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Abstract In this paper, we consider the curvature flow with driving force on fixed
boundary points in the plane. We give a general local existence and uniqueness result
of this problem with C2 initial curve. For a special family of initial curves, we classify
the solutions into three categories.Moreover, in each category, the asymptotic behavior
is given.
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1 Introduction

In this paper, we consider the curvature flow with driving force on fixed boundary
points given by

V = −κ + A, on �(t), 0 < t < T ; (1.1)

�(0) = �0; (1.2)

∂�(t) = {P, Q}, 0 ≤ t < T . (1.3)

Here V denotes the upward normal velocity(the definition of “upward” is given by
Remark 2.2). The sign κ is chosen such that the problem is parabolic. A is a positive
constant. P , Q are two different fixed points in R
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3492 L. Zhang

Let s ∈ [0, L(t)] be the arc length parameter on �(t) and F ∈ C2,1([0, L(t)] ×
[0, T ) → R

2) such that �(t) = {F(s, t) ∈ R
2 | 0 ≤ s ≤ L(t)}. Equations (1.1) and

(1.2) can be written as

∂

∂t
F(s, t) = κN − AN , 0 < s < L(t), (1.4)

F(s, 0) = F0(s), 0 ≤ s ≤ L0. (1.5)

Here �0 = {F0(s) ∈ R
2 | 0 ≤ s ≤ L0}; N denotes the unit downward normal

vector(the definition of “downward” is given by Remark 2.2) and L(t) denotes the
length of�(t). And the notation ∂

∂t F(s, t) denotes the partial derivative with respect to
t by fixing s. Noting the assumption that the sign of κ is chosen such that the problem
(1.1) is parabolic, combining Frenet formulas, there holds

κN = ∂2

∂s2
F(s, t).

The boundary condition 1.3 can be written as follows:

F(0, t) = P, F(L(t), t) = Q. (1.6)

Main resultsHere we give our main theorems. In the following paper, p is denoted
as the arc length parameter on �0.

Theorem 1.1 Assume that F0 ∈ C2([0, L0] → R
2) is embedding. Then there exist

T > 0 and a unique embedding map F̃ ∈ C2,1([0, L0]× [0, T0) → R
2) such that the

following results hold:

(1) ∂
∂t F̃(p, t) = κN − AN, 0 < p < L0, 0 < t < T ;

(2) F̃(p, 0) = F0(p), 0 ≤ p ≤ L0;
(3) F̃(0, t) = P, F̃(L0, t) = Q, 0 ≤ t < T . Moreover, the flow

�(t) = {F̃(p, t) | p ∈ [0, L0]}, 0 ≤ t < T

satisfies (1.1), (1.2), (1.3).

Assume that P = (−a, 0), Q = (a, 0), where 0 < a ≤ 1/A. Before giving the
three categories result, we introduce two equilibrium solutions of (1.1) with boundary
condition (1.6). Denote

�∗ = {(x, y) ∈ R
2 | y =

√
1/A2 − x2 −

√
1/A2 − a2,−a ≤ x ≤ a}

and

�∗ = ∂B 1
A

(
(0,

√
1/A2 − a2)

) \ {(x,−y) ∈ R
2 | (x, y) ∈ �∗}.
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Fig. 1 Equilibrium solutions of (1.1)

Here Br
(
(x, y)

)
denotes the ball centered at (x, y) with radii r (Fig. 1).

Obviously, on �∗ and �∗, there hold κ = A and the fixed boundary condition. Here
we give the three categories theorem. In the following theorem, we consider a family
of initial curves given by

�σ = {(x, y) ∈ R
2 | y = σϕ(x),−a ≤ x ≤ a}.

Here ϕ is even, ϕ ∈ C2
([−a, a]), ϕ(−a) = ϕ(a) = 0, and ϕ′′(x) ≤ 0, −a < x < a.

And assume that for all σ ∈ R,�σ intersects�∗ at most fourth(including the boundary
points). Denote �σ (t) being the solution with �σ (0) = �σ .

Theorem 1.2 There exists σ ∗ > 0 such that

(1) For σ > σ ∗, there exists T ∗
σ < Tσ such that �σ (t) � �∗, T ∗

σ < t < Tσ ;
(2) For σ = σ ∗, Tσ = ∞ and �σ (t) → �∗ in C1, as t → ∞;
(3) For σ < σ ∗, Tσ = ∞ and �σ (t) → �∗ in C1, as t → ∞.

Here Tσ denotes the maximal existence time of �σ (t).

The notation “�” can be seen as an order. The precise definition is given in Sect. 2.
We will interpret the sense of C1 convergence in Definition 2.9.

Main method. Theorem 1.1 can be easily proven by transport map. The transport
map is first used by [1] to consider the curvature flow under the non-graph condition.
For the three categories result, we use the intersection number principle to classify
the type of the solutions in Lemma 4.3. Since �σ intersects �∗ at most fourth, the
intersection number between �σ (t) and �∗ can only be two or four. In Lemma 4.3,
one of the following three conditions can hold:

(1) The curve �σ (t) intersects �∗ twice and �σ (t) � �∗ eventually;
(2) The curve �σ (t) intersects �∗ fourth for every t > 0.
(3) The curve �σ (t) intersects �∗ twice and �∗ � �σ (t) eventually.

Considering future, under the condition (2) above, �σ (t) → �∗ in C1, as t → ∞;
under the condition (3) above, �σ (t) → �∗ in C1, as t → ∞. In this paper, we prove
the asymptotic behavior by using Lyapunov function introduced in Sect. 5.
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A short review for mean curvature flow. For the classical mean curvature flow:
A = 0 in (1.1), there are many results. Concerning this problem, Huisken [9] shows
that any solution that starts out as a convex, smooth, compact surface remains so until it
shrinks to a ”round point” and its asymptotic shape is a sphere just before it disappears.
He proves this result for hypersurfaces of R

n+1 with n ≥ 2, but Gage and Hamilton
[4] show that it still holds when n = 1, the curves in the plane. Gage and Hamilton
also show that embedded curve remains embedded, i.e. the curve will not intersect
itself. Grayson [8] proves the remarkable fact that such family must become convex
eventually. Thus, any embedded curve in the plane will shrink to ”round point” under
curve shortening flow.

For fixed boundary point problem, Forcadel et al. [3] consider a family of half lines
evolved by (1.1), and one boundary point is fixed at the origin. Precisely, the family
of curves is given by polar coordinates,

{
x = ρ cos θ(ρ, t),
y = ρ sin θ(ρ, t),

for 0 ≤ ρ < ∞. Therefore, θ(ρ, t) satisfies

ρθt = A
√
1 + ρ2θ2ρ + θρ

(
2 + ρ2θ2ρ

1 + ρ2θ2ρ

)
+ ρθρρ

1 + ρ2θ2ρ
, t > 0, ρ > 0. (1.7)

Obviously, this problem is singular near ρ = 0. They consider the solution of (1.7) in
viscosity sense. Since near the fixed boundary point, curvature flow has singularity by
using polar coordinates, there are some papers considering this problem by digging a
hole. For example, Giga et al. [5] consider anisotropic curvature flow equation with
driving force in the ring domain r < ρ < R. At the boundary, the family of the curves
is imposed being perpendicular to the boundary, as seen in Fig. 2.

Motivation of this research.Ohtsuka et al. first prove the existence and uniqueness
of spiral crystal growth for (1.1) by level set method in [6] and [12]. Moreover, they
also consider this problem by digging a hole near the fixed points. Recently, [13]

( , )t
r

R

Fig. 2 Research in [5]
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Fig. 3 Evolution of level set #1
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Fig. 4 Evolution of level set #2
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Fig. 5 Evolution of level set #3

simulates the level set of the solution given in [12] by numerical method. In their
paper, for a > 1/A, the level set evolves as shown in Figs. 3, 4 and 5.

