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Abstract We explore to what extent one may hope to preserve geometric properties
of three-dimensional manifolds with lower scalar curvature bounds under Gromov–
Hausdorff and Intrinsic Flat limits. We introduce a new construction, called sewing,
of three-dimensional manifolds that preserves positive scalar curvature. We then use
sewing to produce sequences of such manifolds which converge to spaces that fail to
have nonnegative scalar curvature in a standard generalized sense. Since the notion
of nonnegative scalar curvature is not strong enough to persist alone, we propose that
one pair a lower scalar curvature bound with a lower bound on the area of a closed
minimal surface when taking sequences as this will exclude the possibility of sewing
of manifolds.
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1 Introduction

In this paper, we study three-dimensional manifolds with positive scalar curvature.
The scalar curvature of a Riemannian manifold is the average of the Ricci curvatures
which in turn is the average of the sectional curvatures. It can be determined more
simply by taking the following limit:

Scal(p) = lim
r→0

30
VolE3(B(0, r)) − VolM3(B(p, r))

r2 VolE3(B(0, r))
, (1)

where VolE3(B(0, r)) = (4/3)πr3 and VolM3(B(p, r)) is the Hausdorff measure of
the ball about p of radius r in our manifold, M3.

In [16], Gromov asks the following pair of deliberately vague questions which
we paraphrase here: Given a class of Riemannian manifolds, B, what is the weakest
notion of convergence such that a sequence of manifolds, M j ∈ B, subconverges to
a limit M∞ ∈ B where now we will expand B to include singular metric spaces?
What is this generalized class of singular metrics spaces that should be included
in B? Gromov points out that when B is the class of Riemannian manifolds with
nonnegative sectional curvature then the “best known” answer to this question is
Gromov–Hausdorff convergence and the singular limit spaces are then Alexandrov
spaces with nonnegative Alexandrov curvature. When B is the class of Riemannian
manifolds with nonnegative Ricci curvature, one uses Gromov–Hausdorff and metric
measure convergence to obtain limits which are metric measure spaces with general-
ized nonnegative Ricci curvature as in work of Cheeger–Colding [8]. Work towards
defining classes of singular metric measure spaces with generalized notions of non-
negative Ricci has been completed byAmbrosio-Gigli-Savare, Lott-Villani, Sturm and
others [1,21,28].

Gromov then writes that “the most tantalizing relation B is expressed with the
scalar curvature by Scal ≥ k” [16]. Bamler [4] and Gromov [15] have proven that
under C0 convergence to smooth Riemannian limits Scal ≥ 0 is preserved. In order
to find the weakest notion of convergence which preserves Scal ≥ 0 in some sense,
Gromov has suggested that one might investigate intrinsic flat convergence [16]. The
intrinsic flat distance was first defined in work of the third author with Wenger [31],
who also proved that for noncollapsing sequences of manifolds with nonnegative
Ricci curvature, intrinsic flat limits agree with Gromov–Hausdorff and metric mea-
sure limits [30]. Intrinsic flat convergence is a weaker notion of convergence in the
sense that there are sequences of manifolds with no Gromov–Hausdorff limit that have
intrinsic flat limits, including Ilmanen’s example of a sequence of three spheres with
positive scalar curvature [31]. The third author has investigated intrinsic flat limits
of manifolds with nonnegative scalar curvature under additional conditions with Lee,
Huang, LeFloch and Stavrov [17,19,20,27]. These papers support Gromov’s sugges-
tion in the sense that the limits obtained in these papers have generalized nonnegative
scalar curvature.

Here we construct a sequence of Riemannian manifolds, M3
j , with positive scalar

curvature that converges in the intrinsic flat, metric measure and Gromov–Hausdorff
sense to a singular limit space, Y , which fails to satisfy (1) [Example 6.1]. In fact, the
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Sewing Riemannian Manifolds with Positive Scalar Curvature 3555

limit space is a sphere with a pulled thread:

Y = S
3/ ∼ where a ∼ b iff a, b ∈ C, (2)

where C is one geodesic in S
3 (see Sect. 4). The scalar curvature about the point

p0 = [C(t)] formed from the pulled thread is computed in Lemma 6.3 to be

lim
r→0

VolE3(B(0, r)) − VolM3(B(p, r))

r2 VolE3(B(0, r))
= −∞. (3)

In this sense, the limit space does not have generalized nonnegative scalar curvature.
We construct our sequence using a newmethod we call sewing developed in Propo-

sitions 3.1–3.3. Before we can sew the manifolds, the first two authors construct short
tunnels between points in the manifolds building on prior work of Gromov–Lawson
[12] and Schoen–Yau [32]. The details of this construction are in the Appendix. In
a subsequent paper [7], we will extend this sewing technique to also provide exam-
ples whose limit spaces fail to satisfy the Scalar Torus Rigidity Theorem [12,32] and
the Positive Mass Rigidity Theorem [33]. These examples, all constructed using the
sewing techniques developed in this paper, demonstrate that Gromov–Hausdorff and
Intrinsic Flat limit spaces of noncollapsing sequences ofmanifolds with positive scalar
curvature may fail to satisfy key properties of nonnegative scalar curvature.

In light of these counter examples and the aforementioned positive results towards
Gromov’s conjecture, the third author has suggested in [26] to adapt the classB. There
it is proposed that the initial class of smooth Riemannian manifolds in B should have
nonnegative scalar curvature, a uniform lower bound on volume (as assumed implicitly
by Gromov), and also a uniform lower bound on the minimal area of a closed minimal
surface in the manifold, MinA(M). The sequences of M3

j we construct using our new
sewing methods have positive scalar curvature and a uniform lower bound on volume,
butMinA(M j ) → 0. Intuitive reasons as to why a uniform lower bound onMinA(M j )

is a natural condition are described in [26] alongwith a collection of related conjectures
and open problems. Here we will simply propose the following possible revision of
Gromov’s vague conjecture:

Conjecture 1.1 Suppose a sequence of Riemannian manifolds, M3
j , have

Scal j ≥ 0,Vol(M j ) ≥ V0 > 0, and MinA(M j ) ≥ A0 > 0, (4)

and the sequence converges in the intrinsic flat sense, M j
F−→ M∞.

Then at every point p ∈ M∞ we have

lim
r→0

VolE3(B(0, r)) − VolY (B(p, r))

r2 VolE3(B(0, r))
≥ 0. (5)

This paper is part of the work towards Jorge Basilio’s doctoral dissertation at the
CUNYGraduate Center conducted under the advisement of Professors Józef Dodziuk
and Christina Sormani. We would like to thank Jeff Jauregui, Marcus Khuri, Sajjad
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Fig. 1 The tunnel

Lakzian, DanLee, Raquel Perales, Conrad Plaut, andCatherine Searle for their interest
in this work.

2 Background

In this section, we first briefly review Gromov–Lawson and Schoen–Yau’s work. We
then reviewGromov–Hausdorff, MetricMeasure, and Intrinsic Flat Convergence cov-
ering the key definitions as well as theorems applied in this paper to prove our example
converges with respect to all three notions of convergence.

2.1 Gluing Gromov–Lawson and Schoen–Yau Tunnels

Using different techniques, Gromov–Lawson and Schoen–Yau described how to con-
struct tunnels diffeomorphic to S

2 × [0, 1] with metric tensors of positive scalar
curvature that can be glued smoothly into three-dimensional spheres of constant sec-
tional curvature [12,32]. See Fig. 1. These tunnels are the first crucial piece for our
construction.

Here we need to explicitly estimate the volume and diameter of these tunnels. So
the first and second authors prove the following lemma in the appendix.

Lemma 2.1 Let 0 < δ/2 < 1. Given a complete Riemannian manifold, M3, that con-
tains two balls B(pi , δ/2) ⊂ M3, i = 1, 2, with constant positive sectional curvature
K ∈ (0, 1] on the balls, and given any ε > 0, there exists a δ0 > 0 sufficiently small
so that we may create a new complete Riemannian manifold, N 3, in which we remove
two balls and glue in a cylindrical region, U, between them:

N 3 = M3 \ (B(p1, δ/2) ∪ B(p2, δ/2)) 	 U, (6)

where U = U (δ0) has a metric of positive scalar curvature (See Fig. 1) with

Diam(U ) ≤ h = h(δ), (7)

where
h(δ) = O(δ), (8)

hence,
lim
δ→0

h(δ) = 0 uniformly for K ∈ (0, 1]. (9)
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The collars Ci = B(pi , δ/2)\B(pi , δ0) identified with subsets of N 3 have the origi-
nal metric of constant curvature and the tunnel U ′ = U\(C1∪C2)has arbitrarily small
diameter O(δ0) and volume O(δ30). Therefore with appropriate choice of δ0, we have

(1 − ε)2Vol(B(p, δ/2)) ≤ Vol(U ) ≤ (1 + ε)2Vol(B(p, δ/2)) (10)

and
(1 − ε)Vol(M) ≤ Vol(N ) ≤ (1 + ε)Vol(M). (11)

Wenote that if M3 has positive scalar curvature then sodoes N 3 and that, after insert-
ing the tunnel, ∂ B(p1, δ/2) and ∂ B(p2, δ/2) are arbitrarily close together because of
(9). Note that we have restricted to three dimensions here and required constant sec-
tional curvature on the balls for simplicity. The first two authors will generalize these
conditions in future work. This lemma suffices for proving all the examples in this
paper.

2.2 Review GH Convergence

Gromov introduced the Gromov–Hausdorff distance in [14].
First recall that ϕ : X → Y is distance preserving iff

dY (ϕ(x1), ϕ(x2)) = dX (x1, x2) ∀x1, x2 ∈ X. (12)

This is referred to as a metric isometric embedding in [19] and is distinct from a
Riemannian isometric embedding.

Definition 2.2 (Gromov) The Gromov–Hausdorff distance between two compact
metric spaces (X, dX ) and (Y, dY ) is defined as

dG H (X, Y ) := inf d Z
H (ϕ (X) , ψ (Y )) , (13)

where Z is a complete metric space, and ϕ : X → Z and ψ : Y → Z are distance
preserving maps and where the Hausdorff distance in Z is defined as

d Z
H (A, B) = inf{ε > 0 : A ⊂ Tε (B) and B ⊂ Tε (A)}. (14)

Gromov proved that this is indeed a distance on compact metric spaces:
dG H (X, Y ) = 0 iff there is an isometry between X and Y . When studying metric
spaces which are only precompact, one may take their metric completions before
studying the Gromov–Hausdorff distance between them.

We write
X j

GH−→ X∞ iff dG H (X j , X∞) → 0. (15)

Gromov proved that if X j
GH−→ X∞ then there is a common compact metric space Z

and distance preserving maps ϕ j : X j → Z such that

d Z
H (ϕ j (X j ), ϕ∞(X∞)) → 0. (16)
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We say p j ∈ X j converges to p∞ ∈ X∞ if there is such a set of maps such that ϕ j (p j )

converges to ϕ∞(p∞) as points in Z . These limits are not uniquely defined but they
are useful and every point in the limit space is a limit of such a sequence in this sense.

Theorem 2.3 (Gromov) Suppose ε j → 0. If a sequence of metric spaces (X j , d j )

have ε j almost isometries
Fj : X j → X∞ (17)

such that
|d∞(Fj (p), Fj (q)) − d j (p, q)| ≤ ε j ∀p, q ∈ X j (18)

and
X∞ ⊂ Tε j (Fj (X j )) (19)

then
X j

GH−→ X∞. (20)

Note that p j ∈ X j converges to p∞ ∈ X∞ if Fj (p j ) → p∞ ∈ X∞.
Gromov’s Compactness Theorem states that a sequence of manifolds with non-

negative Ricci (or Sectional) Curvature, and a uniform upper bound on diameter, has
a subsequence which converges in the Gromov–Hausdorff sense to a geodesic met-
ric space [14]. If a sequence of manifolds has nonnegative sectional curvature, then
they satisfy the Toponogov Triangle Comparison Theorem. Taking the limits of the
points in the triangles, one sees that the Gromov–Hausdorff limit of the sequence also
satisfies the triangle comparison. Thus the limit spaces are Alexandrov spaces with
nonnegative Alexandrov curvature (cf. [5]).

2.3 Review of Metric Measure Convergence

Fukaya introduced the notion ofmetricmeasure convergence ofmetricmeasure spaces
(X j , d j , μ j ) in [10]. He assumed the sequence converged in the Gromov–Hausdorff
sense as in (16) and then required that the push forwards of the measures converge as
well,

ϕ j∗μ j → ϕ∞∗μ∞ weakly as measures in Z . (21)

Cheeger–Colding proved metric measure convergence of noncollapsing sequences
ofmanifoldswithRicci uniformly bounded below in [8]where themeasure on the limit
is the Hausdorff measure. They proved metric measure convergence by constructing
almost isometries and showing the Hausdorff measures of balls about converging
points converge:

If p j → p∞ then Hm(B(p j , r)) → Hm(B(p∞, r)). (22)

They also studied collapsing sequences obtaining metric measure convergence to
other measures on the limit space. Cheeger and Colding applied this metric measure
convergence to prove that limits of manifolds with nonnegative Ricci curvature have
generalized nonnegative Ricci curvature. In particular they prove the limits satisfy the
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Bishop–Gromov Volume Comparison Theorem and the Cheeger–Gromoll Splitting
Theorem.

