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Abstract Let ©2 be a strongly pseudoconvex domain. We introduce the Mabuchi
space of strongly plurisubharmonic functions in 2. We study the metric properties of
this space using Mabuchi geodesics and establish regularity properties of the latter,
especially in the ball. As an application, we study the existence of local Kéhler—Einstein
metrics.
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Introduction

Let Y be a compact Kihler manifold and ay € H'!(Y, R) a Kihler class. The space
‘Hey of Kiéhler metrics wy in ay can be seen as an infinite dimensional riemannian
manifold whose tangent spaces T, Hq, can all be identified with C*°(Y, R). Mabuchi
has introduced in [27] an L2-metric on Hey , by setting

a)y”
9
Vay

(f, 8oy = /yfg

where n = dimc Y and V,, = fY wy" = ay denotes the volume of ay. Mabuchi
studied the corresponding geometry of H,, , showing in particular that it can formally
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The Metric Space of Plurisubharmonic Functions 511

be seen as a locally symmetric space of non-positive curvature. The (geometry) metric
study of the space (Hy,, (, )w,) has been motivated a lot of interesting works in the
last decades, see notably [7,10-15,17,20,26].

The purpose of this article is to extend some of these studies to the case when Y
is a smooth strongly pseudoconvex bounded domain of C". We note here that this
problem of extension to the local case has recently been considered by Rashkovskii
[28] and Hosono [24]. The geodesics for plurisubharmonic functions in the Cegrell
class 71 on a bounded hyperconvex domain were first studied by Rashkovskii. He has
shown geodesics for plurisubharmonic functions in the Cegrell class 7 on a bounded
hyperconvex domain. Hosono has described the behaviour of the weak geodesics
between the toric psh functions with poles at the origin.

Our first interest is the geometry of the space of plurisubharmonic functions. We
equipped the space of plurisubharmonic functions with a Levi-Civita connection D
and describe the tensor curvature and the sectional curvature as in the paper of Mabuchi
[27]. Our first main result is to the establish that the space of plurisubharmonic func-
tions is a locally symmetric space:

Theorem A The Mabuchi space H equipped with the Levi-Civita connection D is a
locally symmetric space.

Following the work of Donaldson [20] and Semmes [29] in the compact setting,
we reinterpret the geodesics as a solution to a homogeneous complex Monge—Ampére
equation. Weak geodesics are introduced as an envelope of functions:

D(z,¢) =supf{u(z,¢)/u € F(Q x A, W)},

Our second main result is to establish regularity properties of geodesics in the ball by
adapting the celebrated result of Bedford-Taylor [1]:

Theorem B By taking B as the unit ball in C". Let ¢y and ¢ be the geodesic end
points which are C\. Then the Perron-Bremermann envelope

®(z,¢) = supfu(z, §)/u € F(Q x A, W)},
admits second-order partial derivatives almost everywhere with respect to variable
z € B which is locally bounded uniformly with respect to ¢ € A, i.e for any compact
subset K C B there exists C that depends on K, ¢y and ¢ such that
ID2®| ok x4) < C.
The existence of local Kihler—Einstein metrics was studied by Gued;j et al. [22] in

bounded smooth strongly pseudoconvex domains which are circled. This is equivalent
to the resolution of the following Dirichlet problem

. —¢ .
(ddog)" = 7554, in @

=0, on

(MA)y

@ Springer



512 S. Abja

They treated also the following family of Dirichlet problems

. o191 .
(ddo)" = f;e——’%udu’ in

¢ =0, on 2

(M A),

showing that there is a solution for 1 < (2n)!*1/7(1 + 1/n)1+1/" We apply our
study of the geodesics problem and an idea of [16, 18] to prove that the existence of a
solution to (M A), is equivalent to the coercivity of the Ding functional:

Theorem C Let Q@ C C" be a smooth strongly pseudoconvex circled domain. If there
exists e(t), M(t) > O such that,

Fi(¥) =eEW) +M@) V¢ eH,

then (M A); admits a S"-invariant smooth strictly plurisubharmonic function solution.
Conversely if (M A); admits such a solution ¢; and Q2 is strictly ¢;-convex, then
there exists e(t), M(t) > O such that,

Fi(y) <eEW)+M(t) Yy eH.

The organization of the paper is as follows:

e Sect. 1 is devoted to preliminary results and definition of the space H and its
geometry.

e In Sect. 2, we show that geodesics are continuous (sometimes even Lipschitz) up
to the boundary of 2 x A.

e In Sect. 3, we prove the Theorem B.

e we prove finally the Theorem C in Sect. 4.

1 Mabuchi Geometry in Pseudoconvex Domains

In this section, we study the geometry of the space of plurisubharmonic functions in
a strongly pseudoconvex domain, based upon works of Mabuchi [27], Semmes [29]
and Donaldson [20], as it was clarified through lecture notes of Guedj [21] and Kolev
[25].

1.1 Preliminaries
In this section, we recall some analytic tools that will be used in the sequel. Let @ € C”
be a smooth pseudoconvex bounded domain. Recall that a bounded domain Q2 € C”

is strictly pseudoconvex if there exists a smooth function p defined in neighbourhood
Q' of Qsuchthat Q@ = {z € Q' /p(z) < 0} with ddp > 0, where

d=09+3,d =—(3—9).
2
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The Metric Space of Plurisubharmonic Functions 513

Definition 1.1 We let PSH (S2) denote the set of plurisubharmonic functions in €.

In particular a function ¢ € PSH(2) is L llu .» upper semi-continuous and such that

dd¢ > 0,
in the weak sense of positive currents.

The following cone of “test functions” has been introduced by Cegrell [8]:

Definition 1.2 [8] We let £y(£2) denote the convex cone of all bounded plurisubhar-
monic functions ¢ defined in €2 such that lim,_,; ¢(¢) = 0, for every & € 92, and
Jo(dd )" < +o0.

Definition 1.3 [8] The class £7(R2) is a set of functions u for which there exists
a sequence of functions u; € &p(2)decreasing towards u in all of €2, and so that
sup; [o(—uj)P(ddu;)" < 4oo0.

We need the following maximum principle:

Proposition 1.4 [1] Let u,v be locally bounded plurisubharmonic functions in Q2 such
that liminf,_ yo(u —v) > 0. Then

dduw)* < (dd°V)" = v <uinQ.

1.2 The Mabuchi Space of Plurisubharmonic Functions

We begin this section by defining the Mabuchi space of plurisubharmonic functions
in Q.

Definition 1.5 The Mabuchi space of plurisubharmonic functions in €2 is
H:={p e C®(Q,R)/dd¢ > 0in Q2 ¢ =0o0n IQ}.

We now consider the tangent space of H in every C*® (L2, R).

