point (−x, 0), after which γ increases linearly tomeet the unit circle
at y-coordinate t − 1.

Suppose γ does not meet the line y = 0. The curve γ in the region x ≤ 0, y ≥ 0
consists of three pieces: a line L1 outside the outer diamond |x | + |y| > 0.55, a line
L2 inside the inner diamond |x | + |y| ≤ 0.5, and a third piece inside the annulus
0.5 < |x | + |y| ≤ 0.55. In the region x ≤ 0, y ≥ 0, the weight w is a rotated copy of
a weight w0 from Example 6.2. The curve γ is also minimal with respect to the length
induced by w0. Let θ be the acute angle L1 makes with the direction (−1, 1). Since
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Fig. 6 Level sets ∂ Et for values of t ∈ (0, 2) in Example 6.5, with α = 1/2, are on the left. A heightmap of
the solution u constructed by stacking the sets Et is on the right, where the grayscale intensity represents
the solution’s function value (Color figure online)

Fig. 7 Graph of the solution u of the Dirichlet problem in Example 6.5, depicted as a surface z = u(x, y)

(Color figure online)

L2 is horizontal, we know L2 makes acute angle π/4 with the direction (−1, 1). The
discussion of Example 6.2 implies that

sin(θ)

sin(π/4)
= α.

Hence, sin(θ) = α/
√
2. If α < 1 then θ is bounded away from π/4. Hence, L1

intersects ∂Ω at a point whose y-coordinate is bounded away from 0, so t − 1 is
bounded away from 0 (with a bound depending only on α).

Hence, if t − 1 > 0 is sufficiently small, the first case applies and γ must follow
the central horizontal line of the inner diamond (Figs. 6, 7).

In all the examples above, the solutions are discontinuous inside the domain away
from the boundary. Onemight therefore askwhether solutions to theDirichlet problem
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are continuous at the boundary. The following example shows the set of points of
discontinuity can, in fact, reach all the way to the boundary.

Example 6.6 Having fixed a constant α ∈ (0, 1), let the weight be given by

w(x, y) =
{

α + (1 − α)(|x | + |y|) if |x | + |y| < 1,

1 otherwise.

It is not difficult to see that as the weight w decreases as one moves into the disk,
this weighted domain has boundary of positive mean curvature. Assume α = 1/2 to
simplify the calculations, and fix a discretization scale n ∈ N. For 1 ≤ k ≤ n, define

Ak = {(x, y) : (k − 1)/n ≤ |x | + |y| < k/n} .

We consider the approximating weight

wn(x, y) =
{

1
2 (1 + k

n ) if (x, y) ∈ Ak for some 1 ≤ k ≤ n,

1 otherwise.

Suppose γ is the boundary of a superlevel set for a solution to the Dirichlet problem
with weight wn . Then γ is distance minimizing with respect to the length distance
induced bywn . Suppose γ leaves the x-axis at (k0/n, 0) and intersects the set {(x, y) :
|x | + |y| = 1} at a point above the x-axis. Then the trajectory of γ between these
points is governed by Snell’s law, as discussed in Example 6.1 (Figs. 8, 9). Let

w0 = 1

2

(

1 + k0
n

)

, wk = 1

2

(

1 + k

n

)

, θ0 = π

4
,

and θk be the angle γ makes with the line y = x in Ak . Then,
sin(θk )
sin(θ0)

= w0
wk

and so

sin(θk) = 1√
2

(

n + k0
n + k

)

. (6.1)

The length of the line y = x inside Ak is 1/(n
√
2). Hence, the length ak of γ in Ak

satisfies ak cos(θk) = 1/(n
√
2). It follows that hk , the increase in the y-coordinate of

γ in Ak , is given by

hk = ak sin
(π

4
− θk

)

= 1 − tan(θk)

2n
.

Using (6.1), this gives

hk = 1

2n

(

1 − (n + k0)
√

2(n + k)2 − (n + k0)2

)

.
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Fig. 8 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.6, with α = 1/2, are shown on the
left. A heightmap of the solution u constructed by stacking the sets Et is shown on the right (Color figure
online)

Fig. 9 Graph of the solution u of the Dirichlet problem in Example 6.6, depicted as a surface z = u(x, y).
Observe that the jump set of the solution lies upon the x-axis, i.e., Su = {(x, y) ∈ Ω : y = 0} (Color figure
online)

Adding these contributions, the total gain in height by γ before it leaves the region
|x | + |y| ≤ 1 is

n
∑

k=k0+1

1

2n

⎛

⎝1 − (1 + k0
n )

√

2(1 + k
n )2 − (1 + k0

n )2

⎞

⎠ .

