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1 Introduction

We introduce an extension map from the space of complex differential forms on a
complex manifold to the corresponding one on the infinitesimal deformations of the
complex manifold and generalize an extension formula in [33] with more complete
deformation significance. As direct corollaries, we prove several deformation invari-
ance theorems for Hodge numbers in sufficiently general situations by a power series
approach, which is analogously used to reprove the classical Kodaira–Spencer’s local
stability of Kähler structures in a recent paper [46]. We will also study the Gaudu-
chon cone and its relation with the balanced one in the Kähler case, to explore the
deformation properties on the Gauduchon cone of an sGGmanifold introduced by D.
Popovici [41]. We are much motivated by Popovici’s remarkable work on [40, Con-
jecture 1.1], which confirms that if the central fiber X0 of a holomorphic family of
complex manifolds admits the deformation invariance of (0, 1)-type Hodge numbers
or a so-called strongly Gauduchon metric and the generic fiber Xt (t �= 0) of this
family is projective, then X0 is Moishezon.

Wewill mostly follow the notations in [33]. All manifolds in this paper are assumed
to be n-dimensional compact complexmanifolds. ABeltrami differential is an element
in A0,1(X, T 1,0

X ), where T 1,0
X denotes the holomorphic tangent bundle of X . Then iφ

or φ� denotes the contraction operator with φ ∈ A0,1(X, T 1,0
X ) alternatively if there

is no confusion. We also follow the convention

e♠ =
∞∑

k=0

1

k!♠
k, (1.1)

where ♠k denotes k-time action of the operator ♠. Since the dimension of X is finite,
the summation in the above formulation is always finite.

Consider the smooth family π : X → B of n-dimensional complex manifolds over
a small domain B inR

k as inDefinition 2.1,with the central fiber X0 := π−1(0) and the
general fibers Xt := π−1(t). Set k = 1 for simplicity. Denote by ζ := (ζ α

j (z, t))n
α=1

the holomorphic coordinates of Xt induced by the familywith the holomorphic coordi-
nates z := (zi )n

i=1 of X0, under a coordinate covering {U j } ofX , when t is assumed to
be fixed. Suppose that this family induces the integrable Beltrami differential ϕ(z, t),
which is denoted by ϕ(t) and ϕ interchangeably. These are reviewed at the beginning
of Sect. 2. Then we have the following crucial calculation:

Lemma 1.1 (=Lemma 2.4)

(
∂z
∂ζ

∂z
∂ζ̄

∂ z̄
∂ζ

∂ z̄
∂ζ̄

)
=
⎛

⎜⎝
(1 − ϕϕ)−1

(
∂ζ
∂z

)−1 −ϕ (1 − ϕϕ)−1
(

∂ζ
∂z

)−1

− (1 − ϕϕ)−1 ϕ
(

∂ζ
∂z

)−1 (
1 − ϕϕ

)−1
(

∂ζ
∂z

)−1

⎞

⎟⎠ ,

where ϕϕ, ϕϕ stand for the two matrices (ϕi
k̄
ϕk

j̄
)1≤i≤n
1≤ j≤n

, (ϕi
k̄
ϕk

j̄
)1≤i≤n
1≤ j≤n

, respectively, and

1 is the identity matrix.
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2986 S. Rao, Q. Zhao

Using this calculation and its corollaries, we are able to reprove an important result
(Proposition 2.7) in deformation theory of complex structures, which asserts that the
holomorphic structure on Xt is determined by ϕ(t). Actually, we obtain that for a
differentiable function f defined on an open subset of X0

∂ t f = eiϕ
(
(1 − ϕϕ)−1�(∂ − ϕ�∂) f

)
,

where the differential operator d is decomposed as d = ∂t + ∂ t with respect to the
holomorphic structure on Xt and eiϕ follows the notation (1.1).

Motivated by the new proof of Proposition 2.7, we introduce a map

eiϕ(t)|iϕ(t) : Ap,q(X0) → Ap,q(Xt ),

which plays an important role in this paper and is given in Definition 2.8. This map is
a real linear isomorphism as t is arbitrarily small. Based on this, we achieve:

Proposition 1.2 (=Proposition 2.13) For any α ∈ A∗,∗(X0),

∂̄t

(
eiϕ |iϕ̄ (α)

)
= 0

amounts to

([∂, iϕ] + ∂̄
)
(1 − ϕ̄ϕ)�α = 0,

where ’�’ is the simultaneous contraction introduced in Sect. 2.2.

This proposition provides a criterion for a specific ∂-extension from Ap,q(X0)

to Ap,q(Xt ) and generalizes [33, Theorem 3.4] (or Proposition 2.3) in deformation
significance. As a direct application of Proposition 1.2, we consider the deformation
invariance of Hodge numbers. Before stating the main theorems in Sect. 3, we recall
several definitions of related cohomology groups and mappings.

Let X be a compact complex manifold of complex dimension n with the following
commutative diagram

H p,q
∂ (X)

ι
p,q
∂,A

H p,q
BC (X)

ι
p,q
BC,∂

ι
p,q
BC,∂

ι
p,q
BC,A

H p,q
A (X)

H p,q
∂

(X)

ι
p,q
∂,A

.
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Several Special Complex Structures 2987

Dolbeault cohomology groups H•,•
∂

(X) of X are defined by

H•,•
∂

(X) := ker ∂

im ∂
,

with H•,•
∂ (X) similarly defined, while Bott–Chern and Aeppli cohomology groups

are defined as

H•,•
BC (X) := ker ∂ ∩ ker ∂

im ∂∂
and H•,•

A (X) := ker ∂∂

im ∂ + im ∂
,

respectively. The dimensions of H p,q
∂

(X), H p,q
BC (X), H p,q

A (X), and H p,q
∂ (X) over

C are denoted by h p,q
∂

(X), h p,q
BC (X), h p,q

A (X), and h p,q
∂ (X), respectively; the first

three of which are usually called (p, q)-Hodge numbers, Bott–Chern numbers, and
Aeppli numbers. From the very definition of these cohomology groups, the following
equalities clearly hold

h p,q
BC = hq,p

BC = hn−q,n−p
A = hn−p,n−q

A , hn−p,n−q
∂

= h p,q
∂

= hq,p
∂ = hn−q,n−p

∂ .

Now let us describe our basic philosophy to consider the deformation invariance of
Hodge numbers briefly. The Kodaira–Spencer’s upper semi-continuity theorem ([28,
Theorem 4]) tells us that the function

t 
−→ h p,q
∂ t

(Xt ) = dimC H p,q
∂ t

(Xt , C)

is always upper semi-continuous for t ∈ B and thus, to approach the deformation
invariance of h p,q

∂ t
(Xt ), we only need to obtain the lower semi-continuity. Here our

main strategy is a modified iteration procedure, originally from [34] and developed
in [33,52,53,63], which is to look for an injective extension map from H p,q

∂
(X0) to

H p,q
∂ t

(Xt ). More precisely, for a nice uniquely chosen representative σ0 of the initial

Dolbeault cohomology class in H p,q
∂

(X0), we try to construct a convergent power
series

σt = σ0 +
∞∑

j+k=1

tk t j̄σk j̄ ∈ Ap,q(X0),

with σt varying smoothly on t such that for each small t :

(1) eiϕ |iϕ (σt ) ∈ Ap,q(Xt ) is ∂ t -closed with respect to the holomorphic structure on
Xt ;

(2) The extension map H p,q
∂

(X0) → H p,q
∂ t

(Xt ) : [σ0]∂ 
→ [eiϕ |iϕ (σt )]∂ t
is injective.

One main theorem in Sect. 3 can be stated as
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2988 S. Rao, Q. Zhao

Theorem 1.3 (=Theorem 3.1) If the injectivity of the mappings ι
p+1,q
BC,∂ , ι

p,q+1
∂,A

on the

central fiber X0 and the deformation invariance of the (p, q − 1)-Hodge number
h p,q−1

∂ t
(Xt ) holds, then h p,q

∂ t
(Xt ) are deformation invariant.

Obviously, a classical result that a complex manifold satisfying the ∂∂-lemma
admits the deformation invariance of all-type Hodge numbers follows by this theorem
and induction. Three examples 3.2, 3.3, and 3.4 in the Kuranishi family of the Iwasawa
manifold (cf. [3, Appendix]) are found that the deformation invariance of the (p, q)-
Hodge number fails when one of the three conditions in Theorem 1.3 does not hold,
while the other two do. It indicates that the three conditions above may not be omitted
in order to state a theorem for the deformation invariance of all the (p, q)-Hodge
numbers. We also refer the readers to [61] (based on [24]) for the negative counterpart
of invariance of Hodge numbers.

The speciality of the types may lead to the weakening of the conditions in Theorem
1.3, such as (p, 0) and (0, q):

Theorem 1.4 (=Theorems 3.6 + 3.7)

(1) If the injectivity of the mappings ι
p+1,0
∂,A

and ι
p,1
∂,A

on X0 holds, then h p,0
∂ t

(Xt ) are

independent of t;
(2) If the surjectivity of the mapping ι

0,q
BC,∂

on X0 and the deformation invariance of

h0,q−1
∂ t

(Xt ) holds, then h0,q
∂ t

(Xt ) are independent of t .

Asmentioned in Remark 3.8, for the case q = 1 of Theorem 1.4.(2), the surjectivity
of the mapping ι

0,1
BC,∂

is equivalent to the sGG condition proposed by Popovici–Ugarte
[41,45], from [45, Theorem 2.1 (iii)]. Hence, the sGG manifolds can be examples of
Theorem 3.7, where the Frölicher spectral sequence does not necessarily degenerate
at the E1-level, by [45, Proposition 6.3]. Inspired by the deformation invariance of
the (0, 1), (0, 2), and (0, 3)-Hodge numbers of the Iwasawa manifold I3 shown in [3,
Appendix], we prove

Corollary 1.5 (=Corollary 3.9) Let X = 
\G be a complex parallelizable nilman-
ifold of complex dimension n, where G is a simply connected complex nilpotent Lie
group and 
 is denoted by a discrete and co-compact subgroup of G. Then X is an
sGG manifold. In addition, the (0, q)-Hodge numbers of X are deformation invariant
for 1 ≤ q ≤ n.

Inspired by Console–Fino–Poon [14, Sect. 6], we use the proof of Theorem 1.4.(1)
to give in Example 3.11 a holomorphic family of nilmanifolds of complex dimension
5 with the central fiber endowed with an abelian complex structure, which admits
the deformation invariance of the (p, 0)-Hodge numbers for 1 ≤ p ≤ 5, but not
the (1, 1)-Hodge number or (1, 1)-Bott–Chern number. This shows the function of
Theorem 1.4.(1) possibly beyond Kodaira–Spencer’s squeeze [28, Theorem 13] in
this case.

Here is an interesting question:
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Several Special Complex Structures 2989

Question 1.6 What are the sufficient and necessary conditions for a class of compact
complex manifolds to satisfy the deformation invariance for each prescribed-type
Hodge number and all-type Hodge numbers?

In Sect. 4, we will study various cones to explore the deformation properties of
sGG manifolds. Here are several notations. The Kähler cone KX and its closure KX ,
the numerically effective cone (shortly nef cone), are important geometric objects on
a compact Kähler manifold X , extensively studied such as in [9,15–17,22,41,45,58].
Fu and Xiao [22] study the relation between the balanced cone BX and the Kähler
coneKX . Meanwhile, Popovici [41], together with Ugarte [45], investigates geometric
properties of the Gauduchon cone GX and its related cones. The Gauduchon cone GX

is defined by

GX =
{[

�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣ � is a ∂∂-closed positive (n − 1, n − 1)-form
}

.

More detailed descriptions of real Bott–Chern groups H p,p
BC (X, R), Aeppli groups

H p,p
A (X, R), and these cones will appear at the beginning of Sect. 4.
Inspired by all these,we hope to understand the relation of the balanced coneBX and

the Gauduchon cone GX via the mapping J : Hn−1,n−1
BC (X, R) → Hn−1,n−1

A (X, R)

induced by the identity map. Another direct motivation of this part is the following
conjecture:

Conjecture 1.7 ([44, Conjecture 6.1]) Each compact complex manifold X satisfying
the ∂∂-lemma admits a balanced metric.

One possible approach is to prove J −1(GX ) = BX , since the Gauduchon cone of a
compact complex manifold is never empty and J is an isomorphism from the ∂∂-
lemma. See the important argument in [44, Sect. 6] or [12, Sect. 2] relating a slightly
different conjecture with the quantitative part of Transcendental Morse Inequalities
Conjecture for differences of two nef classes as in [9, Conjecture 10.1.(ii)] and (more
precisely) also their main Conjecture 1.10.

A weaker question comes up:

Question 1.8 Does the mapping J map the balanced cone BX bijectively onto the
Gauduchon cone GX on the Kähler manifold X?

It is clear that J maps BX injectively into GX from the ∂∂-lemma of Kähler
manifolds. The affirmation of this question is equivalent to the equality

EX = L −1(E∂∂ ) (1.2)

by Proposition 4.13. The pseudo-effective cone EX is generated by Bott–Chern classes
in H1,1

BC (X, R) represented by d-closed positive (1, 1)-currents and the convex cone

E∂∂ ⊆ H1,1
A (X, R) is generated by Aeppli classes represented by ∂∂-closed posi-

tive (1, 1)-currents, with the natural isomorphism L : H1,1
BC (X, R) → H1,1

A (X, R)

induced by the identity map. The pull-back cone L −1(E∂∂ ) denotes the inverse
image of the cone E∂∂ under the isomorphism L . The closed convex cone MX ⊆
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2990 S. Rao, Q. Zhao

Hn−1,n−1
BC (X, R) is called themovable cone, originating from [9], and

(MX
)vc denotes

its dual cone (cf. Definitions 4.7 and 4.14).

Lemma 1.9 (See Lemma 4.15 and its remarks) Let X be a compact Kähler manifold.
There exist the following inclusions:

EX ⊆ L −1(E∂∂ ) ⊆ (MX
)vc .

By the inclusions in this lemma, the equality (1.2) is actually a part of:

Conjecture 1.10 ([9, Conjecture 2.3]) Let X be a compact Kähler manifold. Then the
equality holds

EX = (MX
)vc .

An analogous conjecture of the balanced case is proposed as [22, Conjecture 5.4].
The following theorem provides some evidence for the assertion of Question 1.8.

Theorem 1.11 (= Theorem 4.17) Let X be a compact Kähler manifold and
[
α
]
BC a

nef class. Then
[
αn−1

]
A ∈ GX implies that

[
αn−1

]
BC ∈ BX . Hence I(KX )

⋂BX and

K(KX )
⋂GX can be identified by the mapping J.

The mappings I and K are contained in the pair of diagrams (D,D) as in the
beginning of Sect. 4.2. The proof relies on several important results on solving com-
plex Monge–Ampère equations on the compact Kähler manifold X . One is the Yau’s
celebrated results of solutions of the complex Monge–Ampère equations for Kähler
classes [62]. The other one is the Boucksom–Eyssidieux–Guedj–Zeriahi’s work on
the equations for the nef and big classes [10].

Popovici and Ugarte in [45, Theorem 5.7] prove that the following inclusion holds

GX0 ⊆ lim
t→0

GXt

for the family π : X → �ε over a small complex disk with the central fiber an sGG
manifold, where lim

t→0
GXt is defined by

lim
t→0

GXt =
{[

�
]
A ∈ Hn−1,n−1

A (X0, R)

∣∣∣Pt ◦ Q0
([

�
]
A

) ∈ GXt for t sufficiently small
}
.

The canonical mappings Pt : H2n−2
DR (Xt , R) → Hn−1,n−1

A (Xt , R) are surjective for

all t and the mapping Q0 : Hn−1,n−1
A (Xt , R) → H2n−2

DR (Xt , R), depending on a fixed
Hermitian metric ω0 on X0, is injective, which satisfies P0 ◦ Q0 = idHn−1,n−1

A (X,R)
.

Here we give another inclusion from the other side as follows, where Demailly’s
regularization of closed positive currents (Theorem 4.21) plays an important role in
the proof.
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Theorem 1.12 (= Theorem 4.22) Let π : X → �ε be a holomorphic family with the
Kählerian central fiber X0. Then we have

lim
t→τ

GXt ⊆ NXτ for each τ ∈ �ε,

where NXτ is the convex cone generated by Aeppli classes of ∂τ ∂τ -closed positive
(n − 1, n − 1)-currents on Xτ . Moreover, the following inclusion holds, for τ ∈
�ε \⋃ Sν ,

lim
t→τ

GXt ⊆ GXτ .

Here
⋃

Sν is a countable union of analytic subvarieties Sν of �ε . And Theorem
4.23 deals with the case of the fiber, satisfying the equality KX = EX , in a Kähler
family.

In [46], Wan and the authors will apply the extension methods developed here to
a power series proof of Kodaira–Spencer’s local stability theorem of Kähler metrics,
which is motivated by:

Problem 1.13 (Remark 1 on [37, p. 180]) A good problem would be to find an ele-
mentary proof (for example, using power series methods). Our proof uses non-trivial
results from partial differential equations.

2 An Extension Formula for Complex Differential Forms

Inspired by the classical Kodaira–Spencer–Kuranishi deformation theory of complex
structures and the recent work [33], we will present an extension formula for complex
differential forms. For a holomorphic family of compact complex manifolds, we adopt
the definition [27, Definition 2.8]; while for the differentiable one, we follow:

Definition 2.1 ([27, Definition 4.1]) Let X be a differentiable manifold, B a domain
of R

k , and π a smooth map of X onto B. By a differentiable family of n-dimensional
compact complex manifolds we mean the triple π : X → B satisfying the following
conditions:

(i) The rank of the Jacobian matrix of π is equal to k at every point of X .
(ii) For each point t ∈ B, π−1(t) is a compact connected subset of X .
(iii) π−1(t) is the underlying differentiable manifold of the n-dimensional compact

complex manifold Xt associated to each t ∈ B.
(iv) There is a locally finite open covering {U j | j = 1, 2, . . .} of X and complex-

valued smooth functions ζ 1
j (p), . . . , ζ n

j (p), defined on U j such that for each
t ,

{
p →

(
ζ 1

j (p), . . . , ζ n
j (p)

)
| U j ∩ π−1(t) �= ∅

}

form a system of local holomorphic coordinates of Xt .
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2992 S. Rao, Q. Zhao

2.1 Extension Maps for Deformations

Let us introduce several new notations. For φ ∈ A0,s(X, T 1,0
X ) on a complex manifold

X , the contraction operator can be extended to

iφ : Ap,q(X) → Ap−1,q+s(X).

For example, if φ = η ⊗ Y with η ∈ A0,q(X) and Y ∈ 
(X, T 1,0
X ), then for any

ω ∈ Ap,q(X),

(iφ)(ω) = η ∧ (iY ω).