Definition 1.6 The tangent space of H at point ¢ denoted by T,/ that is the lineari-
sation of ‘H defined by

T,H=1{y'0)/ ¢:[-¢¢el - H and y(0) = ¢}.
The tangent space of H at ¢ can be identified with
T,H={E e CP(QR) / € =0 on dQ).

Indeed, let £ € {€ € C®(Q,R) / & =0 on 3R}, we put y(s) := ¢ + s& for s
close enough to O we have y; € 'H, and

y(0)=¢ and y'(0)=§&
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514 S. Abja

this implies that & € T,’H hence
{§ € C®(QR) / &l =0} C TyH.

Conversely, let y € H which gives y5|yq = 0 for every s. In particular y (0)|3q = 0,
therefore

E=yp(0)e{EcC®QR)/ E=00n Q).

Definition 1.7 [27] The Mabuchi metric is the L? Riemannian metric and is defined
by

<< Y1, Y2 >>4p= /lewz(dd%)",

where ¢ € H, Y1, ¥ € TyH.

1.3 Mabuchi Geodesics

Geodesics between two points ¢p, ¢ in H are defined as the extremals of the Energy
functional

1 1
0 Hip) = /O /Q (@02 (dd 0",

where ¢ = ¢; is a path in H joining ¢q to ¢1. The geodesic equation is obtained by
computing the Euler-Lagrange equation of the functional H.

Theorem 1.8 The geodesics equation is
Gty — |V @02, =0 (1)
where V is the gradient relative to the metric wy, = dd .

Proof We need to compute the Euler-Lagrange equation of the Energy functional. Let
(¢5.1) be a variation of ¢ with fixed end points,

d0,r = @1, G50 = 90, bs5,1 = @1 and ¢5 = 0 on IQ
Set Y := %—fh:o and observe that {9 = ¥ = 0 and ; = 0 on 92. Thus

0s.1

G50 = @1 + 5P + o(s) and = ¢ + sy + o(s)
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The Metric Space of Plurisubharmonic Functions 515

and
(dd°§s.)" = (dd (¢ + sY))" = (dd )" + s.ndd Y, A (dd )"
A direct computation yields
I C e
HGo) =5 / / (fe.0)2(dd )"t
0o Ja
1
= H(¢r) +S/ / G (dd )" dt
0o Ja
ns ! <275 c n—1
2 Jo Ja
Using the integration by part, and the fact that ¢ = | = 0 yields
1 1
| [ oiaarara == [ [ wigaor
0o Ja 0o Ja
+ngdd g, A (dd )" }dr.
also we have by Stokes and the fact that ¢, = 0 on 92 the following equality
1 1
/ / (@dd , A (dd gy~ \dr =2 / / Vido A d°G,
0o Ja 0o Ja
+¢idd g, A (dd )" )dr
hence
1
H(ps,r) = H(pr) + S/ / 1ﬁt{ — @ (dd )"
0 Jo
+ndgy Ado A (ddC )" }dt + o(s)

which implies

O - d(er'wl‘

. H(ps,1) — H(gpr)
= im —F-
s—0 S

1
= fo | v {- o+ nagi ndgin o ar
Q

Therefore (¢;) is critical point of H if and only if

Gr(dd o))" = ndg, Ad°¢ A (ddp)" "

O
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516 S. Abja

1.4 Levi-Civita Connection

As for Riemanniann manifolds of finite dimension, one can find the local expression
of the Levi-Civita connection by polarizing the geodesics equation.

Definition 1.9 We define the covariant derivative of the vector field ¥, along the path
¢; in 'H by the formula

dy .
Dw:=$—<VW,V(p>¢.

Theorem 1.10 D is the Levi-Civita connection.

Proof To show that D is a Levi-Civita connection, we must show that the connection
D is metric-compatible and torsion-free.

(i) Metric-compatibility: Let ¥, ¥, be two vector fields

d d
3 << Vi, Y2 >>p = a/;zl/fﬂ/fz(ddcfp)”

- /Q W + Y1) ddeg)”

+nyr1yadd e A (dd )"
= fQ Wy + Y1v2— <V §112), V ¢ >,)(dd p)"
= /Q((ll}l— < VY1, V@ >o)Yn(dd p)"

+ [ il < V02,V gy

= << DY, Y2 >>p + << Y1, DYy >>, .
(The passage from the second line to the third line is a result of the equation

d(W1¥2d 9 A (ddp)"™") = d(Yiyn) Ade A (ddp)"!
+Yr1yadd g A (dd )"

and Stokes theorem).
(i) D is torsion-free, because

d(p_
Ydr

do

D, —.
"ds

Thus D is a Levi-Civita connection. O
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The Metric Space of Plurisubharmonic Functions 517

1.5 Curvature Tensor

We define the curvature tensor and the sectional curvature and we give their expres-
sions. We finish by proving that the space of plurisubharmonic functions is locally
symmetric. We start by giving some definitions and conventions.

Definition 1.11 Let v and 6 be two functions in the tangent space of H at ¢. The
Poisson bracket of ¥ and 6 compared to the form w, = dd ¢ is

L0} = {0}y =i “5(— z
(0.0} = (v 0), l%f 925 07 02 07

Yy 90 awae))

where ((p"‘B ) is the inverse matrix of (¢, 5).

Lemma 1.12 Let v, 0 and n be three functions belonging to the tangent space of H
at ¢. The Poisson bracket satisfies the following properties :

(i) {¢,0} =—{0, ¢}

(ii) {Y, 0} = wu(Xy, Xo).
(iii) {¢,0 +n} = {¢, 0} + {¢¥, n}.
(v) [ Xy, Xgl = Xy (Xo) — Xo(Xy) = Xiy,0)-
v) Jofw, 0in(dd )" = [o¥{0, n}(ddp)".
(vi) D{y,0} = {Dy, 0} + {, DO}.

Where Xy := iV and [, ] is the Lie bracket.
Let ¢ be a function in a tangent space, the Hessian of i is defined by Hess v = V¢dr,

where V¥ is the Levi-Civita connection, respectively, to the form w, = dd“p. We
recall in the next lemma some properties of the Hessian well known in the literature.

Lemma 1.13 Let X and Y be two vector fields. Then the Hessian satisfies the following
properties:

(i) Hess (X, Y) =< VE V9, Y >,
(ii) Hess ¥ (X,Y) = X(Y () — VgY ().
(iii) ddy(X,iY) = Hess ¥ (X, Y) +Hess (i X,iY).

Where V¥ and <, >, are the Levi-Civita connection and the metric, respectively,
associated to the form wy, = dd¢.

