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Abstract
Michor and Mumford showed that the mean curvature flow is a gradient flow on a
Riemannian structure with a degenerate geodesic distance. It is also known to destroy
the uniform density of gridpoints on the evolving surfaces. We introduce a related
geometric flow which is free of these drawbacks. Our flow can be viewed as a formal
gradient flowona certain submanifold of theWasserstein spaceof probabilitymeasures
endowed with Otto’s Riemannian structure. We obtain a number of analytic results
concerning well-posedness and long-time stability which are, however, restricted to
the 1D case of evolution of loops.

Keywords Evolving surface · Volume · Gradient flow · Optimal transport ·
Infinite-dimensional Riemannian manifold

Mathematics Subject Classification 35A01 · 35A02 · 53C44 · 58E99

1 Introduction

The mean curvature flow [16,47] is a geometric flow which describes the behavior
of a k-dimensional submanifold Mt ⊂ R

d , 1 ≤ k < d, which evolves over time t
according to the law:

dx

dt
= �H(x), (1)

where x is an arbitrary point of Mt , and �H(x) is the mean curvature vector of the
submanifold in x . It has huge variety of applications ranging from formation of grain
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boundaries in metals to image processing. The mean curvature flow (MCF) is the
formal negative gradient flow of the volume functional vol � Hk ,

∂t Mt = − grad vol(Mt ), (2)

where the “manifold of k-dimensional submanifolds” is equipped with the L2 Rie-
mannian structure (see [9,30] or our formula (76)), and the gradient is understood in
the sense of this structure. Hence, as usual in the context of gradient flows [5,49], the
volume functional, being the driving entropy of the gradient flow, decays with time in
the following way:

d

dt
vol(Mt ) = −〈grad vol(Mt ), grad vol(Mt )〉Mt = −

∫
Mt

| �H |2 dHk . (3)

There is an avalanche of works about the theoretical and numerical aspects of the
mean curvature flow.One can introduceminimizingmovement schemes à la deGiorgi,
which exploit the gradient flow structure [2,29]. The solutions should a priori collapse
in finite time, but singular behavior before the breakdown does not permit existence of
smooth solutions up to the final moment. There exist various strategies to go beyond
the first singularity. The pioneering work [12] relaxed the notion of solution so that the
evolving objects were barely varifolds. The level-set approach [39] led to solutions in
the Crandall–Lions viscosity sense [6,15,19]. For the curve-shortening flow, i.e., when
k = 1, one can define and construct a weak solution as a limit of certain curves which
live in an ambient space of higher dimension and which are called ramps [3,41]. Other
types of weak solutions for the curve-shortening flow were introduced and studied in
[7,8,13,17,22].

There are two issues which mar the overall harmony. The first one is that the under-
lying Riemannian distance is degenerate (i.e., one can connect any two surfaces with
a path of arbitrarily small Riemannian length), cf. [9,10,30–32], which is unpleasant
since a nondegenerate metric space structure is an important precondition in treatment
of gradient flows, see [5,44]. The second issue is that the Hausdorff measure Hk is
not uniformly contracted by the flow, that is, if Tt : x(0) �→ x(t) is the flow operator
describing the trajectories of material particles forming Mt in the ambient space Rd ,
then the property

(Tt )#

(
1

vol(M0)
Hk M0

)
= 1

vol(Mt )
Hk Mt (4)

is violated except for some very special scenarios as a shrinking sphere. From the
numerical perspective, this means that the flow destroys the uniform density of grid-
points on Mt , which is unwelcome and may cause computational instabilities [33,48].
For the curve-shortening flow in the plane, this can be fixed [1,33] by adding a certain
tangential motion to the right-hand side of (1) in order to conserve the uniform density
of the moving particles without affecting the evolution of the shapes.

In this paper, we suggest a different approach which simultaneously eliminates the
two above-mentioned drawbacks of the mean curvature flow, and which is applicable
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Uniformly Compressing Mean Curvature Flow 3057

for any dimensions k and d. The idea is to consider the flow which is the closest
possible to the original MCF (1) in a certain least-squares sense among the flows
which uniformly contract the k-Hausdorff measure (in other words, which respect
the uniform density of gridpoints). We employ the infinite-dimensional manifold Ak

(consisting of objects of the form η = λξ , where λ > 0 is a scalar which quantifies the
volume of M , and ξ is a volume-preserving immersion in the sense of [21]) endowed
with the parametrization-invariant L2 metric. Our flow is driven by the orthogonal
projection of the mean curvature onto TAk . We dub the resulting object the uniformly
compressing mean curvature flow (UCMCF) because the evolving surfaces can be
thought of as being constituted by fluid particles density of which depends merely
on time (the surfaces in question up to a time-dependent constant are incompressible
membranes [18,20,34]). The UCMCF is by construction the negative gradient flow of
the volume functional on Ak . It is a genuinely geometric flow in the sense that the
evolution of submanifolds Mt = η(t)(M) does not depend on their parametrization.

Unlike the tangentially corrected MCF [1,33], our flow differs from the classical
MCF in the normal direction and thus the geometrical evolution of the submanifolds
along the two flows do not coincide in general (although they do coincide for a shrink-
ing sphere). Nevertheless, we show that the qualitative behavior of UCMCF is quite
similar to the one of the usual MCF, and thus it may be used as a substitute for the
MCF in applications.

We will observe that the our flow collapses in finite time, and in order to study the
evolution and stability of the shapes before the breakdown, we need to renormalize
the problem both in time and in space. Surprisingly enough, our normalized flow
is also a gradient flow: namely, the positive gradient flow of the L2-mass on the
space of volume-preserving immersions. Our recent work [46] studies the gradient
flow of a different functional (potential energy) on a similar Riemannian structure,
which turns out to be a model for an overdamped fall of an inextensible string in a
gravitational field. A similar mechanical interpretation for our normalized UCMCF is
an overdampedmotion of an inextensible loop (k = 1) or an incompressiblemembrane
(k > 1) repelled from the origin with the force field identically equal to the radius
vector.

Other gradient flows of inextensible strings were considered in [24,35–38]. In those
papers, additional fourth-order terms coming from the bending energy appear, which
help to secure nondegenerate parabolicity of the equations and decrease the difficulties
created by the Lagrange multiplier, cf. (18), (19) below.

Both the original and normalized flows can be viewed as formal gradient flows
on certain submanifolds of the Wasserstein space [40,49,50] of probability measures
endowed with Otto’s Riemannian structure, cf. Sect. B.2. in the Appendix.

We will mostly work with the immersed curves 1 = k < d. The Appendix is
devoted to the general case 1 ≤ k < d. It turns out to bemore convenient to analyze the
normalized flow, which allows us to descry the asymptotic behavior of the shapes near
the breakdown. We show local strong well-posedness of the problem. We characterize
the steady states, and prove global existence of strong solutions for the initial data
which are close to the steady states which maximize the driving L2-mass, i.e., to
simple circles. We establish the exponential decay of such a global solution to a
steady state. We address the global solvability for any Lipschitz initial curve which
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does not need to be close to the equilibria, and we prove existence of suitably defined
weak solutions. Our approach is based on approximation of the gradient flow on the
manifold of volume-preserving immersions by Hilbertian gradient flows; in particular,
we do not use the ramps. Unlike [3,7,8,17,22,41], our weak solutions are H1-regular
in time.

In this paper, we make a technical and geometrically nonrestrictive assumption that
the center of mass is fixed at the origin; otherwise the center of mass would fly away
to infinity.

2 The Flow

2.1 Uniformly Compressing Curve-Shortening Flow

Let S1 � R/Z denote the circle of length 1. For d ≥ 2 let K be the space of closed
curves K := {η : η ∈ H2(S1;Rd),

∫ 1
0 η(s)ds = 0}. Let L : K → R, L(η) :=∫ 1

0 |∂sη| ds be the length functional. We consider the space of immersed curves with
the constant speed parametrization, i.e.,

A := {η ∈ K : |∂sη(s)| = L(η) > 0 for all s ∈ S
1}.

Arguing as Theorem A.1 in [43] we see that A is a smooth Hilbert submanifold of
K, with the tangent space

TηA ={w ∈ H2(S1;Rd) : d

ds
(∂sw(s) · ∂sη(s)) = 0 for a.e. s ∈ S

1

and
∫ 1

0
w(s) ds = 0}, η ∈ A.

We endow K with the Riemannian metric

〈v,w〉TηK :=
∫ 1

0
v(s) · w(s)|∂sη(s)| ds,

which is invariant under reparametrization, cf. [31]. It induces a metric on A:

〈v,w〉TηA =
∫ 1

0
v(s) · w(s)L(η) ds. (5)

Proposition 2.1 The Riemannian distance dA is nondegenerate.

Proof Take any two closed curves η0, η1 ∈ A. Renormalizing if needed, we can
suppose that ‖η0 − η1‖L2(S1) = 1. We claim that

dA(η0, η1) ≥ m := 1

2
min(L(η0), ‖η0‖2L2(S1)

, 2). (6)
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Uniformly Compressing Mean Curvature Flow 3059

If not, there exists a C1 path η : [0, 1] → A, η(0) = η0, η(1) = η1, with Riemannian
length

L(η) :=
∫ 1

0

√
〈η̇(t), η̇(t)〉Tη(t)A dt

=
∫ 1

0
‖η̇(t)‖L2(S1)

√
L(η(t)) dt < m.

(7)

Since by the Minkowski inequality and integration by parts

∫ 1

0
‖η̇(t)‖L2(S1) dt ≥ ‖η1 − η0‖L2(S1)=1,

we have L(η(t)) < m2 for some t . Due to continuity of L(η(t)) (and recall that
L(η0) ≥ 2m from (6)), there exists t∗ ∈ (0, 1) such that L(η(t∗)) = m and L(η(t)) >

m for t < t∗. Then

L(η) ≥ L(η|(0,t∗)) ≥ √
m‖η0 − η(t∗)‖L2(S1). (8)

By Wirtinger’s inequality,

‖η(t∗)‖L2(S1) ≤ 1

2π
‖∂sη(t∗)‖L2(S1) = m

2π
. (9)

Combining (7)–(9), we infer

√
2m ≤ ‖η0‖L2(S1) ≤ ‖η0 − η(t∗)‖L2(S1) + ‖η(t∗)‖L2(S1) ≤ √

m

(
1 + 1

2π

)
,

which is a contradiction. ��
We are interested in the formal gradient flow of the length functional L(η) =∫ 1

0 |∂sη| ds, η ∈ A, under the metric (5):

∂tη = − gradA L(η(t)). (10)

In order to derive the PDE formulation of (10), we compute (formally) the orthogonal
projection from TηK (which can be identified with K) onto TηA with respect to the
metric (5) (cf. Proposition 3.2 in [43]).

Lemma 2.2 Let η ∈ A ∩ H4(S1;Rd). The orthogonal projection Pη : TηK → TηA
is given by

Pη(z) = z − ∂s(σ∂sη), where σ : S1 → R solves

L2∂ssσ − |∂ssη|2σ = ∂s z · ∂sη + const, (11)∫ 1

0
σ(s)ds = 0. (12)
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Proof (1) We first show that for any σ satisfying (12), the vector field ∂s(σ∂sη) is
orthogonal to TηA. Indeed, given any w ∈ TηA,

〈∂s(σ∂sη),w〉TηK = L(η)

∫ 1

0
∂s(σ∂sη) · w ds

= L(η)σ∂sη · w
∣∣s=1
s=0 − L(η)

∫ 1

0
σ∂sη · ∂sw ds

= 0.

The first term is zero since we work on S
1. The second term is zero because

∂sη · ∂sw = const and σ has mean zero.
(2) Next we show w = z − ∂s(σ∂sη) ∈ TηA. We will mainly check the condition

∂sw · ∂sη = const . Indeed,

∂sw · ∂sη = ∂s z · ∂sη − ∂ssσ |∂sη|2 − 2∂sσ∂ssη · ∂sη − σ∂sssη · ∂sη.

The constant speed parametrization |∂sη| = L = const yields ∂ssη · ∂sη = 0 and
∂sssη · ∂sη = −|∂ssη|2. Thus

∂sw · ∂sη = ∂s z · ∂sη − ∂ssσ L2 + σ |∂ssη|2,

which is constant by (11).
��

Since A is a smooth submanifold of the space K, the general definition of the
gradient [27] implies that

gradA L(η) = Pη(gradK L(η)).

Standard calculus of variations shows that the first L2-variation of L(η) is

δL(η) = −∂s

(
∂sη

|∂sη|
)

.

But

〈gradK L(η), w〉TηK =
∫ 1

0
δL(η)(s) · w(s) ds,

for every w ∈ TηK � K. We conclude that

gradK L(η) = − 1

|∂sη|∂s
(

∂sη

|∂sη|
)

.

