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1 Introduction

We introduce an extension map from the space of complex differential forms on a
complex manifold to the corresponding one on the infinitesimal deformations of the
complex manifold and generalize an extension formula in [33] with more complete
deformation significance. As direct corollaries, we prove several deformation invari-
ance theorems for Hodge numbers in sufficiently general situations by a power series
approach, which is analogously used to reprove the classical Kodaira—Spencer’s local
stability of Kéhler structures in a recent paper [46]. We will also study the Gaudu-
chon cone and its relation with the balanced one in the Kihler case, to explore the
deformation properties on the Gauduchon cone of an sGG manifold introduced by D.
Popovici [41]. We are much motivated by Popovici’s remarkable work on [40, Con-
jecture 1.1], which confirms that if the central fiber Xy of a holomorphic family of
complex manifolds admits the deformation invariance of (0, 1)-type Hodge numbers
or a so-called strongly Gauduchon metric and the generic fiber X, (¢ # 0) of this
family is projective, then X is Moishezon.

We will mostly follow the notations in [33]. All manifolds in this paper are assumed
to be n-dimensional compact complex manifolds. A Beltrami differential is an element
in A%l (X, T;’O), where T;’O denotes the holomorphic tangent bundle of X. Then iy
or ¢_ denotes the contraction operator with ¢ € A%!(X, T)}’O) alternatively if there
is no confusion. We also follow the convention

e’:Z—Qk, (1.1

where ®F denotes k-time action of the operator #. Since the dimension of X is finite,
the summation in the above formulation is always finite.

Consider the smooth family 7 : X — B of n-dimensional complex manifolds over
asmall domain B in R as in Definition 2.1, with the central fiber X := 7 —1(0) and the
general fibers X, := 7w ~1(r). Set k = 1 for simplicity. Denote by ¢ := (;;‘ (@ )y
the holomorphic coordinates of X, induced by the family with the holomorphic coordi-
nates 7 := (zi)f:1 of Xo, under a coordinate covering {{{;} of X', when ¢ is assumed to
be fixed. Suppose that this family induces the integrable Beltrami differential ¢(z, t),
which is denoted by ¢(¢) and ¢ interchangeably. These are reviewed at the beginning
of Sect. 2. Then we have the following crucial calculation:

Lemma 1.1 (=Lemma 2.4)

<3§ gz> 1 —¢p)”! (3—{ —o (1 —gp)! (?)

¢ g ~1-gp) g ( )1 ﬂ—w@)fl@)

where @@, Qg stand for the two matrices ((pkgo <i<n» ((pkga )1<i<n, respectively, and

1<j<n 1<j<n

-1

QJ

1 is the identity matrix.
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2986 S. Rao, Q. Zhao

Using this calculation and its corollaries, we are able to reprove an important result
(Proposition 2.7) in deformation theory of complex structures, which asserts that the
holomorphic structure on X, is determined by ¢(¢). Actually, we obtain that for a
differentiable function f defined on an open subset of X

3f = ((1=59) " 2@ - 00 f).

where the differential operator d is decomposed as d = 9; + 9, with respect to the
holomorphic structure on X; and e'¢ follows the notation (1.1).
Motivated by the new proof of Proposition 2.7, we introduce a map

PO ITm L AP (Xg) — AP(X,),

which plays an important role in this paper and is given in Definition 2.8. This map is
areal linear isomorphism as ¢ is arbitrarily small. Based on this, we achieve:

Proposition 1.2 (=Proposition 2.13) For any @ € A** (X)),
5 (e"w'f@ (a)) =0
amounts to
(19, ip] +9) (1 — gp)de =0,

where ’1’ is the simultaneous contraction introduced in Sect. 2.2.

This proposition provides a criterion for a specific d-extension from A”9(X()
to A”9(X;) and generalizes [33, Theorem 3.4] (or Proposition 2.3) in deformation
significance. As a direct application of Proposition 1.2, we consider the deformation
invariance of Hodge numbers. Before stating the main theorems in Sect. 3, we recall
several definitions of related cohomology groups and mappings.

Let X be a compact complex manifold of complex dimension n with the following
commutative diagram

HY(X)
&
27 N
‘BCA
HEA(X) HY(X)
\ L
HZ(X)
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Dolbeault cohomology groups Ha:’(X ) of X are defined by

HE*(X) = ker 3
a3 " ima’

with H3®(X) similarly defined, while Bott—Chern and Aeppli cohomology groups
are defined as

.o ker & N ker 3 oo ker 90
HS(X) = — 220 nd HY*(X) = — 0

im 00 im o +1im 9
respectively. The dimensions of ng’q(X), Hi2(X), HY?(X), and H)"?(X) over

C are denoted by hg’q(X), hg’g (X), hi’q(X), and hg’q (X), respectively; the first
three of which are usually called (p, g)-Hodge numbers, Bott—Chern numbers, and
Aeppli numbers. From the very definition of these cohomology groups, the following
equalities clearly hold

P9 _ p4.p _ p—9q,n—p _ gn—p.n—q gn—pn—q __ pPq _ p49.p _ pn—4q,n—p
hd = hGL = n'y = Ky = hlT = n? = i) :

Now let us describe our basic philosophy to consider the deformation invariance of
Hodge numbers briefly. The Kodaira—Spencer’s upper semi-continuity theorem ([28,
Theorem 4]) tells us that the function

t—> hg‘q(X,) = dim¢ Hg”‘f(x,, (®))
t t

is always upper semi-continuous for ¢+ € B and thus, to approach the deformation
invariance of hg’q(X 1), we only need to obtain the lower semi-continuity. Here our
t

main strategy is a modified iteration procedure, originally from [34] and developed
in [33,52,53,63], which is to look for an injective extension map from ng “4(Xo) to

ng "1(X;). More precisely, for a nice uniquely chosen representative oy of the initial
t

Dolbeault cohomology class in Haf “1(X(), we try to construct a convergent power
series

o
o; =00 + Z tkt]Uk]T € AP1(Xy),
jrk=1

with o varying smoothly on ¢ such that for each small ¢:
(1) ez (o;) € AP9(X,) is 9;-closed with respect to the holomorphic structure on
Xy,
(2) The extension map Hsp’q(Xo) — ng’q(Xt) : [oolg > [€'¢i7(0;)]5 is injective.
t t

One main theorem in Sect. 3 can be stated as
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Theorem 1.3 (=Theorem 3.1) If the injectivity of the mappings t Bclaq, Lg ZH

central fiber Xy and the deformation invariance of the (p,q — 1)-Hodge number
hg A= 1(X ¢) holds, then hg 1(X;) are deformation invariant.
t t

on the

Obviously, a classical result that a complex manifold satisfying the 99-lemma
admits the deformation invariance of all-type Hodge numbers follows by this theorem
and induction. Three examples 3.2, 3.3, and 3.4 in the Kuranishi family of the Iwasawa
manifold (cf. [3, Appendix]) are found that the deformation invariance of the (p, g)-
Hodge number fails when one of the three conditions in Theorem 1.3 does not hold,
while the other two do. It indicates that the three conditions above may not be omitted
in order to state a theorem for the deformation invariance of all the (p, ¢)-Hodge
numbers. We also refer the readers to [61] (based on [24]) for the negative counterpart
of invariance of Hodge numbers.

The speciality of the types may lead to the weakening of the conditions in Theorem
1.3, such as (p, 0) and (0, ¢):

Theorem 1.4 (=Theorems 3.6 + 3.7)

(1) If the injectivity of the mappings Lg andt Lon Xo holds, then hp (X;) are
independent of t; ’

(2) If the surjectivity of the mapping O
0 ,q—1

5 C 5 on X0 and the deformation invariance of

(X;) holds, then h 4 (Xt) are independent of t.

As mentloned m Remark 3.8, for the case ¢ = 1 of Theorem 1.4.(2), the surjectivity
of the mapping L = 1s equivalent to the sGG condition proposed by Popovici—-Ugarte
[41,45], from [45 Theorem 2.1 (iii)]. Hence, the sGG manifolds can be examples of
Theorem 3.7, where the Frolicher spectral sequence does not necessarily degenerate
at the Ej-level, by [45, Proposition 6.3]. Inspired by the deformation invariance of
the (0, 1), (0, 2), and (0, 3)-Hodge numbers of the Iwasawa manifold I3 shown in [3,
Appendix], we prove

Corollary 1.5 (=Corollary 3.9) Let X = ['\G be a complex parallelizable nilman-
ifold of complex dimension n, where G is a simply connected complex nilpotent Lie
group and T is denoted by a discrete and co-compact subgroup of G. Then X is an
sGG manifold. In addition, the (0, q)-Hodge numbers of X are deformation invariant
forl <q <n.

Inspired by Console-Fino—Poon [14, Sect. 6], we use the proof of Theorem 1.4.(1)
to give in Example 3.11 a holomorphic family of nilmanifolds of complex dimension
5 with the central fiber endowed with an abelian complex structure, which admits
the deformation invariance of the (p, 0)-Hodge numbers for 1 < p < 5, but not
the (1, 1)-Hodge number or (1, 1)-Bott—Chern number. This shows the function of
Theorem 1.4.(1) possibly beyond Kodaira—Spencer’s squeeze [28, Theorem 13] in
this case.

Here is an interesting question:
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Question 1.6 What are the sufficient and necessary conditions for a class of compact
complex manifolds to satisfy the deformation invariance for each prescribed-type
Hodge number and all-type Hodge numbers?

In Sect. 4, we will study various cones to explore the deformation properties of
sGG manifolds. Here are several notations. The Kihler cone Cx and its closure Ky,
the numerically effective cone (shortly nef cone), are important geometric objects on
a compact Kéhler manifold X, extensively studied such as in [9,15-17,22,41,45,58].
Fu and Xiao [22] study the relation between the balanced cone Bx and the Kéhler
cone Kx. Meanwhile, Popovici [41], together with Ugarte [45], investigates geometric
properties of the Gauduchon cone Gy and its related cones. The Gauduchon cone Gx
is defined by

gxz{ﬁﬂAer*“%xR)suumﬁdmwpmmWop-Ln—1HMm}

More detailed descriptions of real Bott—Chern groups Hé’ép (X, R), Aeppli groups
H /f "P(X,R), and these cones will appear at the beginning of Sect. 4.

Inspired by all these, we hope to understand the relation of the balanced cone By and
the Gauduchon cone Gy via the mapping ¢ : HSEI’”_I(X, R) — HZ_I’"_I(X, R)
induced by the identity map. Another direct motivation of this part is the following
conjecture:

Conjecture 1.7 ([44, Conjecture 6.1]) Each compact complex manifold X satisfying
the 30-lemma admits a balanced metric.

One possible approach is to prove j -1 (Gx) = By, since the Gauduchon cone of a
compact complex manifold is never empty and _¢# is an isomorphism from the 99-
lemma. See the important argument in [44, Sect. 6] or [12, Sect. 2] relating a slightly
different conjecture with the quantitative part of Transcendental Morse Inequalities
Conjecture for differences of two nef classes as in [9, Conjecture 10.1.(ii)] and (more
precisely) also their main Conjecture 1.10.

A weaker question comes up:

Question 1.8 Does the mapping _# map the balanced cone By bijectively onto the
Gauduchon cone Gx on the Kihler manifold X ?

It is clear that ¢ maps By injectively into Gy from the 99-lemma of Kihler
manifolds. The affirmation of this question is equivalent to the equality

Ex =27 (&) (1.2)

by Pro;i)osition 4.13. The pseudo-effective cone Ex is generated by Bott—Chern classes
in H};b (X, R) represented by d-closed positive (1, 1)-currents and the convex cone
&3 € H /1’1 (X, R) is generated by Aeppli classes represented by dd-closed posi-
tive (1, 1)-currents, with the natural isomorphism % : Hé’Cl(X ,R) - H li’l(X ,R)
induced by the identity map. The pull-back cone .Z _1(535) denotes the inverse
image of the cone &,5 under the isomorphism .. The closed convex cone My C
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Hic Ln=1x R)iscalled the movable cone, originating from [9], and (M X)VC denotes
its dual cone (cf. Definitions 4.7 and 4.14).

Lemma 1.9 (See Lemma 4.15 and its remarks) Let X be a compact Kahler manifold.
There exist the following inclusions:

Ex € L7 (Eyp S (Mx)™.
By the inclusions in this lemma, the equality (1.2) is actually a part of:

Conjecture 1.10 ([9, Conjecture 2.3]) Let X be a compact Kdhler manifold. Then the
equality holds

Ex = (Mx)™.

An analogous conjecture of the balanced case is proposed as [22, Conjecture 5.4].
The following theorem provides some evidence for the assertion of Question 1.8.

Theorem 1.11 (= Theorem 4.17) Let X be a compact Kéihler manifold and [o |4 a
nef class. Then [oz”_l]A € Gx implies that [a”_l]BC € By. Hence I(Kx) (1 Bx and
K(Kx) (N Gx can be identified by the mapping J.

The mappings I and K are contained in the pair of diagrams (D, D) as in the
beginning of Sect. 4.2. The proof relies on several important results on solving com-
plex Monge—Ampere equations on the compact Kihler manifold X. One is the Yau’s
celebrated results of solutions of the complex Monge—Ampere equations for Kéhler
classes [62]. The other one is the Boucksom—-Eyssidieux—Guedj—Zeriahi’s work on
the equations for the nef and big classes [10].

Popovici and Ugarte in [45, Theorem 5.7] prove that the following inclusion holds

Gx, C lim G,
t—0

for the family w : X — A over a small complex disk with the central fiber an sGG
manifold, where lin(l) Gx, is defined by
t—

lim G, = [ € B (X0, R)|Pr 0 Qo([2]) € G, for ¢ sufficiently small].

The canonical mappings P; : Hé’l'{z(X H»R) — HX_I’"_I (Xt, R) are surjective for
all ¢ and the mapping Qo : HX_I’"_l X, R) — H]%'l'{z(X,, R), depending on a fixed
Hermitian metric wg on X, is injective, which satisfies Pg o Qg = id HI~L (X Ry
Here we give another inclusion from the other side as follows, where Demailly’s
regularization of closed positive currents (Theorem 4.21) plays an important role in

the proof.
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Theorem 1.12 (= Theorem 4.22) Let w : X — A be a holomorphic family with the
Kdihlerian central fiber X(. Then we have

lim Gx, € Nx, foreach t € A,
=T

where Nx_ is the convex cone generated by Aeppli classes of 9.9 -closed positive
(n — 1,n — 1)-currents on X,. Moreover, the following inclusion holds, for T €

Ac\U S,
lim gxt - axr.
t—T1

Here | J S, is a countable union of analytic subvarieties S, of A.. And Theorem
4.23 deals with the case of the fiber, satisfying the equality Ky = Ex, in a Kihler
family.