Let ϕ ∈ A0,p(X, T 1,0
X ) and ψ ∈ A0,q(X, T 1,0

X ), locally written as

ϕ = 1

p!
∑

ϕi
j̄1,..., j̄ p

d z̄ j1 ∧ · · · ∧ dz̄ jp ⊗ ∂i and ψ = 1

q!
∑

ψ i
k̄1,...,k̄q

d z̄k1 ∧ · · · ∧ dz̄kq ⊗ ∂i .

Then we have

[ϕ,ψ] =
n∑

i, j=1

(
ϕi ∧ ∂iψ

j − (−1)pqψ i ∧ ∂iϕ
j
)

⊗ ∂ j ,

where

∂iϕ
j = 1

p!
∑

∂iϕ
j
j̄1,..., j̄p

d z̄ j1 ∧ · · · ∧ dz̄ jp

and similarly for ∂iψ
j . In particular, if ϕ,ψ ∈ A0,1(X, T 1,0

X ),

[ϕ,ψ] =
n∑

i, j=1

(
ϕi ∧ ∂iψ

j + ψ i ∧ ∂iϕ
j
)

⊗ ∂ j .

For any φ ∈ A0,q(X, T 1,0
X ), we can define Lφ by

Lφ = (−1)qd ◦ iφ + iφ ◦ d.

According to the types, we can decompose

Lφ = L1,0
φ + L0,1

φ ,

where

L1,0
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂

123



Several Special Complex Structures 2993

and

L0,1
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂.

Then one has the following commutator formula, which originated from [54,55]
and whose various versions appeared in [4,13,19,31,34] and also [32,33] for vec-
tor bundle-valued forms.

Lemma 2.2 For φ, φ′ ∈ A0,1(X, T 1,0
X ) on a complex manifold X and σ ∈ A∗,∗(X),

[φ, φ′]�σ = −∂(φ′�(φ�σ)) − φ′�(φ�∂σ) + φ�∂(φ′�σ) + φ′�∂(φ�σ),

or equivalently,
i[φ,φ′] = L1,0

φ ◦ iφ′ − iφ′ ◦ L1,0
φ . (2.1)

Let φ ∈ A0,1(X, T 1,0
X ) and iφ be the contraction operator. Define an operator

eiφ =
∞∑

k=0

1

k! i
k
φ,

where i k
φ = iφ ◦ · · · ◦ iφ︸ ︷︷ ︸

k copies

. Since the dimension of X is finite, the summation in the

above formulation is also finite.

Proposition 2.3 ([33, Theorem 3.4]). Let φ ∈ A0,1(X, T 1,0
X ). Then on the space

A∗,∗(X),

e−iφ ◦ d ◦ eiφ = d − Lφ − i 1
2 [φ,φ] = d − L1,0

φ + i∂φ− 1
2 [φ,φ]. (2.2)

Or equivalently
e−iφ ◦ ∂ ◦ eiφ = ∂ − L0,1

φ (2.3)

and

e−iφ ◦ ∂ ◦ eiφ = ∂ − L1,0
φ − i 1

2 [φ,φ].

Proof Note that (2.3) proved in [13, Lemma 8.2] will not be used in this new proof,
but only the commutator formula (2.1) and

i[φ,φ] ◦ iφ = iφ ◦ i[φ,φ] (2.4)

by a formula on [13, Page 361].
Let us first define a bracket

[
d, i k

φ

]
= d ◦ i k

φ − i k
φ ◦ d.

123



2994 S. Rao, Q. Zhao

Obviously, [d, iφ] = −Lφ and (2.2) is equivalent to

[d, eiφ ] = eiφ ◦ [d, iφ] − eiφ ◦ i 1
2 [φ,φ]. (2.5)

We check the Leibniz rule for the bracket: for k ≥ 2,

[
d, i k

φ

]
=

k∑

j=1

i j−1
φ ◦ [d, iφ] ◦ i k− j

φ .

As for k = 2,

[
d, i2φ

]
= d ◦ i2φ − iφ ◦ d ◦ iφ + iφ ◦ d ◦ iφ − i2φ ◦ d = [d, iφ] ◦ iφ + iφ ◦ [d, iφ].

Then similarly, one is able to prove the cases for k ≥ 3 by induction.
Now we can prove (2.5). Actually, the Leibniz rule and the formulae (2.1) (2.4) tell

us: for k ≥ 2,

[
d, i k

φ

]
= kik−1

φ ◦ [d, iφ] − k(k − 1)

2
i k−2
φ ◦ i[φ,φ],

which implies (2.5). ��
From now on, one considers the smooth family

π : X → B

of n-dimensional compact complexmanifolds over a small real domainwith the central
fiber

X0 := π−1(0)

and the general fibers denoted by

Xt := π−1(t).

Assume that k = 1 for simplicity. We will use the standard notions in deformation
theory as in the beginning of [37, Chapter 4]. Fix an open coordinate covering {U j }
of X so that

U j := {(ζ j , t) = (ζ 1
j , . . . , ζ

n
j , t) | |ζ j | < 1, |t | < ε

}
,

π(ζ j , t) = t

and

ζ α
j = f α

jk(ζk, t) on U j ∩ Uk,
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Several Special Complex Structures 2995

where f jk is holomorphic in ζk and smooth in t . By Ehresmann’s theorem [18], X
is diffeomorphic to X × B, where X is the underlying differentiable manifold of X0.
Then

U j = U j × B,

whereU j = {ζ j | |ζ j | < 1}. Thus, we can consider Xt as a compact manifold obtained
by glueing U j with t ∈ B by identifying ζk ∈ Uk with ζ j = f jk(ζk, t) ∈ U j . We refer
the readers to [27, §4.1.(b)] for more details on this description. If x is a point of the
underlying differentiable manifold X of X0 and t ∈ �ε , we notice that

ζ α
j = ζ α

j (x, t)

is a differentiable function of (x, t). Use the holomorphic coordinates z of X0 = X as
differentiable coordinates so that

ζ α
j (x, t) = ζ α

j (z, t),

where ζ α
j (z, t) is a differentiable function of (z, t). At t = 0, ζ α

j (z, t) is holomorphic
in z and otherwise it is only differentiable.

Then a Beltrami differential ϕ(t) can be calculated out explicitly on the above local
coordinate charts. As we focus on one coordinate chart, the subscript is suppressed.
From [37, Page 150],

ϕ(t) =
(

∂

∂z

)T (
∂ζ

∂z

)−1

∂ζ, (2.6)

where ∂
∂z =

⎛

⎜⎝

∂
∂z1
...
∂
∂zn

⎞

⎟⎠, ∂ζ =
⎛

⎜⎝
∂ζ 1

...

∂ζ n

⎞

⎟⎠, ∂ζ
∂z stands for the matrix (

∂ζα

∂z j )1≤α≤n
1≤ j≤n

and α, j

are the row and column indices. Here
(

∂
∂z

)T
is the transpose of ∂

∂z and ∂ denotes the

Cauchy–Riemann operator with respect to the holomorphic structure on X0.
Since ϕ(t) is locally expressed as ϕi

j̄
d z̄ j ⊗ ∂

∂zi ∈ A0,1(T 1,0
X0

), it can be considered

as a matrix (ϕi
j̄
)1≤i≤n
1≤ j≤n

. By (2.6), this matrix can be explicitly written as

ϕ = (ϕi
j̄
)1≤i≤n
1≤ j≤n

= ϕ(t)
( ∂

∂ z̄ j
, dzi

)
=
((

∂ζ

∂z

)−1 (
∂ζ

∂ z̄

))i

j̄

. (2.7)

A fundamental fact is that the Beltrami differential ϕ(t) defined as above satisfies the
integrability:

∂ϕ(t) = 1

2
[ϕ(t), ϕ(t)]. (2.8)

One needs the following crucial calculation:
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Lemma 2.4

(
∂z
∂ζ

∂z
∂ζ̄

∂ z̄
∂ζ

∂ z̄
∂ζ̄

)
=
⎛

⎜⎝
(1 − ϕϕ)−1

(
∂ζ
∂z

)−1 −ϕ (1 − ϕϕ)−1
(

∂ζ
∂z

)−1

− (1 − ϕϕ)−1 ϕ
(

∂ζ
∂z

)−1 (
1 − ϕϕ

)−1
(

∂ζ
∂z

)−1

⎞

⎟⎠ .

Here ϕϕ, ϕϕ stand for the two matrices (ϕi
k̄
ϕk

j̄
)1≤i≤n
1≤ j≤n

, (ϕi
k̄
ϕk

j̄
)1≤i≤n
1≤ j≤n

, respectively.

In many places, ϕϕ and ϕϕ can also be seen as ϕi
k̄
ϕk

j̄
dz j ⊗ ∂

∂zi ∈ A1,0(T 1,0
X0

) and

ϕi
k̄
ϕk

j̄
d z̄ j ⊗ ∂

∂ z̄i ∈ A0,1(T 0,1
X0

). Actually, ϕϕ = ϕ�ϕ, ϕϕ = ϕ�ϕ, and 1 is the identity

matrix.

Proof It is easy to see that

(
∂z
∂ζ

∂z
∂ζ̄

∂ z̄
∂ζ

∂ z̄
∂ζ̄

)
is the inversematrix of

(
∂ζ
∂z

∂ζ
∂ z̄

∂ζ̄
∂z

∂ζ̄
∂ z̄

)
. Then it follows,

(
1 0

−
(

∂ζ̄
∂z

) (
∂ζ
∂z

)−1
1

)(
∂ζ
∂z

∂ζ
∂ z̄

∂ζ̄
∂z

∂ζ̄
∂ z̄

)
=
⎛

⎝
∂ζ
∂z

∂ζ
∂ z̄

0 ∂ζ̄
∂ z̄ −

(
∂ζ̄
∂z

) (
∂ζ
∂z

)−1 (
∂ζ
∂ z̄

)
⎞

⎠ . (2.9)

Take the inverse matrices of both sides of (2.9), yielding

(
∂ζ
∂z

∂ζ
∂ z̄

∂ζ̄
∂z

∂ζ̄
∂ z̄

)−1

=
⎛

⎝
∂ζ
∂z

∂ζ
∂ z̄

0 ∂ζ̄
∂ z̄ −

(
∂ζ̄
∂z

) (
∂ζ
∂z

)−1 (
∂ζ
∂ z̄

)
⎞

⎠
−1 (

1 0

−
(

∂ζ̄
∂z

) (
∂ζ
∂z

)−1
1

)
.

(2.10)

From Linear Algebra, we have the basic equality below

(
A C
0 B

)−1

=
(

A−1 −A−1C B−1

0 B−1

)
, (2.11)

where A, B are invertible matrices. Combine with (2.7) and (2.11) and go back to
(2.10):

(
∂ζ
∂z

∂ζ
∂ z̄

∂ζ̄
∂z

∂ζ̄
∂ z̄

)−1

=
⎛

⎝
∂ζ
∂z

∂ζ
∂ z̄

0
(

∂ζ̄
∂ z̄

)(
1 −

(
∂ζ̄
∂ z̄

)−1 (
∂ζ̄
∂z

) (
∂ζ
∂z

)−1 (
∂ζ
∂ z̄

))
⎞

⎠
−1 (

1 0

−
(

∂ζ̄
∂z

) (
∂ζ
∂z

)−1
1

)

=
(

∂ζ
∂z

∂ζ
∂ z̄

0
(

∂ζ̄
∂ z̄

)
(1 − ϕϕ)

)−1 (
1 0

−
(

∂ζ̄
∂z

) (
∂ζ
∂z

)−1
1

)

=
⎛

⎜⎝

(
∂ζ
∂z

)−1 −ϕ (1 − ϕϕ)−1
(

∂ζ̄
∂ z̄

)−1

0 (1 − ϕϕ)−1
(

∂ζ̄
∂ z̄

)−1

⎞

⎟⎠

(
1 0

−
(

∂ζ̄
∂z

) (
∂ζ
∂z

)−1
1

)
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=
⎛

⎜⎝

(
1 + ϕ (1 − ϕϕ)−1 ϕ

) (
∂ζ
∂z

)−1 −ϕ (1 − ϕϕ)−1
(

∂ζ̄
∂ z̄

)−1

− (1 − ϕϕ)−1 ϕ
(

∂ζ
∂z

)−1
(1 − ϕϕ)−1

(
∂ζ̄
∂ z̄

)−1

⎞

⎟⎠

=
⎛

⎜⎝
(1 − ϕϕ)−1

(
∂ζ
∂z

)−1 −ϕ (1 − ϕϕ)−1
(

∂ζ
∂z

)−1

− (1 − ϕϕ)−1 ϕ
(

∂ζ
∂z

)−1 (
1 − ϕϕ

)−1
(

∂ζ
∂z

)−1

⎞

⎟⎠ .

��
We need a few more local formulae:

Lemma 2.5
⎧
⎪⎨

⎪⎩

dζ α = ∂ζα

∂zi

(
eiϕ (dzi )

)
,

∂
∂ζα =

(
(1 − ϕϕ)−1

(
∂ζ
∂z

)−1
) j

α

∂
∂z j −

(
(1 − ϕϕ)−1 ϕ

(
∂ζ
∂z

)−1
) j̄

α

∂
∂ z̄ j .

Proof For the first equality,

dζ α = ∂ζα

∂zi
dzi + ∂ζα

∂ z̄ j
d z̄ j

= ∂ζα

∂zi

(
dzi +

((∂ζ

∂z

)−1
)i

β

∂ζ β

∂ z̄ j
d z̄ j

)

= ∂ζα

∂zi

(
dzi + ϕi

j̄
d z̄ j
)

= ∂ζα

∂zi

(
eiϕ (dzi )

)
.

Then the second one follows from Lemma 2.4:

∂

∂ζα
= ∂zi

∂ζα

∂

∂zi
+ ∂ z̄ j

∂ζα

∂

∂ z̄ j

=
(

(1 − ϕϕ)−1
(

∂ζ

∂z

)−1
) j

α

∂

∂z j
−
(

(1 − ϕϕ)−1 ϕ

(
∂ζ

∂z

)−1
) j̄

α

∂

∂ z̄ j
.

��
Corollary 2.6

∂ζα

∂zi

∂

∂ζα
=
(
(1 − ϕϕ)−1

) j

i

∂

∂z j
−
(
(1 − ϕϕ)−1 ϕ

) j̄

i

∂

∂ z̄ j
.

Proof It is a direct corollary of the second equality in Lemma 2.5. ��
By the above preparation, we can reprove the following important proposition in

deformation theory of complex structures, which can be dated back to [20] (see [39,
Sect. 1] and also [37, pp. 151–152]).
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Proposition 2.7 The holomorphic structure on Xt is determined by ϕ(t). More specif-
ically, a differentiable function f defined on any open subset of X0 is holomorphic
with respect to the holomorphic structure of Xt if and only if

(
∂ −

∑

i

ϕi (t)∂i

)
f (z) = 0, (2.12)

where ϕi (t) =∑ j ϕ(t)i
j
dz j , or equivalently,

(
∂ − ϕ(t)�∂

)
f (z) = 0.

Proof By use of Lemma 2.5 and Corollary 2.6, we get

d f = ∂ f

∂ζα
dζ α + ∂ f

∂ζ̄ β
dζ

β

= ∂ f

∂ζα

∂ζα

∂zi

(
eiϕ (dzi )

)
+ ∂ f

∂ζ̄ β

∂ζ β

∂zi

(
eiϕ (dzi )

)

=
((

(1 − ϕϕ)−1
) j

i

∂ f

∂z j
−
(
(1 − ϕϕ)−1 ϕ

) j̄

i

∂ f

∂ z̄ j

)(
eiϕ (dzi )

)

+
((

(1 − ϕϕ)−1
) j̄

ī

∂ f

∂ z̄ j
−
(
ϕ (1 − ϕϕ)−1

) j

ī

∂ f

∂z j

)(
eiϕ (dzi )

)

= eiϕ

((
(1 − ϕϕ)−1

)k

i

(
∂ f

∂zk
− ϕ

j
k̄

∂ f

∂ z̄ j

)
dzi
)

+ eiϕ

((
(1 − ϕϕ)−1

)k̄

ī

(
∂ f

∂ z̄k
− ϕ

j
k̄

∂ f

∂z j

)
dz̄i
)

.

Now, let us calculate the second term in the bracket:

eiϕ

((
(1 − ϕϕ)−1

)k̄

ī

(
∂ f

∂ z̄k
− ϕ

j
k̄

∂ f

∂z j

)
dz̄i
)

= eiϕ

(
(1 − ϕϕ)−1�∂ f − (1 − ϕϕ)−1�ϕ�∂ f

)

= eiϕ

(
(1 − ϕϕ)−1�(∂ − ϕ�∂) f

)
.

Thus,

∂ t f = eiϕ

((
(1 − ϕϕ)−1

)k̄

ī

(
∂ f

∂ z̄k
− ϕ

j
k̄

∂ f

∂z j

)
dz̄i
)

= eiϕ

(
(1 − ϕϕ)−1�(∂ − ϕ�∂) f

)
(2.13)
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since d f can be decomposed into ∂t f +∂ t f with respect to the holomorphic structure
on Xt . Hence, the desired result follows from the invertibility of eiϕ and (1 − ϕϕ)−1.

��
See also another proof in [11, Proposition 3.1] and our proof gives an explicit

expression of ∂ t on the differentiable functions as in (2.13). The formula used in the
classical proof of Proposition 2.7 is

(∂ − ϕ�∂) f = (1 − ϕϕ)ī
j̄
∂iζ αdz̄ j̄ ∂ f

∂ζ̄ α
,

which is just an equivalent version of (2.13)

(∂ − ϕ�∂) f = (1 − ϕϕ)�e−iϕ (∂ t f )

by use of the first formula of Lemma 2.5.
By the Leibniz rule, one has

∂zk

∂ζ̄ α
+ ϕk

ī

∂ z̄i

∂ζ̄ α
= 0, (2.14)

which is equivalent to the definition (2.7). In fact, if (2.7) is assumed, then the Leibniz
rule yields that

∂zk

∂ζ̄ α
+ ϕk

ī

∂ z̄i

∂ζ̄ α
= ∂zk

∂ζ̄ α
+
((

∂ζ

∂z

)−1
)k

β

∂ζ β

∂ z̄i

∂ z̄i

∂ζ̄ α

= ∂zk

∂ζ̄ α
−
((

∂ζ

∂z

)−1
)k

β

∂ζ β

∂zi

∂zi

∂ζ̄ α

= 0;
while the converse is similar. Thus, when f satisfies (2.12), one has

∂ f

∂ζ̄ α
= ∂ f

∂zk

∂zk

∂ζ̄ α
+ ∂ f

∂ z̄k

∂ z̄k

∂ζ̄ α

= ∂ f

∂zk

∂zk

∂ζ̄ α
+ ∂ f

∂zi
ϕi

k̄

∂ z̄k

∂ζ̄ α

= ∂ f

∂zi

(
∂zi

∂ζ̄ α
+ ϕi

k̄

∂ z̄k

∂ζ̄ α

)

= 0.