123



Uniformly Compressing Mean Curvature Flow 3061

By Lemma 2.2, the orthogonal projection of the negative gradient in K to the tangent
space TηA is

Pη(− gradK L(η)) = ∂ssη − ∂s(σ∂sη)

L2 ,

where σ : S1 → R satisfies

L2∂ssσ − σ |∂ssη|2 = ∂sssη · ∂sη + const = −|∂ssη|2 + const,
∫ 1

0
σds = 0.

To determine the constant, we integrate in s and thus obtain const = ∫ 1
0 (1 −

σ)|∂ssη|2ds. Letting σ̃ := 1 − σ , we get the expression for the gradient flow (10):

∂tη(t, s) = L(t)−2∂s(σ̃ (t, s)∂sη(t, s)), (13)

where L(t) := L(η(t)), and the Lagrange multiplier σ̃ (t, s) satisfies

∂ss σ̃ (t, s) − L(t)−2σ̃ (t, s)|∂ssη(t, s)|2 = −L(t)−2
∫ 1

0
σ̃ (t, s)|∂ssη(t, s)|2ds

for all (t, s)and
∫ 1

0
σ̃ (t, s) ds = 1 for all t .

Remark 2.3 (Sign of σ̃ ) From ‖∂ssη − Pη(∂ssη)‖L2(S1) ≤ ‖∂ssη‖L2(S1) as well as the
orthogonality ∂sη · ∂ssη = 0 everywhere, it follows that

‖∂ssη‖2L2(S1)
≥ ‖∂sσ‖2L2(S1)

+ ‖σ∂ssη‖2L2(S1)
.

Using σ̃ = 1 − σ we can rewrite the above inequality as

2
∫
S1

σ̃ |∂ssη|2ds ≥
∫
S1

σ̃ 2|∂ssη|2ds +
∫
S1

(∂sσ)2ds.

Thus,
∫
S1

σ̃ |∂ssη|2ds ≥ 0 and the equality holds if and only if σ̃ ≡ 0 on S
1, which

cannot happen since the mean of σ̃ is 1. Then by (13) σ̃ satisfies an inhomogeneous
elliptic equation with a negative inhomogeneity, and provided η(t) ∈ C2(S1) by the
strong maximum principle we infer that σ̃ > 0.

Remark 2.4 Assume η(t, s) is a classical solution to Eq. (13) emanating from η0 which
satisfies the constraints |∂sη0(s)| ≡ L(η0) and

∫ 1
0 η0(s)ds = 0. Then the constraints

are preserved along the flow, i.e.,

|∂sη(t, s)| ≡ L(t) and
∫ 1

0
η(t, s)ds = 0 for each t .
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To show the first equality, we let Z(t, s) := |∂sη(t, s)|2 − L(t)2. Then a direct com-
putation shows that Z satisfies

∂t Z = L−2σ̃ ∂ss Z + 2L−2∂s σ̃ ∂s Z + 2
(
∂ss σ̃ − L−2σ̃ |∂ssη|2 − L∂t L

)

= L−2σ̃ ∂ss Z + 2L−2∂s σ̃ ∂s Z with Z(0, s) = 0.

Herewe have used the equation of σ̃ (note that by (i) of Proposition 2.5 below, the right-
hand side of the equation of σ̃ is equal to L∂t L). By Remark 2.3 above σ̃ (t, s) > 0
for the classical solutions η. Thus, Z(t, s) = 0 by the strong maximum principle for
parabolic equations. To show that

∫ 1
0 η = 0 is preserved along the flow, we integrate

the equation along S
1 to obtain ∂t

∫ 1
0 η(t, s)ds = 0.

2.2 Evolution of the Length and the L2-Mass

We now exploit the gradient flow structure to derive some evolution properties of
the length and L2-mass of the curves. Throughout this subsection, we assume the
existence of the H2 solutions to the gradient flow (13).

The first proposition is about the evolution of the length functional.

Proposition 2.5 Let η be a solution to (13). Then

(i) ∂t L(η) = −L−3
∫ 1
0 σ̃ |∂ssη|2ds.

(ii) ∂t t L(η)2 ≥ 0.

Proof 1. Since |∂sη(s, t)| = L(t), then

∂t L = ∂t |∂sη(t, s)|
= ∂sη(t, s)

|∂sη(t, s)| · ∂tsη(t, s)

= ∂sη(t, s)

L
· ∂s

(
σ̃ ∂ssη

L2 + ∂s σ̃ ∂sη

L2

)
.

Note that the LHS does not depend on s. Thus, an integration in s from 0 to 1 and an
integration by parts yield the desired equality.

2. Let λ(t) := −L(t)∂t L(t) = L−2
∫ 1
0 σ̃ |∂ssη|2ds. It suffices to show that ∂tλ(t) ≤

0. Note that one can rewrite the equation of σ̃ as

∂ss σ̃ − L−2σ̃ |∂ssη|2 = −λ.

Let N be the unit inner normal to the curve η, and let k be such that ∂ssη = kN .
Differentiation of the equation of σ̃ in time yields

∂ss ˙̃σ − ˙̃σk2L−2 − 2σ̃kk̇L−2 + 2L−3∂t Lσ̃k2 = −λ̇.
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We multiply the above equation by σ̃ and integrate in s. Integrating by parts, we get

λ̇ = −
∫ 1

0

˙̃σ∂ss σ̃ds + L−2
∫ 1

0

˙̃σ σ̃k2ds + 2L−2
∫ 1

0
σ̃ 2kk̇ds − 2L−3∂t L

∫ 1

0
σ̃ 2k2ds

= λ

∫ 1

0

˙̃σds + 2L−2
∫ 1

0
σ̃ 2kk̇ds − 2L−3∂t L

∫ 1

0
σ̃ 2k2ds

= 2L−2
∫ 1

0
σ̃ 2kk̇ds − 2L−3∂t L

∫ 1

0
σ̃ 2k2ds.

Here in the second equality, we have used the equation of σ̃ . The last equality is due
to

∫ 1
0 σ̃ (t, s)ds ≡ 1. Now we compute kk̇. Differentiating the equation of η in s, we

infer

∂tsη = L−2 (∂ss σ̃ ∂sη + 2∂s σ̃ ∂ssη + σ̃ ∂sssη) .

Using that ∂sssη · ∂sη = −k2 and ∂sssη · N = ∂sk, we get

L2∂tsη =
(
∂ss σ̃ − L−2k2σ̃

)
∂sη + (2∂s σ̃k + σ̃ ∂sk) N + σ̃ R

= −λ∂sη + (2∂s σ̃k + σ̃ ∂sk) N + σ̃ R

where R := ∂sssη−(L−2∂sssη ·∂sη)∂sη−(∂sssη ·N )N and we have used the equation
of σ̃ . Since ∂s N · N = 0 and N · R = 0, we have

L2∂tssη · ∂ssη = −λk2 + k∂s (2∂s σ̃k + σ̃ ∂sk) + σ̃ (∂s R · ∂ssη).

But R · ∂ssη = 0, hence ∂s R · ∂ssη = −R · ∂sssη = −|R|2. Thus,

L2∂tssη · ∂ssη = L2kk̇ = −λk2 + k∂s (2∂s σ̃k + σ̃ ∂sk) − σ̃ |R|2. (14)

Until this moment we implicitly assumed that ∂ssη �= 0. However, (14) is still valid in
the points with ∂ssη = 0 since we can make an agreement that k = |R| = 0 in those
points. Plugging the expression (14) into the equation for λ̇, we derive

λ̇ = −2L−4(λ + L∂t L)

∫ 1

0
σ̃ 2k2ds

+ 2L−4
∫ 1

0
σ̃ 2k∂s(2∂s σ̃k + σ̃ ∂sk)ds − 2L−4

∫ 1

0
σ̃ 3|R|2ds.
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The first term on the right-hand side vanishes due to the definition of λ. Then an
integration by parts yields

L4λ̇ = −2
∫ 1

0
∂s(σ̃

2k)(σ̃ ∂sk)ds − 4
∫ 1

0
∂s(σ̃

2k)∂s σ̃kds − 2
∫ 1

0
σ̃ 3|R|2ds

= −2
∫ 1

0
σ̃ (σ̃ ∂sk + 2∂s σ̃k)

2 ds − 2
∫ 1

0
σ̃ 3|R|2ds.

(15)

Note that σ̃ ≥ 0 by Remark 2.3. Thus, λ̇ ≤ 0 and we complete the proof for (ii). ��
In the next proposition, we show that the L2-mass of the solution decays with

constant speed.

Proposition 2.6 Let η be a solution to the gradient flow (13). Let M(t) :=
1
2

∫ 1
0 |η(t, s)|2ds be the L2-mass. Then ∂t M(t) = −1.

Proof We multiply the equation of η in (13) by η and integrate in s. An integration by
parts implies

∂t M(t) = −L−2
∫ 1

0
σ̃ |∂sη|2ds.

Using that |∂sη| = L and
∫ 1
0 σ̃ds = 1, we obtain the desired equality. ��

An immediate consequence of Proposition 2.6 is that the flow becomes extinct in
finite time.

Corollary 2.7 M(t) → 0 as t → t∗, where t∗ = M(0) = 1
2

∫ 1
0 |η0(s)|2ds.

It is also possible to obtain the decay rate of L(t) near the extinction time t∗.

Corollary 2.8 Let L0 := L(η0) > 0 and let t∗ be the extinction time as in Corollary
2.7. Then for all t ∈ [0, t∗),
(i) 2

√
2π

√
t∗ − t ≤ L(t) ≤ L0

√
t∗−t
t∗ ,

(ii) 4π2 ≤ −L(t)∂t L(t) ≤ −(L∂t L)(t)
∣∣
t=0.

Proof 1. The lower bound follows directly from the Wirtinger’s inequality. Indeed, by
Proposition 2.6

M(t) = t∗ − t for t ∈ [0, t∗).

On the other hand, by Wirtinger’s inequality

M(t) ≤ 1

2

1

4π2

∫ 1

0
|∂sη|2ds = L(t)2

8π2 .
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Here we have used the assumption
∫ 1
0 η = 0. Combining the above two inequalities

together, we obtain the lower bound L(t) ≥ 2
√
2π

√
t∗ − t .

Next we show the upper bound. Using ∂t M(t) = ∫ 1
0 η · ∂tη = −1 and the Hölder’s

inequality, we deduce

∫ 1

0
|∂tη|2ds ≥ 1∫ 1

0 |η|2 = 1

2M(t)
= 1

2(t∗ − t)
. (16)

On the other hand, by the gradient flow structure

∂t L = −L
∫ 1

0
|∂tη|2ds. (17)

Thus, −∂t ln L ≥ 1
2(t∗−t) . Then an integration in t from 0 to t yields

L(t) ≤ L0

√
t∗ − t

t∗
, t ∈ [0, t∗).

2. By (ii) of Proposition 2.5, t �→ −L∂t L is monotone decreasing. Thus,−L∂t L ≤
−L∂t L

∣∣
t=0. To see the lower bound,we note that by (17), (16) andWirtinger’s inequal-

ity

−L(t)∂t L(t) = L(t)2
∫ 1

0
|∂tη|2 ≥ L(t)2

2M(t)
≥ 4π2.

��

3 Normalized Flow

3.1 Renormalization

One can ask as the L2-mass M(t) goes to zero, whether the curve becomes circular.
To study this problem, we plan to show that the isoperimetric ratio 2M(t)

L2(t)
goes to the

optimal constant in the Wirtinger’s inequality 1
4π2 as t → t∗. For that and for many

other purposes, it is convenient to renormalize the flow.
We first introduce a slow time variable. More precisely, for t ∈ [0, t∗) let

τ(t) := − ln L(t).

Note that by Proposition 2.5 (i) and Corollary 2.8, τ(t) is monotone increasing in t
and τ → +∞ iff t → t∗; this is also clear in view of (88). Next we consider the
normalization

ξ(τ, s) := η(t(τ ), s)

L(t(τ ))
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One advantage of using such renormalization is that the curve ξ(τ, s) has the unit
speed parametrization, i.e.,

L(τ ) = |∂sξ(τ, s)| = 1 for all (τ, s) ∈ [0,∞) × S
1. (18)

A direct computation shows that ξ satisfies the equation

∂τ ξ = ∂s(σ∂sξ) + ξ. (19)

Here σ(τ, s) can be viewed as a Lagrange multiplier coming from the constraint (18).
It satisfies

∂ssσ − σ |∂ssξ |2 = −1, σ (τ, 0) = σ(τ, 1). (20)

Indeed, from the change of variable dτ
dt = − ∂t L(t)

L(t) . Thus,

∂τ ξ = ∂tη

L

dt

dτ
− η

∂t L

L2

dt

dτ
= − ∂tη

∂t L
+ η

L
.

Using the equation of η, we have

∂τ ξ = −∂s(σ̃ ∂sη)

L2∂t L
+ η

L
.