In [46], Wan and the authors will apply the extension methods developed here to
a power series proof of Kodaira—Spencer’s local stability theorem of Kéhler metrics,
which is motivated by:

Problem 1.13 (Remark 1 on [37, p. 180]) A good problem would be to find an ele-
mentary proof (for example, using power series methods). Our proof uses non-trivial
results from partial differential equations.

2 An Extension Formula for Complex Differential Forms

Inspired by the classical Kodaira—Spencer—Kuranishi deformation theory of complex
structures and the recent work [33], we will present an extension formula for complex
differential forms. For a holomorphic family of compact complex manifolds, we adopt
the definition [27, Definition 2.8]; while for the differentiable one, we follow:

Definition 2.1 ([27, Definition 4.1]) Let X be a differentiable manifold, B a domain
of R, and 77 a smooth map of X onto B. By a differentiable family of n-dimensional
compact complex manifolds we mean the triple & : X — B satisfying the following
conditions:

(i) The rank of the Jacobian matrix of 7 is equal to k at every point of X.
(ii) For each pointt € B, 7~ !(¢) is a compact connected subset of X.
(iii) 7~ 1(r) is the underlying differentiable manifold of the n-dimensional compact
complex manifold X, associated to each t € B.
(iv) There is a locally finite open covering {{{; | j = 1,2, ...} of X’ and complex-
valued smooth functions g“} P),..., g“‘;? (p), defined on U/; such that for each
t,

[p=(w....qm) una" o £0|

form a system of local holomorphic coordinates of X;.
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2.1 Extension Maps for Deformations

Let us introduce several new notations. For ¢ € A (X, T;’O) on a complex manifold
X, the contraction operator can be extended to

ip: APU(X) — APTLaTs(x),

For example, if ¢ = n ® Y with n € A% (X)and Y € I'(X, T;O), then for any
w e AP1(X),

(ig)(w) = n A (iyw).
Let p € A%P(X, T;’O) and ¥ € A%9(X, T)i’o), locally written as
1 . . s 1 . k &
¢ = Ez(p,l/_‘l,..qudzh A AdZIP @ 0; and ¢ = Ezwfl -qdz LA AdZTY ® 0;.
Then we have

lewl= Y (¢ A ! = =DMy Al @1,

i,j=1

where

. 1 . . .
8,-<p/ = ; Bifp% """ jfpdzjl A AdZIP

and similarly for 8,-1pj. In particular, if ¢, ¥ € AO'l(X, T;’O),

n
. vl =Y (¢ noww’ +v7 ndipl) @0
ij=1
For any ¢ € A%9(X, T;O), we can define L4 by
£¢ =(=1%do i¢ + i¢ od.
According to the types, we can decompose
_Al0 0,1
Ly = £¢ + £¢ s
where
Ly’ = (=19 0is+ipod
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and
L0V = (=199 0iy +ipo0d
(,15 = Ol¢ l¢ o 0.
Then one has the following commutator formula, which originated from [54,55]

and whose various versions appeared in [4,13,19,31,34] and also [32,33] for vec-
tor bundle-valued forms.

Lemma 2.2 For ¢, ¢’ € A®1(X, T;O) on a complex manifold X and o € A**(X),
[¢. 9]0 = —3(¢' 2(¢p0)) — ¢'2(¢200) + ¢13(¢' 10) + ¢ 13 (¢0),

or equivalently, o o
l'[¢,¢/] = £¢’ o i¢/ — i¢/ o £¢’ . 2.1

Let¢ € A%I(X, T)i’o) and iy be the contraction operator. Define an operator
|
ip _ ok
er= Z k!l¢’
k=0

where i g = iy o---0iy. Since the dimension of X is finite, the summation in the
————

k copies
above formulation is also finite.

Proposition 2.3 ([33, Theorem 3.4]). Let ¢ € A%(X, T;’O). Then on the space

ARH(X),
— ; . 1,0 , .
e odoe =d—£¢ — l%[¢’¢] = d_L¢ +l§¢_%[¢,¢]. 2.2)
Or equivalently o B
eWodoe =9 — Ly (2.3)
and

e 0doet =9 —L:(;’O — i%[¢_¢].

Proof Note that (2.3) proved in [13, Lemma 8.2] will not be used in this new proof,
but only the commutator formula (2.1) and

i[$.¢] O ip = ig O i[¢.] 2.4)

by a formula on [13, Page 361].
Let us first define a bracket

(a5 =doif —ikoa.
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Obviously, [d, ig] = —Ly and (2.2) is equivalent to

[d,e] = e o[d,is] — e o 116,61 (2.5)

We check the Leibniz rule for the bracket: for k > 2,
[d.i8] =il oldsigloiy ™.
j=1
As for k = 2,
[d.i3] =doi—isodoip+isodois—ifod=1disloiy+isold. iyl
Then similarly, one is able to prove the cases for k > 3 by induction.
Now we can prove (2.5). Actually, the Leibniz rule and the formulae (2.1) (2.4) tell

us: for k > 2,

k(k —1) 4_o

[d, ig]zkig‘lo[d, ig] = ———1ig " ollp.g1,

which implies (2.5). |
From now on, one considers the smooth family
7:X—> B

of n-dimensional compact complex manifolds over a small real domain with the central
fiber

X0 := 7 (0)
and the general fibers denoted by
X; = n_l(t).
Assume that k = 1 for simplicity. We will use the standard notions in deformation

theory as in the beginning of [37, Chapter 4]. Fix an open coordinate covering {I/;}
of X so that

Up = {j. )=, .... L0 gl < 1] < el
T(({j,[) =1

and
¢ = [k ) on Ui N U,
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where fj) is holomorphic in ¢; and smooth in 7. By Ehresmann’s theorem [18], X
is diffeomorphic to X x B, where X is the underlying differentiable manifold of Xj.
Then

Uj=U; x B,
where U; = {¢; | |¢;] < 1}. Thus, we can consider X, as a compact manifold obtained
by glueing U; with t € B by identifying {x € Uy with §; = fjx (¢, t) € U;. We refer

the readers to [27, §4.1.(b)] for more details on this description. If x is a point of the
underlying differentiable manifold X of X and t € A, we notice that

¢ =)

is a differentiable function of (x, ¢). Use the holomorphic coordinates z of Xg = X as
differentiable coordinates so that

¢ ) =&z,
where gj‘?‘ (z, 1) is a differentiable function of (z, t). Atr =0, {}" (z, 1) is holomorphic
in z and otherwise it is only differentiable.

Then a Beltrami differential ¢ () can be calculated out explicitly on the above local
coordinate charts. As we focus on one coordinate chart, the subscript is suppressed.

From [37, Page 150],
a\T fac\ '~
@(1) = (3_Z> (8_z> a¢g, (2.6)

9 o1
az! ¢
where g— = cl,0¢ = R g—c stands for the matrix (gg_j)lwq and «, j
Z N - Z Z lzjzn
97"

T . —
are the row and column indices. Here (g—z) is the transpose of g—z and 0 denotes the

Cauchy—Riemann operator with respect to the holomorphic structure on Xj.

Since ¢(t) is locally expressed as q);dzj ® 337 € Ao'l(T)l(g)O), it can be considered

as a matrix ((pj-,)lf,-gn . By (2.6), this matrix can be explicitly written as
1=j=n

P N B[\ (o i
so—(go;)}ég—wm(azj,dz)_((az> <82>> @7)

j
A fundamental fact is that the Beltrami differential ¢(¢) defined as above satisfies the
integrability:
- 1
dp(r) = §[<p(t), ()] (2.8)

One needs the following crucial calculation:
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Lemma 2.4

0z 0z
6§ ac
C I3

Qa

— =1 (9T
—o (M —99)" (7

T=v7) (3%),1

-1

Here g, po stand for the two matrices ((pk<p M<i<n, (<pk§0 )i<i<n, respectively.

1<j<n

In many places ¢ and pg can also be seen as <p’ kdz/ ®

1<j<n

e Al 0(T1 0) and

’ kdz/ ® e A% 1(T0 1) Actually, o9 = @@, pp = ¢_p, and 1 is the identity
matrlx
ﬂ 9z 3_4 ils
Proof Itiseasyto see that( % "%) is the inverse matrix of ( 9¢ g?).Thenitfollows,
a9t 9z 9z
1 0\ /% 4 a¢
o\ - oz oz | = [ 9% R 2.9)
_(0_€>(0_€> 1) 2 o 0 & _ () () (% '
0z dz dz 0z dz dz dz dz
Take the inverse matrices of both sides of (2.9), yielding
oc ag\~h (3 e - 1 0
3z 0z N K 0z 1 ~ _
g 3¢ Tl o & () (¢ Lile _(3_§)<3_§> 1
dz 0z 0z 0z 0z 0z 9z 0z
(2.10)
From Linear Algebra, we have the basic equality below
-1 -1 —1p-1
AC A" —A7'CB
(0 B) - ( 0 B! ) 21D

where A, B are invertible matrices. Combine with (2.7) and (2.11) and go back to

(2.10):

—
Dl |
IRl %
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Several Special Complex Structures 2997
(a+ea-507'7 )(3—5? —¢ (1 - F)" ‘(a—i
—a-g0'g (%) a-we" 1(,—‘)
—1
a-ep (%) —pa-z0 (%)
= 2T 1 30\ !
—a-gp e (%) T (¥)
O
We need a few more local formulae:
Lemma 2.5
dg® =55 (e (dzh). _
3 1(ac\7! / 1 (oc\ 7! !
7@ =((]1 ©9) (3—) ) ﬁ—<(]1—</’</’) 90(5) > 357
o o
Proof For the first equality,
ac* . a¢* .
dc® = —=—d7’ ~dz’
¢ a7t o az/ ¢
oce (i ((9e\ 1\ 8gf
=2 a7 (—) £ d
8Z’<Z+<8z )BZJZ
9 . 9c® /. .
-5 (ad i) = 5 ().
Then the second one follows from Lemma 2.4:
9 9z 9 N 9z/ 9
dce  AcYdz  9c* azi
1N\ J N
BNEIA AN (ot 9
=@ -9pp) ' = — —a-pp) ' (= —.
(( 99) (az) ) 00 (( 99) w(az 3%
o o
O
Corollary 2.6
a¢%* d ((]l 7" 1) 0 ((]l ) 1 )_ 0
9z 9c ve 92 o9 i 970
Proof 1Tt is a direct corollary of the second equality in Lemma 2.5. O

By the above preparation, we can reprove the following important proposition in
deformation theory of complex structures, which can be dated back to [20] (see [39,

Sect. 1] and also [37, pp. 151-152]).
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Proposition 2.7 The holomorphic structure on X, is determined by ¢(t). More specif-
ically, a differentiable function f defined on any open subset of X is holomorphic
with respect to the holomorphic structure of X, if and only if

(5 - ¢ (t)ai) f@) =0, (2.12)

where ¢' (1) =Y j w(t)%dfj , or equivalently,

(8 —¢()19) f(2) =0.

Proof By use of Lemma 2.5 and Corollary 2.6, we get

0 oiach) + L
= w57 (@) + ag_ﬂa_(e @)

({0 - ) e
+<(11 o) %‘_(‘p(ﬂ_aw)_l);%>(eiw(d1i)>
e ((a o) (251 o)

o (oo (2 2o

Now, let us calculate the second term in the bracket:

. a j o
(a0 (3% -t 35 ) )

1—9p) ' af—1-— W)‘lwuaf)

<
= e"w<<11 — )@ - «ua>f>.
Thus,
A f = e (((11 - ago)—l)f (% - go,{%) dzf)
= el'w(al —99) "0 - qua>f) (2.13)
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since df can be decomposed into 9; f + 9; f with respect to the holomorphic structure
on X;. Hence, the desired result follows from the invertibility of ¢'# and (1 — Ego)_l.
O

See also another proof in [11, Proposition 3.1] and our proof gives an explicit
expression of d; on the differentiable functions as in (2.13). The formula used in the
classical proof of Proposition 2.7 is

— R a
@— v f = (1~ ), 5T S

which is just an equivalent version of (2.13)
@~ ¢0)f = (1~ Pp)oe” 7@, f)

by use of the first formula of Lemma 2.5.
By the Leibniz rule, one has

3zk k 32’
1

= k= = 2.14
aze T Yi 5 0 (2.14)

)

which is equivalent to the definition (2.7). In fact, if (2.7) is assumed, then the Leibniz
rule yields that
9k ez ok (a;)*l agf’ a7
acy Lacx  9r« 0z ﬂ 9zt 8{“
B azk (84“)_1 agﬁ Z)z
A 9z 5 9zt e

while the converse is similar. Thus, when f satisfies (2.12), one has

of _ of o | of oz
ace  9zkare | azk pre
_of 9k o o

T ok ore " oz ‘pka;a 2.15)
af 4 0z

=L (= 4
9z <8§'°‘ wka{”‘)

—0.

Conversely, % = 0 implies that f satisfies (2.12). Actually, we can substitute (2.14)
into the first equality of (2.15) to get

o _ ot <8f j£>
aé_—a 8{“ kgzi )"
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By Lemma 2.4, one knows that - 1s an invertible matrix as ¢ is small. Hence, this is
the third proof of Proposition 2. 7 wh1ch is implicit in Newlander—Nirenberg’s proof
of their integrability theorem [39].

Let us recall the Newlander—Nirenberg integrability theorem. Let ¢ be a holo-
morphlc tangent bundle-valued (0,1)-form defined on a domain U of C" and L; =
9; — go- dj. Assume that Ly, ..., Ly, Li,...,L, are linearly independent, and that
they satlsfy the integrability condltlon (2.8). Then the system of partial differential
equations

Lif=0,i=1,...,n, (2.16)
has n linearly independent smooth solutions f = ¢* = ¢(*(z),« = 1,...,n, ina
small neighborhood of any point of U. Here the solutions ¢!, ..., ¢" are said to be

linearly independent if

det — #0,
8(11, , 2,2l 17>
which obviously implies
2
_ ',
det(1 — det ———— 0
( (p(p)l il ..., *

since the resolution of the system (2.16) of partial differential equations yields

o o :
7 w? (]1 (p) & 0

) w0,
(5) 3 J\0 1 5 5 (1 —90)

This theorem, together with Proposition 2.7, is actually the starting point of Kodaira—
Nirenberg—Spencer’s existence theorem for deformations and a quite clear description
can be found in [27, pp. 268-269]. We also find that the term 1 — p¢ in Lemma 2.4
is natural.

Motivated by the new proof of Proposition 2.7, we introduce a map

eowlioa . AP (Xo) — AP(X,),
which plays an important role in this paper.
Definition 2.8 For o € A”9(X(), we define
"P<’)|’<ﬂ<'>(a) =0\ ipii e (Z)(e o) (dzil Acer A dzip)) A (eiW (dijl Ao A dfj‘/) )

where o is locally written as

= il ip ZIA L. ~Jq
O =05 i jq(z)dz Ao ANdZ'P NdZV AN AN dZ
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and the operators ele ¢'90 follow the convention:
i ! 2.17)
_ k .

where &F denotes k-time action of the operator #. Since the dimension of X is finite,
the summation in the above formulation is always finite.