Given 0 < t0 < 1, we may choose k0 for each n so that k0/n → t0. Then the above
sum converges to

H(t0) = 1

2

ˆ 1

t0
1 − 1 + t0

√

2(1 + t)2 − (1 + t0)2
dt . (6.2)
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Since the integrand in (6.2) is strictly positive for t > t0, we have H(t0) > 0
whenever t0 < 1. The number H(t0) gives the y-coordinate of the intersection of the
set {(x, y) : |x | + |y| = 1} with the curve that is length minimizing with respect to w

and leaves the x-axis at (t0, 0), moving upward. Such curves correspond to boundaries
of superlevel sets of solutions to the Dirichlet problem with respect to w, for levels
greater than H(t0). By symmetry, the y-coordinate of the intersection point if the
curve leaves the x-axis at (t0, 0) and goes downward is −H(t0). These correspond
to boundaries of superlevel sets of solutions to the same Dirichlet problem, for levels
less than −H(t0).

If we approach (t0, 0) from above then the values of the solution are greater than
H(t0), while if we approach (t0, 0) from below the values of the solution are less than
−H(t0). This implies that the solution is discontinuous at (t0, 0), for any 0 < t0 < 1.
Hence, the set of points of discontinuity reach all the way to the boundary.

Non-uniqueness of Solutions: Third Eye

The final two examples demonstrate that solutions may fail to be unique. In the first of
these two examples, the space is positively curved in some points inside the domain,
and flat at other points in the domain. However, theweight is not a continuous function.
The last example of this paper gives a continuous weight; in this example, the space
is negatively curved at some points (for example, in Kann), positively curved at some
points (for example, in Kin), and flat at some points (for example, in Kout).

Example 6.7 Fix a constant α ≥ √
2, and let the weight be given by

w(x, y) =
{

α if min
{∣

∣x − 1
2

∣

∣,
∣

∣x + 1
2

∣

∣

}+ |y| ≤ 1
4 or |x | + ∣∣y − 1

4

∣

∣ ≤ 1
8 ,

1 otherwise.

Following an analogous argument as in Example 6.3 (a), we can describe the shortest
paths connecting the points of {z ∈ ∂Ω : f (z) = t} for t ∈ (0, 2):

– If t ≤ 3
4 or t ≥ 11

8 , then ∂ Et is a horizontal line segment.
– If 3

4 < t ≤ t0, where t0 ≈ 1.017, then the shortest path is a piecewise affine line
that passes through the bottom tips of the large diamonds. The value of t0 is found
by equating the length of the piecewise affine line that starts from a point in ∂Ω

with y-value t0 − 1, and passes through the bottom tips of the large diamonds and
the length of the piecewise affine line that begins from the same point in ∂Ω and
passes through the top tips of all three diamonds.

– If t0 < t ≤ t1, where t1 ≈ 1.127, then the shortest path is a piecewise affine line
that begins from a point in ∂Ω with y-value t1 −1, and passes through the top tips
of the large diamonds and either the top or the bottom tip of the small diamond
in the middle. Such a possibility of choice of the tip for the small diamond is the
cause of non-uniqueness of the solution. The value of t1 is determined by finding
the intersection of ∂Ω with the ray connecting the top tip of the small diamond in
the middle and the top tip of one of the large diamonds.
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Fig. 10 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.7. In the left figure, the shortest path
for t0 < t ≤ t1 passes through the upper tip of the small diamond, and passes through the lower tip in the
right figure. Similarly as in Example 6.3 (a), the precise value of α ≥ √

2 plays no role (Color figure online)

Fig. 11 Graphs of the two distinct solutions in Example 6.7 whose level sets have been depicted in Fig. 10
(Color figure online)

– If t1 < t < 11
8 , then the shortest path is a piecewise affine line that passes through

the top tip of the small diamond in the middle.

Observe also that any convex combination of the solutions shown in Figs. 10 and 11
is also a solution to the Dirichlet problem.

Finally, the following example shows that the non-uniqueness of solutions is in
general not caused by discontinuity of the weight function.

Example 6.8 Let the weight be given by

w(x, y) =

⎧

⎪

⎨

⎪

⎩

0.75 − 0.5(|x | + |y|) if 0 ≤ |x | + |y| < 0.5,

|x | + |y| if 0.5 < |x | + |y| ≤ 1,

1 otherwise.
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Let the three regions ofΩ listed above be denoted by Kin, Kann, and Kout, respectively.
Here again one can see that the boundary has positive mean curvature.

Suppose t ≥ 1 and η(x) = (x, g(x)) is a curve that forms the boundary of Et

(traveling from left to right). In A := Kann ∩ {x < 0} ∩ {y > 0}, by Ibn Sahl–Snell
law, we know that w sin(θ) = κ for some constant κ , where θ is the oriented angle
between the normal to the isoline for the weight w and the tangent vector to the curve
η. Observe that this normal has slope −1. The value of κ might change from curve to
curve, but for a given curve it is constant. Since η moves from left to right, it follows
that θ ∈ (−π/4, 3π/4), considering that θ(η(x)) = arctan(g′(x))+π/4. In particular,
θ(η(x)) is monotone increasing (resp. decreasing) if and only if g′(x) is monotone
increasing (resp. decreasing). Moreover, the function x �→ θ(η(x)) is continuous in
the quadrant {x < 0 < y} ∩ Ω and smooth inside each of the regions Kin, Kann, and
Kout within the quadrant.