Letting σ := σ̃
−L∂t L

and writing the above equation in terms of ξ , we arrive at (19).
To derive (20), we can either use the equation of σ̃ , or use the above equation of ξ

together with the constraint |∂sξ | ≡ 1.
With the same argument as in Sect. 2 it is not hard to see that the normalized flow

(19) and (20) can be viewed as the positive gradient flow of the L2-mass M(ξ) :=
1
2

∫ 1
0 |ξ(s)|2 on the manifold of immersed curves with arc-length parametrization, cf.

(78),

Ã :=
{
ξ ∈ H2(S1;Rd) : |∂sξ(s)| = 1 for all s ∈ S

1,

∫ 1

0
ξ(s)ds = 0

}

with respect to the L2(S1;Rd)-induced metric (see also Appendix B and our recent
work [46] which analyzes the gradient flow of the potential energy on a space very
similar to Ã).

The normalized flow (19)–(20) can be interpreted in the spirit of [46] as an over-
damped motion of an inextensible loop particles of which are repelled from the origin
with the force equal to the radius vector.

Using either the gradient flow structure for the normalized flowor tracing the change
of variables and normalization, one obtains the monotonic quantities along the flow.

Proposition 3.1 Let ξ be a solution to the normalized flow (19)–(20). Then
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(i) τ �→ ∫ 1
0 |ξ(τ, s)|2ds is monotone increasing. Moreover,

∫ 1
0 |ξ(τ, s)|2ds ≤ 1

4π2

for all τ .
(ii) τ �→ ∫ 1

0 σ(τ, s)ds is monotone increasing with
∫ 1
0 σ(τ, s)ds ≤ ∫ 1

0 |ξ(τ, s)|2ds
for all τ .

(iii) As τ → ∞, we have
∫ 1
0 σ(∞, s)ds = ∫ 1

0 |ξ(∞, s)|2ds.
Proof 1. We multiply (19) by ∂τ ξ and integrate in s from 0 to 1. After an integration
by part and using ∂sξ · ∂sτ ξ = 0 (which follows from |∂sξ | = 1), we obtain that

∫ 1

0
|∂τ ξ |2ds = ∂τ

(
1

2

∫ 1

0
|ξ |2ds

)
. (21)

Thus, τ → ∫ 1
0 |ξ |2 is monotone increasing. The upper bound follows from the

Wirtinger’s inequality

∫ 1

0
|ξ |2 ds ≤ 1

4π2

∫ 1

0
|∂sξ |2ds = 1

4π2 .

Again we have used that
∫ 1
0 ξ(τ, s)ds = 0.

2. From the definition of σ , we have

∫ 1

0
σ(τ, s)ds =

∫ 1
0 σ̃ds

−L∂t L
= 1

−L∂t L(t(τ ))
.

By (ii) of Proposition 2.5, −L∂t L is monotone decreasing in t thus in τ . Thus,∫ 1
0 σ(τ, s)ds is monotone increasing in τ . To prove the upper bound, we multiply
(19) by ξ and integrate in s. Integrating by parts and using that |∂sξ | = 1 we have

1

2
∂t

∫ 1

0
|ξ |2ds =

∫ 1

0
|ξ |2ds −

∫ 1

0
σds. (22)

By (i), the left-hand side is larger than or equal to zero. Thus, the upper bound follows.
3. By (i) and (ii), limτ→∞

∫ 1
0 |ξ(τ, s)|2ds and limτ→∞

∫ 1
0 σ(τ, s)ds exist and in

the limit
∫ 1
0 |ξ(∞, s)|2ds − ∫ 1

0 σ(∞, s)ds ≥ 0. To see the limit is actually zero, we
argue by contradiction. Suppose not, then there exist ε > 0 and Mε > 0 such that∫ 1
0 |ξ(τ, s)|2ds − ∫ 1

0 σ(τ, s)ds ≥ ε for all τ ≥ Mε . By (22) for any τ1 > τ2 ≥ Mε ,

∫ 1

0
|ξ(τ1, s)|2ds −

∫ 1

0
|ξ(τ2, s)|2ds ≥ 2ε(τ1 − τ2).

By (i) the left-hand side is bounded from above by 1
4π2 . However, the right-hand side

procedes to infinity as τ1 → ∞, which is a contradiction. Thus, we have shown that
the limit is zero. ��
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In the rest of the paper, we will work with the normalized flow (19)–(20). In Sect.
3.2, we show local well-posedness of the problem in some Hölder class. In Sect. 3.3,
we explore the stationary solutions. In Sect. 3.4, we address global well-posedness
and long time asymptotics of the solution for the initial data which are close to steady
states, and show exponential decay of the solutions to a steady state. In Sect. 3.5, we
address the global solvabilitywithout restrictions on the initial data but in a generalized
sense.We stress that there is a one-to-one correspondence between the normalized flow
and the original gradient flow (Sects. 2 and 3, resp.). After the backward change of
variable and renormalization, we can infer the well-posedness of the original flow and
the asymptotics of the flow near the extinction time.

3.2 LocalWell-Posedness

In this section, we show the local well-posedness of the normalized flow (19)–(20).
First, we introduce the function spaces we will work with. Given α, β ∈ [0, 1), T ∈
(0,∞) and k ∈ N ∪ {0}, let

Ck+α,β([0, T ] × S
1) := {ξ : [0, T ] × S

1 → R
d : ‖ξ‖k+α,β < ∞},

where

‖ξ‖k+α,β := sup
t

‖ξ(t, ·)‖Ck+α(S1) + sup
s

k∑
j=0

‖∂ j
s ξ(·, s)‖Cβ([0,T ]).

Here, we use Ck+α(S1) (Cβ([0, T ])) to denote the usual Hölder spaces for functions
only depending on one variable. Similarly, let

Ck+α,1+β([0, T ] × S
1) := {ξ : [0, T ] × S

1 → R
d : ‖ξ‖k+α,β + ‖∂tξ‖k+α,β < ∞}.

The local well-posedness result we want to prove in this section is as follows:

Theorem 1 Given any initial datum ξ0 ∈ C2+α(S1) with |∂sξ0(s)| = 1,
∫ 1
0 ξ0(s)ds =

0 , there exists T > 0, which depends on ‖ξ0‖C2+α(S1), such that the Cauchy problem

∂tξ = ∂s(σ∂sξ) + ξ,

∂ssσ − |∂ssξ |2σ = −1,

ξ(0, s) = ξ0(s),

(23)

has a unique solution ξ ∈ C2+α,α/2([0, T ] × S
1), ∂tξ ∈ Cα,α/2([0, T ] × S

1).

Remark 3.2 As in Remark 2.4, if ξ is the solution emanating from ξ0 provided by
Theorem 1, then

∫ 1
0 ξ(t, s)ds = 0 and |∂sξ(t, s)| ≡ 1 for all t ∈ [0, T ].

The proof ofTheorem1 is based on theBanachfixpoint theorem,wherewe show the
solutionmap ξ �→ σξ �→ ξ̃ is a contraction in the Banach spaceC2+α,α/2([0, T ]×S

1).
The proof is divided into several lemmas.
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Lemma 3.3 For any ξ ∈ C2+α,α/2([0, T ] × S
1) such that ‖∂ssξ(t, ·)‖L2(S1) �= 0 for

all t ∈ [0, T ], there exists a unique solution σ ∈ C2+α/2,α/4([0, T ] × S
1) to the ODE

∂ssσ(t, s) − σ(t, s)|∂ssξ(t, s)|2 = −1. (24)

The solution satisfies the estimate

‖σ‖2+α/2,α/4 ≤ C,

for some constant C depending on d and ‖∂ssξ‖α,α/2, which is uniformly bounded if
‖∂ssξ‖α,α/2 is uniformly bounded.

Proof Let k(t, s) := |∂ssξ(t, s)|. Since ‖k(t, ·)‖L2 �= 0, the inhomogeneous equation
has a unique solution σ(t, s) for each t . Furthermore, by the regularity theory for the
elliptic equations σ(t, ·) ∈ C2+α(S1) for each t ∈ [0, T ] and one has the estimate

‖σ‖2+α,0 ≤ C
(‖k‖α,0 + 1

)
(25)

for some universal C > 0 (cf. Lemma 3.4 below for the estimate of ‖σ‖L∞ ).
To derive the regularity in t , we consider the equation for σ(t1, ·)− σ(t2, ·) for any

0 ≤ t1 < t2 ≤ T :

∂ss (σ (t1, s) − σ(t2, s)) − k(t1, s)
2 (σ (t1, s) − σ(t2, s))

= σ(t2, s)
(
k2(t1, s) − k2(t2, s)

)
.

By the Schauder estimate,

‖σ(t1, s) − σ(t2, s)‖2+α/2,0 ≤ C̃‖k(t1, s) − k(t2, s)‖α/2,0,

where C̃ is a constant depending on ‖σ‖α/2,0 and ‖k‖α/2,0, and it is uniformly bounded
if ‖k‖α/2,0 is uniformly bounded (recall the estimate (25) for σ ). Here, we have used

‖σ(t2, s)
(
k2(t1, s) − k2(t2, s)

)
‖α/2,0 ≤ 6‖σ‖α/2,0‖k‖α/2,0‖k(t1, ·) − k(t2, ·)‖α/2,0

to estimate the right-hand side. Since k(t, s) ∈ Cα,α/2([0, T ] × S
1), it is not hard to

see that

‖k(t1, s) − k(t2, s)‖α/2,0 ≤ C‖k‖α,α/2|t1 − t2|α/2−α/4

for some universal C > 0. Combining the last two inequalities, we obtain the desired
estimate of σ(t, s). ��

Next we state the pointwise upper and lower bound on σ(t, ·) in terms of
‖k(t, ·)‖L2(S1). This is a direct consequence of the upper and lower bound of the
Green’s function of the Schrödinger operator ∂ss − k2 with the periodic boundary
conditions (cf. Proposition A.3 in [43]).
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Lemma 3.4 Let ξ and σ be the same as in Lemma 3.3. Then

e−ρ/2

ρ
≤ σ(t, s) ≤ 1 + 1

ρ
, where ρ = ρ(t) =

∫ 1

0
|∂ssξ(t, s)|2ds,

for all s ∈ S
1.

Fix an initial datum ξ0(s) as in Theorem 1. Firstly, we note that
∫ 1
0 |∂ssξ0(s)|2ds ≥

4π2. To see this let Z := ∂sξ0. From the assumptions on ξ0 and using period-
icity, we have |Z(s)| ≡ 1 and

∫ 1
0 Z = 0. Then the claimed inequality follows

from the Wirtinger’s inequality
∫ 1
0 |∂s Z |2ds ≥ 4π2

∫ 1
0 |Z |2ds = 4π2. Next we let

δ0 := 1
2‖∂ssξ0‖L2(S1) ≥ π and let

Mξ0 := {ξ ∈ C2+α,α/2([0, T ] × S
1) : ‖ξ(t, s)‖2+α,α/2 ≤ ‖ξ0‖2+α + δ0,

and ‖∂ssξ(t, ·) − ∂ssξ0(·)‖L2(S1) ≤ δ0}.

It is not hard to see that Mξ0 is a closed convex subset in C2+α,α/2([0, T ] × S
1).

Lemma 3.5 Given any ξ ∈ Mξ0 , let σ = σξ be as in Lemma 3.3. Then there is
T0 = T0(‖ξ0‖2+α) sufficiently small, such that for any T ∈ (0, T0] there exists a
unique solution ξ̃ (t, s) ∈ Mξ0 to the initial value problem

∂t ξ̃ = ∂s(σ∂s ξ̃ ) + ξ̃ in (0, T ) × S
1, ξ̃

∣∣
t=0 = ξ0. (26)

Proof Given any ξ ∈ Mξ0 , by the triangle inequality δ0 ≤ ‖∂ssξ(t, ·)‖L2(S1) ≤ 3δ0
for any t ∈ [0, T ]. Thus, by Lemma 3.3, there exists a unique solution σ = σξ to
(24) in the class C2+α/2,α/4([0, T ] × S

1). Moreover, it satisfies ‖σ‖2+α/2,α/4 ≤ C ,
where C depends on ‖ξ0‖2+α since ξ ∈ Mξ0 . From Lemma 3.4, we have that σ ≥
c0 > 0 for some c0 depending on ‖ξ0‖2+α . Thus, the Eq. (26) is parabolic. By the
classical well-posedness results for the parabolic equations, there is a unique solution
ξ̃ ∈ C2+α/2,1+α/4([0, T ] × S

1) to the Eq. (26), and ‖ξ̃‖2+α/2,1+α/4 ≤ C̃ , where C̃
depends on ‖ξ0‖2+α (cf. Sect. 9.2 in [26]).

Next we claim there is a small enough T0 > 0 depending on ‖ξ0‖2+α , such that
ξ̃ ∈ Mξ0 for any T ∈ (0, T0]. Indeed, the definition of the Hölder class and an
interpolation yield that

‖ξ̃‖2+α,α/2 ≤ ‖ξ0‖2+α + 2T 1−α/4‖ξ̃‖2+α/2,1+α/4 ≤ ‖ξ0‖2+α + 2T 1−α/4C̃ .