Then we have:

Lemma 2.9 The extension map e0lize . AP (Xo) = AP9(X;) is a linear isomor-
phism as t is arbitrarily small.

Proof Notice that
(dz‘ +o()adz", ... d" + go(t)sz") and (le +ondz, ... d7" + Mﬁ”)

are two local bases of A0(X,) and A% ! (X)), respectively, thanks to the first identity
of Lemma 2.5 and the matrix ( o ) therein is invertible as ¢ is small. Then the map

"01'5@ is obviously well-defined since ¢(¢) is a well-defined, global (1, 0)-vector
valued (0, 1)-form on X¢ as on [37, pp. 150-151].
For the desired isomorphism, we define the inverse map

e OITigE L APA(X,) — AP (X,)
of €015 ag
el ()

= iyiyiidi (g)(e—’w ((dz“ + () dz) A A (dZ + ga(t)szip)>

A e_in)((de‘ + o) dZ) A A (dT+ WJde"))),
where n € AP-9(X;) is locally written as

=iy gy © (A2 + 902" ) Ao A (A2 + p(0) 2
A (dZ“ + (p(t)Jde‘> A (dz +Wszfq) ,

and the operators e o, ¢~'%® also follow the convention 2.17). O

The dual version of the fact about the basis in the proof is used by Chan—Suen [11]
to prove Proposition 2.7 and also by Huang in the second paragraph of [25, Sect. (1.2)].
Notice that the extension map e'¢” i@ admits more complete deformation significance
than e’¢) which extends only the holomorphic part of a complex differential form.
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Lemma 2.10 The map evolica APA(Xg) — AP9(X,) is a real operator.
Proof It suffices to prove, for any o € AP-9(Xy),

05 () = 0w (7).
In fact, let

o= Z a,j(z)dZI Adz’
=p,|J1=q

by multi-index notation and then

VN0 (0) = o j(2)elv (dz!) A €' (dZ)
= 0,70 (dz") A e'v (dz)
= 0,7@)(=D)! el (@z”) A o (dz)
= 0lsm ()Mo, 7 @dz” A dz!

= 010 (7).

2.2 Obstruction Equation

This section is to obtain obstruction equation for 9-extension, i.e., obstruction equation
for extending a d-closed (p, g)-form on X to the one on X;.

Lemma 2.11

k 0z/

— (- W)‘l)i 2% (e @zD) A (e (@z)).

Proof Here we use Proposition 2.3. By (2.2), one has

d (ei“’ dz )) = (d o — v od)(d7)
= e (doiy—i,o0d)(d7)

1

_ % (eiw(dzf)) Adzl.
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Moreover, we have

dz’ = 8§ad§ +8§/3 ;
azl ace
— o o () + 355 (evaan) @18
i

~(a-7p! )(ew(dzk)) (@-70), (@)

O
For a general o € AP'9(X), Proposition 2.3 and the integrability condition (2.8)
give
d(@“% (o)) =doe oe™v oelii (o)
= e o ([8,ip]+3+8) 0™ o el (o)
= el o (717 o 6o o ([0, ig] 4+ +8) 0 ¥ 0 €l (0))
(2.19)
Here

e el —igay . AP9(X,) — AP (X,)

is the inverse map of "0\5@ as defined in the proof of Lemma 2.9. We introduce one
more new notation 1 to denote the simultaneous contraction on each component of a
complex differential form as in [46, Sect. 2.1]. For example, (I — ¢¢ + ¢)do means
that the operator (1 — @¢ + @) acts on o simultaneously as

(]1 — QI_J(P + (/_7)_‘1 (‘fll lp]T EdZ” A A dZip /\dzjl A A dzjq)
= iy Ty
A —@p+@)adZt Ao A (1 — G + §)adZe,

1= G¢+@)adz" A A (L= Gg +§)dz” (2.20)

if o is locally expressed by:
_ R O 3 i SIA L ZJ
0 =0y i gdZt A AT NAT N AN dT
This new simultaneous contraction is well-defined since ¢(¢) is a global (1, 0)-vector

valued (0, 1)-formon X¢ (on [37, pp. 150-151]) as reasong:d'in the proof of Lemma 2.9.
Using this notation, one can rewrite the extension map e’¢!@ in Definition 2.8:

evlio = (1 4+ ¢ + @) 4.

Then one has
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Lemma 2.12 ([46, Lemmata 2.2+2.3]). For any o € AP9(Xy),
e v o0eli () = (1 — gp + ¢)do (2.21)
and

e 0 e (@) = (1 - @)™ — (1 - Gg) ') o, (2.22)

where ((]l — o) ' =1 - (Z)(p)*]gb) acts on o just as (2.20).

Proof Here we give a different proof from those in [46, Lemmata 2.2+2.3]. Locally
set

o= a,l)jqdzlf’ Adz
by multi-index notation. So
oo (o) = o) j e (dz'r) A e (dz'n)
and thus,
e 0 eliv (o) = alqudzll’ Ae7i 06 (dz7)
=0;,j,d'" A (L = §¢ + §)4(dZ").
As for (2.22), (2.18) tells us that

eT0Tg o el (o) = 0, 7 eI (el (dz!P) A dZl)
paq

= (;ij_qe*iw\*ié (eiw(dzlp) A i9liG ((Il —eo) ' — - (;;(p)*l@) jdzjq)
=0,,7,927 A (M =g0) 7! = (1 - G9)1¢) a2,

m}

The following equivalence describes the d-extension obstruction for (p, ¢)-forms
of the smooth family.

Proposition 2.13 For any o € AP4(Xy),
b (¢4 (@) =0
amounts to

([8,ip] + 3)(1 — gp)do = 0.
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Proof Substituting (2.21) and (2.22) into (2.19), one has

(e (o))
— elolis (((]1 — G =1 - ¢<p)—1¢) 3([0, iyl + 8 +9) (1 — g + gz)ja) .
(2.23)
From (2.22), we know that
min{g,n—p}
el el L AP (X)) > @D APTITI(Xo).
i=0

Thus, by carefully comparing the form types in both sides of (2.23), we have
b€l (o)) = 1% (1 = 69) ™' 40, iy 1 + H)(L — Gp) o)

which implies the desired equivalence follows from the invertibility of the operators
elolie and (1 — pop)~'4. o

2.3 Kuranishi Family and Beltrami Differentials

By (the proof of) Kuranishi’s completeness theorem [29], for any compact complex
manifold X, there exists a complete holomorphic family & :  — T of complex
manifolds at the reference point 0 € T in the sense that for any differentiable family
7 : X — Bwithw(s0) = @ 1(0) = Xy, there is a sufficiently small neighborhood
E C B of 59, and smooth maps ® : Xg — K, v : E — T with t(sg) = 0 such that
the diagram commutes

-

(E, s0) —— (T, 0),

® maps 7 1) biholomorphically onto @ 1(z(s)) foreach s € E, and
(O rr_l(so) = X9 — w_l(O) = Xo

is the identity map. This family is called Kuranishi family and constructed as follows.
Let {n,}""_, be a basis for HO (X, T;;}O), where some suitable Hermitian metric is
fixed on Xg and m > 1; Otherwise the complex manifold Xy would be rigid, i.e.,
for any differentiable family x : M — P with sy € P and k" L(s0) = Xo, there is
a neighborhood V' C P of sg such that « : k~1(V) — V is trivial. Then one can
construct a holomorphic family
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o0 o
o)=Y ot =) i), I =(i1,....im), t =(t1,...,tn) €C",
|I|=1 j=1

for || < p a small positive constant, of Beltrami differentials as follows:

m
p1(t) = Ztv’?v
v=I

and for |1| > 2,

1
Q| = 53 G Z [0y, oLl
J+L=I

where G is the associated Green’s operator. It is obvious that ¢(¢) satisfies the equation

 p—
) =¢1 + 58 Gle@®), )]
Let

where H is the associated harmonic projection. Thus, for each t € T, ¢(¢) satisfies

- 1
dp(t) = 5[<p(t), 0], (2.24)

and determines a complex structure X, on the underlying differentiable manifold of
Xo. More importantly, ¢(¢) represents the complete holomorphic family @ : I — T
of complex manifolds. Roughly speaking, Kuranishi family e : C — T contains all
sufficiently small differentiable deformations of X¢. We call ¢(¢) the canonical family
of Beltrami differentials for this Kuranishi family.

By means of these, one can reduce our argument on the deformation invariance of
Hodge numbers for a smooth family of complex manifolds to that of the Kuranishi
family by shrinking E if necessary, that is, one considers the Kuranishi family with
the canonical family of Beltrami differentials constructed as above. From now on,
one uses ¢(¢) and ¢ interchangeably to denote this holomorphic family of integrable
Beltrami differentials, and assumes m = 1 for simplicity.

3 Deformation Invariance of Hodge Numbers and Its Applications

Throughout this section, one just considers the Kuranishi family # : X — A, of
n-dimensional complex manifolds over a small complex disk with the general fibers
X, =7 ) according to the reduction in Sect. 2.3 and fixes a Hermitian metric g
on the central fiber Xg. As a direct application of the extension formulae developed in
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Sect. 2, we obtain several deformation invariance theorems of Hodge numbers in this
section.

3.1 Basic Philosophy, Main Results, and Examples

Now let us describe our basic philosophy to consider the deformation invariance of
Hodge numbers briefly. The Kodaira—Spencer’s upper semi-continuity theorem ([28,
Theorem 4]) tells us that the function

t —> hg’q(X,) := dim¢ Hg””(x,)
t t

is always upper semi-continuous for € A, and thus, to approach the deformation
invariance of hg’q(X +), we only need to obtain the lower semi-continuity. Here our
main strategy is a modified iteration procedure, originally from [34] and developed
in [33,52,53,63], which is to look for an injective extension map from Haf 4 (Xp) to

ng “4(X,). More precisely, for a nice uniquely chosen representative oq of the initial
t

Dolbeault cohomology class in ng "1 (X0), we try to construct a convergent power
series

o
o; =00 + Z tkt]Uk]T € AP1(Xy),
k=1

with o; varying smoothly on ¢ such that for each small 7:

(1) e%liv(o;) € AP9(X,) is d;-closed with respect to the holomorphic structure on
X,
(2) The extension map ng’q(Xo) — ng’q(Xt) : [ooly — [eiw|i5(a,)]§l is injective.

The key point is to solve the obstruction equation, induced by the canonical family
¢(t) of Beltrami differentials, for the d,-closedness in (1), and verification of the
injectivity of the extension map in (2). Then we state the main theorem of this section,
whose proof will be postponed to Sect. 3.2.

p+l.qg p.g+1

Theorem 3.1 If the injectivity of the mappings t BC. + Y 4

and the deformation invariance of the (p, q — 1)-Hodge number hg’q_l (X¢) holds,

on the central fiber X

then hg’q (X;) are deformation invariant.
t

There are three conditions involved in the theorem above, namely the injectivity of

the mappings L[ézléq, Lg’ZH and the deformation invariance of the (p, g — 1)-Hodge

number, to assure the deformation invariance of the one of (p, g)-type. Resorting
to Hodge, Bott—Chern, and Aeppli numbers of manifolds in the Kuranishi family of
the Iwasawa manifold (cf. [3, Appendix]), we find the following three examples that
the deformation invariance of the (p, ¢)-Hodge number fails when one of the three
conditions is not true, while the other two hold. It indicates that the three conditions
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above may not be omitted in order to state a theorem for the deformation invariance
of all the (p, g)-Hodge numbers.

Let I3 be the Iwasawa manifold of complex dimension 3 with ¢!, 92, @3 denoted
by the basis of the holomorphic one form H°(I3, Q') of I, satisfying the relation

a’(p1 =0, d(p2 =0, dg03 = —gol A <p2.

And the convention golﬂ5 = @' A @2 A@! AP will be used for simplicity.
Example 3.2 (The case (p, g) = (1, 0)). The injectivity of %’Z holds on II3 with the
deformation invariance of h%’_l (X;) trivially established but L%g’ 5 18 not injective. In

this case, h%’O(X ¢) are deformation variant.
t

Proof 1Ttisrevealed from [3, Appendix] that h%’l =0, hkl =&, and h%&g =3, h%’o =

2. And thus Liyg 5 1s not injective. It is easy to check that

HY' (0 = (10" [0, [ 15 071y (07 Ty, [9™T5)

HY 00 = (014, 10210, 197 14, 102 1a To™ s 071, [0 14 [971a),
which implies the injectivity of %’ ;. The deformation variance of h%’o (X;) can be read

B !
from [3, Appendix]. O
Example 3.3 (The case (p. q) = (2, 0)). The injectivity of ;¢ , holds on I3 with the
deformation invariance of h%ﬁl (X;) trivially established but L%’L is not injective. In
t B

this case, h%’O(X ¢) are deformation variant.

Proof We know that hiy¢. = 1, hy" = 1,and h>' = 6, h;' = 6 from [3, Appendix].
The bases of respective cohomology groups can be illustrated as follows:

e R P A (T
HE = (10" 9215, 10" Iy 1o 15 107 I, 162715)
e N PN e PR T P T PR P TR T

which indicates the injectivity of L%’g 5 and non-injectivity of L%’L. The deformation

variance of h%’O(X 1) can be also got from [3, Appendix]. O

Example 3.4 (The case (p,q) = (2, 3)). The mapping L%éa is injective on I3 with
the injectivity of %’: trivially established but h%’z (X;) are deformation variant. In this
B t

case, h§’3(X ;) are deformation variant.
t
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Proof 1Tt is obvious that L:;% 5 1s injective, since h%’é =1, hg’g =1, and
3,3 123123 3,3 123123
Hyd = (10" P 1ac), 1y = (19'255)

And [3, Appendix] conveys the fact of the deformation variance of h%’z(Xt) and
t
23 (X)), O
0

It is observed that the injectivity of ngléq or Lg ‘ZH is equivalent to a certain type

of 39-lemma, for which we introduce the following notations:

Notation 3.5 We say a compact complex manifold X satisfies SP*¢ and B, if for
any d-closed dg € AP-9(X), the equation

dx = dg (3.1

has a solution and a d-exact solution, respectively. Similarly, a compact complex
manifold X is said to satisfy S7'¢ and BP9, if for any 9-closed g€ AP_L‘f(X), the
Eq. (3.1) has a solution and a d-exact solution, respectively.

The following implications clearly hold

B4 = SP4

4 4
BPd = SP.