Let us now discuss convexity/concavity of g using the Ibn Sahl–Snell law, based on
the value of g′(x0) at some point η(x0) ∈ A. Since sin(θ) = κ/w, we can determine
monotonicity of the function x �→ θ(η(x)) and hence of g′(x) in a neighborhood
of η(x0) based on the monotonicity of x �→ w(η(x)) at x0 and the sign of κ . Note
however that one needs to pay special attention to and distinguish cases when θ = 0
(since this is the borderline value, where the sign of κ changes), and θ < π/2 as
opposed to θ > π/2 (since the monotonicity of x �→ w(η(x)) is different in these two
cases and so is the relation between monotonicity of sin(θ) and θ ).

Value of Sign of both κ and sin(θ) Monotonicity of

g′(x0) θ(η(x0)) w sin(θ) θ g′

(−∞, −1) (−π/4, 0) − decr. decr. decr. decr.
−1 0 0 decr. const. const. const.
(−1, 1) (0, π/2) + decr. incr. incr. incr.
1 π/2 + const. const. const. const
(1, ∞) (π/2, 3π/4) + incr. decr. incr. incr.

From the table above, we can deduce that if g′(x0) < −1 at some point x0 in A, then
g is concave within the entire region A. If g′(x0) = −1 at some point, then g′ ≡ −1
in A. Finally, if g′(x0) > −1 at some point in A, then g is convex in all of A. The
argument below showing that η should intersect the y-axis horizontally also tells us
that the possibility g′(x) ≤ −1 and the possibility g′(x) ≥ 1 will not happen.

Analogous arguments can be made in Kin, leading us to conclude that η is either
convex in Kin, or is concave in Kin. Similar arguments for regions in the other three
quadrants yield analogous conclusions. From this we deduce that η has one-sided
tangents where it intersects the y-axis. This will be used to show below that η will
intersect the y-axis horizontally.

We now check that η = ∂ Es intersects the y-axis horizontally for all s ∈ (0, 2).
Note that one-sided directional derivatives on either side of the y-axis exist, which
can be seen from concavity/convexity of the curve from the argument above. Hence, it
suffices (up to small error terms) to compare weighted lengths of straight lines close to
the y-axis. We compute the weighted length of the straight line path joining (−ε, b) to
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the y-axis for some −1 < b < 1 and sufficiently small ε > 0. Actually, the following
calculation discusses only the case when 0 < b < 0.5, i.e., when ∂ Es crosses the
y-axis in Kin above the x-axis. Analogous computations can be done for other values
of b ∈ (−1, 1) when ∂ Es crosses the y-axis somewhere in Kann, or in Kin below
the x-axis. Consider such a path ϕ making an angle ϑ , −π/2 < ϑ < π/2, with the
horizontal. This takes the form

ϕ(t) = (−ε + t cosϑ, b + t sin ϑ), 0 ≤ t ≤ ε/(cosϑ).

Clearly w(ϕ(t)) = 0.75− 0.5(ε − t cosϑ + b + t sin ϑ) and ‖ϕ′(t)‖ = 1 for all t . An
easy calculation yields that the weighted length I is given by

4I = (3 − 2ε − 2b)ε

cosϑ
+ (cosϑ − sin ϑ)ε2

cos2 ϑ
.

From which we obtain

4(cos2 ϑ)
dI

dϑ
= (3 − 2ε − 2b)ε sin ϑ + 2ε2(cosϑ−sin ϑ) tan ϑ − ε2(cosϑ+sin ϑ).

For small ε (compared to ϑ) we see

4(cos2 ϑ)
dI

dϑ
≈ (3 − 2b)ε sin ϑ

which is negative for ϑ < 0 and positive for ϑ > 0. Hence, one obtains a shorter
length by making ϑ close to 0. Making ε smaller and smaller, we see that the weighted
length minimizing curve η will be horizontal where it intersects the y-axis.

Let us now verify that γ = ∂ E1 does not entirely coincide with the x-axis.We do so
by comparing theweighted length of the line segment joining (−0.5, 0) to (0.5, 0)with
the length of the curve that is the concatenation of the line segment joining (−0.5, 0) to
(0, 0.2) and the line segment joining (0, 0.2) to (0.5, 0). A direct computation shows
that the first path has length 5/8, while the second path has length 0.575 × √

1.16.
Thus, the second path is shorter (in the weighted sense) than the first path. Since the
first path forms part of the curve that coincides with the x-axis, the claim follows.