By the Hölder regularity of the solution, ‖∂ss ξ̃ (t, ·) − ∂ssξ0(·)‖L2(S1) ≤ 2C̃tα/2 for
any t ∈ [0, T ]. The claim then follows by taking T0 sufficiently small depending on
‖ξ0‖2+α . ��
Lemma 3.6 Let ξ, ξ̃ ∈ Mξ0 be as in Lemma 3.5. Then there is T > 0 sufficiently small
depending on ‖ξ0‖2+α , such that the mapping ξ �→ ξ̃ is a contraction.
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Proof Given ξ1, ξ2 ∈ Mξ0 , let σ1 and σ2 be the solutions to (24) with respect to ξ1 and
ξ2 correspondingly. Let ki := |∂ssξi |, i = 1, 2. Then σ1 − σ2 satisfies the equation

∂ss(σ1 − σ2) − k21(σ1 − σ2) = σ2(k
2
1 − k22).

By the similar arguments as in Lemma 3.3 (with slightly more involved estimates
when dealing with the regularity in time due to the more complicated right-hand side),
we have

‖σ1 − σ2‖2+α/2,α/4 ≤ C‖ξ1 − ξ2‖2+α,α/2 (27)

for some C = C(‖ξ0‖2+α).
Let ξ̃1, ξ̃2 be the solutions to (26) with respect to σ1, σ2 correspondingly. Then

ζ := ξ̃1 − ξ̃2 satisfies the equation

∂tζ = ∂s(σ1∂sζ ) + ζ + ∂s

(
(σ1 − σ2)∂s ξ̃2

)
, ζ(0, s) = 0.

By the parabolic Schauder estimate, we have

‖ζ‖3+α/2,1+α/4 ≤ C‖σ1 − σ2‖2+α/2,α/4 (28)

for some C = C(‖ξ0‖2+α). An interpolation together with (28) and (27) yields

‖ζ‖2+α,α/2 ≤ CT 1−α/4‖ζ‖3+α/2,1+α/4

≤ CT 1−α/4‖σ1 − σ2‖2+α/2,α/4

≤ CT 1−α/4‖ξ1 − ξ2‖2+α,α/2.

Here C might be different from line to line but all depend on ‖ξ0‖2+α . Choosing T to
be sufficiently small depending on ‖ξ0‖2+α , we obtain

‖ξ̃1 − ξ̃2‖2+α,α/2 = ‖ζ‖2+α,α/2 ≤ 1

2
‖ξ1 − ξ2‖2+α,α/2,

which completes the proof. ��
In the end, we provide a proof for the local-posedness of our problem (23).

Proof of Theorem 1 By Lemma 3.6, the mapping ξ �→ ξ̃ is a contraction on Mξ0

provided T is sufficiently small depending on ξ0. By the Schauder fixed point theorem,
there is a unique function ξ ∈ Mξ0 with ξ = ξ̃ . It is not hard to see that such fixed point
ξ is a solution to the initial value problem (23). The solution is Hölder α/2 continuous
in t up to t = 0. The regularity of ∂tξ for t > 0 follows immediately from the interior
regularity of the parabolic equation. ��
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3.3 Stationary Solutions to the Normalized Flow

Our goal is to study the global well-posedness of the normalized Eqs. (19)–(20), and
the long-time asymptotics of the solution. Before that, we investigate the stationary
solutions to the normalized equation, and show in this case the Lagrange multiplier
σ satisfies an ODE which has a first integral. Just like as for the conventional curve-
shortening flow [1], the stationary solutions are not necessarily circles in our case.
However, we will show that the circle (with σ ≡ 1

4π2 ) is the only solution to the

ODE if one assumes that the curve is simple and
∫ 1
0 σds satisfies a lower bound∫ 1

0 σds ≥ 27
32

1
4π2 .

We start by recalling the stationary equation ξ : S1 → R
d

∂s(σ∂sξ) + ξ = 0, |∂sξ | = 1. (29)

Proposition 3.7 Let ξ ∈ C2(S1;Rd) be a solution to (29). Then ξ is a plane curve
curvature of which satisfies k(s) > 0 for all s.

Proof Differentiating the equation in s and using the constraint |∂sξ | = 1 it is not hard
to see that σ satisfies

∂ssσ − σ |∂ssξ |2 = −1.

We have σ ∈ C2(S1) by the elliptic estimate. Furthermore, by the strong maximum
principle σ > 0. This together with the equality −ξ = ∂sσ∂sξ + σ∂ssξ implies that
ξ is a plane curve, since ξ, ∂sξ and ∂ssξ are in the same plane.

For the arc-length parametrized curve, we have ∂ssξ = kN , where N is the unit
inner normal along the curve and k is the curvature. Differentiating the equation of ξ

and using ∂s N = −k∂sξ , we get

(
∂ssσ − σk2 + 1

)
∂sξ + (2∂sσk + σ∂sk) N = 0.

Thus, σ∂sk + 2∂sσk = 0, which implies

σ 2k = const . (30)

Since
∫ 1
0 k(s)ds = 2π for a regular closed plane curve, and σ > 0, one has k(s) > 0

for all s ∈ S
1. ��

In the next proposition, we derive a first-order ODE of σ .

Proposition 3.8 Let ξ ∈ C2(S1;Rd) be a solution to (29). Let τ := σ 2. Then τ satisfies
the first integral

1

2
(∂sτ)2 + V (τ ) = λ, V (τ ) := 4τ 3/2 − 6τ̄ τ.
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Here τ̄ = ∫ 1
0 τ 1/2ds and λ = V (τe) is a fixed constant, where τe is any extreme value

of τ . Moreover, we have λ ∈ [−2τ̄ 3, 0).

Proof First multiplying (29) by ξ and an integration yield

∫ 1

0
σds =

∫ 1

0
|ξ |2ds. (31)

Then, we multiply (29) by ∂sξ and use |∂sξ | = 1 to obtain

∂sσ + 1

2
∂s |ξ |2 = 0 for all s ∈ S

1,

which together with (31) gives

σ + 1

2
|ξ |2 = 3

2
σ̄ , σ̄ :=

∫ 1

0
σ. (32)

On the other hand, (29) together with the orthogonality ∂sξ · ∂ssξ = 0 yields

|∂sσ |2 + σ 2k2 = |ξ |2. (33)

Since σk2 = ∂ssσ + 1 by the equation of σ , we obtain from (33)

|∂sσ |2 + σ(∂ssσ + 1) = 1

2
∂ss(σ

2) + σ = |ξ |2,

which together with (32) gives the ODE of σ

1

2
∂ss(σ

2) = 3σ̄ − 3σ. (34)

Remember that we have set τ := σ 2. Let us rewrite the above equation in terms of
τ as ∂ssτ = 6τ̄ − 6τ 1/2, where τ̄ = σ̄ = ∫ 1

0 τ 1/2ds. Multiplying both sides by ∂sτ

and integrating, we obtain

1

2
(∂sτ)2 + V (τ ) = λ, V (τ ) := 4τ 3/2 − 6τ̄ τ. (35)

At s such that τ(s) = τe, we have ∂sτ(s) = 0, thus λ = V (τe) from (35). The
potential V satisfies V ′′(τ ) = 3τ−1/2, hence it is convex on (0,∞). We note from
(32) and the definition τ = σ 2 that τ ∈ (0, 3τ̄ /2). This implies V (τ ) ∈ [−2τ̄ 3, 0)
with min V (τ ) = V (τ̄ 2) = −2τ̄ 3. Thus, λ = V (τe) ∈ [−2τ̄ 3, 0). ��

If ξ is an m-covered circle, m ∈ N, then it is easy to see from (32)–(33) that
σ = 1

4π2m2 . In general, it is possible to apply the method for the proof of Theorem A
in [1] to classify solutions τ (hence σ ) to the ODE (35). In the next proposition, we
show that if ξ is simple and σ is close to 1

4π2 (m = 1), then ξ is a circle and σ = 1
4π2 .
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Proposition 3.9 Let ξ ∈ C2(S1;Rd) be a solution to (29). Assume ξ is simple, i.e.,
ξ(s1) �= ξ(s2) for s1 �= s2. Assume

∫ 1
0 σ ds ≥ 27

32
1

4π2 . Then σ ≡ 1
4π2 , and ξ is a circle

centered at 0 with radius 1
2π .

Proof 1. By Proposition 3.8, ξ is a plane curve with curvature k > 0. Moreover, ξ is
simple by assumption. Thus, by the four-vertex theorem, k(s) has at least four critical
points. Let 0 ≤ s1 < s2 < · · ·<sJ ≤ 1 with index J ≥ 4 be the critical points. Since
σ 2k = const and σ > 0, σ has the same critical points at si , i.e., ∂sσ(si ) = 0 for
i ∈ J . We claim that

1

|Ii |
∫
Ii

σ(s)ds = σ̄ , Ii = (si , si+1), |Ii | = si+1 − si , i ∈ J . (36)

Indeed, an integration of (33) in s over Ii together with (32) gives

∫
Ii
(∂sσ)2 +

∫
Ii

σ 2k2 =
∫
Ii

|ξ |2 =
∫
Ii
(3σ̄ − 2σ).

On the other hand, multiplying the equation of σ by σ and an integration by parts
yield,

∫
Ii
(∂sσ)2 +

∫
Ii

σ 2k2 =
∫
Ii

σ.

Here, we have used ∂sσ(si ) = 0; hence, the boundary term in the integration by parts
vanishes. From the above two equalities, we conclude

∫
Ii
(3σ̄ − 2σ) =

∫
Ii

σ.

Thus, (36) follows.
2. We show that if σ̄ ≥ 27

32
1

4π2 , then σ(s) ≡ σ̄ in the intervals Ii with |Ii | ≤ 1
4 . In

particular, since J ≥ 4 there is always an open interval where σ ≡ σ̄ there.
Take Ii such that |Ii | ≤ 1

4 . For simplicity, we write I instead of Ii in the sequel.
We multiply both sides of (34) by σ and integrate from si to si+1. An integration by
parts gives

∫
I
σ(∂sσ)2ds = 3

∫
I
(σ 2 − σ̄ σ )ds. (37)

On the other side, by a generalized Beckner-type inequality (see [14, Lemma 4] with
q = 4

3 , p = 3
2 and f = σ 3/2; see also [25] for a link with “unbalanced optimal

transport”), we have

|I |−1/2‖σ‖L2(I )

(
‖σ‖2L2(I ) − |I |−1‖σ‖2L1(I )

)
≤ 9

2

|I |2
4π2

∫
I
σ(∂sσ)2ds. (38)
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Here, we have used that CP = |I |2
4π2 is the optimal Poincaré constant with respect to

the interval I . Combining (37) and (38), we arrive at

|I |−1/2‖σ‖L2(I )

(
‖σ‖2L2(I ) − |I |−1‖σ‖2L1(I )

)
≤ 27

2

|I |2
4π2

(
‖σ‖2L2(I ) − |I |−1‖σ‖2L1(I )

)
.

Note that if |I | ≤ 1
4 and σ̄ > 27

32
1

4π2 , then

|I |−1/2‖σ‖L2(I ) >
27

2

|I |2
4π2 .

Indeed, this immediately follows from Hölder’s inequality and (36):

|I |−1/2‖σ‖L2(I ) ≥ |I |−1‖σ‖L1 = σ̄ >
27

2

|I |2
4π2 .

Thus, ‖σ‖2
L2(I )

= |I |−1‖σ‖2
L1(I )

. From the equality case of the Hölder’s inequality
|σ | = const a.e. in I . This together with the continuity of σ yields that σ(s) ≡ σ̄ in
I .

3. In the last step, we show that σ(s) = 1/(4π2) for all s ∈ S
1. Indeed, from step

2 above there exists an interval, say, (0, s0) for some small s0 > 0 such that σ ≡ σ̄

there. Let τ := σ 2. By the Picard theorem the initial value problem (τ = σ 2)

∂ssτ = 6(σ̄ − √
τ), τ (s0) = σ̄ 2, ∂sτ(s0) = 0,

has a unique solution in (s0, s0 + δ) for some δ > 0. Since the constant function
τ ≡ σ̄ 2 is a solution, thus necessarily τ = σ̄ 2 in (s0, s0 + δ). This shows that τ , thus
σ , is identically σ̄ in the whole circle S1.

With this at hand, (32) yields that |ξ |2 = const = σ̄ in S
1. Thus, ξ is a circle

centered at the origin. Since the length of the curve is equal to 1, then |ξ | = 1
2πk for

k ∈ {1, 2, · · · }. By our assumption σ̄ ≥ 27
32

1
4π2 (or because the curve is simple), we

should have |ξ | = 1
2π and σ̄ = 1

4π2 . ��
Remark 3.10 From the proof of Proposition 3.9, one can see that we only need the
existence of two critical points s1, s2 of the curvature function k(s)with |s1−s2| ≤ 1/4.
This can also be achieved by assuming the symmetry property ξ(s) = −ξ(s + 1/2)
instead of assuming that the curve is simple.