And it is apparent that a compact complex manifold X, where the 39-lemma holds,
satisfies B4 for any (p, ¢). Here the 89-lemma refers to: for every pure-type d-closed
form on X, the properties of d-exactness, d-exactness, 9-exactness, and 99-exactness
are equivalent.

It is easy to check that the following equivalent statements:

the injectivity of Lf;’g, » holds on X & X satisfies BP7;

the injectivity of Lg’z holds on X < X satisfies S79;

the surjectivity of tggléq holds on X < X satisfies B79.

Details of the proofs of theorems in this section will frequently apply Notation 3.5 for
the convenience of solving d-equations.

The speciality of the types may lead to the weakening of the conditions in Theorem
3.1, such as (p, 0) and (0, g). Hence, another two theorems follow, whose proofs will
be given in Sect. 3.3.

Theorem 3.6 If the injectivity of the mappings ‘g;l’o and Lg’l‘ on Xo holds, then

hgl‘O(X ;) are independent of t.
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Theorem 3.7 If the surjectivity of the mapping L(;Z, 5 on Xo and the deformation

invariance of h%’lﬁl (X;) holds, then h%q (X;) are independent of t.
t t

0,1
BC.d
is equivalent to the sGG condition proposed by Popovici—Ugarte [41,45], from [45,
Theorem 2.1 (iii)].

Remark 3.8 Inthe case of ¢ = 1 of Theorem 3.7, the surjectivity of the mapping ¢

Hence, the sGG manifolds can be examples of Theorem 3.7, where the Frolicher
spectral sequence does not necessarily degenerate at the E1-level, by [45, Proposition
6.3]. Inspired by the deformation invariance of the (0, 1), (0, 2), and (0, 3)-Hodge
numbers of the Iwasawa manifold I3 shown in [3, Appendix], we prove

Corollary 3.9 Let X = I'\G be a complex parallelizable nilmanifold of complex
dimension n, where G is a simply connected nilpotent Lie group and I" is denoted by
a discrete and co-compact subgroup of G. Then X is an sGG manifold. In addition,
the (0, q)-Hodge numbers of X are deformation invariant for 1 < q < n.

Proof 1Tt is well known from [50, Theorem 1] and [3, Theorem 3.8] that the isomor-
phisms

Hpd (X) = Hp (9. 1), HP(X) = HP (g, 1),

hold on the complex parallelizable nilmanifold X, where g is the corresponding Lie
algebra of G and J denotes the complex parallelizable structure on g. Then from The-
orem 3.7, the corollary amounts to the verification of the surjectivity of the mappings

of t(;’g 5 on the level of the Lie algebra (g, J) for 1 < g < n, which is equivalent to

that the conditions B9 hold on the Lie algebra (g, J) for 1 < g <n.

Since J is complex parallelizable, it yields that dg*(1'9) C /\2 g*(19 which implies
that 3( \? g*@D) = 0for 1 < g < n, where g}, = g* ®r C = g*19 @ g*OD with
respect to J. Therefore, the conditions BL4 for 1 < q < n are satisfied on the Lie
algebra (g, J) and the corollary follows. O

Remark 3.10 The deformation invariance for the (0, 2)-Hodge number of a complex
parallelizable nilmanifold has been shown in [35, Corollary 4.3].

Since nilmanifolds with complex parallelizable structures and abelian complex
structures are conjugate to some extent, it is tempting to consider the deformation
invariance of the (p, 0)-Hodge numbers of nilmanifolds with abelian complex struc-
tures for 1 < p < n under the spirit of Corollary 3.9. The following example, inspired
by Console—Fino—Poon [14, Sect. 6], is a holomorphic family of nilmanifolds of
complex dimension 5, whose central fiber is endowed with an abelian complex struc-
ture. This family admits the deformation invariance of the (p, 0)-Hodge numbers for
1 < p < 5, but not the (1, 1)-Hodge number or (1, 1)-Bott—Chern number, which
shows the function of Theorem 3.6 possibly beyond Kodaira—Spencer’s squeeze [28,
Theorem 13] in this case.
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Example 3.11 Let X( be the nilmanifold determined by a ten-dimensional 3-step
nilpotent Lie algebra n endowed with the complex structure Jy ; fors = 1, =0, as
in [14, Sect. 6]. The natural decompositions with respect to the complex structure J; o
yield

nc=n®rC= n1,0 ) n(),l; n?é =n*®pC = n>s<(l,0) ® Il*(o’l).

1

By contrast with the basis o', ..., @ of n*(1.9 yged in [14, Sect. 6], another basis
i

t!, ..., v will be applied, with the transition formula given by

1 1

T :a),rzz(1+i)w2—w3

=1+ =0t P = 0.

Hence, the structure equation with respect to {t¥ }2=1 follows

dtl =d? =d* =0,
did = —(cP At + A+t AT, (3.2)
drd = %(1:1 AT+ 3ATl =12 /\f2).

It is easy to see dT° = —dt°, which implies d7° = —37°. Denote the basis of n!?
dual to {t"‘}i:l by 601, ..., 6s. The equation dw (8, 8") = —w ([0, 8']) for w € n{ and
0,0’ € nc, establishes the equalities

(01,041 = (1 — )03, [6;,04] =0 for2 <i <5.

According to [14, Theorem 3.6], the linear operator 9 onn!0, defined in [14, Sect. 3.2]
by

30 5 OV nl0: gy =10, VI foru, v en!?,

produces an isomorphism H'(Xo, T;&O > Hai(nl’o). Therefore, from Kodaira—
Spencer deformation theory, an analytic deformation X; of X can be constructed
by use of the integrable Beltrami differential

o) =17 @04+ HT* @ b4

for t1,t small complex numbers and ¢t = (f1,1), which satisfies 5(p(t) =
%[go(t), @(t)] and the so-called Schouten—Nijenhuis bracket [-, -] (cf. [14, Formula
(4.1)]) works as

@V, 0 ®@V1=d Niydd®V +dAivdd @ V' forw, o €10 v v/ enl0,

since 304 = 0 and ig,d 7> = ip,dT* = 0. Then the general fibers X, are still nilmani-
folds, determined by the Lie algebra n and the decompositions

*(1,0)
w(t)

#(0,1)

* *
ne=n"rC=n o)

®n
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with the basis of n:;((};()) given by T8 (1) = €l (tF) = (1 + (1)) ot for I <k < 5.

Hence, the structure equation of {rk(t)},f=1 amounts to

dtl'(t) = d7%(r) =0,
dt*(t) = —dT>(1),

AT (1) = s (' ) At + T () A TP (0) (3.3)
—tloantl@) - ljtzilz (thO) ATH) + 1T () AT (1)),

do3@t) = S(t' ) A T30 + T30 ATHE) — 22(0) A THD)).

The proof of Theorem 3.6, which is contained in Proposition 3.19, shows that the
obstruction of the deformation invariance of the (p, 0)-Hodge numbers along the
family determined by ¢(#) actually lies in the Eq. (3.13), where the differential forms
involved are invariant ones in this case. For any d-closed op € A? n*1-9 it is easy
to check that

o; = 0o + t1‘L’5 A (04100)

solves the equation (3.13), due to the equalities 979 = —97° and dt* = 0. However,
based on the structure equations (3.2) and (3.3), it yields that

h;;‘(xo) — 14, h%;l(X,) =11 and hp-(Xo) =11, hyp (X)) =9,
where 1 # 0 and 117, — 1] # 0.

3.2 Proofs of the Invariance of Hodge Numbers hg 4(Xy)
t

This subsection is to prove Theorem 3.1, which can be restated by the use of Notation
3.5: if the central ﬁber X satisfies both BPT14 and SP9F! with the deformation
invariance of hp 971 (X,) established, then hp (X,) are independent of .

The basic strategy is described at the begmnmg of Sect. 3.1 and obviously our task
is divided into two steps (1) and (2), which are to be completed in Propositions 3.14
and 3.15, respectively.

To complete (1), we need a lemma due to [41, Theorem 4.1] or [46, Lemma 3.14]
for the resolution of d3-equations.

Lemma 3.12 Let (X, w) be a compact Hermitian complex manifold with any suitable
pure-type complex differential forms x and y. Assume that the 90-equation

00x =y 34
admits a solution. Then an explicit solution of the 39-equation (3.4) can be chosen as
83)*Gpcy,

which uniquely minimizes the L2-norms of all the solutions with respect to .

@ Springer



Several Special Complex Structures 3013

Here G is the associated Green’s operator of the first 4-th order Kodaira—Spencer
operator (also often called Bott—Chern Laplacian) given by

Opgc =000 0* +0 9%90 +0 09°0 +9%00 0+ 0 + 9%9.
We need one more lemma inspired by [43, Lemma 3.1].

Lemma 3.13 Assume that a compact complex manifold X satisfies BPT14. Each
Dolbeault class [o 15 of the (p, q) type can be canonically represented by a uniquely
chosen d-closed (p, q)-form V.

Proof We first choose the unique harmonic representative of [o |3, still denoted by o
It is clear that the d-closed representative y, € A”9(X) satisfies

G+8/30=V0

for some B, € AP4~1(X). This is equivalent that some B, € AP971(X) solves the
following equation

998, = —do.

The existence of A, is assured by our assumption on X and uniqueness with L>-norm
minimum by Lemma 3.12, that is, one can choose S, as —(99)*Gpcdo. O

Proposition 3.14 Assume that X satisfies B ™19 and SP-4+1. Then for each Dol-
beault class in HE9 (X ) with the unique canonical d-closed representative o given
as Lemma 3.13, there exists a power series on X

o
oy =00+ Z tkl‘jak]? € AP1(Xy),
k=1

such that o; varies smoothly on t and ¢'v'% (0,) € AP9(X,) is 9;-closed with respect
to the holomorphic structure on X;.

Proof The construction of o, is presented at first. The canonical choice of the represen-
tative for the initial Dolbeault cohomology class is guaranteed by the assumption that
X satisfies B”+1-9, which implies that 37+1-4 holds, and Lemma 3.13. By Proposition
2.13, the desired 3,-closedness is equivalent to the resolution of the equation

([0, iy] + ) (1 — gp)do, = 0. (3.5)
Set ; = (1 — @) do; and we just need to resolve the system of equations

8(~I; == O,

- 3.6
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An iteration method, developed in [33,34,46,47,52,53,63,64], will be applied to
resolve this system. Let

oo
o; =00 + Zgjtj
j=1

be a power series of (p, ¢)-forms on X(. By substituting this power series into (3.6)
and comparing the coefficients of X, we turn to resolving
doy =0,
35, = —9 (Zj.‘:l goiJak_i) ., foreach k > 1, (.7)
dox =0, for each k > 1.
Notice that 59 = o( and thus doy = 0 by the choice of the canonical d-closed
representative for the initial Dolbeault class in HZ 9 (Xy).

As for the second equation of (3.7), we may assume that o;, satisfying do; = 0,
has been resolved for 0 < i < k — 1, and then check

k
53 (Z <piﬁk,-> =0.

i=1

In fact, by the integrability (2.24) and the commutator formula (2.2), one has

1k
=032

k k—i
+ @10 (@i—j10k—i) + wi—jJa(wjﬁk—i)) — > i (Z(ﬂngk—i—j>
i=1 =1

k k=i
=0 > @i i) = DD ¢iad(pjBh—i—j)
1<j<i<k i=1 j=1

=0.
(3.8)
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Hence, one can obtain a canonical solution

k
O'k1 = —5*(@53 (Z (pi_lgk_l')

i=1

by the assumption that X satisfies S?"9*! and the useful fact that El Gyy is the unique
solution, minimizing the L%-norms of all the solutions, of the equation

Ix =y

on a compact complex manifold if the equation admits one, where x, y are pure-type
complex differential forms and the operator Gz denotes the corresponding Green’s
operator of the d-Laplacian [J.

To fulfill the third equation 35} = 0, we try to find some (?Z e AP971(Xy) such
that ~ o~
0 (o} +7907) =0, (3.9)

Then the solution 6} can be set as
ox = akl + 50,3,

which satisfies both the second and the third equation of (3.7). At this moment, the
assumption B”*1-7 on X and Lemma 3.13 will also provide us a solution of (3.9)

~

o = —(93)"Gpciay.,

which yields

k k
Ox = —5*(@53 (Z (pi_lgki) +5(85)*63085*Gga (Z goi_tgk,) .

i=1 i=1

Finally we resort to the elliptic estimates for the regularity of &, which is quite
analogous to that in [46, Theorems 2.12 and 3.11]. So we just sketch this argument,
which is divided into two steps:

@ 12726t ke < A®);
(ii) oy is a real analytic family of (p, g)-formsinz .

Here are explicit details for the first step (i). Consider an important power series in
deformation theory of complex structures

B " K,
Am_@ﬂ; — = Ant", (3.10)
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where 8, y are positive constants to be determined. The power series (3.10) converges
for |t| < % and has a nice property:

i—1
Al < (g) A(D).

See [37, Lemma 3.6 and its Corollary in Chapter 2] for these basic facts. We use the
following notation: For the series with real positive coefficients

o0 o0
a(t)y =Y ant™, b(t)=)_ but",
m=1

m=1

say that a(t) dominates b(t), written as b(t) < a(t), if b, < a,,. But for a power
series of (bundle-valued) complex differential forms

[e¢)
Nty =Y nmt".
m=0

the notation
In@®llka K A®)
means
I1mllk,e < Am

with the CK®-norm || - llk.o as defined on [37, Page 159]. Recall that the canonical
family of Beltrami differentials ¢(¢) satisfies a nice convergence property:

lo@ ke K A1)

as given in the proof of [37, Proposition 2.4 in Chapter 4]. We need three more a priori
elliptic estimates as follows. For any complex differential form ¢,

—k
19" @lli-1.0 = Cill@llk,s
G501k < Crall@lik-2.0

where k > 1, C; and Ci  depend only on k and o, not on ¢, as shown in [37,
Proposition 2.3 in Chapter 4], and

IGecdlke = CrallPlli—4.a,

where k£ > 3 and Cy  depends on only on k and «, not on ¢, as shown in [27,
Appendix.Theorem 7.4] for example. Based on these, an inductive argument implies
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l
Za‘jﬂ' < A1)
j=1 k,a

for any large / > 0 and each k > 3. Then (i) follows.

We proceed to (ii) since there is possibly no uniform lower bound for the con-
vergence radius obtained in the C¥*-norm as k converges to 4+oc. Applying the
9-Laplacian (0 =03"9 + 00 to

&, = —0 G390 (95,) + 9(30)*Gpcdd Gzd (95,) + 0o

and the proof of [27, Appendix.Theorem 2.3] or [46, Proposition 3.15], one proves the
following result. Foreach/ = 1, 2, .. ., choose a smooth function nl (¢) with values in
(0, 1]:

S = |1 forl = G+ 5
0, for |t = (5 + 3)r

where r is a positive constant to be determined. Inductively, for any / = 1,2, ...,

n2*15, is k@ where r can be chosen independently of /. Since n**1(z) is iden-

tically equal to 1 on |t| < 5 which is independent of /, o; is C* on X with |¢| < 5.