Although, in our paper, we only consider the problem under the condition a ≤
1/A, the simulated results in [13] give the hit about this research. We are devoted to
considering them in an analytic way.

The rest of this paper is organized as follows. In Sect. 2, we give some prelim-
inary knowledge including the definition of semi-order, comparison principle, and
intersection number principle. In Sect. 3, we give the existence and uniqueness result
for the fixed boundary points problem. Moreover, in Lemma 3.5, we give a sufficient
condition for the solution �σ (t) remaining regular. In Sect. 4, we give the asymptotic
behavior of the solution�σ (t)when σ is large or small. Lemma 4.3 gives an important
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result for classifying�σ (t) by intersection number. In Sect. 5, we prove the asymptotic
behavior for the condition (3) in Lemma 4.3 by Lyapunov function. In Sect. 6, we give
the proof of Theorem 1.2.

2 Preliminary

Semi-orderWe want to define a semi-order for curves with the same fixed boundary
points.

Definition 2.1 For any points P , Q ∈ R
2 and P 
= Q, assume that maps Fi (s) ∈

C([0, li ] → R
2) are injection and Fi are differentiable at 0 and li .The curves γi are

given by γi = {Fi (s) | 0 ≤ s ≤ li , Fi (0) = P, Fi (li ) = Q}, where li is the length of
γi , i = 1, 2. It is easy to see that γi have the same boundary points P , Q, i = 1, 2.
We say γ1 � γ2, if

(1) There exists connect, bounded and open domain 
 such that ∂
 = γ1 ∪ γ2;
(2) d

ds F1(0) · d
ds F2(0) 
= 1 and d

ds F1(l1) · d
ds F2(l2) 
= 1;

(3) The domain 
 is located in the right hand side of γ1, when someone walks
along γ1 from P to Q.

Here “·” denotes the inner product in R
2. We say γ1 � γ2, if there exist two

sequences of curves {γin}n≥1, i = 1, 2 such that

(1) lim
n→∞ dH (γin, γi ) → 0, i = 1, 2;

(2) γ1n � γ2n , n ≥ 1.

Here dH (A, B) denotes the Hausdorff distance for set A, B ⊂ R
2.

Let F(s) ∈ C2([0, l] → R
2) be embedding and γ = {F(s) | s ∈ [0, l], F(0) =

P, F(l) = Q}. Using the definition of semi-order, we can define a shuttle neighbor-
hood of γ . Considering the assumption of γ , we can extend γ by γ ∗ such that γ ∗ is
C1 curve and divides R

2 into two connect parts denoted by 
1 and 
2. Moreover, 
1
is located in the left hand side when someone walks along γ ∗ from P to Q (Fig. 6).

Remark 2.2 We say the normal vector of γ is upward(downward), if the normal vector
points to the domain 
1(
2).

2

1
Q

P
Fig. 6 Definition 2.1
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Curvature flow with driving force on fixed boundary points 3497

Definition 2.3 (Shuttle neighborhood) We say V is a shuttle neighborhood of γ , if
there exist two embedded curves γ1 and γ2 such that

(1) γi ⊂ 
i , i = 1, 2;
(2) γ1 � γ � γ2;
(3) ∂V = γ1 ∪ γ2.

Comparison principle and intersection number principle Here we introduce
the comparison principle and intersection number principle. The intersection number
principle can help us classify the solutions.

For giving comparison principle, we must define sub,super-solution of (1.4).

Definition 2.4 Wesay a continuous family of continuous curves {γ (t)} is a sub(super)-
solution of (1.4) and (1.6), if

(1) γ (t) are continuous curves and have the same boundary points P , Q;
(2) Let {S(t)} be a smooth flow with boundary points P , Q. For some point P∗

and some time t0 > 0 satisfying P∗ ∈ γ (t0) with P∗ 
= P, Q. If near
the point P∗ and time t0, {S(t)} only intersects {γ (t)} at P∗ and time t0
from above(below). Let VS(t) denote the upward normal velocity of S(t) and
κS(t)(P) denote the curvature at P ∈ S(t). Then

VS(t0)(P
∗) ≤ (≥) − κS(t0)(P

∗) + A.

Theorem 2.5 (Comparison principle) For two families of curves {γ1(t)}0≤t≤T and
{γ2(t)}0≤t≤T , assume {γ1(t)}0≤t≤T is a super-solution of (1.4) and (1.6), {γ2(t)}0≤t≤T

is a subsolution of (1.4) and (1.6). If γ1(0) � γ2(0), then γ1(t) � γ2(t), 0 ≤ t ≤ T .
Moreover, If γ1(0) � γ2(0) and γ1(0) 
= γ2(0), then γ1(t) � γ2(t). 0 ≤ t ≤ T .

We can prove this theorem by contradiction. Using local coordinate representation,
by maximum principle and Hopf lemma, the conclusion can be got easily. Here we
omit the detail.

In this paper, besides intersection number Z [·, ·], we introduce a related notion
SGN [·, ·](first used by [2]), which turns out to be exceedingly useful in classifying
the types of the solutions.

Definition 2.6 For two curves γ1 and γ2 satisfying the same conditions in Defini-
tion 2.1, we define

(1) Z [γ1, γ2] is the number of the intersections between curves γ1 and γ2. Noting
that γ1 and γ2 have the same boundary points, then Z [γ1, γ2] ≥ 2;

(2) SGN [γ1, γ2] is definedwhen Z [γ1, γ2] < ∞. Denoting n+1 := Z [γ1, γ2] <

∞, let P = P0, P1, · · · , Pn−1, Pn = Q be the intersections. Here we assume

Pi+1P0 > Pi P0 and P̃i+1P0 > P̃i P0, i = 1, · · · , n, where Pi Pj denotes

the arc length of γ1 between Pi and Pj ; P̃i Pj denotes the arc length of γ2
between Pi and Pj . If γ1 |Pi Pi−1� γ2 |

˜Pi Pi−1
, we say the sign between Pi and

Pi−1 is “+”; Respectively, γ2 |
˜Pi Pi−1

� γ1 |Pi Pi−1 , we say the sign between

Pi and Pi−1 is “−”, i = 1, · · · , n. Where γ1 |Pi Pi−1 and γ2 |
˜Pi Pi−1

denote the

restriction between Pi−1 and Pi .
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Fig. 7 Example for SNG[·, ·]

SGN [γ1, γ2] called ordered word set consists the sign between Pi and Pi−1, i =
1, · · · , n.

For explaining Definition 2.6, we give an example. Considering Fig. 7, Z [γ1, γ2] =
6 and

SGN [γ1, γ2] = [− + − + −].

Let A and B be two ordered word sets, we write A � B, if B is a sub ordered word
set of A. For example,

[+ −] � B for B = [+ −], [+], [−], but not [+ −] � [− +].

Remark 2.7 For the curve shortening flow (A = 0), we can deduce that for all t1 < t2,

Z [γ1(t2), γ2(t2)] ≤ Z [γ1(t1), γ2(t1)], SGN [γ (t2), γ (t2)] � SGN [γ (t1), γ (t1)].

However, for the curve shortening flow with driving force (A > 0), even if γ1(t)
and γ2(t) satisfy (1.4) and (1.6), we can not guarantee that for all t1 < t2,

Z [γ1(t2), γ2(t2)] ≤ Z [γ1(t1), γ2(t1)], SGN [γ (t2), γ (t2)] � SGN [γ (t1), γ (t1)].

For giving the intersection number principle, we need assume γ1(t) and γ2(t) are
homeomorphism to a curve.