Sturm, Lott, and Villani then developed the CD(k,n) notion of generalized Ricci
curvature on metric measure spaces in [21,28]. In [29], Sturm extended the study
of metric measure convergence beyond the consideration of sequences of manifolds
which already converge in the Gromov–Hausdorff sense, using the Wasserstein dis-
tance. This is also explored in Villani’s text [34]. CD(k,n) spaces converge in this
sense to CD(k,n) spaces. RCD(k,n) spaces developed by Ambrosio-Gigli-Savare are
also preserved under this convergence [1]. RCD(k,n) spaces are CD(k,n) spaces which
also require that the tangent cones almost everywhere are Hilbertian. There has been
significant work studying both of these classes of spaces proving they satisfy many of
the properties of Riemannian manifolds with lower bounds on their Ricci curvature.

2.4 Review of Integral Current Spaces

The Intrinsic Flat Distance is defined and studied in [31] by applying sophisticated
ideas of Ambrosio–Kirchheim [2] extending earlier work of Federer–Fleming [9].
Limits of Riemannian manifolds under intrinsic flat convergence are integral current
spaces, a notion introduced by the third author and Stefan Wenger in [31].

Recall that Federer–Fleming first defined the notion of an integral current as an
extension of the notion of a submanifold of Euclidean space [9]. That is a submanifold
ψ : Mm → E

N can be viewed as a current T = ψ#[M] acting on m-forms as follows:

T (ω) = ψ#[M](ω) = [M](ψ∗ω) =
∫

M
ψ∗ω. (23)

If ω = f dπ1 ∧ · · · ∧ dπm then

T (ω) = ψ#[M](ω) =
∫

M
f ◦ ψ d(π1 ◦ ψ) ∧ · · · ∧ d(πm ◦ ψ). (24)

They define boundaries of currents as ∂T (ω) = T (dω) so that then the boundary
of a submanifold with boundary is exactly what it should be. They define integer
rectifiable currents more generally as countable sums of images under Lipschitz maps
of Borel sets. The integral currents are integer rectifiable currents whose boundaries
are integer rectifiable.

Ambrosio–Kirchheim extended the notion of integral currents to arbitrary complete
metric space [2]. As there are no forms on metric spaces, they use deGeorgi’s tuples
of Lipschitz functions,

T ( f, π1, . . . , πm) = ψ#[M]( f, π1, . . . , πm) =
∫

M
f ◦ψ d(π1◦ψ)∧· · ·∧d(πm ◦ψ).

(25)
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This integral is well defined because Lipschitz functions are differentiable almost
everywhere. They define boundary as follows:

∂T ( f, π1, . . . , πm) = T (1, f, π1, . . . , πm) (26)

which matches with

d( f dπ1 ∧ · · · ∧ dπm) = 1 d f ∧ dπ1 ∧ · · · ∧ dπm . (27)

They also define integer rectifiable currents more generally as countable sums of
images under Lipschitz maps of Borel sets. The integral currents are integer rectifiable
currents whose boundaries are integer rectifiable.

The notion of an integral current space was introduced in [31].

Definition 2.4 An m-dimensional integral current space, (X, d, T ), is a metric space,
(X, d)with an integral current structure T ∈ Im

(
X̄

)
where X̄ is the metric completion

of X and set(T) = X. Given an integral current space M = (X, d, T ) we will use
set (M) or X M to denote X , dM = d and [[M]] = T . Note that set (∂T) ⊂ X̄. The
boundary of (X, d, T ) is then the integral current space:

∂ (X, dX , T ) := (
set (∂T) , dX̄, ∂T

)
. (28)

If ∂T = 0 then we say (X, d, T ) is an integral current without boundary.

Acompact-orientedRiemannianmanifoldwith boundary, Mm , is an integral current
space, where X = Mm , d is the standard metric on M and T is integration over M .
In this case M(M) = Vol(M) and ∂ M is the boundary manifold. When M has no
boundary, ∂ M = 0.

Ambrosio–Kirchheim defined the mass M(T ) and the mass measure ||T || of a
current in [2]. We apply the same notions to define a mass for an integral current
space. Applying their theorems we have

M(M) = M(T ) =
∫

X
θT (x)λ(x)dHm(x), (29)

where λ(x) is the area factor and θT is the weight. In particular, λ(x) = 1 when the
tangent cone at x is Euclidean which is true on a Riemannian manifold where the
weight is also 1. This is true almost everywhere in the examples in this paper as well.
The mass measure, ||T ||, is a measure on X and satisfies

||T ||(A) =
∫

A
θT (x)λ(x)dHm(x). (30)

2.5 Review of the Intrinsic Flat Distance

The Intrinsic Flat distance was defined in work of the third author and Stefan Wenger
[31] as a new distance between Riemannian manifolds based upon the Federer–
Fleming flat distance [9] and the Gromov–Hausdorff distance [14].
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Recall that the Federer–Fleming flat distance between m-dimensional integral cur-
rents S, T ∈ Im (Z) is given by

d Z
F (S, T ) := inf{M (U ) + M (V ) : S − T = U + ∂V }, (31)

where U ∈ Im (Z) and V ∈ Im+1 (Z).
In [31], the third author and Wenger imitate Gromov’s definition of the Gromov–

Hausdorff distance (which he called the intrinsic Hausdorff distance) by replaced the
Hausdorff distance by the Flat distance:

Definition 2.5 (Sormani and Wenger [31]) For M1 = (X1, d1, T1) and M2 =
(X2, d2, T2) ∈ Mm let the intrinsic flat distance be defined:

dF (M1, M2) := inf d Z
F (ϕ1#T1, ϕ2#T2) , (32)

where the infimum is taken over all complete metric spaces (Z , d) and distance pre-
serving maps ϕ1 : (

X̄1, d1
) → (Z , d) and ϕ2 : (

X̄2, d2
) → (Z , d) and the flat norm

d Z
F is taken in Z . Here X̄i denotes the metric completion of Xi and di is the extension

of di on X̄i , while ϕ#T denotes the push forward of T .

They then prove that this distance is 0 iff the spaces are isometric with a current
preserving isometry. They say

M j
F−→ M∞ iff dF (M j , M∞) → 0. (33)

And prove that this happens iff there is a complete metric space Z and distance
preserving maps ϕ j : M j → Z such that

d Z
F (ϕ j#Tj , ϕ∞#T∞) → 0. (34)

Note that in contrast to Gromov’s embedding theorem as stated in (16), the Z here is
only complete and not compact.

There is a special integral current space called the zero space,

0 = (∅, 0, 0). (35)

Following the definition above, M j
F−→ 0 iff dF (M j , 0) → 0 which implies there is

a complete metric space Z and distance preserving maps ϕ j : M j → Z such that

d Z
F (ϕ j#Tj , 0) → 0 (36)

Note that in this case the manifolds disappear and points have no limits.
CombiningGromov’sEmbeddingTheoremwithAmbrosio–Kirchheim’sCompact-

ness Theorem one has:
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Theorem 2.6 (Sormani and Wenger [31]) Given a sequence of m-dimensional
integral current spaces M j = (

X j , d j , Tj
)

such that X j are equibounded and
equicompact and with uniform upper bounds on mass and boundary mass. A sub-

sequence converges in the Gromov–Hausdorff sense
(
X ji , d ji

) GH−→ (Y, dY ) and in

the intrinsic flat sense
(
X ji , d ji , Tji

) F−→ (X, d, T ), where either (X, d, T ) is an
m-dimensional integral current space with X ⊂ Y or it is the 0 current space.

Note that in [30], the third author and Wenger prove if the M j have nonnegative
Ricci curvature then in fact the intrinsic flat and Gromov–Hausdorff limits agree.
Matveev and Portegies have extended this to more general lower bounds on Ricci
curvature in [22]. With only lower bounds on scalar curvature the limits need not
agree as seen in the Appendix of [31]. There are also sequences of manifolds with
nonnegative scalar curvature that have no Gromov–Hausdorff limit but do converge
in the intrinsic flat sense (cf. Ilmanen’s example presented in [31] and also [18]).

In [35], Wenger proved that any sequence of Riemannian manifolds with a uniform
upper bound on diameter, volume, and boundary volume has a subsequence which
converges in the intrinsic flat sense to an integral current space (cf. [31]). It is possible
that the limit space is just the 0 space which happens for example when the volumes
of the manifolds converge to 0.

Note that when M j
F−→ M∞ the masses are lower semicontinuous:

lim inf
j→∞ M(M j ) ≥ M(M∞), (37)

where the mass of an integral current space is just the mass of the integral current
structure. The mass is just the volume when M is a Riemannian manifold and can be
computed using (29) otherwise. As there is not equality here, intrinsic flat convergence
does not imply metric measure convergence.

In [23], Portegies has proven that when a sequence converges in the intrinsic flat
sense and in addition M(M j ) is assumed to converge to M(M∞), then the spaces do
converge in the metric measure sense, where the measures are taken to be the mass
measures.

2.6 Useful Lemmas and Theorems Concerning Intrinsic Flat Convergence

The following lemmas, definitions, and theorems appear in work of the third author
[25], although a few (labeled only as c.f. [25]) were used within proofs in older work
of the third author with Wenger [30]. All are proven rigorously in [25].

Lemma 2.7 (c.f. Sormani [25]) A ball in an integral current space, M = (X, d, T ),
with the current restricted from the current structure of the Riemannian manifold is
an integral current space itself,

S (p, r) = (set(T B(p,r)), d, T B (p,r)) (38)
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for almost every r > 0. Furthermore,

B(p, r) ⊂ set(S(p,r)) ⊂ B̄(p, r) ⊂ X. (39)

Lemma 2.8 (c.f. Sormani [25]) When M is a Riemannian manifold with boundary

S (p, r) = (
B̄ (p, r) , d, T B (p, r)

)
(40)

is an integral current space for all r > 0.

Definition 2.9 (c.f. Sormani [25]) If Mi = (Xi , di , Ti )
F−→ M∞ = (X∞, d∞, T∞),

then we say xi ∈ Xi are a converging sequence that converge to x∞ ∈ X̄∞ if there
exists a complete metric space Z and distance preserving maps ϕi : Xi → Z such
that

ϕi#Ti
F−→ ϕ∞#T∞ and ϕi (xi ) → ϕ∞(x∞). (41)

If we say collection of points, {p1,i , p2,i , . . . , pk,i }, converges to a corresponding col-
lection of points, {p1,∞, p2,∞, . . . , pk,∞}, if ϕi (p j,i ) → ϕ∞(p j,∞) for j = 1, . . . , k.

Definition 2.10 (c.f. Sormani [25] ) If Mi = (Xi , di , Ti )
F−→ M∞ = (X∞, d∞, T∞),

then we say xi ∈ Xi are Cauchy if there exists a complete metric space Z and distance
preserving maps ϕi : Mi → Z such that

ϕi#Ti
F−→ ϕ∞#T∞ and ϕi (xi ) → z∞ ∈ Z . (42)

We say the sequence is disappearing if z∞ /∈ ϕ∞(X∞). We say the sequence has no
limit in X̄∞ if z∞ /∈ ϕ∞(X̄∞).

Lemma 2.11 (c.f. Sormani [25]) If a sequence of integral current spaces, Mi =
(Xi , di , Ti ) ∈ Mm

0 , converges to an integral current space, M = (X, d, T ) ∈ Mm
0 ,

in the intrinsic flat sense, then every point x in the limit space X is the limit of points
xi ∈ Mi . In fact, there exists a sequence of maps Fi : X → Xi such that xi = Fi (x)

converges to x and
lim

i→∞ di (Fi (x), Fi (y)) = d(x, y). (43)

Lemma 2.12 (c.f. Sormani [25]) If M j
F−→ M∞ and p j → p∞ ∈ X̄∞, then for

almost every r∞ > 0 there exists a subsequence of M j also denoted M j such that

S(p j , r∞) = (
B̄

(
p j , r∞

)
, d j , Tj B

(
p j , r∞

))
(44)

are integral current spaces for j ∈ {1, 2, . . . ,∞} and we have

S(p j , r∞)
F−→ S(p∞, r∞). (45)
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If p j are Cauchy with no limit in X̄∞ then there exists δ > 0 such that for almost
every r ∈ (0, δ) such that S(p j , r) are integral current spaces for j ∈ {1, 2, . . .} and
we have

S(p j , r)
F−→ 0. (46)

If M j
F−→ 0 then for almost every r and for all sequences p j we have (46).