Then 6; can be considered as a real analytic family of (p, g)-forms in ¢ and thus it is
smooth on ¢. o

In the first version [47] of this paper, we resort to J. Wavrik’s work [57, Sect. 3] for
the above regularity.
To guarantee (2), it suffices to prove:

Proposition 3.15 If the 3-extension of ng “1(X¢) as in Proposition 3.14 holds for a
complex manifold X, then the deformation invariance of hg’q_l (X;) assures that the
1

extension map

HI (Xo) — HI(X)) : [oolg > (€% (o)1

is injective.
Proof Let us fix a family of smoothly varying Hermitian metrics {w;};ea, for the
infinitesimal deformationw : X — A of X¢. Thus, if the Hodge numbers hg’q_l (Xy)

are deformation invariant, the Green’s operator Gy, acting on the AP9 -1 (X;), depends
differentiably with respect to ¢ from [28, Theorem 7] by Kodaira and Spencer. Using
this, one ensures that this extension map cannot send a non-zero class in ng 4 (Xp) to

a zero class in Haf"q(X,).
t
If we suppose that

050 (01) = Do

for some n; € AP4=1(X,)whent € A, \ {0}, the Hodge decomposition of 9, and the
P . k - .
commutativity of G; with 9, and 9, yield that
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OlSw (0,) = 3,m0 = 9, (H; (o) + 3,Gymy)
= st @jthﬂ?t)
= 3,G, (8, 9,ny)
= 0:G, (3; "0 (1)),

where H, and [, are the harmonic projectors and the Laplace operators with respect
to (X;, wy), respectively. Let ¢ converge to 0 on both sides of the equality

05w (o) = 3,6, (9 €010 (7)),

which turns out that o is 9-exact on the central fiber X. Here we use that the Green’s
operator G, depends differentiably with respect to ¢. O

Example 3.16 (The case ¢ = n). The deformation invariance for hg’"(X ¢) can be

obtained from the one for hg’"_l (Xy).
t

Proof Actually, it is easy to see that ei"’(’)lim(o) € AP"(X,) for any o € AP"(Xy).
By the consideration of types, the equality

3,050 (6)) = 0 3.11)

trivially holds, without the necessity of the choice of a canonical d-closed representa-
tive or solving the Eq. (3.11) as in Proposition 3.14. And thus, from Proposition 3.15,
the extension map

HI"(Xo) — HP™(X)) : (o7 = [€9V%(0)]5
is injective. We can also revisit this example by [27, Formula (7.74)]

hy(Xp) + 07 (1) + 0T (1) = k(X

where v4(¢) is the number of eigenvalues 07 (¢) for the canonical base ft‘j of eigenforms
of the Laplacian []; = 5,5;k + 5?51 less than some fixed positive constant. Notice that
v"*1() = 0. For more details see [27, Sect. 7.2.(c)]. O

Proposition 3.15 and Example 3.16 are indeed inspired by Nakamura’s work [38,
Theorem 2], which asserts that all plurigenera are not necessarily invariant under
infinitesimal deformations, particularly for the Hodge number hg’o and thus h%”, while

the obstruction Eq. (3.11) for extending 9,-closed (0, n)-forms is un-obstructed. This
example actually tells us that deformation invariance of h%" relies on the one of h%" -1

Proposition 3.17 Ifhg’q'|rl (Xo) = 0 and the deformation invariance of hg’q_l(X,)

holds, then hg’q (X;) are deformation invariant.
t
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Proof With the notations in the proof of Proposition 3.14, we can resolve Eq. (3.5)
directly, which is equivalent to the following equation:

k k
oy = —9 (Z (pi_lO'k_i> + Z(puaak_i for each k > 1, (3.12)

i=1 i=1

by use of the assumption that prat! (Xo) = 0. Also interestingly notice that we are
not able to deal with this case by the system (3.7) of equations. Set

k k

T = —0 (Z QﬂiJUk—i) + ) gisdor i,
i=1 i=1
k

Nk = —0 (Z (/),'_lak_,'> .
i=1

When k£ = 1, we have
97 = 5( — d(p100) + (01J80'())

= 3(5(01_100 + 901_:500) + §g01_|30() + (legado
=0,

since d¢; = 0 and dog = 0. The assumption hg’qH(Xo) = 0 implies that the
equation

501 =71
has a solution o7.

Assume that the Eq. (3.12) is solved for all k < [. Based on the assumption
hg’qH (Xp) = 0, the equation

0014+1 = T+1
will have a solution o7, 1, after we verify
51’14_1 =0.

Hence, we check it as follows, by use of the calculation (3.8), which implies that

| i 141 141
I =0 | =5 ZZ¢jJ((ﬂi—jJaUl+l—i) + Z Z @i (@ 1001 41-i— )
i=1 j=1 i=1 j=I1
I4+1 141

=0 EZ > piagjadorgi-i-j) |

i=1 j=1
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in this case. Then it follows that

[+1 I+1

0741 = Onr+1 + Z 0¢; 100741 — Z%J3301+1—i
i=1 i=1
41 I+1—i I+1 i—1

=0 %Z Z @i (9100714 1-i—j) +ZZ%[‘/’jv(/’i—j]JaUl+l—i

i=1 j=1 i=1 j=1

I+1 I+1—i I+1—i
+Z(/)i—'3 3( Z (PjJ0l+1—i—j> - Z ®j100]41—i—j
i=1 j=1 j=1

I+1 [+1—i

1
=0 EZ > is(gjdorpi—i-j)

i=1 j=l1
I+1 i1

1
+ 23 5( = 900 s010)
i=1j=1
+@j0 (‘/’i—j—laUl—H—i) + §0i—jJ8((Pj—'801+l—i))

I+1 I4+1—i
—Z Z §0iJa<¢jJaal+l—i—j>

i=1 j=1
=0.

Therefore, we can also resolve the Eq. (3.12) and extend d-closed (p, g)-forms un-
obstructed under the assumption that hg’qﬂ (Xo) = 0. ]

3.3 Proofs of the Invariance of Hodge Numbers /7 O(x t)s h%4 (X¢): special cases

This subsection is devoted to the deformation invariance of (p, 0) and (0, g)-Hodge
numbers as two special cases of Theorem 3.1.
Theorem 3.6 can be restated by use of Notation 3.5 as follows:

Theorem 3.18 If the central fiber X satisfies both SPT1-0 and SP-1, then hg’O(X,)
t
are independent of t.

According to the philosophy described in Sect. 3.1, Theorem 3.18 amounts to:

Proposition 3.19 Assume that X satisfies SPT10 and SP-1. Then for any holomorphic
(p, 0)-form og on X, there exits a power series

0
o; = 0o + Ztkak € AP’O(X()),
k=1
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such that oy varies smoothly on t and ele) (a;) € APO(X,) is holomorphic with respect
to the holomorphic structure on X;.

Proof With the notations in the proof of Proposition 3.14, we just present the con-
struction of oy since the regularization argument is quite similar. Obviously, under the
assumption SP*1-0 on X, the holomorphic (p, 0)-form oy is actually d-closed. By
Proposition 2.13 and type-consideration, the desired holomorphicity is equivalent to
the resolution of the equation

(18, ip] + ) (1 — @) do; = ([9,iy] + d)o; = 0. (3.13)
Let
m .
oy = 0o + Zajt]
j=1

be a power series of (p, 0)-forms on Xg.
We will also resolve (3.13) by an iteration method. It suffices to consider the system
of equations

500 =0,
For = —9 (Zf;l goiﬂk_,-) ., foreach k > 1, (3.14)
dor =0, for each k > 0,

after the comparison of the coefficients of r¥.
As for the second equation of (3.14), we may also assume that, fori =0, ..., k—1,
o0; with 907 = 0 has been resolved, and then check

k
53 (Z (01‘_101([) =0
i=1
as reasoned in (3.8). The assumption S”! enables us to obtain a canonical solution
k
ox = —8*(}58 (Z go,qakl) .
i=1

Meanwhile, the third equation dox = 0 holds, due to the assumption SP+L.0 and the
equality

k
d3doy = 99 (Z (piJO'k_i> =0.

i=1

O
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Corollary 3.20 (The case of (p, g) = (1,0)). If the central fiber X satisfies both
S20 and 81, then h%’O(Xt) are independent of t.
t

Proof From Theorem 3.18, h%’O(X ;) are independent of # when X satisfies S20 and

S-1. The condition S"! can be replaced by a weaker one S'!.
A close observation to (3.8) and the fact that o; are all of the special type (1, 0)
show that

k I+1i-1

_ 1

9 <Z (PiJUk—i) =5 ZZ ( — () @i—ja0141-1)) — @ (@i j 20O 41-i)
i=1

i=1 j=1

+ @ 10(pi—j10141-i) + wi—jﬁ(%ﬁm—i))

I+1 I+1—i
- 2%43 < Z QjI01+1—i—j
i=1 j=1

I4+1 141
= > @@ jaor-) — Y Y @iad(@ja0r1-i-j)
I<j<i<i+] i=1 j=1

=0

for k > 1, by the induction method. Hence, it suffices to use the condition S Ll to
solve the second one of the system (3.14) of equations. O

Actually, by Example 3.16, we can get a more general result that the deformation
invariance for 4”0 of an n-dimensional compact complex manifold X can be obtained
from the one for h7>!.

Corollary 3.21 (The case (p,q) = (n — 1,0) or (n,0)). For p = n — 1 or n, the
condition SP°' on X assures the deformation invariance of hg’O(X )

Proof Analogously to Kodaira [26, Theorem 1] or [38, Lemma 1.2] that any holo-
morphic (n — 1)-form on an n-dimensional compact complex manifold is d-closed,
one is able to prove that any d-closed d-exact (n, 0)-form is zero. Hence, any compact
complex manifold X satisfies S and thus this corollary is proved by Theorem 3.18.

O

One restates Theorem 3.7 by use of Notation 3.5:
Theorem 3.22 If the central fiber X satisfies B9 with the deformation invariance
thg,q—l (X;) established, then hg’q (X;) are independent of t.
t t
For Theorem 3.22, it suffices to prove:
Proposition 3.23 Assume that X satisfies B'4. Then for each Dolbeault class in
Hg’q (Xo) with the unique canonical d-closed representative oq given as Lemma 3.13,

there exists o; € A%(X) varying smoothly on t and €7 (o) € A% (X,) is 9;-closed
with respect to the holomorphic structure on X;.
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Proof We just need to present the construction of o;. By Proposition 2.13 and type-
consideration, the desired d,-closedness is equivalent to the resolution of the equation

(19, ig] + D) (L — g9) do; = (1 — Pg)or) — 913 ((L — g9) do1) = 0.

Therefore, it suffices to take o; = (1 — @)~ Jop. O

Corollary 3.24 All the Hodge numbers on a compact complex surface X are defor-
mation invariant.

Proof From these standard results in [6, Sect. 1V.2], the 99-lemma holds on X for
weight 2, and thus the Hodge numbers 210 (X,), h%1(X,) of the small deformation of X
is independent of ¢ by Corollary 3.20 and Remark 3.8, respectively. The deformation
invariance of the remaining Hodge numbers is obtained by Serre duality and the
deformation invariance of the Euler—Poincaré characteristic (see, for example, [28,
Theorem 141]). O

4 The Gauduchon Cone Gy

In this section we will study the Gauduchon cone and its relation with the balanced
one, to explore the deformation properties of an sGG manifold proposed by Popovici
[41].

Let us first recall some notations. Aeppli cohomology groups H /f (X, C) and Bott—
Chern cohomology groups Hé”cq (X, C) are defined on any compact complex manifold
X, even on non-compact ones (cf. for instance, [3,41]). Accordingly, the real Aeppli
cohomology group H/f’p(X, R) is defined by

{ag-closed smooth real (p, p)—forms]

HYP(X,R) == — :
{87] + an ] n is a smooth complex-valued (p — 1, p)-forms}

And the real Bott—Chern cohomology group Hé”cp (X, R) is given by

{d-closed smooth real (p, p)-forms}

HLP (X, R) = - )
{«/—1887] | nisasmoothreal (p — 1, p — l)-forms}

Also, similar types of currents can represent Aeppli classes or Bott—Chern ones. By [48,
Lemme 2.5] or [41, Theorem 2.1.(iii)], a canonical non-degenerate duality between
Hy """P(X,C) and HY (X, C) is given by

H 7" P(X,C) x HE (X, C) — C
([Q]A, [a)]BC) — fXQ/\a).

The pairing (e, @), restricted to real cohomology groups, also becomes the duality
between the two corresponding groups.
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The Gauduchon cone Gy is defined by

Gx = {[Q]A € Hz_l’n_l (X,R) | Qis a d9-closed positive (n — 1, n — 1)-f0rm} ,

where w = SZﬁ is called a Gauduchon metric. It is a known fact in linear algebra,
by Michelsohn [36, the part after Lemma 4.8], that for every positive (n — 1, n — 1)-
form I" on X, there exists a unique positive (1, 1)-form y such that y”’l =TI". Thus,

the symbol SZﬁ makes sense. Gauduchon metric exists on any compact complex
manifold; thanks to Gauduchon’s work [23]. Hence, the Gauduchon cone Gy is never
empty. Similarly, the Kéhler cone Kx and the balanced cone By are defined as

Kx = {[@]se € Hgd (X. R) | @is a d-closed positive (1, 1)-form|

By = {[Q]BC € HSEI’"_I(X, R) ‘ Q is a d-closed positive (n — 1, n — l)-form] ,

1. .
where Q7T is called a balanced metric. And the three cones are open convex cones

(cf. [41, Observation 5.2] for the Gauduchon cone).
The numerically effective (shortly nef) cone, can be defined as

[[w]BC e Hébl(X, R)‘Ve > 0,3 a smooth real (1, 1)-form are € [“’]BC’ such that ae > —ecT)} ,

where @ is a fixed Hermitian metric on the compact complex manifold X. And the nef

cone is a closed convex cone by [15, Proposition 6.1]. When X is Kéhler, the nef cone
is the closure of the Kihler cone Kx. Thus, we will use the symbol Kx for the nef
cone in any situation. Similar definitions adapt to EX and CX, which are also closed
convex cones. There are many studies, such as [9,15-17,22,41,45,58] on these cones
and their relations.

Definition 4.1 Degenerate cones.

We say that the Gauduchon cone Gx degenerates when Gy = HX_I’"_I(X ,R),
which comes from [41, Sect. 5]. Similarly, the balanced cone By degenerates if the
equality Bx = Hjj "' (X, R) holds.

4.1 The Kahler Case of Gx
We will consider various cones on Kihler manifolds at first. Thus, let X be a compact
Kihler manifold.