3.4 GlobalWell-Posedness and Exponential Stability

In this section, we study the global well-posedness of the normalized flow (19)–(20)
under the assumption that initially the curve is C2 close to the circle

w0(s) := 1

2π
(cos(2πs), sin(2πs), 0, · · · , 0). (39)
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We will mainly show the uniform (in time) boundedness of curvature |∂ssξ |2, which
yields that the time T in the local well-posedness result has a uniform lower bound.
The main idea of the proof is to show that under some smallness assumption at the
initial time, the parabolicity is preserved along the flow, i.e., σ > c0 pointwise for any
t < T , where c0 > 0 is some absolute constant.

The proof of the result is based on a dynamical system approach. We let

C := {cw0(s + θ) : c, θ ∈ R}

denote themanifold generated byw0 which is invariant under the dilation and rotation.
For each t ∈ (0, T ), we decompose

ξ(t, s) = ξ̃ (t, s) + c(t)w0(s + θ(t)), (40)

where c(t)w0(· + θ(t)) is the L2 projection of ξ(t) onto C, i.e., for each t fixed

c(t)w0(· + θ(t)) ∈ argminw∈C
{∫

S1
|ξ(t, ·) − w(·)|2dH1

}
.

We remark that minimum are achieved by considering the minimization problem over
the finite dimensional parameter space

inf
c,θ∈RFξ (c, θ), Fξ (c, θ) :=

∫
S1

|ξ(·) − cw0(· + θ)|2dH1.

The first derivatives ∂Fξ (c, θ)/∂c and ∂Fξ (c, θ)/∂θ vanish at the minimizers
(c(t), θ(t)), yielding the following orthogonality conditions

∫ 1

0
ξ̃ (t, s) · w0(s + θ(t))ds =

∫ 1

0
ξ̃ (t, s) · c(t)∂sw0(s + θ(t))ds = 0. (41)

Note that since c �→ Fξ (c, θ) is strictly convex, there is indeed a unique c(t) associated
with ξ(t, ·) for each t ∈ [0, T ].

Now we derive the evolution of the parameters c(t) and θ(t) (assume for now they
are differentiable. For more detailed discussion, we refer to Lemma 3.11). By using
the equation of ξ , we obtain the equation of ξ̃

∂t ξ̃ (t, s) = ξ̃ (t, s) + ∂s(σ (t, s)∂s ξ̃ (t, s))+
+ c(t)∂s

(
(σ (t, s) − 1

4π2 )∂sw0(s + θ(t))

)
− ċ(t)w0(s + θ(t))

− c(t)θ̇(t)∂sw0(s + θ(t)),

(42)

where we have used the relation w0 + 1
4π2 ∂ssw0 = 0. We multiply (42) by ξ̃ (t, ·),

w0(·+θ(t)) and ∂sw0(·+θ(t)) and integrate overS1.Using the orthogonality condition
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(41) we quantify the evolution of ‖ξ(t, ·)‖2
L2 as well as of the parameters c(t) and θ(t)

for t < T :

1

2
∂t

∫ 1

0
|ξ̃ |2ds =

∫ 1

0
|ξ̃ |2 −

∫ 1

0
σ |∂s ξ̃ |2ds − c(t)

∫ 1

0
σ∂sw0(· + θ(t)) · ∂s ξ̃ds,

ċ(t) =
(
1 − 4π2

∫ 1

0
σds

)
c(t) − 4π2

∫ 1

0
σ∂sw0(· + θ(t)) · ∂s ξ̃ds,

c(t)θ̇(t) = 4π2
∫ 1

0
σw0(· + θ(t)) · ∂s ξ̃ds.

(43)
From the unit speed constraint |∂sξ(t, s)| = |∂sw0(s + θ(t))| = 1 for all (t, s) ∈
[0, T ] × S

1, we obtain

|∂s ξ̃ (t, s)|2 + 2c(t)∂s ξ̃ (t, s) · ∂sw0(s + θ(t)) + c(t)2 = 1. (44)

Integrating over S1 and using (41) (note that
∫ 1
0 ∂s ξ̃ · ∂sw0ds = − ∫ 1

0 ξ̃ · ∂ssw0 = 0
since ∂ssw0 = −4π2w0) yields

∫ 1

0
|∂s ξ̃ |2ds = 1 − c(t)2. (45)

Here and in the sequel for brevity, we write w0 and ∂sw0 instead of w0(s + θ(t)) and
∂sw0(s + θ(t)), respectively.

Lemma 3.11 Suppose ξ(t, s) ∈ C2+α,α/2([0, T ]×S
1), ∂tξ(t, s) ∈ Cα,α/2((0, T ]×S

1)

is a classical solution to the normalized flow (19)–(20). Suppose the L2 projection of
ξ(0, ·) onto C is not 0, i.e. c(0) �= 0. Then there exist t0 ∈ (0, T ] depending on
c(0), ‖ξ(0, ·)‖C2(S1), and parameters (c(t), θ(t)) ∈ C0([0, t0]) ∩ C1((0, t0]), such
that (40)–(43) are satisfied for all t ∈ (0, t0).

Proof Given a classical solution ξ , there exist (c(0), θ(0)) ∈ R×[0, 2π) be such that

Fξ(0)(c(0), θ(0)) = min
(c,θ)∈R×[0,2π)

Fξ(0)(c, θ).

Indeed, sinceFξ is continuous, strictly convex in c and 2π -periodic in θ , the minimum
is realized. We consider the ODE system

ċ(t) = c(t) − 4π2
∫ 1

0
σ∂sw0(s + θ(t)) · ∂sξ(t, s)ds,

c(t)θ̇(t) = 4π2
∫ 1

0
σw0(s + θ(t)) · ∂sξ(t, s)ds,

(c(t), θ(t))
∣∣
t=0 = (c(0), θ(0)).

(46)

Using |∂sξ | = 1 and the bound of σ in Lemma 3.4, we have that the right-hand side of
the system is bounded by constants depending on ‖ξ(0, ·)‖C2(S1). Thus, by the Picard–
Lindelöf theorem, there exists a unique solution (c(t), θ(t)) defined in [0, t0] for some
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t0 ∈ (0, T ], value of which lies in a neighborhood of (c(0), θ(0)). Here t0 and the
size of the neighborhood depend on c(0) and ‖ξ(0, ·)‖C2(S1). Furthermore, from the
t-regularity of ξ and σ , we can conclude that (c(t), θ(t)) ∈ C0([0, t0]) ∩C1((0, t0]).

Let ξ̃ (t, s) := ξ(t, s) − c(t)w0(s + θ(t)), t ∈ [0, t0]. From the equation of ξ , one
easily derives the equation of ξ̃ in (42).Moreover, using |∂sw0| = 1 and ∂sw0 ·w0 = 0,
the ODE system (46) can be rewritten in terms of ξ̃ as in (43). We claim that (42)
together with the ODE for (c(t), θ(t)) in (43) implies the orthogonality conditions
(41). Indeed, let

A(t) :=
∫ 1

0
ξ̃ (t, s) · w0(s + θ(t))ds, B(t) :=

∫ 1

0
ξ̃ (t, s) · ∂sw0(s + θ(t))ds, t ∈ [0, t0].

We have A(0) = B(0) = 0. Direct differentiation yields

Ȧ(t) =
∫ 1

0
∂t ξ̃ (t, s) · w0(s + θ(t))ds + θ̇ (t)B(t),

Ḃ(t) =
∫ 1

0
∂t ξ̃ (t, s) · ∂sw0(s + θ(t))ds − θ̇ (t)

4π2 A(t).

(47)

Multiplying (42) byw0(s+θ(t)) and ∂sw0(s+θ(t)), and using theODEof (c(t), θ(t))
in (43), we obtain

∫ 1

0
∂t ξ̃ (t, s) · w0(s + θ(t))ds = A(t),

∫ 1

0
∂t ξ̃ (t, s) · ∂sw0(s + θ(t))ds = B(t).

(48)
Applying (48) to (47) yields

(
Ȧ(t)
Ḃ(t)

)
=

(
1 θ̇ (t)

− θ̇ (t)
4π2 1

)(
A(t)
B(t).

)

Since the coefficient matrix is nonsingular and since A(0) = B(0) = 0 we have that
A(t) = B(t) = 0 for all t ∈ [0, t0], which completes the proof for the claim. ��

The rest of the argument goes as follows:

(i) in Lemmas 3.12 and 3.13 we prove the decay estimate for t �→ ‖ξ(t, ·)‖L2 and
t �→ ‖∂sξ(t, ·)‖L2 , t ∈ (0, t0], under the initial assumptions that

∫ 1
0 σ(0, s)ds ≥

2
3

1
4π2 and c(0)2 ≥ 1

2 . As a corollary of the decay estimate and Proposition 3.1
(ii), these initial assumptions are preserved along the flow. We remark that the
initial assumptions are always satisfied if initially ξ is sufficiently close to the
stationary solution w0 (cf. Theorem 2).

(ii) in Lemma 3.16, we derive pointwise oscillation estimate for the Lagrange mul-
tiplier σ . This is a crucial step, since σ appears as the parabolicity coefficient in
the equation of ξ .

(iii) Lemma 3.16 together with the decay estimate in (i) would yield the uniform (in
t0) boundedness of ‖ξ(t, ·)‖C2+α(S1). Thus, we have a lower bound on the time
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step in the iteration procedure. These are proved in Theorem 2, where we show
the global well-posedness results for initial datum sufficiently close to w0.

In the sequel t0, ξ̃ and (c(t), θ(t)) are those given by Lemma 3.11 associated with
a classical solution ξ(t, s) ∈ C2+α,α/2([0, T ] × S

1), ∂tξ(t, s) ∈ Cα,α/2((0, T ] × S
1)

with c(0) �= 0. We also let

σ̄ (t) :=
∫ 1

0
σ(t, s)ds.

Lemma 3.12 Assume that

σ̄ (0) ≥ 2

3

1

4π2 , (49)

Then t �→ ‖ξ̃ (t, ·)‖L2(S1) is monotone decreasing in [0, t0]. Moreover,

‖ξ̃ (t, ·)‖L2(S1) ≤ e− 1
3 t‖ξ̃ (0, ·)‖L2(S1), t ∈ [0, t0]. (50)

Proof We will derive a differential inequality on ‖ξ̃ (t, ·)‖L2(S1) using its evolution
equation from (43). First, we multiply σ to the both sides of (44) and integrate over
S
1

(1 − c2)σ̄ =
∫ 1

0
σ |∂s ξ̃ |2ds + 2c

∫ 1

0
σ∂s ξ̃ · ∂sw0ds. (51)

Thus, (43) can be rewritten as

1

2
∂t

∫ 1

0
|ξ̃ |2 =

∫ 1

0
|ξ̃ |2 −

∫ 1

0
σ |∂s ξ̃ |2 − 1 − c2

2
σ̄ + 1

2

∫ 1

0
σ |∂s ξ̃ |2ds

=
∫ 1

0
|ξ̃ |2 − 1

2

∫ 1

0
σ |∂s ξ̃ |2 − 1 − c2

2
σ̄ .

Applying (45) to the last term of the above equation, we obtain

1

2
∂t

∫ 1

0
|ξ̃ |2 =

∫ 1

0
|ξ̃ |2 − 1

2

∫ 1

0
σ |∂s ξ̃ |2 − 1

2
σ̄

∫ 1

0
|∂s ξ̃ |2ds

≤
∫ 1

0
|ξ̃ |2 − 1

2
σ̄

∫ 1

0
|∂s ξ̃ |2ds.

(52)

We claim that (40) implies

∫ 1

0
|ξ̃ (t, ·)|2ds ≤ 1

16π2

∫ 1

0
|∂s ξ̃ (t, ·)|2ds. (53)

To see this, one can employ Fourier expansion of ξ̃ (t, ·). By ∫ 1
0 ξ̃ = 0 as well as the

orthogonality condition (41), one finds that the zero and first-order Fourier coefficients
of ξ̃ are zero.
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Applying (53) to (52), we obtain

1

2
∂t

∫ 1

0
|ξ̃ |2 ≤ −

(
8π2σ̄ (t) − 1

) ∫ 1

0
|ξ̃ |2.

Since t �→ σ̄ (t) is monotone increasing, cf. Proposition 3.1 (ii), from (49) we have
8π2σ̄ (t) − 1 ≥ 1

3 for all t ∈ [0, t0]. Thus,

∂t

∫ 1

0
|ξ̃ |2 ≤ −2

3

∫ 1

0
|ξ̃ |2, t ∈ (0, t0].

