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Abstract We study the relationship between the geometry of smoothly bounded
domains in complete Riemannian manifolds and the associated sequence of L1-norms
of exit time moments for Brownian motion. We establish bounds for Dirichlet eigen-
values and, for closed manifolds, we establish a comparison result for elements of the
moment sequence using lower bounds on Ricci curvature.

Keywords Torsional rigidity · Heat content · Dirichlet Problem · Brownian motion

Mathematics Subject Classification 58J65 · 58J50 · 35P15

1 Introduction

The relationship between the geometry of a complete Riemannian manifold and prop-
erties of the associated collection of Brownian paths is the subject of many papers.
Driven in part by the attraction of developing new tools and intuitions for old prob-
lems, the associated literature has grown steadily with a variety of cross-fertilizations
appearing over the course of the last 20 years. This paper contributes to efforts in
this direction: we study the comparison geometry and spectral geometry of smoothly
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Comparison Results, Exit Time Moments, and Eigenvalues 3907

bounded precompact domains in complete Riemannian manifolds using a collection
of invariants that arise naturally in the context of probability. These invariants are
constructed using Brownian paths and the volume form; they are naturally connected
to the heat kernel and the Dirichlet spectrum. Our results shed light on this connection.

To formulate our results we need some notation. Let (M, g) be a complete Rieman-
nian manifold and let � ⊆ M be a smoothly bounded precompact domain. We will
denote by Xt Brownian motion on M and by P

x the associated probability measure
charging Brownian paths beginning at x ∈ M. Let τ be the first exit time of Xt from
�:

τ = inf{t ≥ 0 : Xt /∈ �}.

Then τ is a random variable whose expectation with respect to the measure Px solves
a Poisson problem on �. More precisely, writing u1(x) = E

x [τ ], we have that u1
satisfies

− �gu1 = 1 in �, u1 = 0 on ∂�. (1)

If dVg denotes the volume form on M and we integrate over �, we obtain an
invariant of the domain:

T1(�) =
∫

�

u1(x) dVg(x).

The invariant T1(�) is called the torsional rigidity of the domain � and it has a long
history. First studied in the nineteenth century as part of the theory of elastic bodies,
it exhibits properties analogous to those of the first Dirichlet eigenvalue (see [21] for
background on torsional rigidity and fundamental frequency). Our first collection of
invariants is a straightforward generalization of torsional rigidity obtained by integrat-
ing higher moments of the exit time. Given a positive integer n, we define

Tn(�) =
∫

�

E
x [τ n] dVg(x). (2)

We call the collection {Tn(�)}n∈N the L1-moment spectrum of �. Our results involve
the degree to which the geometry of a bounded domain can be studied using this family
of invariants.

We can express Tn(�) using the heat kernel by integrating twice over the domain�

(see Sect. 2). Because the heat kernel can be written in terms of eigenfunctions for the
Dirichlet problem, it is natural to consider a second collection of invariants indexed
by the values of the Dirichlet spectrum associated to �. To proceed we need more
notation.

Let spec(�) denote theDirichlet spectrum listed in increasing order, withmultiplic-
ity. Given an eigenvalue λ ∈ spec(�), let Eλ be the eigenspace associated to λ, and let
a2λ be the square of the L2-norm of the orthogonal projection of the constant function
1 on Eλ. Let spec∗(�) be the collection of real numbers ν for which ν ∈ spec(�) and
a2ν > 0. Then, as explained in Sect. 2 below, the invariants a2ν satisfy
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Volg(�) =
∑

ν∈spec∗(�)

a2ν .

We can now state our first result:

Theorem 1.1 Let M be a complete Riemannian manifold and � ⊆ M a smoothly
bounded precompact domain. Let λn be the nth Dirichlet eigenvalue and denote by
spec∗(�) the values of the Dirichlet spectrum for which the associated eigenspace is
not orthogonal to constants. Then, with a2ν as above, we have the estimate

λn(�) ≤

T2k−1(�)

(2k − 1)! −
∑

ν∈spec∗(�)
ν<λn (�)

a2ν

(
1

ν

)2k−1

T2k(�)

(2k)! −
∑

ν∈spec∗(�)
ν<λn (�)

a2ν

(
1

ν

)2k . (3)

Moreover, if λn(�) ∈ spec∗(�), the inequality becomes an equality in the limit as
k → ∞.

This result is an extension of the work of Dryden et al. [10] where the case n=1
was established without an equality claim. The original motivation for the n=1 result
involved applications in shape optimization and a sharpening of an inequality of Pólya
for Euclidean domains (see [23,25]). Similar results were obtained by Hurtado et al.
[14] in the context of warped product spaces. Motivated by a desire to understand
Dirichlet spectrum for rotationally symmetric geodesic balls, Bessa et al. [4] obtain
related results using the Green’s operator for the underlying domain. Taken in sum,
the work referenced above suggests that there should be a rich comparison geometry
theory (see also [12,13,18]). In the remainder of our paper, we develop this line of
thought for spaces with Ricci curvature bounded below.