Lemma 4.2 The Gauduchon cone Gx does not degenerate on the compact Kdhler

manifold X. Moreover, Gx lies in one open half semi-space determined by some linear
. . . n—1,n—1

subspace of codimension one in H, (X, R).

Proof X carries a Kihler metric wx. Then [w X]BC lives in the Kihler cone Ky, which
cannot be the zero class of H];’Cl (X, R). This implies that

dimg Hy "X, R) = dimg Hy (X, R) > 1.
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Thus, the Gauduchon cone Gy is a non-empty open cone in a vector space with the
dimension at least one, which implies that Gy must contain a non-zero class.

Meanwhile, the Gauduchon Gy cannot degenerate. If Gy degenerates, i.e., 0 €
Gy = HZ_I’"_I(X, R), X carries a Hermitian metric @ such that @"~! is the type

of 8y + 8V, where ¥ is a smooth (n — 1,n — 2)-form on X. It is easy to check
that @" 1 A wyx 1s d-exact but f X " A wyx > 0, where a contradiction emerges.
As an easy consequence of this, the Gauduchon cone Gx cannot contain the origin of
n—1,n—1
H, (X, R).
It is easy to see that the Kéhler class [w X]BC determines one open half semi-space
. —1,n—1 .
Hf in Hy™ "7 (X, R) given by

H/ = {[Q]A € HZ*l,nJ(X, R) ‘ / QAwx > o},
X

which is clearly cut out by the linear subspace of codimension one
H,, = {[Q]A e | [ @ = o}.
X

And the Gauduchon cone Gy obviously lies in H:gx. Hence the lemma is proved. O

Remark 4.3 1t is well known that neither the Kihler cone Kx nor the balanced cone
Bx degenerates on the Kihler manifold X .

It is known that the quotient topology of Bott—Chern groups induced by the Fréchet
topology of smooth forms or the weak topology of currents is Hausdorff (cf. [15, the
part before Definition 1.3]). And every Hausdorff finite-dimensional topological real
vector space is isomorphic to R” with the Euclidean topology. Then it is harmless
to fix an inner product (e, e) on the real vector space H];’Cl (X, R), which induces

the given topology on Hpe (X, R). The space Hy "~ ' (X, R) can be viewed as the
vector space of continuous linear functionals on (Hé’cl (X, R), (e, o)). By the finite-

dimensional case of Riesz representation theorem, there is a canonical isomorphism
from Hg_l’”_l(X, R) to Hé’cl (X, R) with [Q]A to [CUQ]BC. That is, for any [Q]A €
HX_I’"_I(X, IR), there exists a unique [C!)Q]BC € Hé’cl (X, R), such that

([Q]A’ [“’]Bc) = <[“’]Bc’ [“’Q]Bc>

for any [w], € Hé’cl (X, R). Thus, this isomorphism enables us to define the dual
inner product on H Xﬁl’" ~1(X, R) by the equality

([2]5 [22]4) = ([le]BC’ [wQZ]BC>'

Let {[wi]BC};"Zl be an orthonormal basis of H];‘Cl (X, R). Then, {[Qwi]A}:n:l, the

. . m . . . .
inverse image of {[a)i]BC}i_l under the above canonical isomorphism, is also an
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m

orthonormal one of H/’i*l’"fl (X, R) under the dual metric. And {[; |gcr [Qar ] 5 }l.:l

become dual bases with respect to (e, e).

Definition 4.4 The open circular cone C(v, ).

Let (VR, (o, o)) be areal vector space Vg, which equips with an inner product (e, ).
Denote the induced norm by || e ||. The open circular cone C(v, 6) is determined by a
non-zero vector v in Vg and an angle 6 € [0, %], given by

Cv,0) = {w e Vg \O ‘ (. v) > cos@} .
lwlliv]
And 26 is called the cone angle. It is clear that the cone C(v, ) does not change if v
is replaced by any vector in R>%v.

As stated in the proof of Lemma 4.2, the Gauduchon cone Gx must contain a
non-zero class. Let us fix a non-zero class [Qo] A€ gx.

Proposition 4.5 On a compact Kiihler manifold X, there exists a small angle 6 €
(0, %) such that

C([20),.0) < Gx = C([Run)y 5 - 6).

where the class [wa]A in Hﬁ_l’"_l (X, R) denotes the inverse image of the Kdahler

class [a)X] ¢ under the canonical isomorphism discussed before Definition 4.4.

B

Proof Since [Qo] A is a non-zero class of Gy, there exists a neighborhood of [Qo] A’
belonging to Gy, namely,

[[2], e i xR [[2], - [0],] < €] < 9x

for some € > 0. Since Gy is an open convex cone, the inclusion follows

. €
C([QO]A, arcsin m) g gX.
Similarly, there exists € > 0, such that
. €
C([wx]BC, arcsin Tfoxlnc “) C Ky.

It is easy to see that

gx € ﬂ HY,

[w]Bcec([wX]Bcﬁo)
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é

. From the discussion before Definition 4.4,
[wx]Bc ”

where 0y can be chosen as arcsin ”

we know that

[wlBceC ([wX]Bcﬂo)

Let the angle 6 be

min ( arcsin ; arcsinL .
( 12014 lloxIsc| )

]

As in [41, Sect. 5], if the finite-dimensional vector space HX_I’"_I(X ,R) of a
compact complex manifold X is endowed with the unique norm-induced topology,
the closure of the Gauduchon cone in HX_I’"_l (X, R) is defined by

Gx = {a € HX_I’"_I(X, R) | Ve > 0,3 smooth Q, € «, such that Q¢ > —EQ] ,
4.1
where > 0 is a fixed smooth (n — 1, n — 1)-form on X with 992 = 0. This cone
is convex and closed, which is shown in [15, Proposition 6.1.(1)].

Corollary 4.6 The closure of the Gauduchon cone G x on the Kéhler manifold X must
lie in some closed circular cone with the cone angle smaller than m, for example, the

closure ofC([QwX]A, 7 - 5)

In a similar manner, we can also show that the Kéhler cone x on a Kidhler man-
ifold X must lie in some open circular cone with the cone angle smaller than 7 in

1,1
Hge (X, R).

The following definition is inspired by [41, Observation 5.7 and Question 5.9].
Definition 4.7 (A)" and (A)™

Let A be a convex cone in a finite-dimensional vector space Wg, whose dual vector
space is denoted by Wy.

(1) (A)" denotes the set of linear functions in Wy, evaluating positively on A;
2) (A)V” denotes the set of linear functionals in W, evaluating non-negatively on A.

Let P and Q be two closed convex cones in the Wg and Wy, respectively. We say that
P and Q are dual cones, if P = (Q)' and Q = (P)™.

The pseudo-effective cone Ex, the set of classes in Hé’CI(X , R) represented by
d-closed positive (1, 1)-currents, is a closed convex cone when X is any compact
complex manifold (cf. [15, Proposition 6.1]). The big cone £5, an open convex cone
in HBI“Cl (X, R), is defined to be the interior of the pseudo-effective cone Ex when X is
Kihler, in which classes are represented by Kihler (1, 1)-currents (cf. [17, Definition
1.6]).
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Theorem 4.8 For a compact Kdahler manifold X,
Gx\ [O]A < (5;)%
and thus Gy ; (5;’()%.

Proof Ttis clear that each class in Gy \ [O] A evaluates non-negatively on the big cone
&Y. Suppose that some class [Q] A In Gx \ [0] 4 does not evaluate positively on £,
i.e., there exists a class [T ()], € £y, with T () a Kihler current, such that

/Q/\T(Q):O.
X

Then note that the big cone £ actually lies in the closed half semi-space Hg (UHgq
of Hé’cl (X, R) with [T(Q)]BC attached to the linear subspace Hg. But a small neigh-
borhood of [T(Q)]BC will run out of the closed half semi-space Hg (JHg into the

other open half Hg,. Meanwhile, the neighborhood is still contained in £2, since the
big cone &5 is an open convex cone. This contradiction tells us that each class in

Gx \ [0],, evaluates positively on £5. Hence, we have
Gx \[0], € (&3)™.
Itis clear that Gy C (£3)"”. Now suppose that (£3)" = Gx. Then
Gx \[0], € (&%) = Gx
follows directly, which is equivalent to the equality
gx =ax | J[0],-

Hence, the hyperplane H,,, (1) in HZ_I’"_I (X, R), defined by
H,, (1) = {[Q]A e Hy "X, R) ‘ / QAwx = 1} ,
X

has the same intersection with Gy and Gy. This implies that the intersection
Gx [ Hoy (1) is both open and closed on the hyperplane H,,, (1), which is clearly
connected. Then, we get Gx (| Hy, (1) = Hy,, (1), which leads to the inclusion

Hoy (1) € Ox.

Hence, the open half semi-space HL{ is contained in the Gauduchon cone Gy.
However, from the proof of Proposition 4.5, we know that Gy actually lies in
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C([wa] A % — 5), which is strictly contained in ng. Here is a contradiction. So
Ox G (€%)" =

Remark 4.9 Tt is shown that Gy \ [0], = (€y)"* in Remark 4.12.

4.2 The Relation Between Balanced Cone By and Gauduchon Cone Gy

There exists a pair of diagrams (D, D) on a compact Kihler manifold X as follows,
which is inspired by Fu—Xiao’s work [22]. The diagrams D reads

Bx —> [@" pc w"_l]A )

\/ N

[w]BC

and the diagram D follows,

Gx  lo" e [0 ], -

N A \

Kx [w]Bc

The former consists of three mappings among Kihler cone [y, balanced cone By,
and Gauduchon cone Gx. And the latter is actually the extension of the former to the
closures of respective cones. It is easy to see that all the mappings are well-defined
and both diagrams are commutative. The mappings (I, D), (J,J), and (K, K) are the
restrictions of three natural maps .#, ¢, and ¢, respectively, which are independent
of the Kéhlerness of X. The three mappings are given as follows:

F . Hpgp(X,R) — HA™" ll(X, R)
[ ]JFC o o ]BC’

FHE N XGR) —» HEVNXGR)
[Q]BC = I[Q]‘A’

H: Hege(X,R) — HI " H(X,R)

[@]ac SO (Cha I
Moreover, when X is a complex manifold satisfying d9-lemma, the mapping Fisan
isomorphism and thus the mappings (J, J) are injective.

By [22, Proposition 1.1 and Theorem 1.2], the mapping I is injective. Meanwhile,
I, restricted to the intersection of the nef cone and the big cone Ky () £2, is also
injective. This is true, even when X is in the Fujiki class C (i.e., the class of compact
complex manifolds bimeromorphic Kahler manifolds), see [22, Corollary 2.7]. The
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existence of classes in I(3Kx) () Bx implies that the mapping I is not surjective. In
fact, the class [&)]BC € 0Ky, mapped into the balanced cone By, necessarily lies

in the big cone £9, by [22, Theorem 1.3]. Thus, the class ﬁ([d)]BC) in By cannot
be mapped by a Kihler class, since I is injective on the intersection cone Kx () Ey.

Besides, Theorem 1.3 in [22] gives a precise description of L(0KNs) () Bx when X is
a projective Calabi—Yau manifold. The cone Kxs denotes the intersection Kx (| NSg,
where NS is the real Neron—Severi group of X.

Recall that [22, Lemma 3.3] states that a Bott—Chern class [Q]BC € Hyy Ln=lx R)
on a compact complex manifold X, lives in the balanced cone By if and only if

/QAT>0,
X

for every non-zero dd-closed positive (1, 1)-current 7. Similarly, one has

Lemma 4.10 Ler X be a compact complex manifold and Q a real 39-closed (n —
1,n — 1)-form on X. Then the class [SZ]A lives in Gy if and only if

/Q/\T>O,
X

for every non-zero d-closed positive (1, 1)-current T on X.

Proof We mainly follow the ideas of the proof of [22, Lemma 3.3]. The necessary part
is quite obvious. As to the sufficient part, let D’ ]}{51 be the set of real (1, 1)-currents
on X with the weak topology. Fix a Hermitian metric wy on X and apply the Hahn—
Banach separation theorem, which originates from Sullivan’s work [49]. See also in
[22, Lemma 3.3] and [41, Proposition 5.4].

Set

©1={Te©’1‘§1 ‘/Q/\T:OanddT:O},
X

®2={Te©’]§1‘/.w’)?(l/\TzlandeO}.
X

It is easy to see that D is a closed linear subspace of the locally convex space D’ IIR’I,

while D, is a compact convex one in ©’ ]}g’l. Since a d-closed positive (1, 1)-current
T, satisfying f x QAT = 0, has to be zero current from the assumption of the lemma,

DDy =0by f x w')’(_l AT = 1. Then there exists a continuous linear functional
on @/IE ! , denoted by 5 areal (n — 1, n — 1)-form, such that it vanishes on |, which
contains all real 99-exact (1, 1)-currents, and evaluates positively on ©,. Hence, Q

has to be a 39-closed positive (n — 1, n — 1)-form.
The following mapping
i {r ey |ar = o) - o)
T = [Tlge
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is a canonical projection. 7 (®1) is the null space determined by the linear functional
[SZ]A on H];’Cl (X, R), namely,

{[T] e Hid(x, R)‘/Q/\T—O}

n—1,n—1

since the class [ ] belongs to H (X, R), which can be seen as the dual space

of Hé’cl (X, R). The linear functional [S~2]  Vvanishes on the null space, which implies
[Q]A = a[Q]A for some a € R.

If there exists no non-zero d-closed positive (1, 1)-current on X, by [41, Proposition
5.4], the Gauduchon cone Gy will degenerate. Therefore, the class [Q] will surely
lie in Gy. Assume that there exists a non- zero ¢ d-closed positive (1, 1)-current 7.
Clearly, Ix QAT =a [x € A T. Moreover, € is positive on D5, which implies
Ix QAT > 0,and Jx 2 AT > 0 by the assumption of the lemma. Thus a > 0.
Therefore, [Q], = l[Q] with € a positive form, lives in Gx. |

The closure of the Gauduchon cone G x (cf. (4.1) and [41, the part before Proposition
5.8]) and the pseudo-effective cone Ex are closed convex cones when X is any compact
complex manifold. By the use of Lemma 4.10, we can get the so-called Lamari’s
duality. See [30, Lemma 3.3] and [45, the remark before Theorem 1.8 and the proof
of Theorem 5.9].

Proposition _4.11 Let X be a Compact complex manifold. Then Gx and Ex are dual
cones, i.e., (gx) ¢ =&y and (Ex) = gx

Proof Tt is clear that £x C (EX)V‘ and Gy C (SX)VC. Let [Q]A € (SX)V”, where Q
is a real 39-closed (n — 1, n — 1)-form. Fix one class [Qo] A€ Gx with Qg positive.
Obviously, for any fixed € > 0, the integral

/(Q+EQO)AT=/Q/\T+6/QO/\T>O,
X X X

where 7' is a non-zero d-closed positive (1, 1)-current. Hence, the class [SZ] At
€[€0], € Gx by Lemma 4.10. Therefore, the class [Q]
(€x)" =Gx.