This implies that t �→ ‖ξ̃ (t, ·)‖L2(S1) is monotone decreasing. An integration in t
results in (50), which completes the proof. ��

The next lemma concerns the decay estimate of t �→ ‖∂s ξ̃ (t, ·)‖2
L2(S1)

.

Lemma 3.13 Assume that σ̄ (0) satisfy the same assumptions as in Lemma 3.12.
Assume furthermore that

c(0)2 ≥ 1

2
. (54)

Then t �→ ‖∂s ξ̃ (t, ·)‖L2(S1) is monotone decreasing. Moreover,

‖∂s ξ̃ (t, ·)‖L2(S1) ≤ e− 1
16 t‖∂s ξ̃ (0, ·)‖L2(S1), t ∈ [0, t0].

Proof By (45) and the expression of ċ in (43),

1

2
∂t

∫ 1

0
|∂s ξ̃ |2 = −c(t)ċ(t) = −

(
1 − 4π2σ̄

)
c2 + 4π2c

∫ 1

0
σ∂sw0 · ∂s ξ̃ .

Applying (51) to the last term in the above equation, we obtain

1

2
∂t

∫ 1

0
|∂s ξ̃ |2 = −

(
1 − 4π2σ̄

)
c2 + 4π2

(
1 − c2

2
σ̄ − 1

2

∫ 1

0
σ |∂s ξ̃ |2

)

≤ −c2 + 4π2σ̄c2 + 4π2σ̄
1 − c2

2
.

(55)

Next we note that

4π2σ̄ ≤ 1 − 3

4

∫ 1

0
|∂s ξ̃ |2. (56)

Indeed, by (ii) of Proposition 3.1 σ̄ ≤ ∫ 1
0 |ξ |2, which in terms of ξ̃ and c reads

σ̄ ≤ ∫ 1
0 |ξ̃ |2 + c2

4π2 . By (53), σ̄ ≤ 1
16π2

∫ 1
0 |∂s ξ̃ |2 + c2

4π2 , which combined with (45)
gives (56).
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With (56) at-hand, one can bound ∂t
∫ 1
0 |∂s ξ̃ |2 in terms of

∫ 1
0 |∂s ξ̃ |2ds as

1

2
∂t

∫ 1

0
|∂s ξ̃ |2ds ≤

∫ 1

0
|∂s ξ̃ |2ds

(
−1

4
+ 3

8

∫ 1

0
|∂s ξ̃ |2ds

)
. (57)

Indeed, since c2 and 1 − c2 are nonnegative (cf. (45)), applying (56) to (55) we have
that

1

2
∂t

∫ 1

0
|∂s ξ̃ |2 ≤ −c2 +

(
1 − 3

4

∫ 1

0
|∂s ξ̃ |2

)
c2 +

(
1 − 3

4

∫ 1

0
|∂s ξ̃ |2

)
1 − c2

2
.

Substituting c2 by 1 − ∫ 1
0 |∂s ξ̃ |2ds (cf. (45)) and after some algebraic manipulations,

we arrive at (57).
Thus, if

∫ 1
0 |∂s ξ̃ (0, s)|ds = 1−c(0)2 ≤ 1

2 by (54), then by (57)
∫ 1
0 |∂s ξ̃ (t, s)|ds ≤ 1

2
for all t ∈ [0, t0]. Moreover,

1

2
∂t

∫ 1

0
|∂s ξ̃ |2ds ≤ − 1

16

∫ 1

0
|∂s ξ̃ |2ds,

for all t ∈ (0, t0]. Solving the above differential inequality, we complete the proof. ��
The exponential decay of t �→ ‖∂s ξ̃ (t, ·)‖L2 immediately yields the convergence

of the multiplicative factor c(t) due to (45).

Corollary 3.14 Under the same assumptions as in Lemma 3.13, we have

|c(t)2 − 1| ≤ e− 1
8 t |c(0)2 − 1| for all t ∈ [0, t0].

Remark 3.15 The decay estimate on c(t) implies that t0 = T , where [0, t0] is the
interval of the definition of the solution to the ODE (46) in Lemma 3.11. Indeed, since
c(t), t ∈ [0, t0], is bounded away from zero and has uniformly bounded modulus
(cf. Corollary 3.14), the solution to (46) can be extended for longer time as long as
‖ξ(t, ·)‖C2+α(S1) remains bounded.

In order to show the global existence, we need to control the norm ‖ξ(t, s)‖2+α,0
along the flow. For this purpose, it suffices to find a pointwise upper and lower bound
on the ellipticity coefficient σ(t, s). The next lemma says that if 1

4π2 − σ̄ , ‖ξ̃‖L2

and ‖∂s ξ̃‖L2 are sufficiently small at t = 0, then the oscillation σ(t, s) − σ̄ (t) and
|ξ |2(t, s) − ∫ 1

0 |ξ |2(t, s)ds are under control along the flow.

Lemma 3.16 Given ε ∈ (0, 1
(32π2)2

], if
(

1

4π2 − σ̄ (0)

)
+

∥∥∥ξ̃ (0, ·)
∥∥∥2
L2(S1)

+
∥∥∥∂s ξ̃ (0, ·)

∥∥∥2
L2(S1)

≤ ε, (58)
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then for all (t, s) ∈ [0, T ] × S
1, we have

∣∣∣∣|ξ(t, s)|2 −
∫ 1

0
|ξ(t, s)|2ds

∣∣∣∣ ≤ 2
√

ε, |σ(t, s) − σ̄ (t)| ≤ 3
√

ε.

In particular, σ satisfies

1

4π2 − 4
√

ε ≤ σ(t, s) ≤ 1

4π2 + 3
√

ε for all (t, s) ∈ [0, T ] × S
1.

Proof 1.Weobserve that by themonotonicity properties fromProposition3.1,Lemmas
3.12 and 3.13 with t0 = T (cf. Remark 3.15), the smallness assumption (58) indeed
holds for all t ∈ [0, T ]. Here, we have used that (58) implies (54).

2. We show that

∫ 1

0
|∂tξ(t, s)|2ds =

∫ 1

0
|ξ(t, s)|2ds − σ̄ (t) ≤ ε for all t ∈ (0, T ]. (59)

Indeed, the first equality is due to (21) and (22). To see the second inequality, we note
that by the assumption (58) and the observation above,

∫ 1

0
|ξ |2ds − σ̄ =

(∫ 1

0
|ξ |2 − 1

4π2

)
+

(
1

4π2 − σ̄

)

=
∫ 1

0
|ξ̃ |2ds + (c2 − 1)

1

4π2 +
(

1

4π2 − σ̄

)

=
∫ 1

0
|ξ̃ |2ds − 1

4π2

∫ 1

0
|∂s ξ̃ |2ds +

(
1

4π2 − σ̄

)
≤ ε,

where in the second last inequality, we have used (45).
3. We estimate the oscillation of σ and |ξ |2. First, we show that the oscillation of

σ is bounded by the oscillation of |ξ |2: for all (t, s) ∈ [0, T ] × S
1

|σ(t, s) − σ̄ (t)| ≤ √
ε +

∣∣∣∣12 |ξ(t, s)|2 − 1

2

∫ 1

0
|ξ(t, s)|2ds

∣∣∣∣ . (60)

For this, we multiply the equation of ξ by ∂sξ and get ∂tξ · ∂sξ = ∂sσ + ξ · ∂sξ =
∂s

(
σ + 1

2 |ξ |2). An integration in s yields

∣∣∣∣σ(t, s) + 1

2
|ξ(t, s)|2 −

∫ 1

0

(
σ(t, s) + 1

2
|ξ(t, s)|2

)
ds

∣∣∣∣ ≤
∫ 1

0
|∂tξ(t, s) · ∂sξ(t, s)| ds.

By Hölder’s inequality and (59),

∫ 1

0
|∂tξ(t, s) · ∂sξ(t, s)| ds ≤

(∫ 1

0
|∂tξ(t, s)|2ds

)1/2

≤ √
ε.
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Combining the above two inequalities together, we obtain (60).
Next we rewrite the oscillation of |ξ |2 by using |ξ̃ |2:

∣∣∣∣12 |ξ(t, s)|2 − 1

2

∫ 1

0
|ξ(t, s)|2ds

∣∣∣∣ =
∣∣∣∣12 |ξ̃ (t, s)|2 − 1

2

∫ 1

0
|ξ̃ (t, s)|2ds + 2cξ̃ · w0

∣∣∣∣ .

Using the fundamental theorem of calculus as well as the step 1, one can bound the
oscillation of |ξ̃ |2 as
∣∣∣∣|ξ̃ (t, s)|2 −

∫ 1

0
|ξ̃ (t, s)|2ds

∣∣∣∣ ≤ 2
∫ 1

0
|∂s ξ̃ · ξ̃ |ds ≤ 2‖∂s ξ̃ (t, ·)‖L2‖ξ̃ (t, ·)‖L2 ≤ 2ε.

For the term cξ̃ · w0, we use |c| ≤ 1, |w0| = 1
2π and the above oscillation estimate to

get

|cξ̃ · w0| ≤ 1

2π
|ξ̃ (t, s)| ≤ 1

2π

(∫ 1

0
|ξ̃ (t, s)|2ds + 2ε

)1/2

≤ 1

2π

√
3ε.

Combining together, we have for all (t, s) ∈ [0, T ] × S
1

∣∣∣∣12 |ξ(t, s)|2 − 1

2

∫ 1

0
|ξ(t, s)|2ds

∣∣∣∣ ≤ ε + 2
1

2π

√
3ε ≤ 2

√
ε.

Combining this with (60), we obtain the desired oscillation estimate for σ . Taking
ε ≤ 1

(32π2)2
and using the step 1, we obtain the pointwise lower bound for σ(t, s). The

upper bound follows from (60) and Proposition 3.1. ��
At the end of this section, we show the global well-posedness of the normalized

flow in the Hölder class C2+α,α/2, under the assumption that initially the curve is
sufficiently close to the stationary solution w0.

Theorem 2 Let w0 be the stationary solution defined in (39). Given an initial datum
ξ0 ∈ Ã ∩ C2+α(S1), which satisfies

‖ξ0 − w0‖H2(S1) ≤ ε0 (61)

for some small universal constant ε0 > 0, the Cauchy problem (23) has a solution

ξ ∈ C2+α,α/2([0,∞) × S
1), ∂tξ ∈ Cα,α/2((0,∞) × S

1).

Proof Let ξ ∈ C2+α,α/2([0, T ] × S
1), T ∈ (0, 1) depending on ‖ξ0‖C2+α(S1), be the

classical solution to the Cauchy problem (23) with the initial datum ξ0 (cf. Theorem 1).
Let σ be the Lagrange multiplier such that ξ0 + ∂s(σ∂sξ0) ∈ Tξ0Ã. Similar arguments
as in Lemma 2.2 yield

∂ssσ − |∂ssξ0|2σ = −1. (62)
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Note that from (62), we have

∫ 1

0
σ = ‖∂s(σ∂sξ0)‖2L2 ≤ ‖ξ0‖2L2 ,

which is no larger than 1
4π2 by Wirtinger’s inequality. We want to show if ε0 is suffi-

ciently small, then the smallness assumption (58) from Lemma 3.16 is satisfied.
To see this, we first consider ξ̃0 := ξ0 − cw0(· + θ), where cw0(· + θ) ∈

argminw∈C ‖ξ0 − w‖L2 . Then (61) implies

‖ξ̃0‖L2(S1) ≤ ε0 and ‖∂s ξ̃0‖L2(S1) ≤ 2π
√

ε0(1 + π−1).

Indeed, the first inequality is immediate since by the definition of the projection
‖ξ̃0‖L2(S1) ≤ ‖ξ−w0‖L2(S1). The second inequality follows from (45) havingobserved
that

c2

4π2 = ‖ξ0‖2L2(S1)
− ‖ξ̃0‖2L2(S1)

≥ ‖w0‖2L2(S1)
− 2‖w0‖L2(S1)‖ξ − w0‖L2(S1)

−‖ξ̃0‖2L2(S1)
≥ 1

4π2 − ε0(1 + π−1).

Next, by viewing (62) as a perturbation of

∂ssσ − |∂ssw0|2σ = ∂ssσ − 4π2σ = −1,

with periodic boundary conditions, solution of which is the constant function 1
4π2 , we

have that the solution to (62) satisfies

∣∣∣∣ 1

4π2 −
∫ 1

0
σds

∣∣∣∣ ≤ Cε0,

for some universal constant C > 0. Hence if ε0 is sufficiently small but universal, the
smallness assumption (58) holds.