Theorem 2.13 (c.f. Sormani [25]) Suppose Mi = (Xi , di , Ti ) are integral current
spaces and

Mi
F−→ M∞, (47)

and suppose we have Lipschitz maps into a compact metric space Z,

Fi : Xi → Z with Lip(Fi ) ≤ K , (48)

then a subsequence converges to a Lipschitz map

F∞ : X∞ → Z with Lip(F∞) ≤ K . (49)

More specifically, there exists distance preserving maps of the subsequence, ϕi : Xi →
Z, such that

d Z
F (ϕi#Ti , ϕ∞T∞) → 0 (50)

and for any sequence pi ∈ Xi converging to p ∈ X∞ (i.e., dZ (ϕi (pi ), ϕ∞(p)) → 0),
we have

lim
i→∞ Fi (pi ) = F∞(p∞). (51)

Theorem 2.14 (c.f. Sormani [25]) Suppose Mm
i = (Xi , di , Ti ) are integral current

spaces which converge in the intrinsic flat sense to a nonzero integral current space
Mm∞ = (X∞, d∞, T∞). Suppose there exists r0 > 0 and a sequence pi ∈ Mi such that
for almost every r ∈ (0, r0) we have integral current spaces, S(pi , r), for all i ∈ N

and
lim inf

i→∞ dF (S(pi , r), 0) = h0 > 0. (52)

Then there exists a subsequence, also denoted Mi , such that pi converges to p∞ ∈ X̄∞.

Theorem 2.15 (c.f. Sormani [25]) Let Mi = (Xi , di , Ti ) and M ′
i = (X ′

i , d ′
i , Ti ) be

integral current spaces with

M(Mi ) ≤ V0 and M(∂ Mi ) ≤ A0 (53)

such that
Mi

F−→ M∞ and M ′
i

F−→ M ′∞. (54)

Fix δ > 0. Let Fi : Mi → M ′
i be continuous maps which are isometries on balls of

radius δ:
∀x ∈ Xi , Fi : B̄(x, δ) → B̄(Fi (x), r) is an isometry (55)
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Then, when M∞ �= 0, we have M ′∞ �= 0 and there is a subsequence, also denoted
Fi , which converges to a (surjective) local current preserving isometry.

F∞ : X̄∞ → X̄ ′∞ satisfying (55). (56)

More specifically, there exists distance preserving maps of the subsequence ϕi : Xi →
Z , ϕ′

i : X ′
i → Z ′, such that

d Z
F (ϕi#Ti , ϕ∞T∞) → 0 and d Z ′

F (ϕ′
i#T ′

i , ϕ
′∞T ′∞) → 0 (57)

and for any sequence pi ∈ Xi converging to p ∈ X∞:

lim
i→∞ ϕi (pi ) = ϕ∞(p) ∈ Z (58)

we have
lim

i→∞ ϕ′
i (Fi (pi )) = ϕ′∞(F∞(p∞)) ∈ Z ′. (59)

When M∞ = 0 and Fi are surjective, we have M ′∞ = 0.

3 Sewing Riemannian Manifolds with Positive Scalar Curvature

The main technique we will introduce in this paper is the construction of three-
dimensional manifolds with positive scalar curvature through a process we call
“sewing” which involved gluing a sequence of tunnels along a curve. We apply
Lemma 2.1 which constructs Gromov–Lawson Schoen–Yau tunnels. The lemma is
proven in the Appendix.

3.1 Gluing Tunnels Between Spheres

We begin by gluing tunnels between arbitrary collections of pairs of spheres as in
Fig. 2.

Proposition 3.1 Given a complete Riemannian manifold, M3, and A0 ⊂ M3 a com-
pact subset with an even number of points pi ∈ A0, i = 1, . . . , n, with pairwise
disjoint contractible balls B(pi , δ) which have constant positive sectional curvature
K , for some δ > 0, define Aδ = Tδ(A0) and

A′
δ = Aδ

∖ (
n⋃

i=1

B(pi , δ/2)

)
	

n/2⋃
i=1

Ui , (60)
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Fig. 2 Gluing two spheres with a tunnel

where Ui are the tunnels as in Lemma 2.1 connecting ∂ B(p2 j+1, δ/2) to
∂ B(p2 j+2, δ/2) for j = 0, 1, . . . , n/2−1. Then given any ε > 0, shrinking δ further,
if necessary, we may create a new complete Riemannian manifold, N 3,

N 3 = (M3 \ Aδ) 	 A′
δ (61)

satisfying

(1 − ε)Vol(Aδ) ≤ Vol(A′
δ) ≤ Vol(Aδ)(1 + ε) (62)

and

(1 − ε)Vol(M3) ≤ Vol(N 3) ≤ Vol(M3)(1 + ε). (63)

If, in addition, M3 has nonnegative or positive scalar curvature, then so does N 3.
In fact,

inf
x∈M3

Scalx ≥ min

{
0, inf

x∈N3
Scalx

}
(64)

If ∂ M3 �= ∅, the balls avoid the boundary and ∂ M3 is isometric to ∂ N 3.

Definition 3.2 We say that we have glued the manifold to itself with a tunnel between
the collection of pairs of sphere ∂ B(pi , δ) to ∂ B(pi+1, δ) for i = 1 to n − 1. See
Fig. 2.

Proof For simplicity of notation, set A = Aδ and A′ = A′
δ .

By induction on n and Lemma 2.1, we see that N 3 can be given a metric of positive
scalar curvature whenever M3 has positive scalar curvature.
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Using the fact that the balls are pairwise disjoint and of the same volume, and (10)
from Lemma 2.1, we have the volume of A′ can be estimated:

Vol(A′) = Vol(A) −
n∑

i=1

Vol(B(pi , δ/2)) +
n/2∑
i=1

Vol(Ui )

= Vol(A) + n

2
· (Vol(Ui ) − 2Vol(B(pi , δ/2)))

≤ Vol(A) + n

2
· (2Vol(B(pi , δ/2)) · ε)

= Vol(A) + ε · (n Vol(B(pi , δ/2))) (by (10))

≤ Vol(A) + ε Vol(A)

which yields the right-hand side of (62).
Similarly,

Vol(A′) = Vol(A) −
n∑

i=1

Vol(B(pi , δ/2)) +
n/2∑
i=1

Vol(Ui )

= Vol(A) + n

2
· (Vol(Ui ) − 2Vol(B(pi , δ/2)))

≥ Vol(A) + n

2
· (−2Vol(B(pi , δ/2)) · ε)

= Vol(A) − ε · (n Vol(B(pi , δ/2))) (by (10))

≥ Vol(A) − ε Vol(A)

which yields the left-hand side of (62).
To estimate the volume of N we will use the volume estimates for A′. Using (10)

from Lemma 2.1 again, we have

Vol(N ) = Vol(M) − Vol(A) + Vol(A′)
≤ Vol(M) − Vol(A) + (1 + ε)Vol(A)

= Vol(M) + ε Vol(A) (by (11))

≤ Vol(M) + ε Vol(M),

which yields the right-hand side of (63).
Similarly,

Vol(N ) = Vol(M) − Vol(A) + Vol(A′)
≥ Vol(M) − Vol(A) + (1 − ε)Vol(A)

= Vol(M) − ε Vol(A) (by (11))

≥ Vol(M) − ε Vol(A),

which yields the left-hand side of (63).

123



3568 J. Basilio et al.

Fig. 3 Sewing a manifold through eight balls along a curve

Finally, observe that (64) follows since Lemma 2.1 shows that the tunnels Ui have
positive scalar curvature. �	

3.2 Sewing Along a Curve

We now describe our process we call sewing along a curve, where a sequence of balls
is taken to be located along curve much like holes created when stitching a thread. We
glue a sequence of tunnels to the boundaries of these balls as in Fig. 3. We say that we
have sewn themanifold along the curveC through the given balls. By gluing tunnels in
this precise way, we are able to shrink the diameter of the edited tubular neighborhood
around the curve because travel along the curve can be conducted efficiently through
the tunnels.

Proposition 3.3 Given a complete Riemannian manifold, M3, and A0 ⊂ M3 Rieman-
nian isometric to an embedded curve, C : [0, 1] → S

3
K possibly with C(0) = C(1)

and parametrized proportional to arclength, in a standard sphere of constant sectional
curvature K , define Aa = Ta(A0) as in Proposition 3.1 and assume that Aa is Rie-
mannian isometric to Ta(C) ⊂ S

3
K . Then, given any ε > 0 there exists n sufficiently

large and δ = δ(ε, n, C, K ) > 0 sufficiently small as in (66) so that we can “sew
along the curve” to create a new complete Riemannian manifold N 3,

N 3 = (M3 \ Aδ) 	 A′
δ, (65)

exactly as in Proposition 3.1, for

δ = δ(ε, n, C, K ) such that δ < a, lim
n→∞ n · h(δ) = 0, and lim

n→∞ n · δ = 0, (66)
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where h is defined in Lemma 2.1 and the disjoint balls B(pi , δ) are to be centered at

p2 j+1 = C

(
j

n
+ δ

L(C)

)
p2 j+2 = C

(
j + 1

n
− δ

L(C)

)
j = 0, 1, . . . , n − 1

(67)
and

A′
δ = Aδ

∖ (
2n⋃

i=1

B(pi , δ/2)

)
	

n−1⋃
j=0

U2 j+1. (68)

Thus, the tunnels U2 j+1 connect ∂ B(p2 j+1, δ) to ∂ B(p2 j+2, δ) for j = 0, 1, . . . , n−1.
Furthermore,

(1 − ε)Vol(Aδ) ≤ Vol(A′
δ) ≤ Vol(Aδ)(1 + ε) (69)

and
(1 − ε)Vol(M3) ≤ Vol(N 3) ≤ Vol(M3)(1 + ε) (70)

and
Diam(A′

δ) ≤ H(δ) = L(C)/n + (n + 1) h(δ) + (5n + 2) δ. (71)

Since
lim
δ→0

H(δ) = 0 uniformly for K ∈ (0, 1], (72)

we say we have sewn the curve, A0, arbitrarily short.
If, in addition, M3 has nonnegative or positive scalar curvature, then so does N 3.

In fact,

inf
x∈M3

Scalx ≥ min

{
0, inf

x∈N3
Scalx

}
(73)

If ∂ M3 �= ∅, the balls avoid the boundary and ∂ M3 is isometric to ∂ N 3.

Proof By the fact thatC is embedded, for n sufficiently large, the balls in the statement
are disjoint even when C(0) = C(1) so we may apply Proposition 3.1 to get (69) and
(70).

For simplicity of notation, let A = Aδ and A′ = A′
δ .

We now verify the diameter estimate of A′, (71). To do this, we define sets Ci ⊂ A′
which correspond to the sets ∂ B(pi , δ/2) ⊂ A which are unchanged because they are
the boundaries of the edited regions:

Ci ∪ Ci+1 = ∂Ui , (74)

whenever i is an odd value. Let

U =
n−1⋃
j=0

U2 j+1. (75)
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Let x and y be arbitrary points in A′. We claim that there exists j, k ∈ {1, . . . , 2n}
such that

dA′(x, C j ) < δ + L(C)/(2n)+ h(δ) and dA′(y, Ck) < δ + L(C)/(2n)+ h(δ). (76)

By symmetry we need only prove this for x . Note that in case I where

x ∈ A′ \ U = A

∖ 2n⋃
i=1

B(pi , δ/2) (77)

we can view x as a point in A. Let γ1 ⊂ A be the shortest path from x to the closest
point cx ∈ C[0, 1] so that L(γ1) < δ.

If
γ1 ∩ B(p j , δ/2) �= ∅ (78)

then
dA′\U (x, C j ) < δ (79)

and we have that (76) holds. Otherwise, still in Case I, if (78) fails then we have

dA′\U (x, C j ) ≤ dA′\U (x, cx ) + d(cx , C j ) (by the triangle inequality) (80)

< δ + L(C)

2n
, (81)

where the last inequality follows from dA′\U (x, cx ) ≤ L(γ1) < δ and the fact that
cx ∈ C([0, 1]) is at most L(C)/(2n) away from the boundary of the nearest tunnel.