Now, let [w]BC IS Hé’cl (X, R), which does not live in the pseudo-effective cone
Ex. The point [ ] and Ex are a compact convex subspace and a closed convex one,

A € Gx. which implies

respectively, in the locally convex space HBC (X, R). From Hahn-Banach separation

theorem, there exists a continuous linear functional, denoted by [Q] RE:! class in
HX Ln— 1(X , R), such that it evaluates non-negatively on £x and takes a negative
value on the point [w ] . Thus, the class [ IRG G, from the equality (£x)" = Gx.

And the inequality |, x SZ A o < 0 indicates the inclusion
Hy (X, R) \ Ex S Hye (X, R)\ (Gx)™,
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which implies that £x = (Gx)". o

Remark 4.12 Proposition 4.11 enhances the result in Theorem 4.8. In fact, any class in
H/’f:l’"*l (X, R) \ Gx must take a negative value on some class of £x, and evaluates
negatively on some class in the interior £ when X is Kahler. Thus, each class in

HX_I’"_I(X, R) \ Gx does not live in (S;’()V”. Therefore, Gy \ [O]A = (5§)V".

Recall that a compact complex manifold is balanced if it admits a balanced metric
and the closure of its balanced cone is defined similarly to the one of Gauduchon cone
4.1).

Proposition 4.13 For a compact balanced manifold X, the convex cone Ey5 C
H Al’l(X ,R), generated by Aeppli classes represented_by d9-closed positive (1, 1)-
currents, is closed. And when X also satisfies the d0-lemma, the following three
statements are equivalent:

(1) The mapping J : Bx — Gx is bijective.

(2) The mapping J : Bx — Gy is bijective.
(3) The mapping j : Ex — &y is bijective,

where the mapping j is the restriction of the natural isomorphism £ H];’Cl X,R) —»

H/l’] (X, R), induced by the identity map, to the pseudo-effective cone Ex.

Proof Fix a balanced metric wy on X. Let {[Tk]A}k€N+
Ey3, where Ty are 99-closed positive (1, 1)-currents. And the sequence converges to
an Aeppli class [a], in Hy' (X, R). Itis clear that

be a sequence in the cone

kEToo ; T A a)';(_l = /X(x A a)';(_l.
Thus, the sequence {Tk} ren+ 1s bounded in mass, and therefore weakly compact.
Denote the limit of a weakly convergent subsequence {Tki } by T. It is easy to check
that T is a 99-closed positive (1, 1)-current and [T]A = [a]A. Hence, [a]A IS 535,
which implies that the convex cone £,7 is closed.

It is obvious that the three mappings J, J, and j are injective, since # and .2 are
isomorphisms as long as the complex manifold X satisfies the dd-lemma.

(1) = (2) : We need to show that the inverse _# ~1 of the mapping _# maps the
closure EX into the one EX. To see this, let [\Il] A € ax- Denote the inverse image

j‘l([\ll]A) of [\IJ]A under the mapping _# by [Q]BC. For any € > 0,
/_l([‘l"]A + e[wi)l(_l]A) = [Q]BC + G[wl;(_l]BC € Bx,
since J is bijective and thus /—1(gx) C Byx. This implies that [Q]BC € Bx. Then

7 —1(Gx) C By, namely, the mapping 7 _1_: Gx — By is well-defined. Hence,
7 ~1 is the inverse of the mapping J and thus J is bijective.
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(2) = (3) : Gx and Ex are dual cones by Proposition 4.11. By and Ey7 are also
dual cones by [22, Lemma 3.3 and Remark 3.4]. Hence, the mapping j is bijective due
to the bijectivity of J.

(3) = (1) : It has to be shown that J is surjective. Let [Q]BC be a class in

Hic L=l (X, R), which is mapped into Gx by _#. Then there exists a dd-closed
positive (n — 1, n — 1)-form W and an (n — 2, n — 1)-form ®, such that

Q=W +90 +930.

Let T be any fixed non-zero dd-closed positive (1, 1)-current. From the bijectivity of
J, there exists a d-closed positive (1, 1)-current 7 and a (0, 1)-current S, such that

T=T+0S+05.
The current 7' cannot be zero current. If not, T =08 + 98, which implies that the

integral [ a)’;(_l AT will be larger than 0 and also equal to 0. This is a contradiction.
Hence,

/QAT=/QA(T+BS+®=/QArzf(qura@Jr%)AT
X X X X

= / VAT >0.
X
Therefore, the class [Q] BC lies in the balanced cone By by [22, Lemma 3.3] and thus
the mapping J is surjective. O

Definition 4.14 ([9, Definition 1.3.(ii)]). Movable cone M
Define the movable cone My C HSE Ln—1 (X, R) to be the closure of the convex
cone generated by classes of currents in the type

Wsc(@1 A -+ A @Dp—1)

where @ : X > Xisan arbitrary modification and @; are Kiahler forms on X for
1 < j <n—1.Here, X is an n-dimensional compact Kédhler manifold.

We restate a lemma hidden in [22, Appendix] and [56].

Lemma 4.15 Let X be a compact Kihler manifold. There exist the following inclu-
sions:

Ex € L7 (Ep S (Mx)™,
where £ _1(535) denotes the inverse image of the cone E,5 under the isomorphism

Z. Note that H];’C] (X, R) and H];’El‘”*1 (X, R) are dual vector spaces in the Kdhler
case.
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Proof Tt is clear that the mapping .Z is an isomorphism from Hé‘cl (X,R) to
H/i’l (X, R) and j is injective in the Kihler case. Thus, Ex € .£~!(£;3). Let [o]pc
be a class in the cone .2 ~! (&,43) with a a smooth representative, which implies that
[],, contains a 9d-closed positive (1, 1)-current T.

Tosee &£~ l(533) - (/\/lx) , we need to show that fx oz/\,u*(wl A AWp—1) >0
for arbitrary modification p : X — X and Kihler forms & ; j on X. Aresultin [2] states
that for arbitrary modification y : X — X and any 99-closed positive (1, 1)-current
T on X, there exists a unique d0-closed positive (1, 1)-current T’ on X such that
T’ = Tand T’ € nw ([ ]A) Here, we choose 7T to be the one in the Aeppli class
[ ] A Then, one has

/a/\u*@l/\~-~/\5n_1):/~/L*a/\c~ol/\~-~/\c~u,,_1
X X

='/;T//\51/\-~/\5n,1 >0,
X

where T’ and *a belong to the same Aeppli class on X. O

Corollary 4.16 ([44, Sect. 6]). If Conjecture 1.10 is assumed to hold true, then for a
complex manifold X in the Fujiki class C,

7 (Gx) =By (4.2)

and thus Conjecture 1.7 is true in this case.

Proof The argument is a bit different from that in [44, Sect. 6] (or [12, Sect. 2]) and
we claim no originality here. That X is balanced is obviously a result of (4.2) since
the Gauduchon cone of a compact complex manifold is never empty and ¢ is an
isomorphism from the 99-lemma. Now let us prove (4.2) under the assumption of
Conjecture 1.10. Without loss of generality, we can assume that X is Kihler and thus
this equality is a direct corollary of Lemma 4.15 and Proposition 4.13. O

Boucksom-Demailly—Paun—Peternell have proved in [9, Theorem 10.12, Corollary
10.13] that Conjecture 1.10 is true, when X is a compact hyperkihler manifold or a
compact Kihler manifold which is a limit by deformation of projective manifolds
with Picard number p = k', It follows that J is bijective in these two cases. The
qualitative part of Transcendental Morse Inequalities Conjecture for differences of
two nef classes [9, Conjecture 10.1.(i1)] has been proved by Popovici [42] and Xiao
[59]. And a partial answer to the quantitative part is given by [44], with the case of
nef T;’O obtained in [60, Proposition 3.2].

The following theorem may provide some evidence for the assertion of Question
1.8 whether the mapping J is bijective from the balanced cone By to the Gauduchon
cone Gy on the Kéhler manifold X.

Let us recall several important results from [10,62] on solving complex Monge—
Ampere equations on a compact Kéhler manifold X.
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Fix a Kihler metric wy, a nef and big class [« ], and a volume form 7 on X. By
Yau’s celebrated results in [62], for 0 < ¢ < 1, there exists_ a unique smooth function
uy, satisfying that supy u, = 0, such that o + rw + +/—199u, is a Kdhler metric and

(o + twx +v/—130u;)" = ¢,

where ¢; = W As in [10, Theorems B and C], when ¢ is equal to O, there
X

exists a unique a-psh u, satisfying that supy u# = 0, such that
<(a + \/—18514)”) =cn,
Jxe

where ¢ =
Jx

: and the bracket (-) denotes the non-pluripolar product of positive

currents. Moreover, # has minimal singularities and is smooth on Amp(«), which is a
Zariski open set on X and only depends on the class [a]BC.

These results above can be viewed in the following manner as stated in [22, the
part after Lemma 2.3]. The family of solutions u; is compact in L' (X)-topology. Then
there exists a sequence u,, such that

o+ oy + «/—185utk — o ++/—100u

in the sense of currents on X with #;z — 0. Meanwhile, u, is compactin C lo(i, (Amp(@)),
which means uniform convergence on any compact subset of Amp(«). Therefore, there
exists a subsequence of u;,, still denoted by u, , such that

o + troy + v/ —190u;, — a +/—133u

in the sense of Cﬁ(Amp(a)). Hence u is smooth on Amp(«) and o + —100u is a
Kéhler metric on Amp(«), since 7 is a volume form.

Theorem 4.17 Let X be a compact Kdhler manifold and [a]BC a nef class. Then
[a"‘l]A € Gy implies that [a"‘l]BC € By. Hence, 1(Kx) (\ Bx and K(Kx) N 6Gx
can be identified by the mapping J.

Proof Assume that [a"‘l] A belongs to Gy, where [a]BC is a nef class. From Lemma
4.10, for any non-zero d-closed positive (1, 1)-current 7', the integral f X a" AT > 0.
Since the nef cone Ky is contained in the pseudo-effective cone Ex, the nef class
[a]BC contains a d-closed positive (1, 1)-current S, which cannot be the zero current.
Otherwise, [0] A € Gx. which contradicts with Lemma 4.2. Then, the integral [y o =
fx a" L' A'S > 0, which implies that the class [a] is nef and big, by [17, Theorem
0.5].

Let Q be any fixed d9-closed positive (1, 1)-current on X. From the discussion
before this theorem, it is clear that the sequence of positive measures

BC

{(@ + frwx + V=190u,)" ™" A Q) o+
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has bounded mass, for example,

/ (a 4 trox + vV—100u,)" ' A Q < / (@+wx)" ' AO.
X X
Therefore, there exists a subsequence, still denoted by

{(@ + trwx + V/=190u,)" ™" A Q) s+

weakly convergent to a positive measure on X, denoted by w. It follows that

/uz/a"‘lAQ,
X X

since the equalities hold

/MZ lim /(a+tka)x+«/—185utk)"_l/\Q: lim [(a+tka)x)"_1AQ
X X k—+o00 Jx

k—+o00

=/a"_1AQ.
X

Note that

(@ ++v/—=100uw)"" ' A Q

Amp(er)

is a well-defined positive measure on Amp(«), since a + +/—19du is a Kihler metric
on Amp(«). Moreover, u is equal to

(@ ++v/—=100uw)"" " A Q

Amp(e)

on Amp(«). Actually, for any smooth function f with Supp(f) € Amp(«), one has

/Amp(a) fu=/xfu

= lim /f(a+tka)x+«/—18§utk)”_l/\Q
k—+00 Jx

= / fla+~=103uw)" "' A 0 (4.3)
X

- / fla+/=180u)"" ' A Q
Amp(a)

:/ f<(a+«/—18§u)”1/\Q’ )
Amp(a) Amp(a)
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where the equality (4.3) results from that the sequence f (¢ + frwx + =1 aﬁutk)"—l
converges to f (o + /—133u)"~" in the sense of smooth (n — 1, n — 1)-forms on X
due to the convergence result stated before this theorem, with all their supports always
contained in Amp(«).

It is obvious that the integral [y a"' A Q > 0 for [a]y. nef. Now suppose
that [y «"~! A QO = 0. Then we have [, u = [, @" ' A Q = 0. And p is equal
to (o 4+ +/—100u)" ' A Q\Amp(a) on Amp(e) with (a + ~/—133u)"~" a positive
(n — 1, n — 1)-form on Amp(«). Then Supp(Q) € X \ Amp(«), which is an analytic
subvariety V on X withdimV <n — 1.

Denote the irreducible components with dimension n — 1 of V by {V;}7_,. By [1,
Theorem 1.5] and [22, Lemma 3.5], there exist constants ¢; > 0 for 1 < i < m such
that

Q- alvil=0,

i=1

since V has no irreducible component of dimension larger than n — 1. And we have
f X a" VA [Vi] > 0, where [V;] are non-zero d-closed positive (1, 1)-currents for
1 <i < m. Then fX a1 A Q = 0 forces that the constants ¢; are all equal to 0,
namely Q a zero current. Hence, [a"‘l]BC € By from [22, Lemma 3.3].

It is clear that the restricted mapping J, from I(Kx) () Bx to K(Kx) () Gx, is
injective. And the proof above shows that it is also surjective. Hence the restricted
mapping J is bijective. O

We will describe the degeneration of balanced cones on compact complex mani-
folds, similar to the case of Gauduchon cones in [41, Proposition 5.4].

Lemma 4.18 Let X be a compact complex manifold. Then the balanced cone Bx
degenerates if and only if there exists no non-zero 99-closed positive (1, 1)-current T
on X.

Proof Assume that By = Hpc Lr=l(x R). In particular, there exists a Hermitian
metric @ on X, such that @"~! is 99-exact. If T is a non-zero d9d-closed positive
(1, 1)-current on X, the integral | X @"~ U AT has to be larger than 0 for the form &" !
being positive and simultaneously equal to zero as &" ! is d9-exact. This contradiction
leads to non-existence of such current 7.

Conversely, assume that there exists no non-zero 99-closed positive (1, 1)-current
T on X. Let ’D’I}él be the set of real (1, 1)-currents on X with the weak topology. Fix
a Hermitian metric wx on X. Then apply the Hahn—Banach separation theorem.