Theorem 2.8 (Intersection number principle) Let M be C1 embedded curve with
boundary points P, Q, V be a shuttle neighborhood of M and flow φ : M×(−δ, δ) →
V satisfy that for every z ∈ V , there exist unique z∗ ∈ M and unique α0 ∈ (−δ, δ)

such that

φ(z∗, α0) = z.

Assume that two families of curves {γi (t)}0≤t≤T ⊂ V satisfy (1.4) and (1.6) and there
exist
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Curvature flow with driving force on fixed boundary points 3499

ui : M × [0, T ] → R

such that

γi (t) = {φ(z, u(z, t)) | z ∈ M}, 0 ≤ t ≤ T

for i = 1, 2. Then one of the following conditions holds
(1)

γ1(t) ≡ γ2(t)

for all 0 ≤ t ≤ T ;
(2) Z [γ1(t), γ2(t)] < ∞ for all 0 < t ≤ T . Moreover,

Z [γ1(t2), γ2(t2)] ≤ Z [γ1(t1), γ2(t1)], SGN [γ (t2), γ (t2)] � SGN [γ (t1), γ (t1)],

for all 0 < t1 < t2 ≤ T .

Proof If γ1(t) 
= γ2(t), by the basic parabolic theory, the intersections are discrete.
Therefore, Z [γ1(t), γ2(t)] < ∞ for all 0 < t ≤ T . It is necessary to prove that for
any t0, there exists ε0 such that

Z [γ1(t2), γ2(t2)] ≤ Z [γ1(t1), γ2(t1)], SGN [γ (t2), γ (t2)] � SGN [γ (t1), γ (t1)],

for all t0 − ε0 ≤ t1 < t2 ≤ t0 + ε0.
We can use the local coordinate to represent the two curves near the intersections

and time t0.Using the classical intersection number principle, for example, considering
[2], we can prove this results easily. We omit the detail safely. ��
Definition 2.9 For aC1 curve γ and a sequence ofC1 curves γn with boundary points
P , Q, we say γn → γ in C1, if

(1) There exist a C1 curve M with boundary points P , Q and maps

ϕ, ϕn : M → R
2

such that

γ = {ϕ(z) | z ∈ M}, γn = {ϕn(z) | z ∈ M}.

(2)

‖ϕn − ϕ‖C1(M→R

2) → 0,

as n → ∞.
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3 Time local existence and uniqueness of solution

In this section, we introduce the the transport map first used by [1] and prove Theo-
rem 1.1.

Lemma 3.1 For �0 satisfying the assumption in Theorem 1.1, there exist a shuttle
neighborhood V of �0 and a vector field X ∈ C1(V → R

2) such that

X (z) · N (z) < 0, z ∈ �0

and in V , there holds

|X | ≥ δ > 0, for some δ > 0,

where N denotes the unit downward normal vector of �0.

Proof We extend �0 by �∗
0 such that �

∗
0 is a C

2 curve and divide R
2 into two connect

parts 
1 and 
2. Assume 
1(
2) locates in the left(right) side of �∗
0(“left side” and

“right side” are defined as in Sect. 2).
Let d(x) be the signed distance function defined as follows:

d(x) = d(x,
2) − d(x,
1), x ∈ R
2.

Since �∗
0 is C2, as we know, there exists a tubular neighborhood U of �∗

0 such that d
is C2 in U . Moreover, there exists a projection map P such that for all z ∈ U , there
exists a unique point z∗ ∈ �∗

0 such that

Pz = z∗

and ∇d(z) = ∇d(z∗) = −N (z∗). We choose two curves �1, �2 ⊂ U and �i ⊂ 
i ,
i = 1, 2, such that �1 � �0 � �2. Let V be the domain satisfying �0 ⊂ V , ∂V =
�1 ∪ �2, and X (z) = ∇d(z). Obviously

|X |(z) = 1, z ∈ V

and

X (z) · N (z) = −1, z ∈ �0.

��
Transport map Let φ : �0 × (−δ, δ) → V be the map generated by vector field

X , precisely,

{ d
dα φ(z, α) = X (φ), z ∈ �0,

φ(z, 0) = z, z ∈ �0.

Recalling �0 = {F0(p) | 0 ≤ s ≤ L0} and F0 ∈ C2([0, L0] → R
2), let
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Curvature flow with driving force on fixed boundary points 3501

ψ(p, α) = φ(F0(p), α).

Considering the assumption of F0 and X , ψp, ψα , ψpp, ψpα , ψαα are all continuous
vectors for 0 ≤ p ≤ L0, −δ < α < δ.

If �(t) ⊂ V is C1 close to �0 and satisfies (1.4), (1.6), 0 < t < T with initial data
�(0) = �0, then there exists a function u(·, t) : [0, L0] → R such that

�(t) = {ψ(p, u(p, t)) | 0 ≤ p ≤ L0}.

Moreover, u satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = 1

|ψp + ψαu p|2 u pp + det(ψp + ψαu p, ψpp + 2u pψpα + ψααu2p)

det(ψp, ψα)|ψp + ψαu p|2
+A

|ψpα + ψαu p|
det(ψp, ψα)

,

0 < p < L0, 0 < t < T,

u(0, t) = u(L0, t) = 0, 0 ≤ t < T,

u(p, 0) = 0, 0 ≤ p ≤ L0,

(3.1)

where det(·, ·) denotes the determinant. Indeed, the upward normal velocity and the
curvature are given by

V = det(ψp, ψα)ut
|ψp + ψαu p|

and

κ= det(ψp, ψα)

|ψp + ψαu p|3 u pp+
det(ψp + ψαu p, ψpp + 2u pψpα + ψααu2p)

|ψp + ψαu p|3 .

For the computation, we can see, for example, [11].
Following Proposition 3.2 implies Theorem 1.1.

Proposition 3.2 There exist T0 > 0 and a unique u ∈ C([0, L0] × [0, T0)) ∩
C2+α,1+α/2([0, L0] × (0, T0)) such that u satisfies (3.1) for T = T0.

Proof Since ψp(p, 0) · ψα(p, 0) = 0, 0 ≤ p ≤ L0, then

| det(ψp, ψα)|(p, 0) = 1, 0 ≤ p ≤ L0.

There exist δ1 > 0 and α0 such that for all −α0 < α < α0 and 0 ≤ p ≤ L0,

| det(ψp, ψα)|(p, α) > δ1.

By the quasilinear parabolic theory in [10], we can deduce that there exist T0 and
u ∈ C([0, L0] × [0, T0)) ∩ C2+α,1+α/2([0, L0] × (0, T0)) such that u satisfies (3.1)
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and |u| ≤ α0, 0 ≤ t < T0. For the uniqueness, since ψp, ψα , ψpp, ψpα , ψαα are all
continuous vectors for 0 ≤ p ≤ L0, −α0 < α < α0, the uniqueness can be obtained
easily. ��
Proof of Theorem 1.1 Let T0 and u be given by Proposition 3.2. Obviously, F̃(p, t) =
ψ(p, u(p, t)) is the unique solution.

Let �(t) = {F̃(p, t) | 0 ≤ p ≤ L0}, 0 ≤ t < T0 and s be the arc length parameter
on �(t). Then F(s, t) = F̃(p, t) satisfies (1.4), (1.5), (1.6). ��
Remark 3.3 The assumption for initial curve can be weakened. In this paper, we
assume F0 ∈ C2([0, L0] → R

2). Indeed, the initial curve can be assumed to be
Lipschitz continuous. Recently, [11] has considered the curve-shortening flow with
Lipschitz initial curve, under the Neumann boundary condition. Since the purpose of
this paper is to get the three categories of solutions, we do not introduce this part in
detail.