Now we apply Lemma 3.16 to ξ and get

1

8π2 ≤ σ(t, s) ≤ 1

2π2 , (63)

in [0, T ] × S
1. Furthermore, for each fixed t , σ(t, ·) is Lipschitz continuous with

uniformly bounded Lipschitz constant. Indeed, an integration of the equation of σ

(cf. (24)) yields
∫
S1

σ |∂ssη|2 = 1, which implies that
∫
S1

|∂ssσ(t, s)|ds ≤ 2. By the
regularity theory for the parabolic equations, cf. [28],

sup
t∈[T /2,T ]

‖ξ(t, ·)‖C2+α(S1) ≤ C(T−(2+α) + 1)‖ξ‖L∞([T /4,T ]×S1), (64)
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for some C > 0 only depending on d and α (this is the interior Schauder estimate
for parabolic equations. Since our solutions satisfy periodic bound conditions, the
estimate holds globally in S

1). In the meanwhile, the smallness assumption (58) of
Lemma 3.16 is satisfied for all t ∈ [0, T ] due to the monotonicity properties of∫ 1
0 σ(t, s)ds, ‖ξ̃ (t, ·)‖L2(S1) and ‖∂s ξ̃ (t, ·)‖L2(S1) (Proposition 3.1 (ii), Lemmas 3.12
and 3.13). In particular,

‖ξ‖L∞([T /4,T ]×S1) ≤ ‖cw0‖L∞([T /4,T ]×S1) + ‖ξ̃‖L∞([T /4,T ]×S1) ≤ C̄, (65)

where C̄ is an absolute constant. We apply Theorem 1 starting from t = T . The
solution ξ extends in the Hölder class C2+α,α/2 up to t = T + T0 for some T0 > 0.
Lemma 3.16 applies and yields (63) and (65) in [0, T +T0]×S

1. Again by the interior
Schauder estimate

sup
t∈[ T+T0

2 ,T+T0]
‖ξ(t, ·)‖C2+α(S1) ≤ C((T + T0)

−(2+α) + 1)‖ξ‖L∞([0,T+T0]×S1).

Since ‖ξ(t, ·)‖C2+α(S1) cannot blow up as time getting large, the time steps have a

uniform lower bound T̃0 > 0. Repeating the above arguments from T + 2T̃0, T + 3T̃0
and so on, we obtain the global existence of the Cauchy problem (23) in the Hölder
class C2+α,α/2. ��

As a by-product, we also obtain the exponential decay of our solution to the sta-
tionary solution w0 under the initial smallness assumption.

Theorem 3 Under the same assumptions as in Theorem 2, we have for all t > 0,

‖ξ(t, s) − w0(s + θ∞)‖L∞(S1) ≤ Ce−t/16‖ξ0 − w0‖H2(S1),

for some universal constant C > 0 and some constant θ∞.

Proof By Lemmas 3.12, 3.16 and Corollary 3.14, if ε0 := ‖ξ0 − w0‖H2(S1) is suffi-
ciently small (say ε0 ≤ 1

(100π2)2
), then for all t > 0

‖ξ̃ (t, ·)‖L∞(S1) + (1 − c2(t)) ≤ Ce− 1
16 tε0,

for some absolute constant C > 0. We still need to estimate the evolution of θ(t).
Note that from the expression of θ̇ in (43)

|θ̇ (t)| ≤ 4π2

c(t)

1

2π
max
s∈S1

σ(t, s)‖∂s ξ̃ (t, ·)‖L2(S1), t > 0.

By (60) if ε0 in (61) is sufficiently small, then σ(t, s) ≤ ∫ 1
0 σ(t, s)ds + 3

√
ε0 ≤ 1

2π2 .
Thus, combining Corollary 3.14 and Lemma 3.13, we infer

|θ̇ (t)| ≤ e− 1
16 t‖∂s ξ̃ (0, ·)‖L2(S1), t > 0.
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This implies that limt→∞ θ(t) exists. Letting θ∞ denote the limit, we obtain

|θ(t) − θ∞| ≤ 16e− 1
16 t‖∂s ξ̃ (0, ·)‖L2 ≤ Ce− 1

16 tε0,

after an integration from t to ∞. Thus, by the triangle inequality,

|ξ(t, s) − w0(s + θ∞)| ≤ |ξ(t, s) − c(t)w0(s + θ(t))| + |(c(t) − 1)w0(s + θ(t))|
+ |w0(s + θ(t)) − w0(s + θ∞)|

≤ |ξ̃ (t, s)| + 1

2π
|c(t) − 1| + |θ(t) − θ∞|

≤ Ce− 1
16 tε0.

��
Remark 3.17 The Hessian (92) of the L2-mass is strictly negative-definite on the tan-
gent vectors ξ̃ ∈ Tw0Ã which satisfy (53), i.e., on those which are orthogonal to the
pure rotations:

〈Hess M(w0)ξ̃ , ξ̃ 〉Tw0 Ã =
∫ 1

0
|ξ̃ |2(s) ds −

∫ 1

0
ς(s) ds ≤ −3

∫ 1

0
|ξ̃ |2(s) ds

= −3〈ξ̃ , ξ̃ 〉Tw0 Ã. (66)

Here ς is the initial tension of a geodesic emanating from w0 at the direction ξ̃ , which
satisfies

∂ssς − |∂ssw0|2ς + |∂s ξ̃ |2 = 0, (67)

(see [42,45]). Indeed, since |∂ssw0| ≡ 2π , an integration of (67) together with (53)
implies

∫ 1

0
ς(s) ds = 1

4π2

∫ 1

0
|∂s ξ̃ |2(s) ds ≥ 4

∫ 1

0
|ξ̃ |2(s) ds,

which gives (66). Then one can anticipate the exponential decay (Theorem 3) of the
gradient flow in a neighborhood ofw0 via aBakry–Émery argument, cf. [49].However,
such argument is not applicable in our situation since the Riemannian connection of
Ã is not smooth and (Ã, dÃ) is not a geodesic metric space, cf. Theorem 4.2 in [43]
and [11,34].

3.5 Global ExistenceWithout Restrictions on the Initial Data

We conclude by showing global solvability of the normalized flow in a generalized
sense without any restrictions on the initial data. It is an adaptation of the approach
we recently developed in [46] for a different gradient flow.
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We begin by rewriting our flow in a form which explicitly involves the arc length
parametrization constraint (cf. the beginning of the Sect. 3):

{
∂tξ = ∂s(σ∂sξ) + ξ

|∂sξ | = 1
for (t, s) ∈ Q∞ := (0,∞) × S

1. (68)

Definition 3.18 Given an initial datum ξ0 ∈ W 1,∞(S1;Rd) with |∂sξ0(s)| ≤ 1 for a.e.
s ∈ S1, we call a pair (ξ, σ ) a generalized solution to the normalized UCMCF if the
following hold

(i) ξ ∈ L∞
loc([0,∞);W 1,∞(S1))d , ∂tξ ∈ L2

loc([0,∞); L2(S1))d , σ ∈ L2
loc([0,∞);

H1(S1)) and σ∂sξ ∈ L2
loc([0,∞); H1(S1))d .

(ii) The pair (ξ, σ ) satisfies for a.e. (t, s) ∈ Q∞

∂tξ(t, s) = ∂s(σ (t, s)∂sξ(t, s)) + ξ, (69)

σ(t, s)
(
|∂sξ(t, s)|2 − 1

)
= 0, (70)

|∂sξ(t, s)| ≤ 1, (71)

and the initial condition

ξ(0, s) = ξ0(s) for a.e. s.

(iii) The solution ξ satisfies the energy dissipation inequality

∫
S1

|∂tξ(t, s)|2ds ≤
∫
S1

ξ · ∂tξ(t, s)ds (72)

for a.e. t ∈ (0,∞).

Remark 3.19 (Strong and weak constraint) The generalized solutions in Definition
3.18 are not required to satisfy the strong constraint |∂sξ | = 1 but merely the relaxed
one

σ
(
|∂sξ |2 − 1

)
= 0, |∂sξ | ≤ 1.

In the next remark, we will show that under the regularity assumptions ξ ∈ C1(Q∞)∩
C2(Q∞) and |∂sξ0| = 1, the generalized solutions solve (68) in the classical sense.
However, without the regularity assumptions, we do not know whether the constraint
|∂sξ | = 1 is satisfied or not.

Remark 3.20 (Relation with the classical solution) It is not hard to see that if (ξ, σ )

is a C2 regular solution to (68), then it is also a generalized solution in the sense
of Definition 3.18; in particular, (71) and (72) become strict equalities. On the other
hand, we claim that any generalized solution (ξ, σ )with ξ ∈ C1(Q∞)∩C2(Q∞) and
|∂sξ0| = 1 solves (68).
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Formally, this claim is a trivial consequence of (70) since σ is expected to be
strictly positive by the strongmaximumprinciple, cf. Remark 2.3. However, we cannot
guarantee the strict positivity of σ for the generalized solutions. Nevertheless, to prove
the claim it suffices to show that the open set U := {(t, s) ∈ Q∞ : |∂sξ(t, s)| < 1}
is empty. Suppose not, then σ = 0 a.e. in U due to (70). This implies that ∂tξ = ξ

in U , whence ∂t (|∂sξ |2) = 2|∂sξ |2. For each (t0, s0) ∈ U , let t1 = inf{t ≥ 0 :
(t, t0) × {s0} ⊂ U }. If t1 = 0 then

|∂sξ(t1, s0)| = 1, (73)

due to our assumption about ξ0, and if t1 > 0 then (73) also holds by the continuity
of ∂sξ . From ∂t (|∂sξ |2) ≥ 0 in U , we immediately deduce that

|∂sξ(t0, s0)|2 ≥ |∂sξ(t1, s0)|2 = 1,

arriving at a contradiction.

The next theorem concerns the global existence of the generalized solution without
any smallness or closeness assumption on the initial datum.We stress that the theorem
does not cover Theorem 2 due to the relaxation of the unit speed constraint in (68).

Theorem 4 For every ξ0 ∈ W 1,∞(S1;Rd) with |∂sξ0(s)| ≤ 1 for a.e. s ∈ S
1, there

exists a (global in time) generalized solution (ξ, σ ) to the normalized UCMCF, and
σ(t, s) ≥ 0 for almost every (t, s) ∈ Q∞.

The proof mimics the one of [46, Theorem 3] and has the following outline. We
rewrite (68) as a first-order system, and approximate it by Hilbertian gradient flows.
Let κ := σ∂sξ , then the problem in the new variables (ξ, κ, σ ) would read

⎧⎪⎨
⎪⎩

∂tξ = ∂sκ + ξ

κ = σ∂sξ

σ = κ · ∂sξ.

(74)

For ε > 0, let

Fε : Rd → R
d , Fε(κ) := εκ + κ√

ε + |κ|2 ,

Gε(τ ) := (Fε)−1(τ ),

and consider the problem

∂tξ
ε = ∂s(G

ε(∂sξ
ε)) + ξε in Q∞. (75)

Let us introduce the functional

Eε(ξ) :=
∫
S1

ε

(
|Gε(∂sξ)|2

2
− 1√

ε + |Gε(∂sξ)|2
)

− 1

2
|ξ |2.
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Then (75) can be interpreted as a negative gradient flow of Eε with respect to the
flat Hilbertian structure of L2(S1;Rd). The existence of a unique smooth solution
ξε : [0,∞) × [0, 1] → R

d to (75) follows from Amann’s theory [4]. The solutions
satisfy uniform energy estimates as in [46, Proposition 3.1]. Moreover, ∂sξ

ε has a
uniform L∞ bound as in [46, Proposition 3.3]. We now set

κε := Gε(∂sξ
ε), σ ε := Gε(∂sξ

ε) · ∂sξ
ε ≥ 0.

Arguing as in the proof of [46, Proposition 3.4 and Theorem 3], we can pass to the
limit and obtain a solution (ξ, κ, σ ) to (74). The pair (ξ, σ ) solves the normalized
UCMCF in the sense of Definition 3.18. We refer to [46] for the full implementation.

Remark 3.21 One can adapt the approach of [46, Section 6] to construct backward
generalized solutions to the normalized UCMCF. It seems, however, that all one can
get in this way is the trivial solution (ξ, σ )(t) = (etξ0, 0), t ≤ 0. It satisfies (69)–
(72), and is smooth provided ξ0 is smooth, but obviously violates the strong constraint
|∂sξ | = 1. This contrasts with Remark 3.20 and with [46] where smoothness implied
the strong constraint. Consequently, the method of [46, Section 6] for constructing
two different solutions emanating from an initial datum ξ0 with |∂sξ0| = 1 is not
applicable. This leads us to conjecture the uniqueness of the generalized solutions to
the normalized UCMCF.
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Appendix A. Higher Dimensional UCMCF

In this Appendix, we describe how our approach can be implemented in the case of
evolution of surfaces. For the sake of simplicity of the presentation, we work with
embeddings of a compact manifold into the ambient space Rd , but this can be gen-
eralized in various directions—in particular, one can consider immersions instead of
embeddings.