In the sequel of this section, we consider a 2-parameter family ¢(z,s) € H and a
vector field ¥ (¢, s) € Ty’H defined along ¢. We denote by

de dey

= T e

Definition 1.14 The curvature tensor of the Mabuchi metric in H is defined by
R(ﬂ((pta (ps)w = DtDsw - DSDZI/Ia
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518 S. Abja

where ¢(s, 1) € 'H is 2-parameter family and vector field ¥ (s, t) € T, H.
The sectional curvature is defined by

Ky(pr, 9s5) :=<< Ry(@r, @)1, s >>¢ .
Theorem 1.15 The curvature tensor of the Mabuchi metric in H can be expressed as

Ry (@, ) = —{{or, o5}, ¥}

The sectional curvature is the following

Ky (i 05) = =Il{gr, g5}l <0,

where {, }, is the Poisson bracket associate to the form w, = dd‘g.

Proof To compute the curvature tensor of D, we compute the first term in the definition
of the curvature tensor . Indeed, let ¢ be the vector field, its derivative along the path

@5 18
Dy = Yrs— < VY, Vo >p= s + Ty (¥, ¢5),
where
Lo, 95) = — < VY, Vg >y,

we derive the Dy along the path ¢; as follows:

D Dsyp = Di(Yrs + F(p(l/fs ®s)

d
= E(wv + F(p(‘ﬂ» ®s)) + F(p(ws + F(p(‘ﬁ, ©s), 1))
d
=Y+ a(rq)(lﬁs ®s)) + Lo (Ws, 9r) + T (Tp (¥, 95), ¢1).

We express the second term in RHS of the last equation:

d d
arw(lﬁ, @s) = a(— < Vy,Vos >4)
d s
— _Z b _
= dt(pa @sawﬁ

= _waﬂwsatwﬁ - (paﬂ(psa lﬁgt + <th</)”’3¢mm<psa¢,§
=Ty, @rs) + Ty (Y, @5) + dd o (V @5, iV ).

By applying the three properties of Lemma 1.13 by taking X = Vg and Y = Vv,
we express the last term in the last equation as follows:

dd e (V ¢, iV ) = Hess(¢r)(V @5, Vi) + Hess(@) iV @5, iV ),
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The Metric Space of Plurisubharmonic Functions 519

which gives

d
Eﬂp(qoz, V) =Ly, @rs) + L (s, @)
+Hess(¢:)(V @5, Vi) + Hess(¢;) iV @5, iV ).

We develop the fourth term in the RHS in the last equation by applying the second
properties of Lemma 1.13, by taking X = Vg, and Y = V:

Hess(¢)(V @5, V) =V ¢5(V ¥ (g)) — (VY oV W) (1)
=V (< VoV >)— <V, Vg, V>,
=Typ(Ty(@r, ¥), ¢5) — Hess(¥)(V @5, V @1)

We have also by applying the first properties of Lemma 1.13:

Hess(¢)(V @0, 1V ) = < V5, V 010V ) >,
= < V5, 0V 9, i(iV ) >,
= ww(V;p(%X(p,,le),

where X;, = iV h. Then we have

d
EF‘/’«DS’ Y) = F(p(llfs @rs) + Ty (r, @s) + F(p(rgo(wx, ¥, 1)

—Hess(W)(V 91, V 99) + 0, (V% Xy, Xy).
By the previous equations, we get the expression of D; Dy as follows:

Dy D5 = Vst + T (U, @15) + Ty (V15 95)
+T6(Cy (s, ¥), @) — Hess(Y)(V ¢, V ¢5)
+ w(p(vﬁw Xy Xy) + To(Wrs, 01) + Ty (T (¥, @5), ¢1).

We get the expression of Ds D,y by reversing the roles of ¢ and s as follows:

Dy Dy = Yrge + Uy (Y, @050) + T (W, 1)
+T6(Cy (s, ¥), @s) — Hess(Y)(V @5, V @)
+ w(p(v;% X, ng) + F(p(llft: ®s) + F(p(rw(Wv ©1), Ps).

Therefore we get

Ry(¢r, 9s)¥ = Dy Dy — DDy
= ww(V§¢, Xop Xy) — “’(p(vﬁws Xos Xy)

= wy([Xg,, Xo, 1, Xy)
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= w(p({%, ®s}, Xw)
= _{{wlv (/)S}s lﬁ}

In the line three, we use the fact that the Levi-Civita connection is torsion free. In the
line four, we use the fourth property in Lemma 1.12, in the last line, we use the second
property in Lemma 1.12. We calculate the sectional curvature as follows:

K(p(ﬁata @s) = << Rw((pt» ©s) Pt 5 Ps >>0
= / Ry (91, @s)prps (dd p)"
Q

= —/Q{{wz,cps},wz}%(ddc<p)"

= _/{ﬁl’t,(/’s}{%’(ﬂs}(ddc(p)"
= —ll{er, @5}l

We use in line three the expression of the curvature tensor and in the line four, we use
the fifth property in Lemma 1.12. O

Definition 1.16 We say a connection D in H is locally symmetric if its curvature
tensor is parallel i.e DR = 0.

Theorem 1.17 The Mabuchi space H provided by the Levi-Civita connection D is a
locally symmetric space.

Proof Let ¢(t, s, r) be 3-parameter family in H.

Dy (Ry (@1, 9)¥) = Dr(—{{er, o5}, ¥}

—{Drler, o}, ¥} — Uor, @5}, Dripr}

= —{Drer, s} +{or, Drost. ¥} — {ers s}, Drip}

= —{{{Dror, 051} — {or, Drost, ¥} — e, @5}, Drp}

= Ry(Dr@r, )V + Ryp(@r, Dros) ¥ + Ry (@1, Drgs)(Dr ).

We use the expression of the curvature tensor and the sixth property in the Lemma 1.12
of the Poisson bracket. Therefore

(Dr Ry (@1, ) = Dy (Ry(@r, 9)¥) — Ry(Dyr s, 95) Y
—qu((l)z, Dy o)y — R:p(‘/’ta @) (Drfr) =0,

hence H is locally symmetric. O

2 The Dirichlet Problem

We now study the regularity of geodesics using pluripotential theory, the used tools
are developed by Bedford and Taylor [1,2].
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2.1 Semmes Trick

We are interested in the boundary value problem for the geodesic equation: given ¢g,¢1
two distinct points in 7, can one find a path (¢(¢))o<;<1 in H which is a solution of(1)
with end points ¢(0) = ¢p and ¢(1) = ¢ ? For each path (¢;);¢[0,1] in H, we set

®(z,0)=¢(z),z€Q and t = e A={c €eC/1 < || <e).

We show in this section that the geodesic equation in H is equivalent to the Monge—
Ampere equation on 2 x A as in Semmes [29].