(2.15)

Conversely, ∂ f
∂ζ̄ α = 0 implies that f satisfies (2.12). Actually, we can substitute (2.14)

into the first equality of (2.15) to get

∂ f

∂ζ̄ α
= ∂ z̄k

∂ζ̄ α

(
∂ f

∂ z̄k
− ϕ

j
k̄

∂ f

∂z j

)
.
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By Lemma 2.4, one knows that ∂ z̄k

∂ζ̄ α is an invertible matrix as t is small. Hence, this is
the third proof of Proposition 2.7, which is implicit in Newlander–Nirenberg’s proof
of their integrability theorem [39].

Let us recall the Newlander–Nirenberg integrability theorem. Let ϕ be a holo-
morphic tangent bundle-valued (0,1)-form defined on a domain U of C

n and Li =
∂ i − ϕ

j
ī
∂ j . Assume that L1, . . . , Ln, L̄1, . . . , L̄n are linearly independent, and that

they satisfy the integrability condition (2.8). Then the system of partial differential
equations

Li f = 0, i = 1, . . . , n, (2.16)

has n linearly independent smooth solutions f = ζ α = ζ α(z), α = 1, . . . , n, in a
small neighborhood of any point of U . Here the solutions ζ 1, . . . , ζ n are said to be
linearly independent if

det
∂
(
ζ 1, . . . , ζ n, ζ 1, . . . , ζ n

)

∂
(

z1, . . . , zn, z1, . . . , zn
) �= 0,

which obviously implies

det(1 − ϕϕ)

∣∣∣∣det
∂(ζ 1, . . . , ζ n)

∂(z1, . . . , zn)

∣∣∣∣
2

�= 0

since the resolution of the system (2.16) of partial differential equations yields

⎛

⎝
∂ζ
∂z

∂ζ
∂z ϕ(

∂ζ
∂z ϕ
)

∂ζ̄
∂ z̄

⎞

⎠
(
1 −ϕ

0 1

)
=
(

∂ζ
∂z 0
∂ζ̄
∂z

∂ζ̄
∂ z̄ (1 − ϕϕ)

)
.

This theorem, together with Proposition 2.7, is actually the starting point of Kodaira–
Nirenberg–Spencer’s existence theorem for deformations and a quite clear description
can be found in [27, pp. 268–269]. We also find that the term 1 − ϕϕ in Lemma 2.4
is natural.

Motivated by the new proof of Proposition 2.7, we introduce a map

eiϕ(t)|iϕ(t) : Ap,q(X0) → Ap,q(Xt ),

which plays an important role in this paper.

Definition 2.8 For σ ∈ Ap,q(X0), we define

e
iϕ(t)|iϕ(t) (σ ) = σi1...i p j̄1... j̄q

(z)
(

eiϕ(t)
(

dzi1 ∧ · · · ∧ dzi p
) )

∧
(

e
i
ϕ(t)

(
dz j1 ∧ · · · ∧ dz jq

) )
,

where σ is locally written as

σ = σi1...i p j̄1... j̄q (z)dzi1 ∧ · · · ∧ dzi p ∧ dz j1 ∧ · · · ∧ dz jq

123



Several Special Complex Structures 3001

and the operators eiϕ(t) , ei
ϕ(t) follow the convention:

e♠ =
∞∑

k=0

1

k!♠
k, (2.17)

where ♠k denotes k-time action of the operator ♠. Since the dimension of X is finite,
the summation in the above formulation is always finite.

Then we have:

Lemma 2.9 The extension map eiϕ(t)|iϕ(t) : Ap,q(X0) → Ap,q(Xt ) is a linear isomor-
phism as t is arbitrarily small.

Proof Notice that
(

dz1 + ϕ(t)�dz1, . . . , dzn + ϕ(t)�dzn
)

and
(

dz1 + ϕ(t)�dz1, . . . , dzn + ϕ(t)�dzn
)

are two local bases of A1,0(Xt ) and A0,1(Xt ), respectively, thanks to the first identity

of Lemma 2.5 and the matrix
(

∂ζα

∂zi

)
therein is invertible as t is small. Then the map

eiϕ(t)|iϕ(t) is obviously well-defined since ϕ(t) is a well-defined, global (1, 0)-vector
valued (0, 1)-form on X0 as on [37, pp. 150–151].

For the desired isomorphism, we define the inverse map

e−iϕ(t)|−i
ϕ(t) : Ap,q(Xt ) → Ap,q(X0)

of eiϕ(t)|iϕ(t) as

e−iϕ(t)|−i
ϕ(t) (η)

= ηi1...i p j̄1... j̄q (ζ )

(
e−iϕ(t)

((
dzi1 + ϕ(t)�dzi1

) ∧ · · · ∧ (dzi p + ϕ(t)�dzi p
))

∧ e−i
ϕ(t)

((
dz j1 + ϕ(t)�dz j1

) ∧ · · · ∧ (dz jq + ϕ(t)�dz jq
)))

,

where η ∈ Ap,q(Xt ) is locally written as

η = ηi1...i p j̄1... j̄q (ζ )
(

dzi1 + ϕ(t)�dzi1
)

∧ · · · ∧
(

dzi p + ϕ(t)�dzi p
)

∧
(

dz j1 + ϕ(t)�dz j1
)

∧ · · · ∧
(

dz jq + ϕ(t)�dz jq
)

,

and the operators e−iϕ(t) , e−i
ϕ(t) also follow the convention (2.17). ��

The dual version of the fact about the basis in the proof is used by Chan–Suen [11]
to prove Proposition 2.7 and also byHuang in the second paragraph of [25, Sect. (1.2)].
Notice that the extensionmap eiϕ(t)|iϕ(t) admitsmore complete deformation significance
than eiϕ(t) which extends only the holomorphic part of a complex differential form.
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Lemma 2.10 The map eiϕ(t)|iϕ(t) : Ap,q(X0) → Ap,q(Xt ) is a real operator.

Proof It suffices to prove, for any σ ∈ Ap,q(X0),

eiϕ(t)|iϕ(t) (σ ) = eiϕ(t)|iϕ(t) (σ ).

In fact, let

σ =
∑

|I |=p,|J |=q

σI J̄ (z)dzI ∧ dz̄ J

by multi-index notation and then

eiϕ(t)|iϕ(t) (σ ) = σI J̄ (z)eiϕ(t) (dzI ) ∧ ei
ϕ(t) (dz̄ J )

= σI J̄ (z)ei
ϕ(t) (dz̄ I ) ∧ eiϕ(t) (dz J )

= σI J̄ (z)(−1)|I |·|J |eiϕ(t) (dz J ) ∧ ei
ϕ(t) (dz̄ I )

= eiϕ(t)|iϕ(t) (−1)|I |·|J |σI J̄ (z)dz J ∧ dz̄ I

= eiϕ(t)|iϕ(t) (σ ).

��

2.2 Obstruction Equation

This section is to obtain obstruction equation for ∂-extension, i.e., obstruction equation
for extending a ∂-closed (p, q)-form on X0 to the one on Xt .

Lemma 2.11

d
(

eiϕ�dzi
)

=
(
(1 − ϕϕ)−1 ϕ

)l̄

k

∂ϕi
l̄

∂z j

(
eiϕ (dzk)

)
∧
(

eiϕ (dz j )
)

−
(
(1 − ϕϕ)−1

)l̄

k̄

∂ϕi
l̄

∂z j

(
eiϕ (dzk)

)
∧
(

eiϕ (dz j )
)

.

Proof Here we use Proposition 2.3. By (2.2), one has

d
(

eiϕ (dzi )
)

= (d ◦ eiϕ − eiϕ ◦ d)(dzi )

= eiϕ (∂ ◦ iϕ − iϕ ◦ ∂)(dzi )

= ∂ϕi
l̄

∂z j

(
eiϕ (dz j )

)
∧ dz̄l .
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Moreover, we have

dz̄l = ∂ z̄l

∂ζα
dζ α + ∂ z̄l

∂ζ̄ β
dζ

β

= ∂ z̄l

∂ζα

∂ζα

∂zi

(
eiϕ (dzi )

)
+ ∂ z̄l

∂ζ̄ β

∂ζ β

∂zi

(
eiϕ (dzi )

)

= −
(
(1 − ϕϕ)−1 ϕ

)l̄

k

(
eiϕ (dzk)

)
+
(
(1 − ϕϕ)−1

)l̄

k̄

(
eiϕ (dzk)

)
.

(2.18)

��
For a general σ ∈ Ap,q(X0), Proposition 2.3 and the integrability condition (2.8)

give

d(eiϕ |iϕ̄ (σ )) = d ◦ eiϕ ◦ e−iϕ ◦ eiϕ |iϕ̄ (σ )

= eiϕ ◦ ([∂, iϕ] + ∂̄ + ∂
) ◦ e−iϕ ◦ eiϕ |iϕ̄ (σ )

= eiϕ |iϕ̄ ◦
(

e−iϕ |−iϕ̄ ◦ eiϕ ◦ ([∂, iϕ] + ∂̄ + ∂
) ◦ e−iϕ ◦ eiϕ |iϕ̄ (σ )

)
.

(2.19)

Here

e−iϕ(t)|−i
ϕ(t) : Ap,q(Xt ) → Ap,q(X0)

is the inverse map of eiϕ(t)|ιϕ(t) as defined in the proof of Lemma 2.9. We introduce one
more new notation � to denote the simultaneous contraction on each component of a
complex differential form as in [46, Sect. 2.1]. For example, (1− ϕ̄ϕ + ϕ̄)�σ means
that the operator (1 − ϕ̄ϕ + ϕ̄) acts on σ simultaneously as

(1 − ϕ̄ϕ + ϕ̄)�
(

fi1...i p j1... jq
dzi1 ∧ · · · ∧ dzi p ∧ dz̄ j1 ∧ · · · ∧ dz̄ jq

)

= σi1...i p j1... jq
(1 − ϕ̄ϕ + ϕ̄)�dzi1 ∧ · · · ∧ (1 − ϕ̄ϕ + ϕ̄)�dzi p

∧ (1 − ϕ̄ϕ + ϕ̄)�dz̄ j1 ∧ · · · ∧ (1 − ϕ̄ϕ + ϕ̄)�dz̄ jq ,

(2.20)

if σ is locally expressed by:

σ = σi1...i p j1... jq
dzi1 ∧ · · · ∧ dzi p ∧ dz̄ j1 ∧ · · · ∧ dz̄ jq .

This new simultaneous contraction is well-defined since ϕ(t) is a global (1, 0)-vector
valued (0, 1)-formon X0 (on [37, pp. 150–151]) as reasoned in the proof ofLemma2.9.
Using this notation, one can rewrite the extension map eiϕ |iϕ̄ in Definition 2.8:

eiϕ |iϕ̄ = (1 + ϕ + ϕ̄)�.

Then one has
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Lemma 2.12 ([46, Lemmata 2.2+2.3]). For any σ ∈ Ap,q(X0),

e−iϕ ◦ eiϕ |iϕ̄ (σ ) = (1 − ϕ̄ϕ + ϕ̄)�σ (2.21)

and

e−iϕ |−iϕ̄ ◦ eiϕ (σ ) =
(
(1 − ϕ̄ϕ)−1 − (1 − ϕ̄ϕ)−1ϕ̄

)
�σ, (2.22)

where
(
(1 − ϕ̄ϕ)−1 − (1 − ϕ̄ϕ)−1ϕ̄

)
acts on σ just as (2.20).

Proof Here we give a different proof from those in [46, Lemmata 2.2+2.3]. Locally
set

σ = σIp J̄q
dz Ip ∧ dz̄ Jq

by multi-index notation. So

eiϕ |iϕ̄ (σ ) = σIp J̄q
eiϕ (dzIp ) ∧ eiϕ̄ (dz̄ Jq )

and thus,

e−iϕ ◦ eiϕ |iϕ̄ (σ ) = σIp J̄q
dz Ip ∧ e−iϕ ◦ eiϕ̄ (dz̄ Jq )

= σIp J̄q
dz Ip ∧ (1 − ϕ̄ϕ + ϕ̄)�(dz̄ Jq ).

As for (2.22), (2.18) tells us that

e−iϕ |−iϕ̄ ◦ eiϕ (σ ) = σIp J̄q
e−iϕ |−iϕ̄ (eiϕ (dzIp ) ∧ dz̄ Jq )

= σIp J̄q
e−iϕ |−iϕ̄

(
eiϕ (dzIp ) ∧ eiϕ |iϕ̄

(
(1 − ϕ̄ϕ)−1 − (1 − ϕ̄ϕ)−1ϕ̄

)
�dz̄ Jq

)

= σIp J̄q
dz Ip ∧

(
(1 − ϕ̄ϕ)−1 − (1 − ϕ̄ϕ)−1ϕ̄

)
�dz̄ Jq .

��
The following equivalence describes the ∂-extension obstruction for (p, q)-forms

of the smooth family.

Proposition 2.13 For any σ ∈ Ap,q(X0),

∂̄t

(
eiϕ |iϕ̄ (σ )

)
= 0

amounts to

([∂, iϕ] + ∂̄)(1 − ϕ̄ϕ)�σ = 0.
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Proof Substituting (2.21) and (2.22) into (2.19), one has

d(eiϕ |iϕ̄ (σ ))

= eiϕ |iϕ̄
((

(1 − ϕ̄ϕ)−1 − (1 − ϕ̄ϕ)−1ϕ̄
)

�
([∂, iϕ] + ∂̄ + ∂

)
(1 − ϕ̄ϕ + ϕ̄)�σ

)
.

(2.23)
From (2.22), we know that

e−iϕ |−iϕ̄ ◦ eiϕ : Ap,q(X0) →
min{q,n−p}⊕

i=0

Ap+i,q−i (X0).

Thus, by carefully comparing the form types in both sides of (2.23), we have

∂̄t (e
iϕ |iϕ̄ (σ )) = eiϕ |iϕ̄

(
(1 − ϕ̄ϕ)−1

�([∂, iϕ] + ∂̄)(1 − ϕ̄ϕ)�σ
)

,

which implies the desired equivalence follows from the invertibility of the operators
eiϕ |iϕ̄ and (1 − ϕ̄ϕ)−1

�. ��

2.3 Kuranishi Family and Beltrami Differentials

By (the proof of) Kuranishi’s completeness theorem [29], for any compact complex
manifold X0, there exists a complete holomorphic family � : K → T of complex
manifolds at the reference point 0 ∈ T in the sense that for any differentiable family
π : X → B withπ−1(s0) = �−1(0) = X0, there is a sufficiently small neighborhood
E ⊆ B of s0, and smooth maps � : XE → K, τ : E → T with τ(s0) = 0 such that
the diagram commutes

XE
�

π

K
�

(E, s0)
τ

(T, 0),

� maps π−1(s) biholomorphically onto �−1(τ (s)) for each s ∈ E , and

� : π−1(s0) = X0 → �−1(0) = X0

is the identity map. This family is called Kuranishi family and constructed as follows.
Let {ην}m

ν=1 be a basis for H
0,1(X0, T 1,0

X0
), where some suitable Hermitian metric is

fixed on X0 and m ≥ 1; Otherwise the complex manifold X0 would be rigid, i.e.,
for any differentiable family κ : M → P with s0 ∈ P and κ−1(s0) = X0, there is
a neighborhood V ⊆ P of s0 such that κ : κ−1(V ) → V is trivial. Then one can
construct a holomorphic family
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ϕ(t) =
∞∑

|I |=1

ϕI t I :=
∞∑

j=1

ϕ j (t), I = (i1, . . . , im), t = (t1, . . . , tm) ∈ C
m,

for |t | < ρ a small positive constant, of Beltrami differentials as follows:

ϕ1(t) =
m∑

ν=1

tνην

and for |I | ≥ 2,

ϕI = 1

2
∂
∗
G

∑

J+L=I

[ϕJ , ϕL ],

whereG is the associatedGreen’s operator. It is obvious that ϕ(t) satisfies the equation

ϕ(t) = ϕ1 + 1

2
∂
∗
G[ϕ(t), ϕ(t)].

Let

T = {t | H[ϕ(t), ϕ(t)] = 0},

where H is the associated harmonic projection. Thus, for each t ∈ T , ϕ(t) satisfies

∂̄ϕ(t) = 1

2
[ϕ(t), ϕ(t)], (2.24)

and determines a complex structure Xt on the underlying differentiable manifold of
X0. More importantly, ϕ(t) represents the complete holomorphic family � : K → T
of complex manifolds. Roughly speaking, Kuranishi family � : K → T contains all
sufficiently small differentiable deformations of X0. We call ϕ(t) the canonical family
of Beltrami differentials for this Kuranishi family.

By means of these, one can reduce our argument on the deformation invariance of
Hodge numbers for a smooth family of complex manifolds to that of the Kuranishi
family by shrinking E if necessary, that is, one considers the Kuranishi family with
the canonical family of Beltrami differentials constructed as above. From now on,
one uses ϕ(t) and ϕ interchangeably to denote this holomorphic family of integrable
Beltrami differentials, and assumes m = 1 for simplicity.

3 Deformation Invariance of Hodge Numbers and Its Applications

Throughout this section, one just considers the Kuranishi family π : X → �ε of
n-dimensional complex manifolds over a small complex disk with the general fibers
Xt := π−1(t) according to the reduction in Sect. 2.3 and fixes a Hermitian metric g
on the central fiber X0. As a direct application of the extension formulae developed in
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Sect. 2, we obtain several deformation invariance theorems of Hodge numbers in this
section.

3.1 Basic Philosophy, Main Results, and Examples

Now let us describe our basic philosophy to consider the deformation invariance of
Hodge numbers briefly. The Kodaira–Spencer’s upper semi-continuity theorem ([28,
Theorem 4]) tells us that the function

t 
−→ h p,q
∂ t

(Xt ) := dimC H p,q
∂ t

(Xt )

is always upper semi-continuous for t ∈ �ε and thus, to approach the deformation
invariance of h p,q

∂ t
(Xt ), we only need to obtain the lower semi-continuity. Here our

main strategy is a modified iteration procedure, originally from [34] and developed
in [33,52,53,63], which is to look for an injective extension map from H p,q

∂
(X0) to

H p,q
∂ t

(Xt ). More precisely, for a nice uniquely chosen representative σ0 of the initial

Dolbeault cohomology class in H p,q
∂

(X0), we try to construct a convergent power
series

σt = σ0 +
∞∑

j+k=1

tk t j̄σk j̄ ∈ Ap,q(X0),

with σt varying smoothly on t such that for each small t :

(1) eiϕ |iϕ (σt ) ∈ Ap,q(Xt ) is ∂ t -closed with respect to the holomorphic structure on
Xt ;

(2) The extension map H p,q
∂

(X0) → H p,q
∂ t

(Xt ) : [σ0]∂ 
→ [eiϕ |iϕ (σt )]∂ t
is injective.

The key point is to solve the obstruction equation, induced by the canonical family
ϕ(t) of Beltrami differentials, for the ∂ t -closedness in (1), and verification of the
injectivity of the extension map in (2). Then we state the main theorem of this section,
whose proof will be postponed to Sect. 3.2.