Alternatively, we have case II where x ∈ U . In this case, there exists j such that
x ∈ U2 j+1 and so

dA′(x, C2 j+1) ≤ Diam(U2 j+1) ≤ h(δ). (82)

Thus, we have the claim in (76).
We now proceed to prove (71) by estimating dA′(x, y) for x, y ∈ A′. If j = k in

(76), then dA′(x, y) ≤ 2(δ + L(C)/(2n) + h(δ)) and we are done. Otherwise, by (76)
and the triangle inequality, we have

dA′(x, y) ≤ dA′(x, C j ) + dA′(y, Ck) + sup{dA′(z, w) | z ∈ C j , w ∈ Ck} (83)

≤ 2(δ + L(C)/(2n) + h(δ)) + sup{dA′(z, w) | z ∈ C j , w ∈ Ck}. (84)

Without loss of generality, we may assume that j < k and that j is odd. Thus,
C j ⊂ ∂U j . If k is also odd then by the triangle inequality

sup{dA′(z, w) | z ∈ C j , w ∈ Ck} ≤ Diam(U j ) + dist(U j , U j+2)

+Diam(U j+2) + · · · + Diam(Uk−2)

+ dist(Uk−2, Uk) (85)
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and, when k is even,

sup{dA′(z, w) | z ∈ C j , w ∈ Ck} ≤ Diam(U j ) + dist(U j , U j+2)

+Diam(U j+2) + · · · + Diam(Uk−2)

+ dist(Uk−2, Uk−1) + Diam(Uk−1). (86)

We know that Diam(U j ) = · · · = Diam(Uk) ≤ h(δ) from (7) of Lemma 2.1, and
that the distance between any two adjacent tunnels is the same, and that there are at
most n tunnels. Thus, in either case (85) or (86) we have

sup{dA′(z, w) | z ∈ C j , w ∈ Ck} ≤ n h(δ) + n · dist(U j , U j+2). (87)

and by construction the distance between adjacent tunnels is

dist(U j , U j+2) ≤ Diam(C j+1) + dist(C j+1, C j+2) + Diam(C j+2) (88)

≤ π(δ/2) + δ + π(δ/2) < 5δ (89)

since the balls B(pi , δ/2) have constant sectional curvature K .
Therefore, combining (84), (87), and (89) we conclude that

dA′(x, y) ≤ 2(δ + L(C)/(2n) + h(δ)) + n h(δ) + 5nδ (90)

which is the desired diameter estimate (71).
We observe that by our choice of δ satisfying (66) and the fact that h(δ) = O(δ)

from Lemma 2.1 we have that (72) holds.
Finally, observe that (73) follows since Lemma 2.1 shows that the tunnels Ui have

positive scalar curvature. �	

4 Pulled String Spaces

The following notion of a pulled string metric space captures the idea that if a metric
space is a patch of cloth and a curve in the patch is sewn with a string, then one can
pull the string tight, identifying the entire curve as a single point, thus creating a new
metric space. This notion was first described to the third author by Burago when they
were working ideas related to [6]. See Fig. 4.

Proposition 4.1 The notion of a metric space with a pulled string is a metric space
(Y, dY ) constructed from a metric space (X, dX ) with a curve C : [0, 1] → X, so that

Y = X \ C[0, 1] 	 {p0}, p0 = C(0), (91)

where for xi ∈ Y we have

dY (x, p0) = min{dX (x, C(t)) : t ∈ [0, 1]} (92)
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Fig. 4 A two sphere with the equator pulled to a point

and for xi ∈ X \ C[0, 1] we have

dY (x1, x2) = min { dX (x1, x2),min{dX (x1, C(t1)) + dX (x2, C(t2)) : ti ∈ [0, 1]} } .

(93)
If (X, d, T ) is a Riemannian manifold then (Y, d, ψ#T ) is an integral current space

whose mass measure is the Hausdorff measure on Y and

Hm
Y (Y ) = Hm

X (X) − Hm
X (K ). (94)

If (X, dX , T ) is an integral current space then (Y, dY , ψ#T ) is also an integral
current space where ψ : X → Y such that ψ(x) = x for all x ∈ X \ C[0, 1] and
ψ(C(t)) = p0 for all t ∈ [0, 1]. So that

M(ψ#T ) = M(T ) (95)

We will in fact prove this proposition as a consequence of two lemmas about spaces
with arbitrary compact subsets pulled to a point. Lemma 4.2 proves such a space is a
metric space and Lemma 4.3 proves (94) and (95).

4.1 Pulled String Spaces Are Metric Spaces

Lemma 4.2 Given a metric space (X, dX ) and a compact set K ⊂ X, we may define
a new metric space (Y, dY ) by pulling the set K to a point p0 ∈ K by setting

Y := X \ K 	 {p0}, p0 ∈ K fixed, (96)

and, for x ∈ Y , we have

dY (x, p0) = min{dX (x, y) : y ∈ K } (97)
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and, for xi ∈ Y \ {p0}, we have

dY (x1, x2) = min {dX (x1, x2),min{dX (x1, y1) + dX (x2, y2) : yi ∈ K }} . (98)

Proof We first prove that (Y, dY ) is a metric space. By definition, it is easy to see that
dY is nonnegative and symmetric. To prove that dY satisfies the axiom of positivity,
assume x1 = x2. Then either xi = p0, and dY (x1, x2) = 0 by Definitions (96)–(97),
or xi �= p0 and dX (x1, x2) = 0 so by (98) we have dY (x1, x2) ≤ dX (x1, x2) = 0.
Conversely, if dY (x1, x2) = 0 then either dX (x1, x2) = 0 or

0 = min{dX (x1, y1) + dX (x2, y2) | yi ∈ K }. (99)

In the first case, x1 = x2 since dX is a metric, so assume otherwise. Then
dX (x1, x2) �= 0 and (99) holds. Being that (99) is a sum of nonnegative numbers,
it follows that dX (x1, y1) = 0 and dX (x2, y2) = 0 for some yi ∈ K . Hence, xi = yi

which is impossible by the definition of Y unless x1 = x2 = p0 which yields a
contradiction. This proves that dY satisfies positivity.

Next, let us note that by virtue of (97) and (98), we always have

dY (x1, x2) ≤ dX (x1, x2), ∀ x1, x2 ∈ Y (100)

and

if dY (x1, x2) �= dX (x1, x2) �⇒ dY (x1, x2) = dX (x1, y1) + dX (x2, y2). (101)

for some yi ∈ K .
We now verify the triangle inequality: for any x1, x2, x3 ∈ Y , we need to prove

dY (x1, x2) ≤ dY (x1, x3) + dY (x3, x2). (102)

It will be convenient to define yi ∈ K such that

dX (xi , yi ) = min{dX (xi , y) | y ∈ K } for i = 1, 2, 3. (103)

Assume in Case I that dY (x1, x2) �= dX (x1, x2). Then by (101) and (103),

dY (x1, x2) = dX (x1, y1) + dX (x2, y2). (104)

We have three possibilities: (i) dY (x1, x3) �= dX (x1, x3) and dY (x2, x3) �=
dX (x2, x3); (ii) dY (x1, x3) = dX (x1, x3) and dY (x2, x3) = dX (x2, x3); and (iii) (with-
out loss of generality) dY (x1, x3) �= dX (x1, x3) and dY (x2, x3) = dY (x2, x3).

In Case I (i), we have

dY (x1, x2) = dX (x1, y1) + dX (x2, y2) (by(104))

≤ dX (x1, y1) + dX (x3, y3) + dX (x2, y2) + dX (x3, y3)

= dY (x1, x3) + dY (x2, x3). (by assumption (i), (101), and(103))
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In Case I (ii), we have

dY (x1, x2) ≤ dX (x1, x2) (by(100))

≤ dX (x1, x3) + dX (x2, x3)

= dY (x1, x3) + dY (x2, x3). (by assumption (ii))

In Case I (iii), we have

dX (x2, y2) = min{dX (x2, K ) | y ∈ K } (by(103))

≤ dX (x2, y3)

≤ dX (x2, x3) + dX (x3, y3) (105)

≤ dY (x2, x3) + dX (x3, y3) (by assumption (iii)) (106)

so that

dY (x1, x2) = dX (x1, y1) + dX (x2, y2) (by(104))

≤ dX (x1, y1) + dY (x2, x3) + dX (x3, y3) (by(106))

= dY (x1, x3) + dY (x2, x3). (by assumption (iii))

This proves the triangle inequality, (102), in Case I. Next, we assume, in Case II, that
dY (x1, x2) = dX (x1, x2).

Again, we have three possibilities: (i) dY (x1, x3) �= dX (x1, x3) and dY (x2, x3) �=
dX (x2, x3); (ii) dY (x1, x3) = dX (x1, x3) and dY (x2, x3) = dX (x2, x3); and (iii) (with-
out loss of generality) dY (x1, x3) �= dX (x1, x3) and dY (x2, x3) = dY (x2, x3).

In Case II (i), we have

dY (x1, x2) = dX (x1, x2)

≤ dX (x1, y1) + dX (x2, y2) (by (104))

≤ dX (x1, y1) + dX (x3, y3) + dX (x2, y2) + dX (x3, y3)

= dY (x1, x3) + dY (x2, x3). (by assumption (i), (101), and (103))

In Case II (ii), (102) follows immediately from the triangle inequality for dX .
Finally, in Case II (iii),

dY (x1, x2) = dX (x1, x2)

≤ dX (x1, y1) + dX (x2, y3) (by (104))

≤ dX (x1, y1) + dX (x2, x3) + dX (x3, y3)

= dY (x1, x3) + dY (x2, x3), (by assumption (iii), (101), and (103))

which completes the proof. �	
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4.2 Hausdorff Measures and Masses of Pulled String Spaces

Lemma 4.3 If (X, dX , T ) is an integral current space with a compact subset K ⊂ X
then (Y, dY , ψ#T ) is also an integral current space where (Y, dY ) is defined as in
Lemma 4.2 and where ψ : X → Y such that ψ(x) = x for all x ∈ X \ K and
ψ(q) = p0 for all q ∈ K . In addition

M(ψ#T ) = M(T ) − ||T ||(K ) (107)

If (X, dX , T ) is a Riemannian manifold then (Y, dY , ψ#T ) is an integral current space
whose mass measure is the Hausdorff measure on Y and

Hm
Y (Y ) = Hm

X (X) − Hm
X (K ). (108)

Proof We must show that (Y, dY , ψ#T ) is an integral current space. We first observe
that ψ as defined in the statement of the proposition is a 1-Lipschitz function: for
x, y ∈ X \ K , there is no ambiguity so we may view them as elements of Y \ {p0}
and dY (ψ(x), ψ(y)) = dY (x, y) ≤ dX (x, y) by definition of dY . Otherwise, we
may assume, without loss of generality, that x ∈ K and y /∈ K . In this case,
dY (ψ(x), ψ(y)) = dY (p0, ψ(y)) = dY (p0, y) = min{dX (z, y) : z ∈ K } ≤
dX (x, y), as x ∈ K . Thus, ψ#T is an integral current on Y since ψ is a 1-Lipschitz
function and the well-known inequality

‖ψ#T ‖ ≤ Lip(ψ)m‖T ‖ (109)

implies that ψ#T has finite mass because T does. To show that (Y, dY , ψ#T ) is an
integral current space there remains to show that it is completely settled, or ψ#T has
positive density at p0.

Let f : Y → R be a bounded Lipschitz map and π j : Y → R be Lipschitz maps.
Then

(ψ#T )( f, π1, . . . , πm) = T ( f ◦ ψ,π1 ◦ ψ, . . . , πm ◦ ψ)

= T ( f · 1X\K + f (p0) · 1K , π1 ◦ ψ, . . . , πm ◦ ψ)

= T ( f · 1X\K , π1 ◦ ψ, . . . , πm ◦ ψ)

+ f (p0)T (1K , π1 ◦ ψ, . . . , πm ◦ ψ)

= T ( f · 1X\K , π1 ◦ ψ, . . . , πm ◦ ψ) + 0

by locality since πi ◦ ψ are constant on {1K �= 0} (see [2]) so

(ψ#T )( f, π1, . . . , πm) = T ( f · 1X\K , π1 ◦ ψ, . . . , πm ◦ ψ)

= (T 1X\K )( f, π1 ◦ ψ, . . . , πm ◦ ψ)

= (T 1X\K )( f ◦ ψ,π1 ◦ ψ, . . . , πm ◦ ψ)

because ψ(x) = x on X \ K ,

= ψ#(T 1X\K )( f, π1, . . . , πm).
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So, using the characterization of mass from [2], (2.6) of Proposition 2.7,

M(ψ#T ) = M(ψ#(T 1X\K ))

= M(T 1X\K )

because ψ(x) = x on X \ K , so sinceM(·) = ‖ · ‖,

(ψ#T )( f, π1, . . . , πm) = ‖T 1X\K ‖(X)

= sup

⎧⎨
⎩

∞∑
j=1

|(T 1X\K )(1A j , π
j
1 , . . . , π

j
m)|

⎫⎬
⎭ ,

where the supremum is taken over all Borel partitions {A j } of X such that X = ∪ j A j

and all Lipschitz functions π
j

i ∈ Lip(X) with Lip(π j
i ) ≤ 1, then continuing

(ψ#T )( f, π1, . . . , πm) = sup

⎧⎨
⎩

∞∑
j=1

|T (1X\K · 1A j , π
j
1 , . . . , π

j
m)|

⎫⎬
⎭

= sup

⎧⎨
⎩

∞∑
j=1

|T (1 Ã j
, π̃

j
1 , . . . , π̃

j
m)|

⎫⎬
⎭ ,

where the second supremum is taken over all Borel partitions { Ã j } of X \ K such that

X \ K = ∪ j Ã j and all Lipschitz functions π̃
j

i ∈ Lip(X \ K ) with Lip(π̃ j
i ) ≤ 1. So,

by the characterization of mass we have

(ψ#T )( f, π1, . . . , πm) = sup

⎧⎨
⎩

∞∑
j=1

|T (1 Ã j
, π̃

j
1 , . . . , π̃

j
m)|

⎫⎬
⎭

= ||T ||(X \ K )

= ||T ||(X) − ||T |(K )

= M(T ) − ||T ||(K ),

which proves (107).
Finally, assume that the m-dimensional integral current space (X, dX , T ) is a Rie-

mannian manifold. We show that the mass measure of (Y, dY , ψ#T ) is the Hausdorff
measure on (Y, dY ).