A great deal is known about the structure of Riemannian manifolds with a lower
Ricci curvature bound (see [11,26], for example). For our purposes, lower bounds
on Ricci curvature provide model spaces for comparison that, in turn, provide tools
to establish estimates for our invariants. Chief among the tools we employ is an
isoperimetric result due to Bérard et al. [3]. For closed (compact without bound-
ary) Riemannian manifolds, the result of [3] provides a Euclidean sphere, Sd(R), as
a comparison space where the radius R depends only on the dimension, the diameter,
and the Ricci bound (see Theorem 2.1). We prove:

Theorem 1.2 Let (M, g) be a connected d-dimensional closed Riemannian manifold
with Ricci curvature bounded below by (d − 1)K , K ∈ R, and let (Sd(R), g0) be the
Euclidean sphere prescribed by [3]. Let � ⊆ M be a smoothly bounded domain and

let �∗ be a geodesic ball in Sd(R) satisfying
Volg(�)

Volg(M)
= Volg0 (�∗)

Volg0 (Sd (R))
. Then the moment

spectra satisfy the inequality

Tn(�)

Volg(�)
≤ Tn(�∗)

Volg0(�
∗)

(4)
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for each n ≥ 1. Moreover, if K > 0 and �∗∗ is a geodesic ball in Sd
(

1√
K

)
satisfying

Volg(�)

Volg(M)
= Volg1 (�∗∗)

Volg1

(
Sd
(

1√
K

)) , then we also have

Tn(�)

Volg(�)
≤ Tn(�∗∗)

Volg1(�
∗∗)

. (5)

If equality holds in (5) for some index n, then M is isometric to the sphere Sd
(

1√
K

)

and � is isometric to a geodesic ball in Sd
(

1√
K

)
.

To place our work in the literature, we focus our remarks on material involving
exit time and comparison geometry that shaped the development of our results. In an
early result in this direction, Debiard et al. [9] studied the behavior of heat kernels on
geodesic balls. The authors proved a theorem similar to Theorem 1.2 in which they
compared mean exit time for geodesic balls with mean exit time for geodesic balls in a
space form. For Euclidean domains, Aizenman and Simon [1] used the rearrangement
result of Brascamp, Lieb, and Luttinger to prove that for given volume, pointwisemean
exit time moments are bounded by the corresponding moments for Brownian motion
starting at the center of a ball of the same volume. In [16], the authors studiedEuclidean
domains using isoperimetric comparison, rearrangement results for elliptic PDE, and
a description of exit time moments as a solution of a hierarchy of Poisson problems to
recover the above result of Aizenman and Simon and establish corresponding results
for the L1-moment spectrum. Using isoperimetric comparison, the results of [16] were
extended to space forms in [17]. In [6], Burchard and Schmuckenschläger studied
the behavior of heat kernels for constant curvature space forms under symmetric
rearrangement. They used their results to bound exit time moments as above; they
established the case of equality for domains in space forms, and they conjectured a
result that implies Theorem 1.2 (see Conjecture 4.11 of [6]). Recently, Cadeddu et al.
[7] studied the optimization problem for the first exit time moment (torsional rigidity)
and, using symmetric rearrangement, established comparison results under a variety
of constraints involving bounded geometry, including the case of smoothly bounded
precompact domains in manifolds with Ricci curvature bounded below. Amongst the
tools used in [7] is the isoperimetric comparison result of [3] cited above (see Sect.
2). To establish our results, we use the isoperimetric comparison result of Bérard et
al. [3], symmetrization techniques in the spirit of Talenti [22], and the description of
the L1-moment spectrum in terms of a hierarchy of Poisson problems.

As a corollary of Theorem 1.1 and the techniques used to establish the result, we
establish a relationship between higher moments and the Cheeger constant (Theorem
3.3).As a corollary ofTheorem1.2,we establish aFaber–Krahn theorem that illustrates
how one might extract information contained in the higher moments (Corollary 3.5;
see also [18]).

The remainder of this note is structured as follows: in the next section, we provide
the required background involving exit time moments and symmetrization, including
a discussion of the relationship between the L1-moment spectrum and heat content.
In Sect. 3, we provide proofs of Theorems 1.1 and 1.2 and the corollaries described
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3910 D. Colladay et al.

above. Along the way, we also establish a rearrangement result for elliptic boundary
value problems that we believe is of independent interest (see Theorem 3.4).

2 Background

2.1 Exit Time Moments

As in the Introduction, let (M, g) denote a complete d-dimensional Riemannian
manifold with � a smoothly bounded domain with compact closure. Let Xt denote
Brownian motion in M with infinitesimal generator � and for x ∈ M let Px denote
the probability measure charging Brownian paths beginning at x . Let τ denote the first
exit time from �:

τ = inf{t ≥ 0 : Xt /∈ �}.

For n a natural number, let Tn(�) be defined as in (2):

Tn(�) =
∫

�

E
x [τ n] dVg(x),

where E
x denotes expectation with respect to P

x and dVg(x) denotes the volume
form. The invariants Tn(�) are closely related to the heat content of �, a function
constructed from the solution of an initial value problem on the domain �. More
precisely, the solution of the initial value problem

ut = �u in (0,∞) × �, (6)

lim
t→0

u(t, x) = 1 in �, (7)

lim
x→σ

u(t, x) = 0 for t ∈ (0,∞) and σ ∈ ∂�, (8)

can be written as
u(t, x) = P

x (τ > t). (9)

The heat content of � is the function H : (0,∞) → R defined by

H(t) =
∫

�

u(t, x) dVg(x).