Theorem 3.1 If the injectivity of the mappings ι
p+1,q
BC,∂ , ι

p,q+1
∂,A

on the central fiber X0

and the deformation invariance of the (p, q − 1)-Hodge number h p,q−1
∂ t

(Xt ) holds,

then h p,q
∂ t

(Xt ) are deformation invariant.

There are three conditions involved in the theorem above, namely the injectivity of
the mappings ι

p+1,q
BC,∂ , ιp,q+1

∂,A
and the deformation invariance of the (p, q − 1)-Hodge

number, to assure the deformation invariance of the one of (p, q)-type. Resorting
to Hodge, Bott–Chern, and Aeppli numbers of manifolds in the Kuranishi family of
the Iwasawa manifold (cf. [3, Appendix]), we find the following three examples that
the deformation invariance of the (p, q)-Hodge number fails when one of the three
conditions is not true, while the other two hold. It indicates that the three conditions
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above may not be omitted in order to state a theorem for the deformation invariance
of all the (p, q)-Hodge numbers.

Let I3 be the Iwasawa manifold of complex dimension 3 with ϕ1, ϕ2, ϕ3 denoted
by the basis of the holomorphic one form H0(I3,�

1) of I3, satisfying the relation

dϕ1 = 0, dϕ2 = 0, dϕ3 = −ϕ1 ∧ ϕ2.

And the convention ϕ121̄3̄ := ϕ1 ∧ ϕ2 ∧ ϕ1 ∧ ϕ3 will be used for simplicity.

Example 3.2 (The case (p, q) = (1, 0)). The injectivity of ι
1,1
∂,A

holds on I3 with the

deformation invariance of h1,−1
∂ t

(Xt ) trivially established but ι
2,0
BC,∂ is not injective. In

this case, h1,0
∂ t

(Xt ) are deformation variant.

Proof It is revealed from [3, Appendix] that h1,1
∂

= 6, h1,1
A = 8, and h2,0

BC = 3, h2,0
∂ =

2. And thus ι
2,0
BC,∂ is not injective. It is easy to check that

H1,1
∂

(X) =
〈
[ϕ11̄]∂ , [ϕ12̄]∂ , [ϕ21̄]∂ , [ϕ22̄]∂ , [ϕ31̄]∂ , [ϕ32̄]∂

〉
,

H1,1
A (X) =

〈
[ϕ11̄]A, [ϕ12̄]A, [ϕ21̄]A, [ϕ22̄]A, [ϕ31̄]A, [ϕ32̄]A, [ϕ13̄]A, [ϕ23̄]A

〉
,

which implies the injectivity of ι1,1
∂,A

. The deformation variance of h1,0
∂ t

(Xt ) can be read
from [3, Appendix]. ��
Example 3.3 (The case (p, q) = (2, 0)). The injectivity of ι

3,0
BC,∂ holds on I3 with the

deformation invariance of h2,−1
∂ t

(Xt ) trivially established but ι
2,1
∂,A

is not injective. In

this case, h2,0
∂ t

(Xt ) are deformation variant.

Proof We know that h3,0
BC = 1, h3,0

∂ = 1, and h2,1
∂

= 6, h2,1
A = 6 from [3, Appendix].

The bases of respective cohomology groups can be illustrated as follows:

H3,0
BC =

〈
[ϕ123]BC

〉
, H3,0

∂ =
〈
[ϕ123]∂

〉
,

H2,1
∂

=
〈
[ϕ121̄]∂ , [ϕ122̄]∂ , [ϕ131̄]∂ , [ϕ132̄]∂ , [ϕ231̄]∂ , [ϕ232̄]∂

〉
,

H2,1
A =

〈
[ϕ131̄]A, [ϕ132̄]A, [ϕ231̄]A, [ϕ232̄]A, [ϕ133̄]A, [ϕ132̄]A

〉
,

which indicates the injectivity of ι
3,0
BC,∂ and non-injectivity of ι

2,1
∂,A

. The deformation

variance of h2,0
∂ t

(Xt ) can be also got from [3, Appendix]. ��

Example 3.4 (The case (p, q) = (2, 3)). The mapping ι
3,3
BC,∂ is injective on I3 with

the injectivity of ι
2,4
∂,A

trivially established but h2,2
∂ t

(Xt ) are deformation variant. In this

case, h2,3
∂ t

(Xt ) are deformation variant.
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Proof It is obvious that ι3,3BC,∂ is injective, since h3,3
BC = 1, h3,3

∂ = 1, and

H3,3
BC =

〈
[ϕ1231̄2̄3̄]BC

〉
, H3,3

∂ =
〈
[ϕ1231̄2̄3̄]∂

〉
.

And [3, Appendix] conveys the fact of the deformation variance of h2,2
∂ t

(Xt ) and

h2,3
∂ t

(Xt ). ��

It is observed that the injectivity of ι
p+1,q
BC,∂ or ι

p,q+1
∂,A

is equivalent to a certain type

of ∂∂-lemma, for which we introduce the following notations:

Notation 3.5 We say a compact complex manifold X satisfies S
p,q and B

p,q , if for
any ∂-closed ∂g ∈ Ap,q(X), the equation

∂x = ∂g (3.1)

has a solution and a ∂-exact solution, respectively. Similarly, a compact complex
manifold X is said to satisfy S p,q and B p,q , if for any ∂-closed g ∈ Ap−1,q(X), the
Eq. (3.1) has a solution and a ∂-exact solution, respectively.

The following implications clearly hold

B
p,q ⇒ S

p,q

⇓ ⇓
B p,q ⇒ S p,q .

And it is apparent that a compact complex manifold X , where the ∂∂-lemma holds,
satisfiesB

p,q for any (p, q). Here the ∂∂-lemma refers to: for every pure-type d-closed
form on X , the properties of d-exactness, ∂-exactness, ∂̄-exactness, and ∂∂̄-exactness
are equivalent.

It is easy to check that the following equivalent statements:

the injectivity of ι
p,q
BC,∂ holds on X ⇔ X satisfies B

p,q ;
the injectivity of ι

p,q
∂,A

holds on X ⇔ X satisfies S
p,q ;

the surjectivity of ι
p−1,q
BC,∂

holds on X ⇔ X satisfies B p,q .

Details of the proofs of theorems in this section will frequently apply Notation 3.5 for
the convenience of solving ∂-equations.

The speciality of the types may lead to the weakening of the conditions in Theorem
3.1, such as (p, 0) and (0, q). Hence, another two theorems follow, whose proofs will
be given in Sect. 3.3.

Theorem 3.6 If the injectivity of the mappings ι
p+1,0
∂,A

and ι
p,1
∂,A

on X0 holds, then

h p,0
∂ t

(Xt ) are independent of t .
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Theorem 3.7 If the surjectivity of the mapping ι
0,q
BC,∂

on X0 and the deformation

invariance of h0,q−1
∂ t

(Xt ) holds, then h0,q
∂ t

(Xt ) are independent of t .

Remark 3.8 In the case of q = 1 of Theorem 3.7, the surjectivity of the mapping ι
0,1
BC,∂

is equivalent to the sGG condition proposed by Popovici–Ugarte [41,45], from [45,
Theorem 2.1 (iii)].

Hence, the sGG manifolds can be examples of Theorem 3.7, where the Frölicher
spectral sequence does not necessarily degenerate at the E1-level, by [45, Proposition
6.3]. Inspired by the deformation invariance of the (0, 1), (0, 2), and (0, 3)-Hodge
numbers of the Iwasawa manifold I3 shown in [3, Appendix], we prove

Corollary 3.9 Let X = 
\G be a complex parallelizable nilmanifold of complex
dimension n, where G is a simply connected nilpotent Lie group and 
 is denoted by
a discrete and co-compact subgroup of G. Then X is an sGG manifold. In addition,
the (0, q)-Hodge numbers of X are deformation invariant for 1 ≤ q ≤ n.

Proof It is well known from [50, Theorem 1] and [3, Theorem 3.8] that the isomor-
phisms

H p,q
BC (X) ∼= H p,q

BC (g, J ), H p,q
∂

(X) ∼= H p,q
∂

(g, J ),

hold on the complex parallelizable nilmanifold X , where g is the corresponding Lie
algebra of G and J denotes the complex parallelizable structure on g. Then from The-
orem 3.7, the corollary amounts to the verification of the surjectivity of the mappings
of ι

0,q
BC,∂

on the level of the Lie algebra (g, J ) for 1 ≤ q ≤ n, which is equivalent to

that the conditions B1,q hold on the Lie algebra (g, J ) for 1 ≤ q ≤ n.
Since J is complex parallelizable, it yields that dg∗(1,0) ⊆∧2 g∗(1,0), which implies

that ∂
(∧q g∗(0,1)

) = 0 for 1 ≤ q ≤ n, where g∗
C

= g∗ ⊗R C = g∗(1,0) ⊕ g∗(0,1) with
respect to J . Therefore, the conditions B1,q for 1 ≤ q ≤ n are satisfied on the Lie
algebra (g, J ) and the corollary follows. ��
Remark 3.10 The deformation invariance for the (0, 2)-Hodge number of a complex
parallelizable nilmanifold has been shown in [35, Corollary 4.3].

Since nilmanifolds with complex parallelizable structures and abelian complex
structures are conjugate to some extent, it is tempting to consider the deformation
invariance of the (p, 0)-Hodge numbers of nilmanifolds with abelian complex struc-
tures for 1 ≤ p ≤ n under the spirit of Corollary 3.9. The following example, inspired
by Console–Fino–Poon [14, Sect. 6], is a holomorphic family of nilmanifolds of
complex dimension 5, whose central fiber is endowed with an abelian complex struc-
ture. This family admits the deformation invariance of the (p, 0)-Hodge numbers for
1 ≤ p ≤ 5, but not the (1, 1)-Hodge number or (1, 1)-Bott–Chern number, which
shows the function of Theorem 3.6 possibly beyond Kodaira–Spencer’s squeeze [28,
Theorem 13] in this case.
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Example 3.11 Let X0 be the nilmanifold determined by a ten-dimensional 3-step
nilpotent Lie algebra n endowed with the complex structure Js,t for s = 1, t = 0, as
in [14, Sect. 6]. The natural decompositions with respect to the complex structure J1,0
yield

nC = n ⊗R C = n1,0 ⊕ n0,1; n∗
C

= n∗ ⊗R C = n∗(1,0) ⊕ n∗(0,1).

By contrast with the basis ω1, . . . , ω5 of n∗(1,0) used in [14, Sect. 6], another basis
τ 1, . . . , τ 5 will be applied, with the transition formula given by

τ 1 = ω1, τ 2 = (1 + i)ω2 − ω3, τ 3 = −(1 + i)ω2, τ 4 = ω4, τ 5 = ω5.

Hence, the structure equation with respect to {τ k}5k=1 follows

⎧
⎪⎨

⎪⎩

dτ 1 = dτ 2 = dτ 4 = 0,

dτ 3 = −(τ 1 ∧ τ̄ 1 + (1 + i)τ 1 ∧ τ̄ 4
)
,

dτ 5 = 1
2

(
τ 1 ∧ τ̄ 3 + τ 3 ∧ τ̄ 1 − τ 2 ∧ τ̄ 2

)
.

(3.2)

It is easy to see d τ̄ 5 = −dτ 5, which implies ∂τ̄ 5 = −∂τ 5. Denote the basis of n1,0

dual to {τ k}5k=1 by θ1, . . . , θ5. The equation dω(θ, θ ′) = −ω([θ, θ ′]) for ω ∈ n∗
C
and

θ, θ ′ ∈ nC, establishes the equalities

[θ̄1, θ4] = (1 − i)θ̄3, [θ̄i , θ4] = 0 for 2 ≤ i ≤ 5.

According to [14, Theorem 3.6], the linear operator ∂ on n1,0, defined in [14, Sect. 3.2]
by

∂ : n1,0 → n∗(0,1) ⊗ n1,0 : ∂Ū V = [Ū , V ]1,0 for U, V ∈ n1,0,

produces an isomorphism H1(X0, T 1,0
X0

) ∼= H1
∂
(n1,0). Therefore, from Kodaira–

Spencer deformation theory, an analytic deformation Xt of X0 can be constructed
by use of the integrable Beltrami differential

ϕ(t) = t1τ̄
5 ⊗ θ4 + t2τ̄

4 ⊗ θ4

for t1, t2 small complex numbers and t = (t1, t2), which satisfies ∂ϕ(t) =
1
2 [ϕ(t), ϕ(t)] and the so-called Schouten–Nijenhuis bracket [·, ·] (cf. [14, Formula
(4.1)]) works as

[ω̄ ⊗ V, ω̄′ ⊗ V ′] = ω̄′ ∧ iV ′dω̄ ⊗ V + ω̄ ∧ iV dω̄′ ⊗ V ′ for ω, ω′ ∈ n∗(1,0), V, V ′ ∈ n1,0,

since ∂θ4 = 0 and iθ4d τ̄ 5 = iθ4d τ̄ 4 = 0. Then the general fibers Xt are still nilmani-
folds, determined by the Lie algebra n and the decompositions

n∗
C

= n∗ ⊗R C = n
∗(1,0)
ϕ(t) ⊕ n

∗(0,1)
ϕ(t) ,
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with the basis of n∗(1,0)
ϕ(t) given by τ k(t) = eiϕ(t)

(
τ k
) = (1 + ϕ(t)

)
�τ k for 1 ≤ k ≤ 5.

Hence, the structure equation of {τ k(t)}5k=1 amounts to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dτ 1(t) = dτ 2(t) = 0,

dτ 4(t) = −t1dτ 5(t),

dτ 3(t) = 1+i
1−|t2|2

(
t̄2τ 1(t) ∧ τ 4(t) + t̄1τ 1(t) ∧ τ 5(t)

)

−τ 1(t) ∧ τ̄ 1(t) − 1+i
1−|t2|2

(
τ 1(t) ∧ τ̄ 4(t) + t1 t̄2τ 1(t) ∧ τ̄ 5(t)

)
,

dτ 5(t) = 1
2

(
τ 1(t) ∧ τ̄ 3(t) + τ 3(t) ∧ τ̄ 1(t) − τ 2(t) ∧ τ̄ 2(t)

)
.

(3.3)

The proof of Theorem 3.6, which is contained in Proposition 3.19, shows that the
obstruction of the deformation invariance of the (p, 0)-Hodge numbers along the
family determined by ϕ(t) actually lies in the Eq. (3.13), where the differential forms
involved are invariant ones in this case. For any ∂-closed σ0 ∈ ∧p n∗(1,0), it is easy
to check that

σt = σ0 + t1τ
5 ∧ (θ4�σ0)

solves the equation (3.13), due to the equalities ∂τ̄ 5 = −∂τ 5 and dτ 4 = 0. However,
based on the structure equations (3.2) and (3.3), it yields that

h1,1
∂

(X0) = 14, h1,1
∂ t

(Xt ) = 11 and h1,1
BC (X0) = 11, h1,1

BC (Xt ) = 9,

where t2 �= 0 and t1 t̄2 − t̄1 �= 0.

3.2 Proofs of the Invariance of Hodge Numbers hp,q
∂ t

(Xt)

This subsection is to prove Theorem 3.1, which can be restated by the use of Notation
3.5: if the central fiber X0 satisfies both B

p+1,q and S
p,q+1 with the deformation

invariance of h p,q−1
∂ t

(Xt ) established, then h p,q
∂ t

(Xt ) are independent of t .
The basic strategy is described at the beginning of Sect. 3.1 and obviously our task

is divided into two steps (1) and (2), which are to be completed in Propositions 3.14
and 3.15, respectively.

To complete (1), we need a lemma due to [41, Theorem 4.1] or [46, Lemma 3.14]
for the resolution of ∂∂-equations.

Lemma 3.12 Let (X, ω) be a compact Hermitian complex manifold with any suitable
pure-type complex differential forms x and y. Assume that the ∂∂-equation

∂∂x = y (3.4)

admits a solution. Then an explicit solution of the ∂∂-equation (3.4) can be chosen as

(∂∂)∗GBC y,

which uniquely minimizes the L2-norms of all the solutions with respect to ω.
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Several Special Complex Structures 3013

HereGBC is the associatedGreen’s operator of the first 4-th order Kodaira–Spencer
operator (also often called Bott–Chern Laplacian) given by

�BC = ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂

∗
∂∂∗∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂ + ∂∗∂.

We need one more lemma inspired by [43, Lemma 3.1].

Lemma 3.13 Assume that a compact complex manifold X satisfies B p+1,q . Each
Dolbeault class [σ ]∂ of the (p, q) type can be canonically represented by a uniquely
chosen d-closed (p, q)-form γσ .

Proof We first choose the unique harmonic representative of [σ ]∂ , still denoted by σ .
It is clear that the d-closed representative γσ ∈ Ap,q(X) satisfies

σ + ∂βσ = γσ

for some βσ ∈ Ap,q−1(X). This is equivalent that some βσ ∈ Ap,q−1(X) solves the
following equation

∂∂βσ = −∂σ.

The existence of βσ is assured by our assumption on X and uniqueness with L2-norm
minimum by Lemma 3.12, that is, one can choose βσ as −(∂∂)∗GBC∂σ . ��
Proposition 3.14 Assume that X0 satisfies B

p+1,q and S
p,q+1. Then for each Dol-

beault class in H p,q
∂

(X0) with the unique canonical d-closed representative σ0 given
as Lemma 3.13, there exists a power series on X0

σt = σ0 +
∞∑

j+k=1

tk t j̄σk j̄ ∈ Ap,q(X0),

such that σt varies smoothly on t and eiϕ |iϕ (σt ) ∈ Ap,q(Xt ) is ∂ t -closed with respect
to the holomorphic structure on Xt .

Proof The construction of σt is presented at first. The canonical choice of the represen-
tative for the initial Dolbeault cohomology class is guaranteed by the assumption that
X0 satisfiesB

p+1,q , which implies thatB p+1,q holds, andLemma3.13. ByProposition
2.13, the desired ∂ t -closedness is equivalent to the resolution of the equation

([∂, iϕ] + ∂̄)(1 − ϕ̄ϕ)�σt = 0. (3.5)

Set σ̃t = (1 − ϕ̄ϕ)�σt and we just need to resolve the system of equations

{
∂σ̃t = 0,

∂σ̃t + ∂
(
ϕ(t)�σ̃t

) = 0.
(3.6)
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An iteration method, developed in [33,34,46,47,52,53,63,64], will be applied to
resolve this system. Let

σ̃t = σ̃0 +
∞∑

j=1

σ̃ j t
j

be a power series of (p, q)-forms on X0. By substituting this power series into (3.6)
and comparing the coefficients of tk , we turn to resolving

⎧
⎪⎪⎨

⎪⎪⎩

dσ̃0 = 0,

∂σ̃k = −∂
(∑k

i=1 ϕi�σ̃k−i

)
, for each k ≥ 1,

∂σ̃k = 0, for each k ≥ 1.

(3.7)

Notice that σ̃0 = σ0 and thus dσ̃0 = 0 by the choice of the canonical d-closed
representative for the initial Dolbeault class in H p,q

∂
(X0).