We claim that
Hm

Y (Y \ {p0}) = Hm
X (X \ K ). (110)

First, observe that since ψ is 1-Lipschitz,

Hm
Y (ψ(X \ K )) ≤ (Lip(ψ))mHm

X (X \ K ),
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by Proposition 3.1.4 on page 37 from [3], hence

Hm
Y (Y \ {p0}) ≤ Hm

X (X \ K ).

Thus, there remains to show the opposite inequality in (110).
Define sets

C j = {y ∈ Y | dY (y, p0) ≥ 1/j}

for each j ∈ N. Then the C j are closed sets, C j ⊂ C j+1 and Y \ {p0} = ∪ j∈NC j . So
we may use Theorem 1.1.18 from [3]:

Hm
Y (Y \ {p0}) = Hm

Y (∪ j∈NC j ) = lim
j→∞Hm

Y (C j ). (111)

Consider, for each j ∈ N ,

D j = ψ−1(C j ) = {x ∈ X | dX (x, K ) ≥ 1/j}

which are closed in X , D j ⊂ D j+1, and X \ K = ∪ j∈ND j . Using Theorem 1.1.8
from [3] again:

Hm
X (X \ K ) = Hm

X (∪ j∈ND j ) = lim
j→∞Hm

X (D j ). (112)

Next, we claim that

Hm
X (D j ) ≤ Hm

Y (C j ), j ∈ N. (113)

Fix j . Fix δ < 1
2 j . Let {El}l∈N be a countable cover of C j with Diam(El) < δ, for all

l. Then

dist(El , p0) >
1

2 j
, l ∈ N. (114)

To see this, assume otherwise. Then since distY (p0, El) < 1
2 j and the definition of

distance (as an infimum), there is e ∈ El such that dY (p0, e) < 1
2 j . Now, we also know

that El ∩ C j �= ∅. So, there is c ∈ C j ∩ El . So, dY (e, c) ≤ DiamY (El) < δ < 1
2 j .

Also, by the triangle inequality, dY (p0, c) ≤ dY (p0, e) + dY (e, c) < 1/j . But this
contradicts that c ∈ C j as by definition of C j , dY (p0, c) > 1/j .

Next, we show that

DiamY (El) = DiamX (ψ−1(El)), (115)

i.e., ψ−1 is an isometry when restricted to {El}. In fact, we prove

dX (ψ−1(a), ψ−1(b)) = dY (a, b), ∀ a, b ∈ El , j ∈ N.
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Let a, b ∈ El . Then since Diam(El) < δ < 1
2 j we have dY (a, b) ≤ DiamY (El) <

δ < 1
2 j , so

dY (a, b) <
1

2 j
. (116)

By definition of the distance dY , since ψ−1(a) = a and ψ−1(b) = b,

dY (a, b) = min
{
dX (a, b), min{ dX (a, k1) + dX (b, k2) | ki ∈ K } }

.

If dY (a, b) = dX (a, b), we’re done. If not, then there exists k1, k2 ∈ K so that

dY (a, b) = dX (a, k1) + dX (b, k2). (117)

By (114),

dY (a, p0) ≥ 1

2 j
and dY (b, p0) ≥ 1

2 j

which implies

distX (a, K ) ≥ 1

2 j
and distX (b, K ) ≥ 1

2 j
.

But then

1

j
≤ distX (a, K ) + distX (b, K )

≤ dX (a, k1) + dX (b, k2)

= dX (a, b) (by (117))

<
1

j
, (by (116))

which is a contradiction.
Next, observe that {ψ−1(El)}l∈N is necessarily a cover of D j so

Hm
X (D j ) ≤

∞∑
l=1

ωm

(
DiamX (ψ−1(El))

2

)m

=
∞∑

l=1

ωm

(
DiamY (El)

2

)m

. (by (115))

Taking the infimum over all covers of C j with diameters less than δ gives

Hm
X (D j ) ≤ Hm

Y,δ(C j )
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Fig. 5 A sequence of increasingly tightly sewn manifolds

then taking the limit as δ → 0 shows

Hm
X (D j ) ≤ Hm

Y (C j )

which proves the claim (113).
To finish, we take the limit in (113) as j → ∞ and use (111) and (112) to complete

the proof. �	

5 Sewn Manifolds Converging to Pulled Strings

In this section, we consider sequences of sewn manifolds being sewn increasingly
tightly and prove they converge in the Gromov–Hausdorff and Intrinsic Flat sense to
metric spaces with pulled strings.

To be more precise, we consider the following sequences of increasingly tightly
sewn manifolds:

Definition 5.1 Given a single Riemannian manifold, M3, with a curve, A0 =
C([0, 1]) ⊂ M , with a tubular neighborhood A = Ta(A0) which is Riemannian
isometric to a tubular neighborhood of a compact set V ⊂ S

3
K , in a standard sphere

of constant sectional curvature K , satisfying the hypothesis of Proposition 3.3. We
can construct its sequence of increasingly tightly sewn manifolds, N 3

j , by applying
Proposition 3.3 taking ε = ε j → 0, n = n j → ∞, and δ = δ j → 0 to create
each sewn manifold, N 3 = N 3

j and the edited regions A′
δ = A′

δ j
which we simply

denote by A′
j . This is depicted in Fig. 5. Since these sequences N 3

j are created using

Proposition 3.3, they have positive scalar curvature whenever M3 has positive scalar
curvature, and ∂ N 3

j = ∂ M3 whenever M3 has a nonempty boundary.

In this section, we prove Lemmas 5.5, 5.6, and 5.7 which immediately imply the
following theorem:

Theorem 5.2 The sequence N 3
j as in Definition 5.1 converges in the Gromov–

Hausdorff sense

N 3
j

GH−→ N∞, (118)

the metric measure sense
N 3

j
mGH−→ N∞, (119)
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and the intrinsic flat sense

N 3
j

F−→ N∞, (120)

where N∞ is the metric space created by pulling the string, A0 = C([0, 1]) ⊂ M, to
a point as in Proposition 4.1.

In fact, our lemmas concern more general sequences of manifolds which are con-
structed from a given manifold M and scrunch a given compact set K ⊂ M down to
a point as follows:

Definition 5.3 Given a single Riemannian manifold, M3, with a compact set, A0 ⊂
M . A sequence of manifolds,

N 3
j = (M3 \ Aδ j ) 	 A′

δ j
(121)

is said to scrunch A0 down to a point if Aδ = Tδ(A0) and A′
δ satisfies:

(1 − ε)Vol(Aδ) ≤ Vol(A′
δ) ≤ Vol(Aδ)(1 + ε) (122)

and
(1 − ε)Vol(M3) ≤ Vol(N 3) ≤ Vol(M3)(1 + ε) (123)

and
Diam(A′

δ) ≤ H (124)

where ε = ε j → 0 and where H = Hj → 0 and 2δ j < Hj .

Note that by Proposition 3.3, a sequence of increasingly tightly sewn manifolds
sewn along a curve C([0, 1]) as in Definition 5.1 is a sequence of manifolds which
scrunches A0 = C([0, 1]) down to a point as in Definition 5.3. So we will prove
lemmas about sequences of manifolds which scrunch a compact set and then apply
them to prove Theorem 5.2 in the final subsection of this section.

5.1 Constructing Surjective Maps to the Limit Spaces

Before we prove convergence of the scrunched sequence of manifolds to the pulled
thread space, we construct surjective maps from the sequence to the proposed limit
space.

Lemma 5.4 Given M3 a compact Riemannian manifold (possibly with boundary)
and a smooth embedded compact zero to three-dimensional submanifold A0 ⊂ M3

(possibly with boundary), and N j as in Definition 5.3. Then for j sufficiently large
there exist surjective Lipschitz maps

Fj : N 3
j → N∞ with Lip(Fj ) ≤ 4, (125)

where N∞ is the metric space created by taking M3 and pulling A0 to a point p0 as
in Lemmas 4.2–4.3.
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Note that when A0 is the image of a curve, N∞, is a pulled thread space as in
Proposition 4.1.

Proof First observe that by the construction in Definition 5.3 there are maps

Pj : M3 → N∞ (126)

which are Riemannian isometries on regions which avoid A0 and map A0 to p0. These
define Riemannian isometries

Pj : N 3
j \ A′

j =̃ M3 \ Tδ j (A0) → N 3∞ \ Tδ j (p0). (127)

In addition, sufficiently small balls lying in these regions are isometric to convex balls
in M3.

Observe also that for δ > 0 sufficiently small, the exponential map:

exp : {(p, v) : p ∈ A0, v ∈ Vp |v| < 2δ} → T2δ(A0) (128)

is invertible where

Vp = {v ∈ Tp M : dM (expp(tv), p) = dM (expp(tv), A0)}. (129)

Taking δ = δA0 > 0 even smaller (depending on the submanifold A0), we can guar-
antee that ∀vi ∈ Vp, |vi | < 2δA0 , ti ∈ (0, 1) we have

dM (expp1(t1v1), expp2(t2v2)) ≤ 2dM (expp1(v1), expp2(v2)) + 2|t1 − t2|. (130)

This is not true unless A0 is a smooth embedded compact submanifold with either
no boundary or a smooth boundary.

Define Fj : N 3
j → N∞ as follows:

Fj (x) = Pj (x) ∀x ∈ N 3
j \ Tδ j (A′

j ) (131)

and
Fj (x) = p0 ∀x ∈ A′

j . (132)

Between these two regions, we take

Fj (x) = f j (Pj (x)) ∀x ∈ Tδ j (A′
j ) \ A′

j , (133)

where f j : N∞ → N∞ is a surjective map:

f j : Ann p0(δ j , 2δ j ) → B2δ j (p0) \ {p0} (134)

which takes a point q to

f j (q) = γq
(
(dN∞(p0, q) − δ j )/δ j

)
, (135)
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where γq is the unique minimal geodesic from γq(0) = p0 to γq(1) = q. Here we are
assuming δ j < δA0 . So

dN∞(p0, Pj (x)) = dM3(A0, x) (136)

and
γq(t) = Pj (expq ′(tv′)) where Pj (expq ′(v′)) = q. (137)

In particular for x ∈ ∂Tδ j (A′
j ),

f j (Pj (x)) = γPj (x)((2δ j − δ j )/δ j ) = γPj (x)(1) = Pj (x) (138)

and for x ∈ ∂ A′
j ,

f j (Pj (x)) = γPj (x)((δ j − δ j )/δ j ) = γPj (x)(0) = p0 (139)

so that Fj is continuous.
We claim

Lip(Fj ) = 0 on A′
j (140)

Lip(Fj ) ≤ 4 on Tδ j (A′
j ) \ A′

j (141)

Lip(Fj ) = 1 on N j \ Tδ j (A′
j ). (142)

Only the middle part is difficult. By the definition of dN∞ , we have the following two
possibilities

Case I: dN∞(q1, q2) = dM (P−1
j (q1), P−1

j (q2)) (143)

Case II: dN∞(q1, q2) = dM (P−1
j (q1), A0) + dM (P−1

j (q2), A0). (144)

In Case II, we see that the minimal geodesic from q1 to q2 passes through p0. Since
f j (q1) and f j (q2) lie on this geodesic, we have

dN∞( f j (q1), f j (q2)) ≤ dN∞(q1, q2). (145)

In Case I, we apply (130) with

ti = (dM (P−1
j (qi ), A0) − δ j )/δ j (146)

because ti ∈ (0, 1) due to (141) so that by the reverse triangle inequality

|t1 − t2| = |dM (P−1
j (q1), A0) − dM (P−1

j (q2), A0)|/δ j (147)

≤ dM (P−1
j (q1), q2)/δ j (148)

≤ dN∞(q1, q2) (149)
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to see that

dN∞( f j (q1), f j (q2)) ≤ dM (P−1
j ( f j (q1)), P−1

j ( f j (q2))) (150)

≤ 2dM (P−1
j (q1), P−1

j (q2)) + 2|t1 − t2| by (130), (151)

≤ 2dN∞(q1, q2) + 2|t1 − t2| by Case I hypothesis, (152)

≤ 4dN∞(q1, q2). (153)

This gives our claim.
We claim Lip(Fj ) ≤ 4 everywhere. Given x1, x2 ∈ N 3

j , we have a minimizing
geodesic η : [0, 1] → N j such that η(0) = x1 and η(1) = x2. Then

dN∞(Fj (x1), Fj (x2)) ≤ L(Fj ◦ η). (154)

Since |(Fj ◦ η)′(t)| ≤ 2|η′(t)| by our localized Lipschitz estimates and because the
function Fj is continuous, we are done. �	

5.2 Constructing Almost Isometries

See Sect. 2.2 for a review of the Gromov–Hausdorff distance.