Lemma 2.1 The Monge-Ampére measure of the function ® in Q x A is

(ddS (2, )" = (@dD(z, )"+ (n+ DD (2, £)" AR
+n(n +1)

5 (ddS®(z, 0" A R?,

where
R=R(z,¢) = dzdgcb + d;d;@ + d;dg(b.

Proof We write d; ;® = d;® + d; ® and d_, P = did + dC<I> and we give also the
expression of dd‘ <I>(z Z)in 2 x A. Indeed

ddy ,® = (d; +d;)(d;® + d; @)
=d d;® + d d{® + dpd{ D + dpdf D
= dZdZCCD + R(Zv g)

with R = dszCD +d;di P —i—d;dg@ such that R® = 0. Then we can find the expression
of (ddS _®)"*!in Q@ x A. Indeed,

(ddf , ®)""! = (dd{® + R)"!
n+1 ‘ -
- ch+l(ddg'q>)f A (R

= (dd;cb)”“ + (n+ 1)(ddS®)" A R

n
+—"(”2+ )(dd§q>)"*1 AR2.

On the second line, we use the Leibniz formula and the fact that R = RARAR =0
on the third line. O

Theorem 2.2 (¢;)o<:<1 is a geodesic if and only lf(ddcgd:'(z o)t =o.
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Proof From the previous Lemma, we have

(ddS (2, )" = (@diD(z, )" + (n+ DAL D(z, £)" AR

+n(n +1)

5 ddS®(z,£)" " A R

The first term in RHS of the last equation equal to 0 like a result of the bi-degree. We

have

. I e - -
did=0,P+0,P= ﬁd; + ﬁdg = ¢1(2)(d¢ + d?),

and

i, -
= zwz(Z)(dé“ —dy),
also we have a'{dg@ =igi(2)d¢ A dg:, which gives
. - i, - 0,
R =i¢g;()d¢ NdE + Edz% ANdE — 5 G NdE
+dig AdE +dig AdE,
and
R? = 2id ¢y Adg AdE A dE.
Now we can explain the second term also. Indeed,
. . . -0, =
(dd®)" AR = (dd;¢;(2))" A (i1 (2)de AdE + EdZ(pt AdC
i . .. .. =
—5dzpr A d¢ +d; g NdE +dig AdE)
= igi(ddSe)" Adg AdE.
For the third term, we have

@dSD)" ' A R? = (ddp,(2)" " ARAR
= (dd¢(2)" " A 2idGy N diG A dE AdT

= —2id. ¢y NdQ A (dd ()" AdE A dE.

By the previous equations we have,

@ Springer



The Metric Space of Plurisubharmonic Functions 523

(ddS @) = (n + 1)(dd D (2, )" AR

nn+1)

+ (ddS®(z, )" A R?

=i(n+ D(@(ddie)" — nd: ¢ AdS¢;
Add g ()"t Ade A dE
nd;@; A dSg; A (dde(2))" !
- (ddgp,)" )

=i(n+1) (9'0}
(ddie)" AdE AdE.

From the fact that nd (¢;) A d°(¢;) A (dd @)~ = ¢ (dd°p,)", we infer that ¢ is
a geodesic between ¢ and ¢ if and only if

(ddg  ®(z, 0" = 0.

O

By the previous theorem, we deduce that the geodesics problem in Mabuchi space is
equivalent to the following Dirichlet problem:

(ddS Pz, 0" =0 Q@xA

D(z,¢) = ¢o(2) Qx{|¢l=1}
D(z,8) = ¢1(2) Qx{lt]=e} 3)
®(z,2) =0 02 x A

2.2 Continuous Envelopes

In the sequel of this paper, we assume that ¢y and ¢; are only C1-1.

Definition 2.3 The Perron-Bremermann envelope is defined by
D(z,¢) =supfu(z, ¢) € F(¥, Q2 x A)}
with
FW, Qx A)={uec PSHQ x A) /u" < W¥ond(Qx A},

po(z), @ x {|¢] =1}
p1(2), xA{|g] =e}.

Theorem 2.4 If ¥ € C%3(Q2 x A)). Then the Perron-Bremermann envelope ®
satisfies the following conditions:

(i) ® e PSH(Q x A)NCYUQ x A).

(ii) Plyaxa) = W.
(iii) (ddS,®(z, )" =0in Q x A,

where W[, 1 = 0andWqoxya = {
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Proof Let p be a strictly plurisubharmonic defining function of 2 = {p < 0}. Observe
that the family F (W, Q2 x A) is not empty .

(i) We start by proving the plurisubharmonicity of ® in 2 x A. We can write the
Dirichlet problem on the following way:

{ (dd (2, )" =0 QxA
D(z,8) =V (z,¢) A2 x A),

with W(z2. ) = 25 (@1 @ = 1) = @o(2)([£ ] = €))). Let h € Har (R x

A)NC%(2 x A) be a harmonic function in € x A, continuous up to the boundary
of Q2 x A, the solution of the following Dirichlet problem

A,ch(z,0) =0, QxA
h=W, I(Q x A),

has a solution , since €2 x A is a regular domain.
For all v € F(¥, Q x A), we have v* < W on 9(2 x A), which implies

(w—h)*"<00nd(Q2 x A),
furthermore we have
Are(v—="0)(z,8) = Az cv(z,8) 20 in Q x A.
Then by the maximum principle
v(z,8) = h(z,8) in 2xA,

the last inequality holds for every function in F (W, 2 x A), hence it holds for
upper envelope of subsolution

®(z,0) <h(z,0) in Qx A.

It also holds for its upper semi-continuous regularization on the boundary (2x A)
and we get

(@(z,8)" = W(z,8) on 3(Q2x A),
consequently
D* € F(¥, Q x A).
Since the function ®* is plurisubharmonic in  x A and

D(z,8) < P(z,80)" in QxA,
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we infer that
(®(z,0)* = D(z,¢) in Q x A.

Hence, @ is plurisubharmonic function in 2 x A.
Since & is plurisubharmonic in 2 x A, implies that ® is upper semi-continuous.
‘We now prove that the lower upper semi-continuous. Indeed, fix € > 0 and since
Q2 x A) = (32 x A)U(Q x dA) is compact and the function W is continuous
on d(£2 x A), we can choose > 0 so small that

(2.0) € R x A V(E, ) € 3(Q X A)(z,8) = E. 0
SB=12@ ) -VE | <.

Fixa = (a1, az) € C" x C with |ja|| < B. So, we have the following inequality

PEH+a,nta) <V(E n+e if En
€(QxA\{a) U x A)

and

S (z+a, i +a) <V(Ez+a,l+a)+e<P(z,0)
+e if Qx AN x A)\ {a}).