As for the second equation of (3.7), we may assume that σ̃i , satisfying ∂σ̃i = 0,
has been resolved for 0 ≤ i ≤ k − 1, and then check

∂∂

(
k∑

i=1

ϕi�σ̃k−i

)
= 0.

In fact, by the integrability (2.24) and the commutator formula (2.2), one has

− ∂∂

(
k∑

i=1

ϕi�σ̃k−i

)

= ∂

(
k∑

i=1

∂ϕi�σ̃k−i +
k∑

i=1

ϕi�∂σ̃k−i

)

= ∂

⎛

⎝1

2

k∑

i=1

i−1∑

j=1

[ϕ j , ϕi− j ]�σ̃k−i −
k∑

i=1

ϕi�∂

( k−i∑

j=1

ϕ j�σ̃k−i− j

)⎞

⎠

= ∂

⎛

⎝1

2

k∑

i=1

i−1∑

j=1

(
− ∂
(
ϕi− j�(ϕ j�σ̃k−i )

)− ϕi− j�(ϕ j�∂σ̃k−i )

+ ϕ j�∂(ϕi− j�σ̃k−i ) + ϕi− j�∂(ϕ j�σ̃k−i )

)
−

k∑

i=1

ϕi�∂

( k−i∑

j=1

ϕ j�σ̃k−i− j

)⎞

⎠

= ∂

⎛

⎝
∑

1≤ j<i≤k

ϕ j�∂(ϕi− j�σ̃k−i ) −
k∑

i=1

k−i∑

j=1

ϕi�∂(ϕ j�σ̃k−i− j )

⎞

⎠

= 0.
(3.8)
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Hence, one can obtain a canonical solution

σ̃ 1
k = −∂

∗
G∂∂

(
k∑

i=1

ϕi�σ̃k−i

)

by the assumption that X0 satisfies S
p,q+1 and the useful fact that ∂

∗
G∂ y is the unique

solution, minimizing the L2-norms of all the solutions, of the equation

∂x = y

on a compact complex manifold if the equation admits one, where x, y are pure-type
complex differential forms and the operator G∂ denotes the corresponding Green’s
operator of the ∂-Laplacian �.

To fulfill the third equation ∂σ̃k = 0, we try to find some σ̃ 2
k ∈ Ap,q−1(X0) such

that
∂
(
σ̃ 1

k + ∂σ̃ 2
k

)
= 0. (3.9)

Then the solution σ̃k can be set as

σ̃k = σ̃ 1
k + ∂σ̃ 2

k ,

which satisfies both the second and the third equation of (3.7). At this moment, the
assumption B

p+1,q on X0 and Lemma 3.13 will also provide us a solution of (3.9)

σ̃ 2
k = −(∂∂)∗GBC∂σ̃ 1

k ,

which yields

σ̃k = −∂
∗
G∂∂

(
k∑

i=1

ϕi�σ̃k−i

)
+ ∂(∂∂)∗GBC∂∂

∗
G∂∂

(
k∑

i=1

ϕi�σ̃k−i

)
.

Finally we resort to the elliptic estimates for the regularity of σ̃t , which is quite
analogous to that in [46, Theorems 2.12 and 3.11]. So we just sketch this argument,
which is divided into two steps:

(i) ‖∑∞
j=1 σ̃ j t j‖k,α � A(t);

(ii) σ̃t is a real analytic family of (p, q)-forms in t .

Here are explicit details for the first step (i). Consider an important power series in
deformation theory of complex structures

A(t) = β

16γ

∞∑

m=1

(γ t)m

m2 :=
∞∑

m=1

Amtm, (3.10)
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where β, γ are positive constants to be determined. The power series (3.10) converges
for |t | < 1

γ
and has a nice property:

Ai (t) �
(

β

γ

)i−1

A(t).

See [37, Lemma 3.6 and its Corollary in Chapter 2] for these basic facts. We use the
following notation: For the series with real positive coefficients

a(t) =
∞∑

m=1

amtm, b(t) =
∞∑

m=1

bmtm,

say that a(t) dominates b(t), written as b(t) � a(t), if bm ≤ am . But for a power
series of (bundle-valued) complex differential forms

η(t) =
∞∑

m=0

ηmtm,

the notation

‖η(t)‖k,α � A(t)

means

‖ηm‖k,α ≤ Am

with the Ck,α-norm ‖ · ‖k,α as defined on [37, Page 159]. Recall that the canonical
family of Beltrami differentials ϕ(t) satisfies a nice convergence property:

‖ϕ(t)‖k,α � A(t)

as given in the proof of [37, Proposition 2.4 in Chapter 4]. We need three more a priori
elliptic estimates as follows. For any complex differential form φ,

‖∂∗
φ‖k−1,α ≤ C1‖φ‖k,α,

‖G∂φ‖k,α ≤ Ck,α‖φ‖k−2,α,

where k > 1, C1 and Ck,α depend only on k and α, not on φ, as shown in [37,
Proposition 2.3 in Chapter 4], and

‖GBCφ‖k,α ≤ Ck,α‖φ‖k−4,α,

where k > 3 and Ck,α depends on only on k and α, not on φ, as shown in [27,
Appendix.Theorem 7.4] for example. Based on these, an inductive argument implies

123



Several Special Complex Structures 3017

∥∥∥∥∥∥

l∑

j=1

σ̃ j t
j

∥∥∥∥∥∥
k,α

� A(t)

for any large l > 0 and each k > 3. Then (i) follows.
We proceed to (ii) since there is possibly no uniform lower bound for the con-

vergence radius obtained in the Ck,α-norm as k converges to +∞. Applying the
∂-Laplacian � = ∂

∗
∂ + ∂∂

∗
to

σ̃t = −∂
∗
G∂∂ (ϕ�σ̃t ) + ∂(∂∂)∗GBC∂∂

∗
G∂∂ (ϕ�σ̃t ) + σ0

and the proof of [27, Appendix.Theorem 2.3] or [46, Proposition 3.15], one proves the
following result. For each l = 1, 2, . . ., choose a smooth function ηl(t) with values in
[0, 1]:

ηl(t) ≡
{
1, for |t | ≤ ( 12 + 1

2l+1 )r,

0, for |t | ≥ ( 12 + 1
2l )r,

where r is a positive constant to be determined. Inductively, for any l = 1, 2, . . .,
η2l+1σ̃t is Ck+l,α , where r can be chosen independently of l. Since η2l+1(t) is iden-
tically equal to 1 on |t | < r

2 which is independent of l, σ̃t is C∞ on X0 with |t | < r
2 .

Then σ̃t can be considered as a real analytic family of (p, q)-forms in t and thus it is
smooth on t . ��

In the first version [47] of this paper, we resort to J. Wavrik’s work [57, Sect. 3] for
the above regularity.

To guarantee (2), it suffices to prove:

Proposition 3.15 If the ∂-extension of H p,q
∂

(X0) as in Proposition 3.14 holds for a

complex manifold X0, then the deformation invariance of h p,q−1
∂ t

(Xt ) assures that the

extension map

H p,q
∂

(X0) → H p,q
∂ t

(Xt ) : [σ0]∂ 
→ [eiϕ |iϕ (σt )]∂ t

is injective.

Proof Let us fix a family of smoothly varying Hermitian metrics {ωt }t∈�ε for the

infinitesimal deformationπ : X → �ε of X0. Thus, if theHodge numbers h p,q−1
∂ t

(Xt )

are deformation invariant, the Green’s operatorGt , acting on the Ap,q−1(Xt ), depends
differentiably with respect to t from [28, Theorem 7] by Kodaira and Spencer. Using
this, one ensures that this extension map cannot send a non-zero class in H p,q

∂
(X0) to

a zero class in H p,q
∂ t

(Xt ).
If we suppose that

eiϕ(t)|iϕ(t) (σt ) = ∂ tηt

for some ηt ∈ Ap,q−1(Xt ) when t ∈ �ε \ {0}, the Hodge decomposition of ∂ t and the
commutativity of Gt with ∂

∗
t and ∂ t yield that
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eiϕ(t)|iϕ(t) (σt ) = ∂ tηt = ∂ t
(
Ht (ηt ) + �tGtηt

)

= ∂ t
(
∂
∗
t ∂ tGtηt

)

= ∂ tGt
(
∂
∗
t ∂ tηt

)

= ∂ tGt
(
∂
∗
t eiϕ(t)|iϕ(t) (σt )

)
,

where Ht and �t are the harmonic projectors and the Laplace operators with respect
to (Xt , ωt ), respectively. Let t converge to 0 on both sides of the equality

eiϕ(t)|iϕ(t) (σt ) = ∂ tGt
(
∂
∗
t eiϕ(t)|iϕ(t) (σt )

)
,

which turns out that σ0 is ∂-exact on the central fiber X0. Here we use that the Green’s
operator Gt depends differentiably with respect to t . ��
Example 3.16 (The case q = n). The deformation invariance for h p,n

∂ t
(Xt ) can be

obtained from the one for h p,n−1
∂ t

(Xt ).

Proof Actually, it is easy to see that eiϕ(t)|iϕ(t) (σ ) ∈ Ap,n(Xt ) for any σ ∈ Ap,n(X0).
By the consideration of types, the equality

∂ t (e
iϕ(t)|iϕ(t) (σ )) = 0 (3.11)

trivially holds, without the necessity of the choice of a canonical d-closed representa-
tive or solving the Eq. (3.11) as in Proposition 3.14. And thus, from Proposition 3.15,
the extension map

H p,n
∂

(X0) → H p,n
∂ t

(Xt ) : [σ ]∂ 
→ [eiϕ |iϕ (σ )]∂
is injective. We can also revisit this example by [27, Formula (7.74)]

h p,q
∂ t

(Xt ) + νq(t) + νq+1(t) = h p,q
∂

(X),

where νq(t) is the number of eigenvaluesσ q
j (t) for the canonical base f q

t j of eigenforms

of the Laplacian �t = ∂ t∂
∗
t + ∂

∗
t ∂ t less than some fixed positive constant. Notice that

νn+1(t) = 0. For more details see [27, Sect. 7.2.(c)]. ��
Proposition 3.15 and Example 3.16 are indeed inspired by Nakamura’s work [38,

Theorem 2], which asserts that all plurigenera are not necessarily invariant under
infinitesimal deformations, particularly for theHodge number hn,0

∂
and thus h0,n

∂
, while

the obstruction Eq. (3.11) for extending ∂ t -closed (0, n)-forms is un-obstructed. This
example actually tells us that deformation invariance of h0,n

∂
relies on the one of h0,n−1

∂
.

Proposition 3.17 If h p,q+1
∂

(X0) = 0 and the deformation invariance of h p,q−1
∂ t

(Xt )

holds, then h p,q
∂ t

(Xt ) are deformation invariant.
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Proof With the notations in the proof of Proposition 3.14, we can resolve Eq. (3.5)
directly, which is equivalent to the following equation:

∂σk = −∂

(
k∑

i=1

ϕi�σk−i

)
+

k∑

i=1

ϕi�∂σk−i for each k ≥ 1, (3.12)

by use of the assumption that h p,q+1
∂

(X0) = 0. Also interestingly notice that we are
not able to deal with this case by the system (3.7) of equations. Set

τk = −∂

(
k∑

i=1

ϕi�σk−i

)
+

k∑

i=1

ϕi�∂σk−i ,

ηk = −∂

(
k∑

i=1

ϕi�σk−i

)
.

When k = 1, we have

∂τ1 = ∂
(− ∂(ϕ1�σ0) + ϕ1�∂σ0

)

= ∂(∂ϕ1�σ0 + ϕ1�∂σ0) + ∂ϕ1�∂σ0 + ϕ1�∂∂σ0

= 0,

since ∂ϕ1 = 0 and ∂σ0 = 0. The assumption h p,q+1
∂

(X0) = 0 implies that the
equation

∂σ1 = τ1

has a solution σ1.
Assume that the Eq. (3.12) is solved for all k ≤ l. Based on the assumption

h p,q+1
∂

(X0) = 0, the equation

∂σl+1 = τl+1

will have a solution σl+1, after we verify

∂τl+1 = 0.

Hence, we check it as follows, by use of the calculation (3.8), which implies that

∂ηl+1 = ∂

⎛

⎝−1

2

l+1∑

i=1

i−1∑

j=1

ϕ j�(ϕi− j�∂σl+1−i ) +
l+1∑

i=1

l+1−i∑

j=1

ϕi�(ϕ j�∂σl+1−i− j )

⎞

⎠

= ∂

⎛

⎝1

2

l+1∑

i=1

l+1−i∑

j=1

ϕi�(ϕ j�∂σl+1−i− j )

⎞

⎠ ,

123



3020 S. Rao, Q. Zhao

in this case. Then it follows that

∂τl+1 = ∂ηl+1 +
l+1∑

i=1

∂ϕi�∂σl+1−i −
l+1∑

i=1

ϕi�∂∂σl+1−i

= ∂

⎛

⎝1

2

l+1∑

i=1

l+1−i∑

j=1

ϕi�(ϕ j�∂σl+1−i− j )

⎞

⎠+
l+1∑

i=1

i−1∑

j=1

1

2
[ϕ j , ϕi− j ]�∂σl+1−i

+
l+1∑

i=1

ϕi�∂

⎛

⎝∂

( l+1−i∑

j=1

ϕ j�σl+1−i− j

)
−

l+1−i∑

j=1

ϕ j�∂σl+1−i− j

⎞

⎠

= ∂

⎛

⎝1

2

l+1∑

i=1

l+1−i∑

j=1

ϕi�(ϕ j�∂σl+1−i− j )

⎞

⎠

+
l+1∑

i=1

i−1∑

j=1

1

2

(
− ∂
(
ϕ j�(ϕi− j�∂σl+1−i )

)

+ ϕ j�∂
(
ϕi− j�∂σl+1−i

)
+ ϕi− j�∂

(
ϕ j�∂σl+1−i

))

−
l+1∑

i=1

l+1−i∑

j=1

ϕi�∂

(
ϕ j�∂σl+1−i− j

)

= 0.

Therefore, we can also resolve the Eq. (3.12) and extend ∂-closed (p, q)-forms un-
obstructed under the assumption that h p,q+1

∂
(X0) = 0. ��

3.3 Proofs of the Invariance of Hodge Numbers hp,0(Xt), h0,q(Xt): special cases

This subsection is devoted to the deformation invariance of (p, 0) and (0, q)-Hodge
numbers as two special cases of Theorem 3.1.

Theorem 3.6 can be restated by use of Notation 3.5 as follows:

Theorem 3.18 If the central fiber X0 satisfies both S
p+1,0 and S

p,1, then h p,0
∂ t

(Xt )

are independent of t .

According to the philosophy described in Sect. 3.1, Theorem 3.18 amounts to:

Proposition 3.19 Assume that X0 satisfies S
p+1,0 and S

p,1. Then for any holomorphic
(p, 0)-form σ0 on X0, there exits a power series

σt = σ0 +
∞∑

k=1

tkσk ∈ Ap,0(X0),
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such that σt varies smoothly on t and eiϕ(t) (σt ) ∈ Ap,0(Xt ) is holomorphic with respect
to the holomorphic structure on Xt .

Proof With the notations in the proof of Proposition 3.14, we just present the con-
struction of σt since the regularization argument is quite similar. Obviously, under the
assumption S

p+1,0 on X0, the holomorphic (p, 0)-form σ0 is actually d-closed. By
Proposition 2.13 and type-consideration, the desired holomorphicity is equivalent to
the resolution of the equation

([∂, iϕ] + ∂̄
)
(1 − ϕ̄ϕ)�σt = ([∂, iϕ] + ∂̄)σt = 0. (3.13)

Let

σt = σ0 +
∞∑

j=1

σ j t
j

be a power series of (p, 0)-forms on X0.
Wewill also resolve (3.13) by an iteration method. It suffices to consider the system

of equations

⎧
⎪⎪⎨

⎪⎪⎩

∂σ0 = 0,

∂σk = −∂
(∑k

i=1 ϕi�σk−i

)
, for each k ≥ 1,

∂σk = 0, for each k ≥ 0,

(3.14)

after the comparison of the coefficients of tk .
As for the second equation of (3.14), wemay also assume that, for i = 0, . . . , k−1,

σ̃i with ∂σ̃i = 0 has been resolved, and then check

∂∂

(
k∑

i=1

ϕi�σk−i

)
= 0

as reasoned in (3.8). The assumption S
p,1 enables us to obtain a canonical solution

σk = −∂
∗
G∂∂

(
k∑

i=1

ϕi�σk−i

)
.

Meanwhile, the third equation ∂σk = 0 holds, due to the assumption S
p+1,0 and the

equality

∂∂σk = ∂∂

(
k∑

i=1

ϕi�σk−i

)
= 0.

��
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Corollary 3.20 (The case of (p, q) = (1, 0)). If the central fiber X0 satisfies both
S
2,0 and S1,1, then h1,0

∂ t
(Xt ) are independent of t .

Proof From Theorem 3.18, h1,0
∂ t

(Xt ) are independent of t when X0 satisfies S
2,0 and

S
1,1. The condition S

1,1 can be replaced by a weaker one S1,1.
A close observation to (3.8) and the fact that σi are all of the special type (1, 0)

show that

∂

(
k∑

i=1

ϕi�σk−i

)
= 1

2

l+1∑

i=1

i−1∑

j=1

(
− ∂
(
ϕ j�(ϕi− j�σl+1−i )

)− ϕ j�(ϕi− j�∂σl+1−i )

+ ϕ j�∂(ϕi− j�σl+1−i ) + ϕi− j�∂(ϕ j�σl+1−i )

)

−
l+1∑

i=1

ϕi�∂

( l+1−i∑

j=1

ϕ j�σl+1−i− j

⎞

⎠

=
∑

1≤ j<i≤l+1

ϕ j�∂(ϕi− j�σl+1−i ) −
l+1∑

i=1

l+1−i∑

j=1

ϕi�∂(ϕ j�σl+1−i− j )

= 0

for k ≥ 1, by the induction method. Hence, it suffices to use the condition S1,1 to
solve the second one of the system (3.14) of equations. ��

Actually, by Example 3.16, we can get a more general result that the deformation
invariance for h p,0 of an n-dimensional compact complex manifold X can be obtained
from the one for h p,1.

Corollary 3.21 (The case (p, q) = (n − 1, 0) or (n, 0)). For p = n − 1 or n, the
condition S

p,1 on X0 assures the deformation invariance of h p,0
∂ t

(Xt ).

Proof Analogously to Kodaira [26, Theorem 1] or [38, Lemma 1.2] that any holo-
morphic (n − 1)-form on an n-dimensional compact complex manifold is d-closed,
one is able to prove that any d-closed ∂-exact (n, 0)-form is zero. Hence, any compact
complex manifold X0 satisfies S

n,0 and thus this corollary is proved by Theorem 3.18.
��

One restates Theorem 3.7 by use of Notation 3.5:

Theorem 3.22 If the central fiber X0 satisfies B1,q with the deformation invariance
of h0,q−1

∂ t
(Xt ) established, then h0,q

∂ t
(Xt ) are independent of t .