Lemma 5.5 Given N 3
j as in Definition5.3, the maps Fj : N 3

j → N∞ defined in (131)–
(133) in the proof of Lemma 5.4 are Hj -almost isometries with lim j→∞ Hj = 0. Thus

N j
GH−→ N∞. (155)

Proof Before we begin the proof recall that

Diam(A′
j ) ≤ Hj → 0 (156)

in (124) of Definition 5.3.
By Theorem 2.3 of Gromov, to prove (155) it suffices to show that Fj are Hj -

almost isometries. To see this, examine x, y ∈ N j and join them by a minimizing
curve σ : [0, 1] → N j .

If σ [0, 1] ⊂ N j \ A′
j , then by (131) we have

L(σ ) = L(Fj ◦ σ) (157)

and so
dN j (x, y) ≥ dN∞(Fj (x), Fj (y)). (158)
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Otherwise we have

dN j (x, y) ≥ dN j (x, A′
j ) + dN j (y, A′

j ) Tδ j (A′
j ) to A′

j (159)

= dN∞(Fj (x), Bδ j (p0)) + dN∞(Fj (y), Bδ j (p0)) (160)

= dN∞(Fj (x), p0) − δ j + dN∞(Fj (y), p0) − δ j (161)

≥ dN∞(Fj (x), Fj (y)) − 2δ j . (162)

Next we join Fj (x) to Fj (y) by a minimizing curve γ . If γ [0, 1] ⊂ N∞ \ Bδ j (p0)
then there is a curve η such that γ = Fj ◦ η with η[0, 1] ⊂ N j \ A′

j and so by (131)

dN j (x, y) ≤ L(η) = L(γ ) = dN∞(Fj (x), Fj (y)). (163)

Otherwise we have

dN j (x, y) ≤ dN j (x, A′
j ) + Diam(A′

j ) + dN j (y, A′
j ) (164)

≤ dN j (x, A′
j ) + Hj + dN j (y, A′

j ) (165)

= dN∞(Fj (x), Bδ j (p0)) + dN∞(Fj (y), Bδ j (p0)) + Hj (166)

≤ L(γ ) + Hj = dN∞(Fj (x), Fj (y)) + Hj . (167)

Hence, Fj is an Hj isometry since 2δ j < Hj . �	

5.3 Metric Measure Convergence

Recall metric measure convergence as reviewed in Sect. 2.3.

Lemma 5.6 Given N 3
j → N∞ as in Lemma 5.4 endowed with the Hausdorff mea-

sures, then we have metric measure convergence if A0 has H3-measure 0.

Proof Recall the maps Fj : N 3
j → N∞ defined in (131)–(133) in the proof of

Lemma 5.4. We need only show that for almost every p ∈ N∞ and for almost every
r < rp sufficiently small we have

H3(B(p, r)) = lim
j→∞H3(B(p j , r)), (168)

where Fj (p j ) = p and that for any sequence p0 j → p0 we have r0 sufficiently small
that for all r < r0

H3(B(p0, r)) = lim
j→∞H3(B(p0 j , r)). (169)

In fact, take any p �= p0 in N∞ and choose

r < rp < dN3∞(p, p0)/2. (170)

Then for j large enough that δ j < rp we have

B(p, r) ∩ B(p0, δ j ) = ∅. (171)
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Thus
B(p j , r) ∩ A′

j = ∅. (172)

Thus by (131), Fj is an isometry from B(p j , r) ⊂ N 3
j onto B(p, r) ⊂ N∞ and so we

have
H3(B(p, r)) = H3(B(p j , r)) ∀r < rp. (173)

Next we examine p0. Observe that by (108)

H3
N∞(B(p0, r)) = H3

M (Tr (A0)) − H3
M (A0) = VolM (Tr (A0) \ A0). (174)

For any p0, j → p0, we have by (125)

r j = dN j (p0, j , A′
j ) ≤ 4dN∞(Fj (p0, j ), p0) → 0 (175)

Thus
B(p0, j , r) ⊂ Tr+r j (A′

j ). (176)

So

VolN j (B(p0, j , r)) ≤ VolN j (Tr+r j (A′
j )) (177)

≤ VolN j (Tr+r j (A′
j ) \ A′

j ) + VolN j (A′
j ) (178)

= VolM
(
Tr+r j +δ j (A0) \ Tδ j (A0)

) + VolN j (A′
j ). (179)

Thus

lim sup
j→∞

VolN j (B(p0, j , r)) ≤ VolM (Tr (A0) \ A0) + lim sup
j→∞

VolN j (A′
j ) (180)

= H3(B(p0, r)) (181)

since we claim that
lim

j→∞VolN j (A′
j ) = 0. (182)

This follows because ε j → 0 and (122) implies

(1 − ε j )VolM (Aδ j ) ≤ VolN j (A′
j ) ≤ (1 + ε j )VolM (Aδ j ). (183)

The assumption that H3(A0) = 0 then implies (182) after taking the limit.
Similarly, we have for j sufficiently large

Tr−Hj −r j (A′
j ) ⊂ B(p0, j , r). (184)

So

VolN j (B(p0, j , r)) ≥ VolN j (Tr−Hj −r j (A′
j )) (185)

= VolN j (Tr−Hj −r j (A′
j ) \ A′

j ) + VolN j (A′
j ) (186)

= VolM
(
Tr−Hj −r j +δ j (A0) \ Tδ j (A0)

) + VolN j (A′
j ). (187)
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Thus

lim inf
j→∞ VolN j (B(p0, j , r)) ≥ VolM (Tr (A0) \ A0) + lim inf

j→∞ VolN j (A′
j ) (188)

= H3(B(p0, r)), by (182) (189)

which completes the proof. �	

5.4 Intrinsic Flat Convergence

For a review of intrinsic flat convergence see Sect. 2.5.

Lemma 5.7 Let N 3
j

GH−→ N∞ be exactly as in Lemmas 5.4 and 5.5 where we assume
M is compact and we have a compact set, A0 ⊂ M \∂ M. Then there exists an integral
current space N such that N̄ is isometric to N∞ and

N j
F−→ N . (190)

and when A0 has Hausdorff measure 0

M(N j ) → M(N ) = H3(N ). (191)

When A0 = C([0, 1]) then N = N∞.

Proof By (123), we have uniformly bounded volume

Vol(N 3
j ) ≤ 2Vol(M3). (192)

Since ∂ N 3
j = ∂ M3, we have uniformly bounded boundary volume

Vol(∂ N 3
j ) = Vol(∂ M3). (193)

Combining this with Lemma 5.5 and Theorem 2.6, there exists an integral current
space N possibly N = 0 such that a subsequence

N j
F−→ N . (194)

We claim that N �= 0. If not, then by the final line in Lemma 2.12, for any sequence

p j ∈ N j and almost every r , S(p j , r)
F−→ 0. However, taking p j and r such that

B(p j , r) ⊂ N 3
j \ A′

j (195)

we know there is some p ∈ M3 with B(p, r) ⊂ N∞ \ {p0} that dF (S(p j , r),

S(p, r)) = 0 for p ∈ M3, so S(p j , r)
F−→ S(p, r) �= 0 which is a contradiction.
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By Theorem 2.13, we know that after possibly taking a subsequence we obtain a
limit map

F∞ : N → N∞. (196)

We claim that F∞ is distance preserving. Let p, q ∈ N . By Theorem 2.11, we have
p j , q j ∈ N j converging to p, q in the sense of Definition 2.9, i.e.,

dN j (p j , q j ) → dN (p, q). (197)

Since the Fj are ε j -almost isometries and ε j → 0, we have

dN∞(Fj (p j ), Fj (q j )) → dN (p, q). (198)

By the definition of F∞ we have Fj (p j ) → F∞(p) and Fj (q j ) → F∞(q). Thus

dN∞(F∞(p), F∞(q)) = dN (p, q). (199)

We claim that F∞ maps onto at least N∞ \ {p0}. Let x ∈ N∞ \ {p0}. Since Fj are
surjective, there exists x j ∈ N j such that Fj (x j ) = x . Since x �= p0, we may define

r = min{dN∞(x, p0)/3,ConvexRadM (x)}, (200)

where ConvexRadM (x) is the convexity radius about x viewed as a point in M . Then
there exists j sufficiently large such that δ j < r so that

B(x j , r) ⊂ N j \ Tδ j (A′
j ). (201)

Furthermore, these balls are isometric to the convex ball B(x, r) ⊂ M3.
So

dF (S(x j , r), 0) = dF (S(x, r), 0) > 0. (202)

Thus byTheorem2.14with h0 = dF (S(x, r), 0), and N j
F−→ N , a subsequence of the

x j converges to x∞ ∈ N . By the definition of F∞, we have Fj (x j ) → F∞(x∞) ∈ N∞.
But since Fj (x j ) = x it follows that F∞(x∞) = x , hence F∞ maps onto N∞ \ p0.

Taking the metric completions of N and N∞ \ {p0}, we have an isometry

F∞ : N̄ → N∞. (203)

Since N j are Riemannian manifolds,

M([[N j ]]) = Vol(N j ) = H3(N j ). (204)

By the lower semicontinuity of mass and the metric measure convergence of N j to N
we know that

M([[N∞]]) ≤ lim inf
j→∞ M([[N j ]]) = H3(N ). (205)
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On the other hand by (29)
M([[N∞]]) ≥ H3(N ) (206)

because almost every tangent cone is Euclidean and it has integer weight everywhere.
Thus we have (191). In fact, equality in these inequalities implies that N has weight
one everywhere.

Recall that the set of an integral current space only includes points of positive
density. Since

lim inf
r→0

VolN∞(B(p0, r))

r3
= lim inf

r→0

VolM (Tr (A0) \ A0)

r3
(207)

Thus N is isometric to N∞ when this liminf is positive and N is isometric to N∞\{p0}
when this liminf is 0. When A0 = C([0, 1]) is a curve in a 3-dimensional Riemannian
manifold we have

lim inf
r→0

VolM (Tr (A0) \ A0)

r3
= lim inf

r→0

πr2L(C)

r3
= +∞ > 0. (208)

Thus N is isometric to N∞.
Thus N does not depend on the subsequence in (194) and in fact the original

sequence (given a consistent orientation) converges in the intrinsic flat sense to N . �	

5.5 The Proof of Theorem 5.2

Proof In Proposition 3.3, we show that given any ε j → 0 we can find n j → ∞ and
δ j → 0 so fast that δ j n j → 0 and we have h(δ j )n j → 0 as well such that the sewn
manifolds:

N 3
j = (M3 \ Aδ j ) 	 A′

δ j
, (209)

satisfy:
(1 − ε)Vol(Aδ) ≤ Vol(A′

δ) ≤ Vol(Aδ)(1 + ε) (210)

and
(1 − ε)Vol(M3) ≤ Vol(N 3) ≤ Vol(M3)(1 + ε) (211)

and
Diam(A′

δ) ≤ H(δ) = L(C)/n + (n + 1) h(δ) + (5n + 2) δ, (212)

where
lim
δ→0

H(δ) = 0 uniformly for K ∈ (0, 1]. (213)

Thus we have a sequence N j which is scrunching a set A0 = C([0, 1]) to a point as
in Definition 5.3.

Lemma 5.5 implies that

N j
GH−→ N∞, (214)

where N∞ is the pulled string space. Lemma 5.6 implies we have metric measure to
N∞ convergence because A0 = C([0, 1]) has H3-measure 0.
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Lemma 5.7 implies that

N j
F−→ N∞ (215)

and
M(N j ) → M(N∞) = H3(N ), (216)

completing the proof of Theorem 5.2. �	

6 Sewing a Sphere to Obtain our Limit Space

Here we construct the specific example of a sequence of manifolds with positive scalar
curvature that converges to a limit space which fails to have generalized nonnegative
scalar curvature as discussed in the introduction. More specifically:

Example 6.1 We define a sequence N 3
j of manifolds with positive scalar curvature

constructed from the standard S
3 sewn along a closed geodesic C : [0, 1] → S

3 with
δ = δ j → 0 as in Proposition 3.3. Then by Theorem 5.2 we have

N 3
j
mGH−→ N∞ and N 3

j
F−→ N∞, (217)

where N∞ is the metric space created by taking the standard sphere and pulling the
geodesic to a point as in Proposition 4.1. By Lemma 6.3 belowwe see that at the pulled
point p0 ∈ N∞, we have (3). Thus we have produces a sequence of three-dimensional
manifolds with positive scalar curvature converging to a limit space which fails to
satisfy generalized scalar curvature defined using limits of volumes of balls as in (1).

Remark 6.2 Note that with δ j → 0, the neck in the center of the tunnels has a rota-
tionally symmetric minimal surface whose area is ≤ 4πδ2j which converges to 0.
So this sequence, and in fact any sewn sequence created as in Definition 5.1, has
MinA(N j ) → 0.