Using (9), we can express moments of the exit time in terms of u(t, x):

E
x [τ n] = n

∫ ∞

0
tn−1u(t, x) dt. (10)

123



Comparison Results, Exit Time Moments, and Eigenvalues 3911

Combining (10) with Fubini’s Theorem, we see that we can express the invariant
Tn(�) as a moment of the heat content:

Tn(�) = n
∫ ∞

0
tn−1H(t) dt.

To elucidate the relationship between the L1-moment spectrum and the Dirichlet
spectrum, we write the solution of the initial value problem (6)–(8) in terms of the
Dirichlet kernel. Let spec(�) denote the Dirichlet spectrum of � listed in increasing
order with multiplicity and fix a corresponding orthonormal basis of eigenfunctions,
{φλ : λ ∈ spec(�)}. Then the Dirichlet heat kernel for � is given by

p(t, x, y) =
∑

λ∈spec(�)

φλ(x)φλ(y)e
−λt .

The heat content of � is then given by

H(t) =
∑

λ∈spec(�)

(∫
�

φλ(x) dVg(x)

)2
e−λt . (11)

We can rewrite the sum occurring in (11) as follows: given a Dirichlet eigenvalue λ

with corresponding eigenspace Eλ, write

a2λ =
∑

λ̂∈spec(�)

λ̂=λ

(∫
�

φ
λ̂
(x) dVg(x)

)2
. (12)

Then a2λ is the square of the L2-norm of the orthogonal projection of the constant
function 1 on the eigenspace Eλ. We define a set of real numbers, spec∗(�), by

spec∗(�) = {λ ∈ spec(�) : a2λ > 0}. (13)

Using (11)–(13), we can rewrite the heat content as

H(t) =
∑

ν∈spec∗(�)

a2νe
−νt . (14)

As mentioned in the Introduction, the sequence {a2ν }ν∈spec∗(�) is closely related to
the volume of the domain �. To see this is the case, note that there is a small time
asymptotic expansion of H(t):

H(t) 

∞∑
k=0

hkt
k
2 ,
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where the coefficients are local geometric invariants (see [24]). In particular, it is
known that h0 = Volg(�) and we conclude

Volg(�) =
∑

ν∈spec∗(�)

a2ν , (15)

from which we see that the a2ν partition the volume of �.

The most direct method for connecting the moment spectrum to the Dirichlet
spectrum involves the study of the Mellin transform of the heat content. The Mellin
transform of H(t) takes the form of a Dirichlet series

ζ(s) =
∑

ν∈spec∗(�)

a2ν

(
1

ν

)s
(16)

and extends meromorphically to the plane with poles at the negative half-integers (see
[19]). The connection between the L1-moment spectrum, the heat content, and the
Dirichlet spectrum is embedded in the identity

�(n + 1)ζ(n) = Tn(�). (17)

To extract information from (17), we use recursion and a convenient relationship
between Tn(�) and a hierarchy of Poisson problems. More precisely, if we write

un(x) = E
x [τ n],

then we can apply the Laplace operator to the right-hand side of (10) and integrate by
parts to see that un satisfies

− �gun = nun−1 in �, un = 0 on ∂�. (18)

This hierarchy is very useful in establishing Theorem 1.1.

2.2 Ricci Bounds and Symmetrization

To establish Theorem1.2, we require results involving symmetrization and isoperimet-
ric inequalities. Throughout this section, we assume that (M, g) is a connected and
closed Riemannian manifold (so in particular (M, g) is complete by Hopf-Rinow).
Denote the Ricci curvature of M by RicM , and let

Rmin = inf{RicM (u, u) : u ∈ TpM, 〈u, u〉p = 1, p ∈ M}.

Bérard, Besson, and Gallot showed in [3] (see also [5,7]) that closed Riemannian
manifolds with a lower Ricci curvature bound admit an isoperimetric inequality:
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Theorem 2.1 With M as above, suppose the Ricci curvature on M satisfies Rmin ≥
(d−1)K. Then there exists a d-dimensional sphere of radius R, denoted Sd(R), where
for any smoothly bounded domain � in M, if�∗ is a geodesic ball in Sd(R) satisfying

Volg(�)

Volg(M)
= Volg0(�

∗)
Volg0(S

d(R))
, (19)

then
Surfg(∂�)

Volg(M)
≥ Surfg0(∂�∗)

Volg0(S
d(R))

. (20)

Here, g0 denotes the canonical metric on Sd(R). Moreover, the radius R depends only
on K , the dimension d, and the diameter of M. Specifically, we have

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
K

⎛
⎝ 2
∫ diam(�)

√
K

2
0 cosd−1 θ dθ∫ π

0 sind−1 θ dθ

⎞
⎠

1
d

if K > 0,

diam(�)(
1+d
∫ π
0 sind−1 θ dθ

) 1
d −1

if K = 0,

1√−KC(diam(�)
√−K )

if K < 0,

where C(z) denotes the unique positive solution x of the equation

x
∫ z

0
(cosh t + x sinh t)d−1 dt =

∫ π

0
sind−1 θ dθ.