For Theorem 3.22, it suffices to prove:

Proposition 3.23 Assume that X0 satisfies B1,q . Then for each Dolbeault class in
H0,q

∂
(X0) with the unique canonical d-closed representative σ0 given as Lemma 3.13,

there exists σt ∈ A0,q(X0) varying smoothly on t and eiϕ (σt ) ∈ A0,q(Xt ) is ∂ t -closed
with respect to the holomorphic structure on Xt .
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Proof We just need to present the construction of σt . By Proposition 2.13 and type-
consideration, the desired ∂ t -closedness is equivalent to the resolution of the equation

([∂, iϕ] + ∂̄)(1 − ϕ̄ϕ)�σt = ∂̄((1 − ϕ̄ϕ)�σt ) − ϕ�∂((1 − ϕ̄ϕ)�σt ) = 0.

Therefore, it suffices to take σt = (1 − ϕ̄ϕ)−1
�σ0. ��

Corollary 3.24 All the Hodge numbers on a compact complex surface X are defor-
mation invariant.

Proof From these standard results in [6, Sect. I V .2], the ∂∂-lemma holds on X for
weight 2, and thus theHodgenumbers h1,0(Xt ), h0,1(Xt )of the small deformation of X
is independent of t by Corollary 3.20 and Remark 3.8, respectively. The deformation
invariance of the remaining Hodge numbers is obtained by Serre duality and the
deformation invariance of the Euler–Poincaré characteristic (see, for example, [28,
Theorem 14]). ��

4 The Gauduchon Cone GX

In this section we will study the Gauduchon cone and its relation with the balanced
one, to explore the deformation properties of an sGG manifold proposed by Popovici
[41].

Let us first recall some notations.Aeppli cohomology groups H p,q
A (X, C) andBott–

Chern cohomology groups H p,q
BC (X, C) are defined on any compact complexmanifold

X , even on non-compact ones (cf. for instance, [3,41]). Accordingly, the real Aeppli
cohomology group H p,p

A (X, R) is defined by

H p,p
A (X, R) :=

{
∂∂-closed smooth real (p, p)-forms

}

{
∂η + ∂η

∣∣ η is a smooth complex-valued (p − 1, p)-forms
} .

And the real Bott–Chern cohomology group H p,p
BC (X, R) is given by

H p,p
BC (X, R) :=

{
d-closed smooth real (p, p)-forms

}

{√−1∂∂η
∣∣ η is a smooth real (p − 1, p − 1)-forms

} .

Also, similar types of currents can representAeppli classes orBott–Chern ones.By [48,
Lemme 2.5] or [41, Theorem 2.1.(iii)], a canonical non-degenerate duality between
Hn−p,n−p
A (X, C) and H p,p

BC (X, C) is given by

Hn−p,n−p
A (X, C) × H p,p

BC (X, C) −→ C([
�
]
A,
[
ω
]
BC

) 
−→ ∫
X � ∧ ω.

The pairing (•, •), restricted to real cohomology groups, also becomes the duality
between the two corresponding groups.
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The Gauduchon cone GX is defined by

GX =
{[

�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣ � is a ∂∂-closed positive (n − 1, n − 1)-form
}

,

where ω = �
1

n−1 is called a Gauduchon metric. It is a known fact in linear algebra,
by Michelsohn [36, the part after Lemma 4.8], that for every positive (n − 1, n − 1)-
form 
 on X , there exists a unique positive (1, 1)-form γ such that γ n−1 = 
. Thus,

the symbol �
1

n−1 makes sense. Gauduchon metric exists on any compact complex
manifold; thanks to Gauduchon’s work [23]. Hence, the Gauduchon cone GX is never
empty. Similarly, the Kähler cone KX and the balanced cone BX are defined as

KX =
{[

ω
]
BC ∈ H1,1

BC (X, R)

∣∣∣ ω is a d-closed positive (1, 1)-form
}

,

BX =
{[

�
]
BC ∈ Hn−1,n−1

BC (X, R)

∣∣∣ � is a d-closed positive (n − 1, n − 1)-form
}

,

where �
1

n−1 is called a balanced metric. And the three cones are open convex cones
(cf. [41, Observation 5.2] for the Gauduchon cone).

The numerically effective (shortly nef ) cone, can be defined as
{[

ω
]
BC ∈ H1,1

BC (X, R)

∣∣∣∀ε > 0, ∃ a smooth real (1, 1)-form αε ∈ [ω]BC, such that αε ≥ −εω̃
}

,

where ω̃ is a fixed Hermitian metric on the compact complex manifold X . And the nef
cone is a closed convex cone by [15, Proposition 6.1]. When X is Kähler, the nef cone
is the closure of the Kähler cone KX . Thus, we will use the symbol KX for the nef
cone in any situation. Similar definitions adapt to BX and GX , which are also closed
convex cones. There are many studies, such as [9,15–17,22,41,45,58] on these cones
and their relations.

Definition 4.1 Degenerate cones.
We say that the Gauduchon cone GX degenerates when GX = Hn−1,n−1

A (X, R),
which comes from [41, Sect. 5]. Similarly, the balanced cone BX degenerates if the
equality BX = Hn−1,n−1

BC (X, R) holds.

4.1 The Kähler Case of GX

We will consider various cones on Kähler manifolds at first. Thus, let X be a compact
Kähler manifold.

Lemma 4.2 The Gauduchon cone GX does not degenerate on the compact Kähler
manifold X. Moreover, GX lies in one open half semi-space determined by some linear
subspace of codimension one in Hn−1,n−1

A (X, R).

Proof X carries a Kähler metricωX . Then
[
ωX
]
BC lives in the Kähler coneKX , which

cannot be the zero class of H1,1
BC (X, R). This implies that

dimR Hn−1,n−1
A (X, R) = dimR H1,1

BC (X, R) ≥ 1.
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Thus, the Gauduchon cone GX is a non-empty open cone in a vector space with the
dimension at least one, which implies that GX must contain a non-zero class.

Meanwhile, the Gauduchon GX cannot degenerate. If GX degenerates, i.e., 0 ∈
GX = Hn−1,n−1

A (X, R), X carries a Hermitian metric ω̃ such that ω̃n−1 is the type
of ∂ψ + ∂ψ , where ψ is a smooth (n − 1, n − 2)-form on X . It is easy to check
that ω̃n−1 ∧ ωX is d-exact but

∫
X ω̃n−1 ∧ ωX > 0, where a contradiction emerges.

As an easy consequence of this, the Gauduchon cone GX cannot contain the origin of
Hn−1,n−1
A (X, R).
It is easy to see that the Kähler class

[
ωX
]
BC determines one open half semi-space

H+
ωX

in Hn−1,n−1
A (X, R) given by

H+
ωX

=
{[

�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣
∫

X
� ∧ ωX > 0

}
,

which is clearly cut out by the linear subspace of codimension one

HωX =
{[

�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣
∫

X
� ∧ ωX = 0

}
.

And the Gauduchon cone GX obviously lies in H+
ωX

. Hence the lemma is proved. ��
Remark 4.3 It is well known that neither the Kähler cone KX nor the balanced cone
BX degenerates on the Kähler manifold X .

It is known that the quotient topology of Bott–Chern groups induced by the Fréchet
topology of smooth forms or the weak topology of currents is Hausdorff (cf. [15, the
part before Definition 1.3]). And every Hausdorff finite-dimensional topological real
vector space is isomorphic to R

n with the Euclidean topology. Then it is harmless
to fix an inner product 〈•, •〉 on the real vector space H1,1

BC (X, R), which induces

the given topology on H1,1
BC (X, R). The space Hn−1,n−1

A (X, R) can be viewed as the

vector space of continuous linear functionals on
(

H1,1
BC (X, R), 〈•, •〉

)
. By the finite-

dimensional case of Riesz representation theorem, there is a canonical isomorphism
from Hn−1,n−1

A (X, R) to H1,1
BC (X, R) with

[
�
]
A to

[
ω�

]
BC. That is, for any

[
�
]
A ∈

Hn−1,n−1
A (X, R), there exists a unique

[
ω�

]
BC ∈ H1,1

BC (X, R), such that

([
�
]
A,
[
ω
]
BC

) = 〈[ω]BC,
[
ω�

]
BC

〉

for any
[
ω
]
BC ∈ H1,1

BC (X, R). Thus, this isomorphism enables us to define the dual

inner product on Hn−1,n−1
A (X, R) by the equality

〈[
�1
]
A,
[
�2
]
A

〉 := 〈[ω�1

]
BC,
[
ω�2

]
BC

〉
.

Let
{[

ωi
]
BC

}m
i=1

be an orthonormal basis of H1,1
BC (X, R). Then,

{[
�ωi

]
A

}m
i=1

, the

inverse image of
{[

ωi
]
BC

}m
i=1

under the above canonical isomorphism, is also an
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orthonormal one of Hn−1,n−1
A (X, R) under the dual metric. And

{[
ωi
]
BC,
[
�ωi

]
A

}m
i=1

become dual bases with respect to (•, •).
Definition 4.4 The open circular cone C(v, θ).

Let
(
VR, 〈•, •〉) be a real vector space VR, which equipswith an inner product 〈•, •〉.

Denote the induced norm by ‖ • ‖. The open circular cone C(v, θ) is determined by a
non-zero vector v in VR and an angle θ ∈ [0, π

2

]
, given by

C(v, θ) =
{
w ∈ VR \ 0

∣∣∣
〈w, v〉

‖w‖‖v‖ > cos θ

}
.

And 2θ is called the cone angle. It is clear that the cone C(v, θ) does not change if v

is replaced by any vector in R
>0v.

As stated in the proof of Lemma 4.2, the Gauduchon cone GX must contain a
non-zero class. Let us fix a non-zero class

[
�0
]
A ∈ GX .

Proposition 4.5 On a compact Kähler manifold X, there exists a small angle θ̃ ∈(
0, π

2

)
such that

C
([

�0
]
A, θ̃

)
⊆ GX ⊆ C

([
�ωX

]
A,

π

2
− θ̃
)
,

where the class
[
�ωX

]
A in Hn−1,n−1

A (X, R) denotes the inverse image of the Kähler
class

[
ωX
]
BC under the canonical isomorphism discussed before Definition 4.4.

Proof Since
[
�0
]
A is a non-zero class of GX , there exists a neighborhood of

[
�0
]
A,

belonging to GX , namely,

{[
�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣
∥∥[�

]
A − [�0

]
A

∥∥ < ε
}

⊆ GX

for some ε > 0. Since GX is an open convex cone, the inclusion follows

C
([

�0
]
A, arcsin

ε∥∥[�0]A
∥∥
)

⊆ GX .

Similarly, there exists ε̃ > 0, such that

C
([

ωX
]
BC, arcsin

ε̃∥∥[ωX ]BC
∥∥
)

⊆ KX .

It is easy to see that

GX ⊆
⋂

[ω]BC∈C
(
[ωX ]BC,θ0

)
H+

ω ,
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where θ0 can be chosen as arcsin ε̃∥∥[ωX ]BC
∥∥ . From the discussion before Definition 4.4,

we know that

⋂

[ω]BC∈C
(
[ωX ]BC,θ0

)
H+

ω = C
([

�ωX

]
A,

π

2
− θ0

)
.

Let the angle θ̃ be

min

(
arcsin

ε∥∥[�0]A
∥∥ , arcsin

ε̃∥∥[ωX ]BC
∥∥

)
.

��
As in [41, Sect. 5], if the finite-dimensional vector space Hn−1,n−1

A (X, R) of a
compact complex manifold X is endowed with the unique norm-induced topology,
the closure of the Gauduchon cone in Hn−1,n−1

A (X, R) is defined by

GX =
{
α ∈ Hn−1,n−1

A (X, R)
∣∣ ∀ε > 0, ∃ smooth �ε ∈ α, such that �ε ≥ −ε�

}
,

(4.1)
where � > 0 is a fixed smooth (n − 1, n − 1)-form on X with ∂∂� = 0. This cone
is convex and closed, which is shown in [15, Proposition 6.1.(i)].

Corollary 4.6 The closure of the Gauduchon cone GX on the Kähler manifold X must
lie in some closed circular cone with the cone angle smaller than π , for example, the

closure of C
([

�ωX

]
A, π

2 − θ̃
)

.

In a similar manner, we can also show that the Kähler cone KX on a Kähler man-
ifold X must lie in some open circular cone with the cone angle smaller than π in
H1,1
BC (X, R).
The following definition is inspired by [41, Observation 5.7 and Question 5.9].

Definition 4.7
(A)vo and

(A)vc

LetA be a convex cone in a finite-dimensional vector space WR, whose dual vector
space is denoted by W v

R
.

(1)
(A)vo denotes the set of linear functions in W v

R
, evaluating positively on A;

(2)
(A)vc denotes the set of linear functionals in W v

R
, evaluating non-negatively onA.

Let P andQ be two closed convex cones in the WR and W v
R
, respectively. We say that

P and Q are dual cones, if P = (Q)vc and Q = (P)vc .

The pseudo-effective cone EX , the set of classes in H1,1
BC (X, R) represented by

d-closed positive (1, 1)-currents, is a closed convex cone when X is any compact
complex manifold (cf. [15, Proposition 6.1]). The big cone E◦

X , an open convex cone

in H1,1
BC (X, R), is defined to be the interior of the pseudo-effective cone EX when X is

Kähler, in which classes are represented by Kähler (1, 1)-currents (cf. [17, Definition
1.6]).
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Theorem 4.8 For a compact Kähler manifold X,

GX \ [0]A ⊆ (E◦
X

)vo

and thus GX �
(E◦

X

)vo .

Proof It is clear that each class in GX \ [0]A evaluates non-negatively on the big cone

E◦
X . Suppose that some class

[
�
]
A in GX \ [0]A does not evaluate positively on E◦

X ,
i.e., there exists a class

[
T (�)

]
BC ∈ E◦

X , with T (�) a Kähler current, such that

∫

X
� ∧ T (�) = 0.

Then note that the big cone E◦
X actually lies in the closed half semi-space H+

�

⋃
H�

of H1,1
BC (X, R) with

[
T (�)

]
BC attached to the linear subspaceH�. But a small neigh-

borhood of
[
T (�)

]
BC will run out of the closed half semi-space H+

�

⋃
H� into the

other open half H−
�. Meanwhile, the neighborhood is still contained in E◦

X , since the
big cone E◦

X is an open convex cone. This contradiction tells us that each class in
GX \ [0]A evaluates positively on E◦

X . Hence, we have

GX \ [0]A ⊆ (E◦
X

)vo .

It is clear that GX ⊆ (E◦
X

)vo . Now suppose that
(E◦

X

)vo = GX . Then

GX \ [0]A ⊆ (E◦
X

)vo = GX

follows directly, which is equivalent to the equality

GX = GX

⋃[
0
]
A.

Hence, the hyperplane HωX (1) in Hn−1,n−1
A (X, R), defined by

HωX (1) =
{[

�
]
A ∈ Hn−1,n−1

A (X, R)

∣∣∣
∫

X
� ∧ ωX = 1

}
,

has the same intersection with GX and GX . This implies that the intersection
GX
⋂

HωX (1) is both open and closed on the hyperplane HωX (1), which is clearly
connected. Then, we get GX

⋂
HωX (1) = HωX (1), which leads to the inclusion

HωX (1) ⊆ GX .

Hence, the open half semi-space H+
ωX

is contained in the Gauduchon cone GX .
However, from the proof of Proposition 4.5, we know that GX actually lies in
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C
([

�ωX

]
A, π

2 − θ̃
)
, which is strictly contained in H+

ωX
. Here is a contradiction. So

GX �
(E◦

X

)vo . ��

Remark 4.9 It is shown that GX \ [0]A = (E◦
X

)vo in Remark 4.12.

4.2 The Relation Between Balanced Cone BX and Gauduchon Cone GX

There exists a pair of diagrams (D,D) on a compact Kähler manifold X as follows,
which is inspired by Fu–Xiao’s work [22]. The diagrams D reads

BX
J GX

KX

I K

[ωn−1]BC J [
ωn−1

]
A

[ω]BC
I K

,

and the diagram D follows,

BX
J GX

KX

I K

[ωn−1]BC J [
ωn−1

]
A

[ω]BC
I K

.

The former consists of three mappings among Kähler cone KX , balanced cone BX ,
and Gauduchon cone GX . And the latter is actually the extension of the former to the
closures of respective cones. It is easy to see that all the mappings are well-defined
and both diagrams are commutative. The mappings (I, I), (J, J), and (K, K) are the
restrictions of three natural mapsI ,J , andK , respectively, which are independent
of the Kählerness of X . The three mappings are given as follows:

I : H1,1
BC (X, R) → Hn−1,n−1

BC (X, R)[
ω
]
BC 
→ [

ωn−1
]
BC,

J : Hn−1,n−1
BC (X, R) → Hn−1,n−1

A (X, R)[
�
]
BC 
→ [

�
]
A,

K : H1,1
BC (X, R) → Hn−1,n−1

A (X, R)[
ω
]
BC 
→ [

ωn−1
]
A.

Moreover, when X is a complex manifold satisfying ∂∂-lemma, the mappingJ is an
isomorphism and thus the mappings (J, J) are injective.

By [22, Proposition 1.1 and Theorem 1.2], the mapping I is injective. Meanwhile,
I, restricted to the intersection of the nef cone and the big cone KX

⋂ E◦
X , is also

injective. This is true, even when X is in the Fujiki class C (i.e., the class of compact
complex manifolds bimeromorphic Kähler manifolds), see [22, Corollary 2.7]. The
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existence of classes in I(∂KX )
⋂BX implies that the mapping I is not surjective. In

fact, the class
[
ω̃
]
BC ∈ ∂KX , mapped into the balanced cone BX , necessarily lies

in the big cone E◦
X , by [22, Theorem 1.3]. Thus, the class I(

[
ω̃
]
BC) in BX cannot

be mapped by a Kähler class, since I is injective on the intersection cone KX
⋂ E◦

X .
Besides, Theorem 1.3 in [22] gives a precise description of I(∂KNS)

⋂BX when X is
a projective Calabi–Yau manifold. The coneKNS denotes the intersectionKX

⋂
NSR,

where NSR is the real Neron–Severi group of X .
Recall that [22,Lemma3.3] states that aBott–Chern class

[
�
]
BC ∈ Hn−1,n−1

BC (X, R)

on a compact complex manifold X , lives in the balanced cone BX if and only if

∫

X
� ∧ T > 0,

for every non-zero ∂∂-closed positive (1, 1)-current T . Similarly, one has

Lemma 4.10 Let X be a compact complex manifold and � a real ∂∂-closed (n −
1, n − 1)-form on X. Then the class

[
�
]
A lives in GX if and only if

∫

X
� ∧ T > 0,

for every non-zero d-closed positive (1, 1)-current T on X.

Proof Wemainly follow the ideas of the proof of [22, Lemma 3.3]. The necessary part
is quite obvious. As to the sufficient part, let D′1,1

R
be the set of real (1, 1)-currents

on X with the weak topology. Fix a Hermitian metric ωX on X and apply the Hahn–
Banach separation theorem, which originates from Sullivan’s work [49]. See also in
[22, Lemma 3.3] and [41, Proposition 5.4].