Lemma 6.3 At the pulled point p0 ∈ N∞ of Example 6.1 we have

lim
r→0

(
VolE3(B(0, r)) − VolN∞(B(p0, r))

r2 VolE3(B(0, r))

)
= −∞. (218)

Proof First, observe that

VolN∞(B(p0, r)) = H3
N∞ (B(p0, r)) (219)

= H3
N∞ (B(p0, r) \ {p0}) (220)

= H3
S3

( Tr (C([0, 1])) ) . (221)

Since C([0, 1]) is a closed geodesic of length 2π in a three-dimensional sphere, we
have

lim
r→0

H3
S3

( Tr (C([0, 1])) )

2π(πr2)
= 1. (222)
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Thus

lim
r→0

VolE3(B(0, r)) − VolN∞(B(p0, r))

r2 VolE3(B(0, r))
= lim

r→0

(4/3)πr3 − 2π(πr2)

(4/3)πr5
= −∞

(223)
as claimed. �	
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Appendix: Short Tunnels with Positive Scalar Curvature by Jorge Basilio
and Józef Dodziuk

There is a deep connection between the geometry of Riemannian manifolds Mn with
positive scalar curvature and surgery theory. The subject began with the surprising
discovery by Gromov and Lawson [12] (for n ≥ 3) and Schoen and Yau [32] that a
manifold obtained via a surgery of codimension 3 from a manifold Mn with a metric
of positive scalar curvature may also be given a metric with positive scalar curvature.
The key to the tunnel construction of [12] is defining a curve γ which begins along the
vertical axis then bends upwards as it moves to the right and ends with a horizontal
line segment, cf. Fig. 6 below. The tunnel then is the surface of revolution determined
by γ . We note that the “bending argument” has attracted some attention (See [24]).

As the goals of the surgery theory were topological in nature, Gromov and Lawson
did not estimate with diameters or volumes of these tunnels. Indeed, the tunnels they
constructed may be thin but long (See [11]). To build sewnmanifolds, we need tunnels
with diameters shrinking to zero as the size of the original balls decreases to zero (see
(7), (8) (9)). Therefore, we prove Lemma 2.1 to obtain a refinement of the Gromov and
Lawson construction showing the existence of tiny (in sense of (10)) and arbitrarily
short tunnels with a metric of positive scalar curvature.

Proof of Lemma 2.1 To aid the reader, we provide a summary of our proof and intro-
duce additional notation.

Outline of Proof of Lemma 2.1

To aid the reader, we provide a summary of our proof and introduce additional notation.

Step 1: Setup and notation
Let ε > 0 be given. We shall specify 0 < δ0 < δ/2 below.
Given that B1 = B(p1, δ/2) ⊂ M3 has constant sectional curvature K > 0, we

may choose coordinates so that it is realized as a hypersurface of revolution. This is also
true for B(p1, δ0) ⊂ B1 for 0 < δ0 < δ/2 centered at the same p1. Thus, B(p1, δ0) is a
hypersurface of revolutionU ′

γ0
with the induced metric inR4 determined by revolving

a segment of the circle γ0 in the (x0, x1)-plane about the x0-axis. We set things up so
that the vertical x1-axis corresponds to boundary points of B(p1, δ0). We then proceed
as Gromov and Lawson to deform γ0 away from vertical axis bending it upwards as
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Fig. 6 The curve γ

we move to the right and ending with an arbitrarily short horizontal line segment. We
call this curve γ , cf. Fig. 6. The curve γ begins exactly as γ0 so that we may attach
the corresponding hypersurface onto the larger B(p1, δ/2) in a natural way. We do
exactly the same for B2 ⊂ M3 and identify the two hypersurfaces along their common
boundary, i.e., the “tiny neck,” forming 2U ′

γ = U ′
γ 	 U ′

γ . We then define the tunnel
U = Uδ by

U = Uδ = ((B(p1, δ/2) \ B(p1, δ0))	 (2U ′
δ0,γ

)	 ((B(p2, δ/2) \ B(p2, δ0)), (224)

where 0 < δ0 < δ/2 and U ′
γ = U ′

δ0,γ
is a modified Gromov–Lawson tunnel, see

Fig. 1.
The boundary of 2U ′

γ is isometric to a collar of B(p1, δ0) 	 B(p2, δ0), so we may
smoothly attach it to form (224).

Step 2: Construction of the curve γ , Part 1: C1

In this step, we construct a C1, and piecewise C∞, curve γ . The construction is
based on the bending argument of Gromov and Lawson and uses the fundamental
theorem of plane curves, i.e., the fact that a smooth curve parametrized by arclength
is uniquely determined by its curvature, the initial point, and the initial tangent vec-
tor. Care must be taken to ensure that the induced metric on U ′

γ maintains positive
scalar curvature and that the length of γ is controlled to yield diameter and vol-
ume estimates of Lemma 2.1. This step is quite technical and forms the heart of the
proof.

Step 3: Construction of the curve γ , Part 2: from C1 to C∞
In this step, we show how to modify the curve constructed in Step 2 to obtain

a smooth curve γ̄ while maintaining all the required features. The modification is
elementary and, once it is completed, we rename γ̄ back to γ .

Step 4: Diameter estimates (7), (9) and volume estimates (10), (11)
This is very straightforward since the previous steps give an estimate of the length

of the tunnel.
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We remark here that the choice of δ0 is used only to insure that the tunnel U ′ (see
Fig. 1) has sufficiently small volume.

Step 1 of the Proof

We now set up our notation further, describe U explicitly in terms of a special curve
γ , and state the important curvature formulas needed in later steps. The construction
of γ is done in the next two sub-sections (Steps 2 and 3).

As mentioned in Sect. 1, because we assume that B1 and B2 have constant sec-
tional curvature K , we may work directly in Euclidean space R

4 with coordinates
(x0, x1, x2, x3) and its standard metric. Let γ (s) be a curve in the (x0, x1)-plane,
parametrized by arc-length, written as γ (s) = (x0(s), x1(s)). This curve specifies a
hypersurface in R4 (by rotating γ about the x0-axis),

U ′ = U ′
γ = { (x0, x1, x2, x3 ∈ R

4 | x0 = x0(s), x21 + x22 + x23 = x1(s)
2 }, (225)

which we endow with the induced metric. Our curve γ will always lie in the first
quadrant of (x0, x1)-plane and will be parametrized so that x0(s) will be increasing.
We denote by θ(s) the angle between the horizontal direction and the upward normal
vector, and by ϕ(s) the angle between the horizontal direction and the tangent vector
to γ .

We remark that the two angle functions are related by

θ(s) = ϕ(s) + π

2
, (226)

See Fig. 6. In particular, ϕ ∈ (−π/2, 0].
Denote by k(s) the geodesic curvature of γ . It is a signed quantity so that γ bends

away from the horizontal axis if k(s) > 0 and towards the x0-axis when k(s) < 0.
If γ (s0) = (c, d) and ϕ0 = ϕ(s0) then (cf. Theorem 6.7, [13]) the function k(s)
determines γ by the formulae

ϕ(s) = ϕ0 +
∫ s

s0
k(u) du (227)

and

γ (s) =
(

c +
∫ s

s0
cos(ϕ(u)) du, d +

∫ s

s0
sin(ϕ(u)) du

)
. (228)

Our aim is to define a function k(s) so that the resulting threefold of revolution
U ′ has positive scalar curvature. The formula on page 226 of [12] for n = 3 gives a
relation between the two curvatures. Namely

ScalU ′(s) = 2 sin θ(s)

x1(s)

[
sin θ(s)

x1(s)
− 2k(s)

]
, (229)
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where ScalU ′(s) is the scalar curvature of the inducedmetric onU ′ and k is the geodesic
curvature of γ . In particular, the formula holds if γ is the intersection of the 3-sphere
around the origin with the (x0, x1)-plane in which case k is a negative constant.

We begin defining our curve γ (s) so that γ (0) corresponds to a point on ∂ B(p1, δ0)
and γ (s), for small values of s ∈ [0, s0], parametrizes the intersection of B(p1, δ0)
with the (x0, x1)-plane. In particular, for small s, k(s) ≡ −√

K . We choose s0 = δ0/2
and then extend (in Step 2, Sect. 1) the function k(s) to a suitable step function on a
longer interval [0, L] so that the resulting curve γ (s) has the following properties.

(I) The graph of γ lies strictly in the first quadrant, beginning at pI = γ (0) =
(0, cos(−π/2+δ0)/

√
K ) and ending at pF = γ (L)with x0(L) > 0, x1(L) > 0,

where L is the length of the curve. Moreover, a point of γ moves to the right
when s increases.

(II) Let θ(s) be the angle between the upward pointing normal to γ and the x0-
axis. The curve γ ends at pF with θ(L) = π/2 and has θ = π/2 (so that it is a
horizontal line segment) for an arbitrarily small interval (L ′, L] (where L ′ < L).

(III) The curve γ has constant curvature −√
K near 0 so that the boundary of U has

a neighborhood that is isometric to a collar of B1 ∪ B2.
(IV) The curvature function k(s) satisfies

k(s) <
sin(θ(s))

2x1(s)
s ∈ [0, L], (230)

so that the expression on the right-hand side of (229) is positive for all s ∈
[0, L]. We remark here that in certain stages of the construction k(s) will have
discontinuities so that ScalU ′(s) is not defined but this will cause no difficulties.

(V) The length of γ , L , is O(δ0).

Due to properties (I) and (II) of γ above, we may smoothly attach two copies of
U ′ along their common boundary at s = L to define 2U ′ = U ′

γ 	 U ′
γ and then, using

property (III), attach 2U ′ to form U as in (224).
In the next step, we construct a piecewise C1 curve γ in the (x0, x1)-plane which

satisfies properties (I) through (V). Then, in Step 3, we modify the construction once
more to produce a smooth curve, γ̄ , with these same properties.

Step 2 of the Proof: Construction of γ , Part 1: C1

As above, let s0 = δ0/2 and let q0 = (a0, b0) be the coordinates of the point γ (s0) that
is already defined. By choosing δ0 sufficiently small, we can assume that the tangent
vector to γ at s = s0 is nearly vertical and is pointing downward at s = s0. We also
have k(s) ≡ −√

K on [0, s0].
We will use a finite induction to define a sequence of extensions of γ over intervals

[si , si+1], with si < si+1 for a finite number of steps 0 ≤ i ≤ n, where n = n(δ0) is
the number of steps required such that properties (I), (III), (IV), and (V) all hold at
each extension. We denote by (ai , bi ) the coordinates of the point γ (si ) for 0 ≤ i ≤ n.

Let us first choose the curvature function k(s) of γ (s) on the first extended interval
[s0, s1]. Observe that equation (230) limits the amount of positive curvature allowed
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for k(s). In fact, we choose k(s) to be the constant k1 > 0 over the interval [s0, s1]
based only the initial data at s0

k1 = sin(θ(s0))

4b0
> 0, (231)

where θ(s0) = π
2 + ϕ(s0) = δ0 − √

K s0 > 0 and b0 = x1(s0). Note that constant
positive curvature means that γ (s) moves along the arc of a circle of curvature 1/

√
k1

bending away from the origin.
We verify that property (IV) holdswith our choice of k1 in (231). From (227), we see

that ϕ(s) is an increasing function with range in the interval (−π/2, 0), hence θ(s) is
also increasing by (226).Moreover, from (227) and (228),we see that the x1-coordinate
function is decreasing on the interval (s0, s1) since x ′

1(s) = sin(ϕ(s)) < 0. Thus,
the expression on the right-hand side of (230), sin(θ(s))/(2x1(s)), is an increasing
function on (s0, s1) so that

sin(θ(s0))

2x1(s0)
≤ sin(θ(s))

2x1(s)
s ∈ [s0, s1]. (232)

Since k(s) ≡ k1 is constant it follows that the property (IV) holds for s ∈ [s0, s1].
Next, we choose the length of the extension �s1 = s1 − s0, so that properties (I)

and (V) hold. This is achieved by setting

�s1 = b0
2

> 0 (233)

Observe that x0(s) is increasing since x ′
0(s) = cos(ϕ(s)) > 0 as ϕ ∈ (−π/2, 0).

Clearly we have
b0 < δ0 (234)

since b0 is the vertical distance of γ (s0) to the x0-axis which is less than the distance
along the sphere.

Of course, we do not achieve a final angle of π/2 of the normal at s1 and gain only
a small but definite increase in the angle. The change in angle of the normal with the
x0-axis is

�θ1 = θ(s1) − θ(s0) =
∫ s1

s0
k(s) ds = k1 · �s1 = sin(θ(s0))

8
> 0

by (231) and (233).
With γ extended over the first interval [s0, s1], we now inductively define further

extensions. Assume that �s j , s j and k j have been chosen for j = 1, 2, . . . , (i − 1),
and γ extended on the intervals [s j , s j+1], we then define

�si = bi−1

2
, si = si−1 + �si and ki = sin(θ(si−1))

4bi−1
, (235)
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where γ (si ) = (ai , bi ). In what follows we will also write θ j and ϕ j for θ(s j ) and
ϕ(s j ), respectively.We remark that bi+1 < bi by (228) since the angleϕ is negative and
that ki+1 > ki since the ratio

sin(θ(s))
x1(s)

is increasing. Observe that properties (I), (IV),
and (V) of γ hold on [si−1, si ] for all i by our choices in (235) by arguments analogous
to those given for the first extension of γ on [s0, s1].