If K > 0, the isoperimetric inequality is sharp in the following sense: fromMyers’s
Theorem [20] and the explicit formula for R, we see R ≤ 1√

K
. If �∗∗ denotes a

geodesic ball in the sphere Sd
(

1√
K

)
satisfying Volg(�)

Volg(M)
= Volg1 (�∗∗)

Volg1

(
Sd
(

1√
K

)) , then

Surfg(∂�)

Volg(M)
≥ Surfg1(∂�∗∗)

Volg1
(
Sd
(

1√
K

)) , (21)

where g1 denotes the canonical metric on S
d
(

1√
K

)
. When equality holds in (21),

Cheng’s Theorem [8] implies that (M, g) is isometric to the sphere
(
S
d
(

1√
K

)
, g1
)

(and � is isometric to a geodesic ball). In what follows, we refer to this observation
as the equality case of Theorem 2.1.

This isoperimetric inequality and the notion of spherical symmetrization play star-
ring roles in the proofs of our comparison results. To define the latter notion, take
f ∈ L1(�) non-negative and define the distribution function of f by

μ f (t) = Volg ({x ∈ � : f (x) > t}) , t ∈ R.
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The decreasing rearrangement f # : [0,Volg(�)] → R is then defined using the
distribution function:

f #(t) =
⎧⎨
⎩
ess sup

�

f if t = 0,

inf{s : μ f (s) ≤ t} if t > 0.

Finally, to define the spherical symmetrization f ∗ : �∗ → Rwe fix a pole x0 ∈ S
d(R)

and use the decreasing rearrangement:

f ∗(x) = f #
(

Volg(M)

Volg0(Sd(R))
Volg0 (B(r))

)
, (22)

where B(r) denotes the geodesic ball in S
d(R) centered at x0 of radius r =

distg0(x, x0).
The spherical symmetrization f ∗ is a “rearrangement” of f in the sense that

μ f (t)

Volg(�)
= μ f ∗(t)

Volg0(�∗)
(23)

for each t ∈ R. This equation essentially says that f and f ∗ have the same size. For
instance, multiplying both sides by pt p−1 and integrating from 0 to ess sup

�

f yields

1

Volg(�)

∫
�

f p dVg = 1

Volg0(�∗)

∫
�∗

( f ∗)p dVg0 , 1 ≤ p < ∞. (24)

When the lower Ricci curvature bound satisfies K > 0, we shall consider a sec-
ond spherical symmetrization defined on S

d
(

1√
K

)
. With f ∈ L1(�) as above, we

similarly fix a pole x1 ∈ S
d
(

1√
K

)
and define

f ∗∗(x) = f #

⎛
⎝ Volg(M)

Volg1
(
Sd
(

1√
K

))Volg1 (B(r))

⎞
⎠ , (25)

where B(r) denotes the geodesic ball in S
d
(

1√
K

)
centered at x1 of radius r =

distg1(x, x1). Formulas analogous to (23) and (24) also hold for the symmetrization
f ∗∗.
Before proceeding to our main results, we pause to explain our consideration of

two spheres in the case of positive Ricci curvature. Here, our comparison results for
solutions to PDE (Theorem 3.4), moment spectra (Theorem 1.2), and eigenvalues
(Corollary 3.5) compare geometric data on M with geometric data on both S

d(R)

and S
d
(

1√
K

)
; the comparison with S

d(R) is always stronger. However, we include
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the comparison with S
d
(

1√
K

)
because there, we are able to handle sharp cases of

equality.

3 Main Results

We start by collecting some basic facts about the moment spectrum on complete
Riemannian manifolds.

Theorem 3.1 Let M be a complete Riemannian manifold and � ⊆ M a smoothly
bounded precompact domain. Then the moment spectrum Tn(�) determines spec∗(�)

and the volume partition {a2ν }ν∈spec∗(�). More precisely, for two successive elements
νk, νk+1 ∈ spec∗(�), we have

1

νk
= lim

n→∞

⎡
⎢⎢⎣Tn(�)

n! −
∑

ν∈spec∗(�)
ν<νk

a2ν

(
1

ν

)n
⎤
⎥⎥⎦

1
n

and

νk

νk+1
= lim

n→∞

⎡
⎢⎢⎣νnk

⎛
⎜⎜⎝Tn(�)

n! −
∑

ν∈spec∗(�)
ν<νk

a2ν

(
1

ν

)n
⎞
⎟⎟⎠− aνk

⎤
⎥⎥⎦

1
n

.

In particular, since νk
νk+1

< 1, we have

aνk = lim
n→∞ νnk

⎛
⎜⎜⎝Tn(�)

n! −
∑

ν∈spec∗(�)
ν<νk

a2ν

(
1

ν

)n
⎞
⎟⎟⎠ .

Proof By (15) the a2ν are bounded, say a2ν ≤ N for ν ∈ spec∗(�). We therefore have

a
2
n
ν1

1

ν1
≤
⎛
⎝ ∑

ν∈spec∗(�)

a2ν

(
1

ν

)n⎞⎠
1
n

≤ N
1
n

⎛
⎝ ∑

ν∈spec∗(�)

(
1

ν

)n⎞⎠
1
n

. (26)

Since

lim
n→∞

⎛
⎝ ∑

ν∈spec∗(�)

(
1

ν

)n⎞⎠
1
n

= sup
ν∈spec∗(�)

1

ν
= 1

ν1
,
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letting n → ∞ in (26) and combining with (16) and (17) yields

lim
n→∞

(
Tn(�)

n!
) 1

n = 1

ν1
.