Set

D1 =
{

T ∈ D′1,1
R

∣∣∣
∫

X
� ∧ T = 0 and dT = 0

}
,

D2 =
{

T ∈ D′1,1
R

∣∣∣
∫

X
ωn−1

X ∧ T = 1 and T ≥ 0

}
.

It is easy to see thatD1 is a closed linear subspace of the locally convex space D′1,1
R

,

while D2 is a compact convex one in D′1,1
R

. Since a d-closed positive (1, 1)-current
T , satisfying

∫
X �∧ T = 0, has to be zero current from the assumption of the lemma,

D1
⋂

D2 = ∅ by
∫

X ωn−1
X ∧ T = 1. Then there exists a continuous linear functional

onD′1,1
R

, denoted by �̃, a real (n − 1, n − 1)-form, such that it vanishes onD1, which
contains all real ∂∂-exact (1, 1)-currents, and evaluates positively on D2. Hence, �̃

has to be a ∂∂-closed positive (n − 1, n − 1)-form.
The following mapping

π :
{

T ∈ D′1,1
R

∣∣∣ dT = 0
}

→ H1,1
BC (X, R)

T 
→ [
T
]
BC
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is a canonical projection. π(D1) is the null space determined by the linear functional[
�
]
A on H1,1

BC (X, R), namely,

{[
T
]
BC ∈ H1,1

BC (X, R)

∣∣∣
∫

X
� ∧ T = 0

}
,

since the class
[
�
]
A belongs to Hn−1,n−1

A (X, R), which can be seen as the dual space

of H1,1
BC (X, R). The linear functional

[
�̃
]
A vanishes on the null space, which implies[

�̃
]
A = a

[
�
]
A for some a ∈ R.

If there exists no non-zero d-closed positive (1, 1)-current on X , by [41, Proposition
5.4], the Gauduchon cone GX will degenerate. Therefore, the class

[
�
]
A will surely

lie in GX . Assume that there exists a non-zero d-closed positive (1, 1)-current T .
Clearly,

∫
X �̃ ∧ T = a

∫
X � ∧ T . Moreover, �̃ is positive on D2, which implies∫

X �̃ ∧ T > 0, and
∫

X � ∧ T > 0 by the assumption of the lemma. Thus a > 0.
Therefore,

[
�
]
A = 1

a

[
�̃
]
A, with �̃ a positive form, lives in GX . ��

The closure of theGauduchon coneGX (cf. (4.1) and [41, the part before Proposition
5.8]) and the pseudo-effective cone EX are closed convex coneswhen X is any compact
complex manifold. By the use of Lemma 4.10, we can get the so-called Lamari’s
duality. See [30, Lemma 3.3] and [45, the remark before Theorem 1.8 and the proof
of Theorem 5.9].

Proposition 4.11 Let X be a compact complex manifold. Then GX and EX are dual
cones, i.e.,

(GX
)vc = EX and

(EX
)vc = GX .

Proof It is clear that EX ⊆ (GX
)vc and GX ⊆ (EX

)vc . Let
[
�
]
A ∈ (EX

)vc , where �

is a real ∂∂-closed (n − 1, n − 1)-form. Fix one class
[
�0
]
A ∈ GX with �0 positive.

Obviously, for any fixed ε > 0, the integral

∫

X

(
� + ε�0

) ∧ T =
∫

X
� ∧ T + ε

∫

X
�0 ∧ T > 0,

where T is a non-zero d-closed positive (1, 1)-current. Hence, the class
[
�
]
A +

ε
[
�0
]
A ∈ GX by Lemma 4.10. Therefore, the class

[
�
]
A ∈ GX , which implies(EX

)vc = GX .

Now, let
[
ω
]
BC ∈ H1,1

BC (X, R), which does not live in the pseudo-effective cone
EX . The point

[
ω
]
BC and EX are a compact convex subspace and a closed convex one,

respectively, in the locally convex space H1,1
BC (X, R). From Hahn–Banach separation

theorem, there exists a continuous linear functional, denoted by
[
�̃
]
A, a class in

Hn−1,n−1
A (X, R), such that it evaluates non-negatively on EX and takes a negative

value on the point
[
ω
]
BC. Thus, the class

[
�̃
]
A ∈ GX , from the equality

(EX
)vc = GX .

And the inequality
∫

X �̃ ∧ ω < 0 indicates the inclusion

H1,1
BC (X, R) \ EX ⊆ H1,1

BC (X, R) \ (GX
)vc ,
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which implies that EX = (GX
)vc . ��

Remark 4.12 Proposition 4.11 enhances the result in Theorem 4.8. In fact, any class in
Hn−1,n−1
A (X, R) \ GX must take a negative value on some class of EX , and evaluates

negatively on some class in the interior E◦
X when X is Kähler. Thus, each class in

Hn−1,n−1
A (X, R) \ GX does not live in

(E◦
X

)vo . Therefore, GX \ [0]A = (E◦
X

)vo .

Recall that a compact complex manifold is balanced if it admits a balanced metric
and the closure of its balanced cone is defined similarly to the one of Gauduchon cone
(4.1).

Proposition 4.13 For a compact balanced manifold X, the convex cone E∂∂ ⊆
H1,1
A (X, R), generated by Aeppli classes represented by ∂∂-closed positive (1, 1)-

currents, is closed. And when X also satisfies the ∂∂-lemma, the following three
statements are equivalent:

(1) The mapping J : BX → GX is bijective.
(2) The mapping J : BX → GX is bijective.
(3) The mapping j : EX → E∂∂ is bijective,

where the mapping j is the restriction of the natural isomorphism L : H1,1
BC (X, R) →

H1,1
A (X, R), induced by the identity map, to the pseudo-effective cone EX .

Proof Fix a balanced metric ωX on X . Let
{[

Tk
]
A

}
k∈N+ be a sequence in the cone

E∂∂ , where Tk are ∂∂-closed positive (1, 1)-currents. And the sequence converges to

an Aeppli class
[
α
]
A in H1,1

A (X, R). It is clear that

lim
k→+∞

∫

X
Tk ∧ ωn−1

X =
∫

X
α ∧ ωn−1

X .

Thus, the sequence
{
Tk
}

k∈N+ is bounded in mass, and therefore weakly compact.
Denote the limit of a weakly convergent subsequence

{
Tki

}
by T . It is easy to check

that T is a ∂∂-closed positive (1, 1)-current and
[
T
]
A = [

α
]
A. Hence,

[
α
]
A ∈ E∂∂ ,

which implies that the convex cone E∂∂ is closed.
It is obvious that the three mappings J, J, and j are injective, since J and L are

isomorphisms as long as the complex manifold X satisfies the ∂∂-lemma.
(1) ⇒ (2) : We need to show that the inverse J −1 of the mapping J maps the

closure GX into the one BX . To see this, let
[
�
]
A ∈ GX . Denote the inverse image

J −1(
[
�
]
A) of

[
�
]
A under the mapping J by

[
�
]
BC. For any ε > 0,

J −1(
[
�
]
A + ε

[
ωn−1

X

]
A) = [�]BC + ε

[
ωn−1

X

]
BC ∈ BX ,

since J is bijective and thus J −1(GX ) ⊆ BX . This implies that
[
�
]
BC ∈ BX . Then

J −1(GX ) ⊆ BX , namely, the mapping J −1 : GX → BX is well-defined. Hence,
J −1 is the inverse of the mapping J and thus J is bijective.
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(2) ⇒ (3) : GX and EX are dual cones by Proposition 4.11. BX and E∂∂ are also
dual cones by [22, Lemma 3.3 and Remark 3.4]. Hence, the mapping j is bijective due
to the bijectivity of J.

(3) ⇒ (1) : It has to be shown that J is surjective. Let
[
�
]
BC be a class in

Hn−1,n−1
BC (X, R), which is mapped into GX by J . Then there exists a ∂∂-closed

positive (n − 1, n − 1)-form � and an (n − 2, n − 1)-form �, such that

� = � + ∂� + ∂�.

Let T̃ be any fixed non-zero ∂∂-closed positive (1, 1)-current. From the bijectivity of
j, there exists a d-closed positive (1, 1)-current T and a (0, 1)-current S, such that

T̃ = T + ∂S + ∂S.

The current T cannot be zero current. If not, T̃ = ∂S + ∂S, which implies that the
integral

∫
X ωn−1

X ∧ T̃ will be larger than 0 and also equal to 0. This is a contradiction.
Hence,

∫

X
� ∧ T̃ =

∫

X
� ∧ (T + ∂S + ∂S) =

∫

X
� ∧ T =

∫

X
(� + ∂� + ∂�) ∧ T

=
∫

X
� ∧ T > 0.

Therefore, the class
[
�
]
BC lies in the balanced cone BX by [22, Lemma 3.3] and thus

the mapping J is surjective. ��
Definition 4.14 ([9, Definition 1.3.(i i)]). Movable cone MX

Define the movable cone MX ⊆ Hn−1,n−1
BC (X, R) to be the closure of the convex

cone generated by classes of currents in the type

μ∗(ω̃1 ∧ · · · ∧ ω̃n−1)

where μ : X̃ → X is an arbitrary modification and ω̃ j are Kähler forms on X̃ for
1 ≤ j ≤ n − 1. Here, X is an n-dimensional compact Kähler manifold.

We restate a lemma hidden in [22, Appendix] and [56].

Lemma 4.15 Let X be a compact Kähler manifold. There exist the following inclu-
sions:

EX ⊆ L −1(E∂∂ ) ⊆ (MX
)vc ,

where L −1(E∂∂ ) denotes the inverse image of the cone E∂∂ under the isomorphism

L . Note that H1,1
BC (X, R) and Hn−1,n−1

BC (X, R) are dual vector spaces in the Kähler
case.
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Proof It is clear that the mapping L is an isomorphism from H1,1
BC (X, R) to

H1,1
A (X, R) and j is injective in the Kähler case. Thus, EX ⊆ L −1(E∂∂ ). Let

[
α
]
BC

be a class in the cone L −1(E∂∂ ) with α a smooth representative, which implies that[
α
]
A contains a ∂∂-closed positive (1, 1)-current T̃ .
To seeL −1(E∂∂ ) ⊆ (MX

)vc , we need to show that
∫

X α∧μ∗(ω̃1∧· · ·∧ω̃n−1) ≥ 0
for arbitrary modificationμ : X̃ → X and Kähler forms ω̃ j on X̃ . A result in [2] states
that for arbitrary modification μ : X̃ → X and any ∂∂-closed positive (1, 1)-current
T̃ on X , there exists a unique ∂∂-closed positive (1, 1)-current T ′ on X̃ such that
μ∗T ′ = T̃ and T ′ ∈ μ∗(

[
T̃
]
A). Here, we choose T̃ to be the one in the Aeppli class[

α
]
A. Then, one has

∫

X
α ∧ μ∗(ω̃1 ∧ · · · ∧ ω̃n−1) =

∫

X̃
μ∗α ∧ ω̃1 ∧ · · · ∧ ω̃n−1

=
∫

X̃
T ′ ∧ ω̃1 ∧ · · · ∧ ω̃n−1 ≥ 0,

where T ′ and μ∗α belong to the same Aeppli class on X̃ . ��
Corollary 4.16 ([44, Sect. 6]). If Conjecture 1.10 is assumed to hold true, then for a
complex manifold X in the Fujiki class C,

J −1(GX ) = BX (4.2)

and thus Conjecture 1.7 is true in this case.

Proof The argument is a bit different from that in [44, Sect. 6] (or [12, Sect. 2]) and
we claim no originality here. That X is balanced is obviously a result of (4.2) since
the Gauduchon cone of a compact complex manifold is never empty and J is an
isomorphism from the ∂∂-lemma. Now let us prove (4.2) under the assumption of
Conjecture 1.10. Without loss of generality, we can assume that X is Kähler and thus
this equality is a direct corollary of Lemma 4.15 and Proposition 4.13. ��

Boucksom–Demailly–Paun–Peternell have proved in [9, Theorem 10.12, Corollary
10.13] that Conjecture 1.10 is true, when X is a compact hyperkähler manifold or a
compact Kähler manifold which is a limit by deformation of projective manifolds
with Picard number ρ = h1,1. It follows that J is bijective in these two cases. The
qualitative part of Transcendental Morse Inequalities Conjecture for differences of
two nef classes [9, Conjecture 10.1.(ii)] has been proved by Popovici [42] and Xiao
[59]. And a partial answer to the quantitative part is given by [44], with the case of
nef T 1,0

X obtained in [60, Proposition 3.2].
The following theorem may provide some evidence for the assertion of Question

1.8 whether the mapping J is bijective from the balanced cone BX to the Gauduchon
cone GX on the Kähler manifold X .

Let us recall several important results from [10,62] on solving complex Monge–
Ampère equations on a compact Kähler manifold X .
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Fix a Kähler metric ωX , a nef and big class
[
α
]
BC, and a volume form η on X . By

Yau’s celebrated results in [62], for 0 < t ≤ 1, there exists a unique smooth function
ut , satisfying that supX ut = 0, such that α + tω + √−1∂∂ut is a Kähler metric and

(
α + tωX + √−1∂∂ut

)n = ctη,

where ct =
∫

X (α+tωX )n
∫

X η
. As in [10, Theorems B and C], when t is equal to 0, there

exists a unique α-psh u, satisfying that supX u = 0, such that

〈
(α + √−1∂∂u)n 〉 = cη,

where c =
∫

X αn
∫

X η
and the bracket 〈·〉 denotes the non-pluripolar product of positive

currents. Moreover, u has minimal singularities and is smooth on Amp(α), which is a
Zariski open set on X and only depends on the class

[
α
]
BC.

These results above can be viewed in the following manner as stated in [22, the
part after Lemma 2.3]. The family of solutions ut is compact in L1(X)-topology. Then
there exists a sequence utk such that

α + tkωX + √−1∂∂utk → α + √−1∂∂u

in the sense of currents on X with tk → 0.Meanwhile, ut is compact inC∞
loc(Amp(α)),

whichmeans uniform convergence on any compact subset ofAmp(α). Therefore, there
exists a subsequence of utk , still denoted by utk , such that

α + tkωX + √−1∂∂utk → α + √−1∂∂u

in the sense of C∞
loc(Amp(α)). Hence u is smooth on Amp(α) and α + √−1∂∂u is a

Kähler metric on Amp(α), since η is a volume form.

Theorem 4.17 Let X be a compact Kähler manifold and
[
α
]
BC a nef class. Then[

αn−1
]
A ∈ GX implies that

[
αn−1

]
BC ∈ BX . Hence, I(KX )

⋂BX and K(KX )
⋂GX

can be identified by the mapping J.

Proof Assume that
[
αn−1

]
A belongs to GX , where

[
α
]
BC is a nef class. From Lemma

4.10, for any non-zero d-closed positive (1, 1)-current T , the integral
∫

X αn−1∧T > 0.
Since the nef cone KX is contained in the pseudo-effective cone EX , the nef class[
α
]
BC contains a d-closed positive (1, 1)-current S, which cannot be the zero current.

Otherwise,
[
0
]
A ∈ GX , which contradicts with Lemma 4.2. Then, the integral

∫
X αn =∫

X αn−1 ∧ S > 0, which implies that the class
[
α
]
BC is nef and big, by [17, Theorem

0.5].
Let Q be any fixed ∂∂-closed positive (1, 1)-current on X . From the discussion

before this theorem, it is clear that the sequence of positive measures

{
(α + tkωX + √−1∂∂utk )

n−1 ∧ Q
}

k∈N+
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has bounded mass, for example,

∫

X
(α + tkωX + √−1∂∂utk )

n−1 ∧ Q ≤
∫

X
(α + ωX )n−1 ∧ Q.

Therefore, there exists a subsequence, still denoted by

{
(α + tkωX + √−1∂∂utk )

n−1 ∧ Q
}

k∈N+ ,

weakly convergent to a positive measure on X , denoted by μ. It follows that

∫

X
μ =

∫

X
αn−1 ∧ Q,

since the equalities hold

∫

X
μ = lim

k→+∞

∫

X
(α + tkωX + √−1∂∂utk )

n−1 ∧ Q = lim
k→+∞

∫

X
(α + tkωX )n−1 ∧ Q

=
∫

X
αn−1 ∧ Q.

Note that

(α + √−1∂∂u)n−1 ∧ Q
∣∣∣
Amp(α)

is a well-defined positive measure on Amp(α), since α +√−1∂∂u is a Kähler metric
on Amp(α). Moreover, μ is equal to

(α + √−1∂∂u)n−1 ∧ Q
∣∣∣
Amp(α)

on Amp(α). Actually, for any smooth function f with Supp( f ) ⊆ Amp(α), one has

∫

Amp(α)

f μ =
∫

X
f μ

= lim
k→+∞

∫

X
f (α + tkωX + √−1∂∂utk )

n−1 ∧ Q

=
∫

X
f (α + √−1∂∂u)n−1 ∧ Q (4.3)

=
∫

Amp(α)

f (α + √−1∂∂u)n−1 ∧ Q

=
∫

Amp(α)

f

(
(α + √−1∂∂u)n−1 ∧ Q

∣∣∣
Amp(α)

)
,
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where the equality (4.3) results from that the sequence f (α + tkωX +√−1∂∂utk )
n−1

converges to f (α + √−1∂∂u)n−1 in the sense of smooth (n − 1, n − 1)-forms on X
due to the convergence result stated before this theorem, with all their supports always
contained in Amp(α).

It is obvious that the integral
∫

X αn−1 ∧ Q ≥ 0 for
[
α
]
BC nef. Now suppose

that
∫

X αn−1 ∧ Q = 0. Then we have
∫

X μ = ∫
X αn−1 ∧ Q = 0. And μ is equal

to (α + √−1∂∂u)n−1 ∧ Q
∣∣
Amp(α)

on Amp(α) with (α + √−1∂∂u)n−1 a positive
(n − 1, n − 1)-form on Amp(α). Then Supp(Q) ⊆ X \Amp(α), which is an analytic
subvariety V on X with dim V ≤ n − 1.

Denote the irreducible components with dimension n − 1 of V by {Vi }m
i=1. By [1,

Theorem 1.5] and [22, Lemma 3.5], there exist constants ci ≥ 0 for 1 ≤ i ≤ m such
that

Q −
m∑

i=1

ci [Vi ] = 0,

since V has no irreducible component of dimension larger than n − 1. And we have∫
X αn−1 ∧ [Vi ] > 0, where [Vi ] are non-zero d-closed positive (1, 1)-currents for

1 ≤ i ≤ m. Then
∫

X αn−1 ∧ Q = 0 forces that the constants ci are all equal to 0,
namely Q a zero current. Hence,

[
αn−1

]
BC ∈ BX from [22, Lemma 3.3].

It is clear that the restricted mapping J, from I(KX )
⋂BX to K(KX )

⋂GX , is
injective. And the proof above shows that it is also surjective. Hence the restricted
mapping J is bijective. ��

We will describe the degeneration of balanced cones on compact complex mani-
folds, similar to the case of Gauduchon cones in [41, Proposition 5.4].