Lemma 3.4 For �(t) satisfying (1.4), (1.6), for 0 < t < T , then the curvature κ(s, t)
satisfies

{
κt = κss − κκ2

s + κ2(κ − A), 0 < s < L(t), 0 < t < T
κ(0, t) = A, κ(L(t), t) = A, 0 < t < T,

(3.2)

where κt denotes the derivative with respect to t by fixing s.

For the proof of the first equation, the calculation can be seen in [7]. Since at the
boundary points, �(t) does not move, the boundary condition is obvious.

Lemma 3.5 For σ > 0, �σ (t) given in Theorem 1.2, let Fσ (s, t) satisfy

�σ (t) = {Fσ (s, t) | 0 ≤ s ≤ Lσ (t)},

where Lσ (t) is the length of �σ (t). If ∂
∂s Fσ (0, t) · (0, 1) > 0, for all 0 ≤ t ≤ t0, then

t0 < Tσ .

This lemma gives a sufficient condition under which �σ (t) does not become sin-
gular. The assumption ∂

∂s Fσ (0, t) · (0, 1) > 0 means that the y-component of the
tangential vector ∂

∂s Fσ (0, t) is positive.

Proof Considering the choice of �σ (0), then κσ (s, 0) ≥ 0, 0 ≤ s ≤ Lσ (0), for
σ > 0. Combining Lemma 3.4 and maximum principle, κσ (s, t) > 0, 0 < s < L(t),
0 < t < Tσ .

If Tσ = ∞, the result is trivial. We assume Tσ < ∞.
We prove the result by contradiction, assuming t0 ≥ Tσ . We claim that every

half-line given by

y = kx, y ≥ 0, or x = 0, y ≥ 0

intersects �σ (t) only once, 0 < t < Tσ .
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0y k x

QP

*P

Fig. 8 Proof of claim

First, for all 0 < t < Tσ , we prove x = 0, y ≥ 0 intersects �σ (t) only once. If
not, suppose that there exists t1 < Tσ such that x = 0, y ≥ 0 intersects �σ (t1) more
than once. Since �σ (t) is symmetric about y-axis, it is easy to see that �σ (t) becomes
singular at t1. This contradicts to t1 < Tσ .

Next, by contradiction, assume that there exist t2 < Tσ and k < 0 such that y =
kx, y ≥ 0 intersects �σ (t2) more than once. Combining our assumption ∂

∂s Fσ (0, t) ·
(0, 1) > 0, we can choose k0 satisfying k0 < k < 0 such that half-line y = k0x, y ≥ 0
intersects �σ (t2) tangentially at some point P∗, and near P∗, �σ (t2) is located under
the half-line. It is easy to deduce that the curvature at P∗, κσ (P∗, t2) ≤ 0. This
contradicts to that the curvatures on �σ (t) are all positive, 0 < t < Tσ . Here we
complete the proof of claim (Fig. 8).

Regarding ∂
∂s Fσ (0, t) · (0, 1) > 0 and the claim above, �σ (t) ⊂ {(x, y) | y ≥ 0},

t < Tσ . The claim implies that we can express �σ (t) by polar coordinate. For (x, y) ∈
�σ (t), let

{
x = ρσ (θ, t) cos θ,

y = ρσ (θ, t) sin θ,

for 0 ≤ θ ≤ π , 0 ≤ t < Tσ . Consequently, ρσ satisfies

⎧
⎨
⎩

ρt = ρθθ

ρ2 + ρ2
θ

− 2ρ2
θ + ρ2

ρ(ρ2
θ + ρ2)

+ 1

ρ
A
√

ρ2
θ + ρ2, 0 < θ < π, 0 < t < Tσ ,

ρ(0, t) = a, ρ(π, t) = a, 0 ≤ t < Tσ ,

(3.3)

recalling P = (−a, 0), Q = (a, 0).
Since for σ > 0, �σ (0) � �0 = {(x, y) | y = 0, −a ≤ x ≤ a}. It is easy to see

that �0 is a subsolution of (1.4) and (1.6). By comparison principle, �σ (t) � �0 for
0 < t < Tσ . Let

�∗ = {(x, y) | y =
√
R2 − x2 −

√
R2 − a2}.
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For all t3 > 0, we can choose sufficiently large R > 1/A such that

�σ (t3) � �∗.

It is easy to check that �∗ is a subsolution. Then

�σ (t) � �∗, t3 < t < Tσ .

This implies that there exists ρ1 > 0 such that ρσ (θ, t) ≥ ρ1 for t3 < t < Tσ ,
0 ≤ θ ≤ π . On the other hand, since Tσ < ∞, there exists ρ2 > 0 such that
ρσ (θ, t) ≤ ρ2 for 0 < t < Tσ , 0 ≤ θ ≤ π . Therefore, the quasilinear theory in [10]
shows that for ε > 0, there exists Cε such that

‖ρσ (·, t)‖C2[0,π ] ≤ Cε, t3 + ε < t < Tσ .

Therefore, the curvature of �σ (t) is uniformly bounded for t close to Tσ . This implies
that the solution �σ (t) can be extended over time Tσ . This contradicts to that Tσ is the
maximal existence time. ��
Lemma 3.6 [Continuous dependence on the initial curve] Assume ρ and ρn are the
solutions of (3.3) for 0 ≤ θ ≤ π , 0 < t < T . If ρ is bounded from below for some
positive constant and

lim
n→∞ ‖ρn(·, 0) − ρ(·, 0)‖C1[0,π ] = 0,

then for all 0 < t < T ,

lim
n→∞ ‖ρn(·, t) − ρ(·, t)‖C2[0,π ] = 0.

By our assumption that ρ is bounded from below for some positive constant, this
lemma can be proven by Schauder estimate in [10] directly.

4 Behavior for σ sufficient small or large

Proposition 4.1 There exists σ1 > 0 such that, for all σ > σ1, there exists some time
T ∗

σ < Tσ such that �σ (t) � �∗, for T ∗
σ < t < Tσ

For proving this proposition, we introduce the Grim reaper for the curve shortening
flow. Grim reaper is given by

G(x, t) = C − t

b
+ b ln cos

x

b
, −bπ

2
< x <

bπ

2
, t > 0,

where b > 0 and C ∈ R. It is easy to see that G(x, t) satisfies

Gt = Gxx

1 + G2
x
.
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The Grim reaper G(x, t) is a traveling wave moving downward with speed 1/b.

Lemma 4.2 If b < 2a/π , the curve

γG(t) =
{
(x, y) | y = max{G(x, t), 0}, |x | <

bπ

2

}
∪

{
(x, y) | y = 0,

bπ

2
≤ |x | ≤ a}

is a subsolution of (1.4) and (1.6) in the sense of Definition 2.4.

Proof When 0 < t < bC , let x(t) > 0 be a point such that G(x(t), t) = 0.
For |x | < x(t), γG = {(x, y) | y = G(x, t)}. Therefore,

Gt ≤ Gxx

1 + G2
x

+ A
√
1 + G2

x , |x | < x(t).

For x(t) < |x | < a, γG = {(x, y) | y = 0}. Obviously, y = 0 is a subsolution of

ut ≤ uxx
1 + u2x

+ A
√
1 + u2x , x(t) < |x | < a.

At the point x = x(t)(x = −x(t)), it is impossible that for smooth flow S(t), near
x = x(t)(x = −x(t)), S(t) touches γG(t) at x = x(t)(x = −x(t)) only once from
above.

Therefore, γG(t) is a subsolution of (1.4) and (1.6), for 0 < t < bC .
When t ≥ bC , γG = �0 = {(x, y) | y = 0, |x | ≤ a}(given in the proof of

Lemma 3.5). Obviously, γG is a subsolution of (1.4) and (1.6), for t ≥ bC . ��
Following lemma gives the result for the classification of the solution �σ (t).