We conclude that ν1 is determined by the moment spectrum, and so too is

νn1 ζ(n) = νn1Tn(�)

n! = a2ν1 +
∑

ν∈spec∗(�)
ν>ν1

a2ν
(ν1

ν

)n
.

Arguing as above, we conclude

lim
n→∞

(
νn1 Tn(�)

n! − a2ν1

) 1
n = ν1

ν2
.

Since ν1
ν2

< 1, we deduce

lim
n→∞

νn1 Tn(�)

n! = a2ν1 ,

showing that a2ν1 is determined by the moment spectrum. Having established that both
ν1 and a2ν1 are determined by the moment spectrum, the same holds true for

ζ(n) − a2ν1

(
1

ν1

)n
=
∑

ν∈spec∗(�)
ν>ν1

a2ν

(
1

ν

)n
.

Arguing exactly as above, we deduce that

lim
n→∞

[
Tn(�)

n! − a2ν1

(
1

ν1

)n] 1n
= 1

ν2
.

We likewise deduce

lim
n→∞

[
νn2

(
Tn(�)

n! − a2ν1

(
1

ν1

)n)
− a2ν2

] 1
n

= ν2

ν3

and

lim
n→∞ νn2

(
Tn(�)

n! − a2ν1

(
1

ν1

)n)
= a2ν2 .

We conclude that ν2 and a2ν2 are determined by the moment spectrum. The general
claims and formulas follow by iterating this argument. 
�
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An immediate consequence of Theorem 3.1 is (see also [19]):

Corollary 3.2 The moment spectrum determines heat content.

Proof This follows immediately from (14). 
�
We next establish the estimate of Theorem 1.1:

Proof of Theorem 1.1 Replacing λn by the lowest equivalent eigenvalue, we may
assume λn−1 < λn . Let v1, v2, . . . , vn−1 denote a corresponding set of orthonormal
eigenfunctions for the eigenvalues λ1, λ2, . . . , λn−1. Define

u = uk −
n−1∑
j=1

(uk, v j )v j ,

where uk solves (18) and (·, ·) denotes the standard inner product on L2(�). Using u
as a trial function in the Rayleigh quotient for λn , we deduce

λn ≤

∫
�

|∇u|2 dVg∫
�

u2 dVg

=

∫
�

|∇uk |2 dVg −
n−1∑
j=1

λ j (uk, v j )
2

∫
�

u2k dVg −
n−1∑
j=1

(uk, v j )
2

. (27)

To simplify the numerator, we integrate by parts:

∫
�

|∇uk |2 dVg = −
∫

�

uk�uk dVg

= k
∫

�

ukuk−1 dVg

= − k

k + 1

∫
�

�uk+1uk−1 dVg

= − k

k + 1

∫
�

uk+1�uk−1 dVg

= k(k − 1)

k + 1

∫
�

uk+1uk−2 dVg.

Iterating this process, we see

∫
�

|∇uk |2 dVg = (k!)2
(2k − 1)!T2k−1(�). (28)

To further simplify (27), we compute
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∫
�

ukv j dVg = − 1

λ j

∫
�

uk�v j dVg

= − 1

λ j

∫
�

�ukv j dVg

= k

λ j

∫
�

uk−1v j dVg.

Iterating this argument gives

∫
�

ukv j dVg = k!
λkj

∫
�

v j dVg. (29)

Fix an eigenvalue ν from λ1, λ2, . . . , λn−1 and let proj Eν1 denote the orthogonal
projection of the constant function 1 onto the eigenspace Eν . We then have

proj Eν1 =
n−1∑
j=1

λ j=ν

(1, v j )v j .

It follows from (29) that

n−1∑
j=1

λ j=ν

(uk, v j )
2 =
(
k!
νk

)2 n−1∑
j=1

λ j=ν

(1, v j )
2

=
(
k!
νk

)2 ∫
�

(
proj Eν1

)2 dVg. (30)

We finally simplify the remaining term in the denominator of (27):

∫
�

u2k dVg = − 1

k + 1

∫
�

�uk+1uk dVg

= − 1

k + 1

∫
�

uk+1�uk dVg

= k

k + 1

∫
�

uk+1uk−1 dVg,

and repeated application of this argument yields

∫
�

u2k dVg = (k!)2
(2k)!T2k(�). (31)

The claimed inequality (3) follows by using (28), (30), and (31) in (27) and using the
definition of a2ν .
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To establish the equality claim, assume λn = νm ∈ spec∗(�). We use (16) and
(17), keeping only the first term of the denominator to estimate

T2k−1(�)

(2k − 1)! −
∑

ν∈spec∗(�)
ν<λn

a2ν

(
1

ν

)2k−1

T2k(�)

(2k)! −
∑

ν∈spec∗(�)
ν<λn

a2ν

(
1

ν

)2k =

∑
ν∈spec∗(�)

ν≥λn

a2ν

(
1

ν

)2k−1

∑
ν∈spec∗(�)

ν≥λn

a2ν

(
1

ν

)2k

≤ λn

∑
ν∈spec∗(�)