Lemma 4.18 Let X be a compact complex manifold. Then the balanced cone BX

degenerates if and only if there exists no non-zero ∂∂-closed positive (1, 1)-current T
on X.

Proof Assume that BX = Hn−1,n−1
BC (X, R). In particular, there exists a Hermitian

metric ω̃ on X , such that ω̃n−1 is ∂∂-exact. If T is a non-zero ∂∂-closed positive
(1, 1)-current on X , the integral

∫
X ω̃n−1∧T has to be larger than 0 for the form ω̃n−1

being positive and simultaneously equal to zero as ω̃n−1 is ∂∂-exact. This contradiction
leads to non-existence of such current T .

Conversely, assume that there exists no non-zero ∂∂-closed positive (1, 1)-current
T on X . LetD′1,1

R
be the set of real (1, 1)-currents on X with the weak topology. Fix

a Hermitian metric ωX on X . Then apply the Hahn–Banach separation theorem.
Let us set

D1 =
{

T ∈ D′1,1
R

∣∣∣ ∂∂T = 0
}

,

D2 =
{

T ∈ D′1,1
R

∣∣∣
∫

X
ωn−1

X ∧ T = 1 and T ≥ 0

}
.
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It is easy to see thatD1 is a closed linear subspace of the locally convex space D′1,1
R

,

whileD2 is a compact convex one inD′1,1
R

. AndD1
⋂

D2 = ∅ from the assumption.

Then there exists a continuous linear functional on D′1,1
R

, denoted by �, a real (n −
1, n − 1)-form, such that it vanishes onD1 and evaluates positively onD2. Hence, �
has to be a ∂∂-exact positive (n − 1, n − 1)-form. It follows that the class

[
�
]
BC is

the zero class in Hn−1,n−1
BC (X, R), which also lives in the balanced cone BX , which

implies that the balanced cone BX degenerates. ��
Remark 4.19 [41, Proposition 5.4] tells us the Gauduchon cone of a compact complex
manifold X degenerates if and only if there exists no non-zero d-closed positive (1, 1)-
current on X , and, together with Proposition 4.18, implies that the Gauduchon cone
of a compact balanced manifold will degenerate when its balanced cone does.

Question 4.20 Fu–Li–Yau [21] constructed abalanced threefold,which is a connected
sum of k-copies of S3 × S3 (k ≥ 2) and whose balanced cone degenerates (cf. [22]).
Is it possible to find a balanced manifold such that its Gauduchon cone degenerates
while its balanced cone does not ?

4.3 Deformation Results Related with GX

In this subsection, we will discuss several deformation results related with GX in
Theorems 4.22 and 4.23.

Firstly, let us review Demailly’s regularization theorem [15], whose different ver-
sions have been used by various authors in the literature. Recall that a real (1, 1)-current
T is said to be almost positive if T ≥ γ for some real smooth (1, 1)-form, and each d-
closed almost positive (1, 1)-current T on a compact complex manifold can be written
as θ +√−1∂∂ f , where θ is a d-closed smooth (1, 1)-formwith f almost plurisubhar-
monic (shortly almost psh) function (cf. [7, Sect. 2.1] and [17, Sect. 3]). We say that
a d-closed almost positive (1, 1)-current T has analytic (or algebraic) singularities
along the analytic subvariety Y , if f does, i.e., f can be locally written as

c

2
log(|g1|2 + |g2|2 + · · · + |gN |2) + h,

where c > 0 (or c ∈ Q
+), {gi }N

i=1 are local generators of the ideal sheaf of Y and h is
some smooth function. It is clear that T is smooth outside the singularity Y . Then the
following formulation of Regularization Theorem will be applied:

Theorem 4.21 ([17, Theorem 3.2], [7, Theorem 2.4], [8, Theorem 2.1]). Let T =
θ + √−1∂∂ f be a d-closed almost positive (1, 1)-current on a compact complex
manifold X, satisfying that T ≥ γ for some real smooth (1, 1)-form. Then there exists
a sequence of functions fk with analytic singularities Yk converging to f , such that,
if we set Tk = θ + √−1∂∂ fk , it follows that

(1) Tk weakly converges to T .
(2) Tk ≥ γ − εkω, where lim

k→+∞ ↓ εk = 0 and ω is some fixed Hermitian metric.
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(3) The Lelong numbers ν(Tk , x) increase to ν(T, x) uniformly with respect to x ∈ X.
(4) The analytic singularities increase with respect to k, i.e., Yk ⊆ Yk+1.

Denote the blow up of X along the singularity Yk by μk : X̃k → X , and we will
see that μ∗

k(Tk) still acquires the analytic singularity μ−1
k (Yk), without irreducible

components of complex codimensions at least 2, for each k. According to [8, Sect. 2.5],
the Siu’s decomposition [51] for μ∗

k(Tk) writes

μ∗
k(Tk) = R̃k +

∑

j

νk j
[
Ỹk j
]
, (4.4)

where R̃k is a d-closed smooth (1, 1)-form, satisfying that R̃k ≥ μ∗
k(γ − εkω), Ỹk j

are irreducible components of complex codimension one of μ−1
k (Yk) for all j , and νk j

are all positive numbers. It is obvious that the degree of μk is equal to 1 for each k. It
follows that, after the push forward,

Tk = μk∗
(
μ∗

k(Tk)
) = μk∗(R̃k) +

∑

j

νk j
[
Ykj
]
, (4.5)

which is exactly the Siu’s decomposition for Tk . Here, μk∗(R̃k) is a d-closed positive
(1, 1)-current, which is smooth outside irreducible components of complex codimen-
sion at least 2 of Yk and satisfies that μk∗(R̃k) ≥ γ − εkω. The symbols Ykj stand for
the irreducible components of complex codimension one of Yk , since the following
equalities hold

μk∗
([

Ỹk j
]) =

{[
μk(Ỹk j )

]
, when dimμk(Ỹk j ) = n − 1;

0, when dimμk(Ỹk j ) < n − 1.

Meanwhile, Barlet’s theory [5] of cycle spaces comes into play and let us follow the
statements in Demailly–Paun’s paper [17, Sect. 5]. Let π : X → �ε be a holomorphic
family ofKähler fibers of complex dimension n. Then there is a canonical holomorphic
projection

πp : C p(X /�ε) → �ε,

where C p(X /�ε) denotes the relative analytic cycle space of complex dimension p,
i.e., all cycles contained in the fibers of the family π : X → �ε . And it is known that
the restriction of πp to the connected components of C p(X /�ε) are proper maps by
the Kähler property of the fibers. Also, there is a cohomology class map, commuting
with the projection to �ε , defined by

ιp : C p(X /�ε) → R2(n−p)π∗
(
ZX
)

Z 
→ [
Z
]
,
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which associates to every analytic cycle Z in Xt its cohomology class
[
Z
] ∈

H2(n−p)(Xt , Z). Again by the Kählerness, the mapping ιp is proper.
Denote the images in �ε of those connected components of C p(X /�ε) which

do not project onto �ε under the mapping πp by
⋃

Sν , namely a countable union
of analytic subvarieties Sν of �ε , from the properness of the mapping πp restricted
to each component of C p(X /�ε) for 1 ≤ p ≤ n − 1 (cf. [17, proof of Theorem
0.8]). Clearly, each Sν � �ε . And thus, for t ∈ �ε \⋃ Sν , every irreducible analytic
subvariety of complex codimension n − p in Xt can be extended into any other fiber
in the family π : X → �ε with the invariance of its cohomology class.

Now, let us go back to the deformation of Gauduchon cone. An sGG manifold is
a compact complex manifold, satisfying that each Gauduchon metric on it is strongly
Gauduchon from the definition in [45, Lemma 1.2]. And the sGG property is open
under small holomorphic deformations from [45, the remark after Theorem 1.5]. Thus,
let us call the holomorphic familyπ : X → �ε with the central fiber X0 being an sGG
manifold an sGG family. Moreover, Popovici and Ugarte proved that the following
inclusion holds

GX0 ⊆ lim
t→0

GXt

when the family π : X → �ε is an sGG family in [45, Definition 5.6, Theorem 5.7].
The definition of lim

t→0
GXt is given by

lim
t→0

GXt =
{[

�
]
A ∈ Hn−1,n−1

A (X0, R)

∣∣∣ Pt ◦ Q0

([
�
]
A

)
∈ GXt for sufficiently small t

}
,

where the canonical mappings

Pt : H2n−2
DR (Xt , R) → Hn−1,n−1

A (Xt , R)

send the De Rham class
[
�
]
DR to the Aeppli class

[
�n−1,n−1

]
A, represented by the

(n − 1, n − 1)-component of � on Xt , and the mapping

Q0 : Hn−1,n−1
A (X0, R) → H2n−2

DR (Xt , R),

depends on a fixed Hermitian metric ω0 on X0 according to [45, Definition 5.3]. By
[45, Proposition 5.1, Lemma 5.4], the canonical mappings Pt are surjective and the
mapping Q0 is injective, satisfying that

P0 ◦ Q0 = idHn−1,n−1
A (X,R)

.

The following theorem gives a bound from the other side.

Theorem 4.22 Let π : X → �ε be a holomorphic family with a Kählerian central
fiber. Then we have

lim
t→τ

GXt ⊆ NXτ for each τ ∈ �ε,
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where NXτ is the convex cone generated by Aeppli classes of ∂τ ∂τ -closed positive
(n − 1, n − 1)-currents on Xτ . Moreover, the following inclusion holds,

lim
t→τ

GXt ⊆ GXτ for each τ ∈ �ε \
⋃

Sν,

where
⋃

Sν is explained above in this section.

Proof It is clear that we can assume that each fiber of the family π : X → �ε is
Kähler (apparently an sGG family) and {ωt }t∈�ε is a family of Kähler metrics of the
fibers, varying smoothly with respect to t , by use of the stability theorem of Kähler
structures [28], after shrinking the disk �ε .

For τ ∈ �ε , let
[
�
]
A be an element of lim

t→τ
GXt ,� its smooth representative, which

indicates

Pt ◦ Q τ

([
�
]
A

)
∈ GXt for 0 < |t − τ | < δ[�]A

by definition. Set the positive representative of Pt ◦Q τ (
[
�
]
A) as �t . It is obvious that

the following equality holds:

lim
t→τ

∫

Xt

�t ∧ ωt =
∫

Xτ

� ∧ ωτ ,

since the integral just depends on the Aeppli class of �t . This implies that

{�t }0<|t−τ |<δ[�]A

have boundedmass, and thus the weak limit of a subsequence is a ∂τ ∂τ -closed positive
(n − 1, n − 1)-current, which lies in the Aeppli class

[
�
]
A on Xτ . Hence, this shows

lim
t→τ

GXt ⊆ NXτ .

As to the second inclusion, let us fix τ ∈ �ε \⋃ Sν . Then the following integral
should be considered

∫

Xτ

� ∧ T,

where T is any fixed d-closed positive (1, 1)-current on Xτ . Apply Theorem 4.21 to
T and we have a sequence of currents Tk with analytic singularities, denoted by Yk ,
such that Tk always lies in the Bott–Chern class

[
T
]
BC and Tk ≥ −εkωτ . From the

very definition of
⋃

Sν , the singularity Yk on Xτ , with possibly high codimensional
irreducible components, can be extended into the other fibers of the family π : X →
�ε , for each k. The extension of Yk is denoted by Yk , which is a relative analytic
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subvariety of the total space X of the family π : X → �ε . Blow up X along Yk , and
then we will obtain

X̃k
μk−→ X π−→ �ε.

The restriction of μk to the t-fiber is exactly the blow up μk(t) : X̃k(t) → Xt of Xt

along Yk(t), with the exceptional divisor denoted by Ỹk(t), where Yk(t) = Yk ∩ Xt .
Then we can apply Equalities (4.4) and (4.5) to Tk :

∫

Xτ

� ∧ T =
∫

Xτ

� ∧ Tk

=
∫

Xτ

� ∧
⎛

⎝μk(τ )∗
(
R̃k
)+

∑

j

νk j
[
Ykj
]
⎞

⎠

=
∫

X̃k (τ )

(
μk(τ )∗�

)
∧ R̃k +

∑

j

νk j

∫

Xτ

� ∧ [Ykj
]
,

(4.6)

where R̃k ≥ −εkμk(τ )∗ωτ , Ykj are irreducible components of complex codimension
one of Yk and νk j are positive numbers for all j .

We claim the following two statements:

(1)
∫

X̃k (τ )

(
μk(τ )∗�

)
∧ R̃k ≥ −εk

∫
Xτ

� ∧ ωτ ;

(2)
∫

Xτ
� ∧ [Ykj

] ≥ 0.

For the statement (1), we consider that
∫

X̃k (τ )

(
μk(τ )∗�

)
∧ R̃k

=
∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(

R̃k + 2εkμk(τ )∗ωτ

)

− 2εk

∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(
μk(τ )∗ωτ

)

=
∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(

R̃k + 2εkμk(τ )∗ωτ

)
− 2εk

∫

Xτ

� ∧ ωτ .

It should be noted that μk(τ )∗ωτ is a semi-positive (1, 1)-form on X̃k(τ ) for each k.
And thus, we can choose a sequence of positive numbers {λk}k∈N+ , converging to 0,
such thatμk(τ )∗ωτ −λkuk is positive for each k, where uk is some smooth form in the
Bott–Chern cohomology class of

[
Ỹk(τ )

]
(cf. [17, Lemma 3.5]). Hence, the integral

above amounts to the following equalities:

∫

X̃k (τ )

(
μk(τ )∗�

)
∧ R̃k

=
∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(

R̃k + 2εkμk(τ )∗ωτ − εkλkuk

)
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+ εkλk

∫

X̃k (τ )

(
μk(τ )∗�

)
∧ uk − 2εk

∫

Xτ

� ∧ ωτ

=
∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(

R̃k + 2εkμk(τ )∗ωτ − εkλkuk

)

+εkλk

∫

X̃k (τ )

(
μk(τ )∗�

)
∧ [Ỹk(τ )

]− 2εk

∫

Xτ

� ∧ ωτ .

It is clear that

(
R̃k + 2εkμk(τ )∗ωτ − εkλkuk

)
=
(

R̃k + εkμk(τ )∗ωτ

)
+ εk

(
μk(τ )∗ωτ − λkuk

)

is a Kähler metric on X̃k(τ ) for each k. Then it follows that

∫

X̃k (τ )

(
μk(τ )∗�

)
∧
(

R̃k + 2εkμk(τ )∗ωτ − εkλkuk

)

= lim
t→τ

∫

X̃k (t)

(
μk(t)

∗�t

)
∧ ω̃k(t) ≥ 0,

where ω̃k(t) is a family of Kähler metrics on X̃k(t), starting with

(
R̃k + 2εkμk(τ )∗ωτ − εkλkuk

)

and varying smoothly with respect to t , from the stability theorem of Kähler structures

[28]. Moreover, the integral
∫

X̃k (t)

(
μk(t)∗�t

)
∧ ω̃k(t) only depends on the Aeppli

class ofμk(t)∗�t and
[
μk(t)∗�t

]
A converges to

[
μk(τ )∗�

]
A when t → τ . Similarly,

we can get that

εkλk

∫

X̃k (τ )

(
μk(τ )∗�

)
∧ [Ỹk(τ )

] = εkλk lim
t→τ

∫

X̃k (t)

(
μk(τ )∗�t

)
∧ [Ỹk(t)

] ≥ 0,

where Ỹk(t) is the extension of Ỹk(τ ) to the t-fiber X̃k(t) of the total space X̃k . Based
on these two inequalities above, one has

∫

X̃k (τ )

(
μk(τ )∗�

)
∧ R̃k ≥ −εk

∫

Xτ

� ∧ ωτ .

Therefore, the statement (1) is proved.
For the statement (2), let us recall that every analytic irreducible subvariety of

complex codimension n − p in Xτ can be extended into any other fiber in the family
π : X → �ε with the invariance of its cohomology class, from Barlet’s theory of
analytic cycle discussed above. Especially, the irreducible components Ykj of complex
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codimension one of Yk on Xτ can be extended to the ones Ykj (t) on the t-fiber Xt ,
which are contained in Yk(t). Then it is easy to see that

∫

Xτ

� ∧ [Ykj
] = lim

t→τ

∫

Xt

�t ∧ [Ykj (t)
] ≥ 0.

The statement (2) is also proved.
Together with these two statements and (4.6), it is clear that

∫

Xτ

� ∧ T ≥ −εk

∫

Xτ

� ∧ ωτ ,

for each k. Then it follows that

∫

Xτ

� ∧ T ≥ 0,

where T is any fixed d-closed positive (1, 1)-current on Xτ . Proposition 4.11 assures
the inclusion: for τ ∈ �ε \⋃ Sν ,

lim
t→τ

GXt ⊆ GXτ .

��
Theorem 4.23 Let π : X → �ε be a holomorphic family with fibers all Kähler
manifolds. For some τ ∈ �ε , the fiber Xτ admits the equality KXτ = EXτ . Then the
inclusion holds:

lim
t→τ

GXt ⊆ GXτ .

In particular, the fiber Xτ with nef holomorphic tangent bundle T 1,0
Xτ

satisfies the
inclusion above.

Proof The conditionKXτ = EXτ implies that, for any d-closed positive (1, 1)-current
T and arbitrary δ > 0, there exists a smooth (1, 1)-form αδ , which lies in the Bott–
Chern class

[
T
]
BC, such that

αδ ≥ −δωτ ,

where ωτ is the fixed Kähler metric of Xτ .
Fix an element

[
�
]
A of lim

t→τ
GXt , which means that

Pt ◦ Q τ

([
�
]
A

)
∈ GXt for 0 < |t − τ | < δ[�]A .
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Then for any d-closed positive (1, 1)-current T ,

∫

Xτ

� ∧ T =
∫

Xτ

� ∧ αδ

=
∫

Xτ

� ∧ (αδ + 2δωτ

)− 2δ
∫

Xτ

� ∧ ωτ .

It is clear that ατ + 2τωτ is a Kähler metric on Xτ , and thus, from the stability
theorem of Kähler structures [28], there exists a family of Kähler metrics α̃δ(t) on Xt ,
starting with ατ + 2δωτ and varying smoothly with respect to t . It follows that

∫

Xτ

� ∧ (αδ + 2δωτ

) = lim
t→τ

∫

Xt

�t ∧ α̃δ(t) ≥ 0,

since the integral also depends on the Aeppli class of �t , and �t is the positive

representative in Pt ◦ Q τ

([
�
]
A

)
for each t �= τ . As δ can be arbitrarily small, we

have

∫

Xτ

� ∧ T ≥ 0,

which assures that
[
�
]
A ∈ GXτ by Proposition 4.11. If a compact complex mani-

fold has nef holomorphic tangent bundle, the nef cone and the pseudo-effective cone
coincide by [15, Corollary 1.5]. Therefore, the proofs are completed. ��
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