Lemma 4.3 For �σ (t) given by Theorem 1.2, for σ > 0, �σ (t) satisfies one of the
following four conditions:

(1) SGN (�σ (t), �∗) = [−] for t < Tσ . Moreover, Tσ = ∞;
(2) There exists t∗σ such that SGN (�σ (t), �∗) = [− + −] for t < t∗σ and

SGN (�σ (t), �∗) = [−] for t∗σ < t < Tσ . Moreover, Tσ = ∞;
(3) SGN (�σ (t), �∗) = [− + −] for t < Tσ . Moreover, Tσ = ∞;
(4) There exists T ∗

σ < Tσ such that SGN (�σ (t), �∗) = [− + −] for t < T ∗
σ

and SGN (�σ (t), �∗) = [+], T ∗
σ < t < Tσ .

Proof Considering the assumption in Theorem 1.2, there exists σ0 > 0 such that

(a) 0 < σ ≤ σ0, �∗ � �σ ;
(b) σ > σ0, �σ intersects �∗ fourth.

Step 1 For 0 < σ ≤ σ0, by comparison principle, �∗ � �σ (t), for 0 < t < Tσ .
Noting σ > 0, �σ (t) � �0, for 0 < t < Tσ . Therefore, ∂

∂s Fσ (0, t) · (0, 1) > 0,
0 < t < Tσ . By contradiction and the same method in the proof of Lemma 3.5, we
can prove Tσ = ∞. Therefore, for 0 < σ ≤ σ0, condition (1) holds.
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Step 2 For σ > σ0, considering the choice of �σ , SGN (�σ , �∗) = [− + −].
Let τ0 depending on σ satisfy

τ0 = sup{τ | ∂

∂s
Fσ (0, t) · (0, 1) > 0, 0 < t < τ }.

Since ∂
∂s Fσ (0, 0) · (0, 1) > 0, we can deduce τ0 > 0. Therefore, Lemma 3.5 implies

Tσ > τ0. Moreover, �σ (t) can be represented by polar coordinate, 0 < t < τ0. This
means that �σ (t) satisfies the assumption of Theorem 2.8 for 0 < t < τ0. Then

SGN (�σ (t), �∗) � [− + −], 0 < t < τ0.

Considering the symmetry of �σ (t), then for t < τ0, one of the following three
conditions holds

(i) SGN (�σ (t), �∗) = [+];
(ii) SGN (�σ (t), �∗) = [−];
(iii) SGN (�σ (t), �∗) = [− −].
(iv) SGN (�σ (t), �∗) = [− + −].
Step 3 If for some t∗σ < τ0 (ii) or (iii) holds, then�∗ � �σ (t∗σ ). Then by comparison

principle, �∗ � �(t) � �0, t∗σ < t < Tσ . Therefore, by the same argument in Step 1,
condition (2) holds.

If for some T ∗
σ < τ0 (i) holds, this means that �σ (T ∗

σ ) � �∗. By comparison
principle, �σ (t) � �∗, T ∗

σ < t < Tσ . Therefore, condition (4) holds.
If for every t < τ0, there holds SGN (�σ (t), �∗) = [− + −]. Combining �σ (t) �

�0, t < τ0, there exists δ > 0 such that

∂

∂s
Fσ (0, t) · (0, 1) > δ, t < τ0.

If τ0 < ∞, by the definition of τ0, ∂
∂s Fσ (0, τ0)·(0, 1) = 0. This yields a contradiction.

Therefore, τ0 = ∞. Consequently, Tσ = ∞. Condition (3) holds.
We complete the proof. ��
In the following, we consider two circles.

∂B1 = {
(x, y) | (x − R)2 + (

y − (1 + R/a)

√
1/A2 − a2

)2 = R2}

and

∂B2 =
{
(x, y) | (x − R)2 + (

y − (1 + R/a)

√
1/A2 − a2

)2 = 1

A2 (1 + R/a)2
}

,

where R > 1/A. We denote

(0, K ) = ∂B2 ∩ {x = 0 | y > 0}.
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It is easy to check that ∂B2 intersects �∗ tangentially at (−a, 0). Let R(t) be the
solution of

R′(t) = A − 1/R(t) (4.1)

with R(0) = R. Since R(0) > 1/A, R(t) is increasing and lim
t→∞ R(t) = ∞. Noting

a ≤ 1/A and (1 + R/a)/A > R, there exists t∗ such that R(t∗) = (1 + R/a)/A.

Lemma 4.4 Let point (0, yσ (t)) = �σ (t) ∩ {(x, y) | x = 0}, t < Tσ . There exists
σ1(indeed σ1 in this lemma is the one we want to choose in Proposition 4.1) such that
for all σ > σ1 there holds that if t∗ < Tσ ,

yσ (t) > K , t < t∗.

We use the Grim reaper to prove this lemma.

Proof Considering that Grim reaper given by Lemma 4.2

G(x, t) = C − t

b
+ b ln cos

x

b

is a traveling wave with uniform speed 1/b, then choose C large enough such that
G(0, t) = C − t/b > C − t∗/b > K , t < t∗.

We can choose σ1 such that for all σ > σ1, �σ � γG(0).
If t∗ < Tσ , Lemma 4.2 implies that �σ (t) � γG(t), for t < t∗. This means that

yσ (t) > K , t < t∗. ��
Proof of Proposition 4.1 Choose σ1 as in Lemma 4.4.

Step 1. For σ > σ1, if Tσ ≤ t∗(t∗ is given in Lemma 4.4), this means that Tσ < ∞.
By Lemma 4.3, only the condition (4) in Lemma 4.3 can hold. Consequently, the result
is true.

Step 2. For σ > σ1, if t∗ < Tσ , by Lemma 4.4, yσ (t) > K , t < t∗. Here we prove

�σ (t) � �∗, t∗ < t < Tσ .

Let

∂B(t) = {
(x, y) | (x − R)2 + (

y − (1 + R/a)

√
1/A2 − a2

)2 = R(t)2
}
,

where R(t) is given by (4.1). It is easy to see that ∂B(t) evolves by V = −κ + A.
Let �(t) = ∂B(t) ∩ {(x, y) | x ≤ 0, y ≥ 0}. There exists δ satisfying 0 < δ < t∗

such that

R(δ) =
√
R2 + (1 + R/a)2(1/A2 − a2).

Obviously, ∂B(δ) passes through the origin (0, 0). As seen in the Figs. 9 and 10 and
noting the choice of t∗, the boundary of �(t) does not intersect �σ (t), t < t∗. By
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( )t

( ,0)a

( )t

t

Fig. 9 Proof of Proposition 4.1

( )t

( ,0)a

*t t

( )t

Fig. 10 Proof of Proposition 4.1

maximum principle, �(t) cannot intersect �σ (t) interior. Therefore, �σ (t) does not
intersect �(t), t < t∗. Here we omit the detail.

As seen in the Fig. 11,�(t∗) intersects�∗ tangentially at (−a, 0). Since�σ (t) does
not intersect�(t) for t < t∗, then�(t∗) � �∗. Therefore,�(t) � �∗ for t∗ < t < Tσ .
Let T ∗

σ = t∗, we complete the proof. ��

Proposition 4.5 There exists σ2 > 0 such that for all σ < σ2, Tσ = ∞ and �σ (t) →
�∗ in C1, as t → ∞.