Suppose now that the superlevel set E1 of u is the minimal weak solution set for
the boundary data χF1 . Then γ = ∂ E1 intersects the y-axis at a point (0, H) for some
0 < H < 0.5, and from the discussion above, we know that it does so horizontally.
Clearly, 0 < H < 0.5 implies that 0.5 < w(0, H) < 0.75.

We now claim that in the region x > 0, γ = ∂ E1 first intersects the x-axis at a
point (a, 0) with 0 < a ≤ w(0, H). If not, then γ will intersect the region

R = {(x, y) ∈ Ω : x, y > 0, x + y > w(0, H)}.

Clearly, R ⊂ Kann ∪ Kout. In R ∩ Kann, we have w(x, y) = x + y > w(0, H).
Hence, there will be a point (x0, y0) in the boundary of R where γ crosses into R,
and at this point w(x0, y0) = x0 + y0 = w(0, H). Since γ has slope zero at the point
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Fig. 12 Level sets ∂ Et for various values of t ∈ (0, 2) in Example 6.8, when the solution is constructed
using minimal weak solution sets as the “superlevel pancakes.” A heightmap of the solution u is shown on
the right; the color at each point represents the solution’s function value at that point (Color figure online)

(0, H) where the weight was w(0, H), it follows that γ has slope zero at (x0, y0)
as well. Due to convexity of γ in Kann, the slope of γ would necessarily be strictly
positive inside the region R∩ Kann.We also know that γ will be a straight line segment
in R ∩ Kout. It follows that γ would never reach the point (1, 0), contradicting the
definition of γ . This gives the claim. Hence, γ passes through a point (a, 0) for some
0 < a ≤ w(0, H) and then continues horizontally toward (1, 0).

Now suppose t > 1 is such that η = ∂ Et intersects the y-axis at a point (0, H̃)

with H < H̃ < 0.5. It follows from minimality of E1, symmetry of the setting, and
the fact that η cannot intersect γ at the y-axis that η is disjoint from γ . Hence, η will
never meet the x-axis, so its trajectory, outside the y-axis, is completely determined
by Snell’s law. Since η is horizontal at (0, H̃), it follows from Snell’s law that η will
be horizontal at a point of Kann where the weight agrees with w(0, H̃), hence at a
point (x, y) with 0 < x < 0.75 and y > 0. If H̃ were greater than 0.5, then η would
be horizontal exactly at one point, viz. (0, H̃) on the y-axis. Using the arguments
of Example 6.6, η intersects ∂Ω at a point whose height is bounded away from 0.
Consequently, t > t0 for some t0 > 1.

Now suppose η = ∂ Et for some 1 < t < t0. Then η must intersect the y-axis at
the point (0, H). The trajectory of η is determined by Snell’s law until it meets the
x-axis. Thus, η = ∂ Et and γ = ∂ E1 coincide until they meet the x-axis. The curve η

then follows the x-axis for some time before leaving it and intersecting ∂Ω at a point
with height t − 1. This final trajectory is calculated as in Example 6.6.

Thus, whether E1 is a minimal solution set or not, η = ∂ Et has the following form
for t ∈ (2− t0, t0): η begins at the point in ∂Ω with y-coordinate t −1, then intersects
the x-axis which it follows for some time. From there, η can move either up (if Et

is the minimal weak solution set) or down (if Et is the maximal weak solution set),
intersecting the y-axis in a point of the form (0,±H). To obtain η in the region x ≤ 0,
simply reflect through the y-axis.

Note that if Et is minimal (∂ Et goes up) then Es must also be minimal for all
t0 ≥ s ≥ t . Choosing ∂ Eta stay in the upper half-plane for some ta ∈ [2 − t0, t0]
yields a solution whose superlevel sets Et are minimal for t ∈ (ta, 2). Choosing
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Fig. 13 Level sets and a heightmap of the solution in Example 6.8 that is constructed using maximal weak
solution sets as the “superlevel pancakes.” Note that u(x, y) = 2− ũ(x, −y), where ũ is the solution shown
in Fig. 12 (Color figure online)

∂ Etb to move into the lower half-plane for some tb ∈ [2 − t0, t0] leads to another
solution, whose superlevel sets Et are maximal for all t ∈ (0, tb). Contour curves
of two distinct such solutions, the first corresponding to ta = 2 − t0, and the second
corresponding to the choice of tb = t0, are shown below. Amore careful analysis using
the equation sin(arctan(g′(x)) + π/4) = κ/w(x, g(x)) gave the following picture of
the two solutions. The left figure in the two pictures is of the contour curves of the
solutions, while the right figure is the heightmap of the solutions. In the first picture,
the solution takes the value 2− t0 in the middle lenticular region, while in the second
picture, the solution takes the value t0 (Figs. 12, 13).
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