It follows that the function

max(®(z, £), ®(z+ a1, ¢ +az) —2e (z,8) € (2 x A) \ (2 x A)\ {a};

Wz, ¢) =
®(z,0), (z,8) € (2 x A) N (2 x A) \ {a}.

is plurisubharmonic in 2 x A because
(1) if (z,¢) € (2 x A) N (2 x A) \ {a} it coincides with ® which is plurisub-
harmonic.

2) if(z,¢) € (2 x A)\ (2 x A) \ {a}, it is the maximum of two plurisubhar-
monic functions .

(3) by the two previous inequalities, we infer that the function W coincides on
the boundary, furthermore

W <W on 0(2 x A),
which implies W € F(Q2 x A, W), finally we get

Sz +ay, ¢ +ay) —2e <P(z,¢) for (z,8) € Q2
xA and a € C"*1 | ||a|| < B.
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Thus & is lower semi-continuous, therefore it is continuous.
(i) We are going to prove that

lim D(z,¢) = ¥ (o, no).
QxA3(z,8)—>(60,m0)€(R2xA)

Firstly, since ® € F (W, 2 x A) we have

limsup ®(z,¢) < W (o, n0) Y(60, no) € (2 x A).
(2.0)=(§0.m0)

To prove the reverse of inequality, we construct a plurisubharmonic barrier func-
tion at each point (&g, n0) = Yo € 9(2 x A). Since p is strictly plurisubharmonic
function, we can choose B large enough so that the function

b(z, &) := Bp(z) — |z — &> — 1€ — nol?

is plurisubharmonic in €2 x A and continuous up to the boundary such that
b(&, no) <0 withb < Oforall (z,2) € 2 x A\ y0.

Fix € > 0 and take n > 0 such that W(yp) —€ < W(y) Vy € 9(R2 x A) and
Y — Yol < n. We choose C > 1 big enough so that

Ch+W(y) —e <V on 3(Q x A).

This implies that the function V(z,¢) = Cb(z,{)+ WV (y) —e € PSH(R2 x A)
satisfies

V<V on 9(2 x A).

Thus we have V € F (¥, 2 x A) which implies V(z, ) < ®(z,¢) in 2 x A.
We get

W&, no) —e < liminf &(z,¢),
(z,£)—(§0;m0)

therefore

lim  ®(z, &) = V(So, no) V(0, n0) € 9(€2 x A).
(z,8)—(o3m0)

(iii) The Perron—Bremermann envelope
®(z,¢) =supfu(z, §) € F(2 x A, W)}

is plurisubharmonic continuous up the boundary of € x A and ®[jQxa) = V.
By a Lemma due to Choquet, this envelope can be realized by a countable family

D(z,¢) =supfu(z,¢) e F(Q x A, V)} = sqp{uj(z, ) e F(Qx A, W)L
j
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We put

Q;(z,8) = max(u1(z,§), u2(z, 8, ..., u;j(z, ) / ®(z,0),

the function ®; is increasing and satisfies

(®(z,0)" = (sup{®;(z, OHP™.
J

Let B CC © x A be any ball, we consider the following Dirichlet problem

{ (dd(uj(z, )" =0, B;

uj=j, IB.
since
(ddS uj(z, o) < (@dS @z )" in B,
and
uj==o; on 9B,
we have

®j(z,8) <uj(z, ¢) in B.
We consider the following function

uj(z,¢), (z,¢) € B;

0k = {de(z,C), (.0) €2 x A\ B.

The function ©; belongs to (2 x A, W)}. This implies

Qj(z,¢0) < Pj(z,0) in 2 x A,

furthermore
O;j=>o; =V ond(Q xA),
then
uj(z,8) =@;(z,¢) in B,
therefore

(dd (@ j(z, )™ = (dd (uj(z, )" =0in B,
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since B is arbitrary, we give
(ddzc,;(bj(Z, O =0inQ x A.

By the continuity property of Monge—Ampere operators of Bedford and Taylor
along monotone sequences, we have

(ddS (®(z, )" — (ddS (®(z.0)" ! =0,
ie

(dd; (®(z, O)''=0in Qx A.

2.3 Lipschitz Regularity
In this subsection, we give the geodesic regularity Lipschitz in time and in space.

We begin by Lipschitz regularity with respect to the time variable. We use a barrier
argument as noted by Berndtsson [6].

Proposition 2.5 The Perron—Bremermann envelope ®(z,¢) = sup{u(z,¢)/u €
F(Q x A, W} is a Lipschitz function with respect to the variable t = log |¢]|.

Proof The proof follows from a classical balayage technique. Indeed, we consider the
following function

X (2, &) = max(go(z) — Alogl¢|, ¢1(z) + A(log [¢]| — 1)),
where A > 0 is a big constant. Furthermore,
X (2, Dlax{c|=1) = max(go(z), ¢1(2) — A) = ¢o(2)
X (2, O)lax{izi=e} = max(po(z) — A, ¢1(2)) = ¢1(2)

X (2, D)laexa = max(—Alog||, A(log|¢] — 1) <0,

the last line follows from the fact that o9 = ¢; = 0on 92 and 1 < || < e. Then x
it belongs to F (2 x A, W) and

x(z,0) <®(z,¢) in 2 x A.
Since ®(z, ¢) = ¢(z,log|¢]) and x(z, ¢) = x(z,log|¢|), which implies
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WamgMD—w&J)>x&£)—w&J)=x&$)—x&J)

log [¢] - log || log [¢]
X0 —x@1) . eo(z) — Alog(l¢]) —go(z)
im ——————— = lim =—A
g]—1 log |¢ ] Z]—1 log |¢]

which gives ¢(z, 0) > —A, similarly for other case ¢(z, 1) < A. Since the function ¢,
is convex along ¢ (by subharmonicity in ¢), we infer that for almost everywhere z,t,

—A <90 <9z, 1) <9z 1) <A

Then ¢, is uniformly Lipschitz at t = log |¢]. O

We prove the regularity Lipschitz in space by adapting the method of Bedford and
Taylor [1] (see also [23]).

Theorem 2.6 The Perron—Bremermann envelope ®(z, ¢) = sup{u(z, ¢)/u € F(Q X
A, W} is a Lipschitz function up to the boundary with respect to space variable z.

Proof Let p be a smooth defining of € which is strictly psh in a neighbourhood €’ of
2, and also « be a smooth defining of A which is strictly psh in a neighbourhood A’
of A. We construct C!"! an extension of function defined on the boundary of Q x A
by

wo(z) Qx{l¢]=1}
V(z,0)=3¢1(z) Lx{li]=¢e}
0 02 x A.