Proof Step 1. (Upper bound)
There exists σ2 such that for all σ < σ2, �∗ � �σ . Since �σ is represented by the

graph of σϕ, then �σ (t) can time locally be represented by the graph of some function
uσ (x, t). Let T g

σ be the maximal time such that

�σ (t) = {(x, y) | y = uσ (x, t)}, 0 ≤ t < T g
σ .
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*( )t
( ,0)a

*

(0, )K

*( )t

Fig. 11 Proof of Proposition 4.1

Therefore, uσ (x, t) satisfies

⎧
⎪⎪⎨
⎪⎪⎩

ut = uxx
1 + u2x

+ A
√
1 + u2x , −a < x < a, 0 < t < T g

σ ,

u(−a, t) = u(a, t) = 0, 0 < t < T g
σ ,

u(x, 0) = σϕ(x), −a ≤ x ≤ a.

(4.2)

Since for all σ < σ2 there holds σϕ(x) ≤ √
1/A2 − x2 −√

1/A2 − a2,−a ≤ x ≤
a, by comparison principle, we have

uσ (x, t) <

√
1/A2 − x2 −

√
1/A2 − a2, −a < x < a, 0 < t < T g

σ . (4.3)

Step 2. Lower bound and derivative estimate.
If 0 ≤ σ < σ2, by comparison principle,

uσ (x, t) > 0, −a < x < a, 0 < t < T g
σ . (4.4)

Combining (4.3) and (4.4),

− a√
1/A2 − a2

<
∂

∂x
uσ (a, t) < 0 and 0 <

∂

∂x
uσ (−a, t)

<
a√

1/A2 − a2
, 0 < t < T g

σ . (4.5)

Differentiating the first equation in (4.2) by x and combining boundary condition
(4.5), by maximum principle, we have

∣∣∣∣
∂

∂x
uσ (x, t)

∣∣∣∣ <
a√

1/A2 − a2
, −a ≤ x ≤ a, 0 < t < T g

σ . (4.6)
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If σ < 0, let k > 0 satisfy k := σϕ′(a). We denote function

u(x) = max{−k(x + a), k(x − a)}, −a ≤ x ≤ a.

Obviously, u(x) ≤ σϕ, −a ≤ x ≤ a and u is a subsolution of (4.2) in viscosity sense.
Therefore, by maximum principle, uσ (x, t) > u(x), −a < x < a, 0 < t < T g

σ .
Combining (4.3), we have

∣∣∣∣
∂

∂x
uσ (x, t)

∣∣∣∣ < max

{
k,

a√
1/A2 − a2

}
, −a ≤ x ≤ a, 0 < t < T g

σ . (4.7)

Consequently, (4.6) and (4.7) imply that there exists Cσ such that

∣∣∣∣
∂

∂x
uσ (x, t)

∣∣∣∣ ≤ Cσ , −a ≤ x ≤ a, 0 < t < T g
σ . (4.8)

Step 3. We prove the convergence in this step.
By [10], for ε > 0, (uσ )xx (x, t) is bounded for all −a ≤ x ≤ a, ε ≤ t < T g

σ .
This means that T g

σ = ∞. Therefore, by [10] again, uσ (x, t), (uσ )t (x, t), (uσ )t t (x, t),
(uσ )x (x, t), (uσ )xx (x, t) and (uσ )xxx (x, t) are all bounded for some constant Dσ > 0,
−a ≤ x ≤ a, ε ≤ t < ∞. By Ascoli–Arzela Theorem, for any sequence tn →
∞, there exist a subsequence tn j and function v(x, t) (v may depend on the choice
of the subsequence. In Step 5, we will prove v is independent of the choice of the
subsequence) such that

uσ (·, · + tn j ) → v, in C2,1([−a, a] × [ε,∞)),

as j → ∞.
Step 4. In this step, we introduce the Lyapunov function for (4.2).
Let

J [u] =
∫ a

−a

√
1 + u2xdx .

If u is a solution of (4.2), we calculate

d

dt
J [u] =

∫ a

−a

uxuxt√
1 + u2x

dx = −
∫ a

−a

utuxx
(1 + u2x )

3/2 dx = −
∫ a

−a

(ut )2√
1 + u2x

dx

+A
∫ a

−a
utdx

= −
∫ a

−a

(ut )2√
1 + u2x

dx + A
d

dt

∫ a

−a
udx .
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Therefore, there hold

J [u(·, t)] ≤ J [u(·, ε)] + A
∫ a

−a
u(x, t)dx − A

∫ a

−a
u(x, ε)dx

and

∫ ∞

ε

∫ a

−a

(ut )2√
1 + u2x

dxdt = A lim
t→∞

∫ a

−a
u(x, t)dx

−A
∫ a

−a
u(x, ε)dx + J [u(·, ε)]

− lim
t→∞ J [u(·, t)].

Step 5. Using the Lyapunov function, we complete the proof.
For uσ given above, uσ (x, t) is uniformly bounded for −a ≤ x ≤ a, 0 < t < ∞.

Then, the integral

∣∣∣∣
∫ a

−a
uσ (x, t)dx

∣∣∣∣

is bounded for 0 < t < ∞. Consequently, J [uσ (·, t)] is bounded for 0 < t < ∞.
Therefore, the integral

∫ ∞

ε

∫ a

−a

(uσ t )
2

√
1 + u2σ x

dxdt

is bounded. Then for all s0 > 0,

∫ s0+1

s0

∫ a

−a

(uσ t )
2

√
1 + u2σ x

(x, t + tn j )dxdt

=
∫ s0+1+tn j

s0+tn j

∫ a

−a

(uσ t )
2

√
1 + u2σ x

(x, t)dxdt → 0

as j → ∞. Considering uσ (·, · + tn j ) → v, in C2,1([−a, a] × [ε,∞)), as j → ∞,
we have

∫ s0+1

s0

∫ a

−a

(vt )
2

√
1 + v2x

(x, t)dxdt = 0.

Then vt (x, t) = 0, for all −a ≤ x ≤ a, s0 ≤ t ≤ s0 + 1. Considering that the choice
of s0 is arbitrary,

vt (x, t) = 0,
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for all −a ≤ x ≤ a, 0 < t < ∞. Therefore, v is independent on t and is a stationary
solution of (4.2). Then

v =
√
1/A2 − x2 −

√
1/A2 − a2, −a ≤ x ≤ a.

Here we get that for any sequence tn → ∞, there exists a subsequence tn j such
that

uσ (·, · + tn j ) → v, in C2,1([−a, a] × [ε,∞)),

as j → ∞. Consequently,

uσ (·, t) → v, in C2([−a, a]),

as t → ∞.
The proof of this proposition is completed. ��

5 Asymptotic behavior for the condition (3) in Lemma 4.3

Considering Lemma 3.5 and the proof of Lemma 4.3, under the condition (3) in
Lemma 4.3, we can assume there exists ρσ such that

�σ (t) = {(ρσ (θ, t) cos θ, ρσ (θ, t) sin θ) | 0 ≤ θ ≤ π}, 0 ≤ t < ∞.

Moreover ρσ satisfies (3.3) for Tσ = ∞.

Lemma 5.1 Let Lσ (t) be the length of �σ (t) and Sσ (t) be the area of the domain
surrounded by �σ (t) and y = 0. Then,

d

dt
Lσ (t) = −

∫ Lσ (t)

0
(κ − A)2ds + A

d

dt
Sσ (t). (5.1)

Remark 5.2 (1) Noting that under the condition (3) in Lemma 4.3, �σ (t) located in
{y ≥ 0}, the definition of Sσ (t) is well defined.

(2) The result of this lemma is a general condition for the Lyapunov function in the
proof of Proposition 4.5.