Let us set

9 ={reoy'|09T =0,

’Dz:{Te’D’IIR’I‘/w';(l/\TzlandTEO}.
X
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It is easy to see that D is a closed linear subspace of the locally convex space D’ 1’1,
while > is a compact convex one in ’D’]}Q’ ' And D1 () D2 = ¥ from the assumption.
Then there exists a continuous linear functional on ©’ ]}R’ 1, denoted by 2, areal (n —
1, n — 1)-form, such that it vanishes on ®; and evaluates positively on 2. Hence, Q2
has to be a dd-exact positive (n — 1, n — 1)-form. It follows that the class [Q]BC is
the zero class in Hé’g l’"_l(X , R), which also lives in the balanced cone By, which
implies that the balanced cone By degenerates. O

Remark 4.19 [41, Proposition 5.4] tells us the Gauduchon cone of a compact complex
manifold X degenerates if and only if there exists no non-zero d-closed positive (1, 1)-
current on X, and, together with Proposition 4.18, implies that the Gauduchon cone
of a compact balanced manifold will degenerate when its balanced cone does.

Question 4.20 Fu-Li—Yau [21] constructed a balanced threefold, which is a connected
sum of k-copies of S> x S> (k > 2) and whose balanced cone degenerates (cf. [22]).
Is it possible to find a balanced manifold such that its Gauduchon cone degenerates
while its balanced cone does not ?

4.3 Deformation Results Related with Gy

In this subsection, we will discuss several deformation results related with Gx in
Theorems 4.22 and 4.23.

Firstly, let us review Demailly’s regularization theorem [15], whose different ver-
sions have been used by various authors in the literature. Recall thatareal (1, 1)-current
T is said to be almost positive if T > y for some real smooth (1, 1)-form, and each d-
closed almost positive (1, 1)-current 7 on a compact complex manifold can be written
as @ ++/—190 f, where @ is a d-closed smooth (1, 1)-form with f almost plurisubhar-
monic (shortly almost psh) function (cf. [7, Sect. 2.1] and [17, Sect. 3]). We say that
a d-closed almost positive (1, 1)-current T has analytic (or algebraic) singularities
along the analytic subvariety Y, if f does, i.e., f can be locally written as

C
3 log(lg11> + 1g21* + - + len») + A,

where ¢ > 0 (orc € Q1), {g,-}f.v= | are local generators of the ideal sheaf of Y and £ is
some smooth function. It is clear that 7' is smooth outside the singularity Y. Then the
following formulation of Regularization Theorem will be applied:

Theorem 4.21 ([17, Theorem 3.2], [7, Theorem 2.4], [8, Theorem 2.1]). Let T =
0 + /=199 f be a d-closed almost positive (1, 1)-current on a compact complex
manifold X, satisfying that T > y for some real smooth (1, 1)-form. Then there exists
a sequence of functions fi with analytic singularities Yy converging to f, such that,

if we set Ty = 6 + /—190 fx, it follows that
(1) Ty weakly convergesto T.

2) Ty > y — €xw, where L lim | €; = 0 and w is some fixed Hermitian metric.
—+00
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(3) The Lelong numbers v(Ti, x) increase to v(T, x) uniformly with respecttox € X.
(4) The analytic singularities increase with respect to k, i.e., Yy C Yj41.

Denote the blow up of X along the singularity Y by py : Xi — X, and we will
see that uj (T}) still acquires the analytic singularity p.k_l(Yk), without irreducible
components of complex codimensions at least 2, for each k. According to [8, Sect. 2.5],
the Siu’s decomposition [51] for pj (T}) writes

Wi () = Re + Y wij [V, “4)
J

where I%k is a d-closed smooth (1, 1)-form, satisfying that Rk > “Z(V — W), ij
are irreducible components of complex codimension one of p,k_l (Yy) for all j, and vy;
are all positive numbers. It is obvious that the degree of  is equal to 1 for each k. It
follows that, after the push forward,

Tr = s (U5 (T0) = s (RO + > vii[ Vi ] 4.5)
J

which is exactly the Siu’s decomposition for 7. Here, ,uk*(lz’k) is a d-closed positive
(1, 1)-current, which is smooth outside irreducible components of complex codimen-
sion at least 2 of Y} and satisfies that Mk*(kk) > y — €xw. The symbols Yy stand for
the irreducible components of complex codimension one of Y, since the following
equalities hold

=1\ [ (Yi)],  when dim e (Yy) =n — 1;
“"*([Y"’D - I 0, when dim 11 (Vi;) < n — 1.

Meanwhile, Barlet’s theory [5] of cycle spaces comes into play and let us follow the
statements in Demailly—Paun’s paper [17, Sect. 5]. Let 7 : X — A, be a holomorphic
family of Kihler fibers of complex dimension n. Then there is a canonical holomorphic
projection

Ty i CP(X /A — A,

where C? (X /A¢) denotes the relative analytic cycle space of complex dimension p,
i.e., all cycles contained in the fibers of the family 7 : X — A.. And it is known that
the restriction of 7, to the connected components of C” (X /A,) are proper maps by
the Kéihler property of the fibers. Also, there is a cohomology class map, commuting
with the projection to A, defined by

tp: CP(X/A) — R P, (Zy)
V4 > [Z].
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which associates to every analytic cycle Z in X; its cohomology class [Z ] €
H*"=P)(X,, 7). Again by the Kihlerness, the mapping ¢ p 1 proper.

Denote the images in A, of those connected components of C?(X /A.) which
do not project onto A under the mapping 7, by (J S,, namely a countable union
of analytic subvarieties S, of A, from the properness of the mapping 7, restricted
to each component of CP(X/A¢) for 1 < p < n — 1 (cf. [17, proof of Theorem
0.8]). Clearly, each S, C A.. And thus, fort € A\ |J Sy, every irreducible analytic
subvariety of complex codimension n — p in X; can be extended into any other fiber
in the family 7 : X — A, with the invariance of its cohomology class.

Now, let us go back to the deformation of Gauduchon cone. An sGG manifold is
a compact complex manifold, satisfying that each Gauduchon metric on it is strongly
Gauduchon from the definition in [45, Lemma 1.2]. And the sGG property is open
under small holomorphic deformations from [45, the remark after Theorem 1.5]. Thus,
let us call the holomorphic family 7 : X — A, with the central fiber X being an sGG
manifold an sGG family. Moreover, Popovici and Ugarte proved that the following
inclusion holds

Gx, C lim Gy,
t—0

when the family = : X — A is an sGG family in [45, Definition 5.6, Theorem 5.7].
The definition of lil% Gx, is given by
11—

lim G, = {[Q]A e B (X, R) )P, o Qo([Q]A> € Gy, for sufficiently small z},
—
where the canonical mappings

P HY2(X,, R) — HI 7V (x,, R)

send the De Rham class [©] to the Aeppli class [©"~1"~!] represented by the
(n — 1, n — 1)-component of ® on X, and the mapping

Qo : Hy " (Xo, R) — HE (X, R),
depends on a fixed Hermitian metric wy on X according to [45, Definition 5.3]. By
[45, Proposition 5.1, Lemma 5.4], the canonical mappings P; are surjective and the
mapping Qg is injective, satisfying that

P() o Q() = idHX_]'n_I(X,R)'

The following theorem gives a bound from the other side.

Theorem 4.22 Let 7 : X — A¢ be a holomorphic family with a Kdhlerian central
fiber. Then we have

lim Gx, € Nx, foreach t € A,
=T
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where Nx_ is the convex cone generated by Aeppli classes of 9.9 -closed positive
(n — 1, n — 1)-currents on X,. Moreover, the following inclusion holds,

lim Gx,  Gx, foreach T € Ac\| JS,,
=T

where | J S, is explained above in this section.

Proof 1t is clear that we can assume that each fiber of the family w : X — A is
Kihler (apparently an sGG family) and {w;};ca, is a family of Kihler metrics of the
fibers, varying smoothly with respect to ¢, by use of the stability theorem of Kihler
structures [28], after shrinking the disk A..

Fort € A, let [Q] A be an element of th_r)r% Gx,, 2 its smooth representative, which

indicates
P, OQT([Q]A) S gX, for 0 < |t —1| < 5[9]A

by definition. Set the positive representative of P; 0 Q  ([2] ) as ;. It is obvious that
the following equality holds:

lim Qt/\a),:/ Q/\(,()-L—,
Xe

=T X;

since the integral just depends on the Aeppli class of €2;. This implies that
{Qido<ii—1i<sq),

have bounded mass, and thus the weak limit of a subsequence is a 9, 3, -closed positive
(n — 1, n — 1)-current, which lies in the Aeppli class [Q]A on X;. Hence, this shows

lim gxt - NXI.
—>1

As to the second inclusion, let us fix T € A \ | S,. Then the following integral
should be considered
f QAT,

where 7 is any fixed d-closed positive (1, 1)-current on X.. Apply Theorem 4.21 to
T and we have a sequence of currents 7 with analytic singularities, denoted by Yy,
such that T; always lies in the Bott-Chern class [T |, and T; > —érw,. From the
very definition of | J S, the singularity Yx on X, with possibly high codimensional
irreducible components, can be extended into the other fibers of the family 7 : X —
A, for each k. The extension of Y is denoted by )y, which is a relative analytic
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subvariety of the total space X of the family = : X — A. Blow up X" along Y, and
then we will obtain

)Ek LN N Ac.
The restriction of wy to the z-fiber is exactly the blow~up Wi (1) : X () > X;of X;

along Y (1), with the exceptional divisor denoted by Y (#), where Yi () = Vi N X;.
Then we can apply Equalities (4.4) and (4.5) to T:

/ Q/\T:/ QAT
X. X,

:/x QA @ (Re) + > vig[Yig] (4.6)
. j
= *Q) AR+ / A [Yij |
/Xk(r) (Mk(f) )A ' ;% X )

where I?k > —ep i (T)*we, Yy are irreducible components of complex codimension
one of Yy and v; are positive numbers for all j.
We claim the following two statements:

(D fi{k(f) (Mk(f)*Q) AR > —€ fXT QA wr;
@ fy, @A [¥g] 2 0.

For the statement (1), we consider that

/}_{k(r) (Mk(f)*ﬂ) A Ry

= [ (m@*Q) A (R + 260 () 0r
J.. . (mere)a( )

X

e /X B (1e*2) A (ux0)*wr)

_ / (Mk(f)*sz) A (zék + ZGkMk(r)*a),> - ZGk/ QA ;.
k(T) X:

X

It should be noted that px(7)*w; is a semi-positive (1, 1)-form on )~(k () for each k.
And thus, we can choose a sequence of positive numbers {Ax};cn+, converging to 0,
such that pg (t)*w; — Agug is positive for each k, where uy is some smooth form in the
Bott—Chern cohomology class of [f/k(r)] (cf. [17, Lemma 3.5]). Hence, the integral
above amounts to the following equalities:

/X . (@) n Ry

= / (Mk(f)*Q) A (Rk + 2€p pk (1) wr — Ek)»kuk>
Xy (1)
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+ ek)\k/: (Mk(r)*Q) A g — Zek/ QA w,
Xk (1) Xe

= / (Mk(f)*Q) A (Rk + 2¢€p pk (1) wr — Gk/\kuk>
Xk (7)

+ekkk/: (1@ @) A [T(@)] - 2ekf QA .

Xk(f) Xr
It is clear that
(Rk + 2€ex i (1) wr — Ek)»kuk> = (Rk + ék,uk(f)*wr) + €k (Mk(f)*wr - )\kuk)

is a Kahler metric on X «(7) for each k. Then it follows that

/~ (Mk(f)*ﬂ) A (ﬁk + 2¢eppp (1) wr — Ek)hkuk)
Xk (7)

=lim [ (@) A 20,
=T X]((t)

where @y (¢) is a family of Kéihler metrics on Xi (1), starting with

(ﬁk + 2¢€xpi (1) wr — 6k)»kuk)

and varying smoothly with respect to ¢, from the stability theorem of Kéhler structures
[28]. Moreover, the integral f %) (Mk (;)*Q,) A @ (t) only depends on the Aeppli

class of yu (1)*$2; and [ (1)*S2; ] , converges to [ i (7)*Q2], whent — <. Similarly,
we can get that

ek f (@) A@] =arlim | (@ @) A[fun] =0,
Xk (1) T

Xk (1)

where 17/( (t) is the extension of 17;( (1) to the ¢-fiber )?k (t) of the total space PEk. Based
on these two inequalities above, one has

/: (,lLk(‘L’)*Q) A Rk > —Gk/ QA wr.
Xi (1) Xz

Therefore, the statement (1) is proved.

For the statement (2), let us recall that every analytic irreducible subvariety of
complex codimension n — p in X can be extended into any other fiber in the family
T : X — A with the invariance of its cohomology class, from Barlet’s theory of
analytic cycle discussed above. Especially, the irreducible components Y ; of complex
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codimension one of Y; on X; can be extended to the ones Y;(¢) on the ¢-fiber X,
which are contained in Y (¢). Then it is easy to see that

[ @ntn]=tim [ @n[mo)=o

The statement (2) is also proved.
Together with these two statements and (4.6), it is clear that

/ Q/\Tz—ek/ QA wg,
X X

for each k. Then it follows that

/ QAT >0,
X

where T is any fixed d-closed positive (1, 1)-current on X, . Proposition 4.11 assures
the inclusion: for T € Ac \ J Sy,

lim Gx, € Gx,.
=T
O
Theorem 4.23 Let w1 : X — A¢ be a holomorphic family with fibers all Kdhler

manifolds. For some Tt € A, the fiber X, admits the equality KX, = Ex,. Then the
inclusion holds:

lim Gx, € Gx,.

—T
In particular, the fiber X; with nef holomorphic tangent bundle T;;O satisfies the
inclusion above.
Proof The condition KXT = &x, implies that, for any d-closed positive (1, 1)-current

T and arbitrary § > 0, there exists a smooth (1, 1)-form «g, which lies in the Bott—
Chern class [T]BC, such that
o5 z _(SCU-[,

where w; is the fixed Kihler metric of X;.
Fix an element [ ] » of tlim Gx,, which means that
—>T

P, OQT([Q]A> € QX, for 0 < |t —1| < 3[Q]A.
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Then for any d-closed positive (1, 1)-current 7T,

/ Q/\T:/ QA o

=/ QA(a5+25w,)—2a/ QA ;.
X X:

It is clear that «; + 21w, is a Kdhler metric on X, and thus, from the stability
theorem of Kéhler structures [28], there exists a family of Kéhler metrics &s(f) on X,
starting with o; + 28w, and varying smoothly with respect to ¢. It follows that

/ QA (oz,s +28w,) = lim/ Q ANag(t) =0,
X, =t Jx,

since the integral also depends on the Aeppli class of €2;, and €2; is the positive
representative in P; o Q; ([Q] A) for each t # 7. As § can be arbitrarily small, we
have

f QAT >0,
X:

which assures that [Q] A € Exr by Proposition 4.11. If a compact complex mani-
fold has nef holomorphic tangent bundle, the nef cone and the pseudo-effective cone
coincide by [15, Corollary 1.5]. Therefore, the proofs are completed. O
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