Let x be a smooth function with compact support defined in [0, 1] by x(¢) = 1 near
of 0 and by x () = 0 near of 1. We put

x (&) = x(logc))),

is a smooth function in A. We have 5 (¢) = 1 near of |¢| = 1 and (¢) = O near of
IZ] =e.

We consider the following function:

F(z,8) = x(©@o(z, &) + (1 = x()@1(z, &) + Ba(?),

where @y(z, £) = ¢o(z), ¢1(z, ¢) = ¢1(z). The function F satisfies

@o(z), Qx{l¢] =1}
Flaxaa = 1 ¢1(2), Q2 x{[¢]| =e}
0, 02 x A.

The function F is plurisubharmonic extension of the function W defined on 2 x A
to 2 x A. We can also extend the function W defined in 02 x A by putting

F(z,8) = Dp(2),

where D is a big constant.
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On two cases the function F satisfies the following properties
F<®ond(@QxA) and (dd, F)""" = (ddf ®)""" in Qx A.
By the maximum principle, we get
F(z,0) <®(z,¢) in Q x A.

Applying the same process to the boundary data —W we choose C!! function defined
in 2 x A such that G = —W on 9(€2 x A), the maximum Principle implies

®(z,7) < —G(z,¢) in LxA
by the two previous inequalities we have
F(z,0) = ®(z,8) = —G(z,¢) in QxA.
Since F(.,¢) < ®(, ¢) in , the envelope ®(, ¢) can be extended, respectively, to
variable z as a plurisubharmonic function in Q' by setting ®(, ¢) = F(, {) in Q" \ Q
with ¢ fixed in A. Fix § > 0 so small that z + & € Q whenever z € Q and ||h]| < 4,
this set noted in sequel by ;. Fix & € C" such that ||i|| < §. Recall that F and G
are Lipschitz in each variable, thus
|F(z+h,§) — F(z, )| < Cllhll and |G(z + h, §) — G(z, §)| < CllAl,

forany z € Qand ¢ € A.

Observe that the function v(z, ¢) := ®(z + h, {) — C||h]| is well-defined psh in
the openset 2 x A. If z € 92N Q2 and ¢ € A, then
v(z,8) =P(z+h, ) —Cllhl| < =Gz +h, ) — Cllh|| < —G(z,¢) = ¥(z, ).
IfzeQNoQ,and¢ € A, then

v(z,8) =Pz +h, ) —Cllhl| S F(z+h,¢) = Cllhll < F(z,¢) < ®(z,0).

This shows that the function w defined by

( ) P max(v(z, C)’ (D(Z, ;)) 1f (Z, {) € Q n Qh X A
Wi 6) = D(z,¢) if (2,0)eQ\Q x A

is plurisubharmonic in & x A. Since w < WV on d(2 x A) weget w < ®in 2 x A,
hence v < & in 2 x A. We have shown that

P(z+h,§) — P(z.¢) = Cllhl|
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whenever z € QN Qy , ||k|] < and ¢ € A. Replacing h by —h shows that
|®(z+h, ) — P(z,8)| = CllAll,

which proves that ®(, ¢) is Lipschitz in every z € Q. O

3 Case of the Unit Ball

In this section, we shall show how to use the proof of Bedford and Taylor [1], which is
simplified by Demailly [19] in the unit ball for giving the regularity in space variable
for our geodesics problem. We need some preparation to prove this regularity. The
open subset giving by

B:={zeC"/lzl*+lzl -, +zl* <1},

is called the unit ball. First, we shall define the Mobius transformation of the unit ball.
Leta € B\ {0} ¢ C". Denote by P, the orthogonal projection onto the subspace of
in C" generated by the vector a by,

<z,a>a

P, =
© llall?

The Mobius transformation associated with a is the mapping

Pa(z) —a++/(1 = llal»)(z - Pa(@)

Ta(@) = 1-<z,a >

With < z,a >= )"}, z;a; denote the hermitian scalar product to z and a. For every
a € B, the Mobius transformation has the following properties

(i) T,(0) = —a and Tp(a) = 0.
(i1) an elementary computation yields

T.z)=z—a+ <z,a>a+ 0(al*) =z—h+ O(llal]), 2)

withh = h(a,z) '=a— <z,a > zand O(||al?) is uniformly with respect of
the variable z € B.

We need in the sequel the following useful Lemma to giving the regularity in unit ball.

Lemma 3.1 Let u be a plurisubharmonic function in domain Q CcC C", assume that
there exists B, 5 > 0 such that

u(z+h) +u(z—h) —2u(z) < B||h||?, VO < ||h|| <8,
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andforallz € Qanddist(z, Q) > 8. Thenu is CY-Ysmooth and its second derivative,
which exists almost everywhere, satisfies

ID?ul| @) < B.
Proof Letu, = u * x. denote the standard regularization of u# defined in 2, = {z €

Q /dist(0R2,z) > ¢} for0 < ¢ << 1. Fix § > 0 small enough and 0 < ¢ < %.Then
for 0 < ||A]| < %We have

e (2 + 1)+ up(z = h) = 2u,(2) < Bllh|. 3)
It follows from Taylor’s formula that if z € Q2

d2 . ug(Z_th)+ug(Z+lh)_2M8(Z)
mua(z +th)|i=0 := zli% 2 ,

therefore by having D2uy(z).h* < B||h|?> for all z € Q, and h € C". Now for
z € 2,

n

92u 0%u - u, - -
D*u,(z).h* = ( £ h<h-+2—fh-h-+_—fh'h').
«® l.]z::] dzioz; 7 Taziozy ) azaz

Recall that u. is plurisubharmonic in €2, hence

n 2
0°u -
2 2 2 AV E € nh.
D Mg(Z).h + D Mg(Z).(lh) = 4i — Wklh} > 0.

The above upper-bound also yields a lower-bound of D?u,
D*ug.h* > —D?u,.(ih)* > —B||h|*.
For any z € Q and & € C". This implies that
||D%ue|| o) < B

Thus, we have shown that Du, is uniformly Lipschitz in €2.. We infer that Du is
Lipschitz in Q2 and Du, —> Du uniformly in compact subsets of 2. Since the
dual of L' is L, it follows from the Alaoglu—Banach theorem that, up to extracting a
subsequence, there exists a bounded function V such that D?u, — V weakly in L.
Now D%u, —> D?u inthe sense of distributions hence V = D?u. Therefore, u is C-!
in © and its second-order derivative exists almost everywhere with || D?u|| 7~ © < B.
O
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Theorem 3.2 By taking B is the unit ball in C". Let ¢po and ¢ be the geodesic end
points which are C''. Then the Perron—-Bremermann envelope

D (z,¢) = supfu(z, §)/u € F(Q x A, W)},

admits second-order partial derivatives almost everywhere with respect to the variable
z € B which locally uniformly bounded with respect to the variable { € A, i.e for
any compact subset K C B there exists C which depends on K, ¢y and ¢ such that

1D @]k x ) < C.
Proof To prove the theorem, we weed to prove the following inequality
Oz +h,§) + Pz —h,§) =20z ) < AllAII%,
for any ||h|| << 1,ze€Band ¢ € A.