Proof Considering the calculation in [14],

d

dt
Lσ (t) =

∫ Lσ (t)

0
(Aκ − κ2)ds.
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Recall N being the unit downward normal vector. Therefore,

d

dt
Lσ (t) = −

∫ Lσ (t)

0
(κ − A)2ds +

∫ Lσ (t)

0
(−Aκ + A2)ds

= −
∫ Lσ (t)

0
(κ − A)2ds

+A
∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds,

where F is the point on the curve �σ (t) and for convenience, we omit the subscript
of Fσ (s, t). Let

γσ (t) = �σ (t) ∪ {(x, y) | y = 0,−a ≤ x ≤ a}.

By Green’s formula,

d

dt
Sσ (t) = 1

2

d

dt

∫

γσ (t)
F(s, t) · (−N )ds,

where F is the point on the curve γσ (t) and N is the unit inner normal vector. Since
the curve

{(x, y) | y = 0,−a ≤ x ≤ a}

is independent on t ,

1

2

d

dt

∫

γσ (t)
F(s, t) · (−N )ds = 1

2

d

dt

∫

�σ (t)
F(s, t) · (−N )ds

= 1

2

d

dt

∫ Lσ (t)

0
F(s, t) · (−N )ds.

Computing as in [14],

1

2

d

dt

∫ Lσ (t)

0
F(s, t) · (−N )ds = 1

2

∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds

+1

2

∫ Lσ (t)

0
F(s, t) ·

(
− ∂

∂t
N

)
ds

+1

2

∫ Lσ (t)

0
F(s, t) · (−N )(Aκ − κ2)ds.

Considering the calculation in [14],

∂

∂t
N = −∂κ

∂s
T,
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where T = Fs is the unit tangential vector, then

1

2

∫ Lσ (t)

0
F(s, t) ·

(
− ∂

∂t
N

)
ds = 1

2

∫ Lσ (t)

0
F(s, t) ·

(
∂κ

∂s
T

)
ds := I.

Considering the symmetry of �σ (t) and κ(0, t) = κ(Lσ (t), t) = A, at the boundary,

F(0, t) · T (0, t)κ(0, t) = F(Lσ (t), t) · T (Lσ (t), t)κ(Lσ (t), t)

= AF(0, t) · T (0, t).

Integrating I by parts, there holds

I = −1

2

∫ Lσ (t)

0
Fs · T κds − 1

2

∫ Lσ (t)

0
F · Tsκds = −1

2

∫ Lσ (t)

0
κds

−1

2

∫ Lσ (t)

0
F · Fssκds = −1

2

∫ Lσ (t)

0
κds − 1

2

∫ Lσ (t)

0
F · Nκ2ds.

Therefore,

1

2

∂

∂t

∫ Lσ (t)

0
F(s, t) · (−N )ds = 1

2

∫ Lσ (t)

0

d

dt
F(s, t) · (−N )ds

−1

2

∫ Lσ (t)

0
κds

−1

2

∫ Lσ (t)

0
AF(s, t) · (κN )ds

= 1

2

∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds

−1

2

∫ Lσ (t)

0
κds

−1

2

∫ Lσ (t)

0
AF(s, t) · (Ts)ds

= 1

2

∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds

+1

2

∫ Lσ (t)

0
(A − κ)ds

=
∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds.

In the last second equality, we use integral by parts. Therefore,

∫ Lσ (t)

0

∂

∂t
F(s, t) · (−N )ds = d

dt
Sσ (t).
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Consequently, (5.1) holds. ��
Lemma 5.3 Under the condition (3) in Lemma 4.3, SGN (�σ (t), �∗) = [− + −]
for t < ∞, there exist ρ2 > ρ1 > 0 such that

ρ1 < ρσ (θ, t) < ρ2,

for 0 ≤ θ ≤ π , 0 < t < ∞.

Proof First, we prove ρσ < ρ2. We prove this by contradiction, assuming ρσ is not
bounded from above.

If ρσ (π/2, t) is bounded for all t , we can easily prove that there exist some 0 <

θ0 < π/2 and t0 such that κσ (θ0, t0) ≤ 0. This contradicts to that κσ (θ, t) > 0, for all
0 < θ < π , t < ∞.

Therefore, ρσ (π/2, t) is not bounded. Assume for some t0, ρσ (π/2, t0) is large
enough. We can use the Grim reaper argument as in Proposition 4.1 to prove that
�σ (t) � �∗ in finite time. This contradicts to that SGN (�σ (t), �∗) = [− + −] for
t < ∞. Therefore, there exists ρ2 > 0 such that ρσ (θ, t) < ρ2, for all 0 < θ < π ,
t < ∞.

On the other hand, we note that �σ � �0 = {(x, y) | y = 0, −a ≤ x ≤ a},
0 < t < ∞. Then there exists ρ1 > 0 such that ρσ (θ, t) > ρ1, 0 < θ < π , t < ∞.

We complete the proof. ��
Here we give the asymptotic behavior under the condition (3) in Lemma 4.3.

Proposition 5.4 Under the condition (3) in Lemma 4.3, SGN (�σ (t), �∗) = [− + −]
for t < ∞,

�σ (t) → �∗ in C1

as t → ∞.

Proof Since ρ1 < ρσ < ρ2 and ρσ satisfies (3.3), then there exists ε > 0 such that
ρσ t , ρσ t t , ρσθ , ρσθθ and ρσθθθ are bounded for 0 ≤ θ ≤ π , ε ≤ t < ∞. Therefore,
for any tn → ∞, there exist a subsequence tn j and a function r(θ, t) such that

ρσ (·, · + tn j ) → r in C2,1([0, π ] × [ε,∞)),

as j → ∞. Let

γr (t) = {(x, y) | x = r(θ, t) cos θ, y = r(θ, t) sin θ, 0 ≤ θ ≤ π},

and the curvature κσ (·, t) be the curvature on �σ (t), κr (·, t) be the curvature on γr (t).
Therefore, κσ (·, · + tn j ) → κr in C([0, π ] × [ε,∞)). Obviously, the length Lσ (t)
and the area Sσ (t) are bounded. Using the same argument in Proposition 4.5 and
the Lyapunov function in Lemma 5.1, we can deduce that κr ≡ A. Consequently,
rt (θ, t) = 0 for all 0 ≤ θ ≤ π and t > 0. Considering the curvature of γr is a positive
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constant, γr can only be a part of circle with radius 1/A. Considering r(0, t) = −a
and r(π, t) = a, then γr = �∗ or γr = �∗. But for all t > 0,

�σ (t + tn j ) → γr in C
1(indeed, the convergence can be proved inC2),

as j → ∞. If γr = �∗, then for t large enough, �∗ � �σ (t). This yields a contradic-
tion. Therefore, γr = �∗. Consequently,

�σ (t) → �∗ in C1(indeed, the convergence can be proved inC2),

as t → ∞.
Here we complete the proof. ��

6 Proof of Theorem 1.2

Lemma 6.1 The set

B∗ = {σ ∈ R | �σ (t) → �∗ in C1, as t → ∞}

is open and connect.

Proof Proposition 4.5 implies that (−∞, 0] ⊂ B∗ 
= ∅. In following argument, let
σ1 > 0 and σ1 ∈ B∗.

(1) (Proof of the property connect)We claim that, for allσ < σ1,�σ (t) → �∗ inC1,
as t → ∞.

Since �σ1(t) → �∗ in C1, as t → ∞, then there holds �∗ � �σ1(t) for t large
enough. By comparison principle, �σ1(t) � �σ (t), t < Tσ . These imply that the
condition (4) in Lemma 4.3 can not hold. Therefore, Tσ = ∞. By the same argument
in Proposition 4.5, we can prove

�σ (t) → �∗ in C1,

as t → ∞. Here we prove that B∗ is connect.
(2) (Proof of the property open) We are going to prove B∗ is open. We only need

prove that there exists ε0 > 0, (σ1, σ1+ε0) ⊂ B∗. We divide this proof into two steps.
Step 1. Let

τ0(σ ) = max{τ | ∂

∂s
Fσ (0, t) · (0, 1) > 0, 0 < t < τ }, for σ > 0.