ν≥λn

a2ν

(
1

ν

)2k−1

a2λn

(
1
λn

)2k−1 . (32)

We further estimate

λn

∑
ν∈spec∗(�)

ν≥λn

a2ν

(
1

ν

)2k−1

a2λn

(
1
λn

)2k−1 = λn

⎛
⎜⎜⎝1 + 1

a2λn

∑
ν∈spec∗(�)

ν>λn

a2ν

(
λn

ν

)2k−1

⎞
⎟⎟⎠

≤ λn

⎛
⎜⎜⎝1 + 1

a2λn

(
λn

νm+1

)2k−1 ∑
ν∈spec∗(�)

ν>λn

a2ν

⎞
⎟⎟⎠

≤ λn

(
1 + Volg(�)

a2λn

(
λn

νm+1

)2k−1
)

, (33)

where the last inequality follows from (15). Letting k → ∞ and combining (3), (32),
and (33) gives the result. 
�

The techniques used to prove Theorem 1.1 can also be used to establish estimates
for the moment spectrum in terms of the manifold’s Cheeger constant. Recall that for
compact manifolds M , the Cheeger constant C is defined by

C = inf
�

Surfg(∂�)

min{Volg(�),Volg(M \ �)} ,

where the inf ranges over all smoothly bounded domains in M .
For the next result (and the remainder of the paper), we shall make use of the

following shorthand notation for functions u : � → R:
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{u > t} = {x ∈ � : u(x) > t},
{u = t} = {x ∈ � : u(x) = t}.

We have the following estimate:

Theorem 3.3 Let M be a connected compact Riemannian manifold with � ⊆ M a
smoothly bounded domain. If Volg(�) ≤ 1

2Volg(M), then

C2 ≤ Volg(�)
(k!)2

(2k − 1)!
T2k−1(�)

Tk(�)2
.

Proof Our argument follows [7]. By definition, with uk as in (18),

Tk(�) =
∫

�

uk dVg =
∫ ∞

0
μuk (t) dt. (34)

From our assumption on the volume of �, we see μuk (t) ≤ 1
2Volg(M). Moreover,

because uk is smooth, it follows from Sard’s Theorem that

∂{uk > t} = {uk = t}

for almost every t ≥ 0. For such t , it follows that

Surfg({uk = t}) ≥ Cμuk (t),

where C is the Cheeger constant. Invoking the coarea formula and Cauchy–Schwarz,
(34) becomes

Tk(�) ≤ 1

C

∫ ∞

0
Surfg({uk = t}) dt

= 1

C

∫
�

|∇uk | dVg

≤ Volg(�)
1
2

C

(∫
�

|∇uk |2 dVg
) 1

2

. (35)

The argument used in the proof of Theorem 1.1 gives

∫
�

|∇uk |2 dVg = (k!)2
(2k − 1)!T2k−1(�).

Substituting this equality into (35) gives the result. 
�
We now turn our attention to estimates that involve lower Ricci curvature bounds.

Before proceeding, the reader may find it useful to review the definitions and notation
introduced in Sect. 2.2. Our first result is the following PDE comparison principle:
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Theorem 3.4 Let M, �, Sd(R), �∗, Sd
(

1√
K

)
, and �∗∗ be as in Theorem 1.2. Let

f ≥ 0 be a continuous function on � and assume u and v are smooth solutions of the
Poisson problems

−�gu = f in �, u = 0 on ∂�,

and

−�g0v = f ∗ in �∗, v = 0 on ∂�∗,

where f ∗ denotes the spherical symmetrization of f as defined by (22). Then u∗ ≤ v

in �∗.
Moreover, if K > 0 and w is a smooth solution to the Poisson problem

−�g1w = f ∗∗ in �∗∗, w = 0 on ∂�∗∗,

with f ∗∗ the spherical symmetrization of f defined by (25), then u∗∗ ≤ w. If u∗∗ = w,

then M is isometric to the sphere S
d
(

1√
K

)
and � is isometric to an appropriate

geodesic ball in Sd
(

1√
K

)
.

Proof We first claim v = v∗. Denote

sR(t) = R sin

(
t

R

)

and observe that v solves the ODE

−�g0v = −s1−d
R (r)

∂

∂r

(
sd−1
R (r)

∂v

∂r

)
= f ∗(r), ∂v

∂r
(0) = v(R0) = 0,

where R0 denotes the radius of the geodesic ball �∗. Writing

F(w) =
∫ w

0
f #(z) dz,

it follows that

v(r) =
∫ R0

r
s1−d
R (τ )

∫ τ

0
sd−1
R (ξ) f ∗(ξ) dξ dτ

= Volg0(S
d(R))

βd−1Volg(M)

∫ R0

r
s1−d
R (τ )F

(
Volg(M)

Volg0(Sd(R))
Volg0(B(τ ))

)
dτ, (36)

where βd−1 denotes the surface measure of the unit (d − 1)-sphere and B(τ ) denotes
a geodesic ball in S

d(R) of radius τ . From this representation for v, it follows that
∂v
∂r ≤ 0 since 0 ≤ f , and so v = v∗.
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Define a function r(t) using the equality of sets