The idea is to study the boundary behaviour of the plurisubharmonic function
(z,¢) —> %(CIJ (z+h, )+ ©(z—h, ¢) in order to compare it with the function ® in
B x A. This does not make sense since the translations do not preserve the boundary.
We are instead going to move point z by automorphisms of the unit ball: the group
of holomorphic automorphisms of the latter acts transitively on it and this is the main
reason why we prove this result for the unit ball rather than for a general strictly
pseudoconvex domain (which has generically few such automorphisms).

By the fact that @ is Lipschitz with respect to the variable z (Theorem 2.6) and
expansion (2), we have

1(T4(2).§) — @z —h, )| < Cl|Ta(2) — (z — W] = Cllall?,
and
|D(T_a(2). £) = P2+ h, O)| < ClIT-a(2) — (z+ W) < Cllall*,
which implies
D(z+h,0)+ Pz —h, ) < D(Tu(2). &) + P(T-4(2). £) +2C]lal .
We consider the following functions:
F(z.0) 1= ®(Tu(2). 0) + ®(T-4(2). £) + 2C|[al|*,

and G(z, ¢) = 2®(z, ¢) + D||a||?, we observe that the functions F and G are well
defined in B x A and plurisubharmonic s in B x A. We need to show that

F(z,0) <G(z,¢) in Bx A.
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To show the last inequality, we apply the maximum principle, then we need to prove
F(z,2) <G(z,¢) on 9B x A)
and
(ddS  F(z.0)" = (ddS G (z. )" in Bx A.
The last inequality follows from the fact that F is a plurisubharmonic and
(dchCCD)”“‘l =0in B x A by (Theorem 2.4).

We need to compare F and G in the boundary of B x A. Indeed, since (B x A) =
(0B x A) U (B x 9A), then we compare in two parts, we begin first by the part that
0B x A, in this part we get

Flypwi =2Cllal* and Gy, ; = Dllal*.
To show that Flyg 1 < Gyp 4> We take just
D =2C.
For the second part B x d A, we only compare B x A, because 9B x A belongs to the

previous part, since dA = {|¢| = 1} U {|¢| = e}, we begin this part by comparing the
case B x {|¢| = 1}, we have

Flex(ici=1) = 90(Ta(2)) + ¢0(T-4(2)) + 2C]lal %,
and
GlBx(ic1=1) = 2¢0(2) + Dllall*.
We apply Taylor expansion and we get

00(Ta(2)) = 9o(z — h 4+ 0(lal?) = @o(z) — dp(z).h + O(jal?),

and
90(T4(2)) = 9oz + h + O(lal*) = go(2) + de(z).h + O(lal?).
which implies
90(Ta () + 90(T-a(2)) < 200(2) + 2Colal’,

where Cq depends only on the ¢ then

F(z,¢) < 2¢0(z) + 2C1lal? + 2Cla)?.
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If wetake D = 2(Cop + C), we get F(z,¢) < G(z,¢) onB x {|¢| = 1}. By the same
methods, we get that F(z,¢) < G(z,¢) onB x {|¢| = 1} for D = 2(C; + C), where
C1 depends only on the ¢; which concludes the second part.

Through the part one and two we infer that,

F(z,8) <G(z,¢) on 3(B x A).
From the maximum Principle we get,
F(z,¢) <G(z,¢) in BxA,
Which implies

D +h L)+ P —h ) =20 ) < D(Ty(2), &) + D(T-e(2), )
+2C|la|* — 29(z, ¢)
< O(T4(2), &) + P(T-a(2), )
+2C|lall* — 29(z, ¢)
< Dllal|*.

Observe that the mapping a — h(a, z) = a— < z,a > z is alocal diffeomorphism
in neighbourhood of the origin as long as ||z|| < 1, which depends on z € B smoothly

and its inverse 4 ——> a(h, z) which is linear with a norm less than or equal to m
since
Rl = llall = llallllzI* = llall(1 = ||zI*)
> |la allllz a z|1%),
which gives
DI|hl?

P+ D+ —h =290 < G

Fix aset K C B compact, there exists § > 0 such that Vz € K and VO < ||h]|| < § we
have

Pz+h,)+D(z—h, ) —29(z {)<Lh”2
’ ’ ’ ~ dist(K, 0B)?’

by the previous Lemma we get
IDZ @[k x4) < D

D

where C = W
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4 Moser-Trudinger Inequalities

In this section, we assume that Q2 is a strictly pseudoconvex circled domain. We
consider the following Monge—Ampere equation

—1¢;
(ddg)" = ——1

 JoeTdp @

with ¢, smooth and plurisubharmonic, ¢; 5 = Oand p is just the Lebesgue normalized

so that ;£ (€2) = 1. It is known that this equation admits a solution if r < Qn)H1/n
(14 1/n)0+1/m [3,9,22]

e We can solve this equation if ¢ is not too large (¢ = 1 is treated in [22] and even
t < )TV 4 1/n)dHm),

e One cannot solve the equation if 7 is too large, cf [22, Section 6.2] and [3].

e The above equation was also studied by Cegrell [9].

We denote by

E(p) = @(dd p)",

n+1Jg

the Monge—Ampere energy functional of a plurisubharmonic function ¢, which is
defined as the primitive of Monge—Ampere operator. The expression

1
Filg) = E(g) + - log [ fQ e“"d,u] ,

defines the Ding functional.

Definition 4.1 We say the functional J; is coercive, if there existe > O and B > 0
such that

Filp) =€E(@)+B Vo eH,

Definition 4.2 Set ®,(z) = ®(z, €*). The continuous family (P,)o<s<1 is called the
geodesic joining ¢o and ¢ .

We show that E is linear along of geodesics, this result was proven in [22, Lemma
22]. It was also proven by Rashkovskii [28] in the Cegrell class. For convenience of
the reader, we reproduce the proof here.

Lemma 4.3 Let (®;)o<s<1 be a continuous geodesic. Then s — E(Dy) is affine.
Proof by the Proof of Theorem 2.2 we have
(dd;  ®(z, )" = (4 D(ddE@(z, £)" AR

+n(n +1)

5 (o, "t AR?
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—(+1) (d;d;‘d) A (ddE®)" — nd,dSD

Adpd® A (dzdz"dJ)”‘l) .
We have by definition of £

1
E(®(,¢) = P (2, $)(dd; (2, £))".

Which implies

1 .