By comparison principle, we can prove that τ0(σ ) is non-increasing with respect to
σ . let τ ∗ = sup{τ0(σ ) | σ > σ1} = lim

σ↓σ 1
τ0(σ ). We claim that τ ∗ = ∞.

For all t < τ ∗, there exists δ0, for σ ∈ (σ1, σ1 + δ0), τ0(σ ) > t . Therefore, for
σ ∈ (σ1, σ1 + δ0), �σ (t) can be represented by polar coordinate and not become
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singular. By Lemma 3.6,

�σ (t) → �σ1(t), in C2

as σ → σ1. Considering that the condition (1) or (2) in Lemma 4.3 hold for �σ1(t),
we can prove that there exists δ > 0 such that

∂

∂s
Fσ1(0, t) · (0, 1) > δ, t < ∞.

Consequently,

lim
σ↓σ 1

∂

∂s
Fσ (0, t) · (0, 1) ≥ δ, t < τ ∗.

Therefore, τ ∗ = ∞.
Step 2. We complete the proof.
We choose two curves γ1 and γ2 such that �∗ � γ1 � �∗ � γ2 and the domain V

be the shuttle neighborhood of �∗ satisfying ∂V = γ1 ∪ γ2.
Since

�σ1(t) → �∗ in C1,

as t → ∞, for t0 large enough �σ1(t0) ⊂ V . Considering the result in Step 1, for σ

close to σ1, �σ (t0) can be represented by polar coordinate and not become singular.
By Lemma 3.6,

�σ (t0) → �σ1(t0), in C1,

as σ → σ1. Then there exists ε0 for σ ∈ (σ1, σ1 + ε0), �σ (t0) ⊂ V . Using the
Lyapunov function given by Lemma 5.1 and the same argument in Proposition 5.4,
for all σ ∈ (σ1, σ1 + ε0),

�σ (t) → �∗ in C1,

as t → ∞.
We complete the proof. ��

Lemma 6.2 The set

B∗ = {σ ∈ R | there exists T ∗
σ > 0 such that �σ (t) � �∗, T ∗

σ < t < Tσ }

is open and connect.

Proof Propositions 4.1 and 4.5 show that B∗ ⊂ (0,∞) is not empty. In the following
argument, let σ2 > 0 and σ2 ∈ B∗. Then there exists T ∗

σ2
> 0 such that

�σ2(t) � �∗, T ∗
σ2

< t < Tσ2 .
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(1) (Proof the property connect) We claim (σ2,∞) ⊂ B∗.
For σ > σ2, if Tσ < ∞, then only the condition (4) in Lemma 4.3 can hold. The

result is true for Tσ < ∞.
In the following argument, we assume Tσ = ∞, then by comparison principle,

�σ (t) � �σ2(t) � �∗, T ∗
σ2

< t < Tσ2 .

Here we complete the proof that B∗ is connect.
(2) (Proof of the property open) We prove B∗ is open. We only need to prove that

there exists ε0 > 0 such that (σ2 − ε0, σ2) ⊂ B∗.
We can choose t0 such that �σ2(t0) � �∗ and

∂

∂s
Fσ2(0, t) · (0, 1) > 0, 0 < t ≤ t0.

By Lemma 3.5 and comparison principle, it is easy to see that for all 0 < σ < σ2,
Tσ > t0. Forσ close toσ2,�σ (t) can be represented by polar coordinate for 0 < t ≤ t0.
By Lemma 3.6,

�σ (t0) → �σ2(t0), in C1

as σ → σ2. Therefore, there exists ε0 > 0 such that for all σ ∈ (σ2 − ε0, σ2),
�σ (t0) � �∗. By the comparison principle, we can get the result easily.

We complete the proof. ��
Corollary 6.3 There exist 0 < σ∗ ≤ σ ∗ such that

B∗ = (σ ∗,∞)

and

B∗ = (−∞, σ∗).

Proof Let σ ∗ = inf B∗ and σ∗ = inf B∗. Obviously, σ∗ ≤ σ ∗.
Lemmas 6.1 and 6.2 imply that

B∗ = (σ ∗,∞)

and

B∗ = (−∞, σ∗).

Proposition 4.5 shows that σ∗ > 0. The proof is completed. ��
Proposition 6.4 If �σ0(t) → �∗ in C1, for some σ0, as t → ∞, then (σ0,∞) ⊂ B∗.
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0( )t

( ,0)a

0 0( )t
0( )c t

( ,0)a

Fig. 12 Construction of �c(t)

Proof For σ > σ0, if Tσ < ∞, then the claim holds. In the following proof, we only
consider Tσ = ∞. By comparison principle, �σ (t) � �σ0(t), t > 0.

Since

�σ0(t) → �∗ in C1,

there exist t0 and δ > 0 such that for all t ≥ t0, there hold

∂

∂s
Fσ0(0, t) · (0, 1) ≥ δ (6.1)

and

∂

∂s
Fσ0(0, t) · (1, 0) ≤ −δ. (6.2)

Since �σ (t0) � �σ0(t0), then we can choose a small positive constant c such that

�σ (t0) � �c(t0),

where

�c(t) = {(x, y + c) | (x, y) ∈ �σ0(t)} ∪ {(−a, y) | 0 ≤ y ≤ c}
∪{(a, y) | 0 ≤ y ≤ c}, t > 0.

We claim that �c(t) is a subsolution for t ≥ t0. Indeed, the part �c(t) ∩ {y > c} is
a translation of �σ0(t). �

c(t) ∩ {y > c} satisfies (1.4). Since the part �c(t) ∩ {y < c}
consists of two straight lines, then the part is a subsolution of (1.4). Next at the points
{(−a, c), (a, c)} = �c(t)∩{y = c}, considering (6.1), (6.2) for any smooth flow S(t)
can not touch (−a, c) or (a, c) above only once. Therefore, �c(t) is a subsolution of
(1.4) and (1.6) in the sense of Definition 2.4 (Fig. 12).
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By �σ (t0) � �c(t0) and �c(t) being subsolution for t > t0,

�σ (t) � �c(t), t > t0. (6.3)

Note that �c(t) → �∗c in C , as t → ∞, where

�∗c = {(x, y + c) | (x, y) ∈ �∗} ∪ {(−a, y) | 0 ≤ y ≤ c}
∪{(a, y) | 0 ≤ y ≤ c}.

If �σ (t) satisfies the condition (3) in Lemma 4.3, by Proposition 5.4, �σ (t) → �∗.
Combining (6.3), we get �∗ � �∗c. It is impossible.

If �σ (t) satisfies the condition (1) or (2) in Lemma 4.3, by the same argument
in Proposition 5.4, we can prove the derivative of �σ are all bounded. Using Ascoli-
Arzela Theorem and Lyapunov function as in Proposition 5.4, we can get�σ (t) → �∗,
as t → ∞. Combining (6.3), �∗ � �∗c. But they are also impossible. Therefore, only
the condition (4) in Lemma 4.3 holds.

The proof is completed. ��
Proof of Theorem 1.2 Let σ∗ and σ ∗ be given by Corollary 6.3.

Considering the definition of σ∗, σ∗ /∈ B∗ and σ∗ /∈ B∗. Therefore, �σ∗(t) only
satisfies the condition (3) in Lemma 4.3. The result in Sect. 5 shows that�σ∗(t) → �∗,
as t → ∞.

By Proposition 6.4, (σ∗,∞) = B∗. Consequently, σ∗ = σ ∗.
The proof of Theorem 1.2 is completed. ��
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