We observe that we gain a definite amount of angle θ with each extension since, by
(235), for each j ∈ {1, 2, . . . , i},

�θ j = θ(s j ) − θ(s j−1) =
∫ si

s j−1

k(s) ds = k j · �s j = sin(θ(s j−1))

8

≥ sin(θ(s0))

8
, (236)

because θ(s j−1) ≥ θ(s0) and the values of θ are in the range (0, π/2) so that the sine
is an increasing function. We stop the construction when θ(s) reaches the value π/2.
Thus the total change in the angle θ over the interval [0, si ] is bounded from below by

�θ =
i∑

j=1

�θ j ≥ i · sin(θ0)
8

. (237)

To prove property (V), that the length of γ is on the order of δ0, we need the sequence
of bi ’s to be summable and will want to compare it to the geometric progression. The
difficulty here is that, since our curve is bending more and more upwards, the ratios
bi/bi−1 increase. For this reason, we stop our induction when θ reaches the value of
π/4. It will turn out that once this value is reached, we can complete the construction
of k(s) by a single extension albeit with �s not given by (235).

Thus, define n = n(δ0) to be the first positive integer with

π

4
≤ θn (238)

which exists by (237). Moreover, if θn > π/4 we re-define sn to be the exact value in
(sn−1,∞) such that θ(sn) = π/4. Thus, for the modified value of sn

θn = θ(sn) = π

4
. (239)

The following Lemma gives the desired comparison.

Lemma 7.1 There exists a universal constant C ∈ (0, 1), independent of δ0 and K ,
such that for all i ≤ n

bi ≤ C · bi−1,

where n = n(δ0) is as above.
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The Lemma, to be proven shortly below, implies that the length of the curve γ on
the entire interval [0, sn] is no larger than a constant (independent of δ0) times δ0.
Namely,

L(γ ([0, sn])) = sn =
n∑

j=1

�s j . (240)

Thus, from (235) and Lemma (7.1), we have

n∑
j=1

�s j =
n∑

j=1

b j−1

2
≤ b0

2

⎛
⎝n−1∑

j=1

C j

⎞
⎠ ≤ C1δ0 (241)

by the lemma and (234). So, L(γ ([0, sn])) ≤ C1b0 with C1 = 1
2−2C which is inde-

pendent of δ0 since C is. This proves that L(γ ([0, sn])) = O(δ0).

Proof of Lemma 7.1 Let 1 ≤ i ≤ n. We compute explicitly using (227), (228), and
(235),

ϕ(si ) = ϕ(si−1) + ki · �si = ϕ(si−1) + sin(θi−1)

8
(242)

and

bi = x1(si )

= bi−1 +
∫ si

si−1

sin(ϕ(si−1) + ki (u − si−1)) du

= bi−1 − 1

ki
(cos(ϕ(si )) − cos(ϕ(si−1)))

= bi−1 − 4bi−1

sin(θ(si−1))

(
cos

(
ϕ(si−1) + sin(θi−1)

8

)
− cos(ϕ(si−1))

)
.

Thus,

bi

bi−1
= 1 − 4

sin(θ(si−1))

(
cos

(
ϕ(si−1) + sin(θi−1)

8

)
− cos(ϕ(si−1))

)
.

Therefore, by the Mean Value Theorem, there exists μi ∈ (ϕ(si−1), ϕ(si−1) +
sin(θ(si−1))/8) such that

bi

bi−1
= 1 − 4

sin(θ(si−1))
(− sin(μi )) · sin(θ(si−1))

8
= 1 + sin(μi )

2
.

To complete the proof of the claim, we seek a constant 0 < C < 1, independent of
δ0, such that

1 + sin(μi )

2
< C < 1. (243)
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Recall that the angle function ϕ takes negative values throughout.
We claim that the choice

C = 1 + 1

4
sin

(
−π

4
+ cos(−π

4 )

8

)
≈ 0.8395 (244)

will satisfy our requirement.
This follows from the fact that the sine is an increasing function on the interval

(ϕ(si−1), ϕ(si−1) + sin(θ(si−1))/8) and the fact that both the angles ϕi and θi are
increasing, so

1 + sin(μi )

2
≤ 1 + 1

2
sin

(
ϕ(si−1) + sin(θ(si−1))

8

)

≤ 1 + 1

2
sin

(
ϕ(sn) + cos(ϕ(sn))

8

)
.

By our choice of sn , θ(sn) = π/4 from (239) and ϕ(sn) = −π/4 so that

1 + sin(μi )

2
≤ 1 + 1

2
sin

(
−π

4
+ cos

(−π
4

)
8

)

< 1 + 1

4
sin

(
−π

4
+ cos

(−π
4

)
8

)

= C < 1.

This finishes the proof of the Lemma. �	

At this stage of the construction, γ has angle θ = π/4 at the endpoint sn . We make
one additional extension of our step function.

We now define sn+1 > sn and kn+1 > 0 as follows.
By (227) ϕ(s) in [sn, sn+1] will be given by

ϕ(s) = ϕn +
∫ s

sn

k(u) du = ϕn + kn+1(s − sn). (245)

Let sn+1 be determined by kn+1 as the first value such that ϕ(sn+1) = 0 (equivalently
θ(sn+1) = π/2). Then

0 = ϕ(sn+1) = ϕn + kn+1(sn+1 − sn) (246)

so that
sn+1 = sn − ϕn

kn+1
. (247)
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We require in addition that b(sn+1) > 0 (that is, γ remains above the x0-axis). Using
(247) and (228), we obtain

b(sn+1) = bn +
∫ sn+1

sn

sin(ϕ(s)) ds = bn − cos(ϕ(sn+1)) − cos(ϕ(sn))

kn+1

= bn − 1 − cos(ϕ(sn))

kn+1
(248)

so that b(sn+1) > 0 is equivalent to

bn − 1 − cos(ϕ(sn))

kn+1
> 0

or
kn+1 · bn > 1 − cos(ϕ(sn)). (249)

On the other hand, kn+1 has to be bounded from above in order to guarantee (230).
Therefore, we require that

kn+1 <
sin(θ(sn))

2bn
,

or

kn+1 · bn <
sin(θ(sn))

2
. (250)

Combining (249) and (250) gives conditions for kn+1

1 − cos(ϕ(sn)) < kn+1 · bn <
sin(θ(sn))

2
. (251)

Since sin(θ(s)) = cos(ϕ(s)), (251) is equivalent to

1 − cos(ϕ(sn)) < kn+1 · bn <
cos(ϕ(sn))

2
. (252)

Now, recall that sn was chosen in (239) so that ϕ(sn) = −π/4 so

1 − cos(ϕ(sn)) = 2 − √
2

2
<

cos(ϕ(sn))

2
=

√
2

4
.

Now, choose arbitrarily any α, satisfying

2 − √
2

2
< α <

√
2

4
(253)

and define kn+1 by
kn+1 = α/bn . (254)
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With this choice (252), and therefore, (249) and (250) hold.
To ensure property (II), we choose L > sn+1 so that L − sn+1 is arbitrarily small.

We extend γ to the interval [sn+1, L], where γ is a straight horizontal line on [sn+1, L]
by choosing k(s) = 0 there. To check that the length of the curve we constructed is
O(γ0) we observe that

sn+1 = sn − ϕn/kn+1 = sn + π

4α
bn ≤ sn + π

4α
b0 = O(δ0) (255)

by (234), (241), and (255).
We note that the choice of L is arbitrary. It will be made explicit in the next step

when we construct the curve γ̄ , the C∞ version of γ .
This completes the construction of the continuously differentiable curve γ defined

on the interval [0, L] satisfying properties (I) through (V).

Step 3 of the Proof: Construction of γ , Part 2: From C1 to C∞

In this step, barred quantities will refer to the C∞ curve γ̄ (s) to be constructed in this
step and all the other quantities related to the construction (for example, θ̄ , ϕ̄, k̄(s),
etc.). Unbarred quantities will refer to the C1 curve constructed in the previous step.

The general plan is to replace k(s) as chosen in Step 2 with a smooth version k̄(s)
as depicted in Fig. 7, which will then define γ̄ by the formulae (227) and (228). Set
k0 = −K 1/2 and modify k(s) on [si , si+1] for i = 0, 1, 2, . . . , n so that the graph
of k̄(s) will connect to the constant function equal to ki smoothly at si , will rise
steeply to the value ki+1 in a very short interval [si , si +α] and will connect smoothly
with constant function equal to ki+1 in [si + α, si+1]. For each i = 0, 1, 2, . . . n,
k̄|[si , si+1] can be constructed as follows. Choose and fix a C∞ function g(s) which
is identically 0 for s < 0, identically 1 for s > 1, and strictly increasing on [0, 1].
Then k̄|[si , si+1] is constructed by appropriate rescaling and translations of the graph
of g(s) in both vertical and horizontal directions. The values of ki and ki+1 determine
the transformations along the vertical axis but rescaling of the independent variable
remains a free parameter α to be set sufficiently small later. We will use the same value
of α for every i = 1, 2, . . . n.

Since

�θ̄ =
∫ sn+1

0
k̄ ds ≤

∫ sn+1

0
k ds = �θ,

we loose a small amount of “bend” so that θ̄ (sn+1) < π
2 by a very small amount

controlled by α. We compensate for this by one final extension of k̄ to an interval
[sn+1, L] with L = sn+1 + 2β. We choose k̄ so that it connects smoothly with kn+1
at sn+1, drops smoothly to zero over [sn+1, sn+1 + β] and continues identically zero
on [sn+1 + β, sn+1 + 2β]. β and k̄ are chosen so that
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Fig. 7 Graph of the smooth curvature k̄(s) with “full bend”

Fig. 8 Graph of the curvature, k(s), with “full bend” as a step function

∫ sn+1+β

sn+1

k̄(s) ds = π

2
− θ̄ (sn+1).

This ensures that θ̄ = π
2 in the interval [sn+1 + β, sn+1 + 2β]. This final extension

is constructed as the preceding ones except that we have to use the reflection s �→ −s
before rescaling and translating the original function g. We note that β = O(α) is
determined by the choice of α and the requirement that θ̄ (L) = π

2 . We also observe
that as α tends to zero, the functions ϕ̄, θ̄ , x̄0, and x̄1 will converge uniformly on [0, L]
to ϕ, θ , x0, and x1, respectively, as follows from (227) and (228).

We now check that the properties (I) through (V) on page (I) hold for the curve γ̄

for sufficiently small choice of α. Only (IV) and (V) need a verification. (V) follows
since L = sn+1+2β = O(δ0)+ O(α). To prove (IV) we use the uniform convergence

on [0, sn+1] as α approaches 0 of sin θ̄ (s)
2x̄1(s)

to sin θ(s)
2x1(s)

. More precisely, on [si , si+1],

123



Sewing Riemannian Manifolds with Positive Scalar Curvature 3601

sin θ̄ (s)

2x̄1(s)
− k̄(s) =

(
sin θ̄ (s)

2x̄1(s)
− ki+1

)
+ (

ki+1 − k̄(s)
)
.

For sufficiently smallα, the first termon the right becomes positive by the property (IV)
for the curve γ while the second term is nonnegative by construction (cf. Fig. 8).

Finally, in the last interval [sn+1, L] the ratio sin θ̄ (s)
2x̄1(s)

is nondecreasing so that

sin θ̄ (s)

2x̄1(s)
≥ sin θ̄ (sn+1)

2x̄1(sn+1)
> kn+1

since the last inequality was verified for s = sn+1 already. Property (IV) follows since
kn+1 > k̄(s) in [sn+1, L]. This finishes the construction of γ̄ .

Step 4 of the Proof: Diameter and Volume Estimates of Lemma 2.1

Given the definition of U in (224), the diameter of U is estimated by

Diam(U ) ≤ πδ + δ + 2L = O(δ) + O(δ0) = O(δ).

To estimate the volume of U ′, note that the intersection of U ′ with the hyperplane
x0 = x0(s) = c for 0 < s < L is a sphere of two dimensions and of radius x1(s) < δ0.
It follows by Fubini’s theorem that Vol(U ′) = O(δ30). To prove (10) recall that U is
obtained from the union of two disjoint balls of radius δ by removing balls of radius
δ0 and attaching U ′ along the common boundary (cf. Fig. 1). Since the volumes of
the removed balls and of the added tunnel are O(δ30), the estimate (10) follows by
choosing δ0 sufficiently small depending on ε. The estimate (11) is proved in the same
way. The proof of Lemma 2.1 is now complete. �	
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