A.1. Riemannian Structure

Fix a smooth, compact-connected k-dimensional submanifoldM ofRd . Without loss
of generality in the sequel, we assume that vol(M) = 1. Let Kk be the space of
Hm-regular embeddings η : M → R

d ,
∫
M η dHk = 0, m > n+2

2 . Each element
v ∈ TηKk can be identified with a vector field v : M → R

d . We endow the space Kk
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with the parametrization-invariant L2 Riemannian metric (cf. [30])

〈v,w〉TηKk :=
∫

η(M)

(v · w) ◦ (η−1) dHk =
∫
M

v · w Jη dHk, (76)

whichhas adegenerateRiemanniandistance [10].Here Jη(x) := √
det(dηx )∗ ◦ (dηx )

for each x ∈ M is the Jacobian of η. Let

vol : Kk → R, vol(η) = Hk(η(M)),

be the volume functional. By Sobolev embedding Hm ⊂ C1, vol is continuous w.r.t.
the Hm-topology of Kk . Sometimes, we will also use a flat metric 〈·, ·〉∗ on Kk :

〈v,w〉∗TηKk
:=

∫
M

v · w dHk . (77)

We consider the submanifold of Kk consisting of uniformly dilating embeddings,
i.e.,

Ak := {η ∈ Kk : vol(η) > 0, η#(Hk M) = 1

vol(η)
Hk η(M)}.

Let us also define the submanifold ofAk consisting of volume-preserving embeddings

Ãk := {η ∈ Ak, vol(η) = 1}. (78)

The tangent space at η ∈ Ãk is

TηÃk = {h ∈ TηKk : divη(M)(h ◦ η−1) = 0},

and thus it is not hard to verify that TηAk = {h ∈ TηKk : divη(M)(h ◦η−1) = const}.
The metrics (76) and (77) induce metrics on Ak : for η ∈ Ak

〈v,w〉TηAk =
∫
M

v · w vol(η) dHk, (79)

〈v,w〉∗TηAk
=

∫
M

v · w dHk . (80)

The induced Riemannian metric on Ãk (both from 〈·, ·〉 and 〈·, ·〉∗) is then

〈v,w〉TηÃk
= 〈v,w〉∗

TηÃk
=

∫
M

v · w dHk . (81)
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A.2. Orthogonal Projection

By [11, Theorem 7], the orthogonal projection P̃η : TηKk → TηÃk (with respect to
the invariant L2 metric 〈·, ·〉TηKk ) is

P̃η(z) = z − σ �H(η) − dη· gradg σ, (82)

where �H(η) is the vectorial mean curvature (the trace of the second fundamental form)
corresponding to the embedding η, themetric g = η∗· is the pull-back of the Euclidean
metric · on R

d , and σ : M → R is a Lagrange multiplier, which is a solution to

�gσ − | �H(η)|2σ = divη(M)(z ◦ η−1).

Employing themethods of [11,34], one can derive from (82) that themap Pη : TηKk →
TηAk ,

Pη(z) = z − σ �H(η) − dη· gradg σ, where

�gσ − | �H(η)|2σ = divη(M)(z ◦ η−1) + const,
∫
M

σ dHk = 0,
(83)

is an orthogonal projection. The key observations in the proof of this claim are that
the volume density for η ∈ Ak is constant (equal to vol(η)) and the identity following
from the divergence formula

∫
M

w ·
(
σ �H(η) + dη· gradg σ

)
vol(η) dHk

= −
∫

η(M)

(σ ◦ η−1) divη(M)(w ◦ η−1) dHk

= −const
∫
M

σ vol(η) dHk,

(84)

for any w ∈ TηAk . Here in the last equality, we have used w ∈ TηAk and the
characterization of the tangent space TηAk .

A.3. The Gradient Flow

The UCMCF is the gradient flow

∂tη = − gradAk
vol(η), (85)

of the volume functional on the space Ak under the metric (79). By construction, the
flow operator

Tt : η(0, s) �→ η(t, s), s ∈ M,

123



3092 W. Shi, D. Vorotnikov

complies with (4).
By the first variation of area formula, the negativeKk-gradient of the volume func-

tional is simply �H , and
〈 �H(η), η〉TηKk = −k vol(η). (86)

With the projection (83) at hand, by an argument similar to the one from the Sect. 2.1,
we can express the gradient flow (85) in the following form:

∂tη = σ̃ �H(η) + dη· gradg σ̃ ,

∫
M

σ̃ dHk = 1, η ∈ Ak . (87)

A direct computation yields that if a pair (η(t), σ̃ (t)) solves (87), and r : M → M
is a volume-preserving diffeomorphism, then (η(t)◦r , σ̃ (t)◦r) also solves (87). Note
that the reparametrizations r which do not preserve the Hausdorff measure onM are
ruled out automatically by our construction. Thus, UCMCF is a truly geometric flow
since it does not depend on possible reparametrizations of the evolving submanifold
η(t)(M). This claim will become completely transparent after we recast our flow into
a parametrization-free form (97).

Let

M(η) := 1

2

∫
M

|η|2 dHk,

be the L2-mass functional. We are going to see that this functional decays with a
constant speed along our gradient flow, cf. Proposition 2.6. Indeed, since η ∈ TηAk

(since divη(M)(η ◦ η−1) = k),

∂t M(η) =
∫
M

η · ∂tη dHk = 1

vol(η)
〈η, ∂tη〉TηKk = 1

vol(η)
〈η, ∂tη〉TηAk

= − 1

vol(η)
〈η, gradAk

vol(η)〉TηAk = − 1

vol(η)
〈η, gradKk

vol(η)〉TηKk

= 1

vol(η)
〈η, �H(η)〉TηKk = −k,

by (86). Thus, our flow collapses in finite time t∗ = 1
k M(η0).

Remark A.1 The Riemannian distances dA∗
k
and dÃk

on submanifolds of Kk are non-
degenerate since they are controlled from below by the Hilbertian distance dK∗

k
(which

is induced by the Riemannian metric 〈·, ·〉∗ in (80)). We do not know whether the Rie-
mannian distance dAk is nondegenerate in general, but as we observed in Proposition
2.1, the conjecture is true for k = 1. Nevertheless, we have got backup ways to render
UCMCF as a gradient flow with respect to a nondegenerate distance. Namely, the
gradient flow

∂tη = − gradA∗
k
(ln vol(η)) . (88)
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reproduces (85). This is immediate by observing that

gradAk
vol(η) = 1

vol(η)
gradA∗

k
vol(η) = gradA∗

k
(ln vol(η)) .

Other options are presented in Appendix B.

Appendix B. Normalized Flow

The general higher dimensional UCMCF (87) can be renormalized in the same way
as the curve-shortening flow. Namely, the new time is

τ(t) := − ln vol(η(t)),

and the new unknown functions are

ξ(τ, s) := η(t(τ ), s)

vol(η(t(τ )))
, σ (τ, s) = σ̃ (t(τ ), s)

−(vol ∂t vol)(η(t(τ )))
.

Then the pair (ξ, σ ) solves the equation

∂τ ξ = ξ + σ �H(ξ) + dξ· gradξ∗· σ, ξ ∈ Ãk . (89)

Employing the characterization of the orthogonal projection P̃ξ : TξKk → Tξ Ãk , we
immediately rewrite (89) as a positive gradient flow of the L2-mass:

∂τ ξ = P̃ξ ξ = P̃ξ gradKk
M(ξ) = gradÃk

M(ξ). (90)

B.1. Evolution of the Averaged LagrangeMultiplier

In order to illustrate the power of the gradient flow structure (90), we will formally
derive a neat formula for the evolution of themean of σ along the UCMCF trajectories,
thereby generalizing (ii) in Proposition 3.1. We first observe that the geodesics in Ãk

are determined by the condition ∂ττ γ ⊥ Tγ Ãk , which can be expressed as

∂ττ γ = ς �H(γ ) + dγ· gradγ ∗· ς, γ ∈ Ãk, (91)

cf. [11,34]. Then we can calculate the Hessian of the L2-mass, taking into account
(84) (with w = γ and divγ (M)(γ ◦ γ −1) = k):

〈Hess M(γ )γ̇ , γ̇ 〉Tγ Ãk
= d2M(γ (t))

d2t
=

∫
M

∂ττ γ · γ + ∂τ γ · ∂τ γ dHk

= −k
∫
M

ς dHk + 〈γ̇ , γ̇ 〉Tγ Ãk
.

(92)
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Now we compute in two different ways the second time derivative of the L2-mass
along a trajectory ξ(t) of the gradient flow (90). On the one hand,

d2M(ξ)

d2t
= d

dt
〈gradÃk

M(ξ), gradÃk
M(ξ)〉Tξ Ãk

= 2〈Hess M(ξ)ξ̇ , ξ̇ 〉Tξ Ãk

= −2k
∫
M

ς dHk + 2〈ξ̇ , ξ̇ 〉Tξ Ãk

= −2k
∫
M

ς dHk + 2〈gradÃk
M(ξ), gradÃk

M(ξ)〉Tξ Ãk

= −2k
∫
M

ς dHk + 2
dM(ξ)

dt
,

(93)

where ς(t) is the Lagrange multiplier (which may be referred to as the tension) cor-
responding to the geodesic passing through ξ(t) at the direction ξ̇ (t), see (91). On the
other hand, employing (84) and orthogonality of the projection P̃ξ , we find that

〈gradÃk
M(ξ), gradÃk

M(ξ)〉Tξ Ãk
= 〈P̃ξ ξ, P̃ξ ξ 〉L2(M)

= 〈ξ, ξ 〉L2(M) + 〈ξ, P̃ξ ξ − ξ 〉L2(M)

= 〈ξ, ξ 〉L2(M) +
〈
ξ, σ �H(ξ) + dξ· gradξ∗· σ

〉
L2(M)

= 2M(ξ) − k
∫
M

σ dHk .

(94)

This yields the upper bound

k
∫
M

σ dHk ≤ 2M(ξ). (95)

Differentiating (94) in time and comparing with (93), we deduce

d

dt

∫
M

σ dHk = 2
∫
M

ς dHk . (96)

In the particular case M = S1, it is known [42,45] that the Lagrange multipliers ς

related to the geodesics are always nonnegative, so we infer (ii) in Proposition 3.1.

B.2. Relation with the Optimal Transport

Wenowestablish a linkwith the optimal transport theory [49,50] by explaining howour
flow (90) may be formally viewed as a gradient flow on a submanifold of the Wasser-
stein space.We recall [40,49] that the spaceP2(R

d) of probabilitymeasures with finite
second moments admits a formal Riemannian structure so that the 2-Wasserstein dis-
tance coincides with the geodesic distance. The mapping

� : Ãk → P2(R
d); �(ξ) = ξ#(Hk M) = Hk ξ(M),
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is a restriction of Otto’s Riemannian submersion [40]. We refer to [23] for a basic
introduction to Riemannian submersions. Actually, � is a bijection up to volume-
preserving diffeomorphisms on M. Set ρ = �(ξ), where ξ = ξ(τ ) is a solution to
the normalized UCMCF. Since the L2-mass functional M is invariant with respect
to volume-preserving changes of variables on M, it is consistent to define M(ρ) :=
M(ξ). Set B = �(Ãk). Then B may be formally viewed as a submanifold of P2(R

d).
We claim that the evolution of ρ satisfies

∂τ ρ = gradB M(ρ). (97)

Indeed, fix time τ0, ξ = ξ(τ0), and ρ = �(ξ(τ0)). We need to show that

〈∂τ ρ, v〉TρP2 = 〈gradB M(ρ), v〉TρP2 , (98)

for an arbitrary v ∈ TρB. Let ρ̃(τ ) be a curve in B satisfying ρ̃(τ0) = ρ, ∂τ ρ̃(τ0) = v.
Let ξ̃ be the horizontal lift of the curve ρ̃ with respect to the submersion � passing
through ξ at τ0. Denote by ∂τ ξh the horizontal component of ∂τ ξ . Then at time τ0

〈∂τρ, v〉ρ = 〈∂τ�(ξ), ∂τ�(ξ̃ )〉ρ = 〈d�(ξ) · ∂τ ξ, d�(ξ) · ∂τ ξ̃〉ρ
= 〈∂τ ξh, ∂τ ξ̃〉ξ = 〈∂τ ξ, ∂τ ξ̃〉ξ
= 〈gradÃk

M(ξ), ∂τ ξ̃〉ξ = ∂τ M(ξ̃ ) = ∂τ M(ρ̃) = 〈gradB M(ρ), ∂τ ρ̃〉ρ
= 〈gradB M(ρ), v〉ρ.

Note that the geodesic distance on B is a priori nondegenerate since it is controlled
from below by the 2-Wasserstein distance. The strategy above is applicable to the
unnormalized flow. Indeed, the continuation of � defined by

� : A∗
k → P2(R

d); �(η) = η#(Hk M),

is still a restricted Otto’s submersion. Then B∗ = �(A∗
k) may be formally viewed as

a submanifold ofP2(R
d), and we are allowed to set vol(ρ) := vol(η) for ρ = �(η) ∈

B∗. Then (88) can be recast as

∂tρ = − gradB∗ ln(vol(ρ)). (99)
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