1
1

5

ded{® A (dzdS®)" !

Q

+n/ d{® A dpd.dSD A (dZdZCCD)”)
( dpd{® A (ddE D)

5

n+1
—n/ dodi® A dpdED A (dzd§¢)”‘1)
Q
1
= —— [ @d ®)"*,
(n + 1) /Q( 2 P)

where the second equality follows from Stokes theorem and the fact that d; ® = 0
on d€2.

Thus, it follows from Theorem 2.4 that { € A — E(P(., ¢) € R is harmonic in
¢. Since @ is invariant by rotation with respect to the variable ¢, hence it is affine in
t =log|¢]. O

We recall here [22, Proposition 23].

Proposition 4.4 Assume that Q2 is circled, let ¢; be an S Uinvariant solution of (M A);.
Then

Filgr) = sup Fi(¥),
Vel(Q)

where () denotes all S'-invariant plurisubharmonic functions ¥ in Q which are
continuous up to the boundary, with zero boundary value.
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Proof Let (®)o<s<1 be a geodesic joining $¢ := ¢; to @ = . It follows from work

of Berndtsson [5] that
1
s —> ——log (f e_"bfdu)
t Q

is convex, since s —> E(®;) is affine from Lemma 4.3. Then s —— F(®dy) is
concave.

Therefore, it is sufficient to show that the derivative of F;(®;) at s = 0 is non-
negative to conclude F;(¢;) = F(Dg) > F; (D) for all s, in particular at s = 1 where
it yields F:(¢;) > F: (). When — @ is smooth, a direct computation yields, for
s =0,

d . —t Py
S F(®y) = / b, [(ddcqm" - ﬁ] =0
ds Q

Jo e ®dp
For the general case, one can argue as in the proof of [4, Theorem 6.6]. O
Lemma 4.5 The Functional F; is upper semi-continuous in Sé(Q) = {y €

EYQ) /Y =00n dQ and E(Y) > —C).

Proof Recall F;(¥) = E(Y) + %log (fq e "Vdu). The first term is upper semi-
continuous in £!($2). For the second term, we apply Skoda uniform integrability
Theorem [30].

Assume without loss of generality that + = 1. We need to check that ¢ €
Eé(Q) — fQ e~V du is upper semi-continuous.

Let v/; be a sequence in Sé (£2) converging to v, these functions have zero Lelong
number. The following extension:
gi=Yj+ytoQCKCQasg; =g;inQ,g; =0in Q" \ . We apply Skoda’s
uniform integrability estimates:

/ 2D, s/ 2Vt gy < C.
Q K

|/ e Vdp —f e Vdpl s/ Y =il dp < Clly; = ¥l
Q Q Q
as follows from the Cauchy—Schwarz inequality and the elementary inequality

le? — eb| < |a — ble?T?, forall a,b > 0.

The conclusion follows since (/) converges to ¥ in L%(w). O

We recall that the Dirichlet problem (M A); has a solution for t = 1 by [22], moreover
we have uniqueness if €2 is strictly ¢-convex( €2 is strictly convex dor the metric dd€g).
We recall here the main result of [22].
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Theorem 4.6 Let 2 C C" be a bounded smooth strongly pseudoconvex domain which
is circled. Let ¢ be a smooth S'-invariant strictly plurisubharmonic solution of the
complex Monge—Ampere problem (M A)1. If Q is strictly ¢-convex, then ¢ is the unique
S'-invariant solution of (M A)1.

Inspired by Dinezza-Gued;j [16, Theorem 5.5], we now prove the following theorem.

Theorem 4.7 Let Q@ C C" be a smooth strongly pseudoconvex circled domain. If
there exists €(t), M (t) > 0 such that,

Fi() <eEW)+ M) V¢ eH,

then (M A); admits a S"-invariant smooth strictly plurisubharmonic function solution.
Conversely if (M A); admits such a solution ¢, and Q2 is strictly ¢;-convex, then
there exists (t), M (t) > O such that,

Fi(h) =eEW) +M(@) Yy €H.
Proof If we assume the following inequality holds,
Fi(f) <eEW) + M(1)

then the same method of [22]applies , if only we change ¢ by t¢.
Conversely, as ¢; is a solution of (M A); then from the (Proposition 4.4) we have

Fi(or) = sup{F () /¥ € HN ()} ©)
assume for contradiction that there is no ¢ > 0 such that
Fi(f) <eEW)+ M

for all y € H.Pute; = % and M = F;(¢;) + 1. Then we can find a sequence
(¢j) C H such that

E .
Filpj) > (;."’) + Filpn) + 1.

We discuss here two cases, the first case if £(¢;) does not blow up to —oo, we reach
a contradiction, by letting j go to +o0. Indeed, we can assume that E(¢;) is bounded
and ¢; converges to some ¥ € £ 1(Q) which is S!-invariant. Since F; is upper semi-
continuous by Lemma 4.5, we infer F;(¢) > F;(¢;) + 1 > F;(¢;) contradiction
because ¢, is the solution of (M A);.
The second case if E(¢;) — —oo. It follows thatd; = —E(¢;) — +oo.

We let (¢s,j)05s§dj denote the weak geodesic joining ¢, to ¢; and set /; := ¢ ;. We
know that s —— E(¢j, ;) is affine along of the Mabuchi geodesic. Thus E(¢y, ;) =
ajs +bj, where a; and b ;j are real numbers. For s = 0 we have

E(¢o,j) =b; = E(¢r),
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and for s = d; we have
E(pj) = E(¢a;,j) = ajdj + E(¢r)

therefore a; = %jaw’). Then

E(¢s.j) =

E(p;)—E
(go,)d (cpt)s+E((p[)_ ©)

J

Since s —— E(¢y, ;) is affine along of the Mabuchi geodesic and by Berndtsson [5]
convexity result, we infer that the map s —— F;(¢;, ) is concave, which implies with
(5) that

Fi(ba; ) — Fi(o
0= Fir ) — Fiigo) > P = Filbos) 11
d; J o dj

Thus F; () —> F;(¢;). This shows that (v;) is a maximizing sequence for F;. If
we take + = 1 on Eq. (6), we get

E(pj) — E(¢r) _ ., E()
d—j+E(<pf)— 1 a

EW;)) = +E(p) = =1+ E(g). (1)

Passing to subsequence, we can assume that v/; converges to Y € & () which is
Sl-invariant. Since J; is upper semi-continuous and yr j 1s a maximizing sequence for
F; then we have F; () = F;(¢;) and so ¥ = ¢; thanks to the uniqueness. Letting j
to infinity in (7) we get

E(Y) =—-1+E(e),
this yields a contradiction. O
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