{u > t}∗ = {v > r(t)}, (37)

and observe that r(t) is strictly increasing on (0, ess sup
�

u). As in the proof of Theorem

3.3, it follows from Sard’s Theorem that

∂{u > t} = {u = t}

for almost every t ≥ 0 (and similarly for v). By the same result, the following integrals
involving the gradient arewell-defined for almost every t ≥ 0. FromCauchy–Schwarz,

∫
{u=t}

1

|∇u| dSg ≥
(
Surfg({u = t}))2∫

{u=t} |∇u| dSg . (38)

The Divergence Theorem and (24) give

∫
{u=t}

|∇u| dSg =
∫

{u>t}
f dVg

= Volg({u > t})
Volg0({v > r(t)})

∫
{v>r(t)}

( f
∣∣{u>t})

∗ dVg0

≤ Volg({u > t})
Volg0({v > r(t)})

∫
{v>r(t)}

f ∗ dVg0

= Volg({u > t})
Volg0({v > r(t)})

∫
{v=r(t)}

|∇v| dSg0 ,

and combining with (38), we have

∫
{u=t}

1

|∇u| dSg ≥
(
Surfg({u = t}))2
Volg({u > t})

Volg0({v > r(t)})(
Surfg0({v = r(t)}))2

∫
{v=r(t)}

1

|∇v| dSg0

≥ Volg(M)

Volg0(Sd(R))

∫
{v=r(t)}

1

|∇v| dSg0 . (39)

The first inequality follows since |∇v| is constant on {v = r(t)} and the second
inequality follows from Theorem 2.1. On the other hand, combining (37) with the
coarea formula, we see

∫ ∞

t

∫
{u=s}

1

|∇u| dSg ds = Volg(M)

Volg0(Sd(R))

∫ ∞

r(t)

∫
{v=s}

1

|∇v| dSg0 ds.

Differentiating both sides with respect to t gives

∫
{u=t}

1

|∇u| dSg = r ′(t)
Volg(M)

Volg0(Sd(R))

∫
{v=r(t)}

1

|∇v| dSg0 ,

123



Comparison Results, Exit Time Moments, and Eigenvalues 3923

and combining with (39) we find r ′(t) ≥ 1. Since r(0) = 0, we have r(t) ≥ t which
implies

μu(t) ≤ Volg(M)

Volg0(Sd(R))
μv(t).

Using the definition of spherical symmetrization, we immediately deduce u∗ ≤ v∗,
and having already established that v∗ = v, the claimed inequality follows.

For the remainder of the proof, we assume K > 0. Since S
d
(

1√
K

)
obeys an

isoperimetric inequality (21), all of our work above still holds if we replace R by 1√
K
,

v by w, g0 by g1, and ∗ by ∗∗. In particular, u∗∗ ≤ w. For the case of equality, we
adapt the techniques of Kesavan [15]. If u∗∗ = w, it follows that

μu(t) = Volg(M)

Volg1
(
Sd
(

1√
K

))μw(t) (40)

for each t ≥ 0. Using the coarea formula and Cauchy–Schwarz, for almost every t ≥ 0
we have

(
Surfg({u = t}))2 =

(
d

dt

∫
{u>t}

|∇u| dVg
)2

≤ −μ′
u(t)
∫

{u>t}
f dVg

≤ −μ′
u(t)F (μu(t)) . (41)

Returning our attention to (36), for each t ∈ [0, ess sup
�∗∗

w] let ρ(t) satisfy

t =
Volg1
(
S
d
(

1√
K

))

βd−1Volg(M)

∫ R1

ρ(t)
s1−d

1√
K

(τ )F

⎛
⎝ Volg(M)

Volg1
(
Sd
(

1√
K

))Volg1(B(τ ))

⎞
⎠ dτ,

(42)
where R1 denotes the radius of the geodesic ball �∗∗ and B(τ ) denotes a geodesic

ball in Sd
(

1√
K

)
of radius τ . Differentiating both sides with respect to t gives

1 = −
Volg1
(
S
d
(

1√
K

))

βd−1Volg(M)
s1−d

1√
K

(ρ(t))F

⎛
⎝ Volg(M)

Volg1
(
Sd
(

1√
K

))Volg1(B(ρ(t)))

⎞
⎠ ρ′(t).

(43)
Unless f = 0, w is strictly decreasing in r , and so it follows from (42) that

{w > t} = B(ρ(t)). (44)
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Using polar coordinates, we see

μw(t) = βd−1

(
1√
K

)d ∫ √
Kρ(t)

0
sind−1 θ dθ,

and differentiation yields

μ′
w(t) = βd−1

(
1√
K

)d−1

sind−1
(√

Kρ(t)
)

ρ′(t)

= βd−1s
d−1
1√
K

(ρ(t))ρ′(t). (45)

Combining (40), (43), (44), and (45), we see

F (μu(t)) μ′
u(t) = −

⎛
⎝ βd−1Volg(M)

Volg1
(
Sd
(

1√
K

)) sd−1
1√
K

(ρ(t))

⎞
⎠

2

,

and combining with (41), we obtain

Surfg({u = t})
Volg(M)

≤
βd−1s

d−1
1√
K

(ρ(t))

Volg1
(
Sd
(

1√
K

)) . (46)

On the other hand, since u∗∗ = w, it follows from (44) that {u > t}∗∗ is a geodesic

ball in Sd
(

1√
K

)
of radius ρ(t). Hence ∂{u > t}∗∗ is a (d − 1)-dimensional sphere of

radius 1√
K
sin
(√

Kρ(t)
)
. From Theorem 2.1, we therefore have

βd−1s
d−1
1√
K

(ρ(t))

Volg1
(
Sd
(

1√
K

)) ≤ Surfg({u = t})
Volg(M)

.

Combining this inequality with (46), we deduce that for almost every t ≥ 0, the set
{u > t} achieves equality in Theorem 2.1 and is therefore isometric to a geodesic

ball in S
d
(

1√
K

)
. Let tn denote a strictly decreasing sequence of such t-values with

tn → 0 and suppose � : M → S
d
(

1√
K

)
is an isometry as guaranteed by Theorem

2.1. Observe that

�(�) = �({u > 0}) =
∞⋃
n=1

�({u > tn})

expresses �(�) as a nested union of geodesic balls in Sd
(

1√
K

)
, and so we conclude

that �(�) is a geodesic ball. 
�
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We next use Theorem 3.4 to establish a comparison result for moment spectra.

Proof of Theorem 1.2 For the case n = 1, let u1 be the solution to the Poisson PDE

−�gu1 = 1 in �, u1 = 0 on ∂�,

and let v1 solve the symmetrized PDE

−�g0v1 = 1 in �∗, v1 = 0 on ∂�∗.

Then u∗
1 ≤ v1 by Theorem 3.4, and combining with (24), it follows that

T1(�)

Volg(�)
= 1

Volg0(�∗)

∫
�∗

u∗
1 dVg ≤ 1

Volg0(�∗)

∫
�∗

v1 dVg0 = T1(�∗)
Volg0(�∗)

.

For the case n = 2, let u2 solve

−�gu2 = 2u1 in �, u2 = 0 on ∂�,

let w2 solve

−�g0w2 = 2u∗
1 in �∗, w2 = 0 on ∂�∗,

and let v2 solve

−�g0v2 = 2v1 in �∗, v2 = 0 on ∂�∗.

Since u∗
1 ≤ v1, the Maximum Principle gives w2 ≤ v2. Applying Theorem 3.4 and

(24) once again, we see

T2(�)

Volg(�)
= 1

Volg0(�∗)

∫
�∗

u∗
2 dVg0

≤ 1

Volg0(�∗)

∫
�∗

w2 dVg0

≤ 1

Volg0(�∗)

∫
�∗

v2 dVg0

= T2(�∗)
Volg0(�∗)

.

Inequality (4) follows by iterating the above argument repeatedly.
To establish (5) observe that our work above still holds if we replace R by 1√

K
, g0

by g1, and ∗ by ∗∗. If for some index n we have equality in (5), then u∗∗
n = vn , where

un and vn come from the appropriate Poisson hierarchy (18). The result now follows
from the equality case of Theorem 3.4. 
�

We finally establish the following Faber–Krahn inequality (see also [2]):
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Corollary 3.5 Let M, �, Sd(R), �∗, Sd
(

1√
K

)
, and �∗∗ be as in Theorem 1.2. Then

the lowest Dirichlet eigenvalues satisfy

λ1(�
∗) ≤ λ1(�).

Moreover, if K > 0, we also have

λ1(�
∗∗) ≤ λ1(�),

and if equality holds, M is isometric to Sd
(

1√
K

)
and� is isometric to an appropriate

geodesic ball in Sd
(

1√
K

)
.

Proof Since any non-trivial eigenfunction forλ1(�) has a sign, it follows that ν1(�) =
λ1(�). Combining Theorems 1.2 and 3.1, we see

1

λ1(�)
= lim

n→∞

(
Tn(�)

n!
) 1

n ≤ lim
n→∞

(
Tn(�∗)

n!
Volg(�)

Volg0(�∗)

) 1
n = 1

λ1(�∗)
.

The proof that λ1(�∗∗) ≤ λ1(�) uses the same argument, invoking (5) instead of (4).
To establish the equality claim, we again adapt the argument of Kesavan [15].

Assume λ1(�) = λ1(�
∗∗), and let u be a L2-normalized solution to the eigenvalue

problem

−�gu = λ1(�)u in �, u = 0 on ∂�.

Let w solve the symmetrized problem

− �g1w = λ1(�)u∗∗ in �∗∗, w = 0 on ∂�∗∗. (47)

Using w as a trial function in the variational characterization for λ1(�
∗∗), we see

λ1(�
∗∗) ≤

∫
�∗∗ |∇w|2 dVg1∫

�∗∗ w2 dVg1
.

On the other hand, from Theorem 3.4 we see u∗∗ ≤ w, and so integration by parts
gives

∫
�∗∗

|∇w|2 dVg0 = λ1(�)

∫
�∗∗

wu∗∗ dVg1

≤ λ1(�)

∫
�∗∗

w2 dVg1 .

Since λ1(�) = λ1(�
∗∗), we deduce that w minimizes the Rayleigh quotient for

λ1(�
∗∗) and is therefore a corresponding eigenfunction. It then follows from (47) that

u∗∗ = w. The equality claim now follows from Theorem 3.